anv: Use DRM sync objects for external semaphores when available
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
40 #else
41 #define VG(x)
42 #endif
43
44 #include "common/gen_clflush.h"
45 #include "common/gen_device_info.h"
46 #include "blorp/blorp.h"
47 #include "compiler/brw_compiler.h"
48 #include "util/macros.h"
49 #include "util/list.h"
50 #include "util/u_atomic.h"
51 #include "util/u_vector.h"
52 #include "vk_alloc.h"
53
54 /* Pre-declarations needed for WSI entrypoints */
55 struct wl_surface;
56 struct wl_display;
57 typedef struct xcb_connection_t xcb_connection_t;
58 typedef uint32_t xcb_visualid_t;
59 typedef uint32_t xcb_window_t;
60
61 struct anv_buffer;
62 struct anv_buffer_view;
63 struct anv_image_view;
64
65 struct gen_l3_config;
66
67 #include <vulkan/vulkan.h>
68 #include <vulkan/vulkan_intel.h>
69 #include <vulkan/vk_icd.h>
70
71 #include "anv_entrypoints.h"
72 #include "isl/isl.h"
73
74 #include "common/gen_debug.h"
75 #include "wsi_common.h"
76
77 /* Allowing different clear colors requires us to perform a depth resolve at
78 * the end of certain render passes. This is because while slow clears store
79 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
80 * See the PRMs for examples describing when additional resolves would be
81 * necessary. To enable fast clears without requiring extra resolves, we set
82 * the clear value to a globally-defined one. We could allow different values
83 * if the user doesn't expect coherent data during or after a render passes
84 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
85 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
86 * 1.0f seems to be the only value used. The only application that doesn't set
87 * this value does so through the usage of an seemingly uninitialized clear
88 * value.
89 */
90 #define ANV_HZ_FC_VAL 1.0f
91
92 #define MAX_VBS 28
93 #define MAX_SETS 8
94 #define MAX_RTS 8
95 #define MAX_VIEWPORTS 16
96 #define MAX_SCISSORS 16
97 #define MAX_PUSH_CONSTANTS_SIZE 128
98 #define MAX_DYNAMIC_BUFFERS 16
99 #define MAX_IMAGES 8
100 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
101
102 #define ANV_SVGS_VB_INDEX MAX_VBS
103 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
104
105 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
106
107 static inline uint32_t
108 align_down_npot_u32(uint32_t v, uint32_t a)
109 {
110 return v - (v % a);
111 }
112
113 static inline uint32_t
114 align_u32(uint32_t v, uint32_t a)
115 {
116 assert(a != 0 && a == (a & -a));
117 return (v + a - 1) & ~(a - 1);
118 }
119
120 static inline uint64_t
121 align_u64(uint64_t v, uint64_t a)
122 {
123 assert(a != 0 && a == (a & -a));
124 return (v + a - 1) & ~(a - 1);
125 }
126
127 static inline int32_t
128 align_i32(int32_t v, int32_t a)
129 {
130 assert(a != 0 && a == (a & -a));
131 return (v + a - 1) & ~(a - 1);
132 }
133
134 /** Alignment must be a power of 2. */
135 static inline bool
136 anv_is_aligned(uintmax_t n, uintmax_t a)
137 {
138 assert(a == (a & -a));
139 return (n & (a - 1)) == 0;
140 }
141
142 static inline uint32_t
143 anv_minify(uint32_t n, uint32_t levels)
144 {
145 if (unlikely(n == 0))
146 return 0;
147 else
148 return MAX2(n >> levels, 1);
149 }
150
151 static inline float
152 anv_clamp_f(float f, float min, float max)
153 {
154 assert(min < max);
155
156 if (f > max)
157 return max;
158 else if (f < min)
159 return min;
160 else
161 return f;
162 }
163
164 static inline bool
165 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
166 {
167 if (*inout_mask & clear_mask) {
168 *inout_mask &= ~clear_mask;
169 return true;
170 } else {
171 return false;
172 }
173 }
174
175 static inline union isl_color_value
176 vk_to_isl_color(VkClearColorValue color)
177 {
178 return (union isl_color_value) {
179 .u32 = {
180 color.uint32[0],
181 color.uint32[1],
182 color.uint32[2],
183 color.uint32[3],
184 },
185 };
186 }
187
188 #define for_each_bit(b, dword) \
189 for (uint32_t __dword = (dword); \
190 (b) = __builtin_ffs(__dword) - 1, __dword; \
191 __dword &= ~(1 << (b)))
192
193 #define typed_memcpy(dest, src, count) ({ \
194 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
195 memcpy((dest), (src), (count) * sizeof(*(src))); \
196 })
197
198 /* Whenever we generate an error, pass it through this function. Useful for
199 * debugging, where we can break on it. Only call at error site, not when
200 * propagating errors. Might be useful to plug in a stack trace here.
201 */
202
203 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
204
205 #ifdef DEBUG
206 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
207 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
208 #define anv_debug(format, ...) fprintf(stderr, "debug: " format, ##__VA_ARGS__)
209 #else
210 #define vk_error(error) error
211 #define vk_errorf(error, format, ...) error
212 #define anv_debug(format, ...)
213 #endif
214
215 /**
216 * Warn on ignored extension structs.
217 *
218 * The Vulkan spec requires us to ignore unsupported or unknown structs in
219 * a pNext chain. In debug mode, emitting warnings for ignored structs may
220 * help us discover structs that we should not have ignored.
221 *
222 *
223 * From the Vulkan 1.0.38 spec:
224 *
225 * Any component of the implementation (the loader, any enabled layers,
226 * and drivers) must skip over, without processing (other than reading the
227 * sType and pNext members) any chained structures with sType values not
228 * defined by extensions supported by that component.
229 */
230 #define anv_debug_ignored_stype(sType) \
231 anv_debug("debug: %s: ignored VkStructureType %u\n", __func__, (sType))
232
233 void __anv_finishme(const char *file, int line, const char *format, ...)
234 anv_printflike(3, 4);
235 void __anv_perf_warn(const char *file, int line, const char *format, ...)
236 anv_printflike(3, 4);
237 void anv_loge(const char *format, ...) anv_printflike(1, 2);
238 void anv_loge_v(const char *format, va_list va);
239
240 /**
241 * Print a FINISHME message, including its source location.
242 */
243 #define anv_finishme(format, ...) \
244 do { \
245 static bool reported = false; \
246 if (!reported) { \
247 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
248 reported = true; \
249 } \
250 } while (0)
251
252 /**
253 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
254 */
255 #define anv_perf_warn(format, ...) \
256 do { \
257 static bool reported = false; \
258 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
259 __anv_perf_warn(__FILE__, __LINE__, format, ##__VA_ARGS__); \
260 reported = true; \
261 } \
262 } while (0)
263
264 /* A non-fatal assert. Useful for debugging. */
265 #ifdef DEBUG
266 #define anv_assert(x) ({ \
267 if (unlikely(!(x))) \
268 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
269 })
270 #else
271 #define anv_assert(x)
272 #endif
273
274 /* A multi-pointer allocator
275 *
276 * When copying data structures from the user (such as a render pass), it's
277 * common to need to allocate data for a bunch of different things. Instead
278 * of doing several allocations and having to handle all of the error checking
279 * that entails, it can be easier to do a single allocation. This struct
280 * helps facilitate that. The intended usage looks like this:
281 *
282 * ANV_MULTIALLOC(ma)
283 * anv_multialloc_add(&ma, &main_ptr, 1);
284 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
285 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
286 *
287 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
288 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
289 */
290 struct anv_multialloc {
291 size_t size;
292 size_t align;
293
294 uint32_t ptr_count;
295 void **ptrs[8];
296 };
297
298 #define ANV_MULTIALLOC_INIT \
299 ((struct anv_multialloc) { 0, })
300
301 #define ANV_MULTIALLOC(_name) \
302 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
303
304 __attribute__((always_inline))
305 static inline void
306 _anv_multialloc_add(struct anv_multialloc *ma,
307 void **ptr, size_t size, size_t align)
308 {
309 size_t offset = align_u64(ma->size, align);
310 ma->size = offset + size;
311 ma->align = MAX2(ma->align, align);
312
313 /* Store the offset in the pointer. */
314 *ptr = (void *)(uintptr_t)offset;
315
316 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
317 ma->ptrs[ma->ptr_count++] = ptr;
318 }
319
320 #define anv_multialloc_add(_ma, _ptr, _count) \
321 _anv_multialloc_add((_ma), (void **)(_ptr), \
322 (_count) * sizeof(**(_ptr)), __alignof__(**(_ptr)))
323
324 __attribute__((always_inline))
325 static inline void *
326 anv_multialloc_alloc(struct anv_multialloc *ma,
327 const VkAllocationCallbacks *alloc,
328 VkSystemAllocationScope scope)
329 {
330 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
331 if (!ptr)
332 return NULL;
333
334 /* Fill out each of the pointers with their final value.
335 *
336 * for (uint32_t i = 0; i < ma->ptr_count; i++)
337 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
338 *
339 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
340 * constant, GCC is incapable of figuring this out and unrolling the loop
341 * so we have to give it a little help.
342 */
343 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
344 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
345 if ((_i) < ma->ptr_count) \
346 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
347 _ANV_MULTIALLOC_UPDATE_POINTER(0);
348 _ANV_MULTIALLOC_UPDATE_POINTER(1);
349 _ANV_MULTIALLOC_UPDATE_POINTER(2);
350 _ANV_MULTIALLOC_UPDATE_POINTER(3);
351 _ANV_MULTIALLOC_UPDATE_POINTER(4);
352 _ANV_MULTIALLOC_UPDATE_POINTER(5);
353 _ANV_MULTIALLOC_UPDATE_POINTER(6);
354 _ANV_MULTIALLOC_UPDATE_POINTER(7);
355 #undef _ANV_MULTIALLOC_UPDATE_POINTER
356
357 return ptr;
358 }
359
360 __attribute__((always_inline))
361 static inline void *
362 anv_multialloc_alloc2(struct anv_multialloc *ma,
363 const VkAllocationCallbacks *parent_alloc,
364 const VkAllocationCallbacks *alloc,
365 VkSystemAllocationScope scope)
366 {
367 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
368 }
369
370 /**
371 * A dynamically growable, circular buffer. Elements are added at head and
372 * removed from tail. head and tail are free-running uint32_t indices and we
373 * only compute the modulo with size when accessing the array. This way,
374 * number of bytes in the queue is always head - tail, even in case of
375 * wraparound.
376 */
377
378 struct anv_bo {
379 uint32_t gem_handle;
380
381 /* Index into the current validation list. This is used by the
382 * validation list building alrogithm to track which buffers are already
383 * in the validation list so that we can ensure uniqueness.
384 */
385 uint32_t index;
386
387 /* Last known offset. This value is provided by the kernel when we
388 * execbuf and is used as the presumed offset for the next bunch of
389 * relocations.
390 */
391 uint64_t offset;
392
393 uint64_t size;
394 void *map;
395
396 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
397 uint32_t flags;
398 };
399
400 static inline void
401 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
402 {
403 bo->gem_handle = gem_handle;
404 bo->index = 0;
405 bo->offset = -1;
406 bo->size = size;
407 bo->map = NULL;
408 bo->flags = 0;
409 }
410
411 /* Represents a lock-free linked list of "free" things. This is used by
412 * both the block pool and the state pools. Unfortunately, in order to
413 * solve the ABA problem, we can't use a single uint32_t head.
414 */
415 union anv_free_list {
416 struct {
417 int32_t offset;
418
419 /* A simple count that is incremented every time the head changes. */
420 uint32_t count;
421 };
422 uint64_t u64;
423 };
424
425 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
426
427 struct anv_block_state {
428 union {
429 struct {
430 uint32_t next;
431 uint32_t end;
432 };
433 uint64_t u64;
434 };
435 };
436
437 struct anv_block_pool {
438 struct anv_device *device;
439
440 struct anv_bo bo;
441
442 /* The offset from the start of the bo to the "center" of the block
443 * pool. Pointers to allocated blocks are given by
444 * bo.map + center_bo_offset + offsets.
445 */
446 uint32_t center_bo_offset;
447
448 /* Current memory map of the block pool. This pointer may or may not
449 * point to the actual beginning of the block pool memory. If
450 * anv_block_pool_alloc_back has ever been called, then this pointer
451 * will point to the "center" position of the buffer and all offsets
452 * (negative or positive) given out by the block pool alloc functions
453 * will be valid relative to this pointer.
454 *
455 * In particular, map == bo.map + center_offset
456 */
457 void *map;
458 int fd;
459
460 /**
461 * Array of mmaps and gem handles owned by the block pool, reclaimed when
462 * the block pool is destroyed.
463 */
464 struct u_vector mmap_cleanups;
465
466 struct anv_block_state state;
467
468 struct anv_block_state back_state;
469 };
470
471 /* Block pools are backed by a fixed-size 1GB memfd */
472 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
473
474 /* The center of the block pool is also the middle of the memfd. This may
475 * change in the future if we decide differently for some reason.
476 */
477 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
478
479 static inline uint32_t
480 anv_block_pool_size(struct anv_block_pool *pool)
481 {
482 return pool->state.end + pool->back_state.end;
483 }
484
485 struct anv_state {
486 int32_t offset;
487 uint32_t alloc_size;
488 void *map;
489 };
490
491 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
492
493 struct anv_fixed_size_state_pool {
494 union anv_free_list free_list;
495 struct anv_block_state block;
496 };
497
498 #define ANV_MIN_STATE_SIZE_LOG2 6
499 #define ANV_MAX_STATE_SIZE_LOG2 20
500
501 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
502
503 struct anv_state_pool {
504 struct anv_block_pool block_pool;
505
506 /* The size of blocks which will be allocated from the block pool */
507 uint32_t block_size;
508
509 /** Free list for "back" allocations */
510 union anv_free_list back_alloc_free_list;
511
512 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
513 };
514
515 struct anv_state_stream_block;
516
517 struct anv_state_stream {
518 struct anv_state_pool *state_pool;
519
520 /* The size of blocks to allocate from the state pool */
521 uint32_t block_size;
522
523 /* Current block we're allocating from */
524 struct anv_state block;
525
526 /* Offset into the current block at which to allocate the next state */
527 uint32_t next;
528
529 /* List of all blocks allocated from this pool */
530 struct anv_state_stream_block *block_list;
531 };
532
533 /* The block_pool functions exported for testing only. The block pool should
534 * only be used via a state pool (see below).
535 */
536 VkResult anv_block_pool_init(struct anv_block_pool *pool,
537 struct anv_device *device,
538 uint32_t initial_size);
539 void anv_block_pool_finish(struct anv_block_pool *pool);
540 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
541 uint32_t block_size);
542 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
543 uint32_t block_size);
544
545 VkResult anv_state_pool_init(struct anv_state_pool *pool,
546 struct anv_device *device,
547 uint32_t block_size);
548 void anv_state_pool_finish(struct anv_state_pool *pool);
549 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
550 uint32_t state_size, uint32_t alignment);
551 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
552 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
553 void anv_state_stream_init(struct anv_state_stream *stream,
554 struct anv_state_pool *state_pool,
555 uint32_t block_size);
556 void anv_state_stream_finish(struct anv_state_stream *stream);
557 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
558 uint32_t size, uint32_t alignment);
559
560 /**
561 * Implements a pool of re-usable BOs. The interface is identical to that
562 * of block_pool except that each block is its own BO.
563 */
564 struct anv_bo_pool {
565 struct anv_device *device;
566
567 void *free_list[16];
568 };
569
570 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
571 void anv_bo_pool_finish(struct anv_bo_pool *pool);
572 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
573 uint32_t size);
574 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
575
576 struct anv_scratch_bo {
577 bool exists;
578 struct anv_bo bo;
579 };
580
581 struct anv_scratch_pool {
582 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
583 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
584 };
585
586 void anv_scratch_pool_init(struct anv_device *device,
587 struct anv_scratch_pool *pool);
588 void anv_scratch_pool_finish(struct anv_device *device,
589 struct anv_scratch_pool *pool);
590 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
591 struct anv_scratch_pool *pool,
592 gl_shader_stage stage,
593 unsigned per_thread_scratch);
594
595 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
596 struct anv_bo_cache {
597 struct hash_table *bo_map;
598 pthread_mutex_t mutex;
599 };
600
601 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
602 void anv_bo_cache_finish(struct anv_bo_cache *cache);
603 VkResult anv_bo_cache_alloc(struct anv_device *device,
604 struct anv_bo_cache *cache,
605 uint64_t size, struct anv_bo **bo);
606 VkResult anv_bo_cache_import(struct anv_device *device,
607 struct anv_bo_cache *cache,
608 int fd, uint64_t size, struct anv_bo **bo);
609 VkResult anv_bo_cache_export(struct anv_device *device,
610 struct anv_bo_cache *cache,
611 struct anv_bo *bo_in, int *fd_out);
612 void anv_bo_cache_release(struct anv_device *device,
613 struct anv_bo_cache *cache,
614 struct anv_bo *bo);
615
616 struct anv_memory_type {
617 /* Standard bits passed on to the client */
618 VkMemoryPropertyFlags propertyFlags;
619 uint32_t heapIndex;
620
621 /* Driver-internal book-keeping */
622 VkBufferUsageFlags valid_buffer_usage;
623 };
624
625 struct anv_memory_heap {
626 /* Standard bits passed on to the client */
627 VkDeviceSize size;
628 VkMemoryHeapFlags flags;
629
630 /* Driver-internal book-keeping */
631 bool supports_48bit_addresses;
632 };
633
634 struct anv_physical_device {
635 VK_LOADER_DATA _loader_data;
636
637 struct anv_instance * instance;
638 uint32_t chipset_id;
639 char path[20];
640 const char * name;
641 struct gen_device_info info;
642 /** Amount of "GPU memory" we want to advertise
643 *
644 * Clearly, this value is bogus since Intel is a UMA architecture. On
645 * gen7 platforms, we are limited by GTT size unless we want to implement
646 * fine-grained tracking and GTT splitting. On Broadwell and above we are
647 * practically unlimited. However, we will never report more than 3/4 of
648 * the total system ram to try and avoid running out of RAM.
649 */
650 bool supports_48bit_addresses;
651 struct brw_compiler * compiler;
652 struct isl_device isl_dev;
653 int cmd_parser_version;
654 bool has_exec_async;
655 bool has_exec_fence;
656 bool has_syncobj;
657
658 uint32_t eu_total;
659 uint32_t subslice_total;
660
661 struct {
662 uint32_t type_count;
663 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
664 uint32_t heap_count;
665 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
666 } memory;
667
668 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
669 uint8_t driver_uuid[VK_UUID_SIZE];
670 uint8_t device_uuid[VK_UUID_SIZE];
671
672 struct wsi_device wsi_device;
673 int local_fd;
674 };
675
676 struct anv_instance {
677 VK_LOADER_DATA _loader_data;
678
679 VkAllocationCallbacks alloc;
680
681 uint32_t apiVersion;
682 int physicalDeviceCount;
683 struct anv_physical_device physicalDevice;
684 };
685
686 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
687 void anv_finish_wsi(struct anv_physical_device *physical_device);
688
689 bool anv_instance_extension_supported(const char *name);
690 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
691 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
692 const char *name);
693
694 struct anv_queue {
695 VK_LOADER_DATA _loader_data;
696
697 struct anv_device * device;
698
699 struct anv_state_pool * pool;
700 };
701
702 struct anv_pipeline_cache {
703 struct anv_device * device;
704 pthread_mutex_t mutex;
705
706 struct hash_table * cache;
707 };
708
709 struct anv_pipeline_bind_map;
710
711 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
712 struct anv_device *device,
713 bool cache_enabled);
714 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
715
716 struct anv_shader_bin *
717 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
718 const void *key, uint32_t key_size);
719 struct anv_shader_bin *
720 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
721 const void *key_data, uint32_t key_size,
722 const void *kernel_data, uint32_t kernel_size,
723 const struct brw_stage_prog_data *prog_data,
724 uint32_t prog_data_size,
725 const struct anv_pipeline_bind_map *bind_map);
726
727 struct anv_device {
728 VK_LOADER_DATA _loader_data;
729
730 VkAllocationCallbacks alloc;
731
732 struct anv_instance * instance;
733 uint32_t chipset_id;
734 struct gen_device_info info;
735 struct isl_device isl_dev;
736 int context_id;
737 int fd;
738 bool can_chain_batches;
739 bool robust_buffer_access;
740
741 struct anv_bo_pool batch_bo_pool;
742
743 struct anv_bo_cache bo_cache;
744
745 struct anv_state_pool dynamic_state_pool;
746 struct anv_state_pool instruction_state_pool;
747 struct anv_state_pool surface_state_pool;
748
749 struct anv_bo workaround_bo;
750 struct anv_bo trivial_batch_bo;
751
752 struct anv_pipeline_cache blorp_shader_cache;
753 struct blorp_context blorp;
754
755 struct anv_state border_colors;
756
757 struct anv_queue queue;
758
759 struct anv_scratch_pool scratch_pool;
760
761 uint32_t default_mocs;
762
763 pthread_mutex_t mutex;
764 pthread_cond_t queue_submit;
765 bool lost;
766 };
767
768 static void inline
769 anv_state_flush(struct anv_device *device, struct anv_state state)
770 {
771 if (device->info.has_llc)
772 return;
773
774 gen_flush_range(state.map, state.alloc_size);
775 }
776
777 void anv_device_init_blorp(struct anv_device *device);
778 void anv_device_finish_blorp(struct anv_device *device);
779
780 VkResult anv_device_execbuf(struct anv_device *device,
781 struct drm_i915_gem_execbuffer2 *execbuf,
782 struct anv_bo **execbuf_bos);
783 VkResult anv_device_query_status(struct anv_device *device);
784 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
785 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
786 int64_t timeout);
787
788 void* anv_gem_mmap(struct anv_device *device,
789 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
790 void anv_gem_munmap(void *p, uint64_t size);
791 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
792 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
793 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
794 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
795 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
796 int anv_gem_execbuffer(struct anv_device *device,
797 struct drm_i915_gem_execbuffer2 *execbuf);
798 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
799 uint32_t stride, uint32_t tiling);
800 int anv_gem_create_context(struct anv_device *device);
801 int anv_gem_destroy_context(struct anv_device *device, int context);
802 int anv_gem_get_context_param(int fd, int context, uint32_t param,
803 uint64_t *value);
804 int anv_gem_get_param(int fd, uint32_t param);
805 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
806 int anv_gem_get_aperture(int fd, uint64_t *size);
807 bool anv_gem_supports_48b_addresses(int fd);
808 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
809 uint32_t *active, uint32_t *pending);
810 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
811 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
812 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
813 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
814 uint32_t read_domains, uint32_t write_domain);
815 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
816 uint32_t anv_gem_syncobj_create(struct anv_device *device);
817 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
818 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
819 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
820
821 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
822
823 struct anv_reloc_list {
824 uint32_t num_relocs;
825 uint32_t array_length;
826 struct drm_i915_gem_relocation_entry * relocs;
827 struct anv_bo ** reloc_bos;
828 };
829
830 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
831 const VkAllocationCallbacks *alloc);
832 void anv_reloc_list_finish(struct anv_reloc_list *list,
833 const VkAllocationCallbacks *alloc);
834
835 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
836 const VkAllocationCallbacks *alloc,
837 uint32_t offset, struct anv_bo *target_bo,
838 uint32_t delta);
839
840 struct anv_batch_bo {
841 /* Link in the anv_cmd_buffer.owned_batch_bos list */
842 struct list_head link;
843
844 struct anv_bo bo;
845
846 /* Bytes actually consumed in this batch BO */
847 uint32_t length;
848
849 struct anv_reloc_list relocs;
850 };
851
852 struct anv_batch {
853 const VkAllocationCallbacks * alloc;
854
855 void * start;
856 void * end;
857 void * next;
858
859 struct anv_reloc_list * relocs;
860
861 /* This callback is called (with the associated user data) in the event
862 * that the batch runs out of space.
863 */
864 VkResult (*extend_cb)(struct anv_batch *, void *);
865 void * user_data;
866
867 /**
868 * Current error status of the command buffer. Used to track inconsistent
869 * or incomplete command buffer states that are the consequence of run-time
870 * errors such as out of memory scenarios. We want to track this in the
871 * batch because the command buffer object is not visible to some parts
872 * of the driver.
873 */
874 VkResult status;
875 };
876
877 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
878 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
879 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
880 void *location, struct anv_bo *bo, uint32_t offset);
881 VkResult anv_device_submit_simple_batch(struct anv_device *device,
882 struct anv_batch *batch);
883
884 static inline VkResult
885 anv_batch_set_error(struct anv_batch *batch, VkResult error)
886 {
887 assert(error != VK_SUCCESS);
888 if (batch->status == VK_SUCCESS)
889 batch->status = error;
890 return batch->status;
891 }
892
893 static inline bool
894 anv_batch_has_error(struct anv_batch *batch)
895 {
896 return batch->status != VK_SUCCESS;
897 }
898
899 struct anv_address {
900 struct anv_bo *bo;
901 uint32_t offset;
902 };
903
904 static inline uint64_t
905 _anv_combine_address(struct anv_batch *batch, void *location,
906 const struct anv_address address, uint32_t delta)
907 {
908 if (address.bo == NULL) {
909 return address.offset + delta;
910 } else {
911 assert(batch->start <= location && location < batch->end);
912
913 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
914 }
915 }
916
917 #define __gen_address_type struct anv_address
918 #define __gen_user_data struct anv_batch
919 #define __gen_combine_address _anv_combine_address
920
921 /* Wrapper macros needed to work around preprocessor argument issues. In
922 * particular, arguments don't get pre-evaluated if they are concatenated.
923 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
924 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
925 * We can work around this easily enough with these helpers.
926 */
927 #define __anv_cmd_length(cmd) cmd ## _length
928 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
929 #define __anv_cmd_header(cmd) cmd ## _header
930 #define __anv_cmd_pack(cmd) cmd ## _pack
931 #define __anv_reg_num(reg) reg ## _num
932
933 #define anv_pack_struct(dst, struc, ...) do { \
934 struct struc __template = { \
935 __VA_ARGS__ \
936 }; \
937 __anv_cmd_pack(struc)(NULL, dst, &__template); \
938 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
939 } while (0)
940
941 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
942 void *__dst = anv_batch_emit_dwords(batch, n); \
943 if (__dst) { \
944 struct cmd __template = { \
945 __anv_cmd_header(cmd), \
946 .DWordLength = n - __anv_cmd_length_bias(cmd), \
947 __VA_ARGS__ \
948 }; \
949 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
950 } \
951 __dst; \
952 })
953
954 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
955 do { \
956 uint32_t *dw; \
957 \
958 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
959 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
960 if (!dw) \
961 break; \
962 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
963 dw[i] = (dwords0)[i] | (dwords1)[i]; \
964 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
965 } while (0)
966
967 #define anv_batch_emit(batch, cmd, name) \
968 for (struct cmd name = { __anv_cmd_header(cmd) }, \
969 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
970 __builtin_expect(_dst != NULL, 1); \
971 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
972 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
973 _dst = NULL; \
974 }))
975
976 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
977 .GraphicsDataTypeGFDT = 0, \
978 .LLCCacheabilityControlLLCCC = 0, \
979 .L3CacheabilityControlL3CC = 1, \
980 }
981
982 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
983 .LLCeLLCCacheabilityControlLLCCC = 0, \
984 .L3CacheabilityControlL3CC = 1, \
985 }
986
987 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
988 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
989 .TargetCache = L3DefertoPATforLLCeLLCselection, \
990 .AgeforQUADLRU = 0 \
991 }
992
993 /* Skylake: MOCS is now an index into an array of 62 different caching
994 * configurations programmed by the kernel.
995 */
996
997 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
998 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
999 .IndextoMOCSTables = 2 \
1000 }
1001
1002 #define GEN9_MOCS_PTE { \
1003 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1004 .IndextoMOCSTables = 1 \
1005 }
1006
1007 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1008 #define GEN10_MOCS (struct GEN10_MEMORY_OBJECT_CONTROL_STATE) { \
1009 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1010 .IndextoMOCSTables = 2 \
1011 }
1012
1013 #define GEN10_MOCS_PTE { \
1014 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1015 .IndextoMOCSTables = 1 \
1016 }
1017
1018 struct anv_device_memory {
1019 struct anv_bo * bo;
1020 struct anv_memory_type * type;
1021 VkDeviceSize map_size;
1022 void * map;
1023 };
1024
1025 /**
1026 * Header for Vertex URB Entry (VUE)
1027 */
1028 struct anv_vue_header {
1029 uint32_t Reserved;
1030 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1031 uint32_t ViewportIndex;
1032 float PointWidth;
1033 };
1034
1035 struct anv_descriptor_set_binding_layout {
1036 #ifndef NDEBUG
1037 /* The type of the descriptors in this binding */
1038 VkDescriptorType type;
1039 #endif
1040
1041 /* Number of array elements in this binding */
1042 uint16_t array_size;
1043
1044 /* Index into the flattend descriptor set */
1045 uint16_t descriptor_index;
1046
1047 /* Index into the dynamic state array for a dynamic buffer */
1048 int16_t dynamic_offset_index;
1049
1050 /* Index into the descriptor set buffer views */
1051 int16_t buffer_index;
1052
1053 struct {
1054 /* Index into the binding table for the associated surface */
1055 int16_t surface_index;
1056
1057 /* Index into the sampler table for the associated sampler */
1058 int16_t sampler_index;
1059
1060 /* Index into the image table for the associated image */
1061 int16_t image_index;
1062 } stage[MESA_SHADER_STAGES];
1063
1064 /* Immutable samplers (or NULL if no immutable samplers) */
1065 struct anv_sampler **immutable_samplers;
1066 };
1067
1068 struct anv_descriptor_set_layout {
1069 /* Number of bindings in this descriptor set */
1070 uint16_t binding_count;
1071
1072 /* Total size of the descriptor set with room for all array entries */
1073 uint16_t size;
1074
1075 /* Shader stages affected by this descriptor set */
1076 uint16_t shader_stages;
1077
1078 /* Number of buffers in this descriptor set */
1079 uint16_t buffer_count;
1080
1081 /* Number of dynamic offsets used by this descriptor set */
1082 uint16_t dynamic_offset_count;
1083
1084 /* Bindings in this descriptor set */
1085 struct anv_descriptor_set_binding_layout binding[0];
1086 };
1087
1088 struct anv_descriptor {
1089 VkDescriptorType type;
1090
1091 union {
1092 struct {
1093 VkImageLayout layout;
1094 struct anv_image_view *image_view;
1095 struct anv_sampler *sampler;
1096 };
1097
1098 struct {
1099 struct anv_buffer *buffer;
1100 uint64_t offset;
1101 uint64_t range;
1102 };
1103
1104 struct anv_buffer_view *buffer_view;
1105 };
1106 };
1107
1108 struct anv_descriptor_set {
1109 const struct anv_descriptor_set_layout *layout;
1110 uint32_t size;
1111 uint32_t buffer_count;
1112 struct anv_buffer_view *buffer_views;
1113 struct anv_descriptor descriptors[0];
1114 };
1115
1116 struct anv_buffer_view {
1117 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1118 struct anv_bo *bo;
1119 uint32_t offset; /**< Offset into bo. */
1120 uint64_t range; /**< VkBufferViewCreateInfo::range */
1121
1122 struct anv_state surface_state;
1123 struct anv_state storage_surface_state;
1124 struct anv_state writeonly_storage_surface_state;
1125
1126 struct brw_image_param storage_image_param;
1127 };
1128
1129 struct anv_push_descriptor_set {
1130 struct anv_descriptor_set set;
1131
1132 /* Put this field right behind anv_descriptor_set so it fills up the
1133 * descriptors[0] field. */
1134 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1135
1136 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1137 };
1138
1139 struct anv_descriptor_pool {
1140 uint32_t size;
1141 uint32_t next;
1142 uint32_t free_list;
1143
1144 struct anv_state_stream surface_state_stream;
1145 void *surface_state_free_list;
1146
1147 char data[0];
1148 };
1149
1150 enum anv_descriptor_template_entry_type {
1151 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1152 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1153 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1154 };
1155
1156 struct anv_descriptor_template_entry {
1157 /* The type of descriptor in this entry */
1158 VkDescriptorType type;
1159
1160 /* Binding in the descriptor set */
1161 uint32_t binding;
1162
1163 /* Offset at which to write into the descriptor set binding */
1164 uint32_t array_element;
1165
1166 /* Number of elements to write into the descriptor set binding */
1167 uint32_t array_count;
1168
1169 /* Offset into the user provided data */
1170 size_t offset;
1171
1172 /* Stride between elements into the user provided data */
1173 size_t stride;
1174 };
1175
1176 struct anv_descriptor_update_template {
1177 /* The descriptor set this template corresponds to. This value is only
1178 * valid if the template was created with the templateType
1179 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR.
1180 */
1181 uint8_t set;
1182
1183 /* Number of entries in this template */
1184 uint32_t entry_count;
1185
1186 /* Entries of the template */
1187 struct anv_descriptor_template_entry entries[0];
1188 };
1189
1190 size_t
1191 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1192
1193 void
1194 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
1195 const struct gen_device_info * const devinfo,
1196 const VkDescriptorImageInfo * const info,
1197 VkDescriptorType type,
1198 uint32_t binding,
1199 uint32_t element);
1200
1201 void
1202 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
1203 VkDescriptorType type,
1204 struct anv_buffer_view *buffer_view,
1205 uint32_t binding,
1206 uint32_t element);
1207
1208 void
1209 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
1210 struct anv_device *device,
1211 struct anv_state_stream *alloc_stream,
1212 VkDescriptorType type,
1213 struct anv_buffer *buffer,
1214 uint32_t binding,
1215 uint32_t element,
1216 VkDeviceSize offset,
1217 VkDeviceSize range);
1218
1219 void
1220 anv_descriptor_set_write_template(struct anv_descriptor_set *set,
1221 struct anv_device *device,
1222 struct anv_state_stream *alloc_stream,
1223 const struct anv_descriptor_update_template *template,
1224 const void *data);
1225
1226 VkResult
1227 anv_descriptor_set_create(struct anv_device *device,
1228 struct anv_descriptor_pool *pool,
1229 const struct anv_descriptor_set_layout *layout,
1230 struct anv_descriptor_set **out_set);
1231
1232 void
1233 anv_descriptor_set_destroy(struct anv_device *device,
1234 struct anv_descriptor_pool *pool,
1235 struct anv_descriptor_set *set);
1236
1237 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1238
1239 struct anv_pipeline_binding {
1240 /* The descriptor set this surface corresponds to. The special value of
1241 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1242 * to a color attachment and not a regular descriptor.
1243 */
1244 uint8_t set;
1245
1246 /* Binding in the descriptor set */
1247 uint8_t binding;
1248
1249 /* Index in the binding */
1250 uint8_t index;
1251
1252 /* Input attachment index (relative to the subpass) */
1253 uint8_t input_attachment_index;
1254
1255 /* For a storage image, whether it is write-only */
1256 bool write_only;
1257 };
1258
1259 struct anv_pipeline_layout {
1260 struct {
1261 struct anv_descriptor_set_layout *layout;
1262 uint32_t dynamic_offset_start;
1263 } set[MAX_SETS];
1264
1265 uint32_t num_sets;
1266
1267 struct {
1268 bool has_dynamic_offsets;
1269 } stage[MESA_SHADER_STAGES];
1270
1271 unsigned char sha1[20];
1272 };
1273
1274 struct anv_buffer {
1275 struct anv_device * device;
1276 VkDeviceSize size;
1277
1278 VkBufferUsageFlags usage;
1279
1280 /* Set when bound */
1281 struct anv_bo * bo;
1282 VkDeviceSize offset;
1283 };
1284
1285 static inline uint64_t
1286 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1287 {
1288 assert(offset <= buffer->size);
1289 if (range == VK_WHOLE_SIZE) {
1290 return buffer->size - offset;
1291 } else {
1292 assert(range <= buffer->size);
1293 return range;
1294 }
1295 }
1296
1297 enum anv_cmd_dirty_bits {
1298 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1299 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1300 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1301 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1302 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1303 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1304 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1305 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1306 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1307 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1308 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1309 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1310 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1311 };
1312 typedef uint32_t anv_cmd_dirty_mask_t;
1313
1314 enum anv_pipe_bits {
1315 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1316 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1317 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1318 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1319 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1320 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1321 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1322 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1323 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1324 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1325 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1326
1327 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1328 * a flush has happened but not a CS stall. The next time we do any sort
1329 * of invalidation we need to insert a CS stall at that time. Otherwise,
1330 * we would have to CS stall on every flush which could be bad.
1331 */
1332 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1333 };
1334
1335 #define ANV_PIPE_FLUSH_BITS ( \
1336 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1337 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1338 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1339
1340 #define ANV_PIPE_STALL_BITS ( \
1341 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1342 ANV_PIPE_DEPTH_STALL_BIT | \
1343 ANV_PIPE_CS_STALL_BIT)
1344
1345 #define ANV_PIPE_INVALIDATE_BITS ( \
1346 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1347 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1348 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1349 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1350 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1351 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1352
1353 static inline enum anv_pipe_bits
1354 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1355 {
1356 enum anv_pipe_bits pipe_bits = 0;
1357
1358 unsigned b;
1359 for_each_bit(b, flags) {
1360 switch ((VkAccessFlagBits)(1 << b)) {
1361 case VK_ACCESS_SHADER_WRITE_BIT:
1362 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1363 break;
1364 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1365 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1366 break;
1367 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1368 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1369 break;
1370 case VK_ACCESS_TRANSFER_WRITE_BIT:
1371 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1372 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1373 break;
1374 default:
1375 break; /* Nothing to do */
1376 }
1377 }
1378
1379 return pipe_bits;
1380 }
1381
1382 static inline enum anv_pipe_bits
1383 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1384 {
1385 enum anv_pipe_bits pipe_bits = 0;
1386
1387 unsigned b;
1388 for_each_bit(b, flags) {
1389 switch ((VkAccessFlagBits)(1 << b)) {
1390 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1391 case VK_ACCESS_INDEX_READ_BIT:
1392 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1393 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1394 break;
1395 case VK_ACCESS_UNIFORM_READ_BIT:
1396 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1397 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1398 break;
1399 case VK_ACCESS_SHADER_READ_BIT:
1400 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1401 case VK_ACCESS_TRANSFER_READ_BIT:
1402 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1403 break;
1404 default:
1405 break; /* Nothing to do */
1406 }
1407 }
1408
1409 return pipe_bits;
1410 }
1411
1412 struct anv_vertex_binding {
1413 struct anv_buffer * buffer;
1414 VkDeviceSize offset;
1415 };
1416
1417 struct anv_push_constants {
1418 /* Current allocated size of this push constants data structure.
1419 * Because a decent chunk of it may not be used (images on SKL, for
1420 * instance), we won't actually allocate the entire structure up-front.
1421 */
1422 uint32_t size;
1423
1424 /* Push constant data provided by the client through vkPushConstants */
1425 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1426
1427 /* Our hardware only provides zero-based vertex and instance id so, in
1428 * order to satisfy the vulkan requirements, we may have to push one or
1429 * both of these into the shader.
1430 */
1431 uint32_t base_vertex;
1432 uint32_t base_instance;
1433
1434 /* Image data for image_load_store on pre-SKL */
1435 struct brw_image_param images[MAX_IMAGES];
1436 };
1437
1438 struct anv_dynamic_state {
1439 struct {
1440 uint32_t count;
1441 VkViewport viewports[MAX_VIEWPORTS];
1442 } viewport;
1443
1444 struct {
1445 uint32_t count;
1446 VkRect2D scissors[MAX_SCISSORS];
1447 } scissor;
1448
1449 float line_width;
1450
1451 struct {
1452 float bias;
1453 float clamp;
1454 float slope;
1455 } depth_bias;
1456
1457 float blend_constants[4];
1458
1459 struct {
1460 float min;
1461 float max;
1462 } depth_bounds;
1463
1464 struct {
1465 uint32_t front;
1466 uint32_t back;
1467 } stencil_compare_mask;
1468
1469 struct {
1470 uint32_t front;
1471 uint32_t back;
1472 } stencil_write_mask;
1473
1474 struct {
1475 uint32_t front;
1476 uint32_t back;
1477 } stencil_reference;
1478 };
1479
1480 extern const struct anv_dynamic_state default_dynamic_state;
1481
1482 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1483 const struct anv_dynamic_state *src,
1484 uint32_t copy_mask);
1485
1486 /**
1487 * Attachment state when recording a renderpass instance.
1488 *
1489 * The clear value is valid only if there exists a pending clear.
1490 */
1491 struct anv_attachment_state {
1492 enum isl_aux_usage aux_usage;
1493 enum isl_aux_usage input_aux_usage;
1494 struct anv_state color_rt_state;
1495 struct anv_state input_att_state;
1496
1497 VkImageLayout current_layout;
1498 VkImageAspectFlags pending_clear_aspects;
1499 bool fast_clear;
1500 VkClearValue clear_value;
1501 bool clear_color_is_zero_one;
1502 bool clear_color_is_zero;
1503 };
1504
1505 /** State required while building cmd buffer */
1506 struct anv_cmd_state {
1507 /* PIPELINE_SELECT.PipelineSelection */
1508 uint32_t current_pipeline;
1509 const struct gen_l3_config * current_l3_config;
1510 uint32_t vb_dirty;
1511 anv_cmd_dirty_mask_t dirty;
1512 anv_cmd_dirty_mask_t compute_dirty;
1513 enum anv_pipe_bits pending_pipe_bits;
1514 uint32_t num_workgroups_offset;
1515 struct anv_bo *num_workgroups_bo;
1516 VkShaderStageFlags descriptors_dirty;
1517 VkShaderStageFlags push_constants_dirty;
1518 uint32_t scratch_size;
1519 struct anv_pipeline * pipeline;
1520 struct anv_pipeline * compute_pipeline;
1521 struct anv_framebuffer * framebuffer;
1522 struct anv_render_pass * pass;
1523 struct anv_subpass * subpass;
1524 VkRect2D render_area;
1525 uint32_t restart_index;
1526 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1527 struct anv_descriptor_set * descriptors[MAX_SETS];
1528 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
1529 VkShaderStageFlags push_constant_stages;
1530 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1531 struct anv_state binding_tables[MESA_SHADER_STAGES];
1532 struct anv_state samplers[MESA_SHADER_STAGES];
1533 struct anv_dynamic_state dynamic;
1534 bool need_query_wa;
1535
1536 struct anv_push_descriptor_set push_descriptor;
1537
1538 /**
1539 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
1540 * of any command buffer it is disabled by disabling it in EndCommandBuffer
1541 * and before invoking the secondary in ExecuteCommands.
1542 */
1543 bool pma_fix_enabled;
1544
1545 /**
1546 * Whether or not we know for certain that HiZ is enabled for the current
1547 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
1548 * enabled or not, this will be false.
1549 */
1550 bool hiz_enabled;
1551
1552 /**
1553 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1554 * valid only when recording a render pass instance.
1555 */
1556 struct anv_attachment_state * attachments;
1557
1558 /**
1559 * Surface states for color render targets. These are stored in a single
1560 * flat array. For depth-stencil attachments, the surface state is simply
1561 * left blank.
1562 */
1563 struct anv_state render_pass_states;
1564
1565 /**
1566 * A null surface state of the right size to match the framebuffer. This
1567 * is one of the states in render_pass_states.
1568 */
1569 struct anv_state null_surface_state;
1570
1571 struct {
1572 struct anv_buffer * index_buffer;
1573 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1574 uint32_t index_offset;
1575 } gen7;
1576 };
1577
1578 struct anv_cmd_pool {
1579 VkAllocationCallbacks alloc;
1580 struct list_head cmd_buffers;
1581 };
1582
1583 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1584
1585 enum anv_cmd_buffer_exec_mode {
1586 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1587 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1588 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1589 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1590 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1591 };
1592
1593 struct anv_cmd_buffer {
1594 VK_LOADER_DATA _loader_data;
1595
1596 struct anv_device * device;
1597
1598 struct anv_cmd_pool * pool;
1599 struct list_head pool_link;
1600
1601 struct anv_batch batch;
1602
1603 /* Fields required for the actual chain of anv_batch_bo's.
1604 *
1605 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1606 */
1607 struct list_head batch_bos;
1608 enum anv_cmd_buffer_exec_mode exec_mode;
1609
1610 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1611 * referenced by this command buffer
1612 *
1613 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1614 */
1615 struct u_vector seen_bbos;
1616
1617 /* A vector of int32_t's for every block of binding tables.
1618 *
1619 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1620 */
1621 struct u_vector bt_block_states;
1622 uint32_t bt_next;
1623
1624 struct anv_reloc_list surface_relocs;
1625 /** Last seen surface state block pool center bo offset */
1626 uint32_t last_ss_pool_center;
1627
1628 /* Serial for tracking buffer completion */
1629 uint32_t serial;
1630
1631 /* Stream objects for storing temporary data */
1632 struct anv_state_stream surface_state_stream;
1633 struct anv_state_stream dynamic_state_stream;
1634
1635 VkCommandBufferUsageFlags usage_flags;
1636 VkCommandBufferLevel level;
1637
1638 struct anv_cmd_state state;
1639 };
1640
1641 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1642 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1643 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1644 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1645 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1646 struct anv_cmd_buffer *secondary);
1647 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1648 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
1649 struct anv_cmd_buffer *cmd_buffer,
1650 const VkSemaphore *in_semaphores,
1651 uint32_t num_in_semaphores,
1652 const VkSemaphore *out_semaphores,
1653 uint32_t num_out_semaphores);
1654
1655 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
1656
1657 VkResult
1658 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
1659 gl_shader_stage stage, uint32_t size);
1660 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
1661 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
1662 (offsetof(struct anv_push_constants, field) + \
1663 sizeof(cmd_buffer->state.push_constants[0]->field)))
1664
1665 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1666 const void *data, uint32_t size, uint32_t alignment);
1667 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1668 uint32_t *a, uint32_t *b,
1669 uint32_t dwords, uint32_t alignment);
1670
1671 struct anv_address
1672 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1673 struct anv_state
1674 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1675 uint32_t entries, uint32_t *state_offset);
1676 struct anv_state
1677 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1678 struct anv_state
1679 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1680 uint32_t size, uint32_t alignment);
1681
1682 VkResult
1683 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1684
1685 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1686 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
1687 bool depth_clamp_enable);
1688 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1689
1690 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1691 struct anv_render_pass *pass,
1692 struct anv_framebuffer *framebuffer,
1693 const VkClearValue *clear_values);
1694
1695 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1696
1697 struct anv_state
1698 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1699 gl_shader_stage stage);
1700 struct anv_state
1701 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1702
1703 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1704 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1705
1706 const struct anv_image_view *
1707 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1708
1709 VkResult
1710 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
1711 uint32_t num_entries,
1712 uint32_t *state_offset,
1713 struct anv_state *bt_state);
1714
1715 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1716
1717 enum anv_fence_state {
1718 /** Indicates that this is a new (or newly reset fence) */
1719 ANV_FENCE_STATE_RESET,
1720
1721 /** Indicates that this fence has been submitted to the GPU but is still
1722 * (as far as we know) in use by the GPU.
1723 */
1724 ANV_FENCE_STATE_SUBMITTED,
1725
1726 ANV_FENCE_STATE_SIGNALED,
1727 };
1728
1729 struct anv_fence {
1730 struct anv_bo bo;
1731 struct drm_i915_gem_execbuffer2 execbuf;
1732 struct drm_i915_gem_exec_object2 exec2_objects[1];
1733 enum anv_fence_state state;
1734 };
1735
1736 struct anv_event {
1737 uint64_t semaphore;
1738 struct anv_state state;
1739 };
1740
1741 enum anv_semaphore_type {
1742 ANV_SEMAPHORE_TYPE_NONE = 0,
1743 ANV_SEMAPHORE_TYPE_DUMMY,
1744 ANV_SEMAPHORE_TYPE_BO,
1745 ANV_SEMAPHORE_TYPE_SYNC_FILE,
1746 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
1747 };
1748
1749 struct anv_semaphore_impl {
1750 enum anv_semaphore_type type;
1751
1752 union {
1753 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
1754 * This BO will be added to the object list on any execbuf2 calls for
1755 * which this semaphore is used as a wait or signal fence. When used as
1756 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
1757 */
1758 struct anv_bo *bo;
1759
1760 /* The sync file descriptor when type == AKV_SEMAPHORE_TYPE_SYNC_FILE.
1761 * If the semaphore is in the unsignaled state due to either just being
1762 * created or because it has been used for a wait, fd will be -1.
1763 */
1764 int fd;
1765
1766 /* Sync object handle when type == AKV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
1767 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
1768 * import so we don't need to bother with a userspace cache.
1769 */
1770 uint32_t syncobj;
1771 };
1772 };
1773
1774 struct anv_semaphore {
1775 /* Permanent semaphore state. Every semaphore has some form of permanent
1776 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
1777 * (for cross-process semaphores0 or it could just be a dummy for use
1778 * internally.
1779 */
1780 struct anv_semaphore_impl permanent;
1781
1782 /* Temporary semaphore state. A semaphore *may* have temporary state.
1783 * That state is added to the semaphore by an import operation and is reset
1784 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
1785 * semaphore with temporary state cannot be signaled because the semaphore
1786 * must already be signaled before the temporary state can be exported from
1787 * the semaphore in the other process and imported here.
1788 */
1789 struct anv_semaphore_impl temporary;
1790 };
1791
1792 void anv_semaphore_reset_temporary(struct anv_device *device,
1793 struct anv_semaphore *semaphore);
1794
1795 struct anv_shader_module {
1796 unsigned char sha1[20];
1797 uint32_t size;
1798 char data[0];
1799 };
1800
1801 static inline gl_shader_stage
1802 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1803 {
1804 assert(__builtin_popcount(vk_stage) == 1);
1805 return ffs(vk_stage) - 1;
1806 }
1807
1808 static inline VkShaderStageFlagBits
1809 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1810 {
1811 return (1 << mesa_stage);
1812 }
1813
1814 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
1815
1816 #define anv_foreach_stage(stage, stage_bits) \
1817 for (gl_shader_stage stage, \
1818 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
1819 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1820 __tmp &= ~(1 << (stage)))
1821
1822 struct anv_pipeline_bind_map {
1823 uint32_t surface_count;
1824 uint32_t sampler_count;
1825 uint32_t image_count;
1826
1827 struct anv_pipeline_binding * surface_to_descriptor;
1828 struct anv_pipeline_binding * sampler_to_descriptor;
1829 };
1830
1831 struct anv_shader_bin_key {
1832 uint32_t size;
1833 uint8_t data[0];
1834 };
1835
1836 struct anv_shader_bin {
1837 uint32_t ref_cnt;
1838
1839 const struct anv_shader_bin_key *key;
1840
1841 struct anv_state kernel;
1842 uint32_t kernel_size;
1843
1844 const struct brw_stage_prog_data *prog_data;
1845 uint32_t prog_data_size;
1846
1847 struct anv_pipeline_bind_map bind_map;
1848
1849 /* Prog data follows, then params, then the key, all aligned to 8-bytes */
1850 };
1851
1852 struct anv_shader_bin *
1853 anv_shader_bin_create(struct anv_device *device,
1854 const void *key, uint32_t key_size,
1855 const void *kernel, uint32_t kernel_size,
1856 const struct brw_stage_prog_data *prog_data,
1857 uint32_t prog_data_size, const void *prog_data_param,
1858 const struct anv_pipeline_bind_map *bind_map);
1859
1860 void
1861 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
1862
1863 static inline void
1864 anv_shader_bin_ref(struct anv_shader_bin *shader)
1865 {
1866 assert(shader && shader->ref_cnt >= 1);
1867 p_atomic_inc(&shader->ref_cnt);
1868 }
1869
1870 static inline void
1871 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
1872 {
1873 assert(shader && shader->ref_cnt >= 1);
1874 if (p_atomic_dec_zero(&shader->ref_cnt))
1875 anv_shader_bin_destroy(device, shader);
1876 }
1877
1878 struct anv_pipeline {
1879 struct anv_device * device;
1880 struct anv_batch batch;
1881 uint32_t batch_data[512];
1882 struct anv_reloc_list batch_relocs;
1883 uint32_t dynamic_state_mask;
1884 struct anv_dynamic_state dynamic_state;
1885
1886 struct anv_subpass * subpass;
1887 struct anv_pipeline_layout * layout;
1888
1889 bool needs_data_cache;
1890
1891 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
1892
1893 struct {
1894 const struct gen_l3_config * l3_config;
1895 uint32_t total_size;
1896 } urb;
1897
1898 VkShaderStageFlags active_stages;
1899 struct anv_state blend_state;
1900
1901 uint32_t vb_used;
1902 uint32_t binding_stride[MAX_VBS];
1903 bool instancing_enable[MAX_VBS];
1904 bool primitive_restart;
1905 uint32_t topology;
1906
1907 uint32_t cs_right_mask;
1908
1909 bool writes_depth;
1910 bool depth_test_enable;
1911 bool writes_stencil;
1912 bool stencil_test_enable;
1913 bool depth_clamp_enable;
1914 bool sample_shading_enable;
1915 bool kill_pixel;
1916
1917 struct {
1918 uint32_t sf[7];
1919 uint32_t depth_stencil_state[3];
1920 } gen7;
1921
1922 struct {
1923 uint32_t sf[4];
1924 uint32_t raster[5];
1925 uint32_t wm_depth_stencil[3];
1926 } gen8;
1927
1928 struct {
1929 uint32_t wm_depth_stencil[4];
1930 } gen9;
1931
1932 uint32_t interface_descriptor_data[8];
1933 };
1934
1935 static inline bool
1936 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
1937 gl_shader_stage stage)
1938 {
1939 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
1940 }
1941
1942 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
1943 static inline const struct brw_##prefix##_prog_data * \
1944 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
1945 { \
1946 if (anv_pipeline_has_stage(pipeline, stage)) { \
1947 return (const struct brw_##prefix##_prog_data *) \
1948 pipeline->shaders[stage]->prog_data; \
1949 } else { \
1950 return NULL; \
1951 } \
1952 }
1953
1954 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
1955 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
1956 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
1957 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
1958 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
1959 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
1960
1961 static inline const struct brw_vue_prog_data *
1962 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
1963 {
1964 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
1965 return &get_gs_prog_data(pipeline)->base;
1966 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1967 return &get_tes_prog_data(pipeline)->base;
1968 else
1969 return &get_vs_prog_data(pipeline)->base;
1970 }
1971
1972 VkResult
1973 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1974 struct anv_pipeline_cache *cache,
1975 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1976 const VkAllocationCallbacks *alloc);
1977
1978 VkResult
1979 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1980 struct anv_pipeline_cache *cache,
1981 const VkComputePipelineCreateInfo *info,
1982 struct anv_shader_module *module,
1983 const char *entrypoint,
1984 const VkSpecializationInfo *spec_info);
1985
1986 struct anv_format {
1987 enum isl_format isl_format:16;
1988 struct isl_swizzle swizzle;
1989 };
1990
1991 struct anv_format
1992 anv_get_format(const struct gen_device_info *devinfo, VkFormat format,
1993 VkImageAspectFlags aspect, VkImageTiling tiling);
1994
1995 static inline enum isl_format
1996 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
1997 VkImageAspectFlags aspect, VkImageTiling tiling)
1998 {
1999 return anv_get_format(devinfo, vk_format, aspect, tiling).isl_format;
2000 }
2001
2002 static inline struct isl_swizzle
2003 anv_swizzle_for_render(struct isl_swizzle swizzle)
2004 {
2005 /* Sometimes the swizzle will have alpha map to one. We do this to fake
2006 * RGB as RGBA for texturing
2007 */
2008 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
2009 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
2010
2011 /* But it doesn't matter what we render to that channel */
2012 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
2013
2014 return swizzle;
2015 }
2016
2017 void
2018 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
2019
2020 /**
2021 * Subsurface of an anv_image.
2022 */
2023 struct anv_surface {
2024 /** Valid only if isl_surf::size > 0. */
2025 struct isl_surf isl;
2026
2027 /**
2028 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2029 */
2030 uint32_t offset;
2031 };
2032
2033 struct anv_image {
2034 VkImageType type;
2035 /* The original VkFormat provided by the client. This may not match any
2036 * of the actual surface formats.
2037 */
2038 VkFormat vk_format;
2039 VkImageAspectFlags aspects;
2040 VkExtent3D extent;
2041 uint32_t levels;
2042 uint32_t array_size;
2043 uint32_t samples; /**< VkImageCreateInfo::samples */
2044 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2045 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2046
2047 VkDeviceSize size;
2048 uint32_t alignment;
2049
2050 /* Set when bound */
2051 struct anv_bo *bo;
2052 VkDeviceSize offset;
2053
2054 /**
2055 * Image subsurfaces
2056 *
2057 * For each foo, anv_image::foo_surface is valid if and only if
2058 * anv_image::aspects has a foo aspect.
2059 *
2060 * The hardware requires that the depth buffer and stencil buffer be
2061 * separate surfaces. From Vulkan's perspective, though, depth and stencil
2062 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
2063 * allocate the depth and stencil buffers as separate surfaces in the same
2064 * bo.
2065 */
2066 union {
2067 struct anv_surface color_surface;
2068
2069 struct {
2070 struct anv_surface depth_surface;
2071 struct anv_surface stencil_surface;
2072 };
2073 };
2074
2075 /**
2076 * For color images, this is the aux usage for this image when not used as a
2077 * color attachment.
2078 *
2079 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the image
2080 * has a HiZ buffer.
2081 */
2082 enum isl_aux_usage aux_usage;
2083
2084 struct anv_surface aux_surface;
2085 };
2086
2087 /* Returns the number of auxiliary buffer levels attached to an image. */
2088 static inline uint8_t
2089 anv_image_aux_levels(const struct anv_image * const image)
2090 {
2091 assert(image);
2092 return image->aux_surface.isl.size > 0 ? image->aux_surface.isl.levels : 0;
2093 }
2094
2095 /* Returns the number of auxiliary buffer layers attached to an image. */
2096 static inline uint32_t
2097 anv_image_aux_layers(const struct anv_image * const image,
2098 const uint8_t miplevel)
2099 {
2100 assert(image);
2101
2102 /* The miplevel must exist in the main buffer. */
2103 assert(miplevel < image->levels);
2104
2105 if (miplevel >= anv_image_aux_levels(image)) {
2106 /* There are no layers with auxiliary data because the miplevel has no
2107 * auxiliary data.
2108 */
2109 return 0;
2110 } else {
2111 return MAX2(image->aux_surface.isl.logical_level0_px.array_len,
2112 image->aux_surface.isl.logical_level0_px.depth >> miplevel);
2113 }
2114 }
2115
2116 static inline unsigned
2117 anv_fast_clear_state_entry_size(const struct anv_device *device)
2118 {
2119 assert(device);
2120 /* Entry contents:
2121 * +--------------------------------------------+
2122 * | clear value dword(s) | needs resolve dword |
2123 * +--------------------------------------------+
2124 */
2125
2126 /* Ensure that the needs resolve dword is in fact dword-aligned to enable
2127 * GPU memcpy operations.
2128 */
2129 assert(device->isl_dev.ss.clear_value_size % 4 == 0);
2130 return device->isl_dev.ss.clear_value_size + 4;
2131 }
2132
2133 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
2134 static inline bool
2135 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
2136 const VkImageAspectFlags aspect_mask,
2137 const uint32_t samples)
2138 {
2139 /* Validate the inputs. */
2140 assert(devinfo && aspect_mask && samples);
2141 return devinfo->gen >= 8 && (aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) &&
2142 samples == 1;
2143 }
2144
2145 void
2146 anv_gen8_hiz_op_resolve(struct anv_cmd_buffer *cmd_buffer,
2147 const struct anv_image *image,
2148 enum blorp_hiz_op op);
2149 void
2150 anv_ccs_resolve(struct anv_cmd_buffer * const cmd_buffer,
2151 const struct anv_state surface_state,
2152 const struct anv_image * const image,
2153 const uint8_t level, const uint32_t layer_count,
2154 const enum blorp_fast_clear_op op);
2155
2156 void
2157 anv_image_fast_clear(struct anv_cmd_buffer *cmd_buffer,
2158 const struct anv_image *image,
2159 const uint32_t base_level, const uint32_t level_count,
2160 const uint32_t base_layer, uint32_t layer_count);
2161
2162 enum isl_aux_usage
2163 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
2164 const struct anv_image *image,
2165 const VkImageAspectFlags aspects,
2166 const VkImageLayout layout);
2167
2168 /* This is defined as a macro so that it works for both
2169 * VkImageSubresourceRange and VkImageSubresourceLayers
2170 */
2171 #define anv_get_layerCount(_image, _range) \
2172 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
2173 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
2174
2175 static inline uint32_t
2176 anv_get_levelCount(const struct anv_image *image,
2177 const VkImageSubresourceRange *range)
2178 {
2179 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
2180 image->levels - range->baseMipLevel : range->levelCount;
2181 }
2182
2183
2184 struct anv_image_view {
2185 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
2186 struct anv_bo *bo;
2187 uint32_t offset; /**< Offset into bo. */
2188
2189 struct isl_view isl;
2190
2191 VkImageAspectFlags aspect_mask;
2192 VkFormat vk_format;
2193 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
2194
2195 /**
2196 * RENDER_SURFACE_STATE when using image as a sampler surface with an image
2197 * layout of SHADER_READ_ONLY_OPTIMAL or DEPTH_STENCIL_READ_ONLY_OPTIMAL.
2198 */
2199 enum isl_aux_usage optimal_sampler_aux_usage;
2200 struct anv_state optimal_sampler_surface_state;
2201
2202 /**
2203 * RENDER_SURFACE_STATE when using image as a sampler surface with an image
2204 * layout of GENERAL.
2205 */
2206 enum isl_aux_usage general_sampler_aux_usage;
2207 struct anv_state general_sampler_surface_state;
2208
2209 /**
2210 * RENDER_SURFACE_STATE when using image as a storage image. Separate states
2211 * for write-only and readable, using the real format for write-only and the
2212 * lowered format for readable.
2213 */
2214 struct anv_state storage_surface_state;
2215 struct anv_state writeonly_storage_surface_state;
2216
2217 struct brw_image_param storage_image_param;
2218 };
2219
2220 struct anv_image_create_info {
2221 const VkImageCreateInfo *vk_info;
2222
2223 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
2224 isl_tiling_flags_t isl_tiling_flags;
2225
2226 uint32_t stride;
2227 };
2228
2229 VkResult anv_image_create(VkDevice _device,
2230 const struct anv_image_create_info *info,
2231 const VkAllocationCallbacks* alloc,
2232 VkImage *pImage);
2233
2234 const struct anv_surface *
2235 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
2236 VkImageAspectFlags aspect_mask);
2237
2238 enum isl_format
2239 anv_isl_format_for_descriptor_type(VkDescriptorType type);
2240
2241 static inline struct VkExtent3D
2242 anv_sanitize_image_extent(const VkImageType imageType,
2243 const struct VkExtent3D imageExtent)
2244 {
2245 switch (imageType) {
2246 case VK_IMAGE_TYPE_1D:
2247 return (VkExtent3D) { imageExtent.width, 1, 1 };
2248 case VK_IMAGE_TYPE_2D:
2249 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
2250 case VK_IMAGE_TYPE_3D:
2251 return imageExtent;
2252 default:
2253 unreachable("invalid image type");
2254 }
2255 }
2256
2257 static inline struct VkOffset3D
2258 anv_sanitize_image_offset(const VkImageType imageType,
2259 const struct VkOffset3D imageOffset)
2260 {
2261 switch (imageType) {
2262 case VK_IMAGE_TYPE_1D:
2263 return (VkOffset3D) { imageOffset.x, 0, 0 };
2264 case VK_IMAGE_TYPE_2D:
2265 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
2266 case VK_IMAGE_TYPE_3D:
2267 return imageOffset;
2268 default:
2269 unreachable("invalid image type");
2270 }
2271 }
2272
2273
2274 void anv_fill_buffer_surface_state(struct anv_device *device,
2275 struct anv_state state,
2276 enum isl_format format,
2277 uint32_t offset, uint32_t range,
2278 uint32_t stride);
2279
2280 struct anv_sampler {
2281 uint32_t state[4];
2282 };
2283
2284 struct anv_framebuffer {
2285 uint32_t width;
2286 uint32_t height;
2287 uint32_t layers;
2288
2289 uint32_t attachment_count;
2290 struct anv_image_view * attachments[0];
2291 };
2292
2293 struct anv_subpass {
2294 uint32_t attachment_count;
2295
2296 /**
2297 * A pointer to all attachment references used in this subpass.
2298 * Only valid if ::attachment_count > 0.
2299 */
2300 VkAttachmentReference * attachments;
2301 uint32_t input_count;
2302 VkAttachmentReference * input_attachments;
2303 uint32_t color_count;
2304 VkAttachmentReference * color_attachments;
2305 VkAttachmentReference * resolve_attachments;
2306
2307 VkAttachmentReference depth_stencil_attachment;
2308
2309 uint32_t view_mask;
2310
2311 /** Subpass has a depth/stencil self-dependency */
2312 bool has_ds_self_dep;
2313
2314 /** Subpass has at least one resolve attachment */
2315 bool has_resolve;
2316 };
2317
2318 static inline unsigned
2319 anv_subpass_view_count(const struct anv_subpass *subpass)
2320 {
2321 return MAX2(1, _mesa_bitcount(subpass->view_mask));
2322 }
2323
2324 struct anv_render_pass_attachment {
2325 /* TODO: Consider using VkAttachmentDescription instead of storing each of
2326 * its members individually.
2327 */
2328 VkFormat format;
2329 uint32_t samples;
2330 VkImageUsageFlags usage;
2331 VkAttachmentLoadOp load_op;
2332 VkAttachmentStoreOp store_op;
2333 VkAttachmentLoadOp stencil_load_op;
2334 VkImageLayout initial_layout;
2335 VkImageLayout final_layout;
2336 VkImageLayout first_subpass_layout;
2337
2338 /* The subpass id in which the attachment will be used last. */
2339 uint32_t last_subpass_idx;
2340 };
2341
2342 struct anv_render_pass {
2343 uint32_t attachment_count;
2344 uint32_t subpass_count;
2345 /* An array of subpass_count+1 flushes, one per subpass boundary */
2346 enum anv_pipe_bits * subpass_flushes;
2347 struct anv_render_pass_attachment * attachments;
2348 struct anv_subpass subpasses[0];
2349 };
2350
2351 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
2352
2353 struct anv_query_pool {
2354 VkQueryType type;
2355 VkQueryPipelineStatisticFlags pipeline_statistics;
2356 /** Stride between slots, in bytes */
2357 uint32_t stride;
2358 /** Number of slots in this query pool */
2359 uint32_t slots;
2360 struct anv_bo bo;
2361 };
2362
2363 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
2364 const char *name);
2365
2366 void anv_dump_image_to_ppm(struct anv_device *device,
2367 struct anv_image *image, unsigned miplevel,
2368 unsigned array_layer, VkImageAspectFlagBits aspect,
2369 const char *filename);
2370
2371 enum anv_dump_action {
2372 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
2373 };
2374
2375 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
2376 void anv_dump_finish(void);
2377
2378 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
2379 struct anv_framebuffer *fb);
2380
2381 static inline uint32_t
2382 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
2383 {
2384 /* This function must be called from within a subpass. */
2385 assert(cmd_state->pass && cmd_state->subpass);
2386
2387 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
2388
2389 /* The id of this subpass shouldn't exceed the number of subpasses in this
2390 * render pass minus 1.
2391 */
2392 assert(subpass_id < cmd_state->pass->subpass_count);
2393 return subpass_id;
2394 }
2395
2396 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
2397 \
2398 static inline struct __anv_type * \
2399 __anv_type ## _from_handle(__VkType _handle) \
2400 { \
2401 return (struct __anv_type *) _handle; \
2402 } \
2403 \
2404 static inline __VkType \
2405 __anv_type ## _to_handle(struct __anv_type *_obj) \
2406 { \
2407 return (__VkType) _obj; \
2408 }
2409
2410 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
2411 \
2412 static inline struct __anv_type * \
2413 __anv_type ## _from_handle(__VkType _handle) \
2414 { \
2415 return (struct __anv_type *)(uintptr_t) _handle; \
2416 } \
2417 \
2418 static inline __VkType \
2419 __anv_type ## _to_handle(struct __anv_type *_obj) \
2420 { \
2421 return (__VkType)(uintptr_t) _obj; \
2422 }
2423
2424 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
2425 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
2426
2427 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
2428 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
2429 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
2430 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
2431 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
2432
2433 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
2434 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
2435 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
2436 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
2437 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
2438 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
2439 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplateKHR)
2440 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
2441 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
2442 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
2443 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
2444 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
2445 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
2446 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
2447 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
2448 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
2449 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
2450 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
2451 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
2452 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
2453 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
2454
2455 /* Gen-specific function declarations */
2456 #ifdef genX
2457 # include "anv_genX.h"
2458 #else
2459 # define genX(x) gen7_##x
2460 # include "anv_genX.h"
2461 # undef genX
2462 # define genX(x) gen75_##x
2463 # include "anv_genX.h"
2464 # undef genX
2465 # define genX(x) gen8_##x
2466 # include "anv_genX.h"
2467 # undef genX
2468 # define genX(x) gen9_##x
2469 # include "anv_genX.h"
2470 # undef genX
2471 # define genX(x) gen10_##x
2472 # include "anv_genX.h"
2473 # undef genX
2474 #endif
2475
2476 #endif /* ANV_PRIVATE_H */