anv: Stop advertising two heaps just for the VF cache WA
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_batch;
73 struct anv_buffer;
74 struct anv_buffer_view;
75 struct anv_image_view;
76 struct anv_instance;
77
78 struct gen_aux_map_context;
79 struct gen_l3_config;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131
132 #define LOW_HEAP_SIZE \
133 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
134 #define DYNAMIC_STATE_POOL_SIZE \
135 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
136 #define BINDING_TABLE_POOL_SIZE \
137 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
138 #define SURFACE_STATE_POOL_SIZE \
139 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
140 #define INSTRUCTION_STATE_POOL_SIZE \
141 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
142
143 /* Allowing different clear colors requires us to perform a depth resolve at
144 * the end of certain render passes. This is because while slow clears store
145 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
146 * See the PRMs for examples describing when additional resolves would be
147 * necessary. To enable fast clears without requiring extra resolves, we set
148 * the clear value to a globally-defined one. We could allow different values
149 * if the user doesn't expect coherent data during or after a render passes
150 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
151 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
152 * 1.0f seems to be the only value used. The only application that doesn't set
153 * this value does so through the usage of an seemingly uninitialized clear
154 * value.
155 */
156 #define ANV_HZ_FC_VAL 1.0f
157
158 #define MAX_VBS 28
159 #define MAX_XFB_BUFFERS 4
160 #define MAX_XFB_STREAMS 4
161 #define MAX_SETS 8
162 #define MAX_RTS 8
163 #define MAX_VIEWPORTS 16
164 #define MAX_SCISSORS 16
165 #define MAX_PUSH_CONSTANTS_SIZE 128
166 #define MAX_DYNAMIC_BUFFERS 16
167 #define MAX_IMAGES 64
168 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
169 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
170 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
171
172 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
173 *
174 * "The surface state model is used when a Binding Table Index (specified
175 * in the message descriptor) of less than 240 is specified. In this model,
176 * the Binding Table Index is used to index into the binding table, and the
177 * binding table entry contains a pointer to the SURFACE_STATE."
178 *
179 * Binding table values above 240 are used for various things in the hardware
180 * such as stateless, stateless with incoherent cache, SLM, and bindless.
181 */
182 #define MAX_BINDING_TABLE_SIZE 240
183
184 /* The kernel relocation API has a limitation of a 32-bit delta value
185 * applied to the address before it is written which, in spite of it being
186 * unsigned, is treated as signed . Because of the way that this maps to
187 * the Vulkan API, we cannot handle an offset into a buffer that does not
188 * fit into a signed 32 bits. The only mechanism we have for dealing with
189 * this at the moment is to limit all VkDeviceMemory objects to a maximum
190 * of 2GB each. The Vulkan spec allows us to do this:
191 *
192 * "Some platforms may have a limit on the maximum size of a single
193 * allocation. For example, certain systems may fail to create
194 * allocations with a size greater than or equal to 4GB. Such a limit is
195 * implementation-dependent, and if such a failure occurs then the error
196 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
197 *
198 * We don't use vk_error here because it's not an error so much as an
199 * indication to the application that the allocation is too large.
200 */
201 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
202
203 #define ANV_SVGS_VB_INDEX MAX_VBS
204 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
205
206 /* We reserve this MI ALU register for the purpose of handling predication.
207 * Other code which uses the MI ALU should leave it alone.
208 */
209 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
210
211 /* For gen12 we set the streamout buffers using 4 separate commands
212 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
213 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
214 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
215 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
216 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
217 * 3DSTATE_SO_BUFFER_INDEX_0.
218 */
219 #define SO_BUFFER_INDEX_0_CMD 0x60
220 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
221
222 static inline uint32_t
223 align_down_npot_u32(uint32_t v, uint32_t a)
224 {
225 return v - (v % a);
226 }
227
228 static inline uint32_t
229 align_u32(uint32_t v, uint32_t a)
230 {
231 assert(a != 0 && a == (a & -a));
232 return (v + a - 1) & ~(a - 1);
233 }
234
235 static inline uint64_t
236 align_u64(uint64_t v, uint64_t a)
237 {
238 assert(a != 0 && a == (a & -a));
239 return (v + a - 1) & ~(a - 1);
240 }
241
242 static inline int32_t
243 align_i32(int32_t v, int32_t a)
244 {
245 assert(a != 0 && a == (a & -a));
246 return (v + a - 1) & ~(a - 1);
247 }
248
249 /** Alignment must be a power of 2. */
250 static inline bool
251 anv_is_aligned(uintmax_t n, uintmax_t a)
252 {
253 assert(a == (a & -a));
254 return (n & (a - 1)) == 0;
255 }
256
257 static inline uint32_t
258 anv_minify(uint32_t n, uint32_t levels)
259 {
260 if (unlikely(n == 0))
261 return 0;
262 else
263 return MAX2(n >> levels, 1);
264 }
265
266 static inline float
267 anv_clamp_f(float f, float min, float max)
268 {
269 assert(min < max);
270
271 if (f > max)
272 return max;
273 else if (f < min)
274 return min;
275 else
276 return f;
277 }
278
279 static inline bool
280 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
281 {
282 if (*inout_mask & clear_mask) {
283 *inout_mask &= ~clear_mask;
284 return true;
285 } else {
286 return false;
287 }
288 }
289
290 static inline union isl_color_value
291 vk_to_isl_color(VkClearColorValue color)
292 {
293 return (union isl_color_value) {
294 .u32 = {
295 color.uint32[0],
296 color.uint32[1],
297 color.uint32[2],
298 color.uint32[3],
299 },
300 };
301 }
302
303 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
304 {
305 uintptr_t mask = (1ull << bits) - 1;
306 *flags = ptr & mask;
307 return (void *) (ptr & ~mask);
308 }
309
310 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
311 {
312 uintptr_t value = (uintptr_t) ptr;
313 uintptr_t mask = (1ull << bits) - 1;
314 return value | (mask & flags);
315 }
316
317 #define for_each_bit(b, dword) \
318 for (uint32_t __dword = (dword); \
319 (b) = __builtin_ffs(__dword) - 1, __dword; \
320 __dword &= ~(1 << (b)))
321
322 #define typed_memcpy(dest, src, count) ({ \
323 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
324 memcpy((dest), (src), (count) * sizeof(*(src))); \
325 })
326
327 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
328 * to be added here in order to utilize mapping in debug/error/perf macros.
329 */
330 #define REPORT_OBJECT_TYPE(o) \
331 __builtin_choose_expr ( \
332 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
333 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
334 __builtin_choose_expr ( \
335 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
336 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
337 __builtin_choose_expr ( \
338 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
339 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
340 __builtin_choose_expr ( \
341 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
342 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
343 __builtin_choose_expr ( \
344 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
345 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
346 __builtin_choose_expr ( \
347 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
348 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
349 __builtin_choose_expr ( \
350 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
351 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
352 __builtin_choose_expr ( \
353 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
354 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
355 __builtin_choose_expr ( \
356 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
357 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
358 __builtin_choose_expr ( \
359 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
360 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
361 __builtin_choose_expr ( \
362 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
363 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
364 __builtin_choose_expr ( \
365 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
366 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
367 __builtin_choose_expr ( \
368 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
369 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
370 __builtin_choose_expr ( \
371 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
372 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
373 __builtin_choose_expr ( \
374 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
375 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
376 __builtin_choose_expr ( \
377 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
378 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
379 __builtin_choose_expr ( \
380 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
381 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
382 __builtin_choose_expr ( \
383 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
384 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
385 __builtin_choose_expr ( \
386 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
387 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
388 __builtin_choose_expr ( \
389 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
390 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
391 __builtin_choose_expr ( \
392 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
393 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
394 __builtin_choose_expr ( \
395 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
396 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
397 __builtin_choose_expr ( \
398 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
399 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
400 __builtin_choose_expr ( \
401 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
402 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
403 __builtin_choose_expr ( \
404 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
405 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
406 __builtin_choose_expr ( \
407 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
408 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
409 __builtin_choose_expr ( \
410 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
411 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
412 __builtin_choose_expr ( \
413 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
414 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
415 __builtin_choose_expr ( \
416 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
417 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
418 __builtin_choose_expr ( \
419 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
420 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
421 __builtin_choose_expr ( \
422 __builtin_types_compatible_p (__typeof (o), void*), \
423 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
424 /* The void expression results in a compile-time error \
425 when assigning the result to something. */ \
426 (void)0)))))))))))))))))))))))))))))))
427
428 /* Whenever we generate an error, pass it through this function. Useful for
429 * debugging, where we can break on it. Only call at error site, not when
430 * propagating errors. Might be useful to plug in a stack trace here.
431 */
432
433 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
434 VkDebugReportObjectTypeEXT type, VkResult error,
435 const char *file, int line, const char *format,
436 va_list args);
437
438 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
439 VkDebugReportObjectTypeEXT type, VkResult error,
440 const char *file, int line, const char *format, ...)
441 anv_printflike(7, 8);
442
443 #ifdef DEBUG
444 #define vk_error(error) __vk_errorf(NULL, NULL,\
445 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
446 error, __FILE__, __LINE__, NULL)
447 #define vk_errorv(instance, obj, error, format, args)\
448 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
449 __FILE__, __LINE__, format, args)
450 #define vk_errorf(instance, obj, error, format, ...)\
451 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
452 __FILE__, __LINE__, format, ## __VA_ARGS__)
453 #else
454 #define vk_error(error) error
455 #define vk_errorf(instance, obj, error, format, ...) error
456 #endif
457
458 /**
459 * Warn on ignored extension structs.
460 *
461 * The Vulkan spec requires us to ignore unsupported or unknown structs in
462 * a pNext chain. In debug mode, emitting warnings for ignored structs may
463 * help us discover structs that we should not have ignored.
464 *
465 *
466 * From the Vulkan 1.0.38 spec:
467 *
468 * Any component of the implementation (the loader, any enabled layers,
469 * and drivers) must skip over, without processing (other than reading the
470 * sType and pNext members) any chained structures with sType values not
471 * defined by extensions supported by that component.
472 */
473 #define anv_debug_ignored_stype(sType) \
474 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
475
476 void __anv_perf_warn(struct anv_instance *instance, const void *object,
477 VkDebugReportObjectTypeEXT type, const char *file,
478 int line, const char *format, ...)
479 anv_printflike(6, 7);
480 void anv_loge(const char *format, ...) anv_printflike(1, 2);
481 void anv_loge_v(const char *format, va_list va);
482
483 /**
484 * Print a FINISHME message, including its source location.
485 */
486 #define anv_finishme(format, ...) \
487 do { \
488 static bool reported = false; \
489 if (!reported) { \
490 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
491 ##__VA_ARGS__); \
492 reported = true; \
493 } \
494 } while (0)
495
496 /**
497 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
498 */
499 #define anv_perf_warn(instance, obj, format, ...) \
500 do { \
501 static bool reported = false; \
502 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
503 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
504 format, ##__VA_ARGS__); \
505 reported = true; \
506 } \
507 } while (0)
508
509 /* A non-fatal assert. Useful for debugging. */
510 #ifdef DEBUG
511 #define anv_assert(x) ({ \
512 if (unlikely(!(x))) \
513 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
514 })
515 #else
516 #define anv_assert(x)
517 #endif
518
519 /* A multi-pointer allocator
520 *
521 * When copying data structures from the user (such as a render pass), it's
522 * common to need to allocate data for a bunch of different things. Instead
523 * of doing several allocations and having to handle all of the error checking
524 * that entails, it can be easier to do a single allocation. This struct
525 * helps facilitate that. The intended usage looks like this:
526 *
527 * ANV_MULTIALLOC(ma)
528 * anv_multialloc_add(&ma, &main_ptr, 1);
529 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
530 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
531 *
532 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
533 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
534 */
535 struct anv_multialloc {
536 size_t size;
537 size_t align;
538
539 uint32_t ptr_count;
540 void **ptrs[8];
541 };
542
543 #define ANV_MULTIALLOC_INIT \
544 ((struct anv_multialloc) { 0, })
545
546 #define ANV_MULTIALLOC(_name) \
547 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
548
549 __attribute__((always_inline))
550 static inline void
551 _anv_multialloc_add(struct anv_multialloc *ma,
552 void **ptr, size_t size, size_t align)
553 {
554 size_t offset = align_u64(ma->size, align);
555 ma->size = offset + size;
556 ma->align = MAX2(ma->align, align);
557
558 /* Store the offset in the pointer. */
559 *ptr = (void *)(uintptr_t)offset;
560
561 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
562 ma->ptrs[ma->ptr_count++] = ptr;
563 }
564
565 #define anv_multialloc_add_size(_ma, _ptr, _size) \
566 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
567
568 #define anv_multialloc_add(_ma, _ptr, _count) \
569 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
570
571 __attribute__((always_inline))
572 static inline void *
573 anv_multialloc_alloc(struct anv_multialloc *ma,
574 const VkAllocationCallbacks *alloc,
575 VkSystemAllocationScope scope)
576 {
577 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
578 if (!ptr)
579 return NULL;
580
581 /* Fill out each of the pointers with their final value.
582 *
583 * for (uint32_t i = 0; i < ma->ptr_count; i++)
584 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
585 *
586 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
587 * constant, GCC is incapable of figuring this out and unrolling the loop
588 * so we have to give it a little help.
589 */
590 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
591 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
592 if ((_i) < ma->ptr_count) \
593 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
594 _ANV_MULTIALLOC_UPDATE_POINTER(0);
595 _ANV_MULTIALLOC_UPDATE_POINTER(1);
596 _ANV_MULTIALLOC_UPDATE_POINTER(2);
597 _ANV_MULTIALLOC_UPDATE_POINTER(3);
598 _ANV_MULTIALLOC_UPDATE_POINTER(4);
599 _ANV_MULTIALLOC_UPDATE_POINTER(5);
600 _ANV_MULTIALLOC_UPDATE_POINTER(6);
601 _ANV_MULTIALLOC_UPDATE_POINTER(7);
602 #undef _ANV_MULTIALLOC_UPDATE_POINTER
603
604 return ptr;
605 }
606
607 __attribute__((always_inline))
608 static inline void *
609 anv_multialloc_alloc2(struct anv_multialloc *ma,
610 const VkAllocationCallbacks *parent_alloc,
611 const VkAllocationCallbacks *alloc,
612 VkSystemAllocationScope scope)
613 {
614 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
615 }
616
617 struct anv_bo {
618 uint32_t gem_handle;
619
620 uint32_t refcount;
621
622 /* Index into the current validation list. This is used by the
623 * validation list building alrogithm to track which buffers are already
624 * in the validation list so that we can ensure uniqueness.
625 */
626 uint32_t index;
627
628 /* Index for use with util_sparse_array_free_list */
629 uint32_t free_index;
630
631 /* Last known offset. This value is provided by the kernel when we
632 * execbuf and is used as the presumed offset for the next bunch of
633 * relocations.
634 */
635 uint64_t offset;
636
637 uint64_t size;
638
639 /* Map for internally mapped BOs.
640 *
641 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
642 */
643 void *map;
644
645 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
646 uint32_t flags;
647
648 /** True if this BO may be shared with other processes */
649 bool is_external:1;
650
651 /** True if this BO is a wrapper
652 *
653 * When set to true, none of the fields in this BO are meaningful except
654 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
655 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
656 * is set in the physical device.
657 */
658 bool is_wrapper:1;
659
660 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
661 bool has_fixed_address:1;
662
663 /** True if this BO wraps a host pointer */
664 bool from_host_ptr:1;
665 };
666
667 static inline struct anv_bo *
668 anv_bo_unwrap(struct anv_bo *bo)
669 {
670 while (bo->is_wrapper)
671 bo = bo->map;
672 return bo;
673 }
674
675 /* Represents a lock-free linked list of "free" things. This is used by
676 * both the block pool and the state pools. Unfortunately, in order to
677 * solve the ABA problem, we can't use a single uint32_t head.
678 */
679 union anv_free_list {
680 struct {
681 uint32_t offset;
682
683 /* A simple count that is incremented every time the head changes. */
684 uint32_t count;
685 };
686 /* Make sure it's aligned to 64 bits. This will make atomic operations
687 * faster on 32 bit platforms.
688 */
689 uint64_t u64 __attribute__ ((aligned (8)));
690 };
691
692 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
693
694 struct anv_block_state {
695 union {
696 struct {
697 uint32_t next;
698 uint32_t end;
699 };
700 /* Make sure it's aligned to 64 bits. This will make atomic operations
701 * faster on 32 bit platforms.
702 */
703 uint64_t u64 __attribute__ ((aligned (8)));
704 };
705 };
706
707 #define anv_block_pool_foreach_bo(bo, pool) \
708 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
709 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
710 _pp_bo++)
711
712 #define ANV_MAX_BLOCK_POOL_BOS 20
713
714 struct anv_block_pool {
715 struct anv_device *device;
716 bool use_softpin;
717
718 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
719 * around the actual BO so that we grow the pool after the wrapper BO has
720 * been put in a relocation list. This is only used in the non-softpin
721 * case.
722 */
723 struct anv_bo wrapper_bo;
724
725 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
726 struct anv_bo *bo;
727 uint32_t nbos;
728
729 uint64_t size;
730
731 /* The address where the start of the pool is pinned. The various bos that
732 * are created as the pool grows will have addresses in the range
733 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
734 */
735 uint64_t start_address;
736
737 /* The offset from the start of the bo to the "center" of the block
738 * pool. Pointers to allocated blocks are given by
739 * bo.map + center_bo_offset + offsets.
740 */
741 uint32_t center_bo_offset;
742
743 /* Current memory map of the block pool. This pointer may or may not
744 * point to the actual beginning of the block pool memory. If
745 * anv_block_pool_alloc_back has ever been called, then this pointer
746 * will point to the "center" position of the buffer and all offsets
747 * (negative or positive) given out by the block pool alloc functions
748 * will be valid relative to this pointer.
749 *
750 * In particular, map == bo.map + center_offset
751 *
752 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
753 * since it will handle the softpin case as well, where this points to NULL.
754 */
755 void *map;
756 int fd;
757
758 /**
759 * Array of mmaps and gem handles owned by the block pool, reclaimed when
760 * the block pool is destroyed.
761 */
762 struct u_vector mmap_cleanups;
763
764 struct anv_block_state state;
765
766 struct anv_block_state back_state;
767 };
768
769 /* Block pools are backed by a fixed-size 1GB memfd */
770 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
771
772 /* The center of the block pool is also the middle of the memfd. This may
773 * change in the future if we decide differently for some reason.
774 */
775 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
776
777 static inline uint32_t
778 anv_block_pool_size(struct anv_block_pool *pool)
779 {
780 return pool->state.end + pool->back_state.end;
781 }
782
783 struct anv_state {
784 int32_t offset;
785 uint32_t alloc_size;
786 void *map;
787 uint32_t idx;
788 };
789
790 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
791
792 struct anv_fixed_size_state_pool {
793 union anv_free_list free_list;
794 struct anv_block_state block;
795 };
796
797 #define ANV_MIN_STATE_SIZE_LOG2 6
798 #define ANV_MAX_STATE_SIZE_LOG2 21
799
800 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
801
802 struct anv_free_entry {
803 uint32_t next;
804 struct anv_state state;
805 };
806
807 struct anv_state_table {
808 struct anv_device *device;
809 int fd;
810 struct anv_free_entry *map;
811 uint32_t size;
812 struct anv_block_state state;
813 struct u_vector cleanups;
814 };
815
816 struct anv_state_pool {
817 struct anv_block_pool block_pool;
818
819 struct anv_state_table table;
820
821 /* The size of blocks which will be allocated from the block pool */
822 uint32_t block_size;
823
824 /** Free list for "back" allocations */
825 union anv_free_list back_alloc_free_list;
826
827 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
828 };
829
830 struct anv_state_stream_block;
831
832 struct anv_state_stream {
833 struct anv_state_pool *state_pool;
834
835 /* The size of blocks to allocate from the state pool */
836 uint32_t block_size;
837
838 /* Current block we're allocating from */
839 struct anv_state block;
840
841 /* Offset into the current block at which to allocate the next state */
842 uint32_t next;
843
844 /* List of all blocks allocated from this pool */
845 struct anv_state_stream_block *block_list;
846 };
847
848 /* The block_pool functions exported for testing only. The block pool should
849 * only be used via a state pool (see below).
850 */
851 VkResult anv_block_pool_init(struct anv_block_pool *pool,
852 struct anv_device *device,
853 uint64_t start_address,
854 uint32_t initial_size);
855 void anv_block_pool_finish(struct anv_block_pool *pool);
856 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
857 uint32_t block_size, uint32_t *padding);
858 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
859 uint32_t block_size);
860 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
861
862 VkResult anv_state_pool_init(struct anv_state_pool *pool,
863 struct anv_device *device,
864 uint64_t start_address,
865 uint32_t block_size);
866 void anv_state_pool_finish(struct anv_state_pool *pool);
867 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
868 uint32_t state_size, uint32_t alignment);
869 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
870 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
871 void anv_state_stream_init(struct anv_state_stream *stream,
872 struct anv_state_pool *state_pool,
873 uint32_t block_size);
874 void anv_state_stream_finish(struct anv_state_stream *stream);
875 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
876 uint32_t size, uint32_t alignment);
877
878 VkResult anv_state_table_init(struct anv_state_table *table,
879 struct anv_device *device,
880 uint32_t initial_entries);
881 void anv_state_table_finish(struct anv_state_table *table);
882 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
883 uint32_t count);
884 void anv_free_list_push(union anv_free_list *list,
885 struct anv_state_table *table,
886 uint32_t idx, uint32_t count);
887 struct anv_state* anv_free_list_pop(union anv_free_list *list,
888 struct anv_state_table *table);
889
890
891 static inline struct anv_state *
892 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
893 {
894 return &table->map[idx].state;
895 }
896 /**
897 * Implements a pool of re-usable BOs. The interface is identical to that
898 * of block_pool except that each block is its own BO.
899 */
900 struct anv_bo_pool {
901 struct anv_device *device;
902
903 struct util_sparse_array_free_list free_list[16];
904 };
905
906 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
907 void anv_bo_pool_finish(struct anv_bo_pool *pool);
908 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
909 struct anv_bo **bo_out);
910 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
911
912 struct anv_scratch_pool {
913 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
914 struct anv_bo *bos[16][MESA_SHADER_STAGES];
915 };
916
917 void anv_scratch_pool_init(struct anv_device *device,
918 struct anv_scratch_pool *pool);
919 void anv_scratch_pool_finish(struct anv_device *device,
920 struct anv_scratch_pool *pool);
921 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
922 struct anv_scratch_pool *pool,
923 gl_shader_stage stage,
924 unsigned per_thread_scratch);
925
926 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
927 struct anv_bo_cache {
928 struct util_sparse_array bo_map;
929 pthread_mutex_t mutex;
930 };
931
932 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
933 void anv_bo_cache_finish(struct anv_bo_cache *cache);
934
935 struct anv_memory_type {
936 /* Standard bits passed on to the client */
937 VkMemoryPropertyFlags propertyFlags;
938 uint32_t heapIndex;
939 };
940
941 struct anv_memory_heap {
942 /* Standard bits passed on to the client */
943 VkDeviceSize size;
944 VkMemoryHeapFlags flags;
945
946 /* Driver-internal book-keeping */
947 VkDeviceSize used;
948 };
949
950 struct anv_physical_device {
951 VK_LOADER_DATA _loader_data;
952
953 struct anv_instance * instance;
954 uint32_t chipset_id;
955 bool no_hw;
956 char path[20];
957 const char * name;
958 struct {
959 uint16_t domain;
960 uint8_t bus;
961 uint8_t device;
962 uint8_t function;
963 } pci_info;
964 struct gen_device_info info;
965 /** Amount of "GPU memory" we want to advertise
966 *
967 * Clearly, this value is bogus since Intel is a UMA architecture. On
968 * gen7 platforms, we are limited by GTT size unless we want to implement
969 * fine-grained tracking and GTT splitting. On Broadwell and above we are
970 * practically unlimited. However, we will never report more than 3/4 of
971 * the total system ram to try and avoid running out of RAM.
972 */
973 bool supports_48bit_addresses;
974 struct brw_compiler * compiler;
975 struct isl_device isl_dev;
976 struct gen_perf_config * perf;
977 int cmd_parser_version;
978 bool has_softpin;
979 bool has_exec_async;
980 bool has_exec_capture;
981 bool has_exec_fence;
982 bool has_syncobj;
983 bool has_syncobj_wait;
984 bool has_context_priority;
985 bool has_context_isolation;
986 bool has_mem_available;
987 uint64_t gtt_size;
988
989 bool use_softpin;
990 bool always_use_bindless;
991
992 /** True if we can access buffers using A64 messages */
993 bool has_a64_buffer_access;
994 /** True if we can use bindless access for images */
995 bool has_bindless_images;
996 /** True if we can use bindless access for samplers */
997 bool has_bindless_samplers;
998
999 bool always_flush_cache;
1000
1001 struct anv_device_extension_table supported_extensions;
1002 struct anv_physical_device_dispatch_table dispatch;
1003
1004 uint32_t eu_total;
1005 uint32_t subslice_total;
1006
1007 struct {
1008 uint32_t type_count;
1009 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1010 uint32_t heap_count;
1011 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1012 } memory;
1013
1014 uint8_t driver_build_sha1[20];
1015 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1016 uint8_t driver_uuid[VK_UUID_SIZE];
1017 uint8_t device_uuid[VK_UUID_SIZE];
1018
1019 struct disk_cache * disk_cache;
1020
1021 struct wsi_device wsi_device;
1022 int local_fd;
1023 int master_fd;
1024 };
1025
1026 struct anv_app_info {
1027 const char* app_name;
1028 uint32_t app_version;
1029 const char* engine_name;
1030 uint32_t engine_version;
1031 uint32_t api_version;
1032 };
1033
1034 struct anv_instance {
1035 VK_LOADER_DATA _loader_data;
1036
1037 VkAllocationCallbacks alloc;
1038
1039 struct anv_app_info app_info;
1040
1041 struct anv_instance_extension_table enabled_extensions;
1042 struct anv_instance_dispatch_table dispatch;
1043 struct anv_device_dispatch_table device_dispatch;
1044
1045 int physicalDeviceCount;
1046 struct anv_physical_device physicalDevice;
1047
1048 bool pipeline_cache_enabled;
1049
1050 struct vk_debug_report_instance debug_report_callbacks;
1051
1052 struct driOptionCache dri_options;
1053 struct driOptionCache available_dri_options;
1054 };
1055
1056 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1057 void anv_finish_wsi(struct anv_physical_device *physical_device);
1058
1059 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1060 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1061 const char *name);
1062
1063 struct anv_queue_submit {
1064 struct anv_cmd_buffer * cmd_buffer;
1065
1066 uint32_t fence_count;
1067 uint32_t fence_array_length;
1068 struct drm_i915_gem_exec_fence * fences;
1069
1070 uint32_t temporary_semaphore_count;
1071 uint32_t temporary_semaphore_array_length;
1072 struct anv_semaphore_impl * temporary_semaphores;
1073
1074 /* Semaphores to be signaled with a SYNC_FD. */
1075 struct anv_semaphore ** sync_fd_semaphores;
1076 uint32_t sync_fd_semaphore_count;
1077 uint32_t sync_fd_semaphore_array_length;
1078
1079 /* Allocated only with non shareable timelines. */
1080 struct anv_timeline ** wait_timelines;
1081 uint32_t wait_timeline_count;
1082 uint32_t wait_timeline_array_length;
1083 uint64_t * wait_timeline_values;
1084
1085 struct anv_timeline ** signal_timelines;
1086 uint32_t signal_timeline_count;
1087 uint32_t signal_timeline_array_length;
1088 uint64_t * signal_timeline_values;
1089
1090 int in_fence;
1091 bool need_out_fence;
1092 int out_fence;
1093
1094 uint32_t fence_bo_count;
1095 uint32_t fence_bo_array_length;
1096 /* An array of struct anv_bo pointers with lower bit used as a flag to
1097 * signal we will wait on that BO (see anv_(un)pack_ptr).
1098 */
1099 uintptr_t * fence_bos;
1100
1101 const VkAllocationCallbacks * alloc;
1102 VkSystemAllocationScope alloc_scope;
1103
1104 struct anv_bo * simple_bo;
1105 uint32_t simple_bo_size;
1106
1107 struct list_head link;
1108 };
1109
1110 struct anv_queue {
1111 VK_LOADER_DATA _loader_data;
1112
1113 struct anv_device * device;
1114
1115 /*
1116 * A list of struct anv_queue_submit to be submitted to i915.
1117 */
1118 struct list_head queued_submits;
1119
1120 VkDeviceQueueCreateFlags flags;
1121 };
1122
1123 struct anv_pipeline_cache {
1124 struct anv_device * device;
1125 pthread_mutex_t mutex;
1126
1127 struct hash_table * nir_cache;
1128
1129 struct hash_table * cache;
1130 };
1131
1132 struct nir_xfb_info;
1133 struct anv_pipeline_bind_map;
1134
1135 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1136 struct anv_device *device,
1137 bool cache_enabled);
1138 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1139
1140 struct anv_shader_bin *
1141 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1142 const void *key, uint32_t key_size);
1143 struct anv_shader_bin *
1144 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1145 const void *key_data, uint32_t key_size,
1146 const void *kernel_data, uint32_t kernel_size,
1147 const void *constant_data,
1148 uint32_t constant_data_size,
1149 const struct brw_stage_prog_data *prog_data,
1150 uint32_t prog_data_size,
1151 const struct brw_compile_stats *stats,
1152 uint32_t num_stats,
1153 const struct nir_xfb_info *xfb_info,
1154 const struct anv_pipeline_bind_map *bind_map);
1155
1156 struct anv_shader_bin *
1157 anv_device_search_for_kernel(struct anv_device *device,
1158 struct anv_pipeline_cache *cache,
1159 const void *key_data, uint32_t key_size,
1160 bool *user_cache_bit);
1161
1162 struct anv_shader_bin *
1163 anv_device_upload_kernel(struct anv_device *device,
1164 struct anv_pipeline_cache *cache,
1165 const void *key_data, uint32_t key_size,
1166 const void *kernel_data, uint32_t kernel_size,
1167 const void *constant_data,
1168 uint32_t constant_data_size,
1169 const struct brw_stage_prog_data *prog_data,
1170 uint32_t prog_data_size,
1171 const struct brw_compile_stats *stats,
1172 uint32_t num_stats,
1173 const struct nir_xfb_info *xfb_info,
1174 const struct anv_pipeline_bind_map *bind_map);
1175
1176 struct nir_shader;
1177 struct nir_shader_compiler_options;
1178
1179 struct nir_shader *
1180 anv_device_search_for_nir(struct anv_device *device,
1181 struct anv_pipeline_cache *cache,
1182 const struct nir_shader_compiler_options *nir_options,
1183 unsigned char sha1_key[20],
1184 void *mem_ctx);
1185
1186 void
1187 anv_device_upload_nir(struct anv_device *device,
1188 struct anv_pipeline_cache *cache,
1189 const struct nir_shader *nir,
1190 unsigned char sha1_key[20]);
1191
1192 struct anv_device {
1193 VK_LOADER_DATA _loader_data;
1194
1195 VkAllocationCallbacks alloc;
1196
1197 struct anv_instance * instance;
1198 uint32_t chipset_id;
1199 bool no_hw;
1200 struct gen_device_info info;
1201 struct isl_device isl_dev;
1202 int context_id;
1203 int fd;
1204 bool can_chain_batches;
1205 bool robust_buffer_access;
1206 struct anv_device_extension_table enabled_extensions;
1207 struct anv_device_dispatch_table dispatch;
1208
1209 pthread_mutex_t vma_mutex;
1210 struct util_vma_heap vma_lo;
1211 struct util_vma_heap vma_hi;
1212
1213 /** List of all anv_device_memory objects */
1214 struct list_head memory_objects;
1215
1216 struct anv_bo_pool batch_bo_pool;
1217
1218 struct anv_bo_cache bo_cache;
1219
1220 struct anv_state_pool dynamic_state_pool;
1221 struct anv_state_pool instruction_state_pool;
1222 struct anv_state_pool binding_table_pool;
1223 struct anv_state_pool surface_state_pool;
1224
1225 struct anv_bo * workaround_bo;
1226 struct anv_bo * trivial_batch_bo;
1227 struct anv_bo * hiz_clear_bo;
1228
1229 struct anv_pipeline_cache default_pipeline_cache;
1230 struct blorp_context blorp;
1231
1232 struct anv_state border_colors;
1233
1234 struct anv_state slice_hash;
1235
1236 struct anv_queue queue;
1237
1238 struct anv_scratch_pool scratch_pool;
1239
1240 pthread_mutex_t mutex;
1241 pthread_cond_t queue_submit;
1242 int _lost;
1243
1244 struct gen_batch_decode_ctx decoder_ctx;
1245 /*
1246 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1247 * the cmd_buffer's list.
1248 */
1249 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1250
1251 int perf_fd; /* -1 if no opened */
1252 uint64_t perf_metric; /* 0 if unset */
1253
1254 struct gen_aux_map_context *aux_map_ctx;
1255 };
1256
1257 static inline struct anv_state_pool *
1258 anv_binding_table_pool(struct anv_device *device)
1259 {
1260 if (device->instance->physicalDevice.use_softpin)
1261 return &device->binding_table_pool;
1262 else
1263 return &device->surface_state_pool;
1264 }
1265
1266 static inline struct anv_state
1267 anv_binding_table_pool_alloc(struct anv_device *device) {
1268 if (device->instance->physicalDevice.use_softpin)
1269 return anv_state_pool_alloc(&device->binding_table_pool,
1270 device->binding_table_pool.block_size, 0);
1271 else
1272 return anv_state_pool_alloc_back(&device->surface_state_pool);
1273 }
1274
1275 static inline void
1276 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1277 anv_state_pool_free(anv_binding_table_pool(device), state);
1278 }
1279
1280 static inline uint32_t
1281 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1282 {
1283 if (bo->is_external)
1284 return device->isl_dev.mocs.external;
1285 else
1286 return device->isl_dev.mocs.internal;
1287 }
1288
1289 void anv_device_init_blorp(struct anv_device *device);
1290 void anv_device_finish_blorp(struct anv_device *device);
1291
1292 void _anv_device_set_all_queue_lost(struct anv_device *device);
1293 VkResult _anv_device_set_lost(struct anv_device *device,
1294 const char *file, int line,
1295 const char *msg, ...)
1296 anv_printflike(4, 5);
1297 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1298 const char *file, int line,
1299 const char *msg, ...)
1300 anv_printflike(4, 5);
1301 #define anv_device_set_lost(dev, ...) \
1302 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1303 #define anv_queue_set_lost(queue, ...) \
1304 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1305
1306 static inline bool
1307 anv_device_is_lost(struct anv_device *device)
1308 {
1309 return unlikely(p_atomic_read(&device->_lost));
1310 }
1311
1312 VkResult anv_device_query_status(struct anv_device *device);
1313
1314
1315 enum anv_bo_alloc_flags {
1316 /** Specifies that the BO must have a 32-bit address
1317 *
1318 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1319 */
1320 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1321
1322 /** Specifies that the BO may be shared externally */
1323 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1324
1325 /** Specifies that the BO should be mapped */
1326 ANV_BO_ALLOC_MAPPED = (1 << 2),
1327
1328 /** Specifies that the BO should be snooped so we get coherency */
1329 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1330
1331 /** Specifies that the BO should be captured in error states */
1332 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1333
1334 /** Specifies that the BO will have an address assigned by the caller */
1335 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1336
1337 /** Enables implicit synchronization on the BO
1338 *
1339 * This is the opposite of EXEC_OBJECT_ASYNC.
1340 */
1341 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1342
1343 /** Enables implicit synchronization on the BO
1344 *
1345 * This is equivalent to EXEC_OBJECT_WRITE.
1346 */
1347 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1348 };
1349
1350 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1351 enum anv_bo_alloc_flags alloc_flags,
1352 struct anv_bo **bo);
1353 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1354 void *host_ptr, uint32_t size,
1355 enum anv_bo_alloc_flags alloc_flags,
1356 struct anv_bo **bo_out);
1357 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1358 enum anv_bo_alloc_flags alloc_flags,
1359 struct anv_bo **bo);
1360 VkResult anv_device_export_bo(struct anv_device *device,
1361 struct anv_bo *bo, int *fd_out);
1362 void anv_device_release_bo(struct anv_device *device,
1363 struct anv_bo *bo);
1364
1365 static inline struct anv_bo *
1366 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1367 {
1368 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1369 }
1370
1371 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1372 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1373 int64_t timeout);
1374
1375 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1376 void anv_queue_finish(struct anv_queue *queue);
1377
1378 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1379 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1380 struct anv_batch *batch);
1381
1382 uint64_t anv_gettime_ns(void);
1383 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1384
1385 void* anv_gem_mmap(struct anv_device *device,
1386 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1387 void anv_gem_munmap(void *p, uint64_t size);
1388 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1389 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1390 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1391 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1392 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1393 int anv_gem_execbuffer(struct anv_device *device,
1394 struct drm_i915_gem_execbuffer2 *execbuf);
1395 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1396 uint32_t stride, uint32_t tiling);
1397 int anv_gem_create_context(struct anv_device *device);
1398 bool anv_gem_has_context_priority(int fd);
1399 int anv_gem_destroy_context(struct anv_device *device, int context);
1400 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1401 uint64_t value);
1402 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1403 uint64_t *value);
1404 int anv_gem_get_param(int fd, uint32_t param);
1405 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1406 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1407 int anv_gem_get_aperture(int fd, uint64_t *size);
1408 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1409 uint32_t *active, uint32_t *pending);
1410 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1411 int anv_gem_reg_read(struct anv_device *device,
1412 uint32_t offset, uint64_t *result);
1413 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1414 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1415 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1416 uint32_t read_domains, uint32_t write_domain);
1417 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1418 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1419 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1420 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1421 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1422 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1423 uint32_t handle);
1424 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1425 uint32_t handle, int fd);
1426 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1427 bool anv_gem_supports_syncobj_wait(int fd);
1428 int anv_gem_syncobj_wait(struct anv_device *device,
1429 uint32_t *handles, uint32_t num_handles,
1430 int64_t abs_timeout_ns, bool wait_all);
1431
1432 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1433 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1434
1435 struct anv_reloc_list {
1436 uint32_t num_relocs;
1437 uint32_t array_length;
1438 struct drm_i915_gem_relocation_entry * relocs;
1439 struct anv_bo ** reloc_bos;
1440 uint32_t dep_words;
1441 BITSET_WORD * deps;
1442 };
1443
1444 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1445 const VkAllocationCallbacks *alloc);
1446 void anv_reloc_list_finish(struct anv_reloc_list *list,
1447 const VkAllocationCallbacks *alloc);
1448
1449 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1450 const VkAllocationCallbacks *alloc,
1451 uint32_t offset, struct anv_bo *target_bo,
1452 uint32_t delta, uint64_t *address_u64_out);
1453
1454 struct anv_batch_bo {
1455 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1456 struct list_head link;
1457
1458 struct anv_bo * bo;
1459
1460 /* Bytes actually consumed in this batch BO */
1461 uint32_t length;
1462
1463 struct anv_reloc_list relocs;
1464 };
1465
1466 struct anv_batch {
1467 const VkAllocationCallbacks * alloc;
1468
1469 void * start;
1470 void * end;
1471 void * next;
1472
1473 struct anv_reloc_list * relocs;
1474
1475 /* This callback is called (with the associated user data) in the event
1476 * that the batch runs out of space.
1477 */
1478 VkResult (*extend_cb)(struct anv_batch *, void *);
1479 void * user_data;
1480
1481 /**
1482 * Current error status of the command buffer. Used to track inconsistent
1483 * or incomplete command buffer states that are the consequence of run-time
1484 * errors such as out of memory scenarios. We want to track this in the
1485 * batch because the command buffer object is not visible to some parts
1486 * of the driver.
1487 */
1488 VkResult status;
1489 };
1490
1491 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1492 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1493 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1494 void *location, struct anv_bo *bo, uint32_t offset);
1495
1496 static inline VkResult
1497 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1498 {
1499 assert(error != VK_SUCCESS);
1500 if (batch->status == VK_SUCCESS)
1501 batch->status = error;
1502 return batch->status;
1503 }
1504
1505 static inline bool
1506 anv_batch_has_error(struct anv_batch *batch)
1507 {
1508 return batch->status != VK_SUCCESS;
1509 }
1510
1511 struct anv_address {
1512 struct anv_bo *bo;
1513 uint32_t offset;
1514 };
1515
1516 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1517
1518 static inline bool
1519 anv_address_is_null(struct anv_address addr)
1520 {
1521 return addr.bo == NULL && addr.offset == 0;
1522 }
1523
1524 static inline uint64_t
1525 anv_address_physical(struct anv_address addr)
1526 {
1527 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1528 return gen_canonical_address(addr.bo->offset + addr.offset);
1529 else
1530 return gen_canonical_address(addr.offset);
1531 }
1532
1533 static inline struct anv_address
1534 anv_address_add(struct anv_address addr, uint64_t offset)
1535 {
1536 addr.offset += offset;
1537 return addr;
1538 }
1539
1540 static inline void
1541 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1542 {
1543 unsigned reloc_size = 0;
1544 if (device->info.gen >= 8) {
1545 reloc_size = sizeof(uint64_t);
1546 *(uint64_t *)p = gen_canonical_address(v);
1547 } else {
1548 reloc_size = sizeof(uint32_t);
1549 *(uint32_t *)p = v;
1550 }
1551
1552 if (flush && !device->info.has_llc)
1553 gen_flush_range(p, reloc_size);
1554 }
1555
1556 static inline uint64_t
1557 _anv_combine_address(struct anv_batch *batch, void *location,
1558 const struct anv_address address, uint32_t delta)
1559 {
1560 if (address.bo == NULL) {
1561 return address.offset + delta;
1562 } else {
1563 assert(batch->start <= location && location < batch->end);
1564
1565 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1566 }
1567 }
1568
1569 #define __gen_address_type struct anv_address
1570 #define __gen_user_data struct anv_batch
1571 #define __gen_combine_address _anv_combine_address
1572
1573 /* Wrapper macros needed to work around preprocessor argument issues. In
1574 * particular, arguments don't get pre-evaluated if they are concatenated.
1575 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1576 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1577 * We can work around this easily enough with these helpers.
1578 */
1579 #define __anv_cmd_length(cmd) cmd ## _length
1580 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1581 #define __anv_cmd_header(cmd) cmd ## _header
1582 #define __anv_cmd_pack(cmd) cmd ## _pack
1583 #define __anv_reg_num(reg) reg ## _num
1584
1585 #define anv_pack_struct(dst, struc, ...) do { \
1586 struct struc __template = { \
1587 __VA_ARGS__ \
1588 }; \
1589 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1590 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1591 } while (0)
1592
1593 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1594 void *__dst = anv_batch_emit_dwords(batch, n); \
1595 if (__dst) { \
1596 struct cmd __template = { \
1597 __anv_cmd_header(cmd), \
1598 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1599 __VA_ARGS__ \
1600 }; \
1601 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1602 } \
1603 __dst; \
1604 })
1605
1606 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1607 do { \
1608 uint32_t *dw; \
1609 \
1610 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1611 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1612 if (!dw) \
1613 break; \
1614 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1615 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1616 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1617 } while (0)
1618
1619 #define anv_batch_emit(batch, cmd, name) \
1620 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1621 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1622 __builtin_expect(_dst != NULL, 1); \
1623 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1624 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1625 _dst = NULL; \
1626 }))
1627
1628 struct anv_device_memory {
1629 struct list_head link;
1630
1631 struct anv_bo * bo;
1632 struct anv_memory_type * type;
1633 VkDeviceSize map_size;
1634 void * map;
1635
1636 /* If set, we are holding reference to AHardwareBuffer
1637 * which we must release when memory is freed.
1638 */
1639 struct AHardwareBuffer * ahw;
1640
1641 /* If set, this memory comes from a host pointer. */
1642 void * host_ptr;
1643 };
1644
1645 /**
1646 * Header for Vertex URB Entry (VUE)
1647 */
1648 struct anv_vue_header {
1649 uint32_t Reserved;
1650 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1651 uint32_t ViewportIndex;
1652 float PointWidth;
1653 };
1654
1655 /** Struct representing a sampled image descriptor
1656 *
1657 * This descriptor layout is used for sampled images, bare sampler, and
1658 * combined image/sampler descriptors.
1659 */
1660 struct anv_sampled_image_descriptor {
1661 /** Bindless image handle
1662 *
1663 * This is expected to already be shifted such that the 20-bit
1664 * SURFACE_STATE table index is in the top 20 bits.
1665 */
1666 uint32_t image;
1667
1668 /** Bindless sampler handle
1669 *
1670 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1671 * to the dynamic state base address.
1672 */
1673 uint32_t sampler;
1674 };
1675
1676 struct anv_texture_swizzle_descriptor {
1677 /** Texture swizzle
1678 *
1679 * See also nir_intrinsic_channel_select_intel
1680 */
1681 uint8_t swizzle[4];
1682
1683 /** Unused padding to ensure the struct is a multiple of 64 bits */
1684 uint32_t _pad;
1685 };
1686
1687 /** Struct representing a storage image descriptor */
1688 struct anv_storage_image_descriptor {
1689 /** Bindless image handles
1690 *
1691 * These are expected to already be shifted such that the 20-bit
1692 * SURFACE_STATE table index is in the top 20 bits.
1693 */
1694 uint32_t read_write;
1695 uint32_t write_only;
1696 };
1697
1698 /** Struct representing a address/range descriptor
1699 *
1700 * The fields of this struct correspond directly to the data layout of
1701 * nir_address_format_64bit_bounded_global addresses. The last field is the
1702 * offset in the NIR address so it must be zero so that when you load the
1703 * descriptor you get a pointer to the start of the range.
1704 */
1705 struct anv_address_range_descriptor {
1706 uint64_t address;
1707 uint32_t range;
1708 uint32_t zero;
1709 };
1710
1711 enum anv_descriptor_data {
1712 /** The descriptor contains a BTI reference to a surface state */
1713 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1714 /** The descriptor contains a BTI reference to a sampler state */
1715 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1716 /** The descriptor contains an actual buffer view */
1717 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1718 /** The descriptor contains auxiliary image layout data */
1719 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1720 /** The descriptor contains auxiliary image layout data */
1721 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1722 /** anv_address_range_descriptor with a buffer address and range */
1723 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1724 /** Bindless surface handle */
1725 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1726 /** Storage image handles */
1727 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1728 /** Storage image handles */
1729 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1730 };
1731
1732 struct anv_descriptor_set_binding_layout {
1733 #ifndef NDEBUG
1734 /* The type of the descriptors in this binding */
1735 VkDescriptorType type;
1736 #endif
1737
1738 /* Flags provided when this binding was created */
1739 VkDescriptorBindingFlagsEXT flags;
1740
1741 /* Bitfield representing the type of data this descriptor contains */
1742 enum anv_descriptor_data data;
1743
1744 /* Maximum number of YCbCr texture/sampler planes */
1745 uint8_t max_plane_count;
1746
1747 /* Number of array elements in this binding (or size in bytes for inline
1748 * uniform data)
1749 */
1750 uint16_t array_size;
1751
1752 /* Index into the flattend descriptor set */
1753 uint16_t descriptor_index;
1754
1755 /* Index into the dynamic state array for a dynamic buffer */
1756 int16_t dynamic_offset_index;
1757
1758 /* Index into the descriptor set buffer views */
1759 int16_t buffer_view_index;
1760
1761 /* Offset into the descriptor buffer where this descriptor lives */
1762 uint32_t descriptor_offset;
1763
1764 /* Immutable samplers (or NULL if no immutable samplers) */
1765 struct anv_sampler **immutable_samplers;
1766 };
1767
1768 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1769
1770 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1771 VkDescriptorType type);
1772
1773 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1774 const struct anv_descriptor_set_binding_layout *binding,
1775 bool sampler);
1776
1777 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1778 const struct anv_descriptor_set_binding_layout *binding,
1779 bool sampler);
1780
1781 struct anv_descriptor_set_layout {
1782 /* Descriptor set layouts can be destroyed at almost any time */
1783 uint32_t ref_cnt;
1784
1785 /* Number of bindings in this descriptor set */
1786 uint16_t binding_count;
1787
1788 /* Total size of the descriptor set with room for all array entries */
1789 uint16_t size;
1790
1791 /* Shader stages affected by this descriptor set */
1792 uint16_t shader_stages;
1793
1794 /* Number of buffer views in this descriptor set */
1795 uint16_t buffer_view_count;
1796
1797 /* Number of dynamic offsets used by this descriptor set */
1798 uint16_t dynamic_offset_count;
1799
1800 /* For each shader stage, which offsets apply to that stage */
1801 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1802
1803 /* Size of the descriptor buffer for this descriptor set */
1804 uint32_t descriptor_buffer_size;
1805
1806 /* Bindings in this descriptor set */
1807 struct anv_descriptor_set_binding_layout binding[0];
1808 };
1809
1810 static inline void
1811 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1812 {
1813 assert(layout && layout->ref_cnt >= 1);
1814 p_atomic_inc(&layout->ref_cnt);
1815 }
1816
1817 static inline void
1818 anv_descriptor_set_layout_unref(struct anv_device *device,
1819 struct anv_descriptor_set_layout *layout)
1820 {
1821 assert(layout && layout->ref_cnt >= 1);
1822 if (p_atomic_dec_zero(&layout->ref_cnt))
1823 vk_free(&device->alloc, layout);
1824 }
1825
1826 struct anv_descriptor {
1827 VkDescriptorType type;
1828
1829 union {
1830 struct {
1831 VkImageLayout layout;
1832 struct anv_image_view *image_view;
1833 struct anv_sampler *sampler;
1834 };
1835
1836 struct {
1837 struct anv_buffer *buffer;
1838 uint64_t offset;
1839 uint64_t range;
1840 };
1841
1842 struct anv_buffer_view *buffer_view;
1843 };
1844 };
1845
1846 struct anv_descriptor_set {
1847 struct anv_descriptor_pool *pool;
1848 struct anv_descriptor_set_layout *layout;
1849 uint32_t size;
1850
1851 /* State relative to anv_descriptor_pool::bo */
1852 struct anv_state desc_mem;
1853 /* Surface state for the descriptor buffer */
1854 struct anv_state desc_surface_state;
1855
1856 uint32_t buffer_view_count;
1857 struct anv_buffer_view *buffer_views;
1858
1859 /* Link to descriptor pool's desc_sets list . */
1860 struct list_head pool_link;
1861
1862 struct anv_descriptor descriptors[0];
1863 };
1864
1865 struct anv_buffer_view {
1866 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1867 uint64_t range; /**< VkBufferViewCreateInfo::range */
1868
1869 struct anv_address address;
1870
1871 struct anv_state surface_state;
1872 struct anv_state storage_surface_state;
1873 struct anv_state writeonly_storage_surface_state;
1874
1875 struct brw_image_param storage_image_param;
1876 };
1877
1878 struct anv_push_descriptor_set {
1879 struct anv_descriptor_set set;
1880
1881 /* Put this field right behind anv_descriptor_set so it fills up the
1882 * descriptors[0] field. */
1883 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1884
1885 /** True if the descriptor set buffer has been referenced by a draw or
1886 * dispatch command.
1887 */
1888 bool set_used_on_gpu;
1889
1890 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1891 };
1892
1893 struct anv_descriptor_pool {
1894 uint32_t size;
1895 uint32_t next;
1896 uint32_t free_list;
1897
1898 struct anv_bo *bo;
1899 struct util_vma_heap bo_heap;
1900
1901 struct anv_state_stream surface_state_stream;
1902 void *surface_state_free_list;
1903
1904 struct list_head desc_sets;
1905
1906 char data[0];
1907 };
1908
1909 enum anv_descriptor_template_entry_type {
1910 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1911 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1912 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1913 };
1914
1915 struct anv_descriptor_template_entry {
1916 /* The type of descriptor in this entry */
1917 VkDescriptorType type;
1918
1919 /* Binding in the descriptor set */
1920 uint32_t binding;
1921
1922 /* Offset at which to write into the descriptor set binding */
1923 uint32_t array_element;
1924
1925 /* Number of elements to write into the descriptor set binding */
1926 uint32_t array_count;
1927
1928 /* Offset into the user provided data */
1929 size_t offset;
1930
1931 /* Stride between elements into the user provided data */
1932 size_t stride;
1933 };
1934
1935 struct anv_descriptor_update_template {
1936 VkPipelineBindPoint bind_point;
1937
1938 /* The descriptor set this template corresponds to. This value is only
1939 * valid if the template was created with the templateType
1940 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1941 */
1942 uint8_t set;
1943
1944 /* Number of entries in this template */
1945 uint32_t entry_count;
1946
1947 /* Entries of the template */
1948 struct anv_descriptor_template_entry entries[0];
1949 };
1950
1951 size_t
1952 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1953
1954 void
1955 anv_descriptor_set_write_image_view(struct anv_device *device,
1956 struct anv_descriptor_set *set,
1957 const VkDescriptorImageInfo * const info,
1958 VkDescriptorType type,
1959 uint32_t binding,
1960 uint32_t element);
1961
1962 void
1963 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1964 struct anv_descriptor_set *set,
1965 VkDescriptorType type,
1966 struct anv_buffer_view *buffer_view,
1967 uint32_t binding,
1968 uint32_t element);
1969
1970 void
1971 anv_descriptor_set_write_buffer(struct anv_device *device,
1972 struct anv_descriptor_set *set,
1973 struct anv_state_stream *alloc_stream,
1974 VkDescriptorType type,
1975 struct anv_buffer *buffer,
1976 uint32_t binding,
1977 uint32_t element,
1978 VkDeviceSize offset,
1979 VkDeviceSize range);
1980 void
1981 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1982 struct anv_descriptor_set *set,
1983 uint32_t binding,
1984 const void *data,
1985 size_t offset,
1986 size_t size);
1987
1988 void
1989 anv_descriptor_set_write_template(struct anv_device *device,
1990 struct anv_descriptor_set *set,
1991 struct anv_state_stream *alloc_stream,
1992 const struct anv_descriptor_update_template *template,
1993 const void *data);
1994
1995 VkResult
1996 anv_descriptor_set_create(struct anv_device *device,
1997 struct anv_descriptor_pool *pool,
1998 struct anv_descriptor_set_layout *layout,
1999 struct anv_descriptor_set **out_set);
2000
2001 void
2002 anv_descriptor_set_destroy(struct anv_device *device,
2003 struct anv_descriptor_pool *pool,
2004 struct anv_descriptor_set *set);
2005
2006 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2007 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2008 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2009 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2010 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2011 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2012
2013 struct anv_pipeline_binding {
2014 /** Index in the descriptor set
2015 *
2016 * This is a flattened index; the descriptor set layout is already taken
2017 * into account.
2018 */
2019 uint32_t index;
2020
2021 /** The descriptor set this surface corresponds to.
2022 *
2023 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2024 * binding is not a normal descriptor set but something else.
2025 */
2026 uint8_t set;
2027
2028 union {
2029 /** Plane in the binding index for images */
2030 uint8_t plane;
2031
2032 /** Input attachment index (relative to the subpass) */
2033 uint8_t input_attachment_index;
2034
2035 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2036 uint8_t dynamic_offset_index;
2037 };
2038
2039 /** For a storage image, whether it is write-only */
2040 uint8_t write_only;
2041
2042 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2043 * assuming POD zero-initialization.
2044 */
2045 uint8_t pad;
2046 };
2047
2048 struct anv_push_range {
2049 /** Index in the descriptor set */
2050 uint32_t index;
2051
2052 /** Descriptor set index */
2053 uint8_t set;
2054
2055 /** Dynamic offset index (for dynamic UBOs) */
2056 uint8_t dynamic_offset_index;
2057
2058 /** Start offset in units of 32B */
2059 uint8_t start;
2060
2061 /** Range in units of 32B */
2062 uint8_t length;
2063 };
2064
2065 struct anv_pipeline_layout {
2066 struct {
2067 struct anv_descriptor_set_layout *layout;
2068 uint32_t dynamic_offset_start;
2069 } set[MAX_SETS];
2070
2071 uint32_t num_sets;
2072
2073 unsigned char sha1[20];
2074 };
2075
2076 struct anv_buffer {
2077 struct anv_device * device;
2078 VkDeviceSize size;
2079
2080 VkBufferUsageFlags usage;
2081
2082 /* Set when bound */
2083 struct anv_address address;
2084 };
2085
2086 static inline uint64_t
2087 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2088 {
2089 assert(offset <= buffer->size);
2090 if (range == VK_WHOLE_SIZE) {
2091 return buffer->size - offset;
2092 } else {
2093 assert(range + offset >= range);
2094 assert(range + offset <= buffer->size);
2095 return range;
2096 }
2097 }
2098
2099 enum anv_cmd_dirty_bits {
2100 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2101 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2102 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2103 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2104 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2105 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2106 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2107 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2108 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2109 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2110 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2111 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2112 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2113 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2114 };
2115 typedef uint32_t anv_cmd_dirty_mask_t;
2116
2117 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2118 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2119 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2120 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2121 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2122 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2123 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2124 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2125 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2126 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2127 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2128
2129 static inline enum anv_cmd_dirty_bits
2130 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2131 {
2132 switch (vk_state) {
2133 case VK_DYNAMIC_STATE_VIEWPORT:
2134 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2135 case VK_DYNAMIC_STATE_SCISSOR:
2136 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2137 case VK_DYNAMIC_STATE_LINE_WIDTH:
2138 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2139 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2140 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2141 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2142 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2143 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2144 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2145 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2146 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2147 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2148 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2149 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2150 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2151 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2152 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2153 default:
2154 assert(!"Unsupported dynamic state");
2155 return 0;
2156 }
2157 }
2158
2159
2160 enum anv_pipe_bits {
2161 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2162 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2163 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2164 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2165 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2166 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2167 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2168 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2169 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2170 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2171 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2172 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2173
2174 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2175 * a flush has happened but not a CS stall. The next time we do any sort
2176 * of invalidation we need to insert a CS stall at that time. Otherwise,
2177 * we would have to CS stall on every flush which could be bad.
2178 */
2179 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2180
2181 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2182 * target operations related to transfer commands with VkBuffer as
2183 * destination are ongoing. Some operations like copies on the command
2184 * streamer might need to be aware of this to trigger the appropriate stall
2185 * before they can proceed with the copy.
2186 */
2187 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2188 };
2189
2190 #define ANV_PIPE_FLUSH_BITS ( \
2191 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2192 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2193 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2194 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2195
2196 #define ANV_PIPE_STALL_BITS ( \
2197 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2198 ANV_PIPE_DEPTH_STALL_BIT | \
2199 ANV_PIPE_CS_STALL_BIT)
2200
2201 #define ANV_PIPE_INVALIDATE_BITS ( \
2202 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2203 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2204 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2205 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2206 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2207 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2208
2209 static inline enum anv_pipe_bits
2210 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2211 {
2212 enum anv_pipe_bits pipe_bits = 0;
2213
2214 unsigned b;
2215 for_each_bit(b, flags) {
2216 switch ((VkAccessFlagBits)(1 << b)) {
2217 case VK_ACCESS_SHADER_WRITE_BIT:
2218 /* We're transitioning a buffer that was previously used as write
2219 * destination through the data port. To make its content available
2220 * to future operations, flush the data cache.
2221 */
2222 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2223 break;
2224 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2225 /* We're transitioning a buffer that was previously used as render
2226 * target. To make its content available to future operations, flush
2227 * the render target cache.
2228 */
2229 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2230 break;
2231 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2232 /* We're transitioning a buffer that was previously used as depth
2233 * buffer. To make its content available to future operations, flush
2234 * the depth cache.
2235 */
2236 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2237 break;
2238 case VK_ACCESS_TRANSFER_WRITE_BIT:
2239 /* We're transitioning a buffer that was previously used as a
2240 * transfer write destination. Generic write operations include color
2241 * & depth operations as well as buffer operations like :
2242 * - vkCmdClearColorImage()
2243 * - vkCmdClearDepthStencilImage()
2244 * - vkCmdBlitImage()
2245 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2246 *
2247 * Most of these operations are implemented using Blorp which writes
2248 * through the render target, so flush that cache to make it visible
2249 * to future operations. And for depth related operations we also
2250 * need to flush the depth cache.
2251 */
2252 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2253 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2254 break;
2255 case VK_ACCESS_MEMORY_WRITE_BIT:
2256 /* We're transitioning a buffer for generic write operations. Flush
2257 * all the caches.
2258 */
2259 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2260 break;
2261 default:
2262 break; /* Nothing to do */
2263 }
2264 }
2265
2266 return pipe_bits;
2267 }
2268
2269 static inline enum anv_pipe_bits
2270 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2271 {
2272 enum anv_pipe_bits pipe_bits = 0;
2273
2274 unsigned b;
2275 for_each_bit(b, flags) {
2276 switch ((VkAccessFlagBits)(1 << b)) {
2277 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2278 /* Indirect draw commands take a buffer as input that we're going to
2279 * read from the command streamer to load some of the HW registers
2280 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2281 * command streamer stall so that all the cache flushes have
2282 * completed before the command streamer loads from memory.
2283 */
2284 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2285 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2286 * through a vertex buffer, so invalidate that cache.
2287 */
2288 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2289 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2290 * UBO from the buffer, so we need to invalidate constant cache.
2291 */
2292 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2293 break;
2294 case VK_ACCESS_INDEX_READ_BIT:
2295 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2296 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2297 * commands, so we invalidate the VF cache to make sure there is no
2298 * stale data when we start rendering.
2299 */
2300 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2301 break;
2302 case VK_ACCESS_UNIFORM_READ_BIT:
2303 /* We transitioning a buffer to be used as uniform data. Because
2304 * uniform is accessed through the data port & sampler, we need to
2305 * invalidate the texture cache (sampler) & constant cache (data
2306 * port) to avoid stale data.
2307 */
2308 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2309 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2310 break;
2311 case VK_ACCESS_SHADER_READ_BIT:
2312 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2313 case VK_ACCESS_TRANSFER_READ_BIT:
2314 /* Transitioning a buffer to be read through the sampler, so
2315 * invalidate the texture cache, we don't want any stale data.
2316 */
2317 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2318 break;
2319 case VK_ACCESS_MEMORY_READ_BIT:
2320 /* Transitioning a buffer for generic read, invalidate all the
2321 * caches.
2322 */
2323 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2324 break;
2325 case VK_ACCESS_MEMORY_WRITE_BIT:
2326 /* Generic write, make sure all previously written things land in
2327 * memory.
2328 */
2329 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2330 break;
2331 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2332 /* Transitioning a buffer for conditional rendering. We'll load the
2333 * content of this buffer into HW registers using the command
2334 * streamer, so we need to stall the command streamer to make sure
2335 * any in-flight flush operations have completed.
2336 */
2337 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2338 break;
2339 default:
2340 break; /* Nothing to do */
2341 }
2342 }
2343
2344 return pipe_bits;
2345 }
2346
2347 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2348 VK_IMAGE_ASPECT_COLOR_BIT | \
2349 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2350 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2351 VK_IMAGE_ASPECT_PLANE_2_BIT)
2352 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2353 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2354 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2355 VK_IMAGE_ASPECT_PLANE_2_BIT)
2356
2357 struct anv_vertex_binding {
2358 struct anv_buffer * buffer;
2359 VkDeviceSize offset;
2360 };
2361
2362 struct anv_xfb_binding {
2363 struct anv_buffer * buffer;
2364 VkDeviceSize offset;
2365 VkDeviceSize size;
2366 };
2367
2368 struct anv_push_constants {
2369 /** Push constant data provided by the client through vkPushConstants */
2370 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2371
2372 /** Dynamic offsets for dynamic UBOs and SSBOs */
2373 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2374
2375 struct {
2376 /** Base workgroup ID
2377 *
2378 * Used for vkCmdDispatchBase.
2379 */
2380 uint32_t base_work_group_id[3];
2381
2382 /** Subgroup ID
2383 *
2384 * This is never set by software but is implicitly filled out when
2385 * uploading the push constants for compute shaders.
2386 */
2387 uint32_t subgroup_id;
2388
2389 /** Pad out to a multiple of 32 bytes */
2390 uint32_t pad[4];
2391 } cs;
2392 };
2393
2394 struct anv_dynamic_state {
2395 struct {
2396 uint32_t count;
2397 VkViewport viewports[MAX_VIEWPORTS];
2398 } viewport;
2399
2400 struct {
2401 uint32_t count;
2402 VkRect2D scissors[MAX_SCISSORS];
2403 } scissor;
2404
2405 float line_width;
2406
2407 struct {
2408 float bias;
2409 float clamp;
2410 float slope;
2411 } depth_bias;
2412
2413 float blend_constants[4];
2414
2415 struct {
2416 float min;
2417 float max;
2418 } depth_bounds;
2419
2420 struct {
2421 uint32_t front;
2422 uint32_t back;
2423 } stencil_compare_mask;
2424
2425 struct {
2426 uint32_t front;
2427 uint32_t back;
2428 } stencil_write_mask;
2429
2430 struct {
2431 uint32_t front;
2432 uint32_t back;
2433 } stencil_reference;
2434
2435 struct {
2436 uint32_t factor;
2437 uint16_t pattern;
2438 } line_stipple;
2439 };
2440
2441 extern const struct anv_dynamic_state default_dynamic_state;
2442
2443 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2444 const struct anv_dynamic_state *src,
2445 uint32_t copy_mask);
2446
2447 struct anv_surface_state {
2448 struct anv_state state;
2449 /** Address of the surface referred to by this state
2450 *
2451 * This address is relative to the start of the BO.
2452 */
2453 struct anv_address address;
2454 /* Address of the aux surface, if any
2455 *
2456 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2457 *
2458 * With the exception of gen8, the bottom 12 bits of this address' offset
2459 * include extra aux information.
2460 */
2461 struct anv_address aux_address;
2462 /* Address of the clear color, if any
2463 *
2464 * This address is relative to the start of the BO.
2465 */
2466 struct anv_address clear_address;
2467 };
2468
2469 /**
2470 * Attachment state when recording a renderpass instance.
2471 *
2472 * The clear value is valid only if there exists a pending clear.
2473 */
2474 struct anv_attachment_state {
2475 enum isl_aux_usage aux_usage;
2476 enum isl_aux_usage input_aux_usage;
2477 struct anv_surface_state color;
2478 struct anv_surface_state input;
2479
2480 VkImageLayout current_layout;
2481 VkImageLayout current_stencil_layout;
2482 VkImageAspectFlags pending_clear_aspects;
2483 VkImageAspectFlags pending_load_aspects;
2484 bool fast_clear;
2485 VkClearValue clear_value;
2486 bool clear_color_is_zero_one;
2487 bool clear_color_is_zero;
2488
2489 /* When multiview is active, attachments with a renderpass clear
2490 * operation have their respective layers cleared on the first
2491 * subpass that uses them, and only in that subpass. We keep track
2492 * of this using a bitfield to indicate which layers of an attachment
2493 * have not been cleared yet when multiview is active.
2494 */
2495 uint32_t pending_clear_views;
2496 struct anv_image_view * image_view;
2497 };
2498
2499 /** State tracking for vertex buffer flushes
2500 *
2501 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2502 * addresses. If you happen to have two vertex buffers which get placed
2503 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2504 * collisions. In order to solve this problem, we track vertex address ranges
2505 * which are live in the cache and invalidate the cache if one ever exceeds 32
2506 * bits.
2507 */
2508 struct anv_vb_cache_range {
2509 /* Virtual address at which the live vertex buffer cache range starts for
2510 * this vertex buffer index.
2511 */
2512 uint64_t start;
2513
2514 /* Virtual address of the byte after where vertex buffer cache range ends.
2515 * This is exclusive such that end - start is the size of the range.
2516 */
2517 uint64_t end;
2518 };
2519
2520 /** State tracking for particular pipeline bind point
2521 *
2522 * This struct is the base struct for anv_cmd_graphics_state and
2523 * anv_cmd_compute_state. These are used to track state which is bound to a
2524 * particular type of pipeline. Generic state that applies per-stage such as
2525 * binding table offsets and push constants is tracked generically with a
2526 * per-stage array in anv_cmd_state.
2527 */
2528 struct anv_cmd_pipeline_state {
2529 struct anv_pipeline *pipeline;
2530
2531 struct anv_descriptor_set *descriptors[MAX_SETS];
2532 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2533 };
2534
2535 /** State tracking for graphics pipeline
2536 *
2537 * This has anv_cmd_pipeline_state as a base struct to track things which get
2538 * bound to a graphics pipeline. Along with general pipeline bind point state
2539 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2540 * state which is graphics-specific.
2541 */
2542 struct anv_cmd_graphics_state {
2543 struct anv_cmd_pipeline_state base;
2544
2545 anv_cmd_dirty_mask_t dirty;
2546 uint32_t vb_dirty;
2547
2548 struct anv_vb_cache_range ib_bound_range;
2549 struct anv_vb_cache_range ib_dirty_range;
2550 struct anv_vb_cache_range vb_bound_ranges[33];
2551 struct anv_vb_cache_range vb_dirty_ranges[33];
2552
2553 struct anv_dynamic_state dynamic;
2554
2555 struct {
2556 struct anv_buffer *index_buffer;
2557 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2558 uint32_t index_offset;
2559 } gen7;
2560 };
2561
2562 /** State tracking for compute pipeline
2563 *
2564 * This has anv_cmd_pipeline_state as a base struct to track things which get
2565 * bound to a compute pipeline. Along with general pipeline bind point state
2566 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2567 * state which is compute-specific.
2568 */
2569 struct anv_cmd_compute_state {
2570 struct anv_cmd_pipeline_state base;
2571
2572 bool pipeline_dirty;
2573
2574 struct anv_address num_workgroups;
2575 };
2576
2577 /** State required while building cmd buffer */
2578 struct anv_cmd_state {
2579 /* PIPELINE_SELECT.PipelineSelection */
2580 uint32_t current_pipeline;
2581 const struct gen_l3_config * current_l3_config;
2582 uint32_t last_aux_map_state;
2583
2584 struct anv_cmd_graphics_state gfx;
2585 struct anv_cmd_compute_state compute;
2586
2587 enum anv_pipe_bits pending_pipe_bits;
2588 VkShaderStageFlags descriptors_dirty;
2589 VkShaderStageFlags push_constants_dirty;
2590
2591 struct anv_framebuffer * framebuffer;
2592 struct anv_render_pass * pass;
2593 struct anv_subpass * subpass;
2594 VkRect2D render_area;
2595 uint32_t restart_index;
2596 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2597 bool xfb_enabled;
2598 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2599 VkShaderStageFlags push_constant_stages;
2600 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2601 struct anv_state binding_tables[MESA_SHADER_STAGES];
2602 struct anv_state samplers[MESA_SHADER_STAGES];
2603
2604 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2605 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2606 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2607
2608 /**
2609 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2610 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2611 * and before invoking the secondary in ExecuteCommands.
2612 */
2613 bool pma_fix_enabled;
2614
2615 /**
2616 * Whether or not we know for certain that HiZ is enabled for the current
2617 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2618 * enabled or not, this will be false.
2619 */
2620 bool hiz_enabled;
2621
2622 bool conditional_render_enabled;
2623
2624 /**
2625 * Last rendering scale argument provided to
2626 * genX(cmd_buffer_emit_hashing_mode)().
2627 */
2628 unsigned current_hash_scale;
2629
2630 /**
2631 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2632 * valid only when recording a render pass instance.
2633 */
2634 struct anv_attachment_state * attachments;
2635
2636 /**
2637 * Surface states for color render targets. These are stored in a single
2638 * flat array. For depth-stencil attachments, the surface state is simply
2639 * left blank.
2640 */
2641 struct anv_state render_pass_states;
2642
2643 /**
2644 * A null surface state of the right size to match the framebuffer. This
2645 * is one of the states in render_pass_states.
2646 */
2647 struct anv_state null_surface_state;
2648 };
2649
2650 struct anv_cmd_pool {
2651 VkAllocationCallbacks alloc;
2652 struct list_head cmd_buffers;
2653 };
2654
2655 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2656
2657 enum anv_cmd_buffer_exec_mode {
2658 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2659 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2660 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2661 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2662 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2663 };
2664
2665 struct anv_cmd_buffer {
2666 VK_LOADER_DATA _loader_data;
2667
2668 struct anv_device * device;
2669
2670 struct anv_cmd_pool * pool;
2671 struct list_head pool_link;
2672
2673 struct anv_batch batch;
2674
2675 /* Fields required for the actual chain of anv_batch_bo's.
2676 *
2677 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2678 */
2679 struct list_head batch_bos;
2680 enum anv_cmd_buffer_exec_mode exec_mode;
2681
2682 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2683 * referenced by this command buffer
2684 *
2685 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2686 */
2687 struct u_vector seen_bbos;
2688
2689 /* A vector of int32_t's for every block of binding tables.
2690 *
2691 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2692 */
2693 struct u_vector bt_block_states;
2694 struct anv_state bt_next;
2695
2696 struct anv_reloc_list surface_relocs;
2697 /** Last seen surface state block pool center bo offset */
2698 uint32_t last_ss_pool_center;
2699
2700 /* Serial for tracking buffer completion */
2701 uint32_t serial;
2702
2703 /* Stream objects for storing temporary data */
2704 struct anv_state_stream surface_state_stream;
2705 struct anv_state_stream dynamic_state_stream;
2706
2707 VkCommandBufferUsageFlags usage_flags;
2708 VkCommandBufferLevel level;
2709
2710 struct anv_cmd_state state;
2711
2712 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2713 uint64_t intel_perf_marker;
2714 };
2715
2716 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2717 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2718 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2719 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2720 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2721 struct anv_cmd_buffer *secondary);
2722 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2723 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2724 struct anv_cmd_buffer *cmd_buffer,
2725 const VkSemaphore *in_semaphores,
2726 const uint64_t *in_wait_values,
2727 uint32_t num_in_semaphores,
2728 const VkSemaphore *out_semaphores,
2729 const uint64_t *out_signal_values,
2730 uint32_t num_out_semaphores,
2731 VkFence fence);
2732
2733 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2734
2735 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2736 const void *data, uint32_t size, uint32_t alignment);
2737 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2738 uint32_t *a, uint32_t *b,
2739 uint32_t dwords, uint32_t alignment);
2740
2741 struct anv_address
2742 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2743 struct anv_state
2744 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2745 uint32_t entries, uint32_t *state_offset);
2746 struct anv_state
2747 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2748 struct anv_state
2749 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2750 uint32_t size, uint32_t alignment);
2751
2752 VkResult
2753 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2754
2755 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2756 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2757 bool depth_clamp_enable);
2758 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2759
2760 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2761 struct anv_render_pass *pass,
2762 struct anv_framebuffer *framebuffer,
2763 const VkClearValue *clear_values);
2764
2765 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2766
2767 struct anv_state
2768 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2769 gl_shader_stage stage);
2770 struct anv_state
2771 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2772
2773 const struct anv_image_view *
2774 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2775
2776 VkResult
2777 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2778 uint32_t num_entries,
2779 uint32_t *state_offset,
2780 struct anv_state *bt_state);
2781
2782 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2783
2784 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2785
2786 enum anv_fence_type {
2787 ANV_FENCE_TYPE_NONE = 0,
2788 ANV_FENCE_TYPE_BO,
2789 ANV_FENCE_TYPE_SYNCOBJ,
2790 ANV_FENCE_TYPE_WSI,
2791 };
2792
2793 enum anv_bo_fence_state {
2794 /** Indicates that this is a new (or newly reset fence) */
2795 ANV_BO_FENCE_STATE_RESET,
2796
2797 /** Indicates that this fence has been submitted to the GPU but is still
2798 * (as far as we know) in use by the GPU.
2799 */
2800 ANV_BO_FENCE_STATE_SUBMITTED,
2801
2802 ANV_BO_FENCE_STATE_SIGNALED,
2803 };
2804
2805 struct anv_fence_impl {
2806 enum anv_fence_type type;
2807
2808 union {
2809 /** Fence implementation for BO fences
2810 *
2811 * These fences use a BO and a set of CPU-tracked state flags. The BO
2812 * is added to the object list of the last execbuf call in a QueueSubmit
2813 * and is marked EXEC_WRITE. The state flags track when the BO has been
2814 * submitted to the kernel. We need to do this because Vulkan lets you
2815 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2816 * will say it's idle in this case.
2817 */
2818 struct {
2819 struct anv_bo *bo;
2820 enum anv_bo_fence_state state;
2821 } bo;
2822
2823 /** DRM syncobj handle for syncobj-based fences */
2824 uint32_t syncobj;
2825
2826 /** WSI fence */
2827 struct wsi_fence *fence_wsi;
2828 };
2829 };
2830
2831 struct anv_fence {
2832 /* Permanent fence state. Every fence has some form of permanent state
2833 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2834 * cross-process fences) or it could just be a dummy for use internally.
2835 */
2836 struct anv_fence_impl permanent;
2837
2838 /* Temporary fence state. A fence *may* have temporary state. That state
2839 * is added to the fence by an import operation and is reset back to
2840 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2841 * state cannot be signaled because the fence must already be signaled
2842 * before the temporary state can be exported from the fence in the other
2843 * process and imported here.
2844 */
2845 struct anv_fence_impl temporary;
2846 };
2847
2848 struct anv_event {
2849 uint64_t semaphore;
2850 struct anv_state state;
2851 };
2852
2853 enum anv_semaphore_type {
2854 ANV_SEMAPHORE_TYPE_NONE = 0,
2855 ANV_SEMAPHORE_TYPE_DUMMY,
2856 ANV_SEMAPHORE_TYPE_BO,
2857 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2858 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2859 ANV_SEMAPHORE_TYPE_TIMELINE,
2860 };
2861
2862 struct anv_timeline_point {
2863 struct list_head link;
2864
2865 uint64_t serial;
2866
2867 /* Number of waiter on this point, when > 0 the point should not be garbage
2868 * collected.
2869 */
2870 int waiting;
2871
2872 /* BO used for synchronization. */
2873 struct anv_bo *bo;
2874 };
2875
2876 struct anv_timeline {
2877 pthread_mutex_t mutex;
2878 pthread_cond_t cond;
2879
2880 uint64_t highest_past;
2881 uint64_t highest_pending;
2882
2883 struct list_head points;
2884 struct list_head free_points;
2885 };
2886
2887 struct anv_semaphore_impl {
2888 enum anv_semaphore_type type;
2889
2890 union {
2891 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2892 * This BO will be added to the object list on any execbuf2 calls for
2893 * which this semaphore is used as a wait or signal fence. When used as
2894 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2895 */
2896 struct anv_bo *bo;
2897
2898 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2899 * If the semaphore is in the unsignaled state due to either just being
2900 * created or because it has been used for a wait, fd will be -1.
2901 */
2902 int fd;
2903
2904 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2905 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2906 * import so we don't need to bother with a userspace cache.
2907 */
2908 uint32_t syncobj;
2909
2910 /* Non shareable timeline semaphore
2911 *
2912 * Used when kernel don't have support for timeline semaphores.
2913 */
2914 struct anv_timeline timeline;
2915 };
2916 };
2917
2918 struct anv_semaphore {
2919 uint32_t refcount;
2920
2921 /* Permanent semaphore state. Every semaphore has some form of permanent
2922 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2923 * (for cross-process semaphores0 or it could just be a dummy for use
2924 * internally.
2925 */
2926 struct anv_semaphore_impl permanent;
2927
2928 /* Temporary semaphore state. A semaphore *may* have temporary state.
2929 * That state is added to the semaphore by an import operation and is reset
2930 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2931 * semaphore with temporary state cannot be signaled because the semaphore
2932 * must already be signaled before the temporary state can be exported from
2933 * the semaphore in the other process and imported here.
2934 */
2935 struct anv_semaphore_impl temporary;
2936 };
2937
2938 void anv_semaphore_reset_temporary(struct anv_device *device,
2939 struct anv_semaphore *semaphore);
2940
2941 struct anv_shader_module {
2942 unsigned char sha1[20];
2943 uint32_t size;
2944 char data[0];
2945 };
2946
2947 static inline gl_shader_stage
2948 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2949 {
2950 assert(__builtin_popcount(vk_stage) == 1);
2951 return ffs(vk_stage) - 1;
2952 }
2953
2954 static inline VkShaderStageFlagBits
2955 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2956 {
2957 return (1 << mesa_stage);
2958 }
2959
2960 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2961
2962 #define anv_foreach_stage(stage, stage_bits) \
2963 for (gl_shader_stage stage, \
2964 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2965 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2966 __tmp &= ~(1 << (stage)))
2967
2968 struct anv_pipeline_bind_map {
2969 unsigned char surface_sha1[20];
2970 unsigned char sampler_sha1[20];
2971 unsigned char push_sha1[20];
2972
2973 uint32_t surface_count;
2974 uint32_t sampler_count;
2975
2976 struct anv_pipeline_binding * surface_to_descriptor;
2977 struct anv_pipeline_binding * sampler_to_descriptor;
2978
2979 struct anv_push_range push_ranges[4];
2980 };
2981
2982 struct anv_shader_bin_key {
2983 uint32_t size;
2984 uint8_t data[0];
2985 };
2986
2987 struct anv_shader_bin {
2988 uint32_t ref_cnt;
2989
2990 const struct anv_shader_bin_key *key;
2991
2992 struct anv_state kernel;
2993 uint32_t kernel_size;
2994
2995 struct anv_state constant_data;
2996 uint32_t constant_data_size;
2997
2998 const struct brw_stage_prog_data *prog_data;
2999 uint32_t prog_data_size;
3000
3001 struct brw_compile_stats stats[3];
3002 uint32_t num_stats;
3003
3004 struct nir_xfb_info *xfb_info;
3005
3006 struct anv_pipeline_bind_map bind_map;
3007 };
3008
3009 struct anv_shader_bin *
3010 anv_shader_bin_create(struct anv_device *device,
3011 const void *key, uint32_t key_size,
3012 const void *kernel, uint32_t kernel_size,
3013 const void *constant_data, uint32_t constant_data_size,
3014 const struct brw_stage_prog_data *prog_data,
3015 uint32_t prog_data_size, const void *prog_data_param,
3016 const struct brw_compile_stats *stats, uint32_t num_stats,
3017 const struct nir_xfb_info *xfb_info,
3018 const struct anv_pipeline_bind_map *bind_map);
3019
3020 void
3021 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3022
3023 static inline void
3024 anv_shader_bin_ref(struct anv_shader_bin *shader)
3025 {
3026 assert(shader && shader->ref_cnt >= 1);
3027 p_atomic_inc(&shader->ref_cnt);
3028 }
3029
3030 static inline void
3031 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3032 {
3033 assert(shader && shader->ref_cnt >= 1);
3034 if (p_atomic_dec_zero(&shader->ref_cnt))
3035 anv_shader_bin_destroy(device, shader);
3036 }
3037
3038 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
3039 #define MAX_PIPELINE_EXECUTABLES 7
3040
3041 struct anv_pipeline_executable {
3042 gl_shader_stage stage;
3043
3044 struct brw_compile_stats stats;
3045
3046 char *nir;
3047 char *disasm;
3048 };
3049
3050 struct anv_pipeline {
3051 struct anv_device * device;
3052 struct anv_batch batch;
3053 uint32_t batch_data[512];
3054 struct anv_reloc_list batch_relocs;
3055 anv_cmd_dirty_mask_t dynamic_state_mask;
3056 struct anv_dynamic_state dynamic_state;
3057
3058 void * mem_ctx;
3059
3060 VkPipelineCreateFlags flags;
3061 struct anv_subpass * subpass;
3062
3063 bool needs_data_cache;
3064
3065 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3066
3067 uint32_t num_executables;
3068 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
3069
3070 struct {
3071 const struct gen_l3_config * l3_config;
3072 uint32_t total_size;
3073 } urb;
3074
3075 VkShaderStageFlags active_stages;
3076 struct anv_state blend_state;
3077
3078 uint32_t vb_used;
3079 struct anv_pipeline_vertex_binding {
3080 uint32_t stride;
3081 bool instanced;
3082 uint32_t instance_divisor;
3083 } vb[MAX_VBS];
3084
3085 uint8_t xfb_used;
3086
3087 bool primitive_restart;
3088 uint32_t topology;
3089
3090 uint32_t cs_right_mask;
3091
3092 bool writes_depth;
3093 bool depth_test_enable;
3094 bool writes_stencil;
3095 bool stencil_test_enable;
3096 bool depth_clamp_enable;
3097 bool depth_clip_enable;
3098 bool sample_shading_enable;
3099 bool kill_pixel;
3100 bool depth_bounds_test_enable;
3101
3102 struct {
3103 uint32_t sf[7];
3104 uint32_t depth_stencil_state[3];
3105 } gen7;
3106
3107 struct {
3108 uint32_t sf[4];
3109 uint32_t raster[5];
3110 uint32_t wm_depth_stencil[3];
3111 } gen8;
3112
3113 struct {
3114 uint32_t wm_depth_stencil[4];
3115 } gen9;
3116
3117 uint32_t interface_descriptor_data[8];
3118 };
3119
3120 static inline bool
3121 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3122 gl_shader_stage stage)
3123 {
3124 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3125 }
3126
3127 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3128 static inline const struct brw_##prefix##_prog_data * \
3129 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3130 { \
3131 if (anv_pipeline_has_stage(pipeline, stage)) { \
3132 return (const struct brw_##prefix##_prog_data *) \
3133 pipeline->shaders[stage]->prog_data; \
3134 } else { \
3135 return NULL; \
3136 } \
3137 }
3138
3139 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3140 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3141 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3142 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3143 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3144 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3145
3146 static inline const struct brw_vue_prog_data *
3147 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3148 {
3149 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3150 return &get_gs_prog_data(pipeline)->base;
3151 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3152 return &get_tes_prog_data(pipeline)->base;
3153 else
3154 return &get_vs_prog_data(pipeline)->base;
3155 }
3156
3157 VkResult
3158 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3159 struct anv_pipeline_cache *cache,
3160 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3161 const VkAllocationCallbacks *alloc);
3162
3163 VkResult
3164 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3165 struct anv_pipeline_cache *cache,
3166 const VkComputePipelineCreateInfo *info,
3167 const struct anv_shader_module *module,
3168 const char *entrypoint,
3169 const VkSpecializationInfo *spec_info);
3170
3171 struct anv_format_plane {
3172 enum isl_format isl_format:16;
3173 struct isl_swizzle swizzle;
3174
3175 /* Whether this plane contains chroma channels */
3176 bool has_chroma;
3177
3178 /* For downscaling of YUV planes */
3179 uint8_t denominator_scales[2];
3180
3181 /* How to map sampled ycbcr planes to a single 4 component element. */
3182 struct isl_swizzle ycbcr_swizzle;
3183
3184 /* What aspect is associated to this plane */
3185 VkImageAspectFlags aspect;
3186 };
3187
3188
3189 struct anv_format {
3190 struct anv_format_plane planes[3];
3191 VkFormat vk_format;
3192 uint8_t n_planes;
3193 bool can_ycbcr;
3194 };
3195
3196 static inline uint32_t
3197 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3198 VkImageAspectFlags aspect_mask)
3199 {
3200 switch (aspect_mask) {
3201 case VK_IMAGE_ASPECT_COLOR_BIT:
3202 case VK_IMAGE_ASPECT_DEPTH_BIT:
3203 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3204 return 0;
3205 case VK_IMAGE_ASPECT_STENCIL_BIT:
3206 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3207 return 0;
3208 /* Fall-through */
3209 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3210 return 1;
3211 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3212 return 2;
3213 default:
3214 /* Purposefully assert with depth/stencil aspects. */
3215 unreachable("invalid image aspect");
3216 }
3217 }
3218
3219 static inline VkImageAspectFlags
3220 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3221 uint32_t plane)
3222 {
3223 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3224 if (util_bitcount(image_aspects) > 1)
3225 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3226 return VK_IMAGE_ASPECT_COLOR_BIT;
3227 }
3228 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3229 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3230 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3231 return VK_IMAGE_ASPECT_STENCIL_BIT;
3232 }
3233
3234 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3235 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3236
3237 const struct anv_format *
3238 anv_get_format(VkFormat format);
3239
3240 static inline uint32_t
3241 anv_get_format_planes(VkFormat vk_format)
3242 {
3243 const struct anv_format *format = anv_get_format(vk_format);
3244
3245 return format != NULL ? format->n_planes : 0;
3246 }
3247
3248 struct anv_format_plane
3249 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3250 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3251
3252 static inline enum isl_format
3253 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3254 VkImageAspectFlags aspect, VkImageTiling tiling)
3255 {
3256 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3257 }
3258
3259 static inline struct isl_swizzle
3260 anv_swizzle_for_render(struct isl_swizzle swizzle)
3261 {
3262 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3263 * RGB as RGBA for texturing
3264 */
3265 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3266 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3267
3268 /* But it doesn't matter what we render to that channel */
3269 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3270
3271 return swizzle;
3272 }
3273
3274 void
3275 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3276
3277 /**
3278 * Subsurface of an anv_image.
3279 */
3280 struct anv_surface {
3281 /** Valid only if isl_surf::size_B > 0. */
3282 struct isl_surf isl;
3283
3284 /**
3285 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3286 */
3287 uint32_t offset;
3288 };
3289
3290 struct anv_image {
3291 VkImageType type; /**< VkImageCreateInfo::imageType */
3292 /* The original VkFormat provided by the client. This may not match any
3293 * of the actual surface formats.
3294 */
3295 VkFormat vk_format;
3296 const struct anv_format *format;
3297
3298 VkImageAspectFlags aspects;
3299 VkExtent3D extent;
3300 uint32_t levels;
3301 uint32_t array_size;
3302 uint32_t samples; /**< VkImageCreateInfo::samples */
3303 uint32_t n_planes;
3304 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3305 VkImageUsageFlags stencil_usage;
3306 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3307 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3308
3309 /** True if this is needs to be bound to an appropriately tiled BO.
3310 *
3311 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3312 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3313 * we require a dedicated allocation so that we can know to allocate a
3314 * tiled buffer.
3315 */
3316 bool needs_set_tiling;
3317
3318 /**
3319 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3320 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3321 */
3322 uint64_t drm_format_mod;
3323
3324 VkDeviceSize size;
3325 uint32_t alignment;
3326
3327 /* Whether the image is made of several underlying buffer objects rather a
3328 * single one with different offsets.
3329 */
3330 bool disjoint;
3331
3332 /* All the formats that can be used when creating views of this image
3333 * are CCS_E compatible.
3334 */
3335 bool ccs_e_compatible;
3336
3337 /* Image was created with external format. */
3338 bool external_format;
3339
3340 /**
3341 * Image subsurfaces
3342 *
3343 * For each foo, anv_image::planes[x].surface is valid if and only if
3344 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3345 * to figure the number associated with a given aspect.
3346 *
3347 * The hardware requires that the depth buffer and stencil buffer be
3348 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3349 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3350 * allocate the depth and stencil buffers as separate surfaces in the same
3351 * bo.
3352 *
3353 * Memory layout :
3354 *
3355 * -----------------------
3356 * | surface0 | /|\
3357 * ----------------------- |
3358 * | shadow surface0 | |
3359 * ----------------------- | Plane 0
3360 * | aux surface0 | |
3361 * ----------------------- |
3362 * | fast clear colors0 | \|/
3363 * -----------------------
3364 * | surface1 | /|\
3365 * ----------------------- |
3366 * | shadow surface1 | |
3367 * ----------------------- | Plane 1
3368 * | aux surface1 | |
3369 * ----------------------- |
3370 * | fast clear colors1 | \|/
3371 * -----------------------
3372 * | ... |
3373 * | |
3374 * -----------------------
3375 */
3376 struct {
3377 /**
3378 * Offset of the entire plane (whenever the image is disjoint this is
3379 * set to 0).
3380 */
3381 uint32_t offset;
3382
3383 VkDeviceSize size;
3384 uint32_t alignment;
3385
3386 struct anv_surface surface;
3387
3388 /**
3389 * A surface which shadows the main surface and may have different
3390 * tiling. This is used for sampling using a tiling that isn't supported
3391 * for other operations.
3392 */
3393 struct anv_surface shadow_surface;
3394
3395 /**
3396 * For color images, this is the aux usage for this image when not used
3397 * as a color attachment.
3398 *
3399 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3400 * image has a HiZ buffer.
3401 */
3402 enum isl_aux_usage aux_usage;
3403
3404 struct anv_surface aux_surface;
3405
3406 /**
3407 * Offset of the fast clear state (used to compute the
3408 * fast_clear_state_offset of the following planes).
3409 */
3410 uint32_t fast_clear_state_offset;
3411
3412 /**
3413 * BO associated with this plane, set when bound.
3414 */
3415 struct anv_address address;
3416
3417 /**
3418 * Address of the main surface used to fill the aux map table. This is
3419 * used at destruction of the image since the Vulkan spec does not
3420 * guarantee that the address.bo field we still be valid at destruction.
3421 */
3422 uint64_t aux_map_surface_address;
3423
3424 /**
3425 * When destroying the image, also free the bo.
3426 * */
3427 bool bo_is_owned;
3428 } planes[3];
3429 };
3430
3431 /* The ordering of this enum is important */
3432 enum anv_fast_clear_type {
3433 /** Image does not have/support any fast-clear blocks */
3434 ANV_FAST_CLEAR_NONE = 0,
3435 /** Image has/supports fast-clear but only to the default value */
3436 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3437 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3438 ANV_FAST_CLEAR_ANY = 2,
3439 };
3440
3441 /* Returns the number of auxiliary buffer levels attached to an image. */
3442 static inline uint8_t
3443 anv_image_aux_levels(const struct anv_image * const image,
3444 VkImageAspectFlagBits aspect)
3445 {
3446 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3447
3448 /* The Gen12 CCS aux surface is represented with only one level. */
3449 const uint8_t aux_logical_levels =
3450 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3451 image->planes[plane].surface.isl.levels :
3452 image->planes[plane].aux_surface.isl.levels;
3453
3454 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3455 aux_logical_levels : 0;
3456 }
3457
3458 /* Returns the number of auxiliary buffer layers attached to an image. */
3459 static inline uint32_t
3460 anv_image_aux_layers(const struct anv_image * const image,
3461 VkImageAspectFlagBits aspect,
3462 const uint8_t miplevel)
3463 {
3464 assert(image);
3465
3466 /* The miplevel must exist in the main buffer. */
3467 assert(miplevel < image->levels);
3468
3469 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3470 /* There are no layers with auxiliary data because the miplevel has no
3471 * auxiliary data.
3472 */
3473 return 0;
3474 } else {
3475 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3476
3477 /* The Gen12 CCS aux surface is represented with only one layer. */
3478 const struct isl_extent4d *aux_logical_level0_px =
3479 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3480 &image->planes[plane].surface.isl.logical_level0_px :
3481 &image->planes[plane].aux_surface.isl.logical_level0_px;
3482
3483 return MAX2(aux_logical_level0_px->array_len,
3484 aux_logical_level0_px->depth >> miplevel);
3485 }
3486 }
3487
3488 static inline struct anv_address
3489 anv_image_get_clear_color_addr(const struct anv_device *device,
3490 const struct anv_image *image,
3491 VkImageAspectFlagBits aspect)
3492 {
3493 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3494
3495 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3496 return anv_address_add(image->planes[plane].address,
3497 image->planes[plane].fast_clear_state_offset);
3498 }
3499
3500 static inline struct anv_address
3501 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3502 const struct anv_image *image,
3503 VkImageAspectFlagBits aspect)
3504 {
3505 struct anv_address addr =
3506 anv_image_get_clear_color_addr(device, image, aspect);
3507
3508 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3509 device->isl_dev.ss.clear_color_state_size :
3510 device->isl_dev.ss.clear_value_size;
3511 return anv_address_add(addr, clear_color_state_size);
3512 }
3513
3514 static inline struct anv_address
3515 anv_image_get_compression_state_addr(const struct anv_device *device,
3516 const struct anv_image *image,
3517 VkImageAspectFlagBits aspect,
3518 uint32_t level, uint32_t array_layer)
3519 {
3520 assert(level < anv_image_aux_levels(image, aspect));
3521 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3522 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3523 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3524
3525 struct anv_address addr =
3526 anv_image_get_fast_clear_type_addr(device, image, aspect);
3527 addr.offset += 4; /* Go past the fast clear type */
3528
3529 if (image->type == VK_IMAGE_TYPE_3D) {
3530 for (uint32_t l = 0; l < level; l++)
3531 addr.offset += anv_minify(image->extent.depth, l) * 4;
3532 } else {
3533 addr.offset += level * image->array_size * 4;
3534 }
3535 addr.offset += array_layer * 4;
3536
3537 assert(addr.offset <
3538 image->planes[plane].address.offset + image->planes[plane].size);
3539 return addr;
3540 }
3541
3542 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3543 static inline bool
3544 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3545 const struct anv_image *image)
3546 {
3547 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3548 return false;
3549
3550 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3551 * struct. There's documentation which suggests that this feature actually
3552 * reduces performance on BDW, but it has only been observed to help so
3553 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3554 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3555 */
3556 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3557 return false;
3558
3559 return image->samples == 1;
3560 }
3561
3562 static inline bool
3563 anv_image_plane_uses_aux_map(const struct anv_device *device,
3564 const struct anv_image *image,
3565 uint32_t plane)
3566 {
3567 return device->info.has_aux_map &&
3568 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3569 }
3570
3571 void
3572 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3573 const struct anv_image *image,
3574 VkImageAspectFlagBits aspect,
3575 enum isl_aux_usage aux_usage,
3576 uint32_t level,
3577 uint32_t base_layer,
3578 uint32_t layer_count);
3579
3580 void
3581 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3582 const struct anv_image *image,
3583 VkImageAspectFlagBits aspect,
3584 enum isl_aux_usage aux_usage,
3585 enum isl_format format, struct isl_swizzle swizzle,
3586 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3587 VkRect2D area, union isl_color_value clear_color);
3588 void
3589 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3590 const struct anv_image *image,
3591 VkImageAspectFlags aspects,
3592 enum isl_aux_usage depth_aux_usage,
3593 uint32_t level,
3594 uint32_t base_layer, uint32_t layer_count,
3595 VkRect2D area,
3596 float depth_value, uint8_t stencil_value);
3597 void
3598 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3599 const struct anv_image *src_image,
3600 enum isl_aux_usage src_aux_usage,
3601 uint32_t src_level, uint32_t src_base_layer,
3602 const struct anv_image *dst_image,
3603 enum isl_aux_usage dst_aux_usage,
3604 uint32_t dst_level, uint32_t dst_base_layer,
3605 VkImageAspectFlagBits aspect,
3606 uint32_t src_x, uint32_t src_y,
3607 uint32_t dst_x, uint32_t dst_y,
3608 uint32_t width, uint32_t height,
3609 uint32_t layer_count,
3610 enum blorp_filter filter);
3611 void
3612 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3613 const struct anv_image *image,
3614 VkImageAspectFlagBits aspect, uint32_t level,
3615 uint32_t base_layer, uint32_t layer_count,
3616 enum isl_aux_op hiz_op);
3617 void
3618 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3619 const struct anv_image *image,
3620 VkImageAspectFlags aspects,
3621 uint32_t level,
3622 uint32_t base_layer, uint32_t layer_count,
3623 VkRect2D area, uint8_t stencil_value);
3624 void
3625 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3626 const struct anv_image *image,
3627 enum isl_format format,
3628 VkImageAspectFlagBits aspect,
3629 uint32_t base_layer, uint32_t layer_count,
3630 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3631 bool predicate);
3632 void
3633 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3634 const struct anv_image *image,
3635 enum isl_format format,
3636 VkImageAspectFlagBits aspect, uint32_t level,
3637 uint32_t base_layer, uint32_t layer_count,
3638 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3639 bool predicate);
3640
3641 void
3642 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3643 const struct anv_image *image,
3644 VkImageAspectFlagBits aspect,
3645 uint32_t base_level, uint32_t level_count,
3646 uint32_t base_layer, uint32_t layer_count);
3647
3648 enum isl_aux_usage
3649 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3650 const struct anv_image *image,
3651 const VkImageAspectFlagBits aspect,
3652 const VkImageLayout layout);
3653
3654 enum anv_fast_clear_type
3655 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3656 const struct anv_image * const image,
3657 const VkImageAspectFlagBits aspect,
3658 const VkImageLayout layout);
3659
3660 /* This is defined as a macro so that it works for both
3661 * VkImageSubresourceRange and VkImageSubresourceLayers
3662 */
3663 #define anv_get_layerCount(_image, _range) \
3664 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3665 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3666
3667 static inline uint32_t
3668 anv_get_levelCount(const struct anv_image *image,
3669 const VkImageSubresourceRange *range)
3670 {
3671 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3672 image->levels - range->baseMipLevel : range->levelCount;
3673 }
3674
3675 static inline VkImageAspectFlags
3676 anv_image_expand_aspects(const struct anv_image *image,
3677 VkImageAspectFlags aspects)
3678 {
3679 /* If the underlying image has color plane aspects and
3680 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3681 * the underlying image. */
3682 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3683 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3684 return image->aspects;
3685
3686 return aspects;
3687 }
3688
3689 static inline bool
3690 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3691 VkImageAspectFlags aspects2)
3692 {
3693 if (aspects1 == aspects2)
3694 return true;
3695
3696 /* Only 1 color aspects are compatibles. */
3697 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3698 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3699 util_bitcount(aspects1) == util_bitcount(aspects2))
3700 return true;
3701
3702 return false;
3703 }
3704
3705 struct anv_image_view {
3706 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3707
3708 VkImageAspectFlags aspect_mask;
3709 VkFormat vk_format;
3710 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3711
3712 unsigned n_planes;
3713 struct {
3714 uint32_t image_plane;
3715
3716 struct isl_view isl;
3717
3718 /**
3719 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3720 * image layout of SHADER_READ_ONLY_OPTIMAL or
3721 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3722 */
3723 struct anv_surface_state optimal_sampler_surface_state;
3724
3725 /**
3726 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3727 * image layout of GENERAL.
3728 */
3729 struct anv_surface_state general_sampler_surface_state;
3730
3731 /**
3732 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3733 * states for write-only and readable, using the real format for
3734 * write-only and the lowered format for readable.
3735 */
3736 struct anv_surface_state storage_surface_state;
3737 struct anv_surface_state writeonly_storage_surface_state;
3738
3739 struct brw_image_param storage_image_param;
3740 } planes[3];
3741 };
3742
3743 enum anv_image_view_state_flags {
3744 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3745 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3746 };
3747
3748 void anv_image_fill_surface_state(struct anv_device *device,
3749 const struct anv_image *image,
3750 VkImageAspectFlagBits aspect,
3751 const struct isl_view *view,
3752 isl_surf_usage_flags_t view_usage,
3753 enum isl_aux_usage aux_usage,
3754 const union isl_color_value *clear_color,
3755 enum anv_image_view_state_flags flags,
3756 struct anv_surface_state *state_inout,
3757 struct brw_image_param *image_param_out);
3758
3759 struct anv_image_create_info {
3760 const VkImageCreateInfo *vk_info;
3761
3762 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3763 isl_tiling_flags_t isl_tiling_flags;
3764
3765 /** These flags will be added to any derived from VkImageCreateInfo. */
3766 isl_surf_usage_flags_t isl_extra_usage_flags;
3767
3768 uint32_t stride;
3769 bool external_format;
3770 };
3771
3772 VkResult anv_image_create(VkDevice _device,
3773 const struct anv_image_create_info *info,
3774 const VkAllocationCallbacks* alloc,
3775 VkImage *pImage);
3776
3777 const struct anv_surface *
3778 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3779 VkImageAspectFlags aspect_mask);
3780
3781 enum isl_format
3782 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3783
3784 static inline struct VkExtent3D
3785 anv_sanitize_image_extent(const VkImageType imageType,
3786 const struct VkExtent3D imageExtent)
3787 {
3788 switch (imageType) {
3789 case VK_IMAGE_TYPE_1D:
3790 return (VkExtent3D) { imageExtent.width, 1, 1 };
3791 case VK_IMAGE_TYPE_2D:
3792 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3793 case VK_IMAGE_TYPE_3D:
3794 return imageExtent;
3795 default:
3796 unreachable("invalid image type");
3797 }
3798 }
3799
3800 static inline struct VkOffset3D
3801 anv_sanitize_image_offset(const VkImageType imageType,
3802 const struct VkOffset3D imageOffset)
3803 {
3804 switch (imageType) {
3805 case VK_IMAGE_TYPE_1D:
3806 return (VkOffset3D) { imageOffset.x, 0, 0 };
3807 case VK_IMAGE_TYPE_2D:
3808 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3809 case VK_IMAGE_TYPE_3D:
3810 return imageOffset;
3811 default:
3812 unreachable("invalid image type");
3813 }
3814 }
3815
3816 VkFormatFeatureFlags
3817 anv_get_image_format_features(const struct gen_device_info *devinfo,
3818 VkFormat vk_format,
3819 const struct anv_format *anv_format,
3820 VkImageTiling vk_tiling);
3821
3822 void anv_fill_buffer_surface_state(struct anv_device *device,
3823 struct anv_state state,
3824 enum isl_format format,
3825 struct anv_address address,
3826 uint32_t range, uint32_t stride);
3827
3828 static inline void
3829 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3830 const struct anv_attachment_state *att_state,
3831 const struct anv_image_view *iview)
3832 {
3833 const struct isl_format_layout *view_fmtl =
3834 isl_format_get_layout(iview->planes[0].isl.format);
3835
3836 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3837 if (view_fmtl->channels.c.bits) \
3838 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3839
3840 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3841 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3842 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3843 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3844
3845 #undef COPY_CLEAR_COLOR_CHANNEL
3846 }
3847
3848
3849 struct anv_ycbcr_conversion {
3850 const struct anv_format * format;
3851 VkSamplerYcbcrModelConversion ycbcr_model;
3852 VkSamplerYcbcrRange ycbcr_range;
3853 VkComponentSwizzle mapping[4];
3854 VkChromaLocation chroma_offsets[2];
3855 VkFilter chroma_filter;
3856 bool chroma_reconstruction;
3857 };
3858
3859 struct anv_sampler {
3860 uint32_t state[3][4];
3861 uint32_t n_planes;
3862 struct anv_ycbcr_conversion *conversion;
3863
3864 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3865 * and with a 32-byte stride for use as bindless samplers.
3866 */
3867 struct anv_state bindless_state;
3868 };
3869
3870 struct anv_framebuffer {
3871 uint32_t width;
3872 uint32_t height;
3873 uint32_t layers;
3874
3875 uint32_t attachment_count;
3876 struct anv_image_view * attachments[0];
3877 };
3878
3879 struct anv_subpass_attachment {
3880 VkImageUsageFlagBits usage;
3881 uint32_t attachment;
3882 VkImageLayout layout;
3883
3884 /* Used only with attachment containing stencil data. */
3885 VkImageLayout stencil_layout;
3886 };
3887
3888 struct anv_subpass {
3889 uint32_t attachment_count;
3890
3891 /**
3892 * A pointer to all attachment references used in this subpass.
3893 * Only valid if ::attachment_count > 0.
3894 */
3895 struct anv_subpass_attachment * attachments;
3896 uint32_t input_count;
3897 struct anv_subpass_attachment * input_attachments;
3898 uint32_t color_count;
3899 struct anv_subpass_attachment * color_attachments;
3900 struct anv_subpass_attachment * resolve_attachments;
3901
3902 struct anv_subpass_attachment * depth_stencil_attachment;
3903 struct anv_subpass_attachment * ds_resolve_attachment;
3904 VkResolveModeFlagBitsKHR depth_resolve_mode;
3905 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3906
3907 uint32_t view_mask;
3908
3909 /** Subpass has a depth/stencil self-dependency */
3910 bool has_ds_self_dep;
3911
3912 /** Subpass has at least one color resolve attachment */
3913 bool has_color_resolve;
3914 };
3915
3916 static inline unsigned
3917 anv_subpass_view_count(const struct anv_subpass *subpass)
3918 {
3919 return MAX2(1, util_bitcount(subpass->view_mask));
3920 }
3921
3922 struct anv_render_pass_attachment {
3923 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3924 * its members individually.
3925 */
3926 VkFormat format;
3927 uint32_t samples;
3928 VkImageUsageFlags usage;
3929 VkAttachmentLoadOp load_op;
3930 VkAttachmentStoreOp store_op;
3931 VkAttachmentLoadOp stencil_load_op;
3932 VkImageLayout initial_layout;
3933 VkImageLayout final_layout;
3934 VkImageLayout first_subpass_layout;
3935
3936 VkImageLayout stencil_initial_layout;
3937 VkImageLayout stencil_final_layout;
3938
3939 /* The subpass id in which the attachment will be used last. */
3940 uint32_t last_subpass_idx;
3941 };
3942
3943 struct anv_render_pass {
3944 uint32_t attachment_count;
3945 uint32_t subpass_count;
3946 /* An array of subpass_count+1 flushes, one per subpass boundary */
3947 enum anv_pipe_bits * subpass_flushes;
3948 struct anv_render_pass_attachment * attachments;
3949 struct anv_subpass subpasses[0];
3950 };
3951
3952 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3953
3954 struct anv_query_pool {
3955 VkQueryType type;
3956 VkQueryPipelineStatisticFlags pipeline_statistics;
3957 /** Stride between slots, in bytes */
3958 uint32_t stride;
3959 /** Number of slots in this query pool */
3960 uint32_t slots;
3961 struct anv_bo * bo;
3962 };
3963
3964 int anv_get_instance_entrypoint_index(const char *name);
3965 int anv_get_device_entrypoint_index(const char *name);
3966 int anv_get_physical_device_entrypoint_index(const char *name);
3967
3968 const char *anv_get_instance_entry_name(int index);
3969 const char *anv_get_physical_device_entry_name(int index);
3970 const char *anv_get_device_entry_name(int index);
3971
3972 bool
3973 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3974 const struct anv_instance_extension_table *instance);
3975 bool
3976 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3977 const struct anv_instance_extension_table *instance);
3978 bool
3979 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3980 const struct anv_instance_extension_table *instance,
3981 const struct anv_device_extension_table *device);
3982
3983 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3984 const char *name);
3985
3986 void anv_dump_image_to_ppm(struct anv_device *device,
3987 struct anv_image *image, unsigned miplevel,
3988 unsigned array_layer, VkImageAspectFlagBits aspect,
3989 const char *filename);
3990
3991 enum anv_dump_action {
3992 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3993 };
3994
3995 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3996 void anv_dump_finish(void);
3997
3998 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3999
4000 static inline uint32_t
4001 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4002 {
4003 /* This function must be called from within a subpass. */
4004 assert(cmd_state->pass && cmd_state->subpass);
4005
4006 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4007
4008 /* The id of this subpass shouldn't exceed the number of subpasses in this
4009 * render pass minus 1.
4010 */
4011 assert(subpass_id < cmd_state->pass->subpass_count);
4012 return subpass_id;
4013 }
4014
4015 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4016 void anv_device_perf_init(struct anv_device *device);
4017
4018 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4019 \
4020 static inline struct __anv_type * \
4021 __anv_type ## _from_handle(__VkType _handle) \
4022 { \
4023 return (struct __anv_type *) _handle; \
4024 } \
4025 \
4026 static inline __VkType \
4027 __anv_type ## _to_handle(struct __anv_type *_obj) \
4028 { \
4029 return (__VkType) _obj; \
4030 }
4031
4032 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4033 \
4034 static inline struct __anv_type * \
4035 __anv_type ## _from_handle(__VkType _handle) \
4036 { \
4037 return (struct __anv_type *)(uintptr_t) _handle; \
4038 } \
4039 \
4040 static inline __VkType \
4041 __anv_type ## _to_handle(struct __anv_type *_obj) \
4042 { \
4043 return (__VkType)(uintptr_t) _obj; \
4044 }
4045
4046 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4047 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4048
4049 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4050 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4051 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4052 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4053 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4054
4055 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4056 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4057 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4058 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4059 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4060 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4061 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4062 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4063 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4064 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4065 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4066 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4067 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4068 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4069 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4070 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4071 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4072 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4073 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4074 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4075 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4076 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4077 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4078
4079 /* Gen-specific function declarations */
4080 #ifdef genX
4081 # include "anv_genX.h"
4082 #else
4083 # define genX(x) gen7_##x
4084 # include "anv_genX.h"
4085 # undef genX
4086 # define genX(x) gen75_##x
4087 # include "anv_genX.h"
4088 # undef genX
4089 # define genX(x) gen8_##x
4090 # include "anv_genX.h"
4091 # undef genX
4092 # define genX(x) gen9_##x
4093 # include "anv_genX.h"
4094 # undef genX
4095 # define genX(x) gen10_##x
4096 # include "anv_genX.h"
4097 # undef genX
4098 # define genX(x) gen11_##x
4099 # include "anv_genX.h"
4100 # undef genX
4101 # define genX(x) gen12_##x
4102 # include "anv_genX.h"
4103 # undef genX
4104 #endif
4105
4106 #endif /* ANV_PRIVATE_H */