anv: add get_.*_prog_data for tesselation stages
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
40 #else
41 #define VG(x)
42 #endif
43
44 #include "common/gen_device_info.h"
45 #include "blorp/blorp.h"
46 #include "brw_compiler.h"
47 #include "util/macros.h"
48 #include "util/list.h"
49 #include "util/u_vector.h"
50 #include "util/vk_alloc.h"
51
52 /* Pre-declarations needed for WSI entrypoints */
53 struct wl_surface;
54 struct wl_display;
55 typedef struct xcb_connection_t xcb_connection_t;
56 typedef uint32_t xcb_visualid_t;
57 typedef uint32_t xcb_window_t;
58
59 struct gen_l3_config;
60
61 #include <vulkan/vulkan.h>
62 #include <vulkan/vulkan_intel.h>
63 #include <vulkan/vk_icd.h>
64
65 #include "anv_entrypoints.h"
66 #include "brw_context.h"
67 #include "isl/isl.h"
68
69 #include "wsi_common.h"
70
71 #ifdef __cplusplus
72 extern "C" {
73 #endif
74
75 #define MAX_VBS 32
76 #define MAX_SETS 8
77 #define MAX_RTS 8
78 #define MAX_VIEWPORTS 16
79 #define MAX_SCISSORS 16
80 #define MAX_PUSH_CONSTANTS_SIZE 128
81 #define MAX_DYNAMIC_BUFFERS 16
82 #define MAX_IMAGES 8
83 #define MAX_SAMPLES_LOG2 4 /* SKL supports 16 samples */
84
85 #define anv_noreturn __attribute__((__noreturn__))
86 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
87
88 static inline uint32_t
89 align_down_npot_u32(uint32_t v, uint32_t a)
90 {
91 return v - (v % a);
92 }
93
94 static inline uint32_t
95 align_u32(uint32_t v, uint32_t a)
96 {
97 assert(a != 0 && a == (a & -a));
98 return (v + a - 1) & ~(a - 1);
99 }
100
101 static inline uint64_t
102 align_u64(uint64_t v, uint64_t a)
103 {
104 assert(a != 0 && a == (a & -a));
105 return (v + a - 1) & ~(a - 1);
106 }
107
108 static inline int32_t
109 align_i32(int32_t v, int32_t a)
110 {
111 assert(a != 0 && a == (a & -a));
112 return (v + a - 1) & ~(a - 1);
113 }
114
115 /** Alignment must be a power of 2. */
116 static inline bool
117 anv_is_aligned(uintmax_t n, uintmax_t a)
118 {
119 assert(a == (a & -a));
120 return (n & (a - 1)) == 0;
121 }
122
123 static inline uint32_t
124 anv_minify(uint32_t n, uint32_t levels)
125 {
126 if (unlikely(n == 0))
127 return 0;
128 else
129 return MAX2(n >> levels, 1);
130 }
131
132 static inline float
133 anv_clamp_f(float f, float min, float max)
134 {
135 assert(min < max);
136
137 if (f > max)
138 return max;
139 else if (f < min)
140 return min;
141 else
142 return f;
143 }
144
145 static inline bool
146 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
147 {
148 if (*inout_mask & clear_mask) {
149 *inout_mask &= ~clear_mask;
150 return true;
151 } else {
152 return false;
153 }
154 }
155
156 static inline union isl_color_value
157 vk_to_isl_color(VkClearColorValue color)
158 {
159 return (union isl_color_value) {
160 .u32 = {
161 color.uint32[0],
162 color.uint32[1],
163 color.uint32[2],
164 color.uint32[3],
165 },
166 };
167 }
168
169 #define for_each_bit(b, dword) \
170 for (uint32_t __dword = (dword); \
171 (b) = __builtin_ffs(__dword) - 1, __dword; \
172 __dword &= ~(1 << (b)))
173
174 #define typed_memcpy(dest, src, count) ({ \
175 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
176 memcpy((dest), (src), (count) * sizeof(*(src))); \
177 })
178
179 /* Whenever we generate an error, pass it through this function. Useful for
180 * debugging, where we can break on it. Only call at error site, not when
181 * propagating errors. Might be useful to plug in a stack trace here.
182 */
183
184 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
185
186 #ifdef DEBUG
187 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
188 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
189 #else
190 #define vk_error(error) error
191 #define vk_errorf(error, format, ...) error
192 #endif
193
194 void __anv_finishme(const char *file, int line, const char *format, ...)
195 anv_printflike(3, 4);
196 void anv_loge(const char *format, ...) anv_printflike(1, 2);
197 void anv_loge_v(const char *format, va_list va);
198
199 /**
200 * Print a FINISHME message, including its source location.
201 */
202 #define anv_finishme(format, ...) \
203 do { \
204 static bool reported = false; \
205 if (!reported) { \
206 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
207 reported = true; \
208 } \
209 } while (0)
210
211 /* A non-fatal assert. Useful for debugging. */
212 #ifdef DEBUG
213 #define anv_assert(x) ({ \
214 if (unlikely(!(x))) \
215 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
216 })
217 #else
218 #define anv_assert(x)
219 #endif
220
221 /**
222 * If a block of code is annotated with anv_validate, then the block runs only
223 * in debug builds.
224 */
225 #ifdef DEBUG
226 #define anv_validate if (1)
227 #else
228 #define anv_validate if (0)
229 #endif
230
231 void anv_abortf(const char *format, ...) anv_noreturn anv_printflike(1, 2);
232 void anv_abortfv(const char *format, va_list va) anv_noreturn;
233
234 #define stub_return(v) \
235 do { \
236 anv_finishme("stub %s", __func__); \
237 return (v); \
238 } while (0)
239
240 #define stub() \
241 do { \
242 anv_finishme("stub %s", __func__); \
243 return; \
244 } while (0)
245
246 /**
247 * A dynamically growable, circular buffer. Elements are added at head and
248 * removed from tail. head and tail are free-running uint32_t indices and we
249 * only compute the modulo with size when accessing the array. This way,
250 * number of bytes in the queue is always head - tail, even in case of
251 * wraparound.
252 */
253
254 struct anv_bo {
255 uint32_t gem_handle;
256
257 /* Index into the current validation list. This is used by the
258 * validation list building alrogithm to track which buffers are already
259 * in the validation list so that we can ensure uniqueness.
260 */
261 uint32_t index;
262
263 /* Last known offset. This value is provided by the kernel when we
264 * execbuf and is used as the presumed offset for the next bunch of
265 * relocations.
266 */
267 uint64_t offset;
268
269 uint64_t size;
270 void *map;
271
272 /* We need to set the WRITE flag on winsys bos so GEM will know we're
273 * writing to them and synchronize uses on other rings (eg if the display
274 * server uses the blitter ring).
275 */
276 bool is_winsys_bo;
277 };
278
279 static inline void
280 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
281 {
282 bo->gem_handle = gem_handle;
283 bo->index = 0;
284 bo->offset = -1;
285 bo->size = size;
286 bo->map = NULL;
287 bo->is_winsys_bo = false;
288 }
289
290 /* Represents a lock-free linked list of "free" things. This is used by
291 * both the block pool and the state pools. Unfortunately, in order to
292 * solve the ABA problem, we can't use a single uint32_t head.
293 */
294 union anv_free_list {
295 struct {
296 int32_t offset;
297
298 /* A simple count that is incremented every time the head changes. */
299 uint32_t count;
300 };
301 uint64_t u64;
302 };
303
304 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
305
306 struct anv_block_state {
307 union {
308 struct {
309 uint32_t next;
310 uint32_t end;
311 };
312 uint64_t u64;
313 };
314 };
315
316 struct anv_block_pool {
317 struct anv_device *device;
318
319 struct anv_bo bo;
320
321 /* The offset from the start of the bo to the "center" of the block
322 * pool. Pointers to allocated blocks are given by
323 * bo.map + center_bo_offset + offsets.
324 */
325 uint32_t center_bo_offset;
326
327 /* Current memory map of the block pool. This pointer may or may not
328 * point to the actual beginning of the block pool memory. If
329 * anv_block_pool_alloc_back has ever been called, then this pointer
330 * will point to the "center" position of the buffer and all offsets
331 * (negative or positive) given out by the block pool alloc functions
332 * will be valid relative to this pointer.
333 *
334 * In particular, map == bo.map + center_offset
335 */
336 void *map;
337 int fd;
338
339 /**
340 * Array of mmaps and gem handles owned by the block pool, reclaimed when
341 * the block pool is destroyed.
342 */
343 struct u_vector mmap_cleanups;
344
345 uint32_t block_size;
346
347 union anv_free_list free_list;
348 struct anv_block_state state;
349
350 union anv_free_list back_free_list;
351 struct anv_block_state back_state;
352 };
353
354 /* Block pools are backed by a fixed-size 2GB memfd */
355 #define BLOCK_POOL_MEMFD_SIZE (1ull << 32)
356
357 /* The center of the block pool is also the middle of the memfd. This may
358 * change in the future if we decide differently for some reason.
359 */
360 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
361
362 static inline uint32_t
363 anv_block_pool_size(struct anv_block_pool *pool)
364 {
365 return pool->state.end + pool->back_state.end;
366 }
367
368 struct anv_state {
369 int32_t offset;
370 uint32_t alloc_size;
371 void *map;
372 };
373
374 struct anv_fixed_size_state_pool {
375 size_t state_size;
376 union anv_free_list free_list;
377 struct anv_block_state block;
378 };
379
380 #define ANV_MIN_STATE_SIZE_LOG2 6
381 #define ANV_MAX_STATE_SIZE_LOG2 17
382
383 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
384
385 struct anv_state_pool {
386 struct anv_block_pool *block_pool;
387 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
388 };
389
390 struct anv_state_stream_block;
391
392 struct anv_state_stream {
393 struct anv_block_pool *block_pool;
394
395 /* The current working block */
396 struct anv_state_stream_block *block;
397
398 /* Offset at which the current block starts */
399 uint32_t start;
400 /* Offset at which to allocate the next state */
401 uint32_t next;
402 /* Offset at which the current block ends */
403 uint32_t end;
404 };
405
406 #define CACHELINE_SIZE 64
407 #define CACHELINE_MASK 63
408
409 static inline void
410 anv_clflush_range(void *start, size_t size)
411 {
412 void *p = (void *) (((uintptr_t) start) & ~CACHELINE_MASK);
413 void *end = start + size;
414
415 __builtin_ia32_mfence();
416 while (p < end) {
417 __builtin_ia32_clflush(p);
418 p += CACHELINE_SIZE;
419 }
420 }
421
422 static void inline
423 anv_state_clflush(struct anv_state state)
424 {
425 anv_clflush_range(state.map, state.alloc_size);
426 }
427
428 VkResult anv_block_pool_init(struct anv_block_pool *pool,
429 struct anv_device *device, uint32_t block_size);
430 void anv_block_pool_finish(struct anv_block_pool *pool);
431 int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
432 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
433 void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
434 void anv_state_pool_init(struct anv_state_pool *pool,
435 struct anv_block_pool *block_pool);
436 void anv_state_pool_finish(struct anv_state_pool *pool);
437 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
438 size_t state_size, size_t alignment);
439 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
440 void anv_state_stream_init(struct anv_state_stream *stream,
441 struct anv_block_pool *block_pool);
442 void anv_state_stream_finish(struct anv_state_stream *stream);
443 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
444 uint32_t size, uint32_t alignment);
445
446 /**
447 * Implements a pool of re-usable BOs. The interface is identical to that
448 * of block_pool except that each block is its own BO.
449 */
450 struct anv_bo_pool {
451 struct anv_device *device;
452
453 void *free_list[16];
454 };
455
456 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
457 void anv_bo_pool_finish(struct anv_bo_pool *pool);
458 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
459 uint32_t size);
460 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
461
462 struct anv_scratch_bo {
463 bool exists;
464 struct anv_bo bo;
465 };
466
467 struct anv_scratch_pool {
468 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
469 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
470 };
471
472 void anv_scratch_pool_init(struct anv_device *device,
473 struct anv_scratch_pool *pool);
474 void anv_scratch_pool_finish(struct anv_device *device,
475 struct anv_scratch_pool *pool);
476 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
477 struct anv_scratch_pool *pool,
478 gl_shader_stage stage,
479 unsigned per_thread_scratch);
480
481 extern struct anv_dispatch_table dtable;
482
483 #define VK_ICD_WSI_PLATFORM_MAX 5
484
485 struct anv_physical_device {
486 VK_LOADER_DATA _loader_data;
487
488 struct anv_instance * instance;
489 uint32_t chipset_id;
490 char path[20];
491 const char * name;
492 struct gen_device_info info;
493 uint64_t aperture_size;
494 struct brw_compiler * compiler;
495 struct isl_device isl_dev;
496 int cmd_parser_version;
497
498 uint32_t eu_total;
499 uint32_t subslice_total;
500
501 uint8_t uuid[VK_UUID_SIZE];
502
503 struct wsi_device wsi_device;
504 };
505
506 struct anv_instance {
507 VK_LOADER_DATA _loader_data;
508
509 VkAllocationCallbacks alloc;
510
511 uint32_t apiVersion;
512 int physicalDeviceCount;
513 struct anv_physical_device physicalDevice;
514 };
515
516 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
517 void anv_finish_wsi(struct anv_physical_device *physical_device);
518
519 struct anv_queue {
520 VK_LOADER_DATA _loader_data;
521
522 struct anv_device * device;
523
524 struct anv_state_pool * pool;
525 };
526
527 struct anv_pipeline_cache {
528 struct anv_device * device;
529 pthread_mutex_t mutex;
530
531 struct hash_table * cache;
532 };
533
534 struct anv_pipeline_bind_map;
535
536 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
537 struct anv_device *device,
538 bool cache_enabled);
539 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
540
541 struct anv_shader_bin *
542 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
543 const void *key, uint32_t key_size);
544 struct anv_shader_bin *
545 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
546 const void *key_data, uint32_t key_size,
547 const void *kernel_data, uint32_t kernel_size,
548 const struct brw_stage_prog_data *prog_data,
549 uint32_t prog_data_size,
550 const struct anv_pipeline_bind_map *bind_map);
551
552 struct anv_device {
553 VK_LOADER_DATA _loader_data;
554
555 VkAllocationCallbacks alloc;
556
557 struct anv_instance * instance;
558 uint32_t chipset_id;
559 struct gen_device_info info;
560 struct isl_device isl_dev;
561 int context_id;
562 int fd;
563 bool can_chain_batches;
564 bool robust_buffer_access;
565
566 struct anv_bo_pool batch_bo_pool;
567
568 struct anv_block_pool dynamic_state_block_pool;
569 struct anv_state_pool dynamic_state_pool;
570
571 struct anv_block_pool instruction_block_pool;
572 struct anv_state_pool instruction_state_pool;
573
574 struct anv_block_pool surface_state_block_pool;
575 struct anv_state_pool surface_state_pool;
576
577 struct anv_bo workaround_bo;
578
579 struct anv_pipeline_cache blorp_shader_cache;
580 struct blorp_context blorp;
581
582 struct anv_state border_colors;
583
584 struct anv_queue queue;
585
586 struct anv_scratch_pool scratch_pool;
587
588 uint32_t default_mocs;
589
590 pthread_mutex_t mutex;
591 pthread_cond_t queue_submit;
592 };
593
594 void anv_device_init_blorp(struct anv_device *device);
595 void anv_device_finish_blorp(struct anv_device *device);
596
597 VkResult anv_device_execbuf(struct anv_device *device,
598 struct drm_i915_gem_execbuffer2 *execbuf,
599 struct anv_bo **execbuf_bos);
600
601 void* anv_gem_mmap(struct anv_device *device,
602 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
603 void anv_gem_munmap(void *p, uint64_t size);
604 uint32_t anv_gem_create(struct anv_device *device, size_t size);
605 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
606 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
607 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
608 int anv_gem_execbuffer(struct anv_device *device,
609 struct drm_i915_gem_execbuffer2 *execbuf);
610 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
611 uint32_t stride, uint32_t tiling);
612 int anv_gem_create_context(struct anv_device *device);
613 int anv_gem_destroy_context(struct anv_device *device, int context);
614 int anv_gem_get_param(int fd, uint32_t param);
615 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
616 int anv_gem_get_aperture(int fd, uint64_t *size);
617 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
618 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
619 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
620 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
621 uint32_t read_domains, uint32_t write_domain);
622
623 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
624
625 struct anv_reloc_list {
626 size_t num_relocs;
627 size_t array_length;
628 struct drm_i915_gem_relocation_entry * relocs;
629 struct anv_bo ** reloc_bos;
630 };
631
632 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
633 const VkAllocationCallbacks *alloc);
634 void anv_reloc_list_finish(struct anv_reloc_list *list,
635 const VkAllocationCallbacks *alloc);
636
637 uint64_t anv_reloc_list_add(struct anv_reloc_list *list,
638 const VkAllocationCallbacks *alloc,
639 uint32_t offset, struct anv_bo *target_bo,
640 uint32_t delta);
641
642 struct anv_batch_bo {
643 /* Link in the anv_cmd_buffer.owned_batch_bos list */
644 struct list_head link;
645
646 struct anv_bo bo;
647
648 /* Bytes actually consumed in this batch BO */
649 size_t length;
650
651 struct anv_reloc_list relocs;
652 };
653
654 struct anv_batch {
655 const VkAllocationCallbacks * alloc;
656
657 void * start;
658 void * end;
659 void * next;
660
661 struct anv_reloc_list * relocs;
662
663 /* This callback is called (with the associated user data) in the event
664 * that the batch runs out of space.
665 */
666 VkResult (*extend_cb)(struct anv_batch *, void *);
667 void * user_data;
668 };
669
670 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
671 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
672 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
673 void *location, struct anv_bo *bo, uint32_t offset);
674 VkResult anv_device_submit_simple_batch(struct anv_device *device,
675 struct anv_batch *batch);
676
677 struct anv_address {
678 struct anv_bo *bo;
679 uint32_t offset;
680 };
681
682 static inline uint64_t
683 _anv_combine_address(struct anv_batch *batch, void *location,
684 const struct anv_address address, uint32_t delta)
685 {
686 if (address.bo == NULL) {
687 return address.offset + delta;
688 } else {
689 assert(batch->start <= location && location < batch->end);
690
691 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
692 }
693 }
694
695 #define __gen_address_type struct anv_address
696 #define __gen_user_data struct anv_batch
697 #define __gen_combine_address _anv_combine_address
698
699 /* Wrapper macros needed to work around preprocessor argument issues. In
700 * particular, arguments don't get pre-evaluated if they are concatenated.
701 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
702 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
703 * We can work around this easily enough with these helpers.
704 */
705 #define __anv_cmd_length(cmd) cmd ## _length
706 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
707 #define __anv_cmd_header(cmd) cmd ## _header
708 #define __anv_cmd_pack(cmd) cmd ## _pack
709 #define __anv_reg_num(reg) reg ## _num
710
711 #define anv_pack_struct(dst, struc, ...) do { \
712 struct struc __template = { \
713 __VA_ARGS__ \
714 }; \
715 __anv_cmd_pack(struc)(NULL, dst, &__template); \
716 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
717 } while (0)
718
719 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
720 void *__dst = anv_batch_emit_dwords(batch, n); \
721 struct cmd __template = { \
722 __anv_cmd_header(cmd), \
723 .DWordLength = n - __anv_cmd_length_bias(cmd), \
724 __VA_ARGS__ \
725 }; \
726 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
727 __dst; \
728 })
729
730 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
731 do { \
732 uint32_t *dw; \
733 \
734 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
735 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
736 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
737 dw[i] = (dwords0)[i] | (dwords1)[i]; \
738 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
739 } while (0)
740
741 #define anv_batch_emit(batch, cmd, name) \
742 for (struct cmd name = { __anv_cmd_header(cmd) }, \
743 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
744 __builtin_expect(_dst != NULL, 1); \
745 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
746 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
747 _dst = NULL; \
748 }))
749
750 #define anv_state_pool_emit(pool, cmd, align, ...) ({ \
751 const uint32_t __size = __anv_cmd_length(cmd) * 4; \
752 struct anv_state __state = \
753 anv_state_pool_alloc((pool), __size, align); \
754 struct cmd __template = { \
755 __VA_ARGS__ \
756 }; \
757 __anv_cmd_pack(cmd)(NULL, __state.map, &__template); \
758 VG(VALGRIND_CHECK_MEM_IS_DEFINED(__state.map, __anv_cmd_length(cmd) * 4)); \
759 if (!(pool)->block_pool->device->info.has_llc) \
760 anv_state_clflush(__state); \
761 __state; \
762 })
763
764 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
765 .GraphicsDataTypeGFDT = 0, \
766 .LLCCacheabilityControlLLCCC = 0, \
767 .L3CacheabilityControlL3CC = 1, \
768 }
769
770 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
771 .LLCeLLCCacheabilityControlLLCCC = 0, \
772 .L3CacheabilityControlL3CC = 1, \
773 }
774
775 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
776 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
777 .TargetCache = L3DefertoPATforLLCeLLCselection, \
778 .AgeforQUADLRU = 0 \
779 }
780
781 /* Skylake: MOCS is now an index into an array of 62 different caching
782 * configurations programmed by the kernel.
783 */
784
785 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
786 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
787 .IndextoMOCSTables = 2 \
788 }
789
790 #define GEN9_MOCS_PTE { \
791 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
792 .IndextoMOCSTables = 1 \
793 }
794
795 struct anv_device_memory {
796 struct anv_bo bo;
797 uint32_t type_index;
798 VkDeviceSize map_size;
799 void * map;
800 };
801
802 /**
803 * Header for Vertex URB Entry (VUE)
804 */
805 struct anv_vue_header {
806 uint32_t Reserved;
807 uint32_t RTAIndex; /* RenderTargetArrayIndex */
808 uint32_t ViewportIndex;
809 float PointWidth;
810 };
811
812 struct anv_descriptor_set_binding_layout {
813 #ifndef NDEBUG
814 /* The type of the descriptors in this binding */
815 VkDescriptorType type;
816 #endif
817
818 /* Number of array elements in this binding */
819 uint16_t array_size;
820
821 /* Index into the flattend descriptor set */
822 uint16_t descriptor_index;
823
824 /* Index into the dynamic state array for a dynamic buffer */
825 int16_t dynamic_offset_index;
826
827 /* Index into the descriptor set buffer views */
828 int16_t buffer_index;
829
830 struct {
831 /* Index into the binding table for the associated surface */
832 int16_t surface_index;
833
834 /* Index into the sampler table for the associated sampler */
835 int16_t sampler_index;
836
837 /* Index into the image table for the associated image */
838 int16_t image_index;
839 } stage[MESA_SHADER_STAGES];
840
841 /* Immutable samplers (or NULL if no immutable samplers) */
842 struct anv_sampler **immutable_samplers;
843 };
844
845 struct anv_descriptor_set_layout {
846 /* Number of bindings in this descriptor set */
847 uint16_t binding_count;
848
849 /* Total size of the descriptor set with room for all array entries */
850 uint16_t size;
851
852 /* Shader stages affected by this descriptor set */
853 uint16_t shader_stages;
854
855 /* Number of buffers in this descriptor set */
856 uint16_t buffer_count;
857
858 /* Number of dynamic offsets used by this descriptor set */
859 uint16_t dynamic_offset_count;
860
861 /* Bindings in this descriptor set */
862 struct anv_descriptor_set_binding_layout binding[0];
863 };
864
865 struct anv_descriptor {
866 VkDescriptorType type;
867
868 union {
869 struct {
870 struct anv_image_view *image_view;
871 struct anv_sampler *sampler;
872 };
873
874 struct anv_buffer_view *buffer_view;
875 };
876 };
877
878 struct anv_descriptor_set {
879 const struct anv_descriptor_set_layout *layout;
880 uint32_t size;
881 uint32_t buffer_count;
882 struct anv_buffer_view *buffer_views;
883 struct anv_descriptor descriptors[0];
884 };
885
886 struct anv_descriptor_pool {
887 uint32_t size;
888 uint32_t next;
889 uint32_t free_list;
890
891 struct anv_state_stream surface_state_stream;
892 void *surface_state_free_list;
893
894 char data[0];
895 };
896
897 VkResult
898 anv_descriptor_set_create(struct anv_device *device,
899 struct anv_descriptor_pool *pool,
900 const struct anv_descriptor_set_layout *layout,
901 struct anv_descriptor_set **out_set);
902
903 void
904 anv_descriptor_set_destroy(struct anv_device *device,
905 struct anv_descriptor_pool *pool,
906 struct anv_descriptor_set *set);
907
908 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
909
910 struct anv_pipeline_binding {
911 /* The descriptor set this surface corresponds to. The special value of
912 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
913 * to a color attachment and not a regular descriptor.
914 */
915 uint8_t set;
916
917 /* Binding in the descriptor set */
918 uint8_t binding;
919
920 /* Index in the binding */
921 uint8_t index;
922
923 /* Input attachment index (relative to the subpass) */
924 uint8_t input_attachment_index;
925 };
926
927 struct anv_pipeline_layout {
928 struct {
929 struct anv_descriptor_set_layout *layout;
930 uint32_t dynamic_offset_start;
931 } set[MAX_SETS];
932
933 uint32_t num_sets;
934
935 struct {
936 bool has_dynamic_offsets;
937 } stage[MESA_SHADER_STAGES];
938
939 unsigned char sha1[20];
940 };
941
942 struct anv_buffer {
943 struct anv_device * device;
944 VkDeviceSize size;
945
946 VkBufferUsageFlags usage;
947
948 /* Set when bound */
949 struct anv_bo * bo;
950 VkDeviceSize offset;
951 };
952
953 enum anv_cmd_dirty_bits {
954 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
955 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
956 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
957 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
958 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
959 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
960 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
961 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
962 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
963 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
964 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
965 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
966 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
967 };
968 typedef uint32_t anv_cmd_dirty_mask_t;
969
970 enum anv_pipe_bits {
971 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
972 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
973 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
974 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
975 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
976 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
977 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
978 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
979 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
980 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
981 ANV_PIPE_CS_STALL_BIT = (1 << 20),
982
983 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
984 * a flush has happened but not a CS stall. The next time we do any sort
985 * of invalidation we need to insert a CS stall at that time. Otherwise,
986 * we would have to CS stall on every flush which could be bad.
987 */
988 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
989 };
990
991 #define ANV_PIPE_FLUSH_BITS ( \
992 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
993 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
994 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
995
996 #define ANV_PIPE_STALL_BITS ( \
997 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
998 ANV_PIPE_DEPTH_STALL_BIT | \
999 ANV_PIPE_CS_STALL_BIT)
1000
1001 #define ANV_PIPE_INVALIDATE_BITS ( \
1002 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1003 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1004 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1005 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1006 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1007 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1008
1009 struct anv_vertex_binding {
1010 struct anv_buffer * buffer;
1011 VkDeviceSize offset;
1012 };
1013
1014 struct anv_push_constants {
1015 /* Current allocated size of this push constants data structure.
1016 * Because a decent chunk of it may not be used (images on SKL, for
1017 * instance), we won't actually allocate the entire structure up-front.
1018 */
1019 uint32_t size;
1020
1021 /* Push constant data provided by the client through vkPushConstants */
1022 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1023
1024 /* Our hardware only provides zero-based vertex and instance id so, in
1025 * order to satisfy the vulkan requirements, we may have to push one or
1026 * both of these into the shader.
1027 */
1028 uint32_t base_vertex;
1029 uint32_t base_instance;
1030
1031 /* Offsets and ranges for dynamically bound buffers */
1032 struct {
1033 uint32_t offset;
1034 uint32_t range;
1035 } dynamic[MAX_DYNAMIC_BUFFERS];
1036
1037 /* Image data for image_load_store on pre-SKL */
1038 struct brw_image_param images[MAX_IMAGES];
1039 };
1040
1041 struct anv_dynamic_state {
1042 struct {
1043 uint32_t count;
1044 VkViewport viewports[MAX_VIEWPORTS];
1045 } viewport;
1046
1047 struct {
1048 uint32_t count;
1049 VkRect2D scissors[MAX_SCISSORS];
1050 } scissor;
1051
1052 float line_width;
1053
1054 struct {
1055 float bias;
1056 float clamp;
1057 float slope;
1058 } depth_bias;
1059
1060 float blend_constants[4];
1061
1062 struct {
1063 float min;
1064 float max;
1065 } depth_bounds;
1066
1067 struct {
1068 uint32_t front;
1069 uint32_t back;
1070 } stencil_compare_mask;
1071
1072 struct {
1073 uint32_t front;
1074 uint32_t back;
1075 } stencil_write_mask;
1076
1077 struct {
1078 uint32_t front;
1079 uint32_t back;
1080 } stencil_reference;
1081 };
1082
1083 extern const struct anv_dynamic_state default_dynamic_state;
1084
1085 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1086 const struct anv_dynamic_state *src,
1087 uint32_t copy_mask);
1088
1089 /**
1090 * Attachment state when recording a renderpass instance.
1091 *
1092 * The clear value is valid only if there exists a pending clear.
1093 */
1094 struct anv_attachment_state {
1095 enum isl_aux_usage aux_usage;
1096 enum isl_aux_usage input_aux_usage;
1097 struct anv_state color_rt_state;
1098 struct anv_state input_att_state;
1099
1100 VkImageAspectFlags pending_clear_aspects;
1101 bool fast_clear;
1102 VkClearValue clear_value;
1103 bool clear_color_is_zero_one;
1104 };
1105
1106 /** State required while building cmd buffer */
1107 struct anv_cmd_state {
1108 /* PIPELINE_SELECT.PipelineSelection */
1109 uint32_t current_pipeline;
1110 const struct gen_l3_config * current_l3_config;
1111 uint32_t vb_dirty;
1112 anv_cmd_dirty_mask_t dirty;
1113 anv_cmd_dirty_mask_t compute_dirty;
1114 enum anv_pipe_bits pending_pipe_bits;
1115 uint32_t num_workgroups_offset;
1116 struct anv_bo *num_workgroups_bo;
1117 VkShaderStageFlags descriptors_dirty;
1118 VkShaderStageFlags push_constants_dirty;
1119 uint32_t scratch_size;
1120 struct anv_pipeline * pipeline;
1121 struct anv_pipeline * compute_pipeline;
1122 struct anv_framebuffer * framebuffer;
1123 struct anv_render_pass * pass;
1124 struct anv_subpass * subpass;
1125 VkRect2D render_area;
1126 uint32_t restart_index;
1127 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1128 struct anv_descriptor_set * descriptors[MAX_SETS];
1129 VkShaderStageFlags push_constant_stages;
1130 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1131 struct anv_state binding_tables[MESA_SHADER_STAGES];
1132 struct anv_state samplers[MESA_SHADER_STAGES];
1133 struct anv_dynamic_state dynamic;
1134 bool need_query_wa;
1135
1136 /**
1137 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1138 * valid only when recording a render pass instance.
1139 */
1140 struct anv_attachment_state * attachments;
1141
1142 /**
1143 * Surface states for color render targets. These are stored in a single
1144 * flat array. For depth-stencil attachments, the surface state is simply
1145 * left blank.
1146 */
1147 struct anv_state render_pass_states;
1148
1149 /**
1150 * A null surface state of the right size to match the framebuffer. This
1151 * is one of the states in render_pass_states.
1152 */
1153 struct anv_state null_surface_state;
1154
1155 struct {
1156 struct anv_buffer * index_buffer;
1157 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1158 uint32_t index_offset;
1159 } gen7;
1160 };
1161
1162 struct anv_cmd_pool {
1163 VkAllocationCallbacks alloc;
1164 struct list_head cmd_buffers;
1165 };
1166
1167 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1168
1169 enum anv_cmd_buffer_exec_mode {
1170 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1171 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1172 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1173 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1174 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1175 };
1176
1177 struct anv_cmd_buffer {
1178 VK_LOADER_DATA _loader_data;
1179
1180 struct anv_device * device;
1181
1182 struct anv_cmd_pool * pool;
1183 struct list_head pool_link;
1184
1185 struct anv_batch batch;
1186
1187 /* Fields required for the actual chain of anv_batch_bo's.
1188 *
1189 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1190 */
1191 struct list_head batch_bos;
1192 enum anv_cmd_buffer_exec_mode exec_mode;
1193
1194 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1195 * referenced by this command buffer
1196 *
1197 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1198 */
1199 struct u_vector seen_bbos;
1200
1201 /* A vector of int32_t's for every block of binding tables.
1202 *
1203 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1204 */
1205 struct u_vector bt_blocks;
1206 uint32_t bt_next;
1207
1208 struct anv_reloc_list surface_relocs;
1209 /** Last seen surface state block pool center bo offset */
1210 uint32_t last_ss_pool_center;
1211
1212 /* Serial for tracking buffer completion */
1213 uint32_t serial;
1214
1215 /* Stream objects for storing temporary data */
1216 struct anv_state_stream surface_state_stream;
1217 struct anv_state_stream dynamic_state_stream;
1218
1219 VkCommandBufferUsageFlags usage_flags;
1220 VkCommandBufferLevel level;
1221
1222 struct anv_cmd_state state;
1223 };
1224
1225 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1226 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1227 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1228 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1229 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1230 struct anv_cmd_buffer *secondary);
1231 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1232 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
1233 struct anv_cmd_buffer *cmd_buffer);
1234
1235 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
1236
1237 VkResult
1238 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
1239 gl_shader_stage stage, uint32_t size);
1240 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
1241 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
1242 (offsetof(struct anv_push_constants, field) + \
1243 sizeof(cmd_buffer->state.push_constants[0]->field)))
1244
1245 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1246 const void *data, uint32_t size, uint32_t alignment);
1247 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1248 uint32_t *a, uint32_t *b,
1249 uint32_t dwords, uint32_t alignment);
1250
1251 struct anv_address
1252 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1253 struct anv_state
1254 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1255 uint32_t entries, uint32_t *state_offset);
1256 struct anv_state
1257 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1258 struct anv_state
1259 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1260 uint32_t size, uint32_t alignment);
1261
1262 VkResult
1263 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1264
1265 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1266 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
1267 bool depth_clamp_enable);
1268 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1269
1270 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1271 struct anv_render_pass *pass,
1272 struct anv_framebuffer *framebuffer,
1273 const VkClearValue *clear_values);
1274
1275 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1276
1277 struct anv_state
1278 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1279 gl_shader_stage stage);
1280 struct anv_state
1281 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1282
1283 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1284 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1285
1286 const struct anv_image_view *
1287 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1288
1289 struct anv_state
1290 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
1291 uint32_t num_entries,
1292 uint32_t *state_offset);
1293
1294 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1295
1296 enum anv_fence_state {
1297 /** Indicates that this is a new (or newly reset fence) */
1298 ANV_FENCE_STATE_RESET,
1299
1300 /** Indicates that this fence has been submitted to the GPU but is still
1301 * (as far as we know) in use by the GPU.
1302 */
1303 ANV_FENCE_STATE_SUBMITTED,
1304
1305 ANV_FENCE_STATE_SIGNALED,
1306 };
1307
1308 struct anv_fence {
1309 struct anv_bo bo;
1310 struct drm_i915_gem_execbuffer2 execbuf;
1311 struct drm_i915_gem_exec_object2 exec2_objects[1];
1312 enum anv_fence_state state;
1313 };
1314
1315 struct anv_event {
1316 uint64_t semaphore;
1317 struct anv_state state;
1318 };
1319
1320 struct anv_shader_module {
1321 unsigned char sha1[20];
1322 uint32_t size;
1323 char data[0];
1324 };
1325
1326 void anv_hash_shader(unsigned char *hash, const void *key, size_t key_size,
1327 struct anv_shader_module *module,
1328 const char *entrypoint,
1329 const struct anv_pipeline_layout *pipeline_layout,
1330 const VkSpecializationInfo *spec_info);
1331
1332 static inline gl_shader_stage
1333 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1334 {
1335 assert(__builtin_popcount(vk_stage) == 1);
1336 return ffs(vk_stage) - 1;
1337 }
1338
1339 static inline VkShaderStageFlagBits
1340 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1341 {
1342 return (1 << mesa_stage);
1343 }
1344
1345 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
1346
1347 #define anv_foreach_stage(stage, stage_bits) \
1348 for (gl_shader_stage stage, \
1349 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
1350 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1351 __tmp &= ~(1 << (stage)))
1352
1353 struct anv_pipeline_bind_map {
1354 uint32_t surface_count;
1355 uint32_t sampler_count;
1356 uint32_t image_count;
1357
1358 struct anv_pipeline_binding * surface_to_descriptor;
1359 struct anv_pipeline_binding * sampler_to_descriptor;
1360 };
1361
1362 struct anv_shader_bin_key {
1363 uint32_t size;
1364 uint8_t data[0];
1365 };
1366
1367 struct anv_shader_bin {
1368 uint32_t ref_cnt;
1369
1370 const struct anv_shader_bin_key *key;
1371
1372 struct anv_state kernel;
1373 uint32_t kernel_size;
1374
1375 const struct brw_stage_prog_data *prog_data;
1376 uint32_t prog_data_size;
1377
1378 struct anv_pipeline_bind_map bind_map;
1379
1380 /* Prog data follows, then params, then the key, all aligned to 8-bytes */
1381 };
1382
1383 struct anv_shader_bin *
1384 anv_shader_bin_create(struct anv_device *device,
1385 const void *key, uint32_t key_size,
1386 const void *kernel, uint32_t kernel_size,
1387 const struct brw_stage_prog_data *prog_data,
1388 uint32_t prog_data_size, const void *prog_data_param,
1389 const struct anv_pipeline_bind_map *bind_map);
1390
1391 void
1392 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
1393
1394 static inline void
1395 anv_shader_bin_ref(struct anv_shader_bin *shader)
1396 {
1397 assert(shader->ref_cnt >= 1);
1398 __sync_fetch_and_add(&shader->ref_cnt, 1);
1399 }
1400
1401 static inline void
1402 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
1403 {
1404 assert(shader->ref_cnt >= 1);
1405 if (__sync_fetch_and_add(&shader->ref_cnt, -1) == 1)
1406 anv_shader_bin_destroy(device, shader);
1407 }
1408
1409 struct anv_pipeline {
1410 struct anv_device * device;
1411 struct anv_batch batch;
1412 uint32_t batch_data[512];
1413 struct anv_reloc_list batch_relocs;
1414 uint32_t dynamic_state_mask;
1415 struct anv_dynamic_state dynamic_state;
1416
1417 struct anv_pipeline_layout * layout;
1418
1419 bool needs_data_cache;
1420
1421 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
1422
1423 struct {
1424 const struct gen_l3_config * l3_config;
1425 uint32_t total_size;
1426 } urb;
1427
1428 VkShaderStageFlags active_stages;
1429 struct anv_state blend_state;
1430
1431 uint32_t vb_used;
1432 uint32_t binding_stride[MAX_VBS];
1433 bool instancing_enable[MAX_VBS];
1434 bool primitive_restart;
1435 uint32_t topology;
1436
1437 uint32_t cs_right_mask;
1438
1439 bool depth_clamp_enable;
1440
1441 struct {
1442 uint32_t sf[7];
1443 uint32_t depth_stencil_state[3];
1444 } gen7;
1445
1446 struct {
1447 uint32_t sf[4];
1448 uint32_t raster[5];
1449 uint32_t wm_depth_stencil[3];
1450 } gen8;
1451
1452 struct {
1453 uint32_t wm_depth_stencil[4];
1454 } gen9;
1455
1456 uint32_t interface_descriptor_data[8];
1457 };
1458
1459 static inline bool
1460 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
1461 gl_shader_stage stage)
1462 {
1463 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
1464 }
1465
1466 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
1467 static inline const struct brw_##prefix##_prog_data * \
1468 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
1469 { \
1470 if (anv_pipeline_has_stage(pipeline, stage)) { \
1471 return (const struct brw_##prefix##_prog_data *) \
1472 pipeline->shaders[stage]->prog_data; \
1473 } else { \
1474 return NULL; \
1475 } \
1476 }
1477
1478 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
1479 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
1480 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
1481 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
1482 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
1483 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
1484
1485 VkResult
1486 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1487 struct anv_pipeline_cache *cache,
1488 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1489 const VkAllocationCallbacks *alloc);
1490
1491 VkResult
1492 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1493 struct anv_pipeline_cache *cache,
1494 const VkComputePipelineCreateInfo *info,
1495 struct anv_shader_module *module,
1496 const char *entrypoint,
1497 const VkSpecializationInfo *spec_info);
1498
1499 struct anv_format {
1500 enum isl_format isl_format:16;
1501 struct isl_swizzle swizzle;
1502 };
1503
1504 struct anv_format
1505 anv_get_format(const struct gen_device_info *devinfo, VkFormat format,
1506 VkImageAspectFlags aspect, VkImageTiling tiling);
1507
1508 static inline enum isl_format
1509 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
1510 VkImageAspectFlags aspect, VkImageTiling tiling)
1511 {
1512 return anv_get_format(devinfo, vk_format, aspect, tiling).isl_format;
1513 }
1514
1515 void
1516 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
1517
1518 /**
1519 * Subsurface of an anv_image.
1520 */
1521 struct anv_surface {
1522 /** Valid only if isl_surf::size > 0. */
1523 struct isl_surf isl;
1524
1525 /**
1526 * Offset from VkImage's base address, as bound by vkBindImageMemory().
1527 */
1528 uint32_t offset;
1529 };
1530
1531 struct anv_image {
1532 VkImageType type;
1533 /* The original VkFormat provided by the client. This may not match any
1534 * of the actual surface formats.
1535 */
1536 VkFormat vk_format;
1537 VkImageAspectFlags aspects;
1538 VkExtent3D extent;
1539 uint32_t levels;
1540 uint32_t array_size;
1541 uint32_t samples; /**< VkImageCreateInfo::samples */
1542 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1543 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1544
1545 VkDeviceSize size;
1546 uint32_t alignment;
1547
1548 /* Set when bound */
1549 struct anv_bo *bo;
1550 VkDeviceSize offset;
1551
1552 /**
1553 * Image subsurfaces
1554 *
1555 * For each foo, anv_image::foo_surface is valid if and only if
1556 * anv_image::aspects has a foo aspect.
1557 *
1558 * The hardware requires that the depth buffer and stencil buffer be
1559 * separate surfaces. From Vulkan's perspective, though, depth and stencil
1560 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
1561 * allocate the depth and stencil buffers as separate surfaces in the same
1562 * bo.
1563 */
1564 union {
1565 struct anv_surface color_surface;
1566
1567 struct {
1568 struct anv_surface depth_surface;
1569 struct anv_surface stencil_surface;
1570 };
1571 };
1572
1573 /** The aux usage for this surface when outside a render pass */
1574 enum isl_aux_usage aux_usage;
1575
1576 struct anv_surface aux_surface;
1577 };
1578
1579 static inline uint32_t
1580 anv_get_layerCount(const struct anv_image *image,
1581 const VkImageSubresourceRange *range)
1582 {
1583 return range->layerCount == VK_REMAINING_ARRAY_LAYERS ?
1584 image->array_size - range->baseArrayLayer : range->layerCount;
1585 }
1586
1587 static inline uint32_t
1588 anv_get_levelCount(const struct anv_image *image,
1589 const VkImageSubresourceRange *range)
1590 {
1591 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
1592 image->levels - range->baseMipLevel : range->levelCount;
1593 }
1594
1595
1596 struct anv_image_view {
1597 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
1598 struct anv_bo *bo;
1599 uint32_t offset; /**< Offset into bo. */
1600
1601 struct isl_view isl;
1602
1603 VkImageAspectFlags aspect_mask;
1604 VkFormat vk_format;
1605 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
1606
1607 /** RENDER_SURFACE_STATE when using image as a sampler surface. */
1608 struct anv_state sampler_surface_state;
1609
1610 /** RENDER_SURFACE_STATE when using image as a storage image. */
1611 struct anv_state storage_surface_state;
1612
1613 struct brw_image_param storage_image_param;
1614 };
1615
1616 struct anv_image_create_info {
1617 const VkImageCreateInfo *vk_info;
1618
1619 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
1620 isl_tiling_flags_t isl_tiling_flags;
1621
1622 uint32_t stride;
1623 };
1624
1625 VkResult anv_image_create(VkDevice _device,
1626 const struct anv_image_create_info *info,
1627 const VkAllocationCallbacks* alloc,
1628 VkImage *pImage);
1629
1630 const struct anv_surface *
1631 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
1632 VkImageAspectFlags aspect_mask);
1633
1634 static inline bool
1635 anv_image_has_hiz(const struct anv_image *image)
1636 {
1637 /* We must check the aspect because anv_image::aux_surface may be used for
1638 * any type of auxiliary surface, not just HiZ.
1639 */
1640 return (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
1641 image->aux_surface.isl.size > 0;
1642 }
1643
1644 struct anv_buffer_view {
1645 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1646 struct anv_bo *bo;
1647 uint32_t offset; /**< Offset into bo. */
1648 uint64_t range; /**< VkBufferViewCreateInfo::range */
1649
1650 struct anv_state surface_state;
1651 struct anv_state storage_surface_state;
1652
1653 struct brw_image_param storage_image_param;
1654 };
1655
1656 enum isl_format
1657 anv_isl_format_for_descriptor_type(VkDescriptorType type);
1658
1659 static inline struct VkExtent3D
1660 anv_sanitize_image_extent(const VkImageType imageType,
1661 const struct VkExtent3D imageExtent)
1662 {
1663 switch (imageType) {
1664 case VK_IMAGE_TYPE_1D:
1665 return (VkExtent3D) { imageExtent.width, 1, 1 };
1666 case VK_IMAGE_TYPE_2D:
1667 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
1668 case VK_IMAGE_TYPE_3D:
1669 return imageExtent;
1670 default:
1671 unreachable("invalid image type");
1672 }
1673 }
1674
1675 static inline struct VkOffset3D
1676 anv_sanitize_image_offset(const VkImageType imageType,
1677 const struct VkOffset3D imageOffset)
1678 {
1679 switch (imageType) {
1680 case VK_IMAGE_TYPE_1D:
1681 return (VkOffset3D) { imageOffset.x, 0, 0 };
1682 case VK_IMAGE_TYPE_2D:
1683 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
1684 case VK_IMAGE_TYPE_3D:
1685 return imageOffset;
1686 default:
1687 unreachable("invalid image type");
1688 }
1689 }
1690
1691
1692 void anv_fill_buffer_surface_state(struct anv_device *device,
1693 struct anv_state state,
1694 enum isl_format format,
1695 uint32_t offset, uint32_t range,
1696 uint32_t stride);
1697
1698 void anv_image_view_fill_image_param(struct anv_device *device,
1699 struct anv_image_view *view,
1700 struct brw_image_param *param);
1701 void anv_buffer_view_fill_image_param(struct anv_device *device,
1702 struct anv_buffer_view *view,
1703 struct brw_image_param *param);
1704
1705 struct anv_sampler {
1706 uint32_t state[4];
1707 };
1708
1709 struct anv_framebuffer {
1710 uint32_t width;
1711 uint32_t height;
1712 uint32_t layers;
1713
1714 uint32_t attachment_count;
1715 struct anv_image_view * attachments[0];
1716 };
1717
1718 struct anv_subpass {
1719 uint32_t input_count;
1720 uint32_t * input_attachments;
1721 uint32_t color_count;
1722 uint32_t * color_attachments;
1723 uint32_t * resolve_attachments;
1724 uint32_t depth_stencil_attachment;
1725
1726 /** Subpass has a depth/stencil self-dependency */
1727 bool has_ds_self_dep;
1728
1729 /** Subpass has at least one resolve attachment */
1730 bool has_resolve;
1731 };
1732
1733 enum anv_subpass_usage {
1734 ANV_SUBPASS_USAGE_DRAW = (1 << 0),
1735 ANV_SUBPASS_USAGE_INPUT = (1 << 1),
1736 ANV_SUBPASS_USAGE_RESOLVE_SRC = (1 << 2),
1737 ANV_SUBPASS_USAGE_RESOLVE_DST = (1 << 3),
1738 };
1739
1740 struct anv_render_pass_attachment {
1741 VkFormat format;
1742 uint32_t samples;
1743 VkImageUsageFlags usage;
1744 VkAttachmentLoadOp load_op;
1745 VkAttachmentStoreOp store_op;
1746 VkAttachmentLoadOp stencil_load_op;
1747
1748 /* An array, indexed by subpass id, of how the attachment will be used. */
1749 enum anv_subpass_usage * subpass_usage;
1750 };
1751
1752 struct anv_render_pass {
1753 uint32_t attachment_count;
1754 uint32_t subpass_count;
1755 uint32_t * subpass_attachments;
1756 enum anv_subpass_usage * subpass_usages;
1757 struct anv_render_pass_attachment * attachments;
1758 struct anv_subpass subpasses[0];
1759 };
1760
1761 struct anv_query_pool_slot {
1762 uint64_t begin;
1763 uint64_t end;
1764 uint64_t available;
1765 };
1766
1767 struct anv_query_pool {
1768 VkQueryType type;
1769 uint32_t slots;
1770 struct anv_bo bo;
1771 };
1772
1773 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
1774 const char *name);
1775
1776 void anv_dump_image_to_ppm(struct anv_device *device,
1777 struct anv_image *image, unsigned miplevel,
1778 unsigned array_layer, VkImageAspectFlagBits aspect,
1779 const char *filename);
1780
1781 enum anv_dump_action {
1782 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
1783 };
1784
1785 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
1786 void anv_dump_finish(void);
1787
1788 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
1789 struct anv_framebuffer *fb);
1790
1791 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
1792 \
1793 static inline struct __anv_type * \
1794 __anv_type ## _from_handle(__VkType _handle) \
1795 { \
1796 return (struct __anv_type *) _handle; \
1797 } \
1798 \
1799 static inline __VkType \
1800 __anv_type ## _to_handle(struct __anv_type *_obj) \
1801 { \
1802 return (__VkType) _obj; \
1803 }
1804
1805 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
1806 \
1807 static inline struct __anv_type * \
1808 __anv_type ## _from_handle(__VkType _handle) \
1809 { \
1810 return (struct __anv_type *)(uintptr_t) _handle; \
1811 } \
1812 \
1813 static inline __VkType \
1814 __anv_type ## _to_handle(struct __anv_type *_obj) \
1815 { \
1816 return (__VkType)(uintptr_t) _obj; \
1817 }
1818
1819 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
1820 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
1821
1822 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
1823 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
1824 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
1825 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
1826 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
1827
1828 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
1829 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
1830 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
1831 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
1832 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
1833 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
1834 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
1835 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
1836 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
1837 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
1838 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
1839 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
1840 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
1841 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
1842 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
1843 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
1844 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
1845 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
1846 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
1847
1848 #define ANV_DEFINE_STRUCT_CASTS(__anv_type, __VkType) \
1849 \
1850 static inline const __VkType * \
1851 __anv_type ## _to_ ## __VkType(const struct __anv_type *__anv_obj) \
1852 { \
1853 return (const __VkType *) __anv_obj; \
1854 }
1855
1856 /* Gen-specific function declarations */
1857 #ifdef genX
1858 # include "anv_genX.h"
1859 #else
1860 # define genX(x) gen7_##x
1861 # include "anv_genX.h"
1862 # undef genX
1863 # define genX(x) gen75_##x
1864 # include "anv_genX.h"
1865 # undef genX
1866 # define genX(x) gen8_##x
1867 # include "anv_genX.h"
1868 # undef genX
1869 # define genX(x) gen9_##x
1870 # include "anv_genX.h"
1871 # undef genX
1872 #endif
1873
1874 #ifdef __cplusplus
1875 }
1876 #endif
1877
1878 #endif /* ANV_PRIVATE_H */