anv: Drop anv_bo_init and anv_bo_init_new
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/macros.h"
53 #include "util/hash_table.h"
54 #include "util/list.h"
55 #include "util/set.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_buffer;
73 struct anv_buffer_view;
74 struct anv_image_view;
75 struct anv_instance;
76
77 struct gen_aux_map_context;
78 struct gen_l3_config;
79 struct gen_perf_config;
80
81 #include <vulkan/vulkan.h>
82 #include <vulkan/vulkan_intel.h>
83 #include <vulkan/vk_icd.h>
84
85 #include "anv_android.h"
86 #include "anv_entrypoints.h"
87 #include "anv_extensions.h"
88 #include "isl/isl.h"
89
90 #include "dev/gen_debug.h"
91 #include "common/intel_log.h"
92 #include "wsi_common.h"
93
94 /* anv Virtual Memory Layout
95 * =========================
96 *
97 * When the anv driver is determining the virtual graphics addresses of memory
98 * objects itself using the softpin mechanism, the following memory ranges
99 * will be used.
100 *
101 * Three special considerations to notice:
102 *
103 * (1) the dynamic state pool is located within the same 4 GiB as the low
104 * heap. This is to work around a VF cache issue described in a comment in
105 * anv_physical_device_init_heaps.
106 *
107 * (2) the binding table pool is located at lower addresses than the surface
108 * state pool, within a 4 GiB range. This allows surface state base addresses
109 * to cover both binding tables (16 bit offsets) and surface states (32 bit
110 * offsets).
111 *
112 * (3) the last 4 GiB of the address space is withheld from the high
113 * heap. Various hardware units will read past the end of an object for
114 * various reasons. This healthy margin prevents reads from wrapping around
115 * 48-bit addresses.
116 */
117 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
118 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
119 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
120 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
121 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
122 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
123 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
124 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
125 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
126 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
127 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
128
129 #define LOW_HEAP_SIZE \
130 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
131 #define DYNAMIC_STATE_POOL_SIZE \
132 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
133 #define BINDING_TABLE_POOL_SIZE \
134 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
135 #define SURFACE_STATE_POOL_SIZE \
136 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
137 #define INSTRUCTION_STATE_POOL_SIZE \
138 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
139
140 /* Allowing different clear colors requires us to perform a depth resolve at
141 * the end of certain render passes. This is because while slow clears store
142 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
143 * See the PRMs for examples describing when additional resolves would be
144 * necessary. To enable fast clears without requiring extra resolves, we set
145 * the clear value to a globally-defined one. We could allow different values
146 * if the user doesn't expect coherent data during or after a render passes
147 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
148 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
149 * 1.0f seems to be the only value used. The only application that doesn't set
150 * this value does so through the usage of an seemingly uninitialized clear
151 * value.
152 */
153 #define ANV_HZ_FC_VAL 1.0f
154
155 #define MAX_VBS 28
156 #define MAX_XFB_BUFFERS 4
157 #define MAX_XFB_STREAMS 4
158 #define MAX_SETS 8
159 #define MAX_RTS 8
160 #define MAX_VIEWPORTS 16
161 #define MAX_SCISSORS 16
162 #define MAX_PUSH_CONSTANTS_SIZE 128
163 #define MAX_DYNAMIC_BUFFERS 16
164 #define MAX_IMAGES 64
165 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
166 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
167 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
168
169 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
170 *
171 * "The surface state model is used when a Binding Table Index (specified
172 * in the message descriptor) of less than 240 is specified. In this model,
173 * the Binding Table Index is used to index into the binding table, and the
174 * binding table entry contains a pointer to the SURFACE_STATE."
175 *
176 * Binding table values above 240 are used for various things in the hardware
177 * such as stateless, stateless with incoherent cache, SLM, and bindless.
178 */
179 #define MAX_BINDING_TABLE_SIZE 240
180
181 /* The kernel relocation API has a limitation of a 32-bit delta value
182 * applied to the address before it is written which, in spite of it being
183 * unsigned, is treated as signed . Because of the way that this maps to
184 * the Vulkan API, we cannot handle an offset into a buffer that does not
185 * fit into a signed 32 bits. The only mechanism we have for dealing with
186 * this at the moment is to limit all VkDeviceMemory objects to a maximum
187 * of 2GB each. The Vulkan spec allows us to do this:
188 *
189 * "Some platforms may have a limit on the maximum size of a single
190 * allocation. For example, certain systems may fail to create
191 * allocations with a size greater than or equal to 4GB. Such a limit is
192 * implementation-dependent, and if such a failure occurs then the error
193 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
194 *
195 * We don't use vk_error here because it's not an error so much as an
196 * indication to the application that the allocation is too large.
197 */
198 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
199
200 #define ANV_SVGS_VB_INDEX MAX_VBS
201 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
202
203 /* We reserve this MI ALU register for the purpose of handling predication.
204 * Other code which uses the MI ALU should leave it alone.
205 */
206 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
207
208 /* For gen12 we set the streamout buffers using 4 separate commands
209 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
210 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
211 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
212 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
213 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
214 * 3DSTATE_SO_BUFFER_INDEX_0.
215 */
216 #define SO_BUFFER_INDEX_0_CMD 0x60
217 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
218
219 static inline uint32_t
220 align_down_npot_u32(uint32_t v, uint32_t a)
221 {
222 return v - (v % a);
223 }
224
225 static inline uint32_t
226 align_u32(uint32_t v, uint32_t a)
227 {
228 assert(a != 0 && a == (a & -a));
229 return (v + a - 1) & ~(a - 1);
230 }
231
232 static inline uint64_t
233 align_u64(uint64_t v, uint64_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline int32_t
240 align_i32(int32_t v, int32_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return (v + a - 1) & ~(a - 1);
244 }
245
246 /** Alignment must be a power of 2. */
247 static inline bool
248 anv_is_aligned(uintmax_t n, uintmax_t a)
249 {
250 assert(a == (a & -a));
251 return (n & (a - 1)) == 0;
252 }
253
254 static inline uint32_t
255 anv_minify(uint32_t n, uint32_t levels)
256 {
257 if (unlikely(n == 0))
258 return 0;
259 else
260 return MAX2(n >> levels, 1);
261 }
262
263 static inline float
264 anv_clamp_f(float f, float min, float max)
265 {
266 assert(min < max);
267
268 if (f > max)
269 return max;
270 else if (f < min)
271 return min;
272 else
273 return f;
274 }
275
276 static inline bool
277 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
278 {
279 if (*inout_mask & clear_mask) {
280 *inout_mask &= ~clear_mask;
281 return true;
282 } else {
283 return false;
284 }
285 }
286
287 static inline union isl_color_value
288 vk_to_isl_color(VkClearColorValue color)
289 {
290 return (union isl_color_value) {
291 .u32 = {
292 color.uint32[0],
293 color.uint32[1],
294 color.uint32[2],
295 color.uint32[3],
296 },
297 };
298 }
299
300 #define for_each_bit(b, dword) \
301 for (uint32_t __dword = (dword); \
302 (b) = __builtin_ffs(__dword) - 1, __dword; \
303 __dword &= ~(1 << (b)))
304
305 #define typed_memcpy(dest, src, count) ({ \
306 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
307 memcpy((dest), (src), (count) * sizeof(*(src))); \
308 })
309
310 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
311 * to be added here in order to utilize mapping in debug/error/perf macros.
312 */
313 #define REPORT_OBJECT_TYPE(o) \
314 __builtin_choose_expr ( \
315 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
316 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
317 __builtin_choose_expr ( \
318 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
319 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
320 __builtin_choose_expr ( \
321 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
322 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
323 __builtin_choose_expr ( \
324 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
325 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
326 __builtin_choose_expr ( \
327 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
328 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
329 __builtin_choose_expr ( \
330 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
331 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
332 __builtin_choose_expr ( \
333 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
334 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), void*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
407 /* The void expression results in a compile-time error \
408 when assigning the result to something. */ \
409 (void)0)))))))))))))))))))))))))))))))
410
411 /* Whenever we generate an error, pass it through this function. Useful for
412 * debugging, where we can break on it. Only call at error site, not when
413 * propagating errors. Might be useful to plug in a stack trace here.
414 */
415
416 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
417 VkDebugReportObjectTypeEXT type, VkResult error,
418 const char *file, int line, const char *format,
419 va_list args);
420
421 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
422 VkDebugReportObjectTypeEXT type, VkResult error,
423 const char *file, int line, const char *format, ...)
424 anv_printflike(7, 8);
425
426 #ifdef DEBUG
427 #define vk_error(error) __vk_errorf(NULL, NULL,\
428 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
429 error, __FILE__, __LINE__, NULL)
430 #define vk_errorv(instance, obj, error, format, args)\
431 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
432 __FILE__, __LINE__, format, args)
433 #define vk_errorf(instance, obj, error, format, ...)\
434 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
435 __FILE__, __LINE__, format, ## __VA_ARGS__)
436 #else
437 #define vk_error(error) error
438 #define vk_errorf(instance, obj, error, format, ...) error
439 #endif
440
441 /**
442 * Warn on ignored extension structs.
443 *
444 * The Vulkan spec requires us to ignore unsupported or unknown structs in
445 * a pNext chain. In debug mode, emitting warnings for ignored structs may
446 * help us discover structs that we should not have ignored.
447 *
448 *
449 * From the Vulkan 1.0.38 spec:
450 *
451 * Any component of the implementation (the loader, any enabled layers,
452 * and drivers) must skip over, without processing (other than reading the
453 * sType and pNext members) any chained structures with sType values not
454 * defined by extensions supported by that component.
455 */
456 #define anv_debug_ignored_stype(sType) \
457 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
458
459 void __anv_perf_warn(struct anv_instance *instance, const void *object,
460 VkDebugReportObjectTypeEXT type, const char *file,
461 int line, const char *format, ...)
462 anv_printflike(6, 7);
463 void anv_loge(const char *format, ...) anv_printflike(1, 2);
464 void anv_loge_v(const char *format, va_list va);
465
466 /**
467 * Print a FINISHME message, including its source location.
468 */
469 #define anv_finishme(format, ...) \
470 do { \
471 static bool reported = false; \
472 if (!reported) { \
473 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
474 ##__VA_ARGS__); \
475 reported = true; \
476 } \
477 } while (0)
478
479 /**
480 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
481 */
482 #define anv_perf_warn(instance, obj, format, ...) \
483 do { \
484 static bool reported = false; \
485 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
486 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
487 format, ##__VA_ARGS__); \
488 reported = true; \
489 } \
490 } while (0)
491
492 /* A non-fatal assert. Useful for debugging. */
493 #ifdef DEBUG
494 #define anv_assert(x) ({ \
495 if (unlikely(!(x))) \
496 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
497 })
498 #else
499 #define anv_assert(x)
500 #endif
501
502 /* A multi-pointer allocator
503 *
504 * When copying data structures from the user (such as a render pass), it's
505 * common to need to allocate data for a bunch of different things. Instead
506 * of doing several allocations and having to handle all of the error checking
507 * that entails, it can be easier to do a single allocation. This struct
508 * helps facilitate that. The intended usage looks like this:
509 *
510 * ANV_MULTIALLOC(ma)
511 * anv_multialloc_add(&ma, &main_ptr, 1);
512 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
513 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
514 *
515 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
516 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
517 */
518 struct anv_multialloc {
519 size_t size;
520 size_t align;
521
522 uint32_t ptr_count;
523 void **ptrs[8];
524 };
525
526 #define ANV_MULTIALLOC_INIT \
527 ((struct anv_multialloc) { 0, })
528
529 #define ANV_MULTIALLOC(_name) \
530 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
531
532 __attribute__((always_inline))
533 static inline void
534 _anv_multialloc_add(struct anv_multialloc *ma,
535 void **ptr, size_t size, size_t align)
536 {
537 size_t offset = align_u64(ma->size, align);
538 ma->size = offset + size;
539 ma->align = MAX2(ma->align, align);
540
541 /* Store the offset in the pointer. */
542 *ptr = (void *)(uintptr_t)offset;
543
544 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
545 ma->ptrs[ma->ptr_count++] = ptr;
546 }
547
548 #define anv_multialloc_add_size(_ma, _ptr, _size) \
549 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
550
551 #define anv_multialloc_add(_ma, _ptr, _count) \
552 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
553
554 __attribute__((always_inline))
555 static inline void *
556 anv_multialloc_alloc(struct anv_multialloc *ma,
557 const VkAllocationCallbacks *alloc,
558 VkSystemAllocationScope scope)
559 {
560 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
561 if (!ptr)
562 return NULL;
563
564 /* Fill out each of the pointers with their final value.
565 *
566 * for (uint32_t i = 0; i < ma->ptr_count; i++)
567 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
568 *
569 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
570 * constant, GCC is incapable of figuring this out and unrolling the loop
571 * so we have to give it a little help.
572 */
573 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
574 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
575 if ((_i) < ma->ptr_count) \
576 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
577 _ANV_MULTIALLOC_UPDATE_POINTER(0);
578 _ANV_MULTIALLOC_UPDATE_POINTER(1);
579 _ANV_MULTIALLOC_UPDATE_POINTER(2);
580 _ANV_MULTIALLOC_UPDATE_POINTER(3);
581 _ANV_MULTIALLOC_UPDATE_POINTER(4);
582 _ANV_MULTIALLOC_UPDATE_POINTER(5);
583 _ANV_MULTIALLOC_UPDATE_POINTER(6);
584 _ANV_MULTIALLOC_UPDATE_POINTER(7);
585 #undef _ANV_MULTIALLOC_UPDATE_POINTER
586
587 return ptr;
588 }
589
590 __attribute__((always_inline))
591 static inline void *
592 anv_multialloc_alloc2(struct anv_multialloc *ma,
593 const VkAllocationCallbacks *parent_alloc,
594 const VkAllocationCallbacks *alloc,
595 VkSystemAllocationScope scope)
596 {
597 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
598 }
599
600 struct anv_bo {
601 uint32_t gem_handle;
602
603 uint32_t refcount;
604
605 /* Index into the current validation list. This is used by the
606 * validation list building alrogithm to track which buffers are already
607 * in the validation list so that we can ensure uniqueness.
608 */
609 uint32_t index;
610
611 /* Index for use with util_sparse_array_free_list */
612 uint32_t free_index;
613
614 /* Last known offset. This value is provided by the kernel when we
615 * execbuf and is used as the presumed offset for the next bunch of
616 * relocations.
617 */
618 uint64_t offset;
619
620 uint64_t size;
621
622 /* Map for internally mapped BOs.
623 *
624 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
625 */
626 void *map;
627
628 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
629 uint32_t flags;
630
631 /** True if this BO may be shared with other processes */
632 bool is_external:1;
633
634 /** True if this BO is a wrapper
635 *
636 * When set to true, none of the fields in this BO are meaningful except
637 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
638 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
639 * is set in the physical device.
640 */
641 bool is_wrapper:1;
642
643 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
644 bool has_fixed_address:1;
645
646 /** True if this BO wraps a host pointer */
647 bool from_host_ptr:1;
648 };
649
650 static inline struct anv_bo *
651 anv_bo_unwrap(struct anv_bo *bo)
652 {
653 while (bo->is_wrapper)
654 bo = bo->map;
655 return bo;
656 }
657
658 /* Represents a lock-free linked list of "free" things. This is used by
659 * both the block pool and the state pools. Unfortunately, in order to
660 * solve the ABA problem, we can't use a single uint32_t head.
661 */
662 union anv_free_list {
663 struct {
664 uint32_t offset;
665
666 /* A simple count that is incremented every time the head changes. */
667 uint32_t count;
668 };
669 /* Make sure it's aligned to 64 bits. This will make atomic operations
670 * faster on 32 bit platforms.
671 */
672 uint64_t u64 __attribute__ ((aligned (8)));
673 };
674
675 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
676
677 struct anv_block_state {
678 union {
679 struct {
680 uint32_t next;
681 uint32_t end;
682 };
683 /* Make sure it's aligned to 64 bits. This will make atomic operations
684 * faster on 32 bit platforms.
685 */
686 uint64_t u64 __attribute__ ((aligned (8)));
687 };
688 };
689
690 #define anv_block_pool_foreach_bo(bo, pool) \
691 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
692 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
693 _pp_bo++)
694
695 #define ANV_MAX_BLOCK_POOL_BOS 20
696
697 struct anv_block_pool {
698 struct anv_device *device;
699 bool use_softpin;
700
701 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
702 * around the actual BO so that we grow the pool after the wrapper BO has
703 * been put in a relocation list. This is only used in the non-softpin
704 * case.
705 */
706 struct anv_bo wrapper_bo;
707
708 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
709 struct anv_bo *bo;
710 uint32_t nbos;
711
712 uint64_t size;
713
714 /* The address where the start of the pool is pinned. The various bos that
715 * are created as the pool grows will have addresses in the range
716 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
717 */
718 uint64_t start_address;
719
720 /* The offset from the start of the bo to the "center" of the block
721 * pool. Pointers to allocated blocks are given by
722 * bo.map + center_bo_offset + offsets.
723 */
724 uint32_t center_bo_offset;
725
726 /* Current memory map of the block pool. This pointer may or may not
727 * point to the actual beginning of the block pool memory. If
728 * anv_block_pool_alloc_back has ever been called, then this pointer
729 * will point to the "center" position of the buffer and all offsets
730 * (negative or positive) given out by the block pool alloc functions
731 * will be valid relative to this pointer.
732 *
733 * In particular, map == bo.map + center_offset
734 *
735 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
736 * since it will handle the softpin case as well, where this points to NULL.
737 */
738 void *map;
739 int fd;
740
741 /**
742 * Array of mmaps and gem handles owned by the block pool, reclaimed when
743 * the block pool is destroyed.
744 */
745 struct u_vector mmap_cleanups;
746
747 struct anv_block_state state;
748
749 struct anv_block_state back_state;
750 };
751
752 /* Block pools are backed by a fixed-size 1GB memfd */
753 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
754
755 /* The center of the block pool is also the middle of the memfd. This may
756 * change in the future if we decide differently for some reason.
757 */
758 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
759
760 static inline uint32_t
761 anv_block_pool_size(struct anv_block_pool *pool)
762 {
763 return pool->state.end + pool->back_state.end;
764 }
765
766 struct anv_state {
767 int32_t offset;
768 uint32_t alloc_size;
769 void *map;
770 uint32_t idx;
771 };
772
773 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
774
775 struct anv_fixed_size_state_pool {
776 union anv_free_list free_list;
777 struct anv_block_state block;
778 };
779
780 #define ANV_MIN_STATE_SIZE_LOG2 6
781 #define ANV_MAX_STATE_SIZE_LOG2 21
782
783 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
784
785 struct anv_free_entry {
786 uint32_t next;
787 struct anv_state state;
788 };
789
790 struct anv_state_table {
791 struct anv_device *device;
792 int fd;
793 struct anv_free_entry *map;
794 uint32_t size;
795 struct anv_block_state state;
796 struct u_vector cleanups;
797 };
798
799 struct anv_state_pool {
800 struct anv_block_pool block_pool;
801
802 struct anv_state_table table;
803
804 /* The size of blocks which will be allocated from the block pool */
805 uint32_t block_size;
806
807 /** Free list for "back" allocations */
808 union anv_free_list back_alloc_free_list;
809
810 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
811 };
812
813 struct anv_state_stream_block;
814
815 struct anv_state_stream {
816 struct anv_state_pool *state_pool;
817
818 /* The size of blocks to allocate from the state pool */
819 uint32_t block_size;
820
821 /* Current block we're allocating from */
822 struct anv_state block;
823
824 /* Offset into the current block at which to allocate the next state */
825 uint32_t next;
826
827 /* List of all blocks allocated from this pool */
828 struct anv_state_stream_block *block_list;
829 };
830
831 /* The block_pool functions exported for testing only. The block pool should
832 * only be used via a state pool (see below).
833 */
834 VkResult anv_block_pool_init(struct anv_block_pool *pool,
835 struct anv_device *device,
836 uint64_t start_address,
837 uint32_t initial_size);
838 void anv_block_pool_finish(struct anv_block_pool *pool);
839 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
840 uint32_t block_size, uint32_t *padding);
841 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
842 uint32_t block_size);
843 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
844
845 VkResult anv_state_pool_init(struct anv_state_pool *pool,
846 struct anv_device *device,
847 uint64_t start_address,
848 uint32_t block_size);
849 void anv_state_pool_finish(struct anv_state_pool *pool);
850 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
851 uint32_t state_size, uint32_t alignment);
852 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
853 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
854 void anv_state_stream_init(struct anv_state_stream *stream,
855 struct anv_state_pool *state_pool,
856 uint32_t block_size);
857 void anv_state_stream_finish(struct anv_state_stream *stream);
858 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
859 uint32_t size, uint32_t alignment);
860
861 VkResult anv_state_table_init(struct anv_state_table *table,
862 struct anv_device *device,
863 uint32_t initial_entries);
864 void anv_state_table_finish(struct anv_state_table *table);
865 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
866 uint32_t count);
867 void anv_free_list_push(union anv_free_list *list,
868 struct anv_state_table *table,
869 uint32_t idx, uint32_t count);
870 struct anv_state* anv_free_list_pop(union anv_free_list *list,
871 struct anv_state_table *table);
872
873
874 static inline struct anv_state *
875 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
876 {
877 return &table->map[idx].state;
878 }
879 /**
880 * Implements a pool of re-usable BOs. The interface is identical to that
881 * of block_pool except that each block is its own BO.
882 */
883 struct anv_bo_pool {
884 struct anv_device *device;
885
886 uint64_t bo_flags;
887
888 struct util_sparse_array_free_list free_list[16];
889 };
890
891 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
892 uint64_t bo_flags);
893 void anv_bo_pool_finish(struct anv_bo_pool *pool);
894 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
895 struct anv_bo **bo_out);
896 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
897
898 struct anv_scratch_pool {
899 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
900 struct anv_bo *bos[16][MESA_SHADER_STAGES];
901 };
902
903 void anv_scratch_pool_init(struct anv_device *device,
904 struct anv_scratch_pool *pool);
905 void anv_scratch_pool_finish(struct anv_device *device,
906 struct anv_scratch_pool *pool);
907 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
908 struct anv_scratch_pool *pool,
909 gl_shader_stage stage,
910 unsigned per_thread_scratch);
911
912 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
913 struct anv_bo_cache {
914 struct util_sparse_array bo_map;
915 pthread_mutex_t mutex;
916 };
917
918 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
919 void anv_bo_cache_finish(struct anv_bo_cache *cache);
920
921 struct anv_memory_type {
922 /* Standard bits passed on to the client */
923 VkMemoryPropertyFlags propertyFlags;
924 uint32_t heapIndex;
925
926 /* Driver-internal book-keeping */
927 VkBufferUsageFlags valid_buffer_usage;
928 };
929
930 struct anv_memory_heap {
931 /* Standard bits passed on to the client */
932 VkDeviceSize size;
933 VkMemoryHeapFlags flags;
934
935 /* Driver-internal book-keeping */
936 uint64_t vma_start;
937 uint64_t vma_size;
938 bool supports_48bit_addresses;
939 VkDeviceSize used;
940 };
941
942 struct anv_physical_device {
943 VK_LOADER_DATA _loader_data;
944
945 struct anv_instance * instance;
946 uint32_t chipset_id;
947 bool no_hw;
948 char path[20];
949 const char * name;
950 struct {
951 uint16_t domain;
952 uint8_t bus;
953 uint8_t device;
954 uint8_t function;
955 } pci_info;
956 struct gen_device_info info;
957 /** Amount of "GPU memory" we want to advertise
958 *
959 * Clearly, this value is bogus since Intel is a UMA architecture. On
960 * gen7 platforms, we are limited by GTT size unless we want to implement
961 * fine-grained tracking and GTT splitting. On Broadwell and above we are
962 * practically unlimited. However, we will never report more than 3/4 of
963 * the total system ram to try and avoid running out of RAM.
964 */
965 bool supports_48bit_addresses;
966 struct brw_compiler * compiler;
967 struct isl_device isl_dev;
968 struct gen_perf_config * perf;
969 int cmd_parser_version;
970 bool has_exec_async;
971 bool has_exec_capture;
972 bool has_exec_fence;
973 bool has_syncobj;
974 bool has_syncobj_wait;
975 bool has_context_priority;
976 bool use_softpin;
977 bool has_context_isolation;
978 bool has_mem_available;
979 bool always_use_bindless;
980
981 /** True if we can access buffers using A64 messages */
982 bool has_a64_buffer_access;
983 /** True if we can use bindless access for images */
984 bool has_bindless_images;
985 /** True if we can use bindless access for samplers */
986 bool has_bindless_samplers;
987
988 struct anv_device_extension_table supported_extensions;
989 struct anv_physical_device_dispatch_table dispatch;
990
991 uint32_t eu_total;
992 uint32_t subslice_total;
993
994 struct {
995 uint32_t type_count;
996 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
997 uint32_t heap_count;
998 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
999 } memory;
1000
1001 uint8_t driver_build_sha1[20];
1002 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1003 uint8_t driver_uuid[VK_UUID_SIZE];
1004 uint8_t device_uuid[VK_UUID_SIZE];
1005
1006 struct disk_cache * disk_cache;
1007
1008 struct wsi_device wsi_device;
1009 int local_fd;
1010 int master_fd;
1011 };
1012
1013 struct anv_app_info {
1014 const char* app_name;
1015 uint32_t app_version;
1016 const char* engine_name;
1017 uint32_t engine_version;
1018 uint32_t api_version;
1019 };
1020
1021 struct anv_instance {
1022 VK_LOADER_DATA _loader_data;
1023
1024 VkAllocationCallbacks alloc;
1025
1026 struct anv_app_info app_info;
1027
1028 struct anv_instance_extension_table enabled_extensions;
1029 struct anv_instance_dispatch_table dispatch;
1030 struct anv_device_dispatch_table device_dispatch;
1031
1032 int physicalDeviceCount;
1033 struct anv_physical_device physicalDevice;
1034
1035 bool pipeline_cache_enabled;
1036
1037 struct vk_debug_report_instance debug_report_callbacks;
1038
1039 struct driOptionCache dri_options;
1040 struct driOptionCache available_dri_options;
1041 };
1042
1043 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1044 void anv_finish_wsi(struct anv_physical_device *physical_device);
1045
1046 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1047 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1048 const char *name);
1049
1050 struct anv_queue {
1051 VK_LOADER_DATA _loader_data;
1052
1053 struct anv_device * device;
1054
1055 VkDeviceQueueCreateFlags flags;
1056 };
1057
1058 struct anv_pipeline_cache {
1059 struct anv_device * device;
1060 pthread_mutex_t mutex;
1061
1062 struct hash_table * nir_cache;
1063
1064 struct hash_table * cache;
1065 };
1066
1067 struct nir_xfb_info;
1068 struct anv_pipeline_bind_map;
1069
1070 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1071 struct anv_device *device,
1072 bool cache_enabled);
1073 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1074
1075 struct anv_shader_bin *
1076 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1077 const void *key, uint32_t key_size);
1078 struct anv_shader_bin *
1079 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1080 const void *key_data, uint32_t key_size,
1081 const void *kernel_data, uint32_t kernel_size,
1082 const void *constant_data,
1083 uint32_t constant_data_size,
1084 const struct brw_stage_prog_data *prog_data,
1085 uint32_t prog_data_size,
1086 const struct brw_compile_stats *stats,
1087 uint32_t num_stats,
1088 const struct nir_xfb_info *xfb_info,
1089 const struct anv_pipeline_bind_map *bind_map);
1090
1091 struct anv_shader_bin *
1092 anv_device_search_for_kernel(struct anv_device *device,
1093 struct anv_pipeline_cache *cache,
1094 const void *key_data, uint32_t key_size,
1095 bool *user_cache_bit);
1096
1097 struct anv_shader_bin *
1098 anv_device_upload_kernel(struct anv_device *device,
1099 struct anv_pipeline_cache *cache,
1100 const void *key_data, uint32_t key_size,
1101 const void *kernel_data, uint32_t kernel_size,
1102 const void *constant_data,
1103 uint32_t constant_data_size,
1104 const struct brw_stage_prog_data *prog_data,
1105 uint32_t prog_data_size,
1106 const struct brw_compile_stats *stats,
1107 uint32_t num_stats,
1108 const struct nir_xfb_info *xfb_info,
1109 const struct anv_pipeline_bind_map *bind_map);
1110
1111 struct nir_shader;
1112 struct nir_shader_compiler_options;
1113
1114 struct nir_shader *
1115 anv_device_search_for_nir(struct anv_device *device,
1116 struct anv_pipeline_cache *cache,
1117 const struct nir_shader_compiler_options *nir_options,
1118 unsigned char sha1_key[20],
1119 void *mem_ctx);
1120
1121 void
1122 anv_device_upload_nir(struct anv_device *device,
1123 struct anv_pipeline_cache *cache,
1124 const struct nir_shader *nir,
1125 unsigned char sha1_key[20]);
1126
1127 struct anv_device {
1128 VK_LOADER_DATA _loader_data;
1129
1130 VkAllocationCallbacks alloc;
1131
1132 struct anv_instance * instance;
1133 uint32_t chipset_id;
1134 bool no_hw;
1135 struct gen_device_info info;
1136 struct isl_device isl_dev;
1137 int context_id;
1138 int fd;
1139 bool can_chain_batches;
1140 bool robust_buffer_access;
1141 struct anv_device_extension_table enabled_extensions;
1142 struct anv_device_dispatch_table dispatch;
1143
1144 pthread_mutex_t vma_mutex;
1145 struct util_vma_heap vma_lo;
1146 struct util_vma_heap vma_hi;
1147 uint64_t vma_lo_available;
1148 uint64_t vma_hi_available;
1149
1150 /** List of all anv_device_memory objects */
1151 struct list_head memory_objects;
1152
1153 struct anv_bo_pool batch_bo_pool;
1154
1155 struct anv_bo_cache bo_cache;
1156
1157 struct anv_state_pool dynamic_state_pool;
1158 struct anv_state_pool instruction_state_pool;
1159 struct anv_state_pool binding_table_pool;
1160 struct anv_state_pool surface_state_pool;
1161
1162 struct anv_bo * workaround_bo;
1163 struct anv_bo * trivial_batch_bo;
1164 struct anv_bo * hiz_clear_bo;
1165
1166 struct anv_pipeline_cache default_pipeline_cache;
1167 struct blorp_context blorp;
1168
1169 struct anv_state border_colors;
1170
1171 struct anv_state slice_hash;
1172
1173 struct anv_queue queue;
1174
1175 struct anv_scratch_pool scratch_pool;
1176
1177 uint32_t default_mocs;
1178 uint32_t external_mocs;
1179
1180 pthread_mutex_t mutex;
1181 pthread_cond_t queue_submit;
1182 bool _lost;
1183
1184 struct gen_batch_decode_ctx decoder_ctx;
1185 /*
1186 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1187 * the cmd_buffer's list.
1188 */
1189 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1190
1191 int perf_fd; /* -1 if no opened */
1192 uint64_t perf_metric; /* 0 if unset */
1193
1194 struct gen_aux_map_context *aux_map_ctx;
1195 };
1196
1197 static inline struct anv_state_pool *
1198 anv_binding_table_pool(struct anv_device *device)
1199 {
1200 if (device->instance->physicalDevice.use_softpin)
1201 return &device->binding_table_pool;
1202 else
1203 return &device->surface_state_pool;
1204 }
1205
1206 static inline struct anv_state
1207 anv_binding_table_pool_alloc(struct anv_device *device) {
1208 if (device->instance->physicalDevice.use_softpin)
1209 return anv_state_pool_alloc(&device->binding_table_pool,
1210 device->binding_table_pool.block_size, 0);
1211 else
1212 return anv_state_pool_alloc_back(&device->surface_state_pool);
1213 }
1214
1215 static inline void
1216 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1217 anv_state_pool_free(anv_binding_table_pool(device), state);
1218 }
1219
1220 static inline uint32_t
1221 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1222 {
1223 if (bo->is_external)
1224 return device->external_mocs;
1225 else
1226 return device->default_mocs;
1227 }
1228
1229 void anv_device_init_blorp(struct anv_device *device);
1230 void anv_device_finish_blorp(struct anv_device *device);
1231
1232 VkResult _anv_device_set_lost(struct anv_device *device,
1233 const char *file, int line,
1234 const char *msg, ...)
1235 anv_printflike(4, 5);
1236 #define anv_device_set_lost(dev, ...) \
1237 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1238
1239 static inline bool
1240 anv_device_is_lost(struct anv_device *device)
1241 {
1242 return unlikely(device->_lost);
1243 }
1244
1245 VkResult anv_device_execbuf(struct anv_device *device,
1246 struct drm_i915_gem_execbuffer2 *execbuf,
1247 struct anv_bo **execbuf_bos);
1248 VkResult anv_device_query_status(struct anv_device *device);
1249
1250
1251 enum anv_bo_alloc_flags {
1252 /** Specifies that the BO must have a 32-bit address
1253 *
1254 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1255 */
1256 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1257
1258 /** Specifies that the BO may be shared externally */
1259 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1260
1261 /** Specifies that the BO should be mapped */
1262 ANV_BO_ALLOC_MAPPED = (1 << 2),
1263
1264 /** Specifies that the BO should be snooped so we get coherency */
1265 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1266
1267 /** Specifies that the BO should be captured in error states */
1268 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1269
1270 /** Specifies that the BO will have an address assigned by the caller */
1271 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1272
1273 /** Enables implicit synchronization on the BO
1274 *
1275 * This is the opposite of EXEC_OBJECT_ASYNC.
1276 */
1277 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1278
1279 /** Enables implicit synchronization on the BO
1280 *
1281 * This is equivalent to EXEC_OBJECT_WRITE.
1282 */
1283 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1284 };
1285
1286 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1287 enum anv_bo_alloc_flags alloc_flags,
1288 struct anv_bo **bo);
1289 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1290 void *host_ptr, uint32_t size,
1291 enum anv_bo_alloc_flags alloc_flags,
1292 struct anv_bo **bo_out);
1293 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1294 enum anv_bo_alloc_flags alloc_flags,
1295 struct anv_bo **bo);
1296 VkResult anv_device_export_bo(struct anv_device *device,
1297 struct anv_bo *bo, int *fd_out);
1298 void anv_device_release_bo(struct anv_device *device,
1299 struct anv_bo *bo);
1300
1301 static inline struct anv_bo *
1302 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1303 {
1304 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1305 }
1306
1307 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1308 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1309 int64_t timeout);
1310
1311 void* anv_gem_mmap(struct anv_device *device,
1312 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1313 void anv_gem_munmap(void *p, uint64_t size);
1314 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1315 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1316 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1317 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1318 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1319 int anv_gem_execbuffer(struct anv_device *device,
1320 struct drm_i915_gem_execbuffer2 *execbuf);
1321 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1322 uint32_t stride, uint32_t tiling);
1323 int anv_gem_create_context(struct anv_device *device);
1324 bool anv_gem_has_context_priority(int fd);
1325 int anv_gem_destroy_context(struct anv_device *device, int context);
1326 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1327 uint64_t value);
1328 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1329 uint64_t *value);
1330 int anv_gem_get_param(int fd, uint32_t param);
1331 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1332 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1333 int anv_gem_get_aperture(int fd, uint64_t *size);
1334 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1335 uint32_t *active, uint32_t *pending);
1336 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1337 int anv_gem_reg_read(struct anv_device *device,
1338 uint32_t offset, uint64_t *result);
1339 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1340 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1341 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1342 uint32_t read_domains, uint32_t write_domain);
1343 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1344 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1345 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1346 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1347 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1348 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1349 uint32_t handle);
1350 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1351 uint32_t handle, int fd);
1352 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1353 bool anv_gem_supports_syncobj_wait(int fd);
1354 int anv_gem_syncobj_wait(struct anv_device *device,
1355 uint32_t *handles, uint32_t num_handles,
1356 int64_t abs_timeout_ns, bool wait_all);
1357
1358 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1359 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1360
1361 struct anv_reloc_list {
1362 uint32_t num_relocs;
1363 uint32_t array_length;
1364 struct drm_i915_gem_relocation_entry * relocs;
1365 struct anv_bo ** reloc_bos;
1366 struct set * deps;
1367 };
1368
1369 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1370 const VkAllocationCallbacks *alloc);
1371 void anv_reloc_list_finish(struct anv_reloc_list *list,
1372 const VkAllocationCallbacks *alloc);
1373
1374 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1375 const VkAllocationCallbacks *alloc,
1376 uint32_t offset, struct anv_bo *target_bo,
1377 uint32_t delta, uint64_t *address_u64_out);
1378
1379 struct anv_batch_bo {
1380 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1381 struct list_head link;
1382
1383 struct anv_bo * bo;
1384
1385 /* Bytes actually consumed in this batch BO */
1386 uint32_t length;
1387
1388 struct anv_reloc_list relocs;
1389 };
1390
1391 struct anv_batch {
1392 const VkAllocationCallbacks * alloc;
1393
1394 void * start;
1395 void * end;
1396 void * next;
1397
1398 struct anv_reloc_list * relocs;
1399
1400 /* This callback is called (with the associated user data) in the event
1401 * that the batch runs out of space.
1402 */
1403 VkResult (*extend_cb)(struct anv_batch *, void *);
1404 void * user_data;
1405
1406 /**
1407 * Current error status of the command buffer. Used to track inconsistent
1408 * or incomplete command buffer states that are the consequence of run-time
1409 * errors such as out of memory scenarios. We want to track this in the
1410 * batch because the command buffer object is not visible to some parts
1411 * of the driver.
1412 */
1413 VkResult status;
1414 };
1415
1416 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1417 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1418 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1419 void *location, struct anv_bo *bo, uint32_t offset);
1420 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1421 struct anv_batch *batch);
1422
1423 static inline VkResult
1424 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1425 {
1426 assert(error != VK_SUCCESS);
1427 if (batch->status == VK_SUCCESS)
1428 batch->status = error;
1429 return batch->status;
1430 }
1431
1432 static inline bool
1433 anv_batch_has_error(struct anv_batch *batch)
1434 {
1435 return batch->status != VK_SUCCESS;
1436 }
1437
1438 struct anv_address {
1439 struct anv_bo *bo;
1440 uint32_t offset;
1441 };
1442
1443 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1444
1445 static inline bool
1446 anv_address_is_null(struct anv_address addr)
1447 {
1448 return addr.bo == NULL && addr.offset == 0;
1449 }
1450
1451 static inline uint64_t
1452 anv_address_physical(struct anv_address addr)
1453 {
1454 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1455 return gen_canonical_address(addr.bo->offset + addr.offset);
1456 else
1457 return gen_canonical_address(addr.offset);
1458 }
1459
1460 static inline struct anv_address
1461 anv_address_add(struct anv_address addr, uint64_t offset)
1462 {
1463 addr.offset += offset;
1464 return addr;
1465 }
1466
1467 static inline void
1468 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1469 {
1470 unsigned reloc_size = 0;
1471 if (device->info.gen >= 8) {
1472 reloc_size = sizeof(uint64_t);
1473 *(uint64_t *)p = gen_canonical_address(v);
1474 } else {
1475 reloc_size = sizeof(uint32_t);
1476 *(uint32_t *)p = v;
1477 }
1478
1479 if (flush && !device->info.has_llc)
1480 gen_flush_range(p, reloc_size);
1481 }
1482
1483 static inline uint64_t
1484 _anv_combine_address(struct anv_batch *batch, void *location,
1485 const struct anv_address address, uint32_t delta)
1486 {
1487 if (address.bo == NULL) {
1488 return address.offset + delta;
1489 } else {
1490 assert(batch->start <= location && location < batch->end);
1491
1492 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1493 }
1494 }
1495
1496 #define __gen_address_type struct anv_address
1497 #define __gen_user_data struct anv_batch
1498 #define __gen_combine_address _anv_combine_address
1499
1500 /* Wrapper macros needed to work around preprocessor argument issues. In
1501 * particular, arguments don't get pre-evaluated if they are concatenated.
1502 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1503 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1504 * We can work around this easily enough with these helpers.
1505 */
1506 #define __anv_cmd_length(cmd) cmd ## _length
1507 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1508 #define __anv_cmd_header(cmd) cmd ## _header
1509 #define __anv_cmd_pack(cmd) cmd ## _pack
1510 #define __anv_reg_num(reg) reg ## _num
1511
1512 #define anv_pack_struct(dst, struc, ...) do { \
1513 struct struc __template = { \
1514 __VA_ARGS__ \
1515 }; \
1516 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1517 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1518 } while (0)
1519
1520 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1521 void *__dst = anv_batch_emit_dwords(batch, n); \
1522 if (__dst) { \
1523 struct cmd __template = { \
1524 __anv_cmd_header(cmd), \
1525 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1526 __VA_ARGS__ \
1527 }; \
1528 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1529 } \
1530 __dst; \
1531 })
1532
1533 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1534 do { \
1535 uint32_t *dw; \
1536 \
1537 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1538 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1539 if (!dw) \
1540 break; \
1541 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1542 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1543 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1544 } while (0)
1545
1546 #define anv_batch_emit(batch, cmd, name) \
1547 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1548 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1549 __builtin_expect(_dst != NULL, 1); \
1550 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1551 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1552 _dst = NULL; \
1553 }))
1554
1555 /* MEMORY_OBJECT_CONTROL_STATE:
1556 * .GraphicsDataTypeGFDT = 0,
1557 * .LLCCacheabilityControlLLCCC = 0,
1558 * .L3CacheabilityControlL3CC = 1,
1559 */
1560 #define GEN7_MOCS 1
1561
1562 /* MEMORY_OBJECT_CONTROL_STATE:
1563 * .LLCeLLCCacheabilityControlLLCCC = 0,
1564 * .L3CacheabilityControlL3CC = 1,
1565 */
1566 #define GEN75_MOCS 1
1567
1568 /* MEMORY_OBJECT_CONTROL_STATE:
1569 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1570 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1571 * .AgeforQUADLRU = 0
1572 */
1573 #define GEN8_MOCS 0x78
1574
1575 /* MEMORY_OBJECT_CONTROL_STATE:
1576 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1577 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1578 * .AgeforQUADLRU = 0
1579 */
1580 #define GEN8_EXTERNAL_MOCS 0x18
1581
1582 /* Skylake: MOCS is now an index into an array of 62 different caching
1583 * configurations programmed by the kernel.
1584 */
1585
1586 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1587 #define GEN9_MOCS (2 << 1)
1588
1589 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1590 #define GEN9_EXTERNAL_MOCS (1 << 1)
1591
1592 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1593 #define GEN10_MOCS GEN9_MOCS
1594 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1595
1596 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1597 #define GEN11_MOCS GEN9_MOCS
1598 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1599
1600 /* TigerLake MOCS */
1601 #define GEN12_MOCS GEN9_MOCS
1602 /* TC=1/LLC Only, LeCC=1/Uncacheable, LRUM=0, L3CC=1/Uncacheable */
1603 #define GEN12_EXTERNAL_MOCS (3 << 1)
1604
1605 struct anv_device_memory {
1606 struct list_head link;
1607
1608 struct anv_bo * bo;
1609 struct anv_memory_type * type;
1610 VkDeviceSize map_size;
1611 void * map;
1612
1613 /* If set, we are holding reference to AHardwareBuffer
1614 * which we must release when memory is freed.
1615 */
1616 struct AHardwareBuffer * ahw;
1617
1618 /* If set, this memory comes from a host pointer. */
1619 void * host_ptr;
1620 };
1621
1622 /**
1623 * Header for Vertex URB Entry (VUE)
1624 */
1625 struct anv_vue_header {
1626 uint32_t Reserved;
1627 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1628 uint32_t ViewportIndex;
1629 float PointWidth;
1630 };
1631
1632 /** Struct representing a sampled image descriptor
1633 *
1634 * This descriptor layout is used for sampled images, bare sampler, and
1635 * combined image/sampler descriptors.
1636 */
1637 struct anv_sampled_image_descriptor {
1638 /** Bindless image handle
1639 *
1640 * This is expected to already be shifted such that the 20-bit
1641 * SURFACE_STATE table index is in the top 20 bits.
1642 */
1643 uint32_t image;
1644
1645 /** Bindless sampler handle
1646 *
1647 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1648 * to the dynamic state base address.
1649 */
1650 uint32_t sampler;
1651 };
1652
1653 struct anv_texture_swizzle_descriptor {
1654 /** Texture swizzle
1655 *
1656 * See also nir_intrinsic_channel_select_intel
1657 */
1658 uint8_t swizzle[4];
1659
1660 /** Unused padding to ensure the struct is a multiple of 64 bits */
1661 uint32_t _pad;
1662 };
1663
1664 /** Struct representing a storage image descriptor */
1665 struct anv_storage_image_descriptor {
1666 /** Bindless image handles
1667 *
1668 * These are expected to already be shifted such that the 20-bit
1669 * SURFACE_STATE table index is in the top 20 bits.
1670 */
1671 uint32_t read_write;
1672 uint32_t write_only;
1673 };
1674
1675 /** Struct representing a address/range descriptor
1676 *
1677 * The fields of this struct correspond directly to the data layout of
1678 * nir_address_format_64bit_bounded_global addresses. The last field is the
1679 * offset in the NIR address so it must be zero so that when you load the
1680 * descriptor you get a pointer to the start of the range.
1681 */
1682 struct anv_address_range_descriptor {
1683 uint64_t address;
1684 uint32_t range;
1685 uint32_t zero;
1686 };
1687
1688 enum anv_descriptor_data {
1689 /** The descriptor contains a BTI reference to a surface state */
1690 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1691 /** The descriptor contains a BTI reference to a sampler state */
1692 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1693 /** The descriptor contains an actual buffer view */
1694 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1695 /** The descriptor contains auxiliary image layout data */
1696 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1697 /** The descriptor contains auxiliary image layout data */
1698 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1699 /** anv_address_range_descriptor with a buffer address and range */
1700 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1701 /** Bindless surface handle */
1702 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1703 /** Storage image handles */
1704 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1705 /** Storage image handles */
1706 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1707 };
1708
1709 struct anv_descriptor_set_binding_layout {
1710 #ifndef NDEBUG
1711 /* The type of the descriptors in this binding */
1712 VkDescriptorType type;
1713 #endif
1714
1715 /* Flags provided when this binding was created */
1716 VkDescriptorBindingFlagsEXT flags;
1717
1718 /* Bitfield representing the type of data this descriptor contains */
1719 enum anv_descriptor_data data;
1720
1721 /* Maximum number of YCbCr texture/sampler planes */
1722 uint8_t max_plane_count;
1723
1724 /* Number of array elements in this binding (or size in bytes for inline
1725 * uniform data)
1726 */
1727 uint16_t array_size;
1728
1729 /* Index into the flattend descriptor set */
1730 uint16_t descriptor_index;
1731
1732 /* Index into the dynamic state array for a dynamic buffer */
1733 int16_t dynamic_offset_index;
1734
1735 /* Index into the descriptor set buffer views */
1736 int16_t buffer_view_index;
1737
1738 /* Offset into the descriptor buffer where this descriptor lives */
1739 uint32_t descriptor_offset;
1740
1741 /* Immutable samplers (or NULL if no immutable samplers) */
1742 struct anv_sampler **immutable_samplers;
1743 };
1744
1745 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1746
1747 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1748 VkDescriptorType type);
1749
1750 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1751 const struct anv_descriptor_set_binding_layout *binding,
1752 bool sampler);
1753
1754 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1755 const struct anv_descriptor_set_binding_layout *binding,
1756 bool sampler);
1757
1758 struct anv_descriptor_set_layout {
1759 /* Descriptor set layouts can be destroyed at almost any time */
1760 uint32_t ref_cnt;
1761
1762 /* Number of bindings in this descriptor set */
1763 uint16_t binding_count;
1764
1765 /* Total size of the descriptor set with room for all array entries */
1766 uint16_t size;
1767
1768 /* Shader stages affected by this descriptor set */
1769 uint16_t shader_stages;
1770
1771 /* Number of buffer views in this descriptor set */
1772 uint16_t buffer_view_count;
1773
1774 /* Number of dynamic offsets used by this descriptor set */
1775 uint16_t dynamic_offset_count;
1776
1777 /* Size of the descriptor buffer for this descriptor set */
1778 uint32_t descriptor_buffer_size;
1779
1780 /* Bindings in this descriptor set */
1781 struct anv_descriptor_set_binding_layout binding[0];
1782 };
1783
1784 static inline void
1785 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1786 {
1787 assert(layout && layout->ref_cnt >= 1);
1788 p_atomic_inc(&layout->ref_cnt);
1789 }
1790
1791 static inline void
1792 anv_descriptor_set_layout_unref(struct anv_device *device,
1793 struct anv_descriptor_set_layout *layout)
1794 {
1795 assert(layout && layout->ref_cnt >= 1);
1796 if (p_atomic_dec_zero(&layout->ref_cnt))
1797 vk_free(&device->alloc, layout);
1798 }
1799
1800 struct anv_descriptor {
1801 VkDescriptorType type;
1802
1803 union {
1804 struct {
1805 VkImageLayout layout;
1806 struct anv_image_view *image_view;
1807 struct anv_sampler *sampler;
1808 };
1809
1810 struct {
1811 struct anv_buffer *buffer;
1812 uint64_t offset;
1813 uint64_t range;
1814 };
1815
1816 struct anv_buffer_view *buffer_view;
1817 };
1818 };
1819
1820 struct anv_descriptor_set {
1821 struct anv_descriptor_pool *pool;
1822 struct anv_descriptor_set_layout *layout;
1823 uint32_t size;
1824
1825 /* State relative to anv_descriptor_pool::bo */
1826 struct anv_state desc_mem;
1827 /* Surface state for the descriptor buffer */
1828 struct anv_state desc_surface_state;
1829
1830 uint32_t buffer_view_count;
1831 struct anv_buffer_view *buffer_views;
1832
1833 /* Link to descriptor pool's desc_sets list . */
1834 struct list_head pool_link;
1835
1836 struct anv_descriptor descriptors[0];
1837 };
1838
1839 struct anv_buffer_view {
1840 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1841 uint64_t range; /**< VkBufferViewCreateInfo::range */
1842
1843 struct anv_address address;
1844
1845 struct anv_state surface_state;
1846 struct anv_state storage_surface_state;
1847 struct anv_state writeonly_storage_surface_state;
1848
1849 struct brw_image_param storage_image_param;
1850 };
1851
1852 struct anv_push_descriptor_set {
1853 struct anv_descriptor_set set;
1854
1855 /* Put this field right behind anv_descriptor_set so it fills up the
1856 * descriptors[0] field. */
1857 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1858
1859 /** True if the descriptor set buffer has been referenced by a draw or
1860 * dispatch command.
1861 */
1862 bool set_used_on_gpu;
1863
1864 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1865 };
1866
1867 struct anv_descriptor_pool {
1868 uint32_t size;
1869 uint32_t next;
1870 uint32_t free_list;
1871
1872 struct anv_bo *bo;
1873 struct util_vma_heap bo_heap;
1874
1875 struct anv_state_stream surface_state_stream;
1876 void *surface_state_free_list;
1877
1878 struct list_head desc_sets;
1879
1880 char data[0];
1881 };
1882
1883 enum anv_descriptor_template_entry_type {
1884 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1885 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1886 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1887 };
1888
1889 struct anv_descriptor_template_entry {
1890 /* The type of descriptor in this entry */
1891 VkDescriptorType type;
1892
1893 /* Binding in the descriptor set */
1894 uint32_t binding;
1895
1896 /* Offset at which to write into the descriptor set binding */
1897 uint32_t array_element;
1898
1899 /* Number of elements to write into the descriptor set binding */
1900 uint32_t array_count;
1901
1902 /* Offset into the user provided data */
1903 size_t offset;
1904
1905 /* Stride between elements into the user provided data */
1906 size_t stride;
1907 };
1908
1909 struct anv_descriptor_update_template {
1910 VkPipelineBindPoint bind_point;
1911
1912 /* The descriptor set this template corresponds to. This value is only
1913 * valid if the template was created with the templateType
1914 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1915 */
1916 uint8_t set;
1917
1918 /* Number of entries in this template */
1919 uint32_t entry_count;
1920
1921 /* Entries of the template */
1922 struct anv_descriptor_template_entry entries[0];
1923 };
1924
1925 size_t
1926 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1927
1928 void
1929 anv_descriptor_set_write_image_view(struct anv_device *device,
1930 struct anv_descriptor_set *set,
1931 const VkDescriptorImageInfo * const info,
1932 VkDescriptorType type,
1933 uint32_t binding,
1934 uint32_t element);
1935
1936 void
1937 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1938 struct anv_descriptor_set *set,
1939 VkDescriptorType type,
1940 struct anv_buffer_view *buffer_view,
1941 uint32_t binding,
1942 uint32_t element);
1943
1944 void
1945 anv_descriptor_set_write_buffer(struct anv_device *device,
1946 struct anv_descriptor_set *set,
1947 struct anv_state_stream *alloc_stream,
1948 VkDescriptorType type,
1949 struct anv_buffer *buffer,
1950 uint32_t binding,
1951 uint32_t element,
1952 VkDeviceSize offset,
1953 VkDeviceSize range);
1954 void
1955 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1956 struct anv_descriptor_set *set,
1957 uint32_t binding,
1958 const void *data,
1959 size_t offset,
1960 size_t size);
1961
1962 void
1963 anv_descriptor_set_write_template(struct anv_device *device,
1964 struct anv_descriptor_set *set,
1965 struct anv_state_stream *alloc_stream,
1966 const struct anv_descriptor_update_template *template,
1967 const void *data);
1968
1969 VkResult
1970 anv_descriptor_set_create(struct anv_device *device,
1971 struct anv_descriptor_pool *pool,
1972 struct anv_descriptor_set_layout *layout,
1973 struct anv_descriptor_set **out_set);
1974
1975 void
1976 anv_descriptor_set_destroy(struct anv_device *device,
1977 struct anv_descriptor_pool *pool,
1978 struct anv_descriptor_set *set);
1979
1980 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
1981 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
1982 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1983 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1984
1985 struct anv_pipeline_binding {
1986 /* The descriptor set this surface corresponds to. The special value of
1987 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1988 * to a color attachment and not a regular descriptor.
1989 */
1990 uint8_t set;
1991
1992 /* Binding in the descriptor set */
1993 uint32_t binding;
1994
1995 /* Index in the binding */
1996 uint32_t index;
1997
1998 /* Plane in the binding index */
1999 uint8_t plane;
2000
2001 /* Input attachment index (relative to the subpass) */
2002 uint8_t input_attachment_index;
2003
2004 /* For a storage image, whether it is write-only */
2005 bool write_only;
2006 };
2007
2008 struct anv_pipeline_layout {
2009 struct {
2010 struct anv_descriptor_set_layout *layout;
2011 uint32_t dynamic_offset_start;
2012 } set[MAX_SETS];
2013
2014 uint32_t num_sets;
2015
2016 unsigned char sha1[20];
2017 };
2018
2019 struct anv_buffer {
2020 struct anv_device * device;
2021 VkDeviceSize size;
2022
2023 VkBufferUsageFlags usage;
2024
2025 /* Set when bound */
2026 struct anv_address address;
2027 };
2028
2029 static inline uint64_t
2030 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2031 {
2032 assert(offset <= buffer->size);
2033 if (range == VK_WHOLE_SIZE) {
2034 return buffer->size - offset;
2035 } else {
2036 assert(range + offset >= range);
2037 assert(range + offset <= buffer->size);
2038 return range;
2039 }
2040 }
2041
2042 enum anv_cmd_dirty_bits {
2043 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2044 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2045 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2046 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2047 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2048 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2049 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2050 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2051 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2052 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2053 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2054 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2055 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2056 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2057 };
2058 typedef uint32_t anv_cmd_dirty_mask_t;
2059
2060 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2061 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2062 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2063 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2064 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2065 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2066 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2067 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2068 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2069 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2070 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2071
2072 static inline enum anv_cmd_dirty_bits
2073 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2074 {
2075 switch (vk_state) {
2076 case VK_DYNAMIC_STATE_VIEWPORT:
2077 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2078 case VK_DYNAMIC_STATE_SCISSOR:
2079 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2080 case VK_DYNAMIC_STATE_LINE_WIDTH:
2081 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2082 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2083 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2084 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2085 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2086 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2087 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2088 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2089 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2090 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2091 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2092 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2093 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2094 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2095 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2096 default:
2097 assert(!"Unsupported dynamic state");
2098 return 0;
2099 }
2100 }
2101
2102
2103 enum anv_pipe_bits {
2104 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2105 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2106 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2107 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2108 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2109 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2110 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2111 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2112 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2113 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2114 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2115 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2116
2117 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2118 * a flush has happened but not a CS stall. The next time we do any sort
2119 * of invalidation we need to insert a CS stall at that time. Otherwise,
2120 * we would have to CS stall on every flush which could be bad.
2121 */
2122 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2123
2124 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2125 * target operations related to transfer commands with VkBuffer as
2126 * destination are ongoing. Some operations like copies on the command
2127 * streamer might need to be aware of this to trigger the appropriate stall
2128 * before they can proceed with the copy.
2129 */
2130 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2131 };
2132
2133 #define ANV_PIPE_FLUSH_BITS ( \
2134 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2135 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2136 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2137 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2138
2139 #define ANV_PIPE_STALL_BITS ( \
2140 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2141 ANV_PIPE_DEPTH_STALL_BIT | \
2142 ANV_PIPE_CS_STALL_BIT)
2143
2144 #define ANV_PIPE_INVALIDATE_BITS ( \
2145 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2146 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2147 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2148 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2149 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2150 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2151
2152 static inline enum anv_pipe_bits
2153 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2154 {
2155 enum anv_pipe_bits pipe_bits = 0;
2156
2157 unsigned b;
2158 for_each_bit(b, flags) {
2159 switch ((VkAccessFlagBits)(1 << b)) {
2160 case VK_ACCESS_SHADER_WRITE_BIT:
2161 /* We're transitioning a buffer that was previously used as write
2162 * destination through the data port. To make its content available
2163 * to future operations, flush the data cache.
2164 */
2165 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2166 break;
2167 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2168 /* We're transitioning a buffer that was previously used as render
2169 * target. To make its content available to future operations, flush
2170 * the render target cache.
2171 */
2172 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2173 break;
2174 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2175 /* We're transitioning a buffer that was previously used as depth
2176 * buffer. To make its content available to future operations, flush
2177 * the depth cache.
2178 */
2179 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2180 break;
2181 case VK_ACCESS_TRANSFER_WRITE_BIT:
2182 /* We're transitioning a buffer that was previously used as a
2183 * transfer write destination. Generic write operations include color
2184 * & depth operations as well as buffer operations like :
2185 * - vkCmdClearColorImage()
2186 * - vkCmdClearDepthStencilImage()
2187 * - vkCmdBlitImage()
2188 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2189 *
2190 * Most of these operations are implemented using Blorp which writes
2191 * through the render target, so flush that cache to make it visible
2192 * to future operations. And for depth related operations we also
2193 * need to flush the depth cache.
2194 */
2195 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2196 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2197 break;
2198 case VK_ACCESS_MEMORY_WRITE_BIT:
2199 /* We're transitioning a buffer for generic write operations. Flush
2200 * all the caches.
2201 */
2202 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2203 break;
2204 default:
2205 break; /* Nothing to do */
2206 }
2207 }
2208
2209 return pipe_bits;
2210 }
2211
2212 static inline enum anv_pipe_bits
2213 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2214 {
2215 enum anv_pipe_bits pipe_bits = 0;
2216
2217 unsigned b;
2218 for_each_bit(b, flags) {
2219 switch ((VkAccessFlagBits)(1 << b)) {
2220 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2221 /* Indirect draw commands take a buffer as input that we're going to
2222 * read from the command streamer to load some of the HW registers
2223 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2224 * command streamer stall so that all the cache flushes have
2225 * completed before the command streamer loads from memory.
2226 */
2227 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2228 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2229 * through a vertex buffer, so invalidate that cache.
2230 */
2231 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2232 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2233 * UBO from the buffer, so we need to invalidate constant cache.
2234 */
2235 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2236 break;
2237 case VK_ACCESS_INDEX_READ_BIT:
2238 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2239 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2240 * commands, so we invalidate the VF cache to make sure there is no
2241 * stale data when we start rendering.
2242 */
2243 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2244 break;
2245 case VK_ACCESS_UNIFORM_READ_BIT:
2246 /* We transitioning a buffer to be used as uniform data. Because
2247 * uniform is accessed through the data port & sampler, we need to
2248 * invalidate the texture cache (sampler) & constant cache (data
2249 * port) to avoid stale data.
2250 */
2251 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2252 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2253 break;
2254 case VK_ACCESS_SHADER_READ_BIT:
2255 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2256 case VK_ACCESS_TRANSFER_READ_BIT:
2257 /* Transitioning a buffer to be read through the sampler, so
2258 * invalidate the texture cache, we don't want any stale data.
2259 */
2260 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2261 break;
2262 case VK_ACCESS_MEMORY_READ_BIT:
2263 /* Transitioning a buffer for generic read, invalidate all the
2264 * caches.
2265 */
2266 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2267 break;
2268 case VK_ACCESS_MEMORY_WRITE_BIT:
2269 /* Generic write, make sure all previously written things land in
2270 * memory.
2271 */
2272 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2273 break;
2274 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2275 /* Transitioning a buffer for conditional rendering. We'll load the
2276 * content of this buffer into HW registers using the command
2277 * streamer, so we need to stall the command streamer to make sure
2278 * any in-flight flush operations have completed.
2279 */
2280 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2281 break;
2282 default:
2283 break; /* Nothing to do */
2284 }
2285 }
2286
2287 return pipe_bits;
2288 }
2289
2290 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2291 VK_IMAGE_ASPECT_COLOR_BIT | \
2292 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2293 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2294 VK_IMAGE_ASPECT_PLANE_2_BIT)
2295 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2296 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2297 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2298 VK_IMAGE_ASPECT_PLANE_2_BIT)
2299
2300 struct anv_vertex_binding {
2301 struct anv_buffer * buffer;
2302 VkDeviceSize offset;
2303 };
2304
2305 struct anv_xfb_binding {
2306 struct anv_buffer * buffer;
2307 VkDeviceSize offset;
2308 VkDeviceSize size;
2309 };
2310
2311 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2312 #define ANV_PARAM_IS_PUSH(param) ((uint32_t)(param) >> 16 == 1)
2313 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2314
2315 #define ANV_PARAM_DYN_OFFSET(offset) ((2 << 16) | (uint32_t)(offset))
2316 #define ANV_PARAM_IS_DYN_OFFSET(param) ((uint32_t)(param) >> 16 == 2)
2317 #define ANV_PARAM_DYN_OFFSET_IDX(param) ((param) & 0xffff)
2318
2319 struct anv_push_constants {
2320 /* Push constant data provided by the client through vkPushConstants */
2321 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2322
2323 /* Used for vkCmdDispatchBase */
2324 uint32_t base_work_group_id[3];
2325 };
2326
2327 struct anv_dynamic_state {
2328 struct {
2329 uint32_t count;
2330 VkViewport viewports[MAX_VIEWPORTS];
2331 } viewport;
2332
2333 struct {
2334 uint32_t count;
2335 VkRect2D scissors[MAX_SCISSORS];
2336 } scissor;
2337
2338 float line_width;
2339
2340 struct {
2341 float bias;
2342 float clamp;
2343 float slope;
2344 } depth_bias;
2345
2346 float blend_constants[4];
2347
2348 struct {
2349 float min;
2350 float max;
2351 } depth_bounds;
2352
2353 struct {
2354 uint32_t front;
2355 uint32_t back;
2356 } stencil_compare_mask;
2357
2358 struct {
2359 uint32_t front;
2360 uint32_t back;
2361 } stencil_write_mask;
2362
2363 struct {
2364 uint32_t front;
2365 uint32_t back;
2366 } stencil_reference;
2367
2368 struct {
2369 uint32_t factor;
2370 uint16_t pattern;
2371 } line_stipple;
2372 };
2373
2374 extern const struct anv_dynamic_state default_dynamic_state;
2375
2376 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2377 const struct anv_dynamic_state *src,
2378 uint32_t copy_mask);
2379
2380 struct anv_surface_state {
2381 struct anv_state state;
2382 /** Address of the surface referred to by this state
2383 *
2384 * This address is relative to the start of the BO.
2385 */
2386 struct anv_address address;
2387 /* Address of the aux surface, if any
2388 *
2389 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2390 *
2391 * With the exception of gen8, the bottom 12 bits of this address' offset
2392 * include extra aux information.
2393 */
2394 struct anv_address aux_address;
2395 /* Address of the clear color, if any
2396 *
2397 * This address is relative to the start of the BO.
2398 */
2399 struct anv_address clear_address;
2400 };
2401
2402 /**
2403 * Attachment state when recording a renderpass instance.
2404 *
2405 * The clear value is valid only if there exists a pending clear.
2406 */
2407 struct anv_attachment_state {
2408 enum isl_aux_usage aux_usage;
2409 enum isl_aux_usage input_aux_usage;
2410 struct anv_surface_state color;
2411 struct anv_surface_state input;
2412
2413 VkImageLayout current_layout;
2414 VkImageAspectFlags pending_clear_aspects;
2415 VkImageAspectFlags pending_load_aspects;
2416 bool fast_clear;
2417 VkClearValue clear_value;
2418 bool clear_color_is_zero_one;
2419 bool clear_color_is_zero;
2420
2421 /* When multiview is active, attachments with a renderpass clear
2422 * operation have their respective layers cleared on the first
2423 * subpass that uses them, and only in that subpass. We keep track
2424 * of this using a bitfield to indicate which layers of an attachment
2425 * have not been cleared yet when multiview is active.
2426 */
2427 uint32_t pending_clear_views;
2428 struct anv_image_view * image_view;
2429 };
2430
2431 /** State tracking for particular pipeline bind point
2432 *
2433 * This struct is the base struct for anv_cmd_graphics_state and
2434 * anv_cmd_compute_state. These are used to track state which is bound to a
2435 * particular type of pipeline. Generic state that applies per-stage such as
2436 * binding table offsets and push constants is tracked generically with a
2437 * per-stage array in anv_cmd_state.
2438 */
2439 struct anv_cmd_pipeline_state {
2440 struct anv_pipeline *pipeline;
2441 struct anv_pipeline_layout *layout;
2442
2443 struct anv_descriptor_set *descriptors[MAX_SETS];
2444 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2445
2446 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2447 };
2448
2449 /** State tracking for graphics pipeline
2450 *
2451 * This has anv_cmd_pipeline_state as a base struct to track things which get
2452 * bound to a graphics pipeline. Along with general pipeline bind point state
2453 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2454 * state which is graphics-specific.
2455 */
2456 struct anv_cmd_graphics_state {
2457 struct anv_cmd_pipeline_state base;
2458
2459 anv_cmd_dirty_mask_t dirty;
2460 uint32_t vb_dirty;
2461
2462 struct anv_dynamic_state dynamic;
2463
2464 struct {
2465 struct anv_buffer *index_buffer;
2466 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2467 uint32_t index_offset;
2468 } gen7;
2469 };
2470
2471 /** State tracking for compute pipeline
2472 *
2473 * This has anv_cmd_pipeline_state as a base struct to track things which get
2474 * bound to a compute pipeline. Along with general pipeline bind point state
2475 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2476 * state which is compute-specific.
2477 */
2478 struct anv_cmd_compute_state {
2479 struct anv_cmd_pipeline_state base;
2480
2481 bool pipeline_dirty;
2482
2483 struct anv_address num_workgroups;
2484 };
2485
2486 /** State required while building cmd buffer */
2487 struct anv_cmd_state {
2488 /* PIPELINE_SELECT.PipelineSelection */
2489 uint32_t current_pipeline;
2490 const struct gen_l3_config * current_l3_config;
2491 uint32_t last_aux_map_state;
2492
2493 struct anv_cmd_graphics_state gfx;
2494 struct anv_cmd_compute_state compute;
2495
2496 enum anv_pipe_bits pending_pipe_bits;
2497 VkShaderStageFlags descriptors_dirty;
2498 VkShaderStageFlags push_constants_dirty;
2499
2500 struct anv_framebuffer * framebuffer;
2501 struct anv_render_pass * pass;
2502 struct anv_subpass * subpass;
2503 VkRect2D render_area;
2504 uint32_t restart_index;
2505 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2506 bool xfb_enabled;
2507 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2508 VkShaderStageFlags push_constant_stages;
2509 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2510 struct anv_state binding_tables[MESA_SHADER_STAGES];
2511 struct anv_state samplers[MESA_SHADER_STAGES];
2512
2513 /**
2514 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2515 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2516 * and before invoking the secondary in ExecuteCommands.
2517 */
2518 bool pma_fix_enabled;
2519
2520 /**
2521 * Whether or not we know for certain that HiZ is enabled for the current
2522 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2523 * enabled or not, this will be false.
2524 */
2525 bool hiz_enabled;
2526
2527 bool conditional_render_enabled;
2528
2529 /**
2530 * Last rendering scale argument provided to
2531 * genX(cmd_buffer_emit_hashing_mode)().
2532 */
2533 unsigned current_hash_scale;
2534
2535 /**
2536 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2537 * valid only when recording a render pass instance.
2538 */
2539 struct anv_attachment_state * attachments;
2540
2541 /**
2542 * Surface states for color render targets. These are stored in a single
2543 * flat array. For depth-stencil attachments, the surface state is simply
2544 * left blank.
2545 */
2546 struct anv_state render_pass_states;
2547
2548 /**
2549 * A null surface state of the right size to match the framebuffer. This
2550 * is one of the states in render_pass_states.
2551 */
2552 struct anv_state null_surface_state;
2553 };
2554
2555 struct anv_cmd_pool {
2556 VkAllocationCallbacks alloc;
2557 struct list_head cmd_buffers;
2558 };
2559
2560 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2561
2562 enum anv_cmd_buffer_exec_mode {
2563 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2564 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2565 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2566 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2567 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2568 };
2569
2570 struct anv_cmd_buffer {
2571 VK_LOADER_DATA _loader_data;
2572
2573 struct anv_device * device;
2574
2575 struct anv_cmd_pool * pool;
2576 struct list_head pool_link;
2577
2578 struct anv_batch batch;
2579
2580 /* Fields required for the actual chain of anv_batch_bo's.
2581 *
2582 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2583 */
2584 struct list_head batch_bos;
2585 enum anv_cmd_buffer_exec_mode exec_mode;
2586
2587 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2588 * referenced by this command buffer
2589 *
2590 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2591 */
2592 struct u_vector seen_bbos;
2593
2594 /* A vector of int32_t's for every block of binding tables.
2595 *
2596 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2597 */
2598 struct u_vector bt_block_states;
2599 uint32_t bt_next;
2600
2601 struct anv_reloc_list surface_relocs;
2602 /** Last seen surface state block pool center bo offset */
2603 uint32_t last_ss_pool_center;
2604
2605 /* Serial for tracking buffer completion */
2606 uint32_t serial;
2607
2608 /* Stream objects for storing temporary data */
2609 struct anv_state_stream surface_state_stream;
2610 struct anv_state_stream dynamic_state_stream;
2611
2612 VkCommandBufferUsageFlags usage_flags;
2613 VkCommandBufferLevel level;
2614
2615 struct anv_cmd_state state;
2616
2617 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2618 uint64_t intel_perf_marker;
2619 };
2620
2621 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2622 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2623 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2624 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2625 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2626 struct anv_cmd_buffer *secondary);
2627 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2628 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2629 struct anv_cmd_buffer *cmd_buffer,
2630 const VkSemaphore *in_semaphores,
2631 uint32_t num_in_semaphores,
2632 const VkSemaphore *out_semaphores,
2633 uint32_t num_out_semaphores,
2634 VkFence fence);
2635
2636 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2637
2638 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2639 const void *data, uint32_t size, uint32_t alignment);
2640 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2641 uint32_t *a, uint32_t *b,
2642 uint32_t dwords, uint32_t alignment);
2643
2644 struct anv_address
2645 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2646 struct anv_state
2647 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2648 uint32_t entries, uint32_t *state_offset);
2649 struct anv_state
2650 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2651 struct anv_state
2652 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2653 uint32_t size, uint32_t alignment);
2654
2655 VkResult
2656 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2657
2658 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2659 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2660 bool depth_clamp_enable);
2661 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2662
2663 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2664 struct anv_render_pass *pass,
2665 struct anv_framebuffer *framebuffer,
2666 const VkClearValue *clear_values);
2667
2668 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2669
2670 struct anv_state
2671 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2672 gl_shader_stage stage);
2673 struct anv_state
2674 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2675
2676 const struct anv_image_view *
2677 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2678
2679 VkResult
2680 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2681 uint32_t num_entries,
2682 uint32_t *state_offset,
2683 struct anv_state *bt_state);
2684
2685 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2686
2687 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2688
2689 enum anv_fence_type {
2690 ANV_FENCE_TYPE_NONE = 0,
2691 ANV_FENCE_TYPE_BO,
2692 ANV_FENCE_TYPE_SYNCOBJ,
2693 ANV_FENCE_TYPE_WSI,
2694 };
2695
2696 enum anv_bo_fence_state {
2697 /** Indicates that this is a new (or newly reset fence) */
2698 ANV_BO_FENCE_STATE_RESET,
2699
2700 /** Indicates that this fence has been submitted to the GPU but is still
2701 * (as far as we know) in use by the GPU.
2702 */
2703 ANV_BO_FENCE_STATE_SUBMITTED,
2704
2705 ANV_BO_FENCE_STATE_SIGNALED,
2706 };
2707
2708 struct anv_fence_impl {
2709 enum anv_fence_type type;
2710
2711 union {
2712 /** Fence implementation for BO fences
2713 *
2714 * These fences use a BO and a set of CPU-tracked state flags. The BO
2715 * is added to the object list of the last execbuf call in a QueueSubmit
2716 * and is marked EXEC_WRITE. The state flags track when the BO has been
2717 * submitted to the kernel. We need to do this because Vulkan lets you
2718 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2719 * will say it's idle in this case.
2720 */
2721 struct {
2722 struct anv_bo *bo;
2723 enum anv_bo_fence_state state;
2724 } bo;
2725
2726 /** DRM syncobj handle for syncobj-based fences */
2727 uint32_t syncobj;
2728
2729 /** WSI fence */
2730 struct wsi_fence *fence_wsi;
2731 };
2732 };
2733
2734 struct anv_fence {
2735 /* Permanent fence state. Every fence has some form of permanent state
2736 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2737 * cross-process fences) or it could just be a dummy for use internally.
2738 */
2739 struct anv_fence_impl permanent;
2740
2741 /* Temporary fence state. A fence *may* have temporary state. That state
2742 * is added to the fence by an import operation and is reset back to
2743 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2744 * state cannot be signaled because the fence must already be signaled
2745 * before the temporary state can be exported from the fence in the other
2746 * process and imported here.
2747 */
2748 struct anv_fence_impl temporary;
2749 };
2750
2751 struct anv_event {
2752 uint64_t semaphore;
2753 struct anv_state state;
2754 };
2755
2756 enum anv_semaphore_type {
2757 ANV_SEMAPHORE_TYPE_NONE = 0,
2758 ANV_SEMAPHORE_TYPE_DUMMY,
2759 ANV_SEMAPHORE_TYPE_BO,
2760 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2761 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2762 };
2763
2764 struct anv_semaphore_impl {
2765 enum anv_semaphore_type type;
2766
2767 union {
2768 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2769 * This BO will be added to the object list on any execbuf2 calls for
2770 * which this semaphore is used as a wait or signal fence. When used as
2771 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2772 */
2773 struct anv_bo *bo;
2774
2775 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2776 * If the semaphore is in the unsignaled state due to either just being
2777 * created or because it has been used for a wait, fd will be -1.
2778 */
2779 int fd;
2780
2781 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2782 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2783 * import so we don't need to bother with a userspace cache.
2784 */
2785 uint32_t syncobj;
2786 };
2787 };
2788
2789 struct anv_semaphore {
2790 /* Permanent semaphore state. Every semaphore has some form of permanent
2791 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2792 * (for cross-process semaphores0 or it could just be a dummy for use
2793 * internally.
2794 */
2795 struct anv_semaphore_impl permanent;
2796
2797 /* Temporary semaphore state. A semaphore *may* have temporary state.
2798 * That state is added to the semaphore by an import operation and is reset
2799 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2800 * semaphore with temporary state cannot be signaled because the semaphore
2801 * must already be signaled before the temporary state can be exported from
2802 * the semaphore in the other process and imported here.
2803 */
2804 struct anv_semaphore_impl temporary;
2805 };
2806
2807 void anv_semaphore_reset_temporary(struct anv_device *device,
2808 struct anv_semaphore *semaphore);
2809
2810 struct anv_shader_module {
2811 unsigned char sha1[20];
2812 uint32_t size;
2813 char data[0];
2814 };
2815
2816 static inline gl_shader_stage
2817 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2818 {
2819 assert(__builtin_popcount(vk_stage) == 1);
2820 return ffs(vk_stage) - 1;
2821 }
2822
2823 static inline VkShaderStageFlagBits
2824 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2825 {
2826 return (1 << mesa_stage);
2827 }
2828
2829 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2830
2831 #define anv_foreach_stage(stage, stage_bits) \
2832 for (gl_shader_stage stage, \
2833 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2834 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2835 __tmp &= ~(1 << (stage)))
2836
2837 struct anv_pipeline_bind_map {
2838 uint32_t surface_count;
2839 uint32_t sampler_count;
2840
2841 struct anv_pipeline_binding * surface_to_descriptor;
2842 struct anv_pipeline_binding * sampler_to_descriptor;
2843 };
2844
2845 struct anv_shader_bin_key {
2846 uint32_t size;
2847 uint8_t data[0];
2848 };
2849
2850 struct anv_shader_bin {
2851 uint32_t ref_cnt;
2852
2853 const struct anv_shader_bin_key *key;
2854
2855 struct anv_state kernel;
2856 uint32_t kernel_size;
2857
2858 struct anv_state constant_data;
2859 uint32_t constant_data_size;
2860
2861 const struct brw_stage_prog_data *prog_data;
2862 uint32_t prog_data_size;
2863
2864 struct brw_compile_stats stats[3];
2865 uint32_t num_stats;
2866
2867 struct nir_xfb_info *xfb_info;
2868
2869 struct anv_pipeline_bind_map bind_map;
2870 };
2871
2872 struct anv_shader_bin *
2873 anv_shader_bin_create(struct anv_device *device,
2874 const void *key, uint32_t key_size,
2875 const void *kernel, uint32_t kernel_size,
2876 const void *constant_data, uint32_t constant_data_size,
2877 const struct brw_stage_prog_data *prog_data,
2878 uint32_t prog_data_size, const void *prog_data_param,
2879 const struct brw_compile_stats *stats, uint32_t num_stats,
2880 const struct nir_xfb_info *xfb_info,
2881 const struct anv_pipeline_bind_map *bind_map);
2882
2883 void
2884 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2885
2886 static inline void
2887 anv_shader_bin_ref(struct anv_shader_bin *shader)
2888 {
2889 assert(shader && shader->ref_cnt >= 1);
2890 p_atomic_inc(&shader->ref_cnt);
2891 }
2892
2893 static inline void
2894 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2895 {
2896 assert(shader && shader->ref_cnt >= 1);
2897 if (p_atomic_dec_zero(&shader->ref_cnt))
2898 anv_shader_bin_destroy(device, shader);
2899 }
2900
2901 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
2902 #define MAX_PIPELINE_EXECUTABLES 7
2903
2904 struct anv_pipeline_executable {
2905 gl_shader_stage stage;
2906
2907 struct brw_compile_stats stats;
2908
2909 char *nir;
2910 char *disasm;
2911 };
2912
2913 struct anv_pipeline {
2914 struct anv_device * device;
2915 struct anv_batch batch;
2916 uint32_t batch_data[512];
2917 struct anv_reloc_list batch_relocs;
2918 anv_cmd_dirty_mask_t dynamic_state_mask;
2919 struct anv_dynamic_state dynamic_state;
2920
2921 void * mem_ctx;
2922
2923 VkPipelineCreateFlags flags;
2924 struct anv_subpass * subpass;
2925
2926 bool needs_data_cache;
2927
2928 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2929
2930 uint32_t num_executables;
2931 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
2932
2933 struct {
2934 const struct gen_l3_config * l3_config;
2935 uint32_t total_size;
2936 } urb;
2937
2938 VkShaderStageFlags active_stages;
2939 struct anv_state blend_state;
2940
2941 uint32_t vb_used;
2942 struct anv_pipeline_vertex_binding {
2943 uint32_t stride;
2944 bool instanced;
2945 uint32_t instance_divisor;
2946 } vb[MAX_VBS];
2947
2948 uint8_t xfb_used;
2949
2950 bool primitive_restart;
2951 uint32_t topology;
2952
2953 uint32_t cs_right_mask;
2954
2955 bool writes_depth;
2956 bool depth_test_enable;
2957 bool writes_stencil;
2958 bool stencil_test_enable;
2959 bool depth_clamp_enable;
2960 bool depth_clip_enable;
2961 bool sample_shading_enable;
2962 bool kill_pixel;
2963 bool depth_bounds_test_enable;
2964
2965 struct {
2966 uint32_t sf[7];
2967 uint32_t depth_stencil_state[3];
2968 } gen7;
2969
2970 struct {
2971 uint32_t sf[4];
2972 uint32_t raster[5];
2973 uint32_t wm_depth_stencil[3];
2974 } gen8;
2975
2976 struct {
2977 uint32_t wm_depth_stencil[4];
2978 } gen9;
2979
2980 uint32_t interface_descriptor_data[8];
2981 };
2982
2983 static inline bool
2984 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2985 gl_shader_stage stage)
2986 {
2987 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2988 }
2989
2990 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2991 static inline const struct brw_##prefix##_prog_data * \
2992 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2993 { \
2994 if (anv_pipeline_has_stage(pipeline, stage)) { \
2995 return (const struct brw_##prefix##_prog_data *) \
2996 pipeline->shaders[stage]->prog_data; \
2997 } else { \
2998 return NULL; \
2999 } \
3000 }
3001
3002 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3003 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3004 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3005 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3006 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3007 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3008
3009 static inline const struct brw_vue_prog_data *
3010 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3011 {
3012 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3013 return &get_gs_prog_data(pipeline)->base;
3014 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3015 return &get_tes_prog_data(pipeline)->base;
3016 else
3017 return &get_vs_prog_data(pipeline)->base;
3018 }
3019
3020 VkResult
3021 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3022 struct anv_pipeline_cache *cache,
3023 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3024 const VkAllocationCallbacks *alloc);
3025
3026 VkResult
3027 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3028 struct anv_pipeline_cache *cache,
3029 const VkComputePipelineCreateInfo *info,
3030 const struct anv_shader_module *module,
3031 const char *entrypoint,
3032 const VkSpecializationInfo *spec_info);
3033
3034 struct anv_format_plane {
3035 enum isl_format isl_format:16;
3036 struct isl_swizzle swizzle;
3037
3038 /* Whether this plane contains chroma channels */
3039 bool has_chroma;
3040
3041 /* For downscaling of YUV planes */
3042 uint8_t denominator_scales[2];
3043
3044 /* How to map sampled ycbcr planes to a single 4 component element. */
3045 struct isl_swizzle ycbcr_swizzle;
3046
3047 /* What aspect is associated to this plane */
3048 VkImageAspectFlags aspect;
3049 };
3050
3051
3052 struct anv_format {
3053 struct anv_format_plane planes[3];
3054 VkFormat vk_format;
3055 uint8_t n_planes;
3056 bool can_ycbcr;
3057 };
3058
3059 static inline uint32_t
3060 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3061 VkImageAspectFlags aspect_mask)
3062 {
3063 switch (aspect_mask) {
3064 case VK_IMAGE_ASPECT_COLOR_BIT:
3065 case VK_IMAGE_ASPECT_DEPTH_BIT:
3066 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3067 return 0;
3068 case VK_IMAGE_ASPECT_STENCIL_BIT:
3069 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3070 return 0;
3071 /* Fall-through */
3072 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3073 return 1;
3074 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3075 return 2;
3076 default:
3077 /* Purposefully assert with depth/stencil aspects. */
3078 unreachable("invalid image aspect");
3079 }
3080 }
3081
3082 static inline VkImageAspectFlags
3083 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3084 uint32_t plane)
3085 {
3086 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3087 if (util_bitcount(image_aspects) > 1)
3088 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3089 return VK_IMAGE_ASPECT_COLOR_BIT;
3090 }
3091 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3092 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3093 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3094 return VK_IMAGE_ASPECT_STENCIL_BIT;
3095 }
3096
3097 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3098 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3099
3100 const struct anv_format *
3101 anv_get_format(VkFormat format);
3102
3103 static inline uint32_t
3104 anv_get_format_planes(VkFormat vk_format)
3105 {
3106 const struct anv_format *format = anv_get_format(vk_format);
3107
3108 return format != NULL ? format->n_planes : 0;
3109 }
3110
3111 struct anv_format_plane
3112 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3113 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3114
3115 static inline enum isl_format
3116 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3117 VkImageAspectFlags aspect, VkImageTiling tiling)
3118 {
3119 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3120 }
3121
3122 static inline struct isl_swizzle
3123 anv_swizzle_for_render(struct isl_swizzle swizzle)
3124 {
3125 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3126 * RGB as RGBA for texturing
3127 */
3128 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3129 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3130
3131 /* But it doesn't matter what we render to that channel */
3132 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3133
3134 return swizzle;
3135 }
3136
3137 void
3138 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3139
3140 /**
3141 * Subsurface of an anv_image.
3142 */
3143 struct anv_surface {
3144 /** Valid only if isl_surf::size_B > 0. */
3145 struct isl_surf isl;
3146
3147 /**
3148 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3149 */
3150 uint32_t offset;
3151 };
3152
3153 struct anv_image {
3154 VkImageType type; /**< VkImageCreateInfo::imageType */
3155 /* The original VkFormat provided by the client. This may not match any
3156 * of the actual surface formats.
3157 */
3158 VkFormat vk_format;
3159 const struct anv_format *format;
3160
3161 VkImageAspectFlags aspects;
3162 VkExtent3D extent;
3163 uint32_t levels;
3164 uint32_t array_size;
3165 uint32_t samples; /**< VkImageCreateInfo::samples */
3166 uint32_t n_planes;
3167 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3168 VkImageUsageFlags stencil_usage;
3169 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3170 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3171
3172 /** True if this is needs to be bound to an appropriately tiled BO.
3173 *
3174 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3175 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3176 * we require a dedicated allocation so that we can know to allocate a
3177 * tiled buffer.
3178 */
3179 bool needs_set_tiling;
3180
3181 /**
3182 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3183 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3184 */
3185 uint64_t drm_format_mod;
3186
3187 VkDeviceSize size;
3188 uint32_t alignment;
3189
3190 /* Whether the image is made of several underlying buffer objects rather a
3191 * single one with different offsets.
3192 */
3193 bool disjoint;
3194
3195 /* All the formats that can be used when creating views of this image
3196 * are CCS_E compatible.
3197 */
3198 bool ccs_e_compatible;
3199
3200 /* Image was created with external format. */
3201 bool external_format;
3202
3203 /**
3204 * Image subsurfaces
3205 *
3206 * For each foo, anv_image::planes[x].surface is valid if and only if
3207 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3208 * to figure the number associated with a given aspect.
3209 *
3210 * The hardware requires that the depth buffer and stencil buffer be
3211 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3212 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3213 * allocate the depth and stencil buffers as separate surfaces in the same
3214 * bo.
3215 *
3216 * Memory layout :
3217 *
3218 * -----------------------
3219 * | surface0 | /|\
3220 * ----------------------- |
3221 * | shadow surface0 | |
3222 * ----------------------- | Plane 0
3223 * | aux surface0 | |
3224 * ----------------------- |
3225 * | fast clear colors0 | \|/
3226 * -----------------------
3227 * | surface1 | /|\
3228 * ----------------------- |
3229 * | shadow surface1 | |
3230 * ----------------------- | Plane 1
3231 * | aux surface1 | |
3232 * ----------------------- |
3233 * | fast clear colors1 | \|/
3234 * -----------------------
3235 * | ... |
3236 * | |
3237 * -----------------------
3238 */
3239 struct {
3240 /**
3241 * Offset of the entire plane (whenever the image is disjoint this is
3242 * set to 0).
3243 */
3244 uint32_t offset;
3245
3246 VkDeviceSize size;
3247 uint32_t alignment;
3248
3249 struct anv_surface surface;
3250
3251 /**
3252 * A surface which shadows the main surface and may have different
3253 * tiling. This is used for sampling using a tiling that isn't supported
3254 * for other operations.
3255 */
3256 struct anv_surface shadow_surface;
3257
3258 /**
3259 * For color images, this is the aux usage for this image when not used
3260 * as a color attachment.
3261 *
3262 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3263 * image has a HiZ buffer.
3264 */
3265 enum isl_aux_usage aux_usage;
3266
3267 struct anv_surface aux_surface;
3268
3269 /**
3270 * Offset of the fast clear state (used to compute the
3271 * fast_clear_state_offset of the following planes).
3272 */
3273 uint32_t fast_clear_state_offset;
3274
3275 /**
3276 * BO associated with this plane, set when bound.
3277 */
3278 struct anv_address address;
3279
3280 /**
3281 * Address of the main surface used to fill the aux map table. This is
3282 * used at destruction of the image since the Vulkan spec does not
3283 * guarantee that the address.bo field we still be valid at destruction.
3284 */
3285 uint64_t aux_map_surface_address;
3286
3287 /**
3288 * When destroying the image, also free the bo.
3289 * */
3290 bool bo_is_owned;
3291 } planes[3];
3292 };
3293
3294 /* The ordering of this enum is important */
3295 enum anv_fast_clear_type {
3296 /** Image does not have/support any fast-clear blocks */
3297 ANV_FAST_CLEAR_NONE = 0,
3298 /** Image has/supports fast-clear but only to the default value */
3299 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3300 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3301 ANV_FAST_CLEAR_ANY = 2,
3302 };
3303
3304 /* Returns the number of auxiliary buffer levels attached to an image. */
3305 static inline uint8_t
3306 anv_image_aux_levels(const struct anv_image * const image,
3307 VkImageAspectFlagBits aspect)
3308 {
3309 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3310
3311 /* The Gen12 CCS aux surface is represented with only one level. */
3312 const uint8_t aux_logical_levels =
3313 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3314 image->planes[plane].surface.isl.levels :
3315 image->planes[plane].aux_surface.isl.levels;
3316
3317 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3318 aux_logical_levels : 0;
3319 }
3320
3321 /* Returns the number of auxiliary buffer layers attached to an image. */
3322 static inline uint32_t
3323 anv_image_aux_layers(const struct anv_image * const image,
3324 VkImageAspectFlagBits aspect,
3325 const uint8_t miplevel)
3326 {
3327 assert(image);
3328
3329 /* The miplevel must exist in the main buffer. */
3330 assert(miplevel < image->levels);
3331
3332 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3333 /* There are no layers with auxiliary data because the miplevel has no
3334 * auxiliary data.
3335 */
3336 return 0;
3337 } else {
3338 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3339
3340 /* The Gen12 CCS aux surface is represented with only one layer. */
3341 const struct isl_extent4d *aux_logical_level0_px =
3342 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3343 &image->planes[plane].surface.isl.logical_level0_px :
3344 &image->planes[plane].aux_surface.isl.logical_level0_px;
3345
3346 return MAX2(aux_logical_level0_px->array_len,
3347 aux_logical_level0_px->depth >> miplevel);
3348 }
3349 }
3350
3351 static inline struct anv_address
3352 anv_image_get_clear_color_addr(const struct anv_device *device,
3353 const struct anv_image *image,
3354 VkImageAspectFlagBits aspect)
3355 {
3356 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3357
3358 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3359 return anv_address_add(image->planes[plane].address,
3360 image->planes[plane].fast_clear_state_offset);
3361 }
3362
3363 static inline struct anv_address
3364 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3365 const struct anv_image *image,
3366 VkImageAspectFlagBits aspect)
3367 {
3368 struct anv_address addr =
3369 anv_image_get_clear_color_addr(device, image, aspect);
3370
3371 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3372 device->isl_dev.ss.clear_color_state_size :
3373 device->isl_dev.ss.clear_value_size;
3374 return anv_address_add(addr, clear_color_state_size);
3375 }
3376
3377 static inline struct anv_address
3378 anv_image_get_compression_state_addr(const struct anv_device *device,
3379 const struct anv_image *image,
3380 VkImageAspectFlagBits aspect,
3381 uint32_t level, uint32_t array_layer)
3382 {
3383 assert(level < anv_image_aux_levels(image, aspect));
3384 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3385 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3386 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3387
3388 struct anv_address addr =
3389 anv_image_get_fast_clear_type_addr(device, image, aspect);
3390 addr.offset += 4; /* Go past the fast clear type */
3391
3392 if (image->type == VK_IMAGE_TYPE_3D) {
3393 for (uint32_t l = 0; l < level; l++)
3394 addr.offset += anv_minify(image->extent.depth, l) * 4;
3395 } else {
3396 addr.offset += level * image->array_size * 4;
3397 }
3398 addr.offset += array_layer * 4;
3399
3400 assert(addr.offset <
3401 image->planes[plane].address.offset + image->planes[plane].size);
3402 return addr;
3403 }
3404
3405 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3406 static inline bool
3407 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3408 const struct anv_image *image)
3409 {
3410 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3411 return false;
3412
3413 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3414 * struct. There's documentation which suggests that this feature actually
3415 * reduces performance on BDW, but it has only been observed to help so
3416 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3417 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3418 */
3419 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3420 return false;
3421
3422 return image->samples == 1;
3423 }
3424
3425 static inline bool
3426 anv_image_plane_uses_aux_map(const struct anv_device *device,
3427 const struct anv_image *image,
3428 uint32_t plane)
3429 {
3430 return device->info.has_aux_map &&
3431 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3432 }
3433
3434 void
3435 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3436 const struct anv_image *image,
3437 VkImageAspectFlagBits aspect,
3438 enum isl_aux_usage aux_usage,
3439 uint32_t level,
3440 uint32_t base_layer,
3441 uint32_t layer_count);
3442
3443 void
3444 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3445 const struct anv_image *image,
3446 VkImageAspectFlagBits aspect,
3447 enum isl_aux_usage aux_usage,
3448 enum isl_format format, struct isl_swizzle swizzle,
3449 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3450 VkRect2D area, union isl_color_value clear_color);
3451 void
3452 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3453 const struct anv_image *image,
3454 VkImageAspectFlags aspects,
3455 enum isl_aux_usage depth_aux_usage,
3456 uint32_t level,
3457 uint32_t base_layer, uint32_t layer_count,
3458 VkRect2D area,
3459 float depth_value, uint8_t stencil_value);
3460 void
3461 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3462 const struct anv_image *src_image,
3463 enum isl_aux_usage src_aux_usage,
3464 uint32_t src_level, uint32_t src_base_layer,
3465 const struct anv_image *dst_image,
3466 enum isl_aux_usage dst_aux_usage,
3467 uint32_t dst_level, uint32_t dst_base_layer,
3468 VkImageAspectFlagBits aspect,
3469 uint32_t src_x, uint32_t src_y,
3470 uint32_t dst_x, uint32_t dst_y,
3471 uint32_t width, uint32_t height,
3472 uint32_t layer_count,
3473 enum blorp_filter filter);
3474 void
3475 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3476 const struct anv_image *image,
3477 VkImageAspectFlagBits aspect, uint32_t level,
3478 uint32_t base_layer, uint32_t layer_count,
3479 enum isl_aux_op hiz_op);
3480 void
3481 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3482 const struct anv_image *image,
3483 VkImageAspectFlags aspects,
3484 uint32_t level,
3485 uint32_t base_layer, uint32_t layer_count,
3486 VkRect2D area, uint8_t stencil_value);
3487 void
3488 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3489 const struct anv_image *image,
3490 enum isl_format format,
3491 VkImageAspectFlagBits aspect,
3492 uint32_t base_layer, uint32_t layer_count,
3493 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3494 bool predicate);
3495 void
3496 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3497 const struct anv_image *image,
3498 enum isl_format format,
3499 VkImageAspectFlagBits aspect, uint32_t level,
3500 uint32_t base_layer, uint32_t layer_count,
3501 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3502 bool predicate);
3503
3504 void
3505 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3506 const struct anv_image *image,
3507 VkImageAspectFlagBits aspect,
3508 uint32_t base_level, uint32_t level_count,
3509 uint32_t base_layer, uint32_t layer_count);
3510
3511 enum isl_aux_usage
3512 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3513 const struct anv_image *image,
3514 const VkImageAspectFlagBits aspect,
3515 const VkImageLayout layout);
3516
3517 enum anv_fast_clear_type
3518 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3519 const struct anv_image * const image,
3520 const VkImageAspectFlagBits aspect,
3521 const VkImageLayout layout);
3522
3523 /* This is defined as a macro so that it works for both
3524 * VkImageSubresourceRange and VkImageSubresourceLayers
3525 */
3526 #define anv_get_layerCount(_image, _range) \
3527 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3528 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3529
3530 static inline uint32_t
3531 anv_get_levelCount(const struct anv_image *image,
3532 const VkImageSubresourceRange *range)
3533 {
3534 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3535 image->levels - range->baseMipLevel : range->levelCount;
3536 }
3537
3538 static inline VkImageAspectFlags
3539 anv_image_expand_aspects(const struct anv_image *image,
3540 VkImageAspectFlags aspects)
3541 {
3542 /* If the underlying image has color plane aspects and
3543 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3544 * the underlying image. */
3545 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3546 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3547 return image->aspects;
3548
3549 return aspects;
3550 }
3551
3552 static inline bool
3553 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3554 VkImageAspectFlags aspects2)
3555 {
3556 if (aspects1 == aspects2)
3557 return true;
3558
3559 /* Only 1 color aspects are compatibles. */
3560 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3561 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3562 util_bitcount(aspects1) == util_bitcount(aspects2))
3563 return true;
3564
3565 return false;
3566 }
3567
3568 struct anv_image_view {
3569 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3570
3571 VkImageAspectFlags aspect_mask;
3572 VkFormat vk_format;
3573 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3574
3575 unsigned n_planes;
3576 struct {
3577 uint32_t image_plane;
3578
3579 struct isl_view isl;
3580
3581 /**
3582 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3583 * image layout of SHADER_READ_ONLY_OPTIMAL or
3584 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3585 */
3586 struct anv_surface_state optimal_sampler_surface_state;
3587
3588 /**
3589 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3590 * image layout of GENERAL.
3591 */
3592 struct anv_surface_state general_sampler_surface_state;
3593
3594 /**
3595 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3596 * states for write-only and readable, using the real format for
3597 * write-only and the lowered format for readable.
3598 */
3599 struct anv_surface_state storage_surface_state;
3600 struct anv_surface_state writeonly_storage_surface_state;
3601
3602 struct brw_image_param storage_image_param;
3603 } planes[3];
3604 };
3605
3606 enum anv_image_view_state_flags {
3607 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3608 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3609 };
3610
3611 void anv_image_fill_surface_state(struct anv_device *device,
3612 const struct anv_image *image,
3613 VkImageAspectFlagBits aspect,
3614 const struct isl_view *view,
3615 isl_surf_usage_flags_t view_usage,
3616 enum isl_aux_usage aux_usage,
3617 const union isl_color_value *clear_color,
3618 enum anv_image_view_state_flags flags,
3619 struct anv_surface_state *state_inout,
3620 struct brw_image_param *image_param_out);
3621
3622 struct anv_image_create_info {
3623 const VkImageCreateInfo *vk_info;
3624
3625 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3626 isl_tiling_flags_t isl_tiling_flags;
3627
3628 /** These flags will be added to any derived from VkImageCreateInfo. */
3629 isl_surf_usage_flags_t isl_extra_usage_flags;
3630
3631 uint32_t stride;
3632 bool external_format;
3633 };
3634
3635 VkResult anv_image_create(VkDevice _device,
3636 const struct anv_image_create_info *info,
3637 const VkAllocationCallbacks* alloc,
3638 VkImage *pImage);
3639
3640 const struct anv_surface *
3641 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3642 VkImageAspectFlags aspect_mask);
3643
3644 enum isl_format
3645 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3646
3647 static inline struct VkExtent3D
3648 anv_sanitize_image_extent(const VkImageType imageType,
3649 const struct VkExtent3D imageExtent)
3650 {
3651 switch (imageType) {
3652 case VK_IMAGE_TYPE_1D:
3653 return (VkExtent3D) { imageExtent.width, 1, 1 };
3654 case VK_IMAGE_TYPE_2D:
3655 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3656 case VK_IMAGE_TYPE_3D:
3657 return imageExtent;
3658 default:
3659 unreachable("invalid image type");
3660 }
3661 }
3662
3663 static inline struct VkOffset3D
3664 anv_sanitize_image_offset(const VkImageType imageType,
3665 const struct VkOffset3D imageOffset)
3666 {
3667 switch (imageType) {
3668 case VK_IMAGE_TYPE_1D:
3669 return (VkOffset3D) { imageOffset.x, 0, 0 };
3670 case VK_IMAGE_TYPE_2D:
3671 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3672 case VK_IMAGE_TYPE_3D:
3673 return imageOffset;
3674 default:
3675 unreachable("invalid image type");
3676 }
3677 }
3678
3679 VkFormatFeatureFlags
3680 anv_get_image_format_features(const struct gen_device_info *devinfo,
3681 VkFormat vk_format,
3682 const struct anv_format *anv_format,
3683 VkImageTiling vk_tiling);
3684
3685 void anv_fill_buffer_surface_state(struct anv_device *device,
3686 struct anv_state state,
3687 enum isl_format format,
3688 struct anv_address address,
3689 uint32_t range, uint32_t stride);
3690
3691 static inline void
3692 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3693 const struct anv_attachment_state *att_state,
3694 const struct anv_image_view *iview)
3695 {
3696 const struct isl_format_layout *view_fmtl =
3697 isl_format_get_layout(iview->planes[0].isl.format);
3698
3699 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3700 if (view_fmtl->channels.c.bits) \
3701 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3702
3703 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3704 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3705 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3706 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3707
3708 #undef COPY_CLEAR_COLOR_CHANNEL
3709 }
3710
3711
3712 struct anv_ycbcr_conversion {
3713 const struct anv_format * format;
3714 VkSamplerYcbcrModelConversion ycbcr_model;
3715 VkSamplerYcbcrRange ycbcr_range;
3716 VkComponentSwizzle mapping[4];
3717 VkChromaLocation chroma_offsets[2];
3718 VkFilter chroma_filter;
3719 bool chroma_reconstruction;
3720 };
3721
3722 struct anv_sampler {
3723 uint32_t state[3][4];
3724 uint32_t n_planes;
3725 struct anv_ycbcr_conversion *conversion;
3726
3727 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3728 * and with a 32-byte stride for use as bindless samplers.
3729 */
3730 struct anv_state bindless_state;
3731 };
3732
3733 struct anv_framebuffer {
3734 uint32_t width;
3735 uint32_t height;
3736 uint32_t layers;
3737
3738 uint32_t attachment_count;
3739 struct anv_image_view * attachments[0];
3740 };
3741
3742 struct anv_subpass_attachment {
3743 VkImageUsageFlagBits usage;
3744 uint32_t attachment;
3745 VkImageLayout layout;
3746 };
3747
3748 struct anv_subpass {
3749 uint32_t attachment_count;
3750
3751 /**
3752 * A pointer to all attachment references used in this subpass.
3753 * Only valid if ::attachment_count > 0.
3754 */
3755 struct anv_subpass_attachment * attachments;
3756 uint32_t input_count;
3757 struct anv_subpass_attachment * input_attachments;
3758 uint32_t color_count;
3759 struct anv_subpass_attachment * color_attachments;
3760 struct anv_subpass_attachment * resolve_attachments;
3761
3762 struct anv_subpass_attachment * depth_stencil_attachment;
3763 struct anv_subpass_attachment * ds_resolve_attachment;
3764 VkResolveModeFlagBitsKHR depth_resolve_mode;
3765 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3766
3767 uint32_t view_mask;
3768
3769 /** Subpass has a depth/stencil self-dependency */
3770 bool has_ds_self_dep;
3771
3772 /** Subpass has at least one color resolve attachment */
3773 bool has_color_resolve;
3774 };
3775
3776 static inline unsigned
3777 anv_subpass_view_count(const struct anv_subpass *subpass)
3778 {
3779 return MAX2(1, util_bitcount(subpass->view_mask));
3780 }
3781
3782 struct anv_render_pass_attachment {
3783 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3784 * its members individually.
3785 */
3786 VkFormat format;
3787 uint32_t samples;
3788 VkImageUsageFlags usage;
3789 VkAttachmentLoadOp load_op;
3790 VkAttachmentStoreOp store_op;
3791 VkAttachmentLoadOp stencil_load_op;
3792 VkImageLayout initial_layout;
3793 VkImageLayout final_layout;
3794 VkImageLayout first_subpass_layout;
3795
3796 /* The subpass id in which the attachment will be used last. */
3797 uint32_t last_subpass_idx;
3798 };
3799
3800 struct anv_render_pass {
3801 uint32_t attachment_count;
3802 uint32_t subpass_count;
3803 /* An array of subpass_count+1 flushes, one per subpass boundary */
3804 enum anv_pipe_bits * subpass_flushes;
3805 struct anv_render_pass_attachment * attachments;
3806 struct anv_subpass subpasses[0];
3807 };
3808
3809 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3810
3811 struct anv_query_pool {
3812 VkQueryType type;
3813 VkQueryPipelineStatisticFlags pipeline_statistics;
3814 /** Stride between slots, in bytes */
3815 uint32_t stride;
3816 /** Number of slots in this query pool */
3817 uint32_t slots;
3818 struct anv_bo * bo;
3819 };
3820
3821 int anv_get_instance_entrypoint_index(const char *name);
3822 int anv_get_device_entrypoint_index(const char *name);
3823 int anv_get_physical_device_entrypoint_index(const char *name);
3824
3825 const char *anv_get_instance_entry_name(int index);
3826 const char *anv_get_physical_device_entry_name(int index);
3827 const char *anv_get_device_entry_name(int index);
3828
3829 bool
3830 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3831 const struct anv_instance_extension_table *instance);
3832 bool
3833 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3834 const struct anv_instance_extension_table *instance);
3835 bool
3836 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3837 const struct anv_instance_extension_table *instance,
3838 const struct anv_device_extension_table *device);
3839
3840 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3841 const char *name);
3842
3843 void anv_dump_image_to_ppm(struct anv_device *device,
3844 struct anv_image *image, unsigned miplevel,
3845 unsigned array_layer, VkImageAspectFlagBits aspect,
3846 const char *filename);
3847
3848 enum anv_dump_action {
3849 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3850 };
3851
3852 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3853 void anv_dump_finish(void);
3854
3855 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3856
3857 static inline uint32_t
3858 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3859 {
3860 /* This function must be called from within a subpass. */
3861 assert(cmd_state->pass && cmd_state->subpass);
3862
3863 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3864
3865 /* The id of this subpass shouldn't exceed the number of subpasses in this
3866 * render pass minus 1.
3867 */
3868 assert(subpass_id < cmd_state->pass->subpass_count);
3869 return subpass_id;
3870 }
3871
3872 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
3873 void anv_device_perf_init(struct anv_device *device);
3874
3875 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3876 \
3877 static inline struct __anv_type * \
3878 __anv_type ## _from_handle(__VkType _handle) \
3879 { \
3880 return (struct __anv_type *) _handle; \
3881 } \
3882 \
3883 static inline __VkType \
3884 __anv_type ## _to_handle(struct __anv_type *_obj) \
3885 { \
3886 return (__VkType) _obj; \
3887 }
3888
3889 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3890 \
3891 static inline struct __anv_type * \
3892 __anv_type ## _from_handle(__VkType _handle) \
3893 { \
3894 return (struct __anv_type *)(uintptr_t) _handle; \
3895 } \
3896 \
3897 static inline __VkType \
3898 __anv_type ## _to_handle(struct __anv_type *_obj) \
3899 { \
3900 return (__VkType)(uintptr_t) _obj; \
3901 }
3902
3903 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3904 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3905
3906 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3907 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3908 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3909 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3910 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3911
3912 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3913 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3914 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3915 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3916 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3917 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3918 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3919 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3920 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3921 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3922 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3923 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3924 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3925 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3926 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3927 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3928 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3929 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3930 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3931 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3932 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3933 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3934 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3935
3936 /* Gen-specific function declarations */
3937 #ifdef genX
3938 # include "anv_genX.h"
3939 #else
3940 # define genX(x) gen7_##x
3941 # include "anv_genX.h"
3942 # undef genX
3943 # define genX(x) gen75_##x
3944 # include "anv_genX.h"
3945 # undef genX
3946 # define genX(x) gen8_##x
3947 # include "anv_genX.h"
3948 # undef genX
3949 # define genX(x) gen9_##x
3950 # include "anv_genX.h"
3951 # undef genX
3952 # define genX(x) gen10_##x
3953 # include "anv_genX.h"
3954 # undef genX
3955 # define genX(x) gen11_##x
3956 # include "anv_genX.h"
3957 # undef genX
3958 # define genX(x) gen12_##x
3959 # include "anv_genX.h"
3960 # undef genX
3961 #endif
3962
3963 #endif /* ANV_PRIVATE_H */