anv: Add an anv_physical_device field to anv_device
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_batch;
73 struct anv_buffer;
74 struct anv_buffer_view;
75 struct anv_image_view;
76 struct anv_instance;
77
78 struct gen_aux_map_context;
79 struct gen_l3_config;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
132 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
133
134 #define LOW_HEAP_SIZE \
135 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
136 #define DYNAMIC_STATE_POOL_SIZE \
137 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
138 #define BINDING_TABLE_POOL_SIZE \
139 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
140 #define SURFACE_STATE_POOL_SIZE \
141 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
142 #define INSTRUCTION_STATE_POOL_SIZE \
143 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
144 #define CLIENT_VISIBLE_HEAP_SIZE \
145 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
146
147 /* Allowing different clear colors requires us to perform a depth resolve at
148 * the end of certain render passes. This is because while slow clears store
149 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
150 * See the PRMs for examples describing when additional resolves would be
151 * necessary. To enable fast clears without requiring extra resolves, we set
152 * the clear value to a globally-defined one. We could allow different values
153 * if the user doesn't expect coherent data during or after a render passes
154 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
155 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
156 * 1.0f seems to be the only value used. The only application that doesn't set
157 * this value does so through the usage of an seemingly uninitialized clear
158 * value.
159 */
160 #define ANV_HZ_FC_VAL 1.0f
161
162 #define MAX_VBS 28
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 128
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_IMAGES 64
172 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
173 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
174 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
175
176 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
177 *
178 * "The surface state model is used when a Binding Table Index (specified
179 * in the message descriptor) of less than 240 is specified. In this model,
180 * the Binding Table Index is used to index into the binding table, and the
181 * binding table entry contains a pointer to the SURFACE_STATE."
182 *
183 * Binding table values above 240 are used for various things in the hardware
184 * such as stateless, stateless with incoherent cache, SLM, and bindless.
185 */
186 #define MAX_BINDING_TABLE_SIZE 240
187
188 /* The kernel relocation API has a limitation of a 32-bit delta value
189 * applied to the address before it is written which, in spite of it being
190 * unsigned, is treated as signed . Because of the way that this maps to
191 * the Vulkan API, we cannot handle an offset into a buffer that does not
192 * fit into a signed 32 bits. The only mechanism we have for dealing with
193 * this at the moment is to limit all VkDeviceMemory objects to a maximum
194 * of 2GB each. The Vulkan spec allows us to do this:
195 *
196 * "Some platforms may have a limit on the maximum size of a single
197 * allocation. For example, certain systems may fail to create
198 * allocations with a size greater than or equal to 4GB. Such a limit is
199 * implementation-dependent, and if such a failure occurs then the error
200 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
201 *
202 * We don't use vk_error here because it's not an error so much as an
203 * indication to the application that the allocation is too large.
204 */
205 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
206
207 #define ANV_SVGS_VB_INDEX MAX_VBS
208 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
209
210 /* We reserve this MI ALU register for the purpose of handling predication.
211 * Other code which uses the MI ALU should leave it alone.
212 */
213 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
214
215 /* For gen12 we set the streamout buffers using 4 separate commands
216 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
217 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
218 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
219 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
220 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
221 * 3DSTATE_SO_BUFFER_INDEX_0.
222 */
223 #define SO_BUFFER_INDEX_0_CMD 0x60
224 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
225
226 static inline uint32_t
227 align_down_npot_u32(uint32_t v, uint32_t a)
228 {
229 return v - (v % a);
230 }
231
232 static inline uint32_t
233 align_u32(uint32_t v, uint32_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline uint64_t
240 align_u64(uint64_t v, uint64_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return (v + a - 1) & ~(a - 1);
244 }
245
246 static inline int32_t
247 align_i32(int32_t v, int32_t a)
248 {
249 assert(a != 0 && a == (a & -a));
250 return (v + a - 1) & ~(a - 1);
251 }
252
253 /** Alignment must be a power of 2. */
254 static inline bool
255 anv_is_aligned(uintmax_t n, uintmax_t a)
256 {
257 assert(a == (a & -a));
258 return (n & (a - 1)) == 0;
259 }
260
261 static inline uint32_t
262 anv_minify(uint32_t n, uint32_t levels)
263 {
264 if (unlikely(n == 0))
265 return 0;
266 else
267 return MAX2(n >> levels, 1);
268 }
269
270 static inline float
271 anv_clamp_f(float f, float min, float max)
272 {
273 assert(min < max);
274
275 if (f > max)
276 return max;
277 else if (f < min)
278 return min;
279 else
280 return f;
281 }
282
283 static inline bool
284 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
285 {
286 if (*inout_mask & clear_mask) {
287 *inout_mask &= ~clear_mask;
288 return true;
289 } else {
290 return false;
291 }
292 }
293
294 static inline union isl_color_value
295 vk_to_isl_color(VkClearColorValue color)
296 {
297 return (union isl_color_value) {
298 .u32 = {
299 color.uint32[0],
300 color.uint32[1],
301 color.uint32[2],
302 color.uint32[3],
303 },
304 };
305 }
306
307 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
308 {
309 uintptr_t mask = (1ull << bits) - 1;
310 *flags = ptr & mask;
311 return (void *) (ptr & ~mask);
312 }
313
314 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
315 {
316 uintptr_t value = (uintptr_t) ptr;
317 uintptr_t mask = (1ull << bits) - 1;
318 return value | (mask & flags);
319 }
320
321 #define for_each_bit(b, dword) \
322 for (uint32_t __dword = (dword); \
323 (b) = __builtin_ffs(__dword) - 1, __dword; \
324 __dword &= ~(1 << (b)))
325
326 #define typed_memcpy(dest, src, count) ({ \
327 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
328 memcpy((dest), (src), (count) * sizeof(*(src))); \
329 })
330
331 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
332 * to be added here in order to utilize mapping in debug/error/perf macros.
333 */
334 #define REPORT_OBJECT_TYPE(o) \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), void*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
428 /* The void expression results in a compile-time error \
429 when assigning the result to something. */ \
430 (void)0)))))))))))))))))))))))))))))))
431
432 /* Whenever we generate an error, pass it through this function. Useful for
433 * debugging, where we can break on it. Only call at error site, not when
434 * propagating errors. Might be useful to plug in a stack trace here.
435 */
436
437 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
438 VkDebugReportObjectTypeEXT type, VkResult error,
439 const char *file, int line, const char *format,
440 va_list args);
441
442 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
443 VkDebugReportObjectTypeEXT type, VkResult error,
444 const char *file, int line, const char *format, ...)
445 anv_printflike(7, 8);
446
447 #ifdef DEBUG
448 #define vk_error(error) __vk_errorf(NULL, NULL,\
449 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
450 error, __FILE__, __LINE__, NULL)
451 #define vk_errorv(instance, obj, error, format, args)\
452 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
453 __FILE__, __LINE__, format, args)
454 #define vk_errorf(instance, obj, error, format, ...)\
455 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
456 __FILE__, __LINE__, format, ## __VA_ARGS__)
457 #else
458 #define vk_error(error) error
459 #define vk_errorf(instance, obj, error, format, ...) error
460 #endif
461
462 /**
463 * Warn on ignored extension structs.
464 *
465 * The Vulkan spec requires us to ignore unsupported or unknown structs in
466 * a pNext chain. In debug mode, emitting warnings for ignored structs may
467 * help us discover structs that we should not have ignored.
468 *
469 *
470 * From the Vulkan 1.0.38 spec:
471 *
472 * Any component of the implementation (the loader, any enabled layers,
473 * and drivers) must skip over, without processing (other than reading the
474 * sType and pNext members) any chained structures with sType values not
475 * defined by extensions supported by that component.
476 */
477 #define anv_debug_ignored_stype(sType) \
478 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
479
480 void __anv_perf_warn(struct anv_instance *instance, const void *object,
481 VkDebugReportObjectTypeEXT type, const char *file,
482 int line, const char *format, ...)
483 anv_printflike(6, 7);
484 void anv_loge(const char *format, ...) anv_printflike(1, 2);
485 void anv_loge_v(const char *format, va_list va);
486
487 /**
488 * Print a FINISHME message, including its source location.
489 */
490 #define anv_finishme(format, ...) \
491 do { \
492 static bool reported = false; \
493 if (!reported) { \
494 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
495 ##__VA_ARGS__); \
496 reported = true; \
497 } \
498 } while (0)
499
500 /**
501 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
502 */
503 #define anv_perf_warn(instance, obj, format, ...) \
504 do { \
505 static bool reported = false; \
506 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
507 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
508 format, ##__VA_ARGS__); \
509 reported = true; \
510 } \
511 } while (0)
512
513 /* A non-fatal assert. Useful for debugging. */
514 #ifdef DEBUG
515 #define anv_assert(x) ({ \
516 if (unlikely(!(x))) \
517 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
518 })
519 #else
520 #define anv_assert(x)
521 #endif
522
523 /* A multi-pointer allocator
524 *
525 * When copying data structures from the user (such as a render pass), it's
526 * common to need to allocate data for a bunch of different things. Instead
527 * of doing several allocations and having to handle all of the error checking
528 * that entails, it can be easier to do a single allocation. This struct
529 * helps facilitate that. The intended usage looks like this:
530 *
531 * ANV_MULTIALLOC(ma)
532 * anv_multialloc_add(&ma, &main_ptr, 1);
533 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
534 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
535 *
536 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
537 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
538 */
539 struct anv_multialloc {
540 size_t size;
541 size_t align;
542
543 uint32_t ptr_count;
544 void **ptrs[8];
545 };
546
547 #define ANV_MULTIALLOC_INIT \
548 ((struct anv_multialloc) { 0, })
549
550 #define ANV_MULTIALLOC(_name) \
551 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
552
553 __attribute__((always_inline))
554 static inline void
555 _anv_multialloc_add(struct anv_multialloc *ma,
556 void **ptr, size_t size, size_t align)
557 {
558 size_t offset = align_u64(ma->size, align);
559 ma->size = offset + size;
560 ma->align = MAX2(ma->align, align);
561
562 /* Store the offset in the pointer. */
563 *ptr = (void *)(uintptr_t)offset;
564
565 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
566 ma->ptrs[ma->ptr_count++] = ptr;
567 }
568
569 #define anv_multialloc_add_size(_ma, _ptr, _size) \
570 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
571
572 #define anv_multialloc_add(_ma, _ptr, _count) \
573 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
574
575 __attribute__((always_inline))
576 static inline void *
577 anv_multialloc_alloc(struct anv_multialloc *ma,
578 const VkAllocationCallbacks *alloc,
579 VkSystemAllocationScope scope)
580 {
581 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
582 if (!ptr)
583 return NULL;
584
585 /* Fill out each of the pointers with their final value.
586 *
587 * for (uint32_t i = 0; i < ma->ptr_count; i++)
588 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
589 *
590 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
591 * constant, GCC is incapable of figuring this out and unrolling the loop
592 * so we have to give it a little help.
593 */
594 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
595 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
596 if ((_i) < ma->ptr_count) \
597 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
598 _ANV_MULTIALLOC_UPDATE_POINTER(0);
599 _ANV_MULTIALLOC_UPDATE_POINTER(1);
600 _ANV_MULTIALLOC_UPDATE_POINTER(2);
601 _ANV_MULTIALLOC_UPDATE_POINTER(3);
602 _ANV_MULTIALLOC_UPDATE_POINTER(4);
603 _ANV_MULTIALLOC_UPDATE_POINTER(5);
604 _ANV_MULTIALLOC_UPDATE_POINTER(6);
605 _ANV_MULTIALLOC_UPDATE_POINTER(7);
606 #undef _ANV_MULTIALLOC_UPDATE_POINTER
607
608 return ptr;
609 }
610
611 __attribute__((always_inline))
612 static inline void *
613 anv_multialloc_alloc2(struct anv_multialloc *ma,
614 const VkAllocationCallbacks *parent_alloc,
615 const VkAllocationCallbacks *alloc,
616 VkSystemAllocationScope scope)
617 {
618 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
619 }
620
621 struct anv_bo {
622 uint32_t gem_handle;
623
624 uint32_t refcount;
625
626 /* Index into the current validation list. This is used by the
627 * validation list building alrogithm to track which buffers are already
628 * in the validation list so that we can ensure uniqueness.
629 */
630 uint32_t index;
631
632 /* Index for use with util_sparse_array_free_list */
633 uint32_t free_index;
634
635 /* Last known offset. This value is provided by the kernel when we
636 * execbuf and is used as the presumed offset for the next bunch of
637 * relocations.
638 */
639 uint64_t offset;
640
641 uint64_t size;
642
643 /* Map for internally mapped BOs.
644 *
645 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
646 */
647 void *map;
648
649 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
650 uint32_t flags;
651
652 /** True if this BO may be shared with other processes */
653 bool is_external:1;
654
655 /** True if this BO is a wrapper
656 *
657 * When set to true, none of the fields in this BO are meaningful except
658 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
659 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
660 * is set in the physical device.
661 */
662 bool is_wrapper:1;
663
664 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
665 bool has_fixed_address:1;
666
667 /** True if this BO wraps a host pointer */
668 bool from_host_ptr:1;
669
670 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
671 bool has_client_visible_address:1;
672 };
673
674 static inline struct anv_bo *
675 anv_bo_ref(struct anv_bo *bo)
676 {
677 p_atomic_inc(&bo->refcount);
678 return bo;
679 }
680
681 static inline struct anv_bo *
682 anv_bo_unwrap(struct anv_bo *bo)
683 {
684 while (bo->is_wrapper)
685 bo = bo->map;
686 return bo;
687 }
688
689 /* Represents a lock-free linked list of "free" things. This is used by
690 * both the block pool and the state pools. Unfortunately, in order to
691 * solve the ABA problem, we can't use a single uint32_t head.
692 */
693 union anv_free_list {
694 struct {
695 uint32_t offset;
696
697 /* A simple count that is incremented every time the head changes. */
698 uint32_t count;
699 };
700 /* Make sure it's aligned to 64 bits. This will make atomic operations
701 * faster on 32 bit platforms.
702 */
703 uint64_t u64 __attribute__ ((aligned (8)));
704 };
705
706 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
707
708 struct anv_block_state {
709 union {
710 struct {
711 uint32_t next;
712 uint32_t end;
713 };
714 /* Make sure it's aligned to 64 bits. This will make atomic operations
715 * faster on 32 bit platforms.
716 */
717 uint64_t u64 __attribute__ ((aligned (8)));
718 };
719 };
720
721 #define anv_block_pool_foreach_bo(bo, pool) \
722 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
723 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
724 _pp_bo++)
725
726 #define ANV_MAX_BLOCK_POOL_BOS 20
727
728 struct anv_block_pool {
729 struct anv_device *device;
730 bool use_softpin;
731
732 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
733 * around the actual BO so that we grow the pool after the wrapper BO has
734 * been put in a relocation list. This is only used in the non-softpin
735 * case.
736 */
737 struct anv_bo wrapper_bo;
738
739 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
740 struct anv_bo *bo;
741 uint32_t nbos;
742
743 uint64_t size;
744
745 /* The address where the start of the pool is pinned. The various bos that
746 * are created as the pool grows will have addresses in the range
747 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
748 */
749 uint64_t start_address;
750
751 /* The offset from the start of the bo to the "center" of the block
752 * pool. Pointers to allocated blocks are given by
753 * bo.map + center_bo_offset + offsets.
754 */
755 uint32_t center_bo_offset;
756
757 /* Current memory map of the block pool. This pointer may or may not
758 * point to the actual beginning of the block pool memory. If
759 * anv_block_pool_alloc_back has ever been called, then this pointer
760 * will point to the "center" position of the buffer and all offsets
761 * (negative or positive) given out by the block pool alloc functions
762 * will be valid relative to this pointer.
763 *
764 * In particular, map == bo.map + center_offset
765 *
766 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
767 * since it will handle the softpin case as well, where this points to NULL.
768 */
769 void *map;
770 int fd;
771
772 /**
773 * Array of mmaps and gem handles owned by the block pool, reclaimed when
774 * the block pool is destroyed.
775 */
776 struct u_vector mmap_cleanups;
777
778 struct anv_block_state state;
779
780 struct anv_block_state back_state;
781 };
782
783 /* Block pools are backed by a fixed-size 1GB memfd */
784 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
785
786 /* The center of the block pool is also the middle of the memfd. This may
787 * change in the future if we decide differently for some reason.
788 */
789 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
790
791 static inline uint32_t
792 anv_block_pool_size(struct anv_block_pool *pool)
793 {
794 return pool->state.end + pool->back_state.end;
795 }
796
797 struct anv_state {
798 int32_t offset;
799 uint32_t alloc_size;
800 void *map;
801 uint32_t idx;
802 };
803
804 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
805
806 struct anv_fixed_size_state_pool {
807 union anv_free_list free_list;
808 struct anv_block_state block;
809 };
810
811 #define ANV_MIN_STATE_SIZE_LOG2 6
812 #define ANV_MAX_STATE_SIZE_LOG2 21
813
814 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
815
816 struct anv_free_entry {
817 uint32_t next;
818 struct anv_state state;
819 };
820
821 struct anv_state_table {
822 struct anv_device *device;
823 int fd;
824 struct anv_free_entry *map;
825 uint32_t size;
826 struct anv_block_state state;
827 struct u_vector cleanups;
828 };
829
830 struct anv_state_pool {
831 struct anv_block_pool block_pool;
832
833 struct anv_state_table table;
834
835 /* The size of blocks which will be allocated from the block pool */
836 uint32_t block_size;
837
838 /** Free list for "back" allocations */
839 union anv_free_list back_alloc_free_list;
840
841 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
842 };
843
844 struct anv_state_stream_block;
845
846 struct anv_state_stream {
847 struct anv_state_pool *state_pool;
848
849 /* The size of blocks to allocate from the state pool */
850 uint32_t block_size;
851
852 /* Current block we're allocating from */
853 struct anv_state block;
854
855 /* Offset into the current block at which to allocate the next state */
856 uint32_t next;
857
858 /* List of all blocks allocated from this pool */
859 struct anv_state_stream_block *block_list;
860 };
861
862 /* The block_pool functions exported for testing only. The block pool should
863 * only be used via a state pool (see below).
864 */
865 VkResult anv_block_pool_init(struct anv_block_pool *pool,
866 struct anv_device *device,
867 uint64_t start_address,
868 uint32_t initial_size);
869 void anv_block_pool_finish(struct anv_block_pool *pool);
870 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
871 uint32_t block_size, uint32_t *padding);
872 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
873 uint32_t block_size);
874 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
875
876 VkResult anv_state_pool_init(struct anv_state_pool *pool,
877 struct anv_device *device,
878 uint64_t start_address,
879 uint32_t block_size);
880 void anv_state_pool_finish(struct anv_state_pool *pool);
881 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
882 uint32_t state_size, uint32_t alignment);
883 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
884 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
885 void anv_state_stream_init(struct anv_state_stream *stream,
886 struct anv_state_pool *state_pool,
887 uint32_t block_size);
888 void anv_state_stream_finish(struct anv_state_stream *stream);
889 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
890 uint32_t size, uint32_t alignment);
891
892 VkResult anv_state_table_init(struct anv_state_table *table,
893 struct anv_device *device,
894 uint32_t initial_entries);
895 void anv_state_table_finish(struct anv_state_table *table);
896 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
897 uint32_t count);
898 void anv_free_list_push(union anv_free_list *list,
899 struct anv_state_table *table,
900 uint32_t idx, uint32_t count);
901 struct anv_state* anv_free_list_pop(union anv_free_list *list,
902 struct anv_state_table *table);
903
904
905 static inline struct anv_state *
906 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
907 {
908 return &table->map[idx].state;
909 }
910 /**
911 * Implements a pool of re-usable BOs. The interface is identical to that
912 * of block_pool except that each block is its own BO.
913 */
914 struct anv_bo_pool {
915 struct anv_device *device;
916
917 struct util_sparse_array_free_list free_list[16];
918 };
919
920 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
921 void anv_bo_pool_finish(struct anv_bo_pool *pool);
922 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
923 struct anv_bo **bo_out);
924 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
925
926 struct anv_scratch_pool {
927 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
928 struct anv_bo *bos[16][MESA_SHADER_STAGES];
929 };
930
931 void anv_scratch_pool_init(struct anv_device *device,
932 struct anv_scratch_pool *pool);
933 void anv_scratch_pool_finish(struct anv_device *device,
934 struct anv_scratch_pool *pool);
935 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
936 struct anv_scratch_pool *pool,
937 gl_shader_stage stage,
938 unsigned per_thread_scratch);
939
940 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
941 struct anv_bo_cache {
942 struct util_sparse_array bo_map;
943 pthread_mutex_t mutex;
944 };
945
946 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
947 void anv_bo_cache_finish(struct anv_bo_cache *cache);
948
949 struct anv_memory_type {
950 /* Standard bits passed on to the client */
951 VkMemoryPropertyFlags propertyFlags;
952 uint32_t heapIndex;
953 };
954
955 struct anv_memory_heap {
956 /* Standard bits passed on to the client */
957 VkDeviceSize size;
958 VkMemoryHeapFlags flags;
959
960 /* Driver-internal book-keeping */
961 VkDeviceSize used;
962 };
963
964 struct anv_physical_device {
965 VK_LOADER_DATA _loader_data;
966
967 struct anv_instance * instance;
968 uint32_t chipset_id;
969 bool no_hw;
970 char path[20];
971 const char * name;
972 struct {
973 uint16_t domain;
974 uint8_t bus;
975 uint8_t device;
976 uint8_t function;
977 } pci_info;
978 struct gen_device_info info;
979 /** Amount of "GPU memory" we want to advertise
980 *
981 * Clearly, this value is bogus since Intel is a UMA architecture. On
982 * gen7 platforms, we are limited by GTT size unless we want to implement
983 * fine-grained tracking and GTT splitting. On Broadwell and above we are
984 * practically unlimited. However, we will never report more than 3/4 of
985 * the total system ram to try and avoid running out of RAM.
986 */
987 bool supports_48bit_addresses;
988 struct brw_compiler * compiler;
989 struct isl_device isl_dev;
990 struct gen_perf_config * perf;
991 int cmd_parser_version;
992 bool has_softpin;
993 bool has_exec_async;
994 bool has_exec_capture;
995 bool has_exec_fence;
996 bool has_syncobj;
997 bool has_syncobj_wait;
998 bool has_context_priority;
999 bool has_context_isolation;
1000 bool has_mem_available;
1001 uint64_t gtt_size;
1002
1003 bool use_softpin;
1004 bool always_use_bindless;
1005
1006 /** True if we can access buffers using A64 messages */
1007 bool has_a64_buffer_access;
1008 /** True if we can use bindless access for images */
1009 bool has_bindless_images;
1010 /** True if we can use bindless access for samplers */
1011 bool has_bindless_samplers;
1012
1013 bool always_flush_cache;
1014
1015 struct anv_device_extension_table supported_extensions;
1016 struct anv_physical_device_dispatch_table dispatch;
1017
1018 uint32_t eu_total;
1019 uint32_t subslice_total;
1020
1021 struct {
1022 uint32_t type_count;
1023 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1024 uint32_t heap_count;
1025 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1026 } memory;
1027
1028 uint8_t driver_build_sha1[20];
1029 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1030 uint8_t driver_uuid[VK_UUID_SIZE];
1031 uint8_t device_uuid[VK_UUID_SIZE];
1032
1033 struct disk_cache * disk_cache;
1034
1035 struct wsi_device wsi_device;
1036 int local_fd;
1037 int master_fd;
1038 };
1039
1040 struct anv_app_info {
1041 const char* app_name;
1042 uint32_t app_version;
1043 const char* engine_name;
1044 uint32_t engine_version;
1045 uint32_t api_version;
1046 };
1047
1048 struct anv_instance {
1049 VK_LOADER_DATA _loader_data;
1050
1051 VkAllocationCallbacks alloc;
1052
1053 struct anv_app_info app_info;
1054
1055 struct anv_instance_extension_table enabled_extensions;
1056 struct anv_instance_dispatch_table dispatch;
1057 struct anv_device_dispatch_table device_dispatch;
1058
1059 int physicalDeviceCount;
1060 struct anv_physical_device physicalDevice;
1061
1062 bool pipeline_cache_enabled;
1063
1064 struct vk_debug_report_instance debug_report_callbacks;
1065
1066 struct driOptionCache dri_options;
1067 struct driOptionCache available_dri_options;
1068 };
1069
1070 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1071 void anv_finish_wsi(struct anv_physical_device *physical_device);
1072
1073 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1074 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1075 const char *name);
1076
1077 struct anv_queue_submit {
1078 struct anv_cmd_buffer * cmd_buffer;
1079
1080 uint32_t fence_count;
1081 uint32_t fence_array_length;
1082 struct drm_i915_gem_exec_fence * fences;
1083
1084 uint32_t temporary_semaphore_count;
1085 uint32_t temporary_semaphore_array_length;
1086 struct anv_semaphore_impl * temporary_semaphores;
1087
1088 /* Semaphores to be signaled with a SYNC_FD. */
1089 struct anv_semaphore ** sync_fd_semaphores;
1090 uint32_t sync_fd_semaphore_count;
1091 uint32_t sync_fd_semaphore_array_length;
1092
1093 /* Allocated only with non shareable timelines. */
1094 struct anv_timeline ** wait_timelines;
1095 uint32_t wait_timeline_count;
1096 uint32_t wait_timeline_array_length;
1097 uint64_t * wait_timeline_values;
1098
1099 struct anv_timeline ** signal_timelines;
1100 uint32_t signal_timeline_count;
1101 uint32_t signal_timeline_array_length;
1102 uint64_t * signal_timeline_values;
1103
1104 int in_fence;
1105 bool need_out_fence;
1106 int out_fence;
1107
1108 uint32_t fence_bo_count;
1109 uint32_t fence_bo_array_length;
1110 /* An array of struct anv_bo pointers with lower bit used as a flag to
1111 * signal we will wait on that BO (see anv_(un)pack_ptr).
1112 */
1113 uintptr_t * fence_bos;
1114
1115 const VkAllocationCallbacks * alloc;
1116 VkSystemAllocationScope alloc_scope;
1117
1118 struct anv_bo * simple_bo;
1119 uint32_t simple_bo_size;
1120
1121 struct list_head link;
1122 };
1123
1124 struct anv_queue {
1125 VK_LOADER_DATA _loader_data;
1126
1127 struct anv_device * device;
1128
1129 /*
1130 * A list of struct anv_queue_submit to be submitted to i915.
1131 */
1132 struct list_head queued_submits;
1133
1134 VkDeviceQueueCreateFlags flags;
1135 };
1136
1137 struct anv_pipeline_cache {
1138 struct anv_device * device;
1139 pthread_mutex_t mutex;
1140
1141 struct hash_table * nir_cache;
1142
1143 struct hash_table * cache;
1144 };
1145
1146 struct nir_xfb_info;
1147 struct anv_pipeline_bind_map;
1148
1149 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1150 struct anv_device *device,
1151 bool cache_enabled);
1152 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1153
1154 struct anv_shader_bin *
1155 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1156 const void *key, uint32_t key_size);
1157 struct anv_shader_bin *
1158 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1159 const void *key_data, uint32_t key_size,
1160 const void *kernel_data, uint32_t kernel_size,
1161 const void *constant_data,
1162 uint32_t constant_data_size,
1163 const struct brw_stage_prog_data *prog_data,
1164 uint32_t prog_data_size,
1165 const struct brw_compile_stats *stats,
1166 uint32_t num_stats,
1167 const struct nir_xfb_info *xfb_info,
1168 const struct anv_pipeline_bind_map *bind_map);
1169
1170 struct anv_shader_bin *
1171 anv_device_search_for_kernel(struct anv_device *device,
1172 struct anv_pipeline_cache *cache,
1173 const void *key_data, uint32_t key_size,
1174 bool *user_cache_bit);
1175
1176 struct anv_shader_bin *
1177 anv_device_upload_kernel(struct anv_device *device,
1178 struct anv_pipeline_cache *cache,
1179 const void *key_data, uint32_t key_size,
1180 const void *kernel_data, uint32_t kernel_size,
1181 const void *constant_data,
1182 uint32_t constant_data_size,
1183 const struct brw_stage_prog_data *prog_data,
1184 uint32_t prog_data_size,
1185 const struct brw_compile_stats *stats,
1186 uint32_t num_stats,
1187 const struct nir_xfb_info *xfb_info,
1188 const struct anv_pipeline_bind_map *bind_map);
1189
1190 struct nir_shader;
1191 struct nir_shader_compiler_options;
1192
1193 struct nir_shader *
1194 anv_device_search_for_nir(struct anv_device *device,
1195 struct anv_pipeline_cache *cache,
1196 const struct nir_shader_compiler_options *nir_options,
1197 unsigned char sha1_key[20],
1198 void *mem_ctx);
1199
1200 void
1201 anv_device_upload_nir(struct anv_device *device,
1202 struct anv_pipeline_cache *cache,
1203 const struct nir_shader *nir,
1204 unsigned char sha1_key[20]);
1205
1206 struct anv_device {
1207 VK_LOADER_DATA _loader_data;
1208
1209 VkAllocationCallbacks alloc;
1210
1211 struct anv_instance * instance;
1212 struct anv_physical_device * physical;
1213 uint32_t chipset_id;
1214 bool no_hw;
1215 struct gen_device_info info;
1216 struct isl_device isl_dev;
1217 int context_id;
1218 int fd;
1219 bool can_chain_batches;
1220 bool robust_buffer_access;
1221 struct anv_device_extension_table enabled_extensions;
1222 struct anv_device_dispatch_table dispatch;
1223
1224 pthread_mutex_t vma_mutex;
1225 struct util_vma_heap vma_lo;
1226 struct util_vma_heap vma_cva;
1227 struct util_vma_heap vma_hi;
1228
1229 /** List of all anv_device_memory objects */
1230 struct list_head memory_objects;
1231
1232 struct anv_bo_pool batch_bo_pool;
1233
1234 struct anv_bo_cache bo_cache;
1235
1236 struct anv_state_pool dynamic_state_pool;
1237 struct anv_state_pool instruction_state_pool;
1238 struct anv_state_pool binding_table_pool;
1239 struct anv_state_pool surface_state_pool;
1240
1241 struct anv_bo * workaround_bo;
1242 struct anv_bo * trivial_batch_bo;
1243 struct anv_bo * hiz_clear_bo;
1244
1245 struct anv_pipeline_cache default_pipeline_cache;
1246 struct blorp_context blorp;
1247
1248 struct anv_state border_colors;
1249
1250 struct anv_state slice_hash;
1251
1252 struct anv_queue queue;
1253
1254 struct anv_scratch_pool scratch_pool;
1255
1256 pthread_mutex_t mutex;
1257 pthread_cond_t queue_submit;
1258 int _lost;
1259
1260 struct gen_batch_decode_ctx decoder_ctx;
1261 /*
1262 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1263 * the cmd_buffer's list.
1264 */
1265 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1266
1267 int perf_fd; /* -1 if no opened */
1268 uint64_t perf_metric; /* 0 if unset */
1269
1270 struct gen_aux_map_context *aux_map_ctx;
1271 };
1272
1273 static inline struct anv_state_pool *
1274 anv_binding_table_pool(struct anv_device *device)
1275 {
1276 if (device->physical->use_softpin)
1277 return &device->binding_table_pool;
1278 else
1279 return &device->surface_state_pool;
1280 }
1281
1282 static inline struct anv_state
1283 anv_binding_table_pool_alloc(struct anv_device *device) {
1284 if (device->physical->use_softpin)
1285 return anv_state_pool_alloc(&device->binding_table_pool,
1286 device->binding_table_pool.block_size, 0);
1287 else
1288 return anv_state_pool_alloc_back(&device->surface_state_pool);
1289 }
1290
1291 static inline void
1292 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1293 anv_state_pool_free(anv_binding_table_pool(device), state);
1294 }
1295
1296 static inline uint32_t
1297 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1298 {
1299 if (bo->is_external)
1300 return device->isl_dev.mocs.external;
1301 else
1302 return device->isl_dev.mocs.internal;
1303 }
1304
1305 void anv_device_init_blorp(struct anv_device *device);
1306 void anv_device_finish_blorp(struct anv_device *device);
1307
1308 void _anv_device_set_all_queue_lost(struct anv_device *device);
1309 VkResult _anv_device_set_lost(struct anv_device *device,
1310 const char *file, int line,
1311 const char *msg, ...)
1312 anv_printflike(4, 5);
1313 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1314 const char *file, int line,
1315 const char *msg, ...)
1316 anv_printflike(4, 5);
1317 #define anv_device_set_lost(dev, ...) \
1318 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1319 #define anv_queue_set_lost(queue, ...) \
1320 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1321
1322 static inline bool
1323 anv_device_is_lost(struct anv_device *device)
1324 {
1325 return unlikely(p_atomic_read(&device->_lost));
1326 }
1327
1328 VkResult anv_device_query_status(struct anv_device *device);
1329
1330
1331 enum anv_bo_alloc_flags {
1332 /** Specifies that the BO must have a 32-bit address
1333 *
1334 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1335 */
1336 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1337
1338 /** Specifies that the BO may be shared externally */
1339 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1340
1341 /** Specifies that the BO should be mapped */
1342 ANV_BO_ALLOC_MAPPED = (1 << 2),
1343
1344 /** Specifies that the BO should be snooped so we get coherency */
1345 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1346
1347 /** Specifies that the BO should be captured in error states */
1348 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1349
1350 /** Specifies that the BO will have an address assigned by the caller
1351 *
1352 * Such BOs do not exist in any VMA heap.
1353 */
1354 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1355
1356 /** Enables implicit synchronization on the BO
1357 *
1358 * This is the opposite of EXEC_OBJECT_ASYNC.
1359 */
1360 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1361
1362 /** Enables implicit synchronization on the BO
1363 *
1364 * This is equivalent to EXEC_OBJECT_WRITE.
1365 */
1366 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1367
1368 /** Has an address which is visible to the client */
1369 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1370 };
1371
1372 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1373 enum anv_bo_alloc_flags alloc_flags,
1374 uint64_t explicit_address,
1375 struct anv_bo **bo);
1376 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1377 void *host_ptr, uint32_t size,
1378 enum anv_bo_alloc_flags alloc_flags,
1379 uint64_t client_address,
1380 struct anv_bo **bo_out);
1381 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1382 enum anv_bo_alloc_flags alloc_flags,
1383 uint64_t client_address,
1384 struct anv_bo **bo);
1385 VkResult anv_device_export_bo(struct anv_device *device,
1386 struct anv_bo *bo, int *fd_out);
1387 void anv_device_release_bo(struct anv_device *device,
1388 struct anv_bo *bo);
1389
1390 static inline struct anv_bo *
1391 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1392 {
1393 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1394 }
1395
1396 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1397 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1398 int64_t timeout);
1399
1400 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1401 void anv_queue_finish(struct anv_queue *queue);
1402
1403 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1404 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1405 struct anv_batch *batch);
1406
1407 uint64_t anv_gettime_ns(void);
1408 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1409
1410 void* anv_gem_mmap(struct anv_device *device,
1411 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1412 void anv_gem_munmap(void *p, uint64_t size);
1413 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1414 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1415 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1416 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1417 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1418 int anv_gem_execbuffer(struct anv_device *device,
1419 struct drm_i915_gem_execbuffer2 *execbuf);
1420 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1421 uint32_t stride, uint32_t tiling);
1422 int anv_gem_create_context(struct anv_device *device);
1423 bool anv_gem_has_context_priority(int fd);
1424 int anv_gem_destroy_context(struct anv_device *device, int context);
1425 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1426 uint64_t value);
1427 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1428 uint64_t *value);
1429 int anv_gem_get_param(int fd, uint32_t param);
1430 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1431 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1432 int anv_gem_get_aperture(int fd, uint64_t *size);
1433 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1434 uint32_t *active, uint32_t *pending);
1435 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1436 int anv_gem_reg_read(struct anv_device *device,
1437 uint32_t offset, uint64_t *result);
1438 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1439 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1440 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1441 uint32_t read_domains, uint32_t write_domain);
1442 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1443 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1444 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1445 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1446 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1447 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1448 uint32_t handle);
1449 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1450 uint32_t handle, int fd);
1451 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1452 bool anv_gem_supports_syncobj_wait(int fd);
1453 int anv_gem_syncobj_wait(struct anv_device *device,
1454 uint32_t *handles, uint32_t num_handles,
1455 int64_t abs_timeout_ns, bool wait_all);
1456
1457 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo,
1458 uint64_t client_address);
1459 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1460
1461 struct anv_reloc_list {
1462 uint32_t num_relocs;
1463 uint32_t array_length;
1464 struct drm_i915_gem_relocation_entry * relocs;
1465 struct anv_bo ** reloc_bos;
1466 uint32_t dep_words;
1467 BITSET_WORD * deps;
1468 };
1469
1470 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1471 const VkAllocationCallbacks *alloc);
1472 void anv_reloc_list_finish(struct anv_reloc_list *list,
1473 const VkAllocationCallbacks *alloc);
1474
1475 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1476 const VkAllocationCallbacks *alloc,
1477 uint32_t offset, struct anv_bo *target_bo,
1478 uint32_t delta, uint64_t *address_u64_out);
1479
1480 struct anv_batch_bo {
1481 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1482 struct list_head link;
1483
1484 struct anv_bo * bo;
1485
1486 /* Bytes actually consumed in this batch BO */
1487 uint32_t length;
1488
1489 struct anv_reloc_list relocs;
1490 };
1491
1492 struct anv_batch {
1493 const VkAllocationCallbacks * alloc;
1494
1495 void * start;
1496 void * end;
1497 void * next;
1498
1499 struct anv_reloc_list * relocs;
1500
1501 /* This callback is called (with the associated user data) in the event
1502 * that the batch runs out of space.
1503 */
1504 VkResult (*extend_cb)(struct anv_batch *, void *);
1505 void * user_data;
1506
1507 /**
1508 * Current error status of the command buffer. Used to track inconsistent
1509 * or incomplete command buffer states that are the consequence of run-time
1510 * errors such as out of memory scenarios. We want to track this in the
1511 * batch because the command buffer object is not visible to some parts
1512 * of the driver.
1513 */
1514 VkResult status;
1515 };
1516
1517 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1518 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1519 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1520 void *location, struct anv_bo *bo, uint32_t offset);
1521
1522 static inline VkResult
1523 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1524 {
1525 assert(error != VK_SUCCESS);
1526 if (batch->status == VK_SUCCESS)
1527 batch->status = error;
1528 return batch->status;
1529 }
1530
1531 static inline bool
1532 anv_batch_has_error(struct anv_batch *batch)
1533 {
1534 return batch->status != VK_SUCCESS;
1535 }
1536
1537 struct anv_address {
1538 struct anv_bo *bo;
1539 uint32_t offset;
1540 };
1541
1542 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1543
1544 static inline bool
1545 anv_address_is_null(struct anv_address addr)
1546 {
1547 return addr.bo == NULL && addr.offset == 0;
1548 }
1549
1550 static inline uint64_t
1551 anv_address_physical(struct anv_address addr)
1552 {
1553 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1554 return gen_canonical_address(addr.bo->offset + addr.offset);
1555 else
1556 return gen_canonical_address(addr.offset);
1557 }
1558
1559 static inline struct anv_address
1560 anv_address_add(struct anv_address addr, uint64_t offset)
1561 {
1562 addr.offset += offset;
1563 return addr;
1564 }
1565
1566 static inline void
1567 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1568 {
1569 unsigned reloc_size = 0;
1570 if (device->info.gen >= 8) {
1571 reloc_size = sizeof(uint64_t);
1572 *(uint64_t *)p = gen_canonical_address(v);
1573 } else {
1574 reloc_size = sizeof(uint32_t);
1575 *(uint32_t *)p = v;
1576 }
1577
1578 if (flush && !device->info.has_llc)
1579 gen_flush_range(p, reloc_size);
1580 }
1581
1582 static inline uint64_t
1583 _anv_combine_address(struct anv_batch *batch, void *location,
1584 const struct anv_address address, uint32_t delta)
1585 {
1586 if (address.bo == NULL) {
1587 return address.offset + delta;
1588 } else {
1589 assert(batch->start <= location && location < batch->end);
1590
1591 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1592 }
1593 }
1594
1595 #define __gen_address_type struct anv_address
1596 #define __gen_user_data struct anv_batch
1597 #define __gen_combine_address _anv_combine_address
1598
1599 /* Wrapper macros needed to work around preprocessor argument issues. In
1600 * particular, arguments don't get pre-evaluated if they are concatenated.
1601 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1602 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1603 * We can work around this easily enough with these helpers.
1604 */
1605 #define __anv_cmd_length(cmd) cmd ## _length
1606 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1607 #define __anv_cmd_header(cmd) cmd ## _header
1608 #define __anv_cmd_pack(cmd) cmd ## _pack
1609 #define __anv_reg_num(reg) reg ## _num
1610
1611 #define anv_pack_struct(dst, struc, ...) do { \
1612 struct struc __template = { \
1613 __VA_ARGS__ \
1614 }; \
1615 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1616 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1617 } while (0)
1618
1619 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1620 void *__dst = anv_batch_emit_dwords(batch, n); \
1621 if (__dst) { \
1622 struct cmd __template = { \
1623 __anv_cmd_header(cmd), \
1624 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1625 __VA_ARGS__ \
1626 }; \
1627 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1628 } \
1629 __dst; \
1630 })
1631
1632 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1633 do { \
1634 uint32_t *dw; \
1635 \
1636 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1637 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1638 if (!dw) \
1639 break; \
1640 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1641 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1642 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1643 } while (0)
1644
1645 #define anv_batch_emit(batch, cmd, name) \
1646 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1647 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1648 __builtin_expect(_dst != NULL, 1); \
1649 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1650 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1651 _dst = NULL; \
1652 }))
1653
1654 struct anv_device_memory {
1655 struct list_head link;
1656
1657 struct anv_bo * bo;
1658 struct anv_memory_type * type;
1659 VkDeviceSize map_size;
1660 void * map;
1661
1662 /* If set, we are holding reference to AHardwareBuffer
1663 * which we must release when memory is freed.
1664 */
1665 struct AHardwareBuffer * ahw;
1666
1667 /* If set, this memory comes from a host pointer. */
1668 void * host_ptr;
1669 };
1670
1671 /**
1672 * Header for Vertex URB Entry (VUE)
1673 */
1674 struct anv_vue_header {
1675 uint32_t Reserved;
1676 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1677 uint32_t ViewportIndex;
1678 float PointWidth;
1679 };
1680
1681 /** Struct representing a sampled image descriptor
1682 *
1683 * This descriptor layout is used for sampled images, bare sampler, and
1684 * combined image/sampler descriptors.
1685 */
1686 struct anv_sampled_image_descriptor {
1687 /** Bindless image handle
1688 *
1689 * This is expected to already be shifted such that the 20-bit
1690 * SURFACE_STATE table index is in the top 20 bits.
1691 */
1692 uint32_t image;
1693
1694 /** Bindless sampler handle
1695 *
1696 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1697 * to the dynamic state base address.
1698 */
1699 uint32_t sampler;
1700 };
1701
1702 struct anv_texture_swizzle_descriptor {
1703 /** Texture swizzle
1704 *
1705 * See also nir_intrinsic_channel_select_intel
1706 */
1707 uint8_t swizzle[4];
1708
1709 /** Unused padding to ensure the struct is a multiple of 64 bits */
1710 uint32_t _pad;
1711 };
1712
1713 /** Struct representing a storage image descriptor */
1714 struct anv_storage_image_descriptor {
1715 /** Bindless image handles
1716 *
1717 * These are expected to already be shifted such that the 20-bit
1718 * SURFACE_STATE table index is in the top 20 bits.
1719 */
1720 uint32_t read_write;
1721 uint32_t write_only;
1722 };
1723
1724 /** Struct representing a address/range descriptor
1725 *
1726 * The fields of this struct correspond directly to the data layout of
1727 * nir_address_format_64bit_bounded_global addresses. The last field is the
1728 * offset in the NIR address so it must be zero so that when you load the
1729 * descriptor you get a pointer to the start of the range.
1730 */
1731 struct anv_address_range_descriptor {
1732 uint64_t address;
1733 uint32_t range;
1734 uint32_t zero;
1735 };
1736
1737 enum anv_descriptor_data {
1738 /** The descriptor contains a BTI reference to a surface state */
1739 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1740 /** The descriptor contains a BTI reference to a sampler state */
1741 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1742 /** The descriptor contains an actual buffer view */
1743 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1744 /** The descriptor contains auxiliary image layout data */
1745 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1746 /** The descriptor contains auxiliary image layout data */
1747 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1748 /** anv_address_range_descriptor with a buffer address and range */
1749 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1750 /** Bindless surface handle */
1751 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1752 /** Storage image handles */
1753 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1754 /** Storage image handles */
1755 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1756 };
1757
1758 struct anv_descriptor_set_binding_layout {
1759 #ifndef NDEBUG
1760 /* The type of the descriptors in this binding */
1761 VkDescriptorType type;
1762 #endif
1763
1764 /* Flags provided when this binding was created */
1765 VkDescriptorBindingFlagsEXT flags;
1766
1767 /* Bitfield representing the type of data this descriptor contains */
1768 enum anv_descriptor_data data;
1769
1770 /* Maximum number of YCbCr texture/sampler planes */
1771 uint8_t max_plane_count;
1772
1773 /* Number of array elements in this binding (or size in bytes for inline
1774 * uniform data)
1775 */
1776 uint16_t array_size;
1777
1778 /* Index into the flattend descriptor set */
1779 uint16_t descriptor_index;
1780
1781 /* Index into the dynamic state array for a dynamic buffer */
1782 int16_t dynamic_offset_index;
1783
1784 /* Index into the descriptor set buffer views */
1785 int16_t buffer_view_index;
1786
1787 /* Offset into the descriptor buffer where this descriptor lives */
1788 uint32_t descriptor_offset;
1789
1790 /* Immutable samplers (or NULL if no immutable samplers) */
1791 struct anv_sampler **immutable_samplers;
1792 };
1793
1794 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1795
1796 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1797 VkDescriptorType type);
1798
1799 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1800 const struct anv_descriptor_set_binding_layout *binding,
1801 bool sampler);
1802
1803 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1804 const struct anv_descriptor_set_binding_layout *binding,
1805 bool sampler);
1806
1807 struct anv_descriptor_set_layout {
1808 /* Descriptor set layouts can be destroyed at almost any time */
1809 uint32_t ref_cnt;
1810
1811 /* Number of bindings in this descriptor set */
1812 uint16_t binding_count;
1813
1814 /* Total size of the descriptor set with room for all array entries */
1815 uint16_t size;
1816
1817 /* Shader stages affected by this descriptor set */
1818 uint16_t shader_stages;
1819
1820 /* Number of buffer views in this descriptor set */
1821 uint16_t buffer_view_count;
1822
1823 /* Number of dynamic offsets used by this descriptor set */
1824 uint16_t dynamic_offset_count;
1825
1826 /* For each shader stage, which offsets apply to that stage */
1827 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1828
1829 /* Size of the descriptor buffer for this descriptor set */
1830 uint32_t descriptor_buffer_size;
1831
1832 /* Bindings in this descriptor set */
1833 struct anv_descriptor_set_binding_layout binding[0];
1834 };
1835
1836 static inline void
1837 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1838 {
1839 assert(layout && layout->ref_cnt >= 1);
1840 p_atomic_inc(&layout->ref_cnt);
1841 }
1842
1843 static inline void
1844 anv_descriptor_set_layout_unref(struct anv_device *device,
1845 struct anv_descriptor_set_layout *layout)
1846 {
1847 assert(layout && layout->ref_cnt >= 1);
1848 if (p_atomic_dec_zero(&layout->ref_cnt))
1849 vk_free(&device->alloc, layout);
1850 }
1851
1852 struct anv_descriptor {
1853 VkDescriptorType type;
1854
1855 union {
1856 struct {
1857 VkImageLayout layout;
1858 struct anv_image_view *image_view;
1859 struct anv_sampler *sampler;
1860 };
1861
1862 struct {
1863 struct anv_buffer *buffer;
1864 uint64_t offset;
1865 uint64_t range;
1866 };
1867
1868 struct anv_buffer_view *buffer_view;
1869 };
1870 };
1871
1872 struct anv_descriptor_set {
1873 struct anv_descriptor_pool *pool;
1874 struct anv_descriptor_set_layout *layout;
1875 uint32_t size;
1876
1877 /* State relative to anv_descriptor_pool::bo */
1878 struct anv_state desc_mem;
1879 /* Surface state for the descriptor buffer */
1880 struct anv_state desc_surface_state;
1881
1882 uint32_t buffer_view_count;
1883 struct anv_buffer_view *buffer_views;
1884
1885 /* Link to descriptor pool's desc_sets list . */
1886 struct list_head pool_link;
1887
1888 struct anv_descriptor descriptors[0];
1889 };
1890
1891 struct anv_buffer_view {
1892 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1893 uint64_t range; /**< VkBufferViewCreateInfo::range */
1894
1895 struct anv_address address;
1896
1897 struct anv_state surface_state;
1898 struct anv_state storage_surface_state;
1899 struct anv_state writeonly_storage_surface_state;
1900
1901 struct brw_image_param storage_image_param;
1902 };
1903
1904 struct anv_push_descriptor_set {
1905 struct anv_descriptor_set set;
1906
1907 /* Put this field right behind anv_descriptor_set so it fills up the
1908 * descriptors[0] field. */
1909 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1910
1911 /** True if the descriptor set buffer has been referenced by a draw or
1912 * dispatch command.
1913 */
1914 bool set_used_on_gpu;
1915
1916 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1917 };
1918
1919 struct anv_descriptor_pool {
1920 uint32_t size;
1921 uint32_t next;
1922 uint32_t free_list;
1923
1924 struct anv_bo *bo;
1925 struct util_vma_heap bo_heap;
1926
1927 struct anv_state_stream surface_state_stream;
1928 void *surface_state_free_list;
1929
1930 struct list_head desc_sets;
1931
1932 char data[0];
1933 };
1934
1935 enum anv_descriptor_template_entry_type {
1936 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1937 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1938 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1939 };
1940
1941 struct anv_descriptor_template_entry {
1942 /* The type of descriptor in this entry */
1943 VkDescriptorType type;
1944
1945 /* Binding in the descriptor set */
1946 uint32_t binding;
1947
1948 /* Offset at which to write into the descriptor set binding */
1949 uint32_t array_element;
1950
1951 /* Number of elements to write into the descriptor set binding */
1952 uint32_t array_count;
1953
1954 /* Offset into the user provided data */
1955 size_t offset;
1956
1957 /* Stride between elements into the user provided data */
1958 size_t stride;
1959 };
1960
1961 struct anv_descriptor_update_template {
1962 VkPipelineBindPoint bind_point;
1963
1964 /* The descriptor set this template corresponds to. This value is only
1965 * valid if the template was created with the templateType
1966 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1967 */
1968 uint8_t set;
1969
1970 /* Number of entries in this template */
1971 uint32_t entry_count;
1972
1973 /* Entries of the template */
1974 struct anv_descriptor_template_entry entries[0];
1975 };
1976
1977 size_t
1978 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1979
1980 void
1981 anv_descriptor_set_write_image_view(struct anv_device *device,
1982 struct anv_descriptor_set *set,
1983 const VkDescriptorImageInfo * const info,
1984 VkDescriptorType type,
1985 uint32_t binding,
1986 uint32_t element);
1987
1988 void
1989 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1990 struct anv_descriptor_set *set,
1991 VkDescriptorType type,
1992 struct anv_buffer_view *buffer_view,
1993 uint32_t binding,
1994 uint32_t element);
1995
1996 void
1997 anv_descriptor_set_write_buffer(struct anv_device *device,
1998 struct anv_descriptor_set *set,
1999 struct anv_state_stream *alloc_stream,
2000 VkDescriptorType type,
2001 struct anv_buffer *buffer,
2002 uint32_t binding,
2003 uint32_t element,
2004 VkDeviceSize offset,
2005 VkDeviceSize range);
2006 void
2007 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2008 struct anv_descriptor_set *set,
2009 uint32_t binding,
2010 const void *data,
2011 size_t offset,
2012 size_t size);
2013
2014 void
2015 anv_descriptor_set_write_template(struct anv_device *device,
2016 struct anv_descriptor_set *set,
2017 struct anv_state_stream *alloc_stream,
2018 const struct anv_descriptor_update_template *template,
2019 const void *data);
2020
2021 VkResult
2022 anv_descriptor_set_create(struct anv_device *device,
2023 struct anv_descriptor_pool *pool,
2024 struct anv_descriptor_set_layout *layout,
2025 struct anv_descriptor_set **out_set);
2026
2027 void
2028 anv_descriptor_set_destroy(struct anv_device *device,
2029 struct anv_descriptor_pool *pool,
2030 struct anv_descriptor_set *set);
2031
2032 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2033 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2034 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2035 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2036 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2037 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2038
2039 struct anv_pipeline_binding {
2040 /** Index in the descriptor set
2041 *
2042 * This is a flattened index; the descriptor set layout is already taken
2043 * into account.
2044 */
2045 uint32_t index;
2046
2047 /** The descriptor set this surface corresponds to.
2048 *
2049 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2050 * binding is not a normal descriptor set but something else.
2051 */
2052 uint8_t set;
2053
2054 union {
2055 /** Plane in the binding index for images */
2056 uint8_t plane;
2057
2058 /** Input attachment index (relative to the subpass) */
2059 uint8_t input_attachment_index;
2060
2061 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2062 uint8_t dynamic_offset_index;
2063 };
2064
2065 /** For a storage image, whether it is write-only */
2066 uint8_t write_only;
2067
2068 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2069 * assuming POD zero-initialization.
2070 */
2071 uint8_t pad;
2072 };
2073
2074 struct anv_push_range {
2075 /** Index in the descriptor set */
2076 uint32_t index;
2077
2078 /** Descriptor set index */
2079 uint8_t set;
2080
2081 /** Dynamic offset index (for dynamic UBOs) */
2082 uint8_t dynamic_offset_index;
2083
2084 /** Start offset in units of 32B */
2085 uint8_t start;
2086
2087 /** Range in units of 32B */
2088 uint8_t length;
2089 };
2090
2091 struct anv_pipeline_layout {
2092 struct {
2093 struct anv_descriptor_set_layout *layout;
2094 uint32_t dynamic_offset_start;
2095 } set[MAX_SETS];
2096
2097 uint32_t num_sets;
2098
2099 unsigned char sha1[20];
2100 };
2101
2102 struct anv_buffer {
2103 struct anv_device * device;
2104 VkDeviceSize size;
2105
2106 VkBufferUsageFlags usage;
2107
2108 /* Set when bound */
2109 struct anv_address address;
2110 };
2111
2112 static inline uint64_t
2113 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2114 {
2115 assert(offset <= buffer->size);
2116 if (range == VK_WHOLE_SIZE) {
2117 return buffer->size - offset;
2118 } else {
2119 assert(range + offset >= range);
2120 assert(range + offset <= buffer->size);
2121 return range;
2122 }
2123 }
2124
2125 enum anv_cmd_dirty_bits {
2126 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2127 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2128 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2129 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2130 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2131 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2132 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2133 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2134 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2135 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2136 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2137 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2138 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2139 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2140 };
2141 typedef uint32_t anv_cmd_dirty_mask_t;
2142
2143 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2144 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2145 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2146 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2147 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2148 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2149 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2150 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2151 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2152 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2153 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2154
2155 static inline enum anv_cmd_dirty_bits
2156 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2157 {
2158 switch (vk_state) {
2159 case VK_DYNAMIC_STATE_VIEWPORT:
2160 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2161 case VK_DYNAMIC_STATE_SCISSOR:
2162 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2163 case VK_DYNAMIC_STATE_LINE_WIDTH:
2164 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2165 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2166 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2167 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2168 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2169 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2170 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2171 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2172 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2173 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2174 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2175 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2176 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2177 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2178 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2179 default:
2180 assert(!"Unsupported dynamic state");
2181 return 0;
2182 }
2183 }
2184
2185
2186 enum anv_pipe_bits {
2187 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2188 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2189 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2190 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2191 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2192 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2193 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2194 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2195 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2196 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2197 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2198 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2199
2200 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2201 * a flush has happened but not a CS stall. The next time we do any sort
2202 * of invalidation we need to insert a CS stall at that time. Otherwise,
2203 * we would have to CS stall on every flush which could be bad.
2204 */
2205 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2206
2207 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2208 * target operations related to transfer commands with VkBuffer as
2209 * destination are ongoing. Some operations like copies on the command
2210 * streamer might need to be aware of this to trigger the appropriate stall
2211 * before they can proceed with the copy.
2212 */
2213 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2214 };
2215
2216 #define ANV_PIPE_FLUSH_BITS ( \
2217 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2218 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2219 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2220 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2221
2222 #define ANV_PIPE_STALL_BITS ( \
2223 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2224 ANV_PIPE_DEPTH_STALL_BIT | \
2225 ANV_PIPE_CS_STALL_BIT)
2226
2227 #define ANV_PIPE_INVALIDATE_BITS ( \
2228 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2229 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2230 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2231 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2232 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2233 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2234
2235 static inline enum anv_pipe_bits
2236 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2237 {
2238 enum anv_pipe_bits pipe_bits = 0;
2239
2240 unsigned b;
2241 for_each_bit(b, flags) {
2242 switch ((VkAccessFlagBits)(1 << b)) {
2243 case VK_ACCESS_SHADER_WRITE_BIT:
2244 /* We're transitioning a buffer that was previously used as write
2245 * destination through the data port. To make its content available
2246 * to future operations, flush the data cache.
2247 */
2248 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2249 break;
2250 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2251 /* We're transitioning a buffer that was previously used as render
2252 * target. To make its content available to future operations, flush
2253 * the render target cache.
2254 */
2255 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2256 break;
2257 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2258 /* We're transitioning a buffer that was previously used as depth
2259 * buffer. To make its content available to future operations, flush
2260 * the depth cache.
2261 */
2262 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2263 break;
2264 case VK_ACCESS_TRANSFER_WRITE_BIT:
2265 /* We're transitioning a buffer that was previously used as a
2266 * transfer write destination. Generic write operations include color
2267 * & depth operations as well as buffer operations like :
2268 * - vkCmdClearColorImage()
2269 * - vkCmdClearDepthStencilImage()
2270 * - vkCmdBlitImage()
2271 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2272 *
2273 * Most of these operations are implemented using Blorp which writes
2274 * through the render target, so flush that cache to make it visible
2275 * to future operations. And for depth related operations we also
2276 * need to flush the depth cache.
2277 */
2278 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2279 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2280 break;
2281 case VK_ACCESS_MEMORY_WRITE_BIT:
2282 /* We're transitioning a buffer for generic write operations. Flush
2283 * all the caches.
2284 */
2285 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2286 break;
2287 default:
2288 break; /* Nothing to do */
2289 }
2290 }
2291
2292 return pipe_bits;
2293 }
2294
2295 static inline enum anv_pipe_bits
2296 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2297 {
2298 enum anv_pipe_bits pipe_bits = 0;
2299
2300 unsigned b;
2301 for_each_bit(b, flags) {
2302 switch ((VkAccessFlagBits)(1 << b)) {
2303 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2304 /* Indirect draw commands take a buffer as input that we're going to
2305 * read from the command streamer to load some of the HW registers
2306 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2307 * command streamer stall so that all the cache flushes have
2308 * completed before the command streamer loads from memory.
2309 */
2310 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2311 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2312 * through a vertex buffer, so invalidate that cache.
2313 */
2314 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2315 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2316 * UBO from the buffer, so we need to invalidate constant cache.
2317 */
2318 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2319 break;
2320 case VK_ACCESS_INDEX_READ_BIT:
2321 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2322 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2323 * commands, so we invalidate the VF cache to make sure there is no
2324 * stale data when we start rendering.
2325 */
2326 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2327 break;
2328 case VK_ACCESS_UNIFORM_READ_BIT:
2329 /* We transitioning a buffer to be used as uniform data. Because
2330 * uniform is accessed through the data port & sampler, we need to
2331 * invalidate the texture cache (sampler) & constant cache (data
2332 * port) to avoid stale data.
2333 */
2334 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2335 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2336 break;
2337 case VK_ACCESS_SHADER_READ_BIT:
2338 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2339 case VK_ACCESS_TRANSFER_READ_BIT:
2340 /* Transitioning a buffer to be read through the sampler, so
2341 * invalidate the texture cache, we don't want any stale data.
2342 */
2343 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2344 break;
2345 case VK_ACCESS_MEMORY_READ_BIT:
2346 /* Transitioning a buffer for generic read, invalidate all the
2347 * caches.
2348 */
2349 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2350 break;
2351 case VK_ACCESS_MEMORY_WRITE_BIT:
2352 /* Generic write, make sure all previously written things land in
2353 * memory.
2354 */
2355 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2356 break;
2357 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2358 /* Transitioning a buffer for conditional rendering. We'll load the
2359 * content of this buffer into HW registers using the command
2360 * streamer, so we need to stall the command streamer to make sure
2361 * any in-flight flush operations have completed.
2362 */
2363 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2364 break;
2365 default:
2366 break; /* Nothing to do */
2367 }
2368 }
2369
2370 return pipe_bits;
2371 }
2372
2373 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2374 VK_IMAGE_ASPECT_COLOR_BIT | \
2375 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2376 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2377 VK_IMAGE_ASPECT_PLANE_2_BIT)
2378 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2379 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2380 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2381 VK_IMAGE_ASPECT_PLANE_2_BIT)
2382
2383 struct anv_vertex_binding {
2384 struct anv_buffer * buffer;
2385 VkDeviceSize offset;
2386 };
2387
2388 struct anv_xfb_binding {
2389 struct anv_buffer * buffer;
2390 VkDeviceSize offset;
2391 VkDeviceSize size;
2392 };
2393
2394 struct anv_push_constants {
2395 /** Push constant data provided by the client through vkPushConstants */
2396 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2397
2398 /** Dynamic offsets for dynamic UBOs and SSBOs */
2399 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2400
2401 struct {
2402 /** Base workgroup ID
2403 *
2404 * Used for vkCmdDispatchBase.
2405 */
2406 uint32_t base_work_group_id[3];
2407
2408 /** Subgroup ID
2409 *
2410 * This is never set by software but is implicitly filled out when
2411 * uploading the push constants for compute shaders.
2412 */
2413 uint32_t subgroup_id;
2414
2415 /** Pad out to a multiple of 32 bytes */
2416 uint32_t pad[4];
2417 } cs;
2418 };
2419
2420 struct anv_dynamic_state {
2421 struct {
2422 uint32_t count;
2423 VkViewport viewports[MAX_VIEWPORTS];
2424 } viewport;
2425
2426 struct {
2427 uint32_t count;
2428 VkRect2D scissors[MAX_SCISSORS];
2429 } scissor;
2430
2431 float line_width;
2432
2433 struct {
2434 float bias;
2435 float clamp;
2436 float slope;
2437 } depth_bias;
2438
2439 float blend_constants[4];
2440
2441 struct {
2442 float min;
2443 float max;
2444 } depth_bounds;
2445
2446 struct {
2447 uint32_t front;
2448 uint32_t back;
2449 } stencil_compare_mask;
2450
2451 struct {
2452 uint32_t front;
2453 uint32_t back;
2454 } stencil_write_mask;
2455
2456 struct {
2457 uint32_t front;
2458 uint32_t back;
2459 } stencil_reference;
2460
2461 struct {
2462 uint32_t factor;
2463 uint16_t pattern;
2464 } line_stipple;
2465 };
2466
2467 extern const struct anv_dynamic_state default_dynamic_state;
2468
2469 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2470 const struct anv_dynamic_state *src,
2471 uint32_t copy_mask);
2472
2473 struct anv_surface_state {
2474 struct anv_state state;
2475 /** Address of the surface referred to by this state
2476 *
2477 * This address is relative to the start of the BO.
2478 */
2479 struct anv_address address;
2480 /* Address of the aux surface, if any
2481 *
2482 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2483 *
2484 * With the exception of gen8, the bottom 12 bits of this address' offset
2485 * include extra aux information.
2486 */
2487 struct anv_address aux_address;
2488 /* Address of the clear color, if any
2489 *
2490 * This address is relative to the start of the BO.
2491 */
2492 struct anv_address clear_address;
2493 };
2494
2495 /**
2496 * Attachment state when recording a renderpass instance.
2497 *
2498 * The clear value is valid only if there exists a pending clear.
2499 */
2500 struct anv_attachment_state {
2501 enum isl_aux_usage aux_usage;
2502 enum isl_aux_usage input_aux_usage;
2503 struct anv_surface_state color;
2504 struct anv_surface_state input;
2505
2506 VkImageLayout current_layout;
2507 VkImageLayout current_stencil_layout;
2508 VkImageAspectFlags pending_clear_aspects;
2509 VkImageAspectFlags pending_load_aspects;
2510 bool fast_clear;
2511 VkClearValue clear_value;
2512 bool clear_color_is_zero_one;
2513 bool clear_color_is_zero;
2514
2515 /* When multiview is active, attachments with a renderpass clear
2516 * operation have their respective layers cleared on the first
2517 * subpass that uses them, and only in that subpass. We keep track
2518 * of this using a bitfield to indicate which layers of an attachment
2519 * have not been cleared yet when multiview is active.
2520 */
2521 uint32_t pending_clear_views;
2522 struct anv_image_view * image_view;
2523 };
2524
2525 /** State tracking for vertex buffer flushes
2526 *
2527 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2528 * addresses. If you happen to have two vertex buffers which get placed
2529 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2530 * collisions. In order to solve this problem, we track vertex address ranges
2531 * which are live in the cache and invalidate the cache if one ever exceeds 32
2532 * bits.
2533 */
2534 struct anv_vb_cache_range {
2535 /* Virtual address at which the live vertex buffer cache range starts for
2536 * this vertex buffer index.
2537 */
2538 uint64_t start;
2539
2540 /* Virtual address of the byte after where vertex buffer cache range ends.
2541 * This is exclusive such that end - start is the size of the range.
2542 */
2543 uint64_t end;
2544 };
2545
2546 /** State tracking for particular pipeline bind point
2547 *
2548 * This struct is the base struct for anv_cmd_graphics_state and
2549 * anv_cmd_compute_state. These are used to track state which is bound to a
2550 * particular type of pipeline. Generic state that applies per-stage such as
2551 * binding table offsets and push constants is tracked generically with a
2552 * per-stage array in anv_cmd_state.
2553 */
2554 struct anv_cmd_pipeline_state {
2555 struct anv_pipeline *pipeline;
2556
2557 struct anv_descriptor_set *descriptors[MAX_SETS];
2558 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2559 };
2560
2561 /** State tracking for graphics pipeline
2562 *
2563 * This has anv_cmd_pipeline_state as a base struct to track things which get
2564 * bound to a graphics pipeline. Along with general pipeline bind point state
2565 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2566 * state which is graphics-specific.
2567 */
2568 struct anv_cmd_graphics_state {
2569 struct anv_cmd_pipeline_state base;
2570
2571 anv_cmd_dirty_mask_t dirty;
2572 uint32_t vb_dirty;
2573
2574 struct anv_vb_cache_range ib_bound_range;
2575 struct anv_vb_cache_range ib_dirty_range;
2576 struct anv_vb_cache_range vb_bound_ranges[33];
2577 struct anv_vb_cache_range vb_dirty_ranges[33];
2578
2579 struct anv_dynamic_state dynamic;
2580
2581 struct {
2582 struct anv_buffer *index_buffer;
2583 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2584 uint32_t index_offset;
2585 } gen7;
2586 };
2587
2588 /** State tracking for compute pipeline
2589 *
2590 * This has anv_cmd_pipeline_state as a base struct to track things which get
2591 * bound to a compute pipeline. Along with general pipeline bind point state
2592 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2593 * state which is compute-specific.
2594 */
2595 struct anv_cmd_compute_state {
2596 struct anv_cmd_pipeline_state base;
2597
2598 bool pipeline_dirty;
2599
2600 struct anv_address num_workgroups;
2601 };
2602
2603 /** State required while building cmd buffer */
2604 struct anv_cmd_state {
2605 /* PIPELINE_SELECT.PipelineSelection */
2606 uint32_t current_pipeline;
2607 const struct gen_l3_config * current_l3_config;
2608 uint32_t last_aux_map_state;
2609
2610 struct anv_cmd_graphics_state gfx;
2611 struct anv_cmd_compute_state compute;
2612
2613 enum anv_pipe_bits pending_pipe_bits;
2614 VkShaderStageFlags descriptors_dirty;
2615 VkShaderStageFlags push_constants_dirty;
2616
2617 struct anv_framebuffer * framebuffer;
2618 struct anv_render_pass * pass;
2619 struct anv_subpass * subpass;
2620 VkRect2D render_area;
2621 uint32_t restart_index;
2622 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2623 bool xfb_enabled;
2624 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2625 VkShaderStageFlags push_constant_stages;
2626 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2627 struct anv_state binding_tables[MESA_SHADER_STAGES];
2628 struct anv_state samplers[MESA_SHADER_STAGES];
2629
2630 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2631 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2632 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2633
2634 /**
2635 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2636 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2637 * and before invoking the secondary in ExecuteCommands.
2638 */
2639 bool pma_fix_enabled;
2640
2641 /**
2642 * Whether or not we know for certain that HiZ is enabled for the current
2643 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2644 * enabled or not, this will be false.
2645 */
2646 bool hiz_enabled;
2647
2648 bool conditional_render_enabled;
2649
2650 /**
2651 * Last rendering scale argument provided to
2652 * genX(cmd_buffer_emit_hashing_mode)().
2653 */
2654 unsigned current_hash_scale;
2655
2656 /**
2657 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2658 * valid only when recording a render pass instance.
2659 */
2660 struct anv_attachment_state * attachments;
2661
2662 /**
2663 * Surface states for color render targets. These are stored in a single
2664 * flat array. For depth-stencil attachments, the surface state is simply
2665 * left blank.
2666 */
2667 struct anv_state render_pass_states;
2668
2669 /**
2670 * A null surface state of the right size to match the framebuffer. This
2671 * is one of the states in render_pass_states.
2672 */
2673 struct anv_state null_surface_state;
2674 };
2675
2676 struct anv_cmd_pool {
2677 VkAllocationCallbacks alloc;
2678 struct list_head cmd_buffers;
2679 };
2680
2681 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2682
2683 enum anv_cmd_buffer_exec_mode {
2684 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2685 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2686 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2687 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2688 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2689 };
2690
2691 struct anv_cmd_buffer {
2692 VK_LOADER_DATA _loader_data;
2693
2694 struct anv_device * device;
2695
2696 struct anv_cmd_pool * pool;
2697 struct list_head pool_link;
2698
2699 struct anv_batch batch;
2700
2701 /* Fields required for the actual chain of anv_batch_bo's.
2702 *
2703 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2704 */
2705 struct list_head batch_bos;
2706 enum anv_cmd_buffer_exec_mode exec_mode;
2707
2708 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2709 * referenced by this command buffer
2710 *
2711 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2712 */
2713 struct u_vector seen_bbos;
2714
2715 /* A vector of int32_t's for every block of binding tables.
2716 *
2717 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2718 */
2719 struct u_vector bt_block_states;
2720 struct anv_state bt_next;
2721
2722 struct anv_reloc_list surface_relocs;
2723 /** Last seen surface state block pool center bo offset */
2724 uint32_t last_ss_pool_center;
2725
2726 /* Serial for tracking buffer completion */
2727 uint32_t serial;
2728
2729 /* Stream objects for storing temporary data */
2730 struct anv_state_stream surface_state_stream;
2731 struct anv_state_stream dynamic_state_stream;
2732
2733 VkCommandBufferUsageFlags usage_flags;
2734 VkCommandBufferLevel level;
2735
2736 struct anv_cmd_state state;
2737
2738 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2739 uint64_t intel_perf_marker;
2740 };
2741
2742 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2743 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2744 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2745 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2746 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2747 struct anv_cmd_buffer *secondary);
2748 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2749 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2750 struct anv_cmd_buffer *cmd_buffer,
2751 const VkSemaphore *in_semaphores,
2752 const uint64_t *in_wait_values,
2753 uint32_t num_in_semaphores,
2754 const VkSemaphore *out_semaphores,
2755 const uint64_t *out_signal_values,
2756 uint32_t num_out_semaphores,
2757 VkFence fence);
2758
2759 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2760
2761 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2762 const void *data, uint32_t size, uint32_t alignment);
2763 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2764 uint32_t *a, uint32_t *b,
2765 uint32_t dwords, uint32_t alignment);
2766
2767 struct anv_address
2768 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2769 struct anv_state
2770 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2771 uint32_t entries, uint32_t *state_offset);
2772 struct anv_state
2773 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2774 struct anv_state
2775 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2776 uint32_t size, uint32_t alignment);
2777
2778 VkResult
2779 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2780
2781 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2782 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2783 bool depth_clamp_enable);
2784 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2785
2786 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2787 struct anv_render_pass *pass,
2788 struct anv_framebuffer *framebuffer,
2789 const VkClearValue *clear_values);
2790
2791 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2792
2793 struct anv_state
2794 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2795 gl_shader_stage stage);
2796 struct anv_state
2797 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2798
2799 const struct anv_image_view *
2800 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2801
2802 VkResult
2803 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2804 uint32_t num_entries,
2805 uint32_t *state_offset,
2806 struct anv_state *bt_state);
2807
2808 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2809
2810 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2811
2812 enum anv_fence_type {
2813 ANV_FENCE_TYPE_NONE = 0,
2814 ANV_FENCE_TYPE_BO,
2815 ANV_FENCE_TYPE_WSI_BO,
2816 ANV_FENCE_TYPE_SYNCOBJ,
2817 ANV_FENCE_TYPE_WSI,
2818 };
2819
2820 enum anv_bo_fence_state {
2821 /** Indicates that this is a new (or newly reset fence) */
2822 ANV_BO_FENCE_STATE_RESET,
2823
2824 /** Indicates that this fence has been submitted to the GPU but is still
2825 * (as far as we know) in use by the GPU.
2826 */
2827 ANV_BO_FENCE_STATE_SUBMITTED,
2828
2829 ANV_BO_FENCE_STATE_SIGNALED,
2830 };
2831
2832 struct anv_fence_impl {
2833 enum anv_fence_type type;
2834
2835 union {
2836 /** Fence implementation for BO fences
2837 *
2838 * These fences use a BO and a set of CPU-tracked state flags. The BO
2839 * is added to the object list of the last execbuf call in a QueueSubmit
2840 * and is marked EXEC_WRITE. The state flags track when the BO has been
2841 * submitted to the kernel. We need to do this because Vulkan lets you
2842 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2843 * will say it's idle in this case.
2844 */
2845 struct {
2846 struct anv_bo *bo;
2847 enum anv_bo_fence_state state;
2848 } bo;
2849
2850 /** DRM syncobj handle for syncobj-based fences */
2851 uint32_t syncobj;
2852
2853 /** WSI fence */
2854 struct wsi_fence *fence_wsi;
2855 };
2856 };
2857
2858 struct anv_fence {
2859 /* Permanent fence state. Every fence has some form of permanent state
2860 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2861 * cross-process fences) or it could just be a dummy for use internally.
2862 */
2863 struct anv_fence_impl permanent;
2864
2865 /* Temporary fence state. A fence *may* have temporary state. That state
2866 * is added to the fence by an import operation and is reset back to
2867 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2868 * state cannot be signaled because the fence must already be signaled
2869 * before the temporary state can be exported from the fence in the other
2870 * process and imported here.
2871 */
2872 struct anv_fence_impl temporary;
2873 };
2874
2875 void anv_fence_reset_temporary(struct anv_device *device,
2876 struct anv_fence *fence);
2877
2878 struct anv_event {
2879 uint64_t semaphore;
2880 struct anv_state state;
2881 };
2882
2883 enum anv_semaphore_type {
2884 ANV_SEMAPHORE_TYPE_NONE = 0,
2885 ANV_SEMAPHORE_TYPE_DUMMY,
2886 ANV_SEMAPHORE_TYPE_BO,
2887 ANV_SEMAPHORE_TYPE_WSI_BO,
2888 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2889 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2890 ANV_SEMAPHORE_TYPE_TIMELINE,
2891 };
2892
2893 struct anv_timeline_point {
2894 struct list_head link;
2895
2896 uint64_t serial;
2897
2898 /* Number of waiter on this point, when > 0 the point should not be garbage
2899 * collected.
2900 */
2901 int waiting;
2902
2903 /* BO used for synchronization. */
2904 struct anv_bo *bo;
2905 };
2906
2907 struct anv_timeline {
2908 pthread_mutex_t mutex;
2909 pthread_cond_t cond;
2910
2911 uint64_t highest_past;
2912 uint64_t highest_pending;
2913
2914 struct list_head points;
2915 struct list_head free_points;
2916 };
2917
2918 struct anv_semaphore_impl {
2919 enum anv_semaphore_type type;
2920
2921 union {
2922 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
2923 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
2924 * object list on any execbuf2 calls for which this semaphore is used as
2925 * a wait or signal fence. When used as a signal fence or when type ==
2926 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
2927 */
2928 struct anv_bo *bo;
2929
2930 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2931 * If the semaphore is in the unsignaled state due to either just being
2932 * created or because it has been used for a wait, fd will be -1.
2933 */
2934 int fd;
2935
2936 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2937 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2938 * import so we don't need to bother with a userspace cache.
2939 */
2940 uint32_t syncobj;
2941
2942 /* Non shareable timeline semaphore
2943 *
2944 * Used when kernel don't have support for timeline semaphores.
2945 */
2946 struct anv_timeline timeline;
2947 };
2948 };
2949
2950 struct anv_semaphore {
2951 uint32_t refcount;
2952
2953 /* Permanent semaphore state. Every semaphore has some form of permanent
2954 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2955 * (for cross-process semaphores0 or it could just be a dummy for use
2956 * internally.
2957 */
2958 struct anv_semaphore_impl permanent;
2959
2960 /* Temporary semaphore state. A semaphore *may* have temporary state.
2961 * That state is added to the semaphore by an import operation and is reset
2962 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2963 * semaphore with temporary state cannot be signaled because the semaphore
2964 * must already be signaled before the temporary state can be exported from
2965 * the semaphore in the other process and imported here.
2966 */
2967 struct anv_semaphore_impl temporary;
2968 };
2969
2970 void anv_semaphore_reset_temporary(struct anv_device *device,
2971 struct anv_semaphore *semaphore);
2972
2973 struct anv_shader_module {
2974 unsigned char sha1[20];
2975 uint32_t size;
2976 char data[0];
2977 };
2978
2979 static inline gl_shader_stage
2980 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2981 {
2982 assert(__builtin_popcount(vk_stage) == 1);
2983 return ffs(vk_stage) - 1;
2984 }
2985
2986 static inline VkShaderStageFlagBits
2987 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2988 {
2989 return (1 << mesa_stage);
2990 }
2991
2992 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2993
2994 #define anv_foreach_stage(stage, stage_bits) \
2995 for (gl_shader_stage stage, \
2996 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2997 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2998 __tmp &= ~(1 << (stage)))
2999
3000 struct anv_pipeline_bind_map {
3001 unsigned char surface_sha1[20];
3002 unsigned char sampler_sha1[20];
3003 unsigned char push_sha1[20];
3004
3005 uint32_t surface_count;
3006 uint32_t sampler_count;
3007
3008 struct anv_pipeline_binding * surface_to_descriptor;
3009 struct anv_pipeline_binding * sampler_to_descriptor;
3010
3011 struct anv_push_range push_ranges[4];
3012 };
3013
3014 struct anv_shader_bin_key {
3015 uint32_t size;
3016 uint8_t data[0];
3017 };
3018
3019 struct anv_shader_bin {
3020 uint32_t ref_cnt;
3021
3022 const struct anv_shader_bin_key *key;
3023
3024 struct anv_state kernel;
3025 uint32_t kernel_size;
3026
3027 struct anv_state constant_data;
3028 uint32_t constant_data_size;
3029
3030 const struct brw_stage_prog_data *prog_data;
3031 uint32_t prog_data_size;
3032
3033 struct brw_compile_stats stats[3];
3034 uint32_t num_stats;
3035
3036 struct nir_xfb_info *xfb_info;
3037
3038 struct anv_pipeline_bind_map bind_map;
3039 };
3040
3041 struct anv_shader_bin *
3042 anv_shader_bin_create(struct anv_device *device,
3043 const void *key, uint32_t key_size,
3044 const void *kernel, uint32_t kernel_size,
3045 const void *constant_data, uint32_t constant_data_size,
3046 const struct brw_stage_prog_data *prog_data,
3047 uint32_t prog_data_size, const void *prog_data_param,
3048 const struct brw_compile_stats *stats, uint32_t num_stats,
3049 const struct nir_xfb_info *xfb_info,
3050 const struct anv_pipeline_bind_map *bind_map);
3051
3052 void
3053 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3054
3055 static inline void
3056 anv_shader_bin_ref(struct anv_shader_bin *shader)
3057 {
3058 assert(shader && shader->ref_cnt >= 1);
3059 p_atomic_inc(&shader->ref_cnt);
3060 }
3061
3062 static inline void
3063 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3064 {
3065 assert(shader && shader->ref_cnt >= 1);
3066 if (p_atomic_dec_zero(&shader->ref_cnt))
3067 anv_shader_bin_destroy(device, shader);
3068 }
3069
3070 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
3071 #define MAX_PIPELINE_EXECUTABLES 7
3072
3073 struct anv_pipeline_executable {
3074 gl_shader_stage stage;
3075
3076 struct brw_compile_stats stats;
3077
3078 char *nir;
3079 char *disasm;
3080 };
3081
3082 struct anv_pipeline {
3083 struct anv_device * device;
3084 struct anv_batch batch;
3085 uint32_t batch_data[512];
3086 struct anv_reloc_list batch_relocs;
3087 anv_cmd_dirty_mask_t dynamic_state_mask;
3088 struct anv_dynamic_state dynamic_state;
3089
3090 void * mem_ctx;
3091
3092 VkPipelineCreateFlags flags;
3093 struct anv_subpass * subpass;
3094
3095 bool needs_data_cache;
3096
3097 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3098
3099 uint32_t num_executables;
3100 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
3101
3102 struct {
3103 const struct gen_l3_config * l3_config;
3104 uint32_t total_size;
3105 } urb;
3106
3107 VkShaderStageFlags active_stages;
3108 struct anv_state blend_state;
3109
3110 uint32_t vb_used;
3111 struct anv_pipeline_vertex_binding {
3112 uint32_t stride;
3113 bool instanced;
3114 uint32_t instance_divisor;
3115 } vb[MAX_VBS];
3116
3117 uint8_t xfb_used;
3118
3119 bool primitive_restart;
3120 uint32_t topology;
3121
3122 uint32_t cs_right_mask;
3123
3124 bool writes_depth;
3125 bool depth_test_enable;
3126 bool writes_stencil;
3127 bool stencil_test_enable;
3128 bool depth_clamp_enable;
3129 bool depth_clip_enable;
3130 bool sample_shading_enable;
3131 bool kill_pixel;
3132 bool depth_bounds_test_enable;
3133
3134 struct {
3135 uint32_t sf[7];
3136 uint32_t depth_stencil_state[3];
3137 } gen7;
3138
3139 struct {
3140 uint32_t sf[4];
3141 uint32_t raster[5];
3142 uint32_t wm_depth_stencil[3];
3143 } gen8;
3144
3145 struct {
3146 uint32_t wm_depth_stencil[4];
3147 } gen9;
3148
3149 uint32_t interface_descriptor_data[8];
3150 };
3151
3152 static inline bool
3153 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3154 gl_shader_stage stage)
3155 {
3156 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3157 }
3158
3159 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3160 static inline const struct brw_##prefix##_prog_data * \
3161 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3162 { \
3163 if (anv_pipeline_has_stage(pipeline, stage)) { \
3164 return (const struct brw_##prefix##_prog_data *) \
3165 pipeline->shaders[stage]->prog_data; \
3166 } else { \
3167 return NULL; \
3168 } \
3169 }
3170
3171 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3172 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3173 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3174 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3175 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3176 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3177
3178 static inline const struct brw_vue_prog_data *
3179 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3180 {
3181 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3182 return &get_gs_prog_data(pipeline)->base;
3183 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3184 return &get_tes_prog_data(pipeline)->base;
3185 else
3186 return &get_vs_prog_data(pipeline)->base;
3187 }
3188
3189 VkResult
3190 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3191 struct anv_pipeline_cache *cache,
3192 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3193 const VkAllocationCallbacks *alloc);
3194
3195 VkResult
3196 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3197 struct anv_pipeline_cache *cache,
3198 const VkComputePipelineCreateInfo *info,
3199 const struct anv_shader_module *module,
3200 const char *entrypoint,
3201 const VkSpecializationInfo *spec_info);
3202
3203 struct anv_format_plane {
3204 enum isl_format isl_format:16;
3205 struct isl_swizzle swizzle;
3206
3207 /* Whether this plane contains chroma channels */
3208 bool has_chroma;
3209
3210 /* For downscaling of YUV planes */
3211 uint8_t denominator_scales[2];
3212
3213 /* How to map sampled ycbcr planes to a single 4 component element. */
3214 struct isl_swizzle ycbcr_swizzle;
3215
3216 /* What aspect is associated to this plane */
3217 VkImageAspectFlags aspect;
3218 };
3219
3220
3221 struct anv_format {
3222 struct anv_format_plane planes[3];
3223 VkFormat vk_format;
3224 uint8_t n_planes;
3225 bool can_ycbcr;
3226 };
3227
3228 static inline uint32_t
3229 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3230 VkImageAspectFlags aspect_mask)
3231 {
3232 switch (aspect_mask) {
3233 case VK_IMAGE_ASPECT_COLOR_BIT:
3234 case VK_IMAGE_ASPECT_DEPTH_BIT:
3235 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3236 return 0;
3237 case VK_IMAGE_ASPECT_STENCIL_BIT:
3238 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3239 return 0;
3240 /* Fall-through */
3241 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3242 return 1;
3243 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3244 return 2;
3245 default:
3246 /* Purposefully assert with depth/stencil aspects. */
3247 unreachable("invalid image aspect");
3248 }
3249 }
3250
3251 static inline VkImageAspectFlags
3252 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3253 uint32_t plane)
3254 {
3255 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3256 if (util_bitcount(image_aspects) > 1)
3257 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3258 return VK_IMAGE_ASPECT_COLOR_BIT;
3259 }
3260 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3261 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3262 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3263 return VK_IMAGE_ASPECT_STENCIL_BIT;
3264 }
3265
3266 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3267 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3268
3269 const struct anv_format *
3270 anv_get_format(VkFormat format);
3271
3272 static inline uint32_t
3273 anv_get_format_planes(VkFormat vk_format)
3274 {
3275 const struct anv_format *format = anv_get_format(vk_format);
3276
3277 return format != NULL ? format->n_planes : 0;
3278 }
3279
3280 struct anv_format_plane
3281 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3282 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3283
3284 static inline enum isl_format
3285 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3286 VkImageAspectFlags aspect, VkImageTiling tiling)
3287 {
3288 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3289 }
3290
3291 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3292 VkImageCreateFlags create_flags,
3293 VkFormat vk_format,
3294 VkImageTiling vk_tiling,
3295 const VkImageFormatListCreateInfoKHR *fmt_list);
3296
3297 static inline struct isl_swizzle
3298 anv_swizzle_for_render(struct isl_swizzle swizzle)
3299 {
3300 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3301 * RGB as RGBA for texturing
3302 */
3303 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3304 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3305
3306 /* But it doesn't matter what we render to that channel */
3307 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3308
3309 return swizzle;
3310 }
3311
3312 void
3313 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3314
3315 /**
3316 * Subsurface of an anv_image.
3317 */
3318 struct anv_surface {
3319 /** Valid only if isl_surf::size_B > 0. */
3320 struct isl_surf isl;
3321
3322 /**
3323 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3324 */
3325 uint32_t offset;
3326 };
3327
3328 struct anv_image {
3329 VkImageType type; /**< VkImageCreateInfo::imageType */
3330 /* The original VkFormat provided by the client. This may not match any
3331 * of the actual surface formats.
3332 */
3333 VkFormat vk_format;
3334 const struct anv_format *format;
3335
3336 VkImageAspectFlags aspects;
3337 VkExtent3D extent;
3338 uint32_t levels;
3339 uint32_t array_size;
3340 uint32_t samples; /**< VkImageCreateInfo::samples */
3341 uint32_t n_planes;
3342 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3343 VkImageUsageFlags stencil_usage;
3344 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3345 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3346
3347 /** True if this is needs to be bound to an appropriately tiled BO.
3348 *
3349 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3350 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3351 * we require a dedicated allocation so that we can know to allocate a
3352 * tiled buffer.
3353 */
3354 bool needs_set_tiling;
3355
3356 /**
3357 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3358 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3359 */
3360 uint64_t drm_format_mod;
3361
3362 VkDeviceSize size;
3363 uint32_t alignment;
3364
3365 /* Whether the image is made of several underlying buffer objects rather a
3366 * single one with different offsets.
3367 */
3368 bool disjoint;
3369
3370 /* All the formats that can be used when creating views of this image
3371 * are CCS_E compatible.
3372 */
3373 bool ccs_e_compatible;
3374
3375 /* Image was created with external format. */
3376 bool external_format;
3377
3378 /**
3379 * Image subsurfaces
3380 *
3381 * For each foo, anv_image::planes[x].surface is valid if and only if
3382 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3383 * to figure the number associated with a given aspect.
3384 *
3385 * The hardware requires that the depth buffer and stencil buffer be
3386 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3387 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3388 * allocate the depth and stencil buffers as separate surfaces in the same
3389 * bo.
3390 *
3391 * Memory layout :
3392 *
3393 * -----------------------
3394 * | surface0 | /|\
3395 * ----------------------- |
3396 * | shadow surface0 | |
3397 * ----------------------- | Plane 0
3398 * | aux surface0 | |
3399 * ----------------------- |
3400 * | fast clear colors0 | \|/
3401 * -----------------------
3402 * | surface1 | /|\
3403 * ----------------------- |
3404 * | shadow surface1 | |
3405 * ----------------------- | Plane 1
3406 * | aux surface1 | |
3407 * ----------------------- |
3408 * | fast clear colors1 | \|/
3409 * -----------------------
3410 * | ... |
3411 * | |
3412 * -----------------------
3413 */
3414 struct {
3415 /**
3416 * Offset of the entire plane (whenever the image is disjoint this is
3417 * set to 0).
3418 */
3419 uint32_t offset;
3420
3421 VkDeviceSize size;
3422 uint32_t alignment;
3423
3424 struct anv_surface surface;
3425
3426 /**
3427 * A surface which shadows the main surface and may have different
3428 * tiling. This is used for sampling using a tiling that isn't supported
3429 * for other operations.
3430 */
3431 struct anv_surface shadow_surface;
3432
3433 /**
3434 * For color images, this is the aux usage for this image when not used
3435 * as a color attachment.
3436 *
3437 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3438 * image has a HiZ buffer.
3439 */
3440 enum isl_aux_usage aux_usage;
3441
3442 struct anv_surface aux_surface;
3443
3444 /**
3445 * Offset of the fast clear state (used to compute the
3446 * fast_clear_state_offset of the following planes).
3447 */
3448 uint32_t fast_clear_state_offset;
3449
3450 /**
3451 * BO associated with this plane, set when bound.
3452 */
3453 struct anv_address address;
3454
3455 /**
3456 * Address of the main surface used to fill the aux map table. This is
3457 * used at destruction of the image since the Vulkan spec does not
3458 * guarantee that the address.bo field we still be valid at destruction.
3459 */
3460 uint64_t aux_map_surface_address;
3461
3462 /**
3463 * When destroying the image, also free the bo.
3464 * */
3465 bool bo_is_owned;
3466 } planes[3];
3467 };
3468
3469 /* The ordering of this enum is important */
3470 enum anv_fast_clear_type {
3471 /** Image does not have/support any fast-clear blocks */
3472 ANV_FAST_CLEAR_NONE = 0,
3473 /** Image has/supports fast-clear but only to the default value */
3474 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3475 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3476 ANV_FAST_CLEAR_ANY = 2,
3477 };
3478
3479 /* Returns the number of auxiliary buffer levels attached to an image. */
3480 static inline uint8_t
3481 anv_image_aux_levels(const struct anv_image * const image,
3482 VkImageAspectFlagBits aspect)
3483 {
3484 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3485
3486 /* The Gen12 CCS aux surface is represented with only one level. */
3487 const uint8_t aux_logical_levels =
3488 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3489 image->planes[plane].surface.isl.levels :
3490 image->planes[plane].aux_surface.isl.levels;
3491
3492 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3493 aux_logical_levels : 0;
3494 }
3495
3496 /* Returns the number of auxiliary buffer layers attached to an image. */
3497 static inline uint32_t
3498 anv_image_aux_layers(const struct anv_image * const image,
3499 VkImageAspectFlagBits aspect,
3500 const uint8_t miplevel)
3501 {
3502 assert(image);
3503
3504 /* The miplevel must exist in the main buffer. */
3505 assert(miplevel < image->levels);
3506
3507 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3508 /* There are no layers with auxiliary data because the miplevel has no
3509 * auxiliary data.
3510 */
3511 return 0;
3512 } else {
3513 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3514
3515 /* The Gen12 CCS aux surface is represented with only one layer. */
3516 const struct isl_extent4d *aux_logical_level0_px =
3517 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3518 &image->planes[plane].surface.isl.logical_level0_px :
3519 &image->planes[plane].aux_surface.isl.logical_level0_px;
3520
3521 return MAX2(aux_logical_level0_px->array_len,
3522 aux_logical_level0_px->depth >> miplevel);
3523 }
3524 }
3525
3526 static inline struct anv_address
3527 anv_image_get_clear_color_addr(const struct anv_device *device,
3528 const struct anv_image *image,
3529 VkImageAspectFlagBits aspect)
3530 {
3531 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3532
3533 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3534 return anv_address_add(image->planes[plane].address,
3535 image->planes[plane].fast_clear_state_offset);
3536 }
3537
3538 static inline struct anv_address
3539 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3540 const struct anv_image *image,
3541 VkImageAspectFlagBits aspect)
3542 {
3543 struct anv_address addr =
3544 anv_image_get_clear_color_addr(device, image, aspect);
3545
3546 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3547 device->isl_dev.ss.clear_color_state_size :
3548 device->isl_dev.ss.clear_value_size;
3549 return anv_address_add(addr, clear_color_state_size);
3550 }
3551
3552 static inline struct anv_address
3553 anv_image_get_compression_state_addr(const struct anv_device *device,
3554 const struct anv_image *image,
3555 VkImageAspectFlagBits aspect,
3556 uint32_t level, uint32_t array_layer)
3557 {
3558 assert(level < anv_image_aux_levels(image, aspect));
3559 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3560 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3561 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3562
3563 struct anv_address addr =
3564 anv_image_get_fast_clear_type_addr(device, image, aspect);
3565 addr.offset += 4; /* Go past the fast clear type */
3566
3567 if (image->type == VK_IMAGE_TYPE_3D) {
3568 for (uint32_t l = 0; l < level; l++)
3569 addr.offset += anv_minify(image->extent.depth, l) * 4;
3570 } else {
3571 addr.offset += level * image->array_size * 4;
3572 }
3573 addr.offset += array_layer * 4;
3574
3575 assert(addr.offset <
3576 image->planes[plane].address.offset + image->planes[plane].size);
3577 return addr;
3578 }
3579
3580 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3581 static inline bool
3582 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3583 const struct anv_image *image)
3584 {
3585 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3586 return false;
3587
3588 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3589 * struct. There's documentation which suggests that this feature actually
3590 * reduces performance on BDW, but it has only been observed to help so
3591 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3592 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3593 */
3594 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3595 return false;
3596
3597 return image->samples == 1;
3598 }
3599
3600 static inline bool
3601 anv_image_plane_uses_aux_map(const struct anv_device *device,
3602 const struct anv_image *image,
3603 uint32_t plane)
3604 {
3605 return device->info.has_aux_map &&
3606 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3607 }
3608
3609 void
3610 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3611 const struct anv_image *image,
3612 VkImageAspectFlagBits aspect,
3613 enum isl_aux_usage aux_usage,
3614 uint32_t level,
3615 uint32_t base_layer,
3616 uint32_t layer_count);
3617
3618 void
3619 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3620 const struct anv_image *image,
3621 VkImageAspectFlagBits aspect,
3622 enum isl_aux_usage aux_usage,
3623 enum isl_format format, struct isl_swizzle swizzle,
3624 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3625 VkRect2D area, union isl_color_value clear_color);
3626 void
3627 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3628 const struct anv_image *image,
3629 VkImageAspectFlags aspects,
3630 enum isl_aux_usage depth_aux_usage,
3631 uint32_t level,
3632 uint32_t base_layer, uint32_t layer_count,
3633 VkRect2D area,
3634 float depth_value, uint8_t stencil_value);
3635 void
3636 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3637 const struct anv_image *src_image,
3638 enum isl_aux_usage src_aux_usage,
3639 uint32_t src_level, uint32_t src_base_layer,
3640 const struct anv_image *dst_image,
3641 enum isl_aux_usage dst_aux_usage,
3642 uint32_t dst_level, uint32_t dst_base_layer,
3643 VkImageAspectFlagBits aspect,
3644 uint32_t src_x, uint32_t src_y,
3645 uint32_t dst_x, uint32_t dst_y,
3646 uint32_t width, uint32_t height,
3647 uint32_t layer_count,
3648 enum blorp_filter filter);
3649 void
3650 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3651 const struct anv_image *image,
3652 VkImageAspectFlagBits aspect, uint32_t level,
3653 uint32_t base_layer, uint32_t layer_count,
3654 enum isl_aux_op hiz_op);
3655 void
3656 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3657 const struct anv_image *image,
3658 VkImageAspectFlags aspects,
3659 uint32_t level,
3660 uint32_t base_layer, uint32_t layer_count,
3661 VkRect2D area, uint8_t stencil_value);
3662 void
3663 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3664 const struct anv_image *image,
3665 enum isl_format format,
3666 VkImageAspectFlagBits aspect,
3667 uint32_t base_layer, uint32_t layer_count,
3668 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3669 bool predicate);
3670 void
3671 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3672 const struct anv_image *image,
3673 enum isl_format format,
3674 VkImageAspectFlagBits aspect, uint32_t level,
3675 uint32_t base_layer, uint32_t layer_count,
3676 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3677 bool predicate);
3678
3679 void
3680 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3681 const struct anv_image *image,
3682 VkImageAspectFlagBits aspect,
3683 uint32_t base_level, uint32_t level_count,
3684 uint32_t base_layer, uint32_t layer_count);
3685
3686 enum isl_aux_usage
3687 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3688 const struct anv_image *image,
3689 const VkImageAspectFlagBits aspect,
3690 const VkImageLayout layout);
3691
3692 enum anv_fast_clear_type
3693 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3694 const struct anv_image * const image,
3695 const VkImageAspectFlagBits aspect,
3696 const VkImageLayout layout);
3697
3698 /* This is defined as a macro so that it works for both
3699 * VkImageSubresourceRange and VkImageSubresourceLayers
3700 */
3701 #define anv_get_layerCount(_image, _range) \
3702 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3703 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3704
3705 static inline uint32_t
3706 anv_get_levelCount(const struct anv_image *image,
3707 const VkImageSubresourceRange *range)
3708 {
3709 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3710 image->levels - range->baseMipLevel : range->levelCount;
3711 }
3712
3713 static inline VkImageAspectFlags
3714 anv_image_expand_aspects(const struct anv_image *image,
3715 VkImageAspectFlags aspects)
3716 {
3717 /* If the underlying image has color plane aspects and
3718 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3719 * the underlying image. */
3720 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3721 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3722 return image->aspects;
3723
3724 return aspects;
3725 }
3726
3727 static inline bool
3728 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3729 VkImageAspectFlags aspects2)
3730 {
3731 if (aspects1 == aspects2)
3732 return true;
3733
3734 /* Only 1 color aspects are compatibles. */
3735 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3736 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3737 util_bitcount(aspects1) == util_bitcount(aspects2))
3738 return true;
3739
3740 return false;
3741 }
3742
3743 struct anv_image_view {
3744 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3745
3746 VkImageAspectFlags aspect_mask;
3747 VkFormat vk_format;
3748 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3749
3750 unsigned n_planes;
3751 struct {
3752 uint32_t image_plane;
3753
3754 struct isl_view isl;
3755
3756 /**
3757 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3758 * image layout of SHADER_READ_ONLY_OPTIMAL or
3759 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3760 */
3761 struct anv_surface_state optimal_sampler_surface_state;
3762
3763 /**
3764 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3765 * image layout of GENERAL.
3766 */
3767 struct anv_surface_state general_sampler_surface_state;
3768
3769 /**
3770 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3771 * states for write-only and readable, using the real format for
3772 * write-only and the lowered format for readable.
3773 */
3774 struct anv_surface_state storage_surface_state;
3775 struct anv_surface_state writeonly_storage_surface_state;
3776
3777 struct brw_image_param storage_image_param;
3778 } planes[3];
3779 };
3780
3781 enum anv_image_view_state_flags {
3782 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3783 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3784 };
3785
3786 void anv_image_fill_surface_state(struct anv_device *device,
3787 const struct anv_image *image,
3788 VkImageAspectFlagBits aspect,
3789 const struct isl_view *view,
3790 isl_surf_usage_flags_t view_usage,
3791 enum isl_aux_usage aux_usage,
3792 const union isl_color_value *clear_color,
3793 enum anv_image_view_state_flags flags,
3794 struct anv_surface_state *state_inout,
3795 struct brw_image_param *image_param_out);
3796
3797 struct anv_image_create_info {
3798 const VkImageCreateInfo *vk_info;
3799
3800 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3801 isl_tiling_flags_t isl_tiling_flags;
3802
3803 /** These flags will be added to any derived from VkImageCreateInfo. */
3804 isl_surf_usage_flags_t isl_extra_usage_flags;
3805
3806 uint32_t stride;
3807 bool external_format;
3808 };
3809
3810 VkResult anv_image_create(VkDevice _device,
3811 const struct anv_image_create_info *info,
3812 const VkAllocationCallbacks* alloc,
3813 VkImage *pImage);
3814
3815 const struct anv_surface *
3816 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3817 VkImageAspectFlags aspect_mask);
3818
3819 enum isl_format
3820 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3821
3822 static inline VkExtent3D
3823 anv_sanitize_image_extent(const VkImageType imageType,
3824 const VkExtent3D imageExtent)
3825 {
3826 switch (imageType) {
3827 case VK_IMAGE_TYPE_1D:
3828 return (VkExtent3D) { imageExtent.width, 1, 1 };
3829 case VK_IMAGE_TYPE_2D:
3830 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3831 case VK_IMAGE_TYPE_3D:
3832 return imageExtent;
3833 default:
3834 unreachable("invalid image type");
3835 }
3836 }
3837
3838 static inline VkOffset3D
3839 anv_sanitize_image_offset(const VkImageType imageType,
3840 const VkOffset3D imageOffset)
3841 {
3842 switch (imageType) {
3843 case VK_IMAGE_TYPE_1D:
3844 return (VkOffset3D) { imageOffset.x, 0, 0 };
3845 case VK_IMAGE_TYPE_2D:
3846 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3847 case VK_IMAGE_TYPE_3D:
3848 return imageOffset;
3849 default:
3850 unreachable("invalid image type");
3851 }
3852 }
3853
3854 VkFormatFeatureFlags
3855 anv_get_image_format_features(const struct gen_device_info *devinfo,
3856 VkFormat vk_format,
3857 const struct anv_format *anv_format,
3858 VkImageTiling vk_tiling);
3859
3860 void anv_fill_buffer_surface_state(struct anv_device *device,
3861 struct anv_state state,
3862 enum isl_format format,
3863 struct anv_address address,
3864 uint32_t range, uint32_t stride);
3865
3866 static inline void
3867 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3868 const struct anv_attachment_state *att_state,
3869 const struct anv_image_view *iview)
3870 {
3871 const struct isl_format_layout *view_fmtl =
3872 isl_format_get_layout(iview->planes[0].isl.format);
3873
3874 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3875 if (view_fmtl->channels.c.bits) \
3876 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3877
3878 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3879 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3880 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3881 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3882
3883 #undef COPY_CLEAR_COLOR_CHANNEL
3884 }
3885
3886
3887 struct anv_ycbcr_conversion {
3888 const struct anv_format * format;
3889 VkSamplerYcbcrModelConversion ycbcr_model;
3890 VkSamplerYcbcrRange ycbcr_range;
3891 VkComponentSwizzle mapping[4];
3892 VkChromaLocation chroma_offsets[2];
3893 VkFilter chroma_filter;
3894 bool chroma_reconstruction;
3895 };
3896
3897 struct anv_sampler {
3898 uint32_t state[3][4];
3899 uint32_t n_planes;
3900 struct anv_ycbcr_conversion *conversion;
3901
3902 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3903 * and with a 32-byte stride for use as bindless samplers.
3904 */
3905 struct anv_state bindless_state;
3906 };
3907
3908 struct anv_framebuffer {
3909 uint32_t width;
3910 uint32_t height;
3911 uint32_t layers;
3912
3913 uint32_t attachment_count;
3914 struct anv_image_view * attachments[0];
3915 };
3916
3917 struct anv_subpass_attachment {
3918 VkImageUsageFlagBits usage;
3919 uint32_t attachment;
3920 VkImageLayout layout;
3921
3922 /* Used only with attachment containing stencil data. */
3923 VkImageLayout stencil_layout;
3924 };
3925
3926 struct anv_subpass {
3927 uint32_t attachment_count;
3928
3929 /**
3930 * A pointer to all attachment references used in this subpass.
3931 * Only valid if ::attachment_count > 0.
3932 */
3933 struct anv_subpass_attachment * attachments;
3934 uint32_t input_count;
3935 struct anv_subpass_attachment * input_attachments;
3936 uint32_t color_count;
3937 struct anv_subpass_attachment * color_attachments;
3938 struct anv_subpass_attachment * resolve_attachments;
3939
3940 struct anv_subpass_attachment * depth_stencil_attachment;
3941 struct anv_subpass_attachment * ds_resolve_attachment;
3942 VkResolveModeFlagBitsKHR depth_resolve_mode;
3943 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3944
3945 uint32_t view_mask;
3946
3947 /** Subpass has a depth/stencil self-dependency */
3948 bool has_ds_self_dep;
3949
3950 /** Subpass has at least one color resolve attachment */
3951 bool has_color_resolve;
3952 };
3953
3954 static inline unsigned
3955 anv_subpass_view_count(const struct anv_subpass *subpass)
3956 {
3957 return MAX2(1, util_bitcount(subpass->view_mask));
3958 }
3959
3960 struct anv_render_pass_attachment {
3961 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3962 * its members individually.
3963 */
3964 VkFormat format;
3965 uint32_t samples;
3966 VkImageUsageFlags usage;
3967 VkAttachmentLoadOp load_op;
3968 VkAttachmentStoreOp store_op;
3969 VkAttachmentLoadOp stencil_load_op;
3970 VkImageLayout initial_layout;
3971 VkImageLayout final_layout;
3972 VkImageLayout first_subpass_layout;
3973
3974 VkImageLayout stencil_initial_layout;
3975 VkImageLayout stencil_final_layout;
3976
3977 /* The subpass id in which the attachment will be used last. */
3978 uint32_t last_subpass_idx;
3979 };
3980
3981 struct anv_render_pass {
3982 uint32_t attachment_count;
3983 uint32_t subpass_count;
3984 /* An array of subpass_count+1 flushes, one per subpass boundary */
3985 enum anv_pipe_bits * subpass_flushes;
3986 struct anv_render_pass_attachment * attachments;
3987 struct anv_subpass subpasses[0];
3988 };
3989
3990 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3991
3992 struct anv_query_pool {
3993 VkQueryType type;
3994 VkQueryPipelineStatisticFlags pipeline_statistics;
3995 /** Stride between slots, in bytes */
3996 uint32_t stride;
3997 /** Number of slots in this query pool */
3998 uint32_t slots;
3999 struct anv_bo * bo;
4000 };
4001
4002 int anv_get_instance_entrypoint_index(const char *name);
4003 int anv_get_device_entrypoint_index(const char *name);
4004 int anv_get_physical_device_entrypoint_index(const char *name);
4005
4006 const char *anv_get_instance_entry_name(int index);
4007 const char *anv_get_physical_device_entry_name(int index);
4008 const char *anv_get_device_entry_name(int index);
4009
4010 bool
4011 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4012 const struct anv_instance_extension_table *instance);
4013 bool
4014 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4015 const struct anv_instance_extension_table *instance);
4016 bool
4017 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4018 const struct anv_instance_extension_table *instance,
4019 const struct anv_device_extension_table *device);
4020
4021 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4022 const char *name);
4023
4024 void anv_dump_image_to_ppm(struct anv_device *device,
4025 struct anv_image *image, unsigned miplevel,
4026 unsigned array_layer, VkImageAspectFlagBits aspect,
4027 const char *filename);
4028
4029 enum anv_dump_action {
4030 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4031 };
4032
4033 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4034 void anv_dump_finish(void);
4035
4036 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4037
4038 static inline uint32_t
4039 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4040 {
4041 /* This function must be called from within a subpass. */
4042 assert(cmd_state->pass && cmd_state->subpass);
4043
4044 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4045
4046 /* The id of this subpass shouldn't exceed the number of subpasses in this
4047 * render pass minus 1.
4048 */
4049 assert(subpass_id < cmd_state->pass->subpass_count);
4050 return subpass_id;
4051 }
4052
4053 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4054 void anv_device_perf_init(struct anv_device *device);
4055
4056 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4057 \
4058 static inline struct __anv_type * \
4059 __anv_type ## _from_handle(__VkType _handle) \
4060 { \
4061 return (struct __anv_type *) _handle; \
4062 } \
4063 \
4064 static inline __VkType \
4065 __anv_type ## _to_handle(struct __anv_type *_obj) \
4066 { \
4067 return (__VkType) _obj; \
4068 }
4069
4070 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4071 \
4072 static inline struct __anv_type * \
4073 __anv_type ## _from_handle(__VkType _handle) \
4074 { \
4075 return (struct __anv_type *)(uintptr_t) _handle; \
4076 } \
4077 \
4078 static inline __VkType \
4079 __anv_type ## _to_handle(struct __anv_type *_obj) \
4080 { \
4081 return (__VkType)(uintptr_t) _obj; \
4082 }
4083
4084 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4085 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4086
4087 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4088 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4089 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4090 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4091 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4092
4093 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4094 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4095 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4096 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4097 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4098 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4099 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4100 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4101 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4102 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4103 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4104 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4105 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4106 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4107 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4108 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4109 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4110 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4111 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4112 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4113 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4114 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4115 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4116
4117 /* Gen-specific function declarations */
4118 #ifdef genX
4119 # include "anv_genX.h"
4120 #else
4121 # define genX(x) gen7_##x
4122 # include "anv_genX.h"
4123 # undef genX
4124 # define genX(x) gen75_##x
4125 # include "anv_genX.h"
4126 # undef genX
4127 # define genX(x) gen8_##x
4128 # include "anv_genX.h"
4129 # undef genX
4130 # define genX(x) gen9_##x
4131 # include "anv_genX.h"
4132 # undef genX
4133 # define genX(x) gen10_##x
4134 # include "anv_genX.h"
4135 # undef genX
4136 # define genX(x) gen11_##x
4137 # include "anv_genX.h"
4138 # undef genX
4139 # define genX(x) gen12_##x
4140 # include "anv_genX.h"
4141 # undef genX
4142 #endif
4143
4144 #endif /* ANV_PRIVATE_H */