anv/batch_chain: Fall back to growing batches when chaining isn't available
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #pragma once
25
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdbool.h>
29 #include <pthread.h>
30 #include <assert.h>
31 #include <stdint.h>
32 #include <i915_drm.h>
33
34 #ifdef HAVE_VALGRIND
35 #include <valgrind.h>
36 #include <memcheck.h>
37 #define VG(x) x
38 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
39 #else
40 #define VG(x)
41 #endif
42
43 #include "brw_device_info.h"
44 #include "brw_compiler.h"
45 #include "util/macros.h"
46 #include "util/list.h"
47
48 /* Pre-declarations needed for WSI entrypoints */
49 struct wl_surface;
50 struct wl_display;
51 typedef struct xcb_connection_t xcb_connection_t;
52 typedef uint32_t xcb_visualid_t;
53 typedef uint32_t xcb_window_t;
54
55 #define VK_USE_PLATFORM_XCB_KHR
56 #define VK_USE_PLATFORM_WAYLAND_KHR
57
58 #define VK_PROTOTYPES
59 #include <vulkan/vulkan.h>
60 #include <vulkan/vulkan_intel.h>
61 #include <vulkan/vk_icd.h>
62
63 #include "anv_entrypoints.h"
64 #include "brw_context.h"
65 #include "isl/isl.h"
66
67 #ifdef __cplusplus
68 extern "C" {
69 #endif
70
71 #define MAX_VBS 32
72 #define MAX_SETS 8
73 #define MAX_RTS 8
74 #define MAX_VIEWPORTS 16
75 #define MAX_SCISSORS 16
76 #define MAX_PUSH_CONSTANTS_SIZE 128
77 #define MAX_DYNAMIC_BUFFERS 16
78 #define MAX_IMAGES 8
79 #define MAX_SAMPLES_LOG2 4 /* SKL supports 16 samples */
80
81 #define anv_noreturn __attribute__((__noreturn__))
82 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
83
84 #define MIN(a, b) ((a) < (b) ? (a) : (b))
85 #define MAX(a, b) ((a) > (b) ? (a) : (b))
86
87 static inline uint32_t
88 align_u32(uint32_t v, uint32_t a)
89 {
90 assert(a != 0 && a == (a & -a));
91 return (v + a - 1) & ~(a - 1);
92 }
93
94 static inline uint64_t
95 align_u64(uint64_t v, uint64_t a)
96 {
97 assert(a != 0 && a == (a & -a));
98 return (v + a - 1) & ~(a - 1);
99 }
100
101 static inline int32_t
102 align_i32(int32_t v, int32_t a)
103 {
104 assert(a != 0 && a == (a & -a));
105 return (v + a - 1) & ~(a - 1);
106 }
107
108 /** Alignment must be a power of 2. */
109 static inline bool
110 anv_is_aligned(uintmax_t n, uintmax_t a)
111 {
112 assert(a == (a & -a));
113 return (n & (a - 1)) == 0;
114 }
115
116 static inline uint32_t
117 anv_minify(uint32_t n, uint32_t levels)
118 {
119 if (unlikely(n == 0))
120 return 0;
121 else
122 return MAX(n >> levels, 1);
123 }
124
125 static inline float
126 anv_clamp_f(float f, float min, float max)
127 {
128 assert(min < max);
129
130 if (f > max)
131 return max;
132 else if (f < min)
133 return min;
134 else
135 return f;
136 }
137
138 static inline bool
139 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
140 {
141 if (*inout_mask & clear_mask) {
142 *inout_mask &= ~clear_mask;
143 return true;
144 } else {
145 return false;
146 }
147 }
148
149 #define for_each_bit(b, dword) \
150 for (uint32_t __dword = (dword); \
151 (b) = __builtin_ffs(__dword) - 1, __dword; \
152 __dword &= ~(1 << (b)))
153
154 #define typed_memcpy(dest, src, count) ({ \
155 static_assert(sizeof(*src) == sizeof(*dest), ""); \
156 memcpy((dest), (src), (count) * sizeof(*(src))); \
157 })
158
159 #define zero(x) (memset(&(x), 0, sizeof(x)))
160
161 /* Define no kernel as 1, since that's an illegal offset for a kernel */
162 #define NO_KERNEL 1
163
164 struct anv_common {
165 VkStructureType sType;
166 const void* pNext;
167 };
168
169 /* Whenever we generate an error, pass it through this function. Useful for
170 * debugging, where we can break on it. Only call at error site, not when
171 * propagating errors. Might be useful to plug in a stack trace here.
172 */
173
174 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
175
176 #ifdef DEBUG
177 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
178 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
179 #else
180 #define vk_error(error) error
181 #define vk_errorf(error, format, ...) error
182 #endif
183
184 void __anv_finishme(const char *file, int line, const char *format, ...)
185 anv_printflike(3, 4);
186 void anv_loge(const char *format, ...) anv_printflike(1, 2);
187 void anv_loge_v(const char *format, va_list va);
188
189 /**
190 * Print a FINISHME message, including its source location.
191 */
192 #define anv_finishme(format, ...) \
193 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__);
194
195 /* A non-fatal assert. Useful for debugging. */
196 #ifdef DEBUG
197 #define anv_assert(x) ({ \
198 if (unlikely(!(x))) \
199 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
200 })
201 #else
202 #define anv_assert(x)
203 #endif
204
205 /**
206 * If a block of code is annotated with anv_validate, then the block runs only
207 * in debug builds.
208 */
209 #ifdef DEBUG
210 #define anv_validate if (1)
211 #else
212 #define anv_validate if (0)
213 #endif
214
215 void anv_abortf(const char *format, ...) anv_noreturn anv_printflike(1, 2);
216 void anv_abortfv(const char *format, va_list va) anv_noreturn;
217
218 #define stub_return(v) \
219 do { \
220 anv_finishme("stub %s", __func__); \
221 return (v); \
222 } while (0)
223
224 #define stub() \
225 do { \
226 anv_finishme("stub %s", __func__); \
227 return; \
228 } while (0)
229
230 /**
231 * A dynamically growable, circular buffer. Elements are added at head and
232 * removed from tail. head and tail are free-running uint32_t indices and we
233 * only compute the modulo with size when accessing the array. This way,
234 * number of bytes in the queue is always head - tail, even in case of
235 * wraparound.
236 */
237
238 struct anv_vector {
239 uint32_t head;
240 uint32_t tail;
241 uint32_t element_size;
242 uint32_t size;
243 void *data;
244 };
245
246 int anv_vector_init(struct anv_vector *queue, uint32_t element_size, uint32_t size);
247 void *anv_vector_add(struct anv_vector *queue);
248 void *anv_vector_remove(struct anv_vector *queue);
249
250 static inline int
251 anv_vector_length(struct anv_vector *queue)
252 {
253 return (queue->head - queue->tail) / queue->element_size;
254 }
255
256 static inline void *
257 anv_vector_head(struct anv_vector *vector)
258 {
259 assert(vector->tail < vector->head);
260 return (void *)((char *)vector->data +
261 ((vector->head - vector->element_size) &
262 (vector->size - 1)));
263 }
264
265 static inline void *
266 anv_vector_tail(struct anv_vector *vector)
267 {
268 return (void *)((char *)vector->data + (vector->tail & (vector->size - 1)));
269 }
270
271 static inline void
272 anv_vector_finish(struct anv_vector *queue)
273 {
274 free(queue->data);
275 }
276
277 #define anv_vector_foreach(elem, queue) \
278 static_assert(__builtin_types_compatible_p(__typeof__(queue), struct anv_vector *), ""); \
279 for (uint32_t __anv_vector_offset = (queue)->tail; \
280 elem = (queue)->data + (__anv_vector_offset & ((queue)->size - 1)), __anv_vector_offset < (queue)->head; \
281 __anv_vector_offset += (queue)->element_size)
282
283 struct anv_bo {
284 uint32_t gem_handle;
285
286 /* Index into the current validation list. This is used by the
287 * validation list building alrogithm to track which buffers are already
288 * in the validation list so that we can ensure uniqueness.
289 */
290 uint32_t index;
291
292 /* Last known offset. This value is provided by the kernel when we
293 * execbuf and is used as the presumed offset for the next bunch of
294 * relocations.
295 */
296 uint64_t offset;
297
298 uint64_t size;
299 void *map;
300
301 /* We need to set the WRITE flag on winsys bos so GEM will know we're
302 * writing to them and synchronize uses on other rings (eg if the display
303 * server uses the blitter ring).
304 */
305 bool is_winsys_bo;
306 };
307
308 /* Represents a lock-free linked list of "free" things. This is used by
309 * both the block pool and the state pools. Unfortunately, in order to
310 * solve the ABA problem, we can't use a single uint32_t head.
311 */
312 union anv_free_list {
313 struct {
314 int32_t offset;
315
316 /* A simple count that is incremented every time the head changes. */
317 uint32_t count;
318 };
319 uint64_t u64;
320 };
321
322 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
323
324 struct anv_block_state {
325 union {
326 struct {
327 uint32_t next;
328 uint32_t end;
329 };
330 uint64_t u64;
331 };
332 };
333
334 struct anv_block_pool {
335 struct anv_device *device;
336
337 struct anv_bo bo;
338
339 /* The offset from the start of the bo to the "center" of the block
340 * pool. Pointers to allocated blocks are given by
341 * bo.map + center_bo_offset + offsets.
342 */
343 uint32_t center_bo_offset;
344
345 /* Current memory map of the block pool. This pointer may or may not
346 * point to the actual beginning of the block pool memory. If
347 * anv_block_pool_alloc_back has ever been called, then this pointer
348 * will point to the "center" position of the buffer and all offsets
349 * (negative or positive) given out by the block pool alloc functions
350 * will be valid relative to this pointer.
351 *
352 * In particular, map == bo.map + center_offset
353 */
354 void *map;
355 int fd;
356
357 /**
358 * Array of mmaps and gem handles owned by the block pool, reclaimed when
359 * the block pool is destroyed.
360 */
361 struct anv_vector mmap_cleanups;
362
363 uint32_t block_size;
364
365 union anv_free_list free_list;
366 struct anv_block_state state;
367
368 union anv_free_list back_free_list;
369 struct anv_block_state back_state;
370 };
371
372 /* Block pools are backed by a fixed-size 2GB memfd */
373 #define BLOCK_POOL_MEMFD_SIZE (1ull << 32)
374
375 /* The center of the block pool is also the middle of the memfd. This may
376 * change in the future if we decide differently for some reason.
377 */
378 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
379
380 static inline uint32_t
381 anv_block_pool_size(struct anv_block_pool *pool)
382 {
383 return pool->state.end + pool->back_state.end;
384 }
385
386 struct anv_state {
387 int32_t offset;
388 uint32_t alloc_size;
389 void *map;
390 };
391
392 struct anv_fixed_size_state_pool {
393 size_t state_size;
394 union anv_free_list free_list;
395 struct anv_block_state block;
396 };
397
398 #define ANV_MIN_STATE_SIZE_LOG2 6
399 #define ANV_MAX_STATE_SIZE_LOG2 10
400
401 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2)
402
403 struct anv_state_pool {
404 struct anv_block_pool *block_pool;
405 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
406 };
407
408 struct anv_state_stream_block;
409
410 struct anv_state_stream {
411 struct anv_block_pool *block_pool;
412
413 /* The current working block */
414 struct anv_state_stream_block *block;
415
416 /* Offset at which the current block starts */
417 uint32_t start;
418 /* Offset at which to allocate the next state */
419 uint32_t next;
420 /* Offset at which the current block ends */
421 uint32_t end;
422 };
423
424 #define CACHELINE_SIZE 64
425 #define CACHELINE_MASK 63
426
427 static inline void
428 anv_clflush_range(void *start, size_t size)
429 {
430 void *p = (void *) (((uintptr_t) start) & ~CACHELINE_MASK);
431 void *end = start + size;
432
433 __builtin_ia32_mfence();
434 while (p < end) {
435 __builtin_ia32_clflush(p);
436 p += CACHELINE_SIZE;
437 }
438 }
439
440 static void inline
441 anv_state_clflush(struct anv_state state)
442 {
443 anv_clflush_range(state.map, state.alloc_size);
444 }
445
446 void anv_block_pool_init(struct anv_block_pool *pool,
447 struct anv_device *device, uint32_t block_size);
448 void anv_block_pool_finish(struct anv_block_pool *pool);
449 int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
450 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
451 void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
452 void anv_state_pool_init(struct anv_state_pool *pool,
453 struct anv_block_pool *block_pool);
454 void anv_state_pool_finish(struct anv_state_pool *pool);
455 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
456 size_t state_size, size_t alignment);
457 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
458 void anv_state_stream_init(struct anv_state_stream *stream,
459 struct anv_block_pool *block_pool);
460 void anv_state_stream_finish(struct anv_state_stream *stream);
461 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
462 uint32_t size, uint32_t alignment);
463
464 /**
465 * Implements a pool of re-usable BOs. The interface is identical to that
466 * of block_pool except that each block is its own BO.
467 */
468 struct anv_bo_pool {
469 struct anv_device *device;
470
471 void *free_list[16];
472 };
473
474 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
475 void anv_bo_pool_finish(struct anv_bo_pool *pool);
476 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
477 uint32_t size);
478 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
479
480
481 void *anv_resolve_entrypoint(uint32_t index);
482
483 extern struct anv_dispatch_table dtable;
484
485 #define ANV_CALL(func) ({ \
486 if (dtable.func == NULL) { \
487 size_t idx = offsetof(struct anv_dispatch_table, func) / sizeof(void *); \
488 dtable.entrypoints[idx] = anv_resolve_entrypoint(idx); \
489 } \
490 dtable.func; \
491 })
492
493 static inline void *
494 anv_alloc(const VkAllocationCallbacks *alloc,
495 size_t size, size_t align,
496 VkSystemAllocationScope scope)
497 {
498 return alloc->pfnAllocation(alloc->pUserData, size, align, scope);
499 }
500
501 static inline void *
502 anv_realloc(const VkAllocationCallbacks *alloc,
503 void *ptr, size_t size, size_t align,
504 VkSystemAllocationScope scope)
505 {
506 return alloc->pfnReallocation(alloc->pUserData, ptr, size, align, scope);
507 }
508
509 static inline void
510 anv_free(const VkAllocationCallbacks *alloc, void *data)
511 {
512 alloc->pfnFree(alloc->pUserData, data);
513 }
514
515 static inline void *
516 anv_alloc2(const VkAllocationCallbacks *parent_alloc,
517 const VkAllocationCallbacks *alloc,
518 size_t size, size_t align,
519 VkSystemAllocationScope scope)
520 {
521 if (alloc)
522 return anv_alloc(alloc, size, align, scope);
523 else
524 return anv_alloc(parent_alloc, size, align, scope);
525 }
526
527 static inline void
528 anv_free2(const VkAllocationCallbacks *parent_alloc,
529 const VkAllocationCallbacks *alloc,
530 void *data)
531 {
532 if (alloc)
533 anv_free(alloc, data);
534 else
535 anv_free(parent_alloc, data);
536 }
537
538 struct anv_physical_device {
539 VK_LOADER_DATA _loader_data;
540
541 struct anv_instance * instance;
542 uint32_t chipset_id;
543 const char * path;
544 const char * name;
545 const struct brw_device_info * info;
546 uint64_t aperture_size;
547 struct brw_compiler * compiler;
548 struct isl_device isl_dev;
549 };
550
551 struct anv_wsi_interaface;
552
553 #define VK_ICD_WSI_PLATFORM_MAX 5
554
555 struct anv_instance {
556 VK_LOADER_DATA _loader_data;
557
558 VkAllocationCallbacks alloc;
559
560 uint32_t apiVersion;
561 int physicalDeviceCount;
562 struct anv_physical_device physicalDevice;
563
564 struct anv_wsi_interface * wsi[VK_ICD_WSI_PLATFORM_MAX];
565 };
566
567 VkResult anv_init_wsi(struct anv_instance *instance);
568 void anv_finish_wsi(struct anv_instance *instance);
569
570 struct anv_meta_state {
571 VkAllocationCallbacks alloc;
572
573 /**
574 * Use array element `i` for images with `2^i` samples.
575 */
576 struct {
577 /**
578 * Pipeline N is used to clear color attachment N of the current
579 * subpass.
580 *
581 * HACK: We use one pipeline per color attachment to work around the
582 * compiler's inability to dynamically set the render target index of
583 * the render target write message.
584 */
585 struct anv_pipeline *color_pipelines[MAX_RTS];
586
587 struct anv_pipeline *depth_only_pipeline;
588 struct anv_pipeline *stencil_only_pipeline;
589 struct anv_pipeline *depthstencil_pipeline;
590 } clear[1 + MAX_SAMPLES_LOG2];
591
592 struct {
593 VkRenderPass render_pass;
594
595 /** Pipeline that blits from a 1D image. */
596 VkPipeline pipeline_1d_src;
597
598 /** Pipeline that blits from a 2D image. */
599 VkPipeline pipeline_2d_src;
600
601 /** Pipeline that blits from a 3D image. */
602 VkPipeline pipeline_3d_src;
603
604 VkPipelineLayout pipeline_layout;
605 VkDescriptorSetLayout ds_layout;
606 } blit;
607
608 struct {
609 VkRenderPass render_pass;
610
611 /** Pipeline that copies from a 2D image. */
612 VkPipeline pipeline_2d_src;
613
614 VkPipelineLayout pipeline_layout;
615 VkDescriptorSetLayout ds_layout;
616 } blit2d;
617
618 struct {
619 /** Pipeline [i] resolves an image with 2^(i+1) samples. */
620 VkPipeline pipelines[MAX_SAMPLES_LOG2];
621
622 VkRenderPass pass;
623 VkPipelineLayout pipeline_layout;
624 VkDescriptorSetLayout ds_layout;
625 } resolve;
626 };
627
628 struct anv_queue {
629 VK_LOADER_DATA _loader_data;
630
631 struct anv_device * device;
632
633 struct anv_state_pool * pool;
634 };
635
636 struct anv_pipeline_cache {
637 struct anv_device * device;
638 struct anv_state_stream program_stream;
639 pthread_mutex_t mutex;
640
641 uint32_t total_size;
642 uint32_t table_size;
643 uint32_t kernel_count;
644 uint32_t * hash_table;
645 };
646
647 struct anv_pipeline_bind_map;
648
649 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
650 struct anv_device *device);
651 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
652 uint32_t anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
653 const unsigned char *sha1,
654 const struct brw_stage_prog_data **prog_data,
655 struct anv_pipeline_bind_map *map);
656 uint32_t anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
657 const unsigned char *sha1,
658 const void *kernel,
659 size_t kernel_size,
660 const struct brw_stage_prog_data **prog_data,
661 size_t prog_data_size,
662 struct anv_pipeline_bind_map *map);
663
664 struct anv_device {
665 VK_LOADER_DATA _loader_data;
666
667 VkAllocationCallbacks alloc;
668
669 struct anv_instance * instance;
670 uint32_t chipset_id;
671 struct brw_device_info info;
672 struct isl_device isl_dev;
673 int context_id;
674 int fd;
675 bool can_chain_batches;
676
677 struct anv_bo_pool batch_bo_pool;
678
679 struct anv_block_pool dynamic_state_block_pool;
680 struct anv_state_pool dynamic_state_pool;
681
682 struct anv_block_pool instruction_block_pool;
683 struct anv_pipeline_cache default_pipeline_cache;
684
685 struct anv_block_pool surface_state_block_pool;
686 struct anv_state_pool surface_state_pool;
687
688 struct anv_bo workaround_bo;
689
690 struct anv_meta_state meta_state;
691
692 struct anv_state border_colors;
693
694 struct anv_queue queue;
695
696 struct anv_block_pool scratch_block_pool;
697
698 uint32_t default_mocs;
699
700 pthread_mutex_t mutex;
701 };
702
703 void anv_device_get_cache_uuid(void *uuid);
704
705
706 void* anv_gem_mmap(struct anv_device *device,
707 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
708 void anv_gem_munmap(void *p, uint64_t size);
709 uint32_t anv_gem_create(struct anv_device *device, size_t size);
710 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
711 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
712 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
713 int anv_gem_execbuffer(struct anv_device *device,
714 struct drm_i915_gem_execbuffer2 *execbuf);
715 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
716 uint32_t stride, uint32_t tiling);
717 int anv_gem_create_context(struct anv_device *device);
718 int anv_gem_destroy_context(struct anv_device *device, int context);
719 int anv_gem_get_param(int fd, uint32_t param);
720 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
721 int anv_gem_get_aperture(int fd, uint64_t *size);
722 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
723 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
724 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
725 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
726 uint32_t read_domains, uint32_t write_domain);
727
728 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
729
730 struct anv_reloc_list {
731 size_t num_relocs;
732 size_t array_length;
733 struct drm_i915_gem_relocation_entry * relocs;
734 struct anv_bo ** reloc_bos;
735 };
736
737 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
738 const VkAllocationCallbacks *alloc);
739 void anv_reloc_list_finish(struct anv_reloc_list *list,
740 const VkAllocationCallbacks *alloc);
741
742 uint64_t anv_reloc_list_add(struct anv_reloc_list *list,
743 const VkAllocationCallbacks *alloc,
744 uint32_t offset, struct anv_bo *target_bo,
745 uint32_t delta);
746
747 struct anv_batch_bo {
748 /* Link in the anv_cmd_buffer.owned_batch_bos list */
749 struct list_head link;
750
751 struct anv_bo bo;
752
753 /* Bytes actually consumed in this batch BO */
754 size_t length;
755
756 /* Last seen surface state block pool bo offset */
757 uint32_t last_ss_pool_bo_offset;
758
759 struct anv_reloc_list relocs;
760 };
761
762 struct anv_batch {
763 const VkAllocationCallbacks * alloc;
764
765 void * start;
766 void * end;
767 void * next;
768
769 struct anv_reloc_list * relocs;
770
771 /* This callback is called (with the associated user data) in the event
772 * that the batch runs out of space.
773 */
774 VkResult (*extend_cb)(struct anv_batch *, void *);
775 void * user_data;
776 };
777
778 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
779 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
780 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
781 void *location, struct anv_bo *bo, uint32_t offset);
782 VkResult anv_device_submit_simple_batch(struct anv_device *device,
783 struct anv_batch *batch);
784
785 struct anv_address {
786 struct anv_bo *bo;
787 uint32_t offset;
788 };
789
790 #define __gen_address_type struct anv_address
791 #define __gen_user_data struct anv_batch
792
793 static inline uint64_t
794 __gen_combine_address(struct anv_batch *batch, void *location,
795 const struct anv_address address, uint32_t delta)
796 {
797 if (address.bo == NULL) {
798 return address.offset + delta;
799 } else {
800 assert(batch->start <= location && location < batch->end);
801
802 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
803 }
804 }
805
806 /* Wrapper macros needed to work around preprocessor argument issues. In
807 * particular, arguments don't get pre-evaluated if they are concatenated.
808 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
809 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
810 * We can work around this easily enough with these helpers.
811 */
812 #define __anv_cmd_length(cmd) cmd ## _length
813 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
814 #define __anv_cmd_header(cmd) cmd ## _header
815 #define __anv_cmd_pack(cmd) cmd ## _pack
816
817 #define anv_batch_emit(batch, cmd, ...) do { \
818 void *__dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
819 struct cmd __template = { \
820 __anv_cmd_header(cmd), \
821 __VA_ARGS__ \
822 }; \
823 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
824 VG(VALGRIND_CHECK_MEM_IS_DEFINED(__dst, __anv_cmd_length(cmd) * 4)); \
825 } while (0)
826
827 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
828 void *__dst = anv_batch_emit_dwords(batch, n); \
829 struct cmd __template = { \
830 __anv_cmd_header(cmd), \
831 .DWordLength = n - __anv_cmd_length_bias(cmd), \
832 __VA_ARGS__ \
833 }; \
834 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
835 __dst; \
836 })
837
838 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
839 do { \
840 uint32_t *dw; \
841 \
842 static_assert(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1), "mismatch merge"); \
843 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
844 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
845 dw[i] = (dwords0)[i] | (dwords1)[i]; \
846 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
847 } while (0)
848
849 #define anv_state_pool_emit(pool, cmd, align, ...) ({ \
850 const uint32_t __size = __anv_cmd_length(cmd) * 4; \
851 struct anv_state __state = \
852 anv_state_pool_alloc((pool), __size, align); \
853 struct cmd __template = { \
854 __VA_ARGS__ \
855 }; \
856 __anv_cmd_pack(cmd)(NULL, __state.map, &__template); \
857 VG(VALGRIND_CHECK_MEM_IS_DEFINED(__state.map, __anv_cmd_length(cmd) * 4)); \
858 if (!(pool)->block_pool->device->info.has_llc) \
859 anv_state_clflush(__state); \
860 __state; \
861 })
862
863 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
864 .GraphicsDataTypeGFDT = 0, \
865 .LLCCacheabilityControlLLCCC = 0, \
866 .L3CacheabilityControlL3CC = 1, \
867 }
868
869 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
870 .LLCeLLCCacheabilityControlLLCCC = 0, \
871 .L3CacheabilityControlL3CC = 1, \
872 }
873
874 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
875 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
876 .TargetCache = L3DefertoPATforLLCeLLCselection, \
877 .AgeforQUADLRU = 0 \
878 }
879
880 /* Skylake: MOCS is now an index into an array of 62 different caching
881 * configurations programmed by the kernel.
882 */
883
884 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
885 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
886 .IndextoMOCSTables = 2 \
887 }
888
889 #define GEN9_MOCS_PTE { \
890 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
891 .IndextoMOCSTables = 1 \
892 }
893
894 struct anv_device_memory {
895 struct anv_bo bo;
896 uint32_t type_index;
897 VkDeviceSize map_size;
898 void * map;
899 };
900
901 /**
902 * Header for Vertex URB Entry (VUE)
903 */
904 struct anv_vue_header {
905 uint32_t Reserved;
906 uint32_t RTAIndex; /* RenderTargetArrayIndex */
907 uint32_t ViewportIndex;
908 float PointWidth;
909 };
910
911 struct anv_descriptor_set_binding_layout {
912 /* Number of array elements in this binding */
913 uint16_t array_size;
914
915 /* Index into the flattend descriptor set */
916 uint16_t descriptor_index;
917
918 /* Index into the dynamic state array for a dynamic buffer */
919 int16_t dynamic_offset_index;
920
921 /* Index into the descriptor set buffer views */
922 int16_t buffer_index;
923
924 struct {
925 /* Index into the binding table for the associated surface */
926 int16_t surface_index;
927
928 /* Index into the sampler table for the associated sampler */
929 int16_t sampler_index;
930
931 /* Index into the image table for the associated image */
932 int16_t image_index;
933 } stage[MESA_SHADER_STAGES];
934
935 /* Immutable samplers (or NULL if no immutable samplers) */
936 struct anv_sampler **immutable_samplers;
937 };
938
939 struct anv_descriptor_set_layout {
940 /* Number of bindings in this descriptor set */
941 uint16_t binding_count;
942
943 /* Total size of the descriptor set with room for all array entries */
944 uint16_t size;
945
946 /* Shader stages affected by this descriptor set */
947 uint16_t shader_stages;
948
949 /* Number of buffers in this descriptor set */
950 uint16_t buffer_count;
951
952 /* Number of dynamic offsets used by this descriptor set */
953 uint16_t dynamic_offset_count;
954
955 /* Bindings in this descriptor set */
956 struct anv_descriptor_set_binding_layout binding[0];
957 };
958
959 struct anv_descriptor {
960 VkDescriptorType type;
961
962 union {
963 struct {
964 struct anv_image_view *image_view;
965 struct anv_sampler *sampler;
966 };
967
968 struct anv_buffer_view *buffer_view;
969 };
970 };
971
972 struct anv_descriptor_set {
973 const struct anv_descriptor_set_layout *layout;
974 uint32_t size;
975 uint32_t buffer_count;
976 struct anv_buffer_view *buffer_views;
977 struct anv_descriptor descriptors[0];
978 };
979
980 struct anv_descriptor_pool {
981 uint32_t size;
982 uint32_t next;
983 uint32_t free_list;
984
985 struct anv_state_stream surface_state_stream;
986 void *surface_state_free_list;
987
988 char data[0];
989 };
990
991 VkResult
992 anv_descriptor_set_create(struct anv_device *device,
993 struct anv_descriptor_pool *pool,
994 const struct anv_descriptor_set_layout *layout,
995 struct anv_descriptor_set **out_set);
996
997 void
998 anv_descriptor_set_destroy(struct anv_device *device,
999 struct anv_descriptor_pool *pool,
1000 struct anv_descriptor_set *set);
1001
1002 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT16_MAX
1003
1004 struct anv_pipeline_binding {
1005 /* The descriptor set this surface corresponds to. The special value of
1006 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1007 * to a color attachment and not a regular descriptor.
1008 */
1009 uint16_t set;
1010
1011 /* Offset into the descriptor set or attachment list. */
1012 uint16_t offset;
1013 };
1014
1015 struct anv_pipeline_layout {
1016 struct {
1017 struct anv_descriptor_set_layout *layout;
1018 uint32_t dynamic_offset_start;
1019 } set[MAX_SETS];
1020
1021 uint32_t num_sets;
1022
1023 struct {
1024 bool has_dynamic_offsets;
1025 } stage[MESA_SHADER_STAGES];
1026 };
1027
1028 struct anv_buffer {
1029 struct anv_device * device;
1030 VkDeviceSize size;
1031
1032 VkBufferUsageFlags usage;
1033
1034 /* Set when bound */
1035 struct anv_bo * bo;
1036 VkDeviceSize offset;
1037 };
1038
1039 enum anv_cmd_dirty_bits {
1040 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1041 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1042 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1043 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1044 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1045 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1046 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1047 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1048 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1049 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1050 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1051 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1052 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1053 };
1054 typedef uint32_t anv_cmd_dirty_mask_t;
1055
1056 struct anv_vertex_binding {
1057 struct anv_buffer * buffer;
1058 VkDeviceSize offset;
1059 };
1060
1061 struct anv_push_constants {
1062 /* Current allocated size of this push constants data structure.
1063 * Because a decent chunk of it may not be used (images on SKL, for
1064 * instance), we won't actually allocate the entire structure up-front.
1065 */
1066 uint32_t size;
1067
1068 /* Push constant data provided by the client through vkPushConstants */
1069 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1070
1071 /* Our hardware only provides zero-based vertex and instance id so, in
1072 * order to satisfy the vulkan requirements, we may have to push one or
1073 * both of these into the shader.
1074 */
1075 uint32_t base_vertex;
1076 uint32_t base_instance;
1077
1078 /* Offsets and ranges for dynamically bound buffers */
1079 struct {
1080 uint32_t offset;
1081 uint32_t range;
1082 } dynamic[MAX_DYNAMIC_BUFFERS];
1083
1084 /* Image data for image_load_store on pre-SKL */
1085 struct brw_image_param images[MAX_IMAGES];
1086 };
1087
1088 struct anv_dynamic_state {
1089 struct {
1090 uint32_t count;
1091 VkViewport viewports[MAX_VIEWPORTS];
1092 } viewport;
1093
1094 struct {
1095 uint32_t count;
1096 VkRect2D scissors[MAX_SCISSORS];
1097 } scissor;
1098
1099 float line_width;
1100
1101 struct {
1102 float bias;
1103 float clamp;
1104 float slope;
1105 } depth_bias;
1106
1107 float blend_constants[4];
1108
1109 struct {
1110 float min;
1111 float max;
1112 } depth_bounds;
1113
1114 struct {
1115 uint32_t front;
1116 uint32_t back;
1117 } stencil_compare_mask;
1118
1119 struct {
1120 uint32_t front;
1121 uint32_t back;
1122 } stencil_write_mask;
1123
1124 struct {
1125 uint32_t front;
1126 uint32_t back;
1127 } stencil_reference;
1128 };
1129
1130 extern const struct anv_dynamic_state default_dynamic_state;
1131
1132 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1133 const struct anv_dynamic_state *src,
1134 uint32_t copy_mask);
1135
1136 /**
1137 * Attachment state when recording a renderpass instance.
1138 *
1139 * The clear value is valid only if there exists a pending clear.
1140 */
1141 struct anv_attachment_state {
1142 VkImageAspectFlags pending_clear_aspects;
1143 VkClearValue clear_value;
1144 };
1145
1146 /** State required while building cmd buffer */
1147 struct anv_cmd_state {
1148 /* PIPELINE_SELECT.PipelineSelection */
1149 uint32_t current_pipeline;
1150 uint32_t current_l3_config;
1151 uint32_t vb_dirty;
1152 anv_cmd_dirty_mask_t dirty;
1153 anv_cmd_dirty_mask_t compute_dirty;
1154 uint32_t num_workgroups_offset;
1155 struct anv_bo *num_workgroups_bo;
1156 VkShaderStageFlags descriptors_dirty;
1157 VkShaderStageFlags push_constants_dirty;
1158 uint32_t scratch_size;
1159 struct anv_pipeline * pipeline;
1160 struct anv_pipeline * compute_pipeline;
1161 struct anv_framebuffer * framebuffer;
1162 struct anv_render_pass * pass;
1163 struct anv_subpass * subpass;
1164 uint32_t restart_index;
1165 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1166 struct anv_descriptor_set * descriptors[MAX_SETS];
1167 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1168 struct anv_state binding_tables[MESA_SHADER_STAGES];
1169 struct anv_state samplers[MESA_SHADER_STAGES];
1170 struct anv_dynamic_state dynamic;
1171 bool need_query_wa;
1172
1173 /**
1174 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1175 * valid only when recording a render pass instance.
1176 */
1177 struct anv_attachment_state * attachments;
1178
1179 struct {
1180 struct anv_buffer * index_buffer;
1181 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1182 uint32_t index_offset;
1183 } gen7;
1184 };
1185
1186 struct anv_cmd_pool {
1187 VkAllocationCallbacks alloc;
1188 struct list_head cmd_buffers;
1189 };
1190
1191 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1192
1193 enum anv_cmd_buffer_exec_mode {
1194 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1195 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1196 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1197 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1198 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1199 };
1200
1201 struct anv_cmd_buffer {
1202 VK_LOADER_DATA _loader_data;
1203
1204 struct anv_device * device;
1205
1206 struct anv_cmd_pool * pool;
1207 struct list_head pool_link;
1208
1209 struct anv_batch batch;
1210
1211 /* Fields required for the actual chain of anv_batch_bo's.
1212 *
1213 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1214 */
1215 struct list_head batch_bos;
1216 enum anv_cmd_buffer_exec_mode exec_mode;
1217
1218 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1219 * referenced by this command buffer
1220 *
1221 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1222 */
1223 struct anv_vector seen_bbos;
1224
1225 /* A vector of int32_t's for every block of binding tables.
1226 *
1227 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1228 */
1229 struct anv_vector bt_blocks;
1230 uint32_t bt_next;
1231 struct anv_reloc_list surface_relocs;
1232
1233 /* Information needed for execbuf
1234 *
1235 * These fields are generated by anv_cmd_buffer_prepare_execbuf().
1236 */
1237 struct {
1238 struct drm_i915_gem_execbuffer2 execbuf;
1239
1240 struct drm_i915_gem_exec_object2 * objects;
1241 uint32_t bo_count;
1242 struct anv_bo ** bos;
1243
1244 /* Allocated length of the 'objects' and 'bos' arrays */
1245 uint32_t array_length;
1246
1247 bool need_reloc;
1248 } execbuf2;
1249
1250 /* Serial for tracking buffer completion */
1251 uint32_t serial;
1252
1253 /* Stream objects for storing temporary data */
1254 struct anv_state_stream surface_state_stream;
1255 struct anv_state_stream dynamic_state_stream;
1256
1257 VkCommandBufferUsageFlags usage_flags;
1258 VkCommandBufferLevel level;
1259
1260 struct anv_cmd_state state;
1261 };
1262
1263 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1264 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1265 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1266 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1267 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1268 struct anv_cmd_buffer *secondary);
1269 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1270
1271 VkResult anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1272 unsigned stage, struct anv_state *bt_state);
1273 VkResult anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1274 unsigned stage, struct anv_state *state);
1275 uint32_t gen7_cmd_buffer_flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer);
1276 void gen7_cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
1277 uint32_t stages);
1278
1279 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1280 const void *data, uint32_t size, uint32_t alignment);
1281 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1282 uint32_t *a, uint32_t *b,
1283 uint32_t dwords, uint32_t alignment);
1284
1285 struct anv_address
1286 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1287 struct anv_state
1288 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1289 uint32_t entries, uint32_t *state_offset);
1290 struct anv_state
1291 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1292 struct anv_state
1293 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1294 uint32_t size, uint32_t alignment);
1295
1296 VkResult
1297 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1298
1299 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1300 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1301
1302 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1303
1304 void anv_cmd_state_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1305 const VkRenderPassBeginInfo *info);
1306
1307 void anv_cmd_buffer_set_subpass(struct anv_cmd_buffer *cmd_buffer,
1308 struct anv_subpass *subpass);
1309
1310 struct anv_state
1311 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1312 gl_shader_stage stage);
1313 struct anv_state
1314 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1315
1316 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1317 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1318
1319 const struct anv_image_view *
1320 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1321
1322 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1323
1324 struct anv_fence {
1325 struct anv_bo bo;
1326 struct drm_i915_gem_execbuffer2 execbuf;
1327 struct drm_i915_gem_exec_object2 exec2_objects[1];
1328 bool ready;
1329 };
1330
1331 struct anv_event {
1332 uint64_t semaphore;
1333 struct anv_state state;
1334 };
1335
1336 struct nir_shader;
1337
1338 struct anv_shader_module {
1339 struct nir_shader * nir;
1340
1341 unsigned char sha1[20];
1342 uint32_t size;
1343 char data[0];
1344 };
1345
1346 void anv_hash_shader(unsigned char *hash, const void *key, size_t key_size,
1347 struct anv_shader_module *module,
1348 const char *entrypoint,
1349 const VkSpecializationInfo *spec_info);
1350
1351 static inline gl_shader_stage
1352 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1353 {
1354 assert(__builtin_popcount(vk_stage) == 1);
1355 return ffs(vk_stage) - 1;
1356 }
1357
1358 static inline VkShaderStageFlagBits
1359 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1360 {
1361 return (1 << mesa_stage);
1362 }
1363
1364 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
1365
1366 #define anv_foreach_stage(stage, stage_bits) \
1367 for (gl_shader_stage stage, \
1368 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
1369 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1370 __tmp &= ~(1 << (stage)))
1371
1372 struct anv_pipeline_bind_map {
1373 uint32_t surface_count;
1374 uint32_t sampler_count;
1375 uint32_t image_count;
1376 uint32_t attachment_count;
1377
1378 struct anv_pipeline_binding * surface_to_descriptor;
1379 struct anv_pipeline_binding * sampler_to_descriptor;
1380 uint32_t * surface_to_attachment;
1381 };
1382
1383 struct anv_pipeline {
1384 struct anv_device * device;
1385 struct anv_batch batch;
1386 uint32_t batch_data[512];
1387 struct anv_reloc_list batch_relocs;
1388 uint32_t dynamic_state_mask;
1389 struct anv_dynamic_state dynamic_state;
1390
1391 struct anv_pipeline_layout * layout;
1392 struct anv_pipeline_bind_map bindings[MESA_SHADER_STAGES];
1393
1394 bool use_repclear;
1395
1396 const struct brw_stage_prog_data * prog_data[MESA_SHADER_STAGES];
1397 uint32_t scratch_start[MESA_SHADER_STAGES];
1398 uint32_t total_scratch;
1399 struct {
1400 uint8_t push_size[MESA_SHADER_FRAGMENT + 1];
1401 uint32_t start[MESA_SHADER_GEOMETRY + 1];
1402 uint32_t size[MESA_SHADER_GEOMETRY + 1];
1403 uint32_t entries[MESA_SHADER_GEOMETRY + 1];
1404 } urb;
1405
1406 VkShaderStageFlags active_stages;
1407 struct anv_state blend_state;
1408 uint32_t vs_simd8;
1409 uint32_t vs_vec4;
1410 uint32_t ps_simd8;
1411 uint32_t ps_simd16;
1412 uint32_t ps_ksp0;
1413 uint32_t ps_ksp2;
1414 uint32_t ps_grf_start0;
1415 uint32_t ps_grf_start2;
1416 uint32_t gs_kernel;
1417 uint32_t cs_simd;
1418
1419 uint32_t vb_used;
1420 uint32_t binding_stride[MAX_VBS];
1421 bool instancing_enable[MAX_VBS];
1422 bool primitive_restart;
1423 uint32_t topology;
1424
1425 uint32_t cs_thread_width_max;
1426 uint32_t cs_right_mask;
1427
1428 struct {
1429 uint32_t sf[7];
1430 uint32_t depth_stencil_state[3];
1431 } gen7;
1432
1433 struct {
1434 uint32_t sf[4];
1435 uint32_t raster[5];
1436 uint32_t wm_depth_stencil[3];
1437 } gen8;
1438
1439 struct {
1440 uint32_t wm_depth_stencil[4];
1441 } gen9;
1442 };
1443
1444 static inline const struct brw_vs_prog_data *
1445 get_vs_prog_data(struct anv_pipeline *pipeline)
1446 {
1447 return (const struct brw_vs_prog_data *) pipeline->prog_data[MESA_SHADER_VERTEX];
1448 }
1449
1450 static inline const struct brw_gs_prog_data *
1451 get_gs_prog_data(struct anv_pipeline *pipeline)
1452 {
1453 return (const struct brw_gs_prog_data *) pipeline->prog_data[MESA_SHADER_GEOMETRY];
1454 }
1455
1456 static inline const struct brw_wm_prog_data *
1457 get_wm_prog_data(struct anv_pipeline *pipeline)
1458 {
1459 return (const struct brw_wm_prog_data *) pipeline->prog_data[MESA_SHADER_FRAGMENT];
1460 }
1461
1462 static inline const struct brw_cs_prog_data *
1463 get_cs_prog_data(struct anv_pipeline *pipeline)
1464 {
1465 return (const struct brw_cs_prog_data *) pipeline->prog_data[MESA_SHADER_COMPUTE];
1466 }
1467
1468 struct anv_graphics_pipeline_create_info {
1469 /**
1470 * If non-negative, overrides the color attachment count of the pipeline's
1471 * subpass.
1472 */
1473 int8_t color_attachment_count;
1474
1475 bool use_repclear;
1476 bool disable_viewport;
1477 bool disable_scissor;
1478 bool disable_vs;
1479 bool use_rectlist;
1480 };
1481
1482 VkResult
1483 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1484 struct anv_pipeline_cache *cache,
1485 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1486 const struct anv_graphics_pipeline_create_info *extra,
1487 const VkAllocationCallbacks *alloc);
1488
1489 VkResult
1490 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1491 struct anv_pipeline_cache *cache,
1492 const VkComputePipelineCreateInfo *info,
1493 struct anv_shader_module *module,
1494 const char *entrypoint,
1495 const VkSpecializationInfo *spec_info);
1496
1497 VkResult
1498 anv_graphics_pipeline_create(VkDevice device,
1499 VkPipelineCache cache,
1500 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1501 const struct anv_graphics_pipeline_create_info *extra,
1502 const VkAllocationCallbacks *alloc,
1503 VkPipeline *pPipeline);
1504
1505 struct anv_format_swizzle {
1506 unsigned r:2;
1507 unsigned g:2;
1508 unsigned b:2;
1509 unsigned a:2;
1510 };
1511
1512 struct anv_format {
1513 const VkFormat vk_format;
1514 const char *name;
1515 enum isl_format isl_format; /**< RENDER_SURFACE_STATE.SurfaceFormat */
1516 const struct isl_format_layout *isl_layout;
1517 struct anv_format_swizzle swizzle;
1518 bool has_depth;
1519 bool has_stencil;
1520 };
1521
1522 const struct anv_format *
1523 anv_format_for_vk_format(VkFormat format);
1524
1525 enum isl_format
1526 anv_get_isl_format(VkFormat format, VkImageAspectFlags aspect,
1527 VkImageTiling tiling, struct anv_format_swizzle *swizzle);
1528
1529 static inline bool
1530 anv_format_is_color(const struct anv_format *format)
1531 {
1532 return !format->has_depth && !format->has_stencil;
1533 }
1534
1535 static inline bool
1536 anv_format_is_depth_or_stencil(const struct anv_format *format)
1537 {
1538 return format->has_depth || format->has_stencil;
1539 }
1540
1541 /**
1542 * Subsurface of an anv_image.
1543 */
1544 struct anv_surface {
1545 struct isl_surf isl;
1546
1547 /**
1548 * Offset from VkImage's base address, as bound by vkBindImageMemory().
1549 */
1550 uint32_t offset;
1551 };
1552
1553 struct anv_image {
1554 VkImageType type;
1555 /* The original VkFormat provided by the client. This may not match any
1556 * of the actual surface formats.
1557 */
1558 VkFormat vk_format;
1559 const struct anv_format *format;
1560 VkExtent3D extent;
1561 uint32_t levels;
1562 uint32_t array_size;
1563 uint32_t samples; /**< VkImageCreateInfo::samples */
1564 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1565 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1566
1567 VkDeviceSize size;
1568 uint32_t alignment;
1569
1570 /* Set when bound */
1571 struct anv_bo *bo;
1572 VkDeviceSize offset;
1573
1574 /**
1575 * Image subsurfaces
1576 *
1577 * For each foo, anv_image::foo_surface is valid if and only if
1578 * anv_image::format has a foo aspect.
1579 *
1580 * The hardware requires that the depth buffer and stencil buffer be
1581 * separate surfaces. From Vulkan's perspective, though, depth and stencil
1582 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
1583 * allocate the depth and stencil buffers as separate surfaces in the same
1584 * bo.
1585 */
1586 union {
1587 struct anv_surface color_surface;
1588
1589 struct {
1590 struct anv_surface depth_surface;
1591 struct anv_surface stencil_surface;
1592 };
1593 };
1594 };
1595
1596 static inline uint32_t
1597 anv_get_layerCount(const struct anv_image *image,
1598 const VkImageSubresourceRange *range)
1599 {
1600 return range->layerCount == VK_REMAINING_ARRAY_LAYERS ?
1601 image->array_size - range->baseArrayLayer : range->layerCount;
1602 }
1603
1604 static inline uint32_t
1605 anv_get_levelCount(const struct anv_image *image,
1606 const VkImageSubresourceRange *range)
1607 {
1608 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
1609 image->levels - range->baseMipLevel : range->levelCount;
1610 }
1611
1612
1613 struct anv_image_view {
1614 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
1615 struct anv_bo *bo;
1616 uint32_t offset; /**< Offset into bo. */
1617
1618 VkImageAspectFlags aspect_mask;
1619 VkFormat vk_format;
1620 uint32_t base_layer;
1621 uint32_t base_mip;
1622 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
1623
1624 /** RENDER_SURFACE_STATE when using image as a color render target. */
1625 struct anv_state color_rt_surface_state;
1626
1627 /** RENDER_SURFACE_STATE when using image as a sampler surface. */
1628 struct anv_state sampler_surface_state;
1629
1630 /** RENDER_SURFACE_STATE when using image as a storage image. */
1631 struct anv_state storage_surface_state;
1632
1633 struct brw_image_param storage_image_param;
1634 };
1635
1636 struct anv_image_create_info {
1637 const VkImageCreateInfo *vk_info;
1638 isl_tiling_flags_t isl_tiling_flags;
1639 uint32_t stride;
1640 };
1641
1642 VkResult anv_image_create(VkDevice _device,
1643 const struct anv_image_create_info *info,
1644 const VkAllocationCallbacks* alloc,
1645 VkImage *pImage);
1646
1647 struct anv_surface *
1648 anv_image_get_surface_for_aspect_mask(struct anv_image *image,
1649 VkImageAspectFlags aspect_mask);
1650
1651 void anv_image_view_init(struct anv_image_view *view,
1652 struct anv_device *device,
1653 const VkImageViewCreateInfo* pCreateInfo,
1654 struct anv_cmd_buffer *cmd_buffer,
1655 uint32_t offset,
1656 VkImageUsageFlags usage_mask);
1657
1658 struct anv_buffer_view {
1659 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1660 struct anv_bo *bo;
1661 uint32_t offset; /**< Offset into bo. */
1662 uint64_t range; /**< VkBufferViewCreateInfo::range */
1663
1664 struct anv_state surface_state;
1665 struct anv_state storage_surface_state;
1666
1667 struct brw_image_param storage_image_param;
1668 };
1669
1670 const struct anv_format *
1671 anv_format_for_descriptor_type(VkDescriptorType type);
1672
1673 void anv_fill_buffer_surface_state(struct anv_device *device,
1674 struct anv_state state,
1675 enum isl_format format,
1676 uint32_t offset, uint32_t range,
1677 uint32_t stride);
1678
1679 void anv_image_view_fill_image_param(struct anv_device *device,
1680 struct anv_image_view *view,
1681 struct brw_image_param *param);
1682 void anv_buffer_view_fill_image_param(struct anv_device *device,
1683 struct anv_buffer_view *view,
1684 struct brw_image_param *param);
1685
1686 struct anv_sampler {
1687 uint32_t state[4];
1688 };
1689
1690 struct anv_framebuffer {
1691 uint32_t width;
1692 uint32_t height;
1693 uint32_t layers;
1694
1695 uint32_t attachment_count;
1696 struct anv_image_view * attachments[0];
1697 };
1698
1699 struct anv_subpass {
1700 uint32_t input_count;
1701 uint32_t * input_attachments;
1702 uint32_t color_count;
1703 uint32_t * color_attachments;
1704 uint32_t * resolve_attachments;
1705 uint32_t depth_stencil_attachment;
1706
1707 /** Subpass has at least one resolve attachment */
1708 bool has_resolve;
1709 };
1710
1711 struct anv_render_pass_attachment {
1712 const struct anv_format *format;
1713 uint32_t samples;
1714 VkAttachmentLoadOp load_op;
1715 VkAttachmentLoadOp stencil_load_op;
1716 };
1717
1718 struct anv_render_pass {
1719 uint32_t attachment_count;
1720 uint32_t subpass_count;
1721 uint32_t * subpass_attachments;
1722 struct anv_render_pass_attachment * attachments;
1723 struct anv_subpass subpasses[0];
1724 };
1725
1726 extern struct anv_render_pass anv_meta_dummy_renderpass;
1727
1728 struct anv_query_pool_slot {
1729 uint64_t begin;
1730 uint64_t end;
1731 uint64_t available;
1732 };
1733
1734 struct anv_query_pool {
1735 VkQueryType type;
1736 uint32_t slots;
1737 struct anv_bo bo;
1738 };
1739
1740 VkResult anv_device_init_meta(struct anv_device *device);
1741 void anv_device_finish_meta(struct anv_device *device);
1742
1743 void *anv_lookup_entrypoint(const char *name);
1744
1745 void anv_dump_image_to_ppm(struct anv_device *device,
1746 struct anv_image *image, unsigned miplevel,
1747 unsigned array_layer, const char *filename);
1748
1749 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
1750 \
1751 static inline struct __anv_type * \
1752 __anv_type ## _from_handle(__VkType _handle) \
1753 { \
1754 return (struct __anv_type *) _handle; \
1755 } \
1756 \
1757 static inline __VkType \
1758 __anv_type ## _to_handle(struct __anv_type *_obj) \
1759 { \
1760 return (__VkType) _obj; \
1761 }
1762
1763 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
1764 \
1765 static inline struct __anv_type * \
1766 __anv_type ## _from_handle(__VkType _handle) \
1767 { \
1768 return (struct __anv_type *)(uintptr_t) _handle; \
1769 } \
1770 \
1771 static inline __VkType \
1772 __anv_type ## _to_handle(struct __anv_type *_obj) \
1773 { \
1774 return (__VkType)(uintptr_t) _obj; \
1775 }
1776
1777 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
1778 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
1779
1780 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
1781 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
1782 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
1783 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
1784 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
1785
1786 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
1787 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
1788 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
1789 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
1790 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
1791 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
1792 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
1793 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
1794 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
1795 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
1796 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
1797 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
1798 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
1799 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
1800 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
1801 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
1802 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
1803 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
1804 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
1805
1806 #define ANV_DEFINE_STRUCT_CASTS(__anv_type, __VkType) \
1807 \
1808 static inline const __VkType * \
1809 __anv_type ## _to_ ## __VkType(const struct __anv_type *__anv_obj) \
1810 { \
1811 return (const __VkType *) __anv_obj; \
1812 }
1813
1814 #define ANV_COMMON_TO_STRUCT(__VkType, __vk_name, __common_name) \
1815 const __VkType *__vk_name = anv_common_to_ ## __VkType(__common_name)
1816
1817 ANV_DEFINE_STRUCT_CASTS(anv_common, VkMemoryBarrier)
1818 ANV_DEFINE_STRUCT_CASTS(anv_common, VkBufferMemoryBarrier)
1819 ANV_DEFINE_STRUCT_CASTS(anv_common, VkImageMemoryBarrier)
1820
1821 /* Gen-specific function declarations */
1822 #ifdef genX
1823 # include "anv_genX.h"
1824 #else
1825 # define genX(x) gen7_##x
1826 # include "anv_genX.h"
1827 # undef genX
1828 # define genX(x) gen75_##x
1829 # include "anv_genX.h"
1830 # undef genX
1831 # define genX(x) gen8_##x
1832 # include "anv_genX.h"
1833 # undef genX
1834 # define genX(x) gen9_##x
1835 # include "anv_genX.h"
1836 # undef genX
1837 #endif
1838
1839 #ifdef __cplusplus
1840 }
1841 #endif