anv: Split graphics and compute bits from anv_pipeline
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65
66 /* Pre-declarations needed for WSI entrypoints */
67 struct wl_surface;
68 struct wl_display;
69 typedef struct xcb_connection_t xcb_connection_t;
70 typedef uint32_t xcb_visualid_t;
71 typedef uint32_t xcb_window_t;
72
73 struct anv_batch;
74 struct anv_buffer;
75 struct anv_buffer_view;
76 struct anv_image_view;
77 struct anv_instance;
78
79 struct gen_aux_map_context;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
132 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
133
134 #define LOW_HEAP_SIZE \
135 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
136 #define DYNAMIC_STATE_POOL_SIZE \
137 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
138 #define BINDING_TABLE_POOL_SIZE \
139 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
140 #define SURFACE_STATE_POOL_SIZE \
141 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
142 #define INSTRUCTION_STATE_POOL_SIZE \
143 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
144 #define CLIENT_VISIBLE_HEAP_SIZE \
145 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
146
147 /* Allowing different clear colors requires us to perform a depth resolve at
148 * the end of certain render passes. This is because while slow clears store
149 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
150 * See the PRMs for examples describing when additional resolves would be
151 * necessary. To enable fast clears without requiring extra resolves, we set
152 * the clear value to a globally-defined one. We could allow different values
153 * if the user doesn't expect coherent data during or after a render passes
154 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
155 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
156 * 1.0f seems to be the only value used. The only application that doesn't set
157 * this value does so through the usage of an seemingly uninitialized clear
158 * value.
159 */
160 #define ANV_HZ_FC_VAL 1.0f
161
162 #define MAX_VBS 28
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 128
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_IMAGES 64
172 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
173 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
174 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
175 #define ANV_UBO_BOUNDS_CHECK_ALIGNMENT 32
176 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
177
178 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
179 *
180 * "The surface state model is used when a Binding Table Index (specified
181 * in the message descriptor) of less than 240 is specified. In this model,
182 * the Binding Table Index is used to index into the binding table, and the
183 * binding table entry contains a pointer to the SURFACE_STATE."
184 *
185 * Binding table values above 240 are used for various things in the hardware
186 * such as stateless, stateless with incoherent cache, SLM, and bindless.
187 */
188 #define MAX_BINDING_TABLE_SIZE 240
189
190 /* The kernel relocation API has a limitation of a 32-bit delta value
191 * applied to the address before it is written which, in spite of it being
192 * unsigned, is treated as signed . Because of the way that this maps to
193 * the Vulkan API, we cannot handle an offset into a buffer that does not
194 * fit into a signed 32 bits. The only mechanism we have for dealing with
195 * this at the moment is to limit all VkDeviceMemory objects to a maximum
196 * of 2GB each. The Vulkan spec allows us to do this:
197 *
198 * "Some platforms may have a limit on the maximum size of a single
199 * allocation. For example, certain systems may fail to create
200 * allocations with a size greater than or equal to 4GB. Such a limit is
201 * implementation-dependent, and if such a failure occurs then the error
202 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
203 *
204 * We don't use vk_error here because it's not an error so much as an
205 * indication to the application that the allocation is too large.
206 */
207 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
208
209 #define ANV_SVGS_VB_INDEX MAX_VBS
210 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
211
212 /* We reserve this MI ALU register for the purpose of handling predication.
213 * Other code which uses the MI ALU should leave it alone.
214 */
215 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
216
217 /* For gen12 we set the streamout buffers using 4 separate commands
218 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
219 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
220 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
221 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
222 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
223 * 3DSTATE_SO_BUFFER_INDEX_0.
224 */
225 #define SO_BUFFER_INDEX_0_CMD 0x60
226 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
227
228 static inline uint32_t
229 align_down_npot_u32(uint32_t v, uint32_t a)
230 {
231 return v - (v % a);
232 }
233
234 static inline uint32_t
235 align_down_u32(uint32_t v, uint32_t a)
236 {
237 assert(a != 0 && a == (a & -a));
238 return v & ~(a - 1);
239 }
240
241 static inline uint32_t
242 align_u32(uint32_t v, uint32_t a)
243 {
244 assert(a != 0 && a == (a & -a));
245 return align_down_u32(v + a - 1, a);
246 }
247
248 static inline uint64_t
249 align_down_u64(uint64_t v, uint64_t a)
250 {
251 assert(a != 0 && a == (a & -a));
252 return v & ~(a - 1);
253 }
254
255 static inline uint64_t
256 align_u64(uint64_t v, uint64_t a)
257 {
258 return align_down_u64(v + a - 1, a);
259 }
260
261 static inline int32_t
262 align_i32(int32_t v, int32_t a)
263 {
264 assert(a != 0 && a == (a & -a));
265 return (v + a - 1) & ~(a - 1);
266 }
267
268 /** Alignment must be a power of 2. */
269 static inline bool
270 anv_is_aligned(uintmax_t n, uintmax_t a)
271 {
272 assert(a == (a & -a));
273 return (n & (a - 1)) == 0;
274 }
275
276 static inline uint32_t
277 anv_minify(uint32_t n, uint32_t levels)
278 {
279 if (unlikely(n == 0))
280 return 0;
281 else
282 return MAX2(n >> levels, 1);
283 }
284
285 static inline float
286 anv_clamp_f(float f, float min, float max)
287 {
288 assert(min < max);
289
290 if (f > max)
291 return max;
292 else if (f < min)
293 return min;
294 else
295 return f;
296 }
297
298 static inline bool
299 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
300 {
301 if (*inout_mask & clear_mask) {
302 *inout_mask &= ~clear_mask;
303 return true;
304 } else {
305 return false;
306 }
307 }
308
309 static inline union isl_color_value
310 vk_to_isl_color(VkClearColorValue color)
311 {
312 return (union isl_color_value) {
313 .u32 = {
314 color.uint32[0],
315 color.uint32[1],
316 color.uint32[2],
317 color.uint32[3],
318 },
319 };
320 }
321
322 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
323 {
324 uintptr_t mask = (1ull << bits) - 1;
325 *flags = ptr & mask;
326 return (void *) (ptr & ~mask);
327 }
328
329 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
330 {
331 uintptr_t value = (uintptr_t) ptr;
332 uintptr_t mask = (1ull << bits) - 1;
333 return value | (mask & flags);
334 }
335
336 #define for_each_bit(b, dword) \
337 for (uint32_t __dword = (dword); \
338 (b) = __builtin_ffs(__dword) - 1, __dword; \
339 __dword &= ~(1 << (b)))
340
341 #define typed_memcpy(dest, src, count) ({ \
342 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
343 memcpy((dest), (src), (count) * sizeof(*(src))); \
344 })
345
346 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
347 * to be added here in order to utilize mapping in debug/error/perf macros.
348 */
349 #define REPORT_OBJECT_TYPE(o) \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
428 __builtin_choose_expr ( \
429 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
430 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
431 __builtin_choose_expr ( \
432 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
433 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
434 __builtin_choose_expr ( \
435 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
436 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
437 __builtin_choose_expr ( \
438 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
439 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
440 __builtin_choose_expr ( \
441 __builtin_types_compatible_p (__typeof (o), void*), \
442 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
443 /* The void expression results in a compile-time error \
444 when assigning the result to something. */ \
445 (void)0)))))))))))))))))))))))))))))))
446
447 /* Whenever we generate an error, pass it through this function. Useful for
448 * debugging, where we can break on it. Only call at error site, not when
449 * propagating errors. Might be useful to plug in a stack trace here.
450 */
451
452 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
453 VkDebugReportObjectTypeEXT type, VkResult error,
454 const char *file, int line, const char *format,
455 va_list args);
456
457 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
458 VkDebugReportObjectTypeEXT type, VkResult error,
459 const char *file, int line, const char *format, ...)
460 anv_printflike(7, 8);
461
462 #ifdef DEBUG
463 #define vk_error(error) __vk_errorf(NULL, NULL,\
464 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
465 error, __FILE__, __LINE__, NULL)
466 #define vk_errorfi(instance, obj, error, format, ...)\
467 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
468 __FILE__, __LINE__, format, ## __VA_ARGS__)
469 #define vk_errorf(device, obj, error, format, ...)\
470 vk_errorfi(anv_device_instance_or_null(device),\
471 obj, error, format, ## __VA_ARGS__)
472 #else
473 #define vk_error(error) error
474 #define vk_errorfi(instance, obj, error, format, ...) error
475 #define vk_errorf(device, obj, error, format, ...) error
476 #endif
477
478 /**
479 * Warn on ignored extension structs.
480 *
481 * The Vulkan spec requires us to ignore unsupported or unknown structs in
482 * a pNext chain. In debug mode, emitting warnings for ignored structs may
483 * help us discover structs that we should not have ignored.
484 *
485 *
486 * From the Vulkan 1.0.38 spec:
487 *
488 * Any component of the implementation (the loader, any enabled layers,
489 * and drivers) must skip over, without processing (other than reading the
490 * sType and pNext members) any chained structures with sType values not
491 * defined by extensions supported by that component.
492 */
493 #define anv_debug_ignored_stype(sType) \
494 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
495
496 void __anv_perf_warn(struct anv_device *device, const void *object,
497 VkDebugReportObjectTypeEXT type, const char *file,
498 int line, const char *format, ...)
499 anv_printflike(6, 7);
500 void anv_loge(const char *format, ...) anv_printflike(1, 2);
501 void anv_loge_v(const char *format, va_list va);
502
503 /**
504 * Print a FINISHME message, including its source location.
505 */
506 #define anv_finishme(format, ...) \
507 do { \
508 static bool reported = false; \
509 if (!reported) { \
510 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
511 ##__VA_ARGS__); \
512 reported = true; \
513 } \
514 } while (0)
515
516 /**
517 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
518 */
519 #define anv_perf_warn(instance, obj, format, ...) \
520 do { \
521 static bool reported = false; \
522 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
523 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
524 format, ##__VA_ARGS__); \
525 reported = true; \
526 } \
527 } while (0)
528
529 /* A non-fatal assert. Useful for debugging. */
530 #ifdef DEBUG
531 #define anv_assert(x) ({ \
532 if (unlikely(!(x))) \
533 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
534 })
535 #else
536 #define anv_assert(x)
537 #endif
538
539 /* A multi-pointer allocator
540 *
541 * When copying data structures from the user (such as a render pass), it's
542 * common to need to allocate data for a bunch of different things. Instead
543 * of doing several allocations and having to handle all of the error checking
544 * that entails, it can be easier to do a single allocation. This struct
545 * helps facilitate that. The intended usage looks like this:
546 *
547 * ANV_MULTIALLOC(ma)
548 * anv_multialloc_add(&ma, &main_ptr, 1);
549 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
550 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
551 *
552 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
553 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
554 */
555 struct anv_multialloc {
556 size_t size;
557 size_t align;
558
559 uint32_t ptr_count;
560 void **ptrs[8];
561 };
562
563 #define ANV_MULTIALLOC_INIT \
564 ((struct anv_multialloc) { 0, })
565
566 #define ANV_MULTIALLOC(_name) \
567 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
568
569 __attribute__((always_inline))
570 static inline void
571 _anv_multialloc_add(struct anv_multialloc *ma,
572 void **ptr, size_t size, size_t align)
573 {
574 size_t offset = align_u64(ma->size, align);
575 ma->size = offset + size;
576 ma->align = MAX2(ma->align, align);
577
578 /* Store the offset in the pointer. */
579 *ptr = (void *)(uintptr_t)offset;
580
581 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
582 ma->ptrs[ma->ptr_count++] = ptr;
583 }
584
585 #define anv_multialloc_add_size(_ma, _ptr, _size) \
586 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
587
588 #define anv_multialloc_add(_ma, _ptr, _count) \
589 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
590
591 __attribute__((always_inline))
592 static inline void *
593 anv_multialloc_alloc(struct anv_multialloc *ma,
594 const VkAllocationCallbacks *alloc,
595 VkSystemAllocationScope scope)
596 {
597 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
598 if (!ptr)
599 return NULL;
600
601 /* Fill out each of the pointers with their final value.
602 *
603 * for (uint32_t i = 0; i < ma->ptr_count; i++)
604 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
605 *
606 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
607 * constant, GCC is incapable of figuring this out and unrolling the loop
608 * so we have to give it a little help.
609 */
610 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
611 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
612 if ((_i) < ma->ptr_count) \
613 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
614 _ANV_MULTIALLOC_UPDATE_POINTER(0);
615 _ANV_MULTIALLOC_UPDATE_POINTER(1);
616 _ANV_MULTIALLOC_UPDATE_POINTER(2);
617 _ANV_MULTIALLOC_UPDATE_POINTER(3);
618 _ANV_MULTIALLOC_UPDATE_POINTER(4);
619 _ANV_MULTIALLOC_UPDATE_POINTER(5);
620 _ANV_MULTIALLOC_UPDATE_POINTER(6);
621 _ANV_MULTIALLOC_UPDATE_POINTER(7);
622 #undef _ANV_MULTIALLOC_UPDATE_POINTER
623
624 return ptr;
625 }
626
627 __attribute__((always_inline))
628 static inline void *
629 anv_multialloc_alloc2(struct anv_multialloc *ma,
630 const VkAllocationCallbacks *parent_alloc,
631 const VkAllocationCallbacks *alloc,
632 VkSystemAllocationScope scope)
633 {
634 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
635 }
636
637 struct anv_bo {
638 uint32_t gem_handle;
639
640 uint32_t refcount;
641
642 /* Index into the current validation list. This is used by the
643 * validation list building alrogithm to track which buffers are already
644 * in the validation list so that we can ensure uniqueness.
645 */
646 uint32_t index;
647
648 /* Index for use with util_sparse_array_free_list */
649 uint32_t free_index;
650
651 /* Last known offset. This value is provided by the kernel when we
652 * execbuf and is used as the presumed offset for the next bunch of
653 * relocations.
654 */
655 uint64_t offset;
656
657 /** Size of the buffer not including implicit aux */
658 uint64_t size;
659
660 /* Map for internally mapped BOs.
661 *
662 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
663 */
664 void *map;
665
666 /** Size of the implicit CCS range at the end of the buffer
667 *
668 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
669 * page of main surface data maps to a 256B chunk of CCS data and that
670 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
671 * addresses in the main surface to virtual memory addresses for CCS data.
672 *
673 * Because we can't change these maps around easily and because Vulkan
674 * allows two VkImages to be bound to overlapping memory regions (as long
675 * as the app is careful), it's not feasible to make this mapping part of
676 * the image. (On Gen11 and earlier, the mapping was provided via
677 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
678 * Instead, we attach the CCS data directly to the buffer object and setup
679 * the AUX table mapping at BO creation time.
680 *
681 * This field is for internal tracking use by the BO allocator only and
682 * should not be touched by other parts of the code. If something wants to
683 * know if a BO has implicit CCS data, it should instead look at the
684 * has_implicit_ccs boolean below.
685 *
686 * This data is not included in maps of this buffer.
687 */
688 uint32_t _ccs_size;
689
690 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
691 uint32_t flags;
692
693 /** True if this BO may be shared with other processes */
694 bool is_external:1;
695
696 /** True if this BO is a wrapper
697 *
698 * When set to true, none of the fields in this BO are meaningful except
699 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
700 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
701 * is set in the physical device.
702 */
703 bool is_wrapper:1;
704
705 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
706 bool has_fixed_address:1;
707
708 /** True if this BO wraps a host pointer */
709 bool from_host_ptr:1;
710
711 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
712 bool has_client_visible_address:1;
713
714 /** True if this BO has implicit CCS data attached to it */
715 bool has_implicit_ccs:1;
716 };
717
718 static inline struct anv_bo *
719 anv_bo_ref(struct anv_bo *bo)
720 {
721 p_atomic_inc(&bo->refcount);
722 return bo;
723 }
724
725 static inline struct anv_bo *
726 anv_bo_unwrap(struct anv_bo *bo)
727 {
728 while (bo->is_wrapper)
729 bo = bo->map;
730 return bo;
731 }
732
733 /* Represents a lock-free linked list of "free" things. This is used by
734 * both the block pool and the state pools. Unfortunately, in order to
735 * solve the ABA problem, we can't use a single uint32_t head.
736 */
737 union anv_free_list {
738 struct {
739 uint32_t offset;
740
741 /* A simple count that is incremented every time the head changes. */
742 uint32_t count;
743 };
744 /* Make sure it's aligned to 64 bits. This will make atomic operations
745 * faster on 32 bit platforms.
746 */
747 uint64_t u64 __attribute__ ((aligned (8)));
748 };
749
750 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
751
752 struct anv_block_state {
753 union {
754 struct {
755 uint32_t next;
756 uint32_t end;
757 };
758 /* Make sure it's aligned to 64 bits. This will make atomic operations
759 * faster on 32 bit platforms.
760 */
761 uint64_t u64 __attribute__ ((aligned (8)));
762 };
763 };
764
765 #define anv_block_pool_foreach_bo(bo, pool) \
766 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
767 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
768 _pp_bo++)
769
770 #define ANV_MAX_BLOCK_POOL_BOS 20
771
772 struct anv_block_pool {
773 struct anv_device *device;
774 bool use_softpin;
775
776 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
777 * around the actual BO so that we grow the pool after the wrapper BO has
778 * been put in a relocation list. This is only used in the non-softpin
779 * case.
780 */
781 struct anv_bo wrapper_bo;
782
783 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
784 struct anv_bo *bo;
785 uint32_t nbos;
786
787 uint64_t size;
788
789 /* The address where the start of the pool is pinned. The various bos that
790 * are created as the pool grows will have addresses in the range
791 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
792 */
793 uint64_t start_address;
794
795 /* The offset from the start of the bo to the "center" of the block
796 * pool. Pointers to allocated blocks are given by
797 * bo.map + center_bo_offset + offsets.
798 */
799 uint32_t center_bo_offset;
800
801 /* Current memory map of the block pool. This pointer may or may not
802 * point to the actual beginning of the block pool memory. If
803 * anv_block_pool_alloc_back has ever been called, then this pointer
804 * will point to the "center" position of the buffer and all offsets
805 * (negative or positive) given out by the block pool alloc functions
806 * will be valid relative to this pointer.
807 *
808 * In particular, map == bo.map + center_offset
809 *
810 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
811 * since it will handle the softpin case as well, where this points to NULL.
812 */
813 void *map;
814 int fd;
815
816 /**
817 * Array of mmaps and gem handles owned by the block pool, reclaimed when
818 * the block pool is destroyed.
819 */
820 struct u_vector mmap_cleanups;
821
822 struct anv_block_state state;
823
824 struct anv_block_state back_state;
825 };
826
827 /* Block pools are backed by a fixed-size 1GB memfd */
828 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
829
830 /* The center of the block pool is also the middle of the memfd. This may
831 * change in the future if we decide differently for some reason.
832 */
833 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
834
835 static inline uint32_t
836 anv_block_pool_size(struct anv_block_pool *pool)
837 {
838 return pool->state.end + pool->back_state.end;
839 }
840
841 struct anv_state {
842 int32_t offset;
843 uint32_t alloc_size;
844 void *map;
845 uint32_t idx;
846 };
847
848 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
849
850 struct anv_fixed_size_state_pool {
851 union anv_free_list free_list;
852 struct anv_block_state block;
853 };
854
855 #define ANV_MIN_STATE_SIZE_LOG2 6
856 #define ANV_MAX_STATE_SIZE_LOG2 21
857
858 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
859
860 struct anv_free_entry {
861 uint32_t next;
862 struct anv_state state;
863 };
864
865 struct anv_state_table {
866 struct anv_device *device;
867 int fd;
868 struct anv_free_entry *map;
869 uint32_t size;
870 struct anv_block_state state;
871 struct u_vector cleanups;
872 };
873
874 struct anv_state_pool {
875 struct anv_block_pool block_pool;
876
877 struct anv_state_table table;
878
879 /* The size of blocks which will be allocated from the block pool */
880 uint32_t block_size;
881
882 /** Free list for "back" allocations */
883 union anv_free_list back_alloc_free_list;
884
885 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
886 };
887
888 struct anv_state_stream_block;
889
890 struct anv_state_stream {
891 struct anv_state_pool *state_pool;
892
893 /* The size of blocks to allocate from the state pool */
894 uint32_t block_size;
895
896 /* Current block we're allocating from */
897 struct anv_state block;
898
899 /* Offset into the current block at which to allocate the next state */
900 uint32_t next;
901
902 /* List of all blocks allocated from this pool */
903 struct anv_state_stream_block *block_list;
904 };
905
906 /* The block_pool functions exported for testing only. The block pool should
907 * only be used via a state pool (see below).
908 */
909 VkResult anv_block_pool_init(struct anv_block_pool *pool,
910 struct anv_device *device,
911 uint64_t start_address,
912 uint32_t initial_size);
913 void anv_block_pool_finish(struct anv_block_pool *pool);
914 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
915 uint32_t block_size, uint32_t *padding);
916 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
917 uint32_t block_size);
918 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
919 size);
920
921 VkResult anv_state_pool_init(struct anv_state_pool *pool,
922 struct anv_device *device,
923 uint64_t start_address,
924 uint32_t block_size);
925 void anv_state_pool_finish(struct anv_state_pool *pool);
926 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
927 uint32_t state_size, uint32_t alignment);
928 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
929 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
930 void anv_state_stream_init(struct anv_state_stream *stream,
931 struct anv_state_pool *state_pool,
932 uint32_t block_size);
933 void anv_state_stream_finish(struct anv_state_stream *stream);
934 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
935 uint32_t size, uint32_t alignment);
936
937 VkResult anv_state_table_init(struct anv_state_table *table,
938 struct anv_device *device,
939 uint32_t initial_entries);
940 void anv_state_table_finish(struct anv_state_table *table);
941 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
942 uint32_t count);
943 void anv_free_list_push(union anv_free_list *list,
944 struct anv_state_table *table,
945 uint32_t idx, uint32_t count);
946 struct anv_state* anv_free_list_pop(union anv_free_list *list,
947 struct anv_state_table *table);
948
949
950 static inline struct anv_state *
951 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
952 {
953 return &table->map[idx].state;
954 }
955 /**
956 * Implements a pool of re-usable BOs. The interface is identical to that
957 * of block_pool except that each block is its own BO.
958 */
959 struct anv_bo_pool {
960 struct anv_device *device;
961
962 struct util_sparse_array_free_list free_list[16];
963 };
964
965 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
966 void anv_bo_pool_finish(struct anv_bo_pool *pool);
967 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
968 struct anv_bo **bo_out);
969 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
970
971 struct anv_scratch_pool {
972 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
973 struct anv_bo *bos[16][MESA_SHADER_STAGES];
974 };
975
976 void anv_scratch_pool_init(struct anv_device *device,
977 struct anv_scratch_pool *pool);
978 void anv_scratch_pool_finish(struct anv_device *device,
979 struct anv_scratch_pool *pool);
980 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
981 struct anv_scratch_pool *pool,
982 gl_shader_stage stage,
983 unsigned per_thread_scratch);
984
985 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
986 struct anv_bo_cache {
987 struct util_sparse_array bo_map;
988 pthread_mutex_t mutex;
989 };
990
991 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
992 void anv_bo_cache_finish(struct anv_bo_cache *cache);
993
994 struct anv_memory_type {
995 /* Standard bits passed on to the client */
996 VkMemoryPropertyFlags propertyFlags;
997 uint32_t heapIndex;
998 };
999
1000 struct anv_memory_heap {
1001 /* Standard bits passed on to the client */
1002 VkDeviceSize size;
1003 VkMemoryHeapFlags flags;
1004
1005 /* Driver-internal book-keeping */
1006 VkDeviceSize used;
1007 };
1008
1009 struct anv_physical_device {
1010 VK_LOADER_DATA _loader_data;
1011
1012 /* Link in anv_instance::physical_devices */
1013 struct list_head link;
1014
1015 struct anv_instance * instance;
1016 bool no_hw;
1017 char path[20];
1018 const char * name;
1019 struct {
1020 uint16_t domain;
1021 uint8_t bus;
1022 uint8_t device;
1023 uint8_t function;
1024 } pci_info;
1025 struct gen_device_info info;
1026 /** Amount of "GPU memory" we want to advertise
1027 *
1028 * Clearly, this value is bogus since Intel is a UMA architecture. On
1029 * gen7 platforms, we are limited by GTT size unless we want to implement
1030 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1031 * practically unlimited. However, we will never report more than 3/4 of
1032 * the total system ram to try and avoid running out of RAM.
1033 */
1034 bool supports_48bit_addresses;
1035 struct brw_compiler * compiler;
1036 struct isl_device isl_dev;
1037 struct gen_perf_config * perf;
1038 int cmd_parser_version;
1039 bool has_softpin;
1040 bool has_exec_async;
1041 bool has_exec_capture;
1042 bool has_exec_fence;
1043 bool has_syncobj;
1044 bool has_syncobj_wait;
1045 bool has_context_priority;
1046 bool has_context_isolation;
1047 bool has_mem_available;
1048 uint64_t gtt_size;
1049
1050 bool use_softpin;
1051 bool always_use_bindless;
1052
1053 /** True if we can access buffers using A64 messages */
1054 bool has_a64_buffer_access;
1055 /** True if we can use bindless access for images */
1056 bool has_bindless_images;
1057 /** True if we can use bindless access for samplers */
1058 bool has_bindless_samplers;
1059
1060 /** True if this device has implicit AUX
1061 *
1062 * If true, CCS is handled as an implicit attachment to the BO rather than
1063 * as an explicitly bound surface.
1064 */
1065 bool has_implicit_ccs;
1066
1067 bool always_flush_cache;
1068
1069 struct anv_device_extension_table supported_extensions;
1070
1071 uint32_t eu_total;
1072 uint32_t subslice_total;
1073
1074 struct {
1075 uint32_t type_count;
1076 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1077 uint32_t heap_count;
1078 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1079 } memory;
1080
1081 uint8_t driver_build_sha1[20];
1082 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1083 uint8_t driver_uuid[VK_UUID_SIZE];
1084 uint8_t device_uuid[VK_UUID_SIZE];
1085
1086 struct disk_cache * disk_cache;
1087
1088 struct wsi_device wsi_device;
1089 int local_fd;
1090 int master_fd;
1091 };
1092
1093 struct anv_app_info {
1094 const char* app_name;
1095 uint32_t app_version;
1096 const char* engine_name;
1097 uint32_t engine_version;
1098 uint32_t api_version;
1099 };
1100
1101 struct anv_instance {
1102 VK_LOADER_DATA _loader_data;
1103
1104 VkAllocationCallbacks alloc;
1105
1106 struct anv_app_info app_info;
1107
1108 struct anv_instance_extension_table enabled_extensions;
1109 struct anv_instance_dispatch_table dispatch;
1110 struct anv_physical_device_dispatch_table physical_device_dispatch;
1111 struct anv_device_dispatch_table device_dispatch;
1112
1113 bool physical_devices_enumerated;
1114 struct list_head physical_devices;
1115
1116 bool pipeline_cache_enabled;
1117
1118 struct vk_debug_report_instance debug_report_callbacks;
1119
1120 struct driOptionCache dri_options;
1121 struct driOptionCache available_dri_options;
1122 };
1123
1124 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1125 void anv_finish_wsi(struct anv_physical_device *physical_device);
1126
1127 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1128 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1129 const char *name);
1130
1131 struct anv_queue_submit {
1132 struct anv_cmd_buffer * cmd_buffer;
1133
1134 uint32_t fence_count;
1135 uint32_t fence_array_length;
1136 struct drm_i915_gem_exec_fence * fences;
1137
1138 uint32_t temporary_semaphore_count;
1139 uint32_t temporary_semaphore_array_length;
1140 struct anv_semaphore_impl * temporary_semaphores;
1141
1142 /* Semaphores to be signaled with a SYNC_FD. */
1143 struct anv_semaphore ** sync_fd_semaphores;
1144 uint32_t sync_fd_semaphore_count;
1145 uint32_t sync_fd_semaphore_array_length;
1146
1147 /* Allocated only with non shareable timelines. */
1148 struct anv_timeline ** wait_timelines;
1149 uint32_t wait_timeline_count;
1150 uint32_t wait_timeline_array_length;
1151 uint64_t * wait_timeline_values;
1152
1153 struct anv_timeline ** signal_timelines;
1154 uint32_t signal_timeline_count;
1155 uint32_t signal_timeline_array_length;
1156 uint64_t * signal_timeline_values;
1157
1158 int in_fence;
1159 bool need_out_fence;
1160 int out_fence;
1161
1162 uint32_t fence_bo_count;
1163 uint32_t fence_bo_array_length;
1164 /* An array of struct anv_bo pointers with lower bit used as a flag to
1165 * signal we will wait on that BO (see anv_(un)pack_ptr).
1166 */
1167 uintptr_t * fence_bos;
1168
1169 const VkAllocationCallbacks * alloc;
1170 VkSystemAllocationScope alloc_scope;
1171
1172 struct anv_bo * simple_bo;
1173 uint32_t simple_bo_size;
1174
1175 struct list_head link;
1176 };
1177
1178 struct anv_queue {
1179 VK_LOADER_DATA _loader_data;
1180
1181 struct anv_device * device;
1182
1183 /*
1184 * A list of struct anv_queue_submit to be submitted to i915.
1185 */
1186 struct list_head queued_submits;
1187
1188 VkDeviceQueueCreateFlags flags;
1189 };
1190
1191 struct anv_pipeline_cache {
1192 struct anv_device * device;
1193 pthread_mutex_t mutex;
1194
1195 struct hash_table * nir_cache;
1196
1197 struct hash_table * cache;
1198 };
1199
1200 struct nir_xfb_info;
1201 struct anv_pipeline_bind_map;
1202
1203 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1204 struct anv_device *device,
1205 bool cache_enabled);
1206 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1207
1208 struct anv_shader_bin *
1209 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1210 const void *key, uint32_t key_size);
1211 struct anv_shader_bin *
1212 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1213 gl_shader_stage stage,
1214 const void *key_data, uint32_t key_size,
1215 const void *kernel_data, uint32_t kernel_size,
1216 const void *constant_data,
1217 uint32_t constant_data_size,
1218 const struct brw_stage_prog_data *prog_data,
1219 uint32_t prog_data_size,
1220 const struct brw_compile_stats *stats,
1221 uint32_t num_stats,
1222 const struct nir_xfb_info *xfb_info,
1223 const struct anv_pipeline_bind_map *bind_map);
1224
1225 struct anv_shader_bin *
1226 anv_device_search_for_kernel(struct anv_device *device,
1227 struct anv_pipeline_cache *cache,
1228 const void *key_data, uint32_t key_size,
1229 bool *user_cache_bit);
1230
1231 struct anv_shader_bin *
1232 anv_device_upload_kernel(struct anv_device *device,
1233 struct anv_pipeline_cache *cache,
1234 gl_shader_stage stage,
1235 const void *key_data, uint32_t key_size,
1236 const void *kernel_data, uint32_t kernel_size,
1237 const void *constant_data,
1238 uint32_t constant_data_size,
1239 const struct brw_stage_prog_data *prog_data,
1240 uint32_t prog_data_size,
1241 const struct brw_compile_stats *stats,
1242 uint32_t num_stats,
1243 const struct nir_xfb_info *xfb_info,
1244 const struct anv_pipeline_bind_map *bind_map);
1245
1246 struct nir_shader;
1247 struct nir_shader_compiler_options;
1248
1249 struct nir_shader *
1250 anv_device_search_for_nir(struct anv_device *device,
1251 struct anv_pipeline_cache *cache,
1252 const struct nir_shader_compiler_options *nir_options,
1253 unsigned char sha1_key[20],
1254 void *mem_ctx);
1255
1256 void
1257 anv_device_upload_nir(struct anv_device *device,
1258 struct anv_pipeline_cache *cache,
1259 const struct nir_shader *nir,
1260 unsigned char sha1_key[20]);
1261
1262 struct anv_device {
1263 VK_LOADER_DATA _loader_data;
1264
1265 VkAllocationCallbacks alloc;
1266
1267 struct anv_physical_device * physical;
1268 bool no_hw;
1269 struct gen_device_info info;
1270 struct isl_device isl_dev;
1271 int context_id;
1272 int fd;
1273 bool can_chain_batches;
1274 bool robust_buffer_access;
1275 struct anv_device_extension_table enabled_extensions;
1276 struct anv_device_dispatch_table dispatch;
1277
1278 pthread_mutex_t vma_mutex;
1279 struct util_vma_heap vma_lo;
1280 struct util_vma_heap vma_cva;
1281 struct util_vma_heap vma_hi;
1282
1283 /** List of all anv_device_memory objects */
1284 struct list_head memory_objects;
1285
1286 struct anv_bo_pool batch_bo_pool;
1287
1288 struct anv_bo_cache bo_cache;
1289
1290 struct anv_state_pool dynamic_state_pool;
1291 struct anv_state_pool instruction_state_pool;
1292 struct anv_state_pool binding_table_pool;
1293 struct anv_state_pool surface_state_pool;
1294
1295 struct anv_bo * workaround_bo;
1296 struct anv_bo * trivial_batch_bo;
1297 struct anv_bo * hiz_clear_bo;
1298
1299 struct anv_pipeline_cache default_pipeline_cache;
1300 struct blorp_context blorp;
1301
1302 struct anv_state border_colors;
1303
1304 struct anv_state slice_hash;
1305
1306 struct anv_queue queue;
1307
1308 struct anv_scratch_pool scratch_pool;
1309
1310 pthread_mutex_t mutex;
1311 pthread_cond_t queue_submit;
1312 int _lost;
1313
1314 struct gen_batch_decode_ctx decoder_ctx;
1315 /*
1316 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1317 * the cmd_buffer's list.
1318 */
1319 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1320
1321 int perf_fd; /* -1 if no opened */
1322 uint64_t perf_metric; /* 0 if unset */
1323
1324 struct gen_aux_map_context *aux_map_ctx;
1325 };
1326
1327 static inline struct anv_instance *
1328 anv_device_instance_or_null(const struct anv_device *device)
1329 {
1330 return device ? device->physical->instance : NULL;
1331 }
1332
1333 static inline struct anv_state_pool *
1334 anv_binding_table_pool(struct anv_device *device)
1335 {
1336 if (device->physical->use_softpin)
1337 return &device->binding_table_pool;
1338 else
1339 return &device->surface_state_pool;
1340 }
1341
1342 static inline struct anv_state
1343 anv_binding_table_pool_alloc(struct anv_device *device) {
1344 if (device->physical->use_softpin)
1345 return anv_state_pool_alloc(&device->binding_table_pool,
1346 device->binding_table_pool.block_size, 0);
1347 else
1348 return anv_state_pool_alloc_back(&device->surface_state_pool);
1349 }
1350
1351 static inline void
1352 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1353 anv_state_pool_free(anv_binding_table_pool(device), state);
1354 }
1355
1356 static inline uint32_t
1357 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1358 {
1359 if (bo->is_external)
1360 return device->isl_dev.mocs.external;
1361 else
1362 return device->isl_dev.mocs.internal;
1363 }
1364
1365 void anv_device_init_blorp(struct anv_device *device);
1366 void anv_device_finish_blorp(struct anv_device *device);
1367
1368 void _anv_device_set_all_queue_lost(struct anv_device *device);
1369 VkResult _anv_device_set_lost(struct anv_device *device,
1370 const char *file, int line,
1371 const char *msg, ...)
1372 anv_printflike(4, 5);
1373 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1374 const char *file, int line,
1375 const char *msg, ...)
1376 anv_printflike(4, 5);
1377 #define anv_device_set_lost(dev, ...) \
1378 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1379 #define anv_queue_set_lost(queue, ...) \
1380 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1381
1382 static inline bool
1383 anv_device_is_lost(struct anv_device *device)
1384 {
1385 return unlikely(p_atomic_read(&device->_lost));
1386 }
1387
1388 VkResult anv_device_query_status(struct anv_device *device);
1389
1390
1391 enum anv_bo_alloc_flags {
1392 /** Specifies that the BO must have a 32-bit address
1393 *
1394 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1395 */
1396 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1397
1398 /** Specifies that the BO may be shared externally */
1399 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1400
1401 /** Specifies that the BO should be mapped */
1402 ANV_BO_ALLOC_MAPPED = (1 << 2),
1403
1404 /** Specifies that the BO should be snooped so we get coherency */
1405 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1406
1407 /** Specifies that the BO should be captured in error states */
1408 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1409
1410 /** Specifies that the BO will have an address assigned by the caller
1411 *
1412 * Such BOs do not exist in any VMA heap.
1413 */
1414 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1415
1416 /** Enables implicit synchronization on the BO
1417 *
1418 * This is the opposite of EXEC_OBJECT_ASYNC.
1419 */
1420 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1421
1422 /** Enables implicit synchronization on the BO
1423 *
1424 * This is equivalent to EXEC_OBJECT_WRITE.
1425 */
1426 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1427
1428 /** Has an address which is visible to the client */
1429 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1430
1431 /** This buffer has implicit CCS data attached to it */
1432 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1433 };
1434
1435 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1436 enum anv_bo_alloc_flags alloc_flags,
1437 uint64_t explicit_address,
1438 struct anv_bo **bo);
1439 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1440 void *host_ptr, uint32_t size,
1441 enum anv_bo_alloc_flags alloc_flags,
1442 uint64_t client_address,
1443 struct anv_bo **bo_out);
1444 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1445 enum anv_bo_alloc_flags alloc_flags,
1446 uint64_t client_address,
1447 struct anv_bo **bo);
1448 VkResult anv_device_export_bo(struct anv_device *device,
1449 struct anv_bo *bo, int *fd_out);
1450 void anv_device_release_bo(struct anv_device *device,
1451 struct anv_bo *bo);
1452
1453 static inline struct anv_bo *
1454 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1455 {
1456 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1457 }
1458
1459 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1460 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1461 int64_t timeout);
1462
1463 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1464 void anv_queue_finish(struct anv_queue *queue);
1465
1466 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1467 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1468 struct anv_batch *batch);
1469
1470 uint64_t anv_gettime_ns(void);
1471 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1472
1473 void* anv_gem_mmap(struct anv_device *device,
1474 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1475 void anv_gem_munmap(void *p, uint64_t size);
1476 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1477 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1478 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1479 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1480 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1481 int anv_gem_execbuffer(struct anv_device *device,
1482 struct drm_i915_gem_execbuffer2 *execbuf);
1483 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1484 uint32_t stride, uint32_t tiling);
1485 int anv_gem_create_context(struct anv_device *device);
1486 bool anv_gem_has_context_priority(int fd);
1487 int anv_gem_destroy_context(struct anv_device *device, int context);
1488 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1489 uint64_t value);
1490 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1491 uint64_t *value);
1492 int anv_gem_get_param(int fd, uint32_t param);
1493 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1494 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1495 int anv_gem_get_aperture(int fd, uint64_t *size);
1496 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1497 uint32_t *active, uint32_t *pending);
1498 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1499 int anv_gem_reg_read(struct anv_device *device,
1500 uint32_t offset, uint64_t *result);
1501 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1502 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1503 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1504 uint32_t read_domains, uint32_t write_domain);
1505 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1506 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1507 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1508 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1509 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1510 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1511 uint32_t handle);
1512 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1513 uint32_t handle, int fd);
1514 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1515 bool anv_gem_supports_syncobj_wait(int fd);
1516 int anv_gem_syncobj_wait(struct anv_device *device,
1517 uint32_t *handles, uint32_t num_handles,
1518 int64_t abs_timeout_ns, bool wait_all);
1519
1520 uint64_t anv_vma_alloc(struct anv_device *device,
1521 uint64_t size, uint64_t align,
1522 enum anv_bo_alloc_flags alloc_flags,
1523 uint64_t client_address);
1524 void anv_vma_free(struct anv_device *device,
1525 uint64_t address, uint64_t size);
1526
1527 struct anv_reloc_list {
1528 uint32_t num_relocs;
1529 uint32_t array_length;
1530 struct drm_i915_gem_relocation_entry * relocs;
1531 struct anv_bo ** reloc_bos;
1532 uint32_t dep_words;
1533 BITSET_WORD * deps;
1534 };
1535
1536 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1537 const VkAllocationCallbacks *alloc);
1538 void anv_reloc_list_finish(struct anv_reloc_list *list,
1539 const VkAllocationCallbacks *alloc);
1540
1541 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1542 const VkAllocationCallbacks *alloc,
1543 uint32_t offset, struct anv_bo *target_bo,
1544 uint32_t delta, uint64_t *address_u64_out);
1545
1546 struct anv_batch_bo {
1547 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1548 struct list_head link;
1549
1550 struct anv_bo * bo;
1551
1552 /* Bytes actually consumed in this batch BO */
1553 uint32_t length;
1554
1555 struct anv_reloc_list relocs;
1556 };
1557
1558 struct anv_batch {
1559 const VkAllocationCallbacks * alloc;
1560
1561 void * start;
1562 void * end;
1563 void * next;
1564
1565 struct anv_reloc_list * relocs;
1566
1567 /* This callback is called (with the associated user data) in the event
1568 * that the batch runs out of space.
1569 */
1570 VkResult (*extend_cb)(struct anv_batch *, void *);
1571 void * user_data;
1572
1573 /**
1574 * Current error status of the command buffer. Used to track inconsistent
1575 * or incomplete command buffer states that are the consequence of run-time
1576 * errors such as out of memory scenarios. We want to track this in the
1577 * batch because the command buffer object is not visible to some parts
1578 * of the driver.
1579 */
1580 VkResult status;
1581 };
1582
1583 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1584 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1585 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1586 void *location, struct anv_bo *bo, uint32_t offset);
1587
1588 static inline VkResult
1589 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1590 {
1591 assert(error != VK_SUCCESS);
1592 if (batch->status == VK_SUCCESS)
1593 batch->status = error;
1594 return batch->status;
1595 }
1596
1597 static inline bool
1598 anv_batch_has_error(struct anv_batch *batch)
1599 {
1600 return batch->status != VK_SUCCESS;
1601 }
1602
1603 struct anv_address {
1604 struct anv_bo *bo;
1605 uint32_t offset;
1606 };
1607
1608 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1609
1610 static inline bool
1611 anv_address_is_null(struct anv_address addr)
1612 {
1613 return addr.bo == NULL && addr.offset == 0;
1614 }
1615
1616 static inline uint64_t
1617 anv_address_physical(struct anv_address addr)
1618 {
1619 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1620 return gen_canonical_address(addr.bo->offset + addr.offset);
1621 else
1622 return gen_canonical_address(addr.offset);
1623 }
1624
1625 static inline struct anv_address
1626 anv_address_add(struct anv_address addr, uint64_t offset)
1627 {
1628 addr.offset += offset;
1629 return addr;
1630 }
1631
1632 static inline void
1633 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1634 {
1635 unsigned reloc_size = 0;
1636 if (device->info.gen >= 8) {
1637 reloc_size = sizeof(uint64_t);
1638 *(uint64_t *)p = gen_canonical_address(v);
1639 } else {
1640 reloc_size = sizeof(uint32_t);
1641 *(uint32_t *)p = v;
1642 }
1643
1644 if (flush && !device->info.has_llc)
1645 gen_flush_range(p, reloc_size);
1646 }
1647
1648 static inline uint64_t
1649 _anv_combine_address(struct anv_batch *batch, void *location,
1650 const struct anv_address address, uint32_t delta)
1651 {
1652 if (address.bo == NULL) {
1653 return address.offset + delta;
1654 } else {
1655 assert(batch->start <= location && location < batch->end);
1656
1657 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1658 }
1659 }
1660
1661 #define __gen_address_type struct anv_address
1662 #define __gen_user_data struct anv_batch
1663 #define __gen_combine_address _anv_combine_address
1664
1665 /* Wrapper macros needed to work around preprocessor argument issues. In
1666 * particular, arguments don't get pre-evaluated if they are concatenated.
1667 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1668 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1669 * We can work around this easily enough with these helpers.
1670 */
1671 #define __anv_cmd_length(cmd) cmd ## _length
1672 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1673 #define __anv_cmd_header(cmd) cmd ## _header
1674 #define __anv_cmd_pack(cmd) cmd ## _pack
1675 #define __anv_reg_num(reg) reg ## _num
1676
1677 #define anv_pack_struct(dst, struc, ...) do { \
1678 struct struc __template = { \
1679 __VA_ARGS__ \
1680 }; \
1681 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1682 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1683 } while (0)
1684
1685 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1686 void *__dst = anv_batch_emit_dwords(batch, n); \
1687 if (__dst) { \
1688 struct cmd __template = { \
1689 __anv_cmd_header(cmd), \
1690 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1691 __VA_ARGS__ \
1692 }; \
1693 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1694 } \
1695 __dst; \
1696 })
1697
1698 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1699 do { \
1700 uint32_t *dw; \
1701 \
1702 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1703 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1704 if (!dw) \
1705 break; \
1706 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1707 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1708 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1709 } while (0)
1710
1711 #define anv_batch_emit(batch, cmd, name) \
1712 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1713 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1714 __builtin_expect(_dst != NULL, 1); \
1715 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1716 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1717 _dst = NULL; \
1718 }))
1719
1720 struct anv_device_memory {
1721 struct list_head link;
1722
1723 struct anv_bo * bo;
1724 struct anv_memory_type * type;
1725 VkDeviceSize map_size;
1726 void * map;
1727
1728 /* If set, we are holding reference to AHardwareBuffer
1729 * which we must release when memory is freed.
1730 */
1731 struct AHardwareBuffer * ahw;
1732
1733 /* If set, this memory comes from a host pointer. */
1734 void * host_ptr;
1735 };
1736
1737 /**
1738 * Header for Vertex URB Entry (VUE)
1739 */
1740 struct anv_vue_header {
1741 uint32_t Reserved;
1742 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1743 uint32_t ViewportIndex;
1744 float PointWidth;
1745 };
1746
1747 /** Struct representing a sampled image descriptor
1748 *
1749 * This descriptor layout is used for sampled images, bare sampler, and
1750 * combined image/sampler descriptors.
1751 */
1752 struct anv_sampled_image_descriptor {
1753 /** Bindless image handle
1754 *
1755 * This is expected to already be shifted such that the 20-bit
1756 * SURFACE_STATE table index is in the top 20 bits.
1757 */
1758 uint32_t image;
1759
1760 /** Bindless sampler handle
1761 *
1762 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1763 * to the dynamic state base address.
1764 */
1765 uint32_t sampler;
1766 };
1767
1768 struct anv_texture_swizzle_descriptor {
1769 /** Texture swizzle
1770 *
1771 * See also nir_intrinsic_channel_select_intel
1772 */
1773 uint8_t swizzle[4];
1774
1775 /** Unused padding to ensure the struct is a multiple of 64 bits */
1776 uint32_t _pad;
1777 };
1778
1779 /** Struct representing a storage image descriptor */
1780 struct anv_storage_image_descriptor {
1781 /** Bindless image handles
1782 *
1783 * These are expected to already be shifted such that the 20-bit
1784 * SURFACE_STATE table index is in the top 20 bits.
1785 */
1786 uint32_t read_write;
1787 uint32_t write_only;
1788 };
1789
1790 /** Struct representing a address/range descriptor
1791 *
1792 * The fields of this struct correspond directly to the data layout of
1793 * nir_address_format_64bit_bounded_global addresses. The last field is the
1794 * offset in the NIR address so it must be zero so that when you load the
1795 * descriptor you get a pointer to the start of the range.
1796 */
1797 struct anv_address_range_descriptor {
1798 uint64_t address;
1799 uint32_t range;
1800 uint32_t zero;
1801 };
1802
1803 enum anv_descriptor_data {
1804 /** The descriptor contains a BTI reference to a surface state */
1805 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1806 /** The descriptor contains a BTI reference to a sampler state */
1807 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1808 /** The descriptor contains an actual buffer view */
1809 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1810 /** The descriptor contains auxiliary image layout data */
1811 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1812 /** The descriptor contains auxiliary image layout data */
1813 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1814 /** anv_address_range_descriptor with a buffer address and range */
1815 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1816 /** Bindless surface handle */
1817 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1818 /** Storage image handles */
1819 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1820 /** Storage image handles */
1821 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1822 };
1823
1824 struct anv_descriptor_set_binding_layout {
1825 #ifndef NDEBUG
1826 /* The type of the descriptors in this binding */
1827 VkDescriptorType type;
1828 #endif
1829
1830 /* Flags provided when this binding was created */
1831 VkDescriptorBindingFlagsEXT flags;
1832
1833 /* Bitfield representing the type of data this descriptor contains */
1834 enum anv_descriptor_data data;
1835
1836 /* Maximum number of YCbCr texture/sampler planes */
1837 uint8_t max_plane_count;
1838
1839 /* Number of array elements in this binding (or size in bytes for inline
1840 * uniform data)
1841 */
1842 uint16_t array_size;
1843
1844 /* Index into the flattend descriptor set */
1845 uint16_t descriptor_index;
1846
1847 /* Index into the dynamic state array for a dynamic buffer */
1848 int16_t dynamic_offset_index;
1849
1850 /* Index into the descriptor set buffer views */
1851 int16_t buffer_view_index;
1852
1853 /* Offset into the descriptor buffer where this descriptor lives */
1854 uint32_t descriptor_offset;
1855
1856 /* Immutable samplers (or NULL if no immutable samplers) */
1857 struct anv_sampler **immutable_samplers;
1858 };
1859
1860 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1861
1862 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1863 VkDescriptorType type);
1864
1865 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1866 const struct anv_descriptor_set_binding_layout *binding,
1867 bool sampler);
1868
1869 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1870 const struct anv_descriptor_set_binding_layout *binding,
1871 bool sampler);
1872
1873 struct anv_descriptor_set_layout {
1874 /* Descriptor set layouts can be destroyed at almost any time */
1875 uint32_t ref_cnt;
1876
1877 /* Number of bindings in this descriptor set */
1878 uint16_t binding_count;
1879
1880 /* Total size of the descriptor set with room for all array entries */
1881 uint16_t size;
1882
1883 /* Shader stages affected by this descriptor set */
1884 uint16_t shader_stages;
1885
1886 /* Number of buffer views in this descriptor set */
1887 uint16_t buffer_view_count;
1888
1889 /* Number of dynamic offsets used by this descriptor set */
1890 uint16_t dynamic_offset_count;
1891
1892 /* For each shader stage, which offsets apply to that stage */
1893 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1894
1895 /* Size of the descriptor buffer for this descriptor set */
1896 uint32_t descriptor_buffer_size;
1897
1898 /* Bindings in this descriptor set */
1899 struct anv_descriptor_set_binding_layout binding[0];
1900 };
1901
1902 static inline void
1903 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1904 {
1905 assert(layout && layout->ref_cnt >= 1);
1906 p_atomic_inc(&layout->ref_cnt);
1907 }
1908
1909 static inline void
1910 anv_descriptor_set_layout_unref(struct anv_device *device,
1911 struct anv_descriptor_set_layout *layout)
1912 {
1913 assert(layout && layout->ref_cnt >= 1);
1914 if (p_atomic_dec_zero(&layout->ref_cnt))
1915 vk_free(&device->alloc, layout);
1916 }
1917
1918 struct anv_descriptor {
1919 VkDescriptorType type;
1920
1921 union {
1922 struct {
1923 VkImageLayout layout;
1924 struct anv_image_view *image_view;
1925 struct anv_sampler *sampler;
1926 };
1927
1928 struct {
1929 struct anv_buffer *buffer;
1930 uint64_t offset;
1931 uint64_t range;
1932 };
1933
1934 struct anv_buffer_view *buffer_view;
1935 };
1936 };
1937
1938 struct anv_descriptor_set {
1939 struct anv_descriptor_pool *pool;
1940 struct anv_descriptor_set_layout *layout;
1941 uint32_t size;
1942
1943 /* State relative to anv_descriptor_pool::bo */
1944 struct anv_state desc_mem;
1945 /* Surface state for the descriptor buffer */
1946 struct anv_state desc_surface_state;
1947
1948 uint32_t buffer_view_count;
1949 struct anv_buffer_view *buffer_views;
1950
1951 /* Link to descriptor pool's desc_sets list . */
1952 struct list_head pool_link;
1953
1954 struct anv_descriptor descriptors[0];
1955 };
1956
1957 struct anv_buffer_view {
1958 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1959 uint64_t range; /**< VkBufferViewCreateInfo::range */
1960
1961 struct anv_address address;
1962
1963 struct anv_state surface_state;
1964 struct anv_state storage_surface_state;
1965 struct anv_state writeonly_storage_surface_state;
1966
1967 struct brw_image_param storage_image_param;
1968 };
1969
1970 struct anv_push_descriptor_set {
1971 struct anv_descriptor_set set;
1972
1973 /* Put this field right behind anv_descriptor_set so it fills up the
1974 * descriptors[0] field. */
1975 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1976
1977 /** True if the descriptor set buffer has been referenced by a draw or
1978 * dispatch command.
1979 */
1980 bool set_used_on_gpu;
1981
1982 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1983 };
1984
1985 struct anv_descriptor_pool {
1986 uint32_t size;
1987 uint32_t next;
1988 uint32_t free_list;
1989
1990 struct anv_bo *bo;
1991 struct util_vma_heap bo_heap;
1992
1993 struct anv_state_stream surface_state_stream;
1994 void *surface_state_free_list;
1995
1996 struct list_head desc_sets;
1997
1998 char data[0];
1999 };
2000
2001 enum anv_descriptor_template_entry_type {
2002 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
2003 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
2004 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
2005 };
2006
2007 struct anv_descriptor_template_entry {
2008 /* The type of descriptor in this entry */
2009 VkDescriptorType type;
2010
2011 /* Binding in the descriptor set */
2012 uint32_t binding;
2013
2014 /* Offset at which to write into the descriptor set binding */
2015 uint32_t array_element;
2016
2017 /* Number of elements to write into the descriptor set binding */
2018 uint32_t array_count;
2019
2020 /* Offset into the user provided data */
2021 size_t offset;
2022
2023 /* Stride between elements into the user provided data */
2024 size_t stride;
2025 };
2026
2027 struct anv_descriptor_update_template {
2028 VkPipelineBindPoint bind_point;
2029
2030 /* The descriptor set this template corresponds to. This value is only
2031 * valid if the template was created with the templateType
2032 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2033 */
2034 uint8_t set;
2035
2036 /* Number of entries in this template */
2037 uint32_t entry_count;
2038
2039 /* Entries of the template */
2040 struct anv_descriptor_template_entry entries[0];
2041 };
2042
2043 size_t
2044 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2045
2046 void
2047 anv_descriptor_set_write_image_view(struct anv_device *device,
2048 struct anv_descriptor_set *set,
2049 const VkDescriptorImageInfo * const info,
2050 VkDescriptorType type,
2051 uint32_t binding,
2052 uint32_t element);
2053
2054 void
2055 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2056 struct anv_descriptor_set *set,
2057 VkDescriptorType type,
2058 struct anv_buffer_view *buffer_view,
2059 uint32_t binding,
2060 uint32_t element);
2061
2062 void
2063 anv_descriptor_set_write_buffer(struct anv_device *device,
2064 struct anv_descriptor_set *set,
2065 struct anv_state_stream *alloc_stream,
2066 VkDescriptorType type,
2067 struct anv_buffer *buffer,
2068 uint32_t binding,
2069 uint32_t element,
2070 VkDeviceSize offset,
2071 VkDeviceSize range);
2072 void
2073 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2074 struct anv_descriptor_set *set,
2075 uint32_t binding,
2076 const void *data,
2077 size_t offset,
2078 size_t size);
2079
2080 void
2081 anv_descriptor_set_write_template(struct anv_device *device,
2082 struct anv_descriptor_set *set,
2083 struct anv_state_stream *alloc_stream,
2084 const struct anv_descriptor_update_template *template,
2085 const void *data);
2086
2087 VkResult
2088 anv_descriptor_set_create(struct anv_device *device,
2089 struct anv_descriptor_pool *pool,
2090 struct anv_descriptor_set_layout *layout,
2091 struct anv_descriptor_set **out_set);
2092
2093 void
2094 anv_descriptor_set_destroy(struct anv_device *device,
2095 struct anv_descriptor_pool *pool,
2096 struct anv_descriptor_set *set);
2097
2098 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2099 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2100 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2101 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2102 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2103 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2104
2105 struct anv_pipeline_binding {
2106 /** Index in the descriptor set
2107 *
2108 * This is a flattened index; the descriptor set layout is already taken
2109 * into account.
2110 */
2111 uint32_t index;
2112
2113 /** The descriptor set this surface corresponds to.
2114 *
2115 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2116 * binding is not a normal descriptor set but something else.
2117 */
2118 uint8_t set;
2119
2120 union {
2121 /** Plane in the binding index for images */
2122 uint8_t plane;
2123
2124 /** Input attachment index (relative to the subpass) */
2125 uint8_t input_attachment_index;
2126
2127 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2128 uint8_t dynamic_offset_index;
2129 };
2130
2131 /** For a storage image, whether it is write-only */
2132 uint8_t write_only;
2133
2134 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2135 * assuming POD zero-initialization.
2136 */
2137 uint8_t pad;
2138 };
2139
2140 struct anv_push_range {
2141 /** Index in the descriptor set */
2142 uint32_t index;
2143
2144 /** Descriptor set index */
2145 uint8_t set;
2146
2147 /** Dynamic offset index (for dynamic UBOs) */
2148 uint8_t dynamic_offset_index;
2149
2150 /** Start offset in units of 32B */
2151 uint8_t start;
2152
2153 /** Range in units of 32B */
2154 uint8_t length;
2155 };
2156
2157 struct anv_pipeline_layout {
2158 struct {
2159 struct anv_descriptor_set_layout *layout;
2160 uint32_t dynamic_offset_start;
2161 } set[MAX_SETS];
2162
2163 uint32_t num_sets;
2164
2165 unsigned char sha1[20];
2166 };
2167
2168 struct anv_buffer {
2169 struct anv_device * device;
2170 VkDeviceSize size;
2171
2172 VkBufferUsageFlags usage;
2173
2174 /* Set when bound */
2175 struct anv_address address;
2176 };
2177
2178 static inline uint64_t
2179 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2180 {
2181 assert(offset <= buffer->size);
2182 if (range == VK_WHOLE_SIZE) {
2183 return buffer->size - offset;
2184 } else {
2185 assert(range + offset >= range);
2186 assert(range + offset <= buffer->size);
2187 return range;
2188 }
2189 }
2190
2191 enum anv_cmd_dirty_bits {
2192 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2193 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2194 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2195 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2196 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2197 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2198 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2199 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2200 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2201 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2202 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2203 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2204 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2205 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2206 };
2207 typedef uint32_t anv_cmd_dirty_mask_t;
2208
2209 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2210 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2211 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2212 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2213 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2214 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2215 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2216 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2217 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2218 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2219 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2220
2221 static inline enum anv_cmd_dirty_bits
2222 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2223 {
2224 switch (vk_state) {
2225 case VK_DYNAMIC_STATE_VIEWPORT:
2226 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2227 case VK_DYNAMIC_STATE_SCISSOR:
2228 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2229 case VK_DYNAMIC_STATE_LINE_WIDTH:
2230 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2231 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2232 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2233 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2234 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2235 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2236 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2237 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2238 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2239 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2240 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2241 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2242 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2243 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2244 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2245 default:
2246 assert(!"Unsupported dynamic state");
2247 return 0;
2248 }
2249 }
2250
2251
2252 enum anv_pipe_bits {
2253 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2254 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2255 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2256 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2257 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2258 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2259 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2260 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2261 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2262 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2263 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2264 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2265 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
2266
2267 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2268 * a flush has happened but not a CS stall. The next time we do any sort
2269 * of invalidation we need to insert a CS stall at that time. Otherwise,
2270 * we would have to CS stall on every flush which could be bad.
2271 */
2272 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
2273
2274 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2275 * target operations related to transfer commands with VkBuffer as
2276 * destination are ongoing. Some operations like copies on the command
2277 * streamer might need to be aware of this to trigger the appropriate stall
2278 * before they can proceed with the copy.
2279 */
2280 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
2281
2282 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2283 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2284 * done by writing the AUX-TT register.
2285 */
2286 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
2287
2288 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2289 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2290 * implement a workaround for Gen9.
2291 */
2292 ANV_PIPE_POST_SYNC_BIT = (1 << 25),
2293 };
2294
2295 #define ANV_PIPE_FLUSH_BITS ( \
2296 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2297 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2298 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2299 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2300
2301 #define ANV_PIPE_STALL_BITS ( \
2302 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2303 ANV_PIPE_DEPTH_STALL_BIT | \
2304 ANV_PIPE_CS_STALL_BIT)
2305
2306 #define ANV_PIPE_INVALIDATE_BITS ( \
2307 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2308 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2309 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2310 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2311 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2312 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2313 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2314
2315 static inline enum anv_pipe_bits
2316 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2317 {
2318 enum anv_pipe_bits pipe_bits = 0;
2319
2320 unsigned b;
2321 for_each_bit(b, flags) {
2322 switch ((VkAccessFlagBits)(1 << b)) {
2323 case VK_ACCESS_SHADER_WRITE_BIT:
2324 /* We're transitioning a buffer that was previously used as write
2325 * destination through the data port. To make its content available
2326 * to future operations, flush the data cache.
2327 */
2328 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2329 break;
2330 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2331 /* We're transitioning a buffer that was previously used as render
2332 * target. To make its content available to future operations, flush
2333 * the render target cache.
2334 */
2335 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2336 break;
2337 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2338 /* We're transitioning a buffer that was previously used as depth
2339 * buffer. To make its content available to future operations, flush
2340 * the depth cache.
2341 */
2342 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2343 break;
2344 case VK_ACCESS_TRANSFER_WRITE_BIT:
2345 /* We're transitioning a buffer that was previously used as a
2346 * transfer write destination. Generic write operations include color
2347 * & depth operations as well as buffer operations like :
2348 * - vkCmdClearColorImage()
2349 * - vkCmdClearDepthStencilImage()
2350 * - vkCmdBlitImage()
2351 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2352 *
2353 * Most of these operations are implemented using Blorp which writes
2354 * through the render target, so flush that cache to make it visible
2355 * to future operations. And for depth related operations we also
2356 * need to flush the depth cache.
2357 */
2358 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2359 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2360 break;
2361 case VK_ACCESS_MEMORY_WRITE_BIT:
2362 /* We're transitioning a buffer for generic write operations. Flush
2363 * all the caches.
2364 */
2365 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2366 break;
2367 default:
2368 break; /* Nothing to do */
2369 }
2370 }
2371
2372 return pipe_bits;
2373 }
2374
2375 static inline enum anv_pipe_bits
2376 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2377 {
2378 enum anv_pipe_bits pipe_bits = 0;
2379
2380 unsigned b;
2381 for_each_bit(b, flags) {
2382 switch ((VkAccessFlagBits)(1 << b)) {
2383 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2384 /* Indirect draw commands take a buffer as input that we're going to
2385 * read from the command streamer to load some of the HW registers
2386 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2387 * command streamer stall so that all the cache flushes have
2388 * completed before the command streamer loads from memory.
2389 */
2390 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2391 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2392 * through a vertex buffer, so invalidate that cache.
2393 */
2394 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2395 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2396 * UBO from the buffer, so we need to invalidate constant cache.
2397 */
2398 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2399 break;
2400 case VK_ACCESS_INDEX_READ_BIT:
2401 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2402 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2403 * commands, so we invalidate the VF cache to make sure there is no
2404 * stale data when we start rendering.
2405 */
2406 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2407 break;
2408 case VK_ACCESS_UNIFORM_READ_BIT:
2409 /* We transitioning a buffer to be used as uniform data. Because
2410 * uniform is accessed through the data port & sampler, we need to
2411 * invalidate the texture cache (sampler) & constant cache (data
2412 * port) to avoid stale data.
2413 */
2414 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2415 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2416 break;
2417 case VK_ACCESS_SHADER_READ_BIT:
2418 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2419 case VK_ACCESS_TRANSFER_READ_BIT:
2420 /* Transitioning a buffer to be read through the sampler, so
2421 * invalidate the texture cache, we don't want any stale data.
2422 */
2423 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2424 break;
2425 case VK_ACCESS_MEMORY_READ_BIT:
2426 /* Transitioning a buffer for generic read, invalidate all the
2427 * caches.
2428 */
2429 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2430 break;
2431 case VK_ACCESS_MEMORY_WRITE_BIT:
2432 /* Generic write, make sure all previously written things land in
2433 * memory.
2434 */
2435 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2436 break;
2437 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2438 /* Transitioning a buffer for conditional rendering. We'll load the
2439 * content of this buffer into HW registers using the command
2440 * streamer, so we need to stall the command streamer to make sure
2441 * any in-flight flush operations have completed.
2442 */
2443 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2444 break;
2445 default:
2446 break; /* Nothing to do */
2447 }
2448 }
2449
2450 return pipe_bits;
2451 }
2452
2453 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2454 VK_IMAGE_ASPECT_COLOR_BIT | \
2455 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2456 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2457 VK_IMAGE_ASPECT_PLANE_2_BIT)
2458 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2459 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2460 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2461 VK_IMAGE_ASPECT_PLANE_2_BIT)
2462
2463 struct anv_vertex_binding {
2464 struct anv_buffer * buffer;
2465 VkDeviceSize offset;
2466 };
2467
2468 struct anv_xfb_binding {
2469 struct anv_buffer * buffer;
2470 VkDeviceSize offset;
2471 VkDeviceSize size;
2472 };
2473
2474 struct anv_push_constants {
2475 /** Push constant data provided by the client through vkPushConstants */
2476 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2477
2478 /** Dynamic offsets for dynamic UBOs and SSBOs */
2479 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2480
2481 /** Pad out to a multiple of 32 bytes */
2482 uint32_t push_ubo_sizes[4];
2483
2484 struct {
2485 /** Base workgroup ID
2486 *
2487 * Used for vkCmdDispatchBase.
2488 */
2489 uint32_t base_work_group_id[3];
2490
2491 /** Subgroup ID
2492 *
2493 * This is never set by software but is implicitly filled out when
2494 * uploading the push constants for compute shaders.
2495 */
2496 uint32_t subgroup_id;
2497 } cs;
2498 };
2499
2500 struct anv_dynamic_state {
2501 struct {
2502 uint32_t count;
2503 VkViewport viewports[MAX_VIEWPORTS];
2504 } viewport;
2505
2506 struct {
2507 uint32_t count;
2508 VkRect2D scissors[MAX_SCISSORS];
2509 } scissor;
2510
2511 float line_width;
2512
2513 struct {
2514 float bias;
2515 float clamp;
2516 float slope;
2517 } depth_bias;
2518
2519 float blend_constants[4];
2520
2521 struct {
2522 float min;
2523 float max;
2524 } depth_bounds;
2525
2526 struct {
2527 uint32_t front;
2528 uint32_t back;
2529 } stencil_compare_mask;
2530
2531 struct {
2532 uint32_t front;
2533 uint32_t back;
2534 } stencil_write_mask;
2535
2536 struct {
2537 uint32_t front;
2538 uint32_t back;
2539 } stencil_reference;
2540
2541 struct {
2542 uint32_t factor;
2543 uint16_t pattern;
2544 } line_stipple;
2545 };
2546
2547 extern const struct anv_dynamic_state default_dynamic_state;
2548
2549 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2550 const struct anv_dynamic_state *src,
2551 uint32_t copy_mask);
2552
2553 struct anv_surface_state {
2554 struct anv_state state;
2555 /** Address of the surface referred to by this state
2556 *
2557 * This address is relative to the start of the BO.
2558 */
2559 struct anv_address address;
2560 /* Address of the aux surface, if any
2561 *
2562 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2563 *
2564 * With the exception of gen8, the bottom 12 bits of this address' offset
2565 * include extra aux information.
2566 */
2567 struct anv_address aux_address;
2568 /* Address of the clear color, if any
2569 *
2570 * This address is relative to the start of the BO.
2571 */
2572 struct anv_address clear_address;
2573 };
2574
2575 /**
2576 * Attachment state when recording a renderpass instance.
2577 *
2578 * The clear value is valid only if there exists a pending clear.
2579 */
2580 struct anv_attachment_state {
2581 enum isl_aux_usage aux_usage;
2582 enum isl_aux_usage input_aux_usage;
2583 struct anv_surface_state color;
2584 struct anv_surface_state input;
2585
2586 VkImageLayout current_layout;
2587 VkImageLayout current_stencil_layout;
2588 VkImageAspectFlags pending_clear_aspects;
2589 VkImageAspectFlags pending_load_aspects;
2590 bool fast_clear;
2591 VkClearValue clear_value;
2592 bool clear_color_is_zero_one;
2593 bool clear_color_is_zero;
2594
2595 /* When multiview is active, attachments with a renderpass clear
2596 * operation have their respective layers cleared on the first
2597 * subpass that uses them, and only in that subpass. We keep track
2598 * of this using a bitfield to indicate which layers of an attachment
2599 * have not been cleared yet when multiview is active.
2600 */
2601 uint32_t pending_clear_views;
2602 struct anv_image_view * image_view;
2603 };
2604
2605 /** State tracking for vertex buffer flushes
2606 *
2607 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2608 * addresses. If you happen to have two vertex buffers which get placed
2609 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2610 * collisions. In order to solve this problem, we track vertex address ranges
2611 * which are live in the cache and invalidate the cache if one ever exceeds 32
2612 * bits.
2613 */
2614 struct anv_vb_cache_range {
2615 /* Virtual address at which the live vertex buffer cache range starts for
2616 * this vertex buffer index.
2617 */
2618 uint64_t start;
2619
2620 /* Virtual address of the byte after where vertex buffer cache range ends.
2621 * This is exclusive such that end - start is the size of the range.
2622 */
2623 uint64_t end;
2624 };
2625
2626 /** State tracking for particular pipeline bind point
2627 *
2628 * This struct is the base struct for anv_cmd_graphics_state and
2629 * anv_cmd_compute_state. These are used to track state which is bound to a
2630 * particular type of pipeline. Generic state that applies per-stage such as
2631 * binding table offsets and push constants is tracked generically with a
2632 * per-stage array in anv_cmd_state.
2633 */
2634 struct anv_cmd_pipeline_state {
2635 struct anv_descriptor_set *descriptors[MAX_SETS];
2636 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2637 };
2638
2639 /** State tracking for graphics pipeline
2640 *
2641 * This has anv_cmd_pipeline_state as a base struct to track things which get
2642 * bound to a graphics pipeline. Along with general pipeline bind point state
2643 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2644 * state which is graphics-specific.
2645 */
2646 struct anv_cmd_graphics_state {
2647 struct anv_cmd_pipeline_state base;
2648
2649 struct anv_graphics_pipeline *pipeline;
2650
2651 anv_cmd_dirty_mask_t dirty;
2652 uint32_t vb_dirty;
2653
2654 struct anv_vb_cache_range ib_bound_range;
2655 struct anv_vb_cache_range ib_dirty_range;
2656 struct anv_vb_cache_range vb_bound_ranges[33];
2657 struct anv_vb_cache_range vb_dirty_ranges[33];
2658
2659 struct anv_dynamic_state dynamic;
2660
2661 struct {
2662 struct anv_buffer *index_buffer;
2663 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2664 uint32_t index_offset;
2665 } gen7;
2666 };
2667
2668 /** State tracking for compute pipeline
2669 *
2670 * This has anv_cmd_pipeline_state as a base struct to track things which get
2671 * bound to a compute pipeline. Along with general pipeline bind point state
2672 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2673 * state which is compute-specific.
2674 */
2675 struct anv_cmd_compute_state {
2676 struct anv_cmd_pipeline_state base;
2677
2678 struct anv_compute_pipeline *pipeline;
2679
2680 bool pipeline_dirty;
2681
2682 struct anv_address num_workgroups;
2683 };
2684
2685 /** State required while building cmd buffer */
2686 struct anv_cmd_state {
2687 /* PIPELINE_SELECT.PipelineSelection */
2688 uint32_t current_pipeline;
2689 const struct gen_l3_config * current_l3_config;
2690 uint32_t last_aux_map_state;
2691
2692 struct anv_cmd_graphics_state gfx;
2693 struct anv_cmd_compute_state compute;
2694
2695 enum anv_pipe_bits pending_pipe_bits;
2696 VkShaderStageFlags descriptors_dirty;
2697 VkShaderStageFlags push_constants_dirty;
2698
2699 struct anv_framebuffer * framebuffer;
2700 struct anv_render_pass * pass;
2701 struct anv_subpass * subpass;
2702 VkRect2D render_area;
2703 uint32_t restart_index;
2704 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2705 bool xfb_enabled;
2706 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2707 VkShaderStageFlags push_constant_stages;
2708 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2709 struct anv_state binding_tables[MESA_SHADER_STAGES];
2710 struct anv_state samplers[MESA_SHADER_STAGES];
2711
2712 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2713 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2714 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2715
2716 /**
2717 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2718 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2719 * and before invoking the secondary in ExecuteCommands.
2720 */
2721 bool pma_fix_enabled;
2722
2723 /**
2724 * Whether or not we know for certain that HiZ is enabled for the current
2725 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2726 * enabled or not, this will be false.
2727 */
2728 bool hiz_enabled;
2729
2730 bool conditional_render_enabled;
2731
2732 /**
2733 * Last rendering scale argument provided to
2734 * genX(cmd_buffer_emit_hashing_mode)().
2735 */
2736 unsigned current_hash_scale;
2737
2738 /**
2739 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2740 * valid only when recording a render pass instance.
2741 */
2742 struct anv_attachment_state * attachments;
2743
2744 /**
2745 * Surface states for color render targets. These are stored in a single
2746 * flat array. For depth-stencil attachments, the surface state is simply
2747 * left blank.
2748 */
2749 struct anv_state render_pass_states;
2750
2751 /**
2752 * A null surface state of the right size to match the framebuffer. This
2753 * is one of the states in render_pass_states.
2754 */
2755 struct anv_state null_surface_state;
2756 };
2757
2758 struct anv_cmd_pool {
2759 VkAllocationCallbacks alloc;
2760 struct list_head cmd_buffers;
2761 };
2762
2763 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2764
2765 enum anv_cmd_buffer_exec_mode {
2766 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2767 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2768 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2769 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2770 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2771 };
2772
2773 struct anv_cmd_buffer {
2774 VK_LOADER_DATA _loader_data;
2775
2776 struct anv_device * device;
2777
2778 struct anv_cmd_pool * pool;
2779 struct list_head pool_link;
2780
2781 struct anv_batch batch;
2782
2783 /* Fields required for the actual chain of anv_batch_bo's.
2784 *
2785 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2786 */
2787 struct list_head batch_bos;
2788 enum anv_cmd_buffer_exec_mode exec_mode;
2789
2790 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2791 * referenced by this command buffer
2792 *
2793 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2794 */
2795 struct u_vector seen_bbos;
2796
2797 /* A vector of int32_t's for every block of binding tables.
2798 *
2799 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2800 */
2801 struct u_vector bt_block_states;
2802 struct anv_state bt_next;
2803
2804 struct anv_reloc_list surface_relocs;
2805 /** Last seen surface state block pool center bo offset */
2806 uint32_t last_ss_pool_center;
2807
2808 /* Serial for tracking buffer completion */
2809 uint32_t serial;
2810
2811 /* Stream objects for storing temporary data */
2812 struct anv_state_stream surface_state_stream;
2813 struct anv_state_stream dynamic_state_stream;
2814
2815 VkCommandBufferUsageFlags usage_flags;
2816 VkCommandBufferLevel level;
2817
2818 struct anv_cmd_state state;
2819
2820 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2821 uint64_t intel_perf_marker;
2822 };
2823
2824 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2825 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2826 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2827 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2828 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2829 struct anv_cmd_buffer *secondary);
2830 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2831 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2832 struct anv_cmd_buffer *cmd_buffer,
2833 const VkSemaphore *in_semaphores,
2834 const uint64_t *in_wait_values,
2835 uint32_t num_in_semaphores,
2836 const VkSemaphore *out_semaphores,
2837 const uint64_t *out_signal_values,
2838 uint32_t num_out_semaphores,
2839 VkFence fence);
2840
2841 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2842
2843 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2844 const void *data, uint32_t size, uint32_t alignment);
2845 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2846 uint32_t *a, uint32_t *b,
2847 uint32_t dwords, uint32_t alignment);
2848
2849 struct anv_address
2850 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2851 struct anv_state
2852 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2853 uint32_t entries, uint32_t *state_offset);
2854 struct anv_state
2855 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2856 struct anv_state
2857 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2858 uint32_t size, uint32_t alignment);
2859
2860 VkResult
2861 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2862
2863 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2864 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2865 bool depth_clamp_enable);
2866 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2867
2868 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2869 struct anv_render_pass *pass,
2870 struct anv_framebuffer *framebuffer,
2871 const VkClearValue *clear_values);
2872
2873 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2874
2875 struct anv_state
2876 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2877 gl_shader_stage stage);
2878 struct anv_state
2879 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2880
2881 const struct anv_image_view *
2882 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2883
2884 VkResult
2885 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2886 uint32_t num_entries,
2887 uint32_t *state_offset,
2888 struct anv_state *bt_state);
2889
2890 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2891
2892 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2893
2894 enum anv_fence_type {
2895 ANV_FENCE_TYPE_NONE = 0,
2896 ANV_FENCE_TYPE_BO,
2897 ANV_FENCE_TYPE_WSI_BO,
2898 ANV_FENCE_TYPE_SYNCOBJ,
2899 ANV_FENCE_TYPE_WSI,
2900 };
2901
2902 enum anv_bo_fence_state {
2903 /** Indicates that this is a new (or newly reset fence) */
2904 ANV_BO_FENCE_STATE_RESET,
2905
2906 /** Indicates that this fence has been submitted to the GPU but is still
2907 * (as far as we know) in use by the GPU.
2908 */
2909 ANV_BO_FENCE_STATE_SUBMITTED,
2910
2911 ANV_BO_FENCE_STATE_SIGNALED,
2912 };
2913
2914 struct anv_fence_impl {
2915 enum anv_fence_type type;
2916
2917 union {
2918 /** Fence implementation for BO fences
2919 *
2920 * These fences use a BO and a set of CPU-tracked state flags. The BO
2921 * is added to the object list of the last execbuf call in a QueueSubmit
2922 * and is marked EXEC_WRITE. The state flags track when the BO has been
2923 * submitted to the kernel. We need to do this because Vulkan lets you
2924 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2925 * will say it's idle in this case.
2926 */
2927 struct {
2928 struct anv_bo *bo;
2929 enum anv_bo_fence_state state;
2930 } bo;
2931
2932 /** DRM syncobj handle for syncobj-based fences */
2933 uint32_t syncobj;
2934
2935 /** WSI fence */
2936 struct wsi_fence *fence_wsi;
2937 };
2938 };
2939
2940 struct anv_fence {
2941 /* Permanent fence state. Every fence has some form of permanent state
2942 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2943 * cross-process fences) or it could just be a dummy for use internally.
2944 */
2945 struct anv_fence_impl permanent;
2946
2947 /* Temporary fence state. A fence *may* have temporary state. That state
2948 * is added to the fence by an import operation and is reset back to
2949 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2950 * state cannot be signaled because the fence must already be signaled
2951 * before the temporary state can be exported from the fence in the other
2952 * process and imported here.
2953 */
2954 struct anv_fence_impl temporary;
2955 };
2956
2957 void anv_fence_reset_temporary(struct anv_device *device,
2958 struct anv_fence *fence);
2959
2960 struct anv_event {
2961 uint64_t semaphore;
2962 struct anv_state state;
2963 };
2964
2965 enum anv_semaphore_type {
2966 ANV_SEMAPHORE_TYPE_NONE = 0,
2967 ANV_SEMAPHORE_TYPE_DUMMY,
2968 ANV_SEMAPHORE_TYPE_BO,
2969 ANV_SEMAPHORE_TYPE_WSI_BO,
2970 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2971 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2972 ANV_SEMAPHORE_TYPE_TIMELINE,
2973 };
2974
2975 struct anv_timeline_point {
2976 struct list_head link;
2977
2978 uint64_t serial;
2979
2980 /* Number of waiter on this point, when > 0 the point should not be garbage
2981 * collected.
2982 */
2983 int waiting;
2984
2985 /* BO used for synchronization. */
2986 struct anv_bo *bo;
2987 };
2988
2989 struct anv_timeline {
2990 pthread_mutex_t mutex;
2991 pthread_cond_t cond;
2992
2993 uint64_t highest_past;
2994 uint64_t highest_pending;
2995
2996 struct list_head points;
2997 struct list_head free_points;
2998 };
2999
3000 struct anv_semaphore_impl {
3001 enum anv_semaphore_type type;
3002
3003 union {
3004 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
3005 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
3006 * object list on any execbuf2 calls for which this semaphore is used as
3007 * a wait or signal fence. When used as a signal fence or when type ==
3008 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
3009 */
3010 struct anv_bo *bo;
3011
3012 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
3013 * If the semaphore is in the unsignaled state due to either just being
3014 * created or because it has been used for a wait, fd will be -1.
3015 */
3016 int fd;
3017
3018 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3019 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3020 * import so we don't need to bother with a userspace cache.
3021 */
3022 uint32_t syncobj;
3023
3024 /* Non shareable timeline semaphore
3025 *
3026 * Used when kernel don't have support for timeline semaphores.
3027 */
3028 struct anv_timeline timeline;
3029 };
3030 };
3031
3032 struct anv_semaphore {
3033 uint32_t refcount;
3034
3035 /* Permanent semaphore state. Every semaphore has some form of permanent
3036 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3037 * (for cross-process semaphores0 or it could just be a dummy for use
3038 * internally.
3039 */
3040 struct anv_semaphore_impl permanent;
3041
3042 /* Temporary semaphore state. A semaphore *may* have temporary state.
3043 * That state is added to the semaphore by an import operation and is reset
3044 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3045 * semaphore with temporary state cannot be signaled because the semaphore
3046 * must already be signaled before the temporary state can be exported from
3047 * the semaphore in the other process and imported here.
3048 */
3049 struct anv_semaphore_impl temporary;
3050 };
3051
3052 void anv_semaphore_reset_temporary(struct anv_device *device,
3053 struct anv_semaphore *semaphore);
3054
3055 struct anv_shader_module {
3056 unsigned char sha1[20];
3057 uint32_t size;
3058 char data[0];
3059 };
3060
3061 static inline gl_shader_stage
3062 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3063 {
3064 assert(__builtin_popcount(vk_stage) == 1);
3065 return ffs(vk_stage) - 1;
3066 }
3067
3068 static inline VkShaderStageFlagBits
3069 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3070 {
3071 return (1 << mesa_stage);
3072 }
3073
3074 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3075
3076 #define anv_foreach_stage(stage, stage_bits) \
3077 for (gl_shader_stage stage, \
3078 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3079 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3080 __tmp &= ~(1 << (stage)))
3081
3082 struct anv_pipeline_bind_map {
3083 unsigned char surface_sha1[20];
3084 unsigned char sampler_sha1[20];
3085 unsigned char push_sha1[20];
3086
3087 uint32_t surface_count;
3088 uint32_t sampler_count;
3089
3090 struct anv_pipeline_binding * surface_to_descriptor;
3091 struct anv_pipeline_binding * sampler_to_descriptor;
3092
3093 struct anv_push_range push_ranges[4];
3094 };
3095
3096 struct anv_shader_bin_key {
3097 uint32_t size;
3098 uint8_t data[0];
3099 };
3100
3101 struct anv_shader_bin {
3102 uint32_t ref_cnt;
3103
3104 gl_shader_stage stage;
3105
3106 const struct anv_shader_bin_key *key;
3107
3108 struct anv_state kernel;
3109 uint32_t kernel_size;
3110
3111 struct anv_state constant_data;
3112 uint32_t constant_data_size;
3113
3114 const struct brw_stage_prog_data *prog_data;
3115 uint32_t prog_data_size;
3116
3117 struct brw_compile_stats stats[3];
3118 uint32_t num_stats;
3119
3120 struct nir_xfb_info *xfb_info;
3121
3122 struct anv_pipeline_bind_map bind_map;
3123 };
3124
3125 struct anv_shader_bin *
3126 anv_shader_bin_create(struct anv_device *device,
3127 gl_shader_stage stage,
3128 const void *key, uint32_t key_size,
3129 const void *kernel, uint32_t kernel_size,
3130 const void *constant_data, uint32_t constant_data_size,
3131 const struct brw_stage_prog_data *prog_data,
3132 uint32_t prog_data_size,
3133 const struct brw_compile_stats *stats, uint32_t num_stats,
3134 const struct nir_xfb_info *xfb_info,
3135 const struct anv_pipeline_bind_map *bind_map);
3136
3137 void
3138 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3139
3140 static inline void
3141 anv_shader_bin_ref(struct anv_shader_bin *shader)
3142 {
3143 assert(shader && shader->ref_cnt >= 1);
3144 p_atomic_inc(&shader->ref_cnt);
3145 }
3146
3147 static inline void
3148 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3149 {
3150 assert(shader && shader->ref_cnt >= 1);
3151 if (p_atomic_dec_zero(&shader->ref_cnt))
3152 anv_shader_bin_destroy(device, shader);
3153 }
3154
3155 struct anv_pipeline_executable {
3156 gl_shader_stage stage;
3157
3158 struct brw_compile_stats stats;
3159
3160 char *nir;
3161 char *disasm;
3162 };
3163
3164 enum anv_pipeline_type {
3165 ANV_PIPELINE_GRAPHICS,
3166 ANV_PIPELINE_COMPUTE,
3167 };
3168
3169 struct anv_pipeline {
3170 struct anv_device * device;
3171
3172 struct anv_batch batch;
3173 struct anv_reloc_list batch_relocs;
3174 uint32_t batch_data[512];
3175
3176 void * mem_ctx;
3177
3178 enum anv_pipeline_type type;
3179 VkPipelineCreateFlags flags;
3180
3181 struct util_dynarray executables;
3182
3183 const struct gen_l3_config * l3_config;
3184 };
3185
3186 struct anv_graphics_pipeline {
3187 struct anv_pipeline base;
3188
3189 anv_cmd_dirty_mask_t dynamic_state_mask;
3190 struct anv_dynamic_state dynamic_state;
3191
3192 uint32_t topology;
3193
3194 struct anv_subpass * subpass;
3195
3196 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3197
3198 VkShaderStageFlags active_stages;
3199
3200 bool primitive_restart;
3201 bool writes_depth;
3202 bool depth_test_enable;
3203 bool writes_stencil;
3204 bool stencil_test_enable;
3205 bool depth_clamp_enable;
3206 bool depth_clip_enable;
3207 bool sample_shading_enable;
3208 bool kill_pixel;
3209 bool depth_bounds_test_enable;
3210
3211 struct anv_state blend_state;
3212
3213 uint32_t vb_used;
3214 struct anv_pipeline_vertex_binding {
3215 uint32_t stride;
3216 bool instanced;
3217 uint32_t instance_divisor;
3218 } vb[MAX_VBS];
3219
3220 struct {
3221 uint32_t sf[7];
3222 uint32_t depth_stencil_state[3];
3223 } gen7;
3224
3225 struct {
3226 uint32_t sf[4];
3227 uint32_t raster[5];
3228 uint32_t wm_depth_stencil[3];
3229 } gen8;
3230
3231 struct {
3232 uint32_t wm_depth_stencil[4];
3233 } gen9;
3234 };
3235
3236 struct anv_compute_pipeline {
3237 struct anv_pipeline base;
3238
3239 struct anv_shader_bin * cs;
3240 uint32_t cs_right_mask;
3241 uint32_t interface_descriptor_data[8];
3242 };
3243
3244 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
3245 static inline struct anv_##pipe_type##_pipeline * \
3246 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
3247 { \
3248 assert(pipeline->type == pipe_enum); \
3249 return (struct anv_##pipe_type##_pipeline *) pipeline; \
3250 }
3251
3252 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
3253 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
3254
3255 static inline bool
3256 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
3257 gl_shader_stage stage)
3258 {
3259 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3260 }
3261
3262 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
3263 static inline const struct brw_##prefix##_prog_data * \
3264 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
3265 { \
3266 if (anv_pipeline_has_stage(pipeline, stage)) { \
3267 return (const struct brw_##prefix##_prog_data *) \
3268 pipeline->shaders[stage]->prog_data; \
3269 } else { \
3270 return NULL; \
3271 } \
3272 }
3273
3274 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3275 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3276 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3277 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3278 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3279
3280 static inline const struct brw_cs_prog_data *
3281 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
3282 {
3283 assert(pipeline->cs);
3284 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
3285 }
3286
3287 static inline const struct brw_vue_prog_data *
3288 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
3289 {
3290 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3291 return &get_gs_prog_data(pipeline)->base;
3292 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3293 return &get_tes_prog_data(pipeline)->base;
3294 else
3295 return &get_vs_prog_data(pipeline)->base;
3296 }
3297
3298 VkResult
3299 anv_pipeline_init(struct anv_graphics_pipeline *pipeline, struct anv_device *device,
3300 struct anv_pipeline_cache *cache,
3301 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3302 const VkAllocationCallbacks *alloc);
3303
3304 VkResult
3305 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
3306 struct anv_pipeline_cache *cache,
3307 const VkComputePipelineCreateInfo *info,
3308 const struct anv_shader_module *module,
3309 const char *entrypoint,
3310 const VkSpecializationInfo *spec_info);
3311
3312 struct anv_format_plane {
3313 enum isl_format isl_format:16;
3314 struct isl_swizzle swizzle;
3315
3316 /* Whether this plane contains chroma channels */
3317 bool has_chroma;
3318
3319 /* For downscaling of YUV planes */
3320 uint8_t denominator_scales[2];
3321
3322 /* How to map sampled ycbcr planes to a single 4 component element. */
3323 struct isl_swizzle ycbcr_swizzle;
3324
3325 /* What aspect is associated to this plane */
3326 VkImageAspectFlags aspect;
3327 };
3328
3329
3330 struct anv_format {
3331 struct anv_format_plane planes[3];
3332 VkFormat vk_format;
3333 uint8_t n_planes;
3334 bool can_ycbcr;
3335 };
3336
3337 /**
3338 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3339 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3340 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3341 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3342 */
3343 static inline uint32_t
3344 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3345 VkImageAspectFlags aspect_mask)
3346 {
3347 switch (aspect_mask) {
3348 case VK_IMAGE_ASPECT_COLOR_BIT:
3349 case VK_IMAGE_ASPECT_DEPTH_BIT:
3350 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3351 return 0;
3352 case VK_IMAGE_ASPECT_STENCIL_BIT:
3353 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3354 return 0;
3355 /* Fall-through */
3356 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3357 return 1;
3358 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3359 return 2;
3360 default:
3361 /* Purposefully assert with depth/stencil aspects. */
3362 unreachable("invalid image aspect");
3363 }
3364 }
3365
3366 static inline VkImageAspectFlags
3367 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3368 uint32_t plane)
3369 {
3370 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3371 if (util_bitcount(image_aspects) > 1)
3372 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3373 return VK_IMAGE_ASPECT_COLOR_BIT;
3374 }
3375 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3376 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3377 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3378 return VK_IMAGE_ASPECT_STENCIL_BIT;
3379 }
3380
3381 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3382 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3383
3384 const struct anv_format *
3385 anv_get_format(VkFormat format);
3386
3387 static inline uint32_t
3388 anv_get_format_planes(VkFormat vk_format)
3389 {
3390 const struct anv_format *format = anv_get_format(vk_format);
3391
3392 return format != NULL ? format->n_planes : 0;
3393 }
3394
3395 struct anv_format_plane
3396 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3397 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3398
3399 static inline enum isl_format
3400 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3401 VkImageAspectFlags aspect, VkImageTiling tiling)
3402 {
3403 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3404 }
3405
3406 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3407 VkImageCreateFlags create_flags,
3408 VkFormat vk_format,
3409 VkImageTiling vk_tiling,
3410 const VkImageFormatListCreateInfoKHR *fmt_list);
3411
3412 static inline struct isl_swizzle
3413 anv_swizzle_for_render(struct isl_swizzle swizzle)
3414 {
3415 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3416 * RGB as RGBA for texturing
3417 */
3418 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3419 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3420
3421 /* But it doesn't matter what we render to that channel */
3422 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3423
3424 return swizzle;
3425 }
3426
3427 void
3428 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3429
3430 /**
3431 * Subsurface of an anv_image.
3432 */
3433 struct anv_surface {
3434 /** Valid only if isl_surf::size_B > 0. */
3435 struct isl_surf isl;
3436
3437 /**
3438 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3439 */
3440 uint32_t offset;
3441 };
3442
3443 struct anv_image {
3444 VkImageType type; /**< VkImageCreateInfo::imageType */
3445 /* The original VkFormat provided by the client. This may not match any
3446 * of the actual surface formats.
3447 */
3448 VkFormat vk_format;
3449 const struct anv_format *format;
3450
3451 VkImageAspectFlags aspects;
3452 VkExtent3D extent;
3453 uint32_t levels;
3454 uint32_t array_size;
3455 uint32_t samples; /**< VkImageCreateInfo::samples */
3456 uint32_t n_planes;
3457 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3458 VkImageUsageFlags stencil_usage;
3459 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3460 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3461
3462 /** True if this is needs to be bound to an appropriately tiled BO.
3463 *
3464 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3465 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3466 * we require a dedicated allocation so that we can know to allocate a
3467 * tiled buffer.
3468 */
3469 bool needs_set_tiling;
3470
3471 /**
3472 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3473 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3474 */
3475 uint64_t drm_format_mod;
3476
3477 VkDeviceSize size;
3478 uint32_t alignment;
3479
3480 /* Whether the image is made of several underlying buffer objects rather a
3481 * single one with different offsets.
3482 */
3483 bool disjoint;
3484
3485 /* Image was created with external format. */
3486 bool external_format;
3487
3488 /**
3489 * Image subsurfaces
3490 *
3491 * For each foo, anv_image::planes[x].surface is valid if and only if
3492 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3493 * to figure the number associated with a given aspect.
3494 *
3495 * The hardware requires that the depth buffer and stencil buffer be
3496 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3497 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3498 * allocate the depth and stencil buffers as separate surfaces in the same
3499 * bo.
3500 *
3501 * Memory layout :
3502 *
3503 * -----------------------
3504 * | surface0 | /|\
3505 * ----------------------- |
3506 * | shadow surface0 | |
3507 * ----------------------- | Plane 0
3508 * | aux surface0 | |
3509 * ----------------------- |
3510 * | fast clear colors0 | \|/
3511 * -----------------------
3512 * | surface1 | /|\
3513 * ----------------------- |
3514 * | shadow surface1 | |
3515 * ----------------------- | Plane 1
3516 * | aux surface1 | |
3517 * ----------------------- |
3518 * | fast clear colors1 | \|/
3519 * -----------------------
3520 * | ... |
3521 * | |
3522 * -----------------------
3523 */
3524 struct {
3525 /**
3526 * Offset of the entire plane (whenever the image is disjoint this is
3527 * set to 0).
3528 */
3529 uint32_t offset;
3530
3531 VkDeviceSize size;
3532 uint32_t alignment;
3533
3534 struct anv_surface surface;
3535
3536 /**
3537 * A surface which shadows the main surface and may have different
3538 * tiling. This is used for sampling using a tiling that isn't supported
3539 * for other operations.
3540 */
3541 struct anv_surface shadow_surface;
3542
3543 /**
3544 * The base aux usage for this image. For color images, this can be
3545 * either CCS_E or CCS_D depending on whether or not we can reliably
3546 * leave CCS on all the time.
3547 */
3548 enum isl_aux_usage aux_usage;
3549
3550 struct anv_surface aux_surface;
3551
3552 /**
3553 * Offset of the fast clear state (used to compute the
3554 * fast_clear_state_offset of the following planes).
3555 */
3556 uint32_t fast_clear_state_offset;
3557
3558 /**
3559 * BO associated with this plane, set when bound.
3560 */
3561 struct anv_address address;
3562
3563 /**
3564 * When destroying the image, also free the bo.
3565 * */
3566 bool bo_is_owned;
3567 } planes[3];
3568 };
3569
3570 /* The ordering of this enum is important */
3571 enum anv_fast_clear_type {
3572 /** Image does not have/support any fast-clear blocks */
3573 ANV_FAST_CLEAR_NONE = 0,
3574 /** Image has/supports fast-clear but only to the default value */
3575 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3576 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3577 ANV_FAST_CLEAR_ANY = 2,
3578 };
3579
3580 /* Returns the number of auxiliary buffer levels attached to an image. */
3581 static inline uint8_t
3582 anv_image_aux_levels(const struct anv_image * const image,
3583 VkImageAspectFlagBits aspect)
3584 {
3585 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3586 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3587 return 0;
3588
3589 /* The Gen12 CCS aux surface is represented with only one level. */
3590 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3591 image->planes[plane].surface.isl.levels :
3592 image->planes[plane].aux_surface.isl.levels;
3593 }
3594
3595 /* Returns the number of auxiliary buffer layers attached to an image. */
3596 static inline uint32_t
3597 anv_image_aux_layers(const struct anv_image * const image,
3598 VkImageAspectFlagBits aspect,
3599 const uint8_t miplevel)
3600 {
3601 assert(image);
3602
3603 /* The miplevel must exist in the main buffer. */
3604 assert(miplevel < image->levels);
3605
3606 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3607 /* There are no layers with auxiliary data because the miplevel has no
3608 * auxiliary data.
3609 */
3610 return 0;
3611 } else {
3612 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3613
3614 /* The Gen12 CCS aux surface is represented with only one layer. */
3615 const struct isl_extent4d *aux_logical_level0_px =
3616 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3617 &image->planes[plane].surface.isl.logical_level0_px :
3618 &image->planes[plane].aux_surface.isl.logical_level0_px;
3619
3620 return MAX2(aux_logical_level0_px->array_len,
3621 aux_logical_level0_px->depth >> miplevel);
3622 }
3623 }
3624
3625 static inline struct anv_address
3626 anv_image_get_clear_color_addr(const struct anv_device *device,
3627 const struct anv_image *image,
3628 VkImageAspectFlagBits aspect)
3629 {
3630 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3631
3632 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3633 return anv_address_add(image->planes[plane].address,
3634 image->planes[plane].fast_clear_state_offset);
3635 }
3636
3637 static inline struct anv_address
3638 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3639 const struct anv_image *image,
3640 VkImageAspectFlagBits aspect)
3641 {
3642 struct anv_address addr =
3643 anv_image_get_clear_color_addr(device, image, aspect);
3644
3645 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3646 device->isl_dev.ss.clear_color_state_size :
3647 device->isl_dev.ss.clear_value_size;
3648 return anv_address_add(addr, clear_color_state_size);
3649 }
3650
3651 static inline struct anv_address
3652 anv_image_get_compression_state_addr(const struct anv_device *device,
3653 const struct anv_image *image,
3654 VkImageAspectFlagBits aspect,
3655 uint32_t level, uint32_t array_layer)
3656 {
3657 assert(level < anv_image_aux_levels(image, aspect));
3658 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3659 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3660 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3661
3662 struct anv_address addr =
3663 anv_image_get_fast_clear_type_addr(device, image, aspect);
3664 addr.offset += 4; /* Go past the fast clear type */
3665
3666 if (image->type == VK_IMAGE_TYPE_3D) {
3667 for (uint32_t l = 0; l < level; l++)
3668 addr.offset += anv_minify(image->extent.depth, l) * 4;
3669 } else {
3670 addr.offset += level * image->array_size * 4;
3671 }
3672 addr.offset += array_layer * 4;
3673
3674 assert(addr.offset <
3675 image->planes[plane].address.offset + image->planes[plane].size);
3676 return addr;
3677 }
3678
3679 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3680 static inline bool
3681 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3682 const struct anv_image *image)
3683 {
3684 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3685 return false;
3686
3687 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3688 * struct. There's documentation which suggests that this feature actually
3689 * reduces performance on BDW, but it has only been observed to help so
3690 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3691 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3692 */
3693 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3694 return false;
3695
3696 return image->samples == 1;
3697 }
3698
3699 static inline bool
3700 anv_image_plane_uses_aux_map(const struct anv_device *device,
3701 const struct anv_image *image,
3702 uint32_t plane)
3703 {
3704 return device->info.has_aux_map &&
3705 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3706 }
3707
3708 void
3709 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3710 const struct anv_image *image,
3711 VkImageAspectFlagBits aspect,
3712 enum isl_aux_usage aux_usage,
3713 uint32_t level,
3714 uint32_t base_layer,
3715 uint32_t layer_count);
3716
3717 void
3718 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3719 const struct anv_image *image,
3720 VkImageAspectFlagBits aspect,
3721 enum isl_aux_usage aux_usage,
3722 enum isl_format format, struct isl_swizzle swizzle,
3723 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3724 VkRect2D area, union isl_color_value clear_color);
3725 void
3726 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3727 const struct anv_image *image,
3728 VkImageAspectFlags aspects,
3729 enum isl_aux_usage depth_aux_usage,
3730 uint32_t level,
3731 uint32_t base_layer, uint32_t layer_count,
3732 VkRect2D area,
3733 float depth_value, uint8_t stencil_value);
3734 void
3735 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3736 const struct anv_image *src_image,
3737 enum isl_aux_usage src_aux_usage,
3738 uint32_t src_level, uint32_t src_base_layer,
3739 const struct anv_image *dst_image,
3740 enum isl_aux_usage dst_aux_usage,
3741 uint32_t dst_level, uint32_t dst_base_layer,
3742 VkImageAspectFlagBits aspect,
3743 uint32_t src_x, uint32_t src_y,
3744 uint32_t dst_x, uint32_t dst_y,
3745 uint32_t width, uint32_t height,
3746 uint32_t layer_count,
3747 enum blorp_filter filter);
3748 void
3749 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3750 const struct anv_image *image,
3751 VkImageAspectFlagBits aspect, uint32_t level,
3752 uint32_t base_layer, uint32_t layer_count,
3753 enum isl_aux_op hiz_op);
3754 void
3755 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3756 const struct anv_image *image,
3757 VkImageAspectFlags aspects,
3758 uint32_t level,
3759 uint32_t base_layer, uint32_t layer_count,
3760 VkRect2D area, uint8_t stencil_value);
3761 void
3762 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3763 const struct anv_image *image,
3764 enum isl_format format,
3765 VkImageAspectFlagBits aspect,
3766 uint32_t base_layer, uint32_t layer_count,
3767 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3768 bool predicate);
3769 void
3770 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3771 const struct anv_image *image,
3772 enum isl_format format,
3773 VkImageAspectFlagBits aspect, uint32_t level,
3774 uint32_t base_layer, uint32_t layer_count,
3775 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3776 bool predicate);
3777
3778 void
3779 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3780 const struct anv_image *image,
3781 VkImageAspectFlagBits aspect,
3782 uint32_t base_level, uint32_t level_count,
3783 uint32_t base_layer, uint32_t layer_count);
3784
3785 enum isl_aux_state
3786 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3787 const struct anv_image *image,
3788 const VkImageAspectFlagBits aspect,
3789 const VkImageLayout layout);
3790
3791 enum isl_aux_usage
3792 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3793 const struct anv_image *image,
3794 const VkImageAspectFlagBits aspect,
3795 const VkImageUsageFlagBits usage,
3796 const VkImageLayout layout);
3797
3798 enum anv_fast_clear_type
3799 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3800 const struct anv_image * const image,
3801 const VkImageAspectFlagBits aspect,
3802 const VkImageLayout layout);
3803
3804 /* This is defined as a macro so that it works for both
3805 * VkImageSubresourceRange and VkImageSubresourceLayers
3806 */
3807 #define anv_get_layerCount(_image, _range) \
3808 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3809 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3810
3811 static inline uint32_t
3812 anv_get_levelCount(const struct anv_image *image,
3813 const VkImageSubresourceRange *range)
3814 {
3815 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3816 image->levels - range->baseMipLevel : range->levelCount;
3817 }
3818
3819 static inline VkImageAspectFlags
3820 anv_image_expand_aspects(const struct anv_image *image,
3821 VkImageAspectFlags aspects)
3822 {
3823 /* If the underlying image has color plane aspects and
3824 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3825 * the underlying image. */
3826 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3827 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3828 return image->aspects;
3829
3830 return aspects;
3831 }
3832
3833 static inline bool
3834 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3835 VkImageAspectFlags aspects2)
3836 {
3837 if (aspects1 == aspects2)
3838 return true;
3839
3840 /* Only 1 color aspects are compatibles. */
3841 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3842 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3843 util_bitcount(aspects1) == util_bitcount(aspects2))
3844 return true;
3845
3846 return false;
3847 }
3848
3849 struct anv_image_view {
3850 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3851
3852 VkImageAspectFlags aspect_mask;
3853 VkFormat vk_format;
3854 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3855
3856 unsigned n_planes;
3857 struct {
3858 uint32_t image_plane;
3859
3860 struct isl_view isl;
3861
3862 /**
3863 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3864 * image layout of SHADER_READ_ONLY_OPTIMAL or
3865 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3866 */
3867 struct anv_surface_state optimal_sampler_surface_state;
3868
3869 /**
3870 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3871 * image layout of GENERAL.
3872 */
3873 struct anv_surface_state general_sampler_surface_state;
3874
3875 /**
3876 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3877 * states for write-only and readable, using the real format for
3878 * write-only and the lowered format for readable.
3879 */
3880 struct anv_surface_state storage_surface_state;
3881 struct anv_surface_state writeonly_storage_surface_state;
3882
3883 struct brw_image_param storage_image_param;
3884 } planes[3];
3885 };
3886
3887 enum anv_image_view_state_flags {
3888 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3889 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3890 };
3891
3892 void anv_image_fill_surface_state(struct anv_device *device,
3893 const struct anv_image *image,
3894 VkImageAspectFlagBits aspect,
3895 const struct isl_view *view,
3896 isl_surf_usage_flags_t view_usage,
3897 enum isl_aux_usage aux_usage,
3898 const union isl_color_value *clear_color,
3899 enum anv_image_view_state_flags flags,
3900 struct anv_surface_state *state_inout,
3901 struct brw_image_param *image_param_out);
3902
3903 struct anv_image_create_info {
3904 const VkImageCreateInfo *vk_info;
3905
3906 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3907 isl_tiling_flags_t isl_tiling_flags;
3908
3909 /** These flags will be added to any derived from VkImageCreateInfo. */
3910 isl_surf_usage_flags_t isl_extra_usage_flags;
3911
3912 uint32_t stride;
3913 bool external_format;
3914 };
3915
3916 VkResult anv_image_create(VkDevice _device,
3917 const struct anv_image_create_info *info,
3918 const VkAllocationCallbacks* alloc,
3919 VkImage *pImage);
3920
3921 enum isl_format
3922 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3923
3924 static inline VkExtent3D
3925 anv_sanitize_image_extent(const VkImageType imageType,
3926 const VkExtent3D imageExtent)
3927 {
3928 switch (imageType) {
3929 case VK_IMAGE_TYPE_1D:
3930 return (VkExtent3D) { imageExtent.width, 1, 1 };
3931 case VK_IMAGE_TYPE_2D:
3932 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3933 case VK_IMAGE_TYPE_3D:
3934 return imageExtent;
3935 default:
3936 unreachable("invalid image type");
3937 }
3938 }
3939
3940 static inline VkOffset3D
3941 anv_sanitize_image_offset(const VkImageType imageType,
3942 const VkOffset3D imageOffset)
3943 {
3944 switch (imageType) {
3945 case VK_IMAGE_TYPE_1D:
3946 return (VkOffset3D) { imageOffset.x, 0, 0 };
3947 case VK_IMAGE_TYPE_2D:
3948 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3949 case VK_IMAGE_TYPE_3D:
3950 return imageOffset;
3951 default:
3952 unreachable("invalid image type");
3953 }
3954 }
3955
3956 VkFormatFeatureFlags
3957 anv_get_image_format_features(const struct gen_device_info *devinfo,
3958 VkFormat vk_format,
3959 const struct anv_format *anv_format,
3960 VkImageTiling vk_tiling);
3961
3962 void anv_fill_buffer_surface_state(struct anv_device *device,
3963 struct anv_state state,
3964 enum isl_format format,
3965 struct anv_address address,
3966 uint32_t range, uint32_t stride);
3967
3968 static inline void
3969 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3970 const struct anv_attachment_state *att_state,
3971 const struct anv_image_view *iview)
3972 {
3973 const struct isl_format_layout *view_fmtl =
3974 isl_format_get_layout(iview->planes[0].isl.format);
3975
3976 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3977 if (view_fmtl->channels.c.bits) \
3978 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3979
3980 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3981 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3982 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3983 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3984
3985 #undef COPY_CLEAR_COLOR_CHANNEL
3986 }
3987
3988
3989 struct anv_ycbcr_conversion {
3990 const struct anv_format * format;
3991 VkSamplerYcbcrModelConversion ycbcr_model;
3992 VkSamplerYcbcrRange ycbcr_range;
3993 VkComponentSwizzle mapping[4];
3994 VkChromaLocation chroma_offsets[2];
3995 VkFilter chroma_filter;
3996 bool chroma_reconstruction;
3997 };
3998
3999 struct anv_sampler {
4000 uint32_t state[3][4];
4001 uint32_t n_planes;
4002 struct anv_ycbcr_conversion *conversion;
4003
4004 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
4005 * and with a 32-byte stride for use as bindless samplers.
4006 */
4007 struct anv_state bindless_state;
4008 };
4009
4010 struct anv_framebuffer {
4011 uint32_t width;
4012 uint32_t height;
4013 uint32_t layers;
4014
4015 uint32_t attachment_count;
4016 struct anv_image_view * attachments[0];
4017 };
4018
4019 struct anv_subpass_attachment {
4020 VkImageUsageFlagBits usage;
4021 uint32_t attachment;
4022 VkImageLayout layout;
4023
4024 /* Used only with attachment containing stencil data. */
4025 VkImageLayout stencil_layout;
4026 };
4027
4028 struct anv_subpass {
4029 uint32_t attachment_count;
4030
4031 /**
4032 * A pointer to all attachment references used in this subpass.
4033 * Only valid if ::attachment_count > 0.
4034 */
4035 struct anv_subpass_attachment * attachments;
4036 uint32_t input_count;
4037 struct anv_subpass_attachment * input_attachments;
4038 uint32_t color_count;
4039 struct anv_subpass_attachment * color_attachments;
4040 struct anv_subpass_attachment * resolve_attachments;
4041
4042 struct anv_subpass_attachment * depth_stencil_attachment;
4043 struct anv_subpass_attachment * ds_resolve_attachment;
4044 VkResolveModeFlagBitsKHR depth_resolve_mode;
4045 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4046
4047 uint32_t view_mask;
4048
4049 /** Subpass has a depth/stencil self-dependency */
4050 bool has_ds_self_dep;
4051
4052 /** Subpass has at least one color resolve attachment */
4053 bool has_color_resolve;
4054 };
4055
4056 static inline unsigned
4057 anv_subpass_view_count(const struct anv_subpass *subpass)
4058 {
4059 return MAX2(1, util_bitcount(subpass->view_mask));
4060 }
4061
4062 struct anv_render_pass_attachment {
4063 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4064 * its members individually.
4065 */
4066 VkFormat format;
4067 uint32_t samples;
4068 VkImageUsageFlags usage;
4069 VkAttachmentLoadOp load_op;
4070 VkAttachmentStoreOp store_op;
4071 VkAttachmentLoadOp stencil_load_op;
4072 VkImageLayout initial_layout;
4073 VkImageLayout final_layout;
4074 VkImageLayout first_subpass_layout;
4075
4076 VkImageLayout stencil_initial_layout;
4077 VkImageLayout stencil_final_layout;
4078
4079 /* The subpass id in which the attachment will be used last. */
4080 uint32_t last_subpass_idx;
4081 };
4082
4083 struct anv_render_pass {
4084 uint32_t attachment_count;
4085 uint32_t subpass_count;
4086 /* An array of subpass_count+1 flushes, one per subpass boundary */
4087 enum anv_pipe_bits * subpass_flushes;
4088 struct anv_render_pass_attachment * attachments;
4089 struct anv_subpass subpasses[0];
4090 };
4091
4092 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4093
4094 struct anv_query_pool {
4095 VkQueryType type;
4096 VkQueryPipelineStatisticFlags pipeline_statistics;
4097 /** Stride between slots, in bytes */
4098 uint32_t stride;
4099 /** Number of slots in this query pool */
4100 uint32_t slots;
4101 struct anv_bo * bo;
4102 };
4103
4104 int anv_get_instance_entrypoint_index(const char *name);
4105 int anv_get_device_entrypoint_index(const char *name);
4106 int anv_get_physical_device_entrypoint_index(const char *name);
4107
4108 const char *anv_get_instance_entry_name(int index);
4109 const char *anv_get_physical_device_entry_name(int index);
4110 const char *anv_get_device_entry_name(int index);
4111
4112 bool
4113 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4114 const struct anv_instance_extension_table *instance);
4115 bool
4116 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4117 const struct anv_instance_extension_table *instance);
4118 bool
4119 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4120 const struct anv_instance_extension_table *instance,
4121 const struct anv_device_extension_table *device);
4122
4123 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4124 const char *name);
4125
4126 void anv_dump_image_to_ppm(struct anv_device *device,
4127 struct anv_image *image, unsigned miplevel,
4128 unsigned array_layer, VkImageAspectFlagBits aspect,
4129 const char *filename);
4130
4131 enum anv_dump_action {
4132 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4133 };
4134
4135 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4136 void anv_dump_finish(void);
4137
4138 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4139
4140 static inline uint32_t
4141 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4142 {
4143 /* This function must be called from within a subpass. */
4144 assert(cmd_state->pass && cmd_state->subpass);
4145
4146 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4147
4148 /* The id of this subpass shouldn't exceed the number of subpasses in this
4149 * render pass minus 1.
4150 */
4151 assert(subpass_id < cmd_state->pass->subpass_count);
4152 return subpass_id;
4153 }
4154
4155 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4156 void anv_device_perf_init(struct anv_device *device);
4157
4158 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4159 \
4160 static inline struct __anv_type * \
4161 __anv_type ## _from_handle(__VkType _handle) \
4162 { \
4163 return (struct __anv_type *) _handle; \
4164 } \
4165 \
4166 static inline __VkType \
4167 __anv_type ## _to_handle(struct __anv_type *_obj) \
4168 { \
4169 return (__VkType) _obj; \
4170 }
4171
4172 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4173 \
4174 static inline struct __anv_type * \
4175 __anv_type ## _from_handle(__VkType _handle) \
4176 { \
4177 return (struct __anv_type *)(uintptr_t) _handle; \
4178 } \
4179 \
4180 static inline __VkType \
4181 __anv_type ## _to_handle(struct __anv_type *_obj) \
4182 { \
4183 return (__VkType)(uintptr_t) _obj; \
4184 }
4185
4186 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4187 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4188
4189 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4190 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4191 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4192 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4193 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4194
4195 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4196 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4197 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4198 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4199 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4200 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4201 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4202 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4203 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4204 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4205 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4206 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4207 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4208 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4209 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4210 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4211 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4212 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4213 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4214 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4215 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4216 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4217 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4218
4219 /* Gen-specific function declarations */
4220 #ifdef genX
4221 # include "anv_genX.h"
4222 #else
4223 # define genX(x) gen7_##x
4224 # include "anv_genX.h"
4225 # undef genX
4226 # define genX(x) gen75_##x
4227 # include "anv_genX.h"
4228 # undef genX
4229 # define genX(x) gen8_##x
4230 # include "anv_genX.h"
4231 # undef genX
4232 # define genX(x) gen9_##x
4233 # include "anv_genX.h"
4234 # undef genX
4235 # define genX(x) gen10_##x
4236 # include "anv_genX.h"
4237 # undef genX
4238 # define genX(x) gen11_##x
4239 # include "anv_genX.h"
4240 # undef genX
4241 # define genX(x) gen12_##x
4242 # include "anv_genX.h"
4243 # undef genX
4244 #endif
4245
4246 #endif /* ANV_PRIVATE_H */