anv: Separate compute and graphics descriptor sets
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
40 #else
41 #define VG(x)
42 #endif
43
44 #include "common/gen_clflush.h"
45 #include "common/gen_device_info.h"
46 #include "blorp/blorp.h"
47 #include "compiler/brw_compiler.h"
48 #include "util/macros.h"
49 #include "util/list.h"
50 #include "util/u_atomic.h"
51 #include "util/u_vector.h"
52 #include "vk_alloc.h"
53 #include "vk_debug_report.h"
54
55 /* Pre-declarations needed for WSI entrypoints */
56 struct wl_surface;
57 struct wl_display;
58 typedef struct xcb_connection_t xcb_connection_t;
59 typedef uint32_t xcb_visualid_t;
60 typedef uint32_t xcb_window_t;
61
62 struct anv_buffer;
63 struct anv_buffer_view;
64 struct anv_image_view;
65 struct anv_instance;
66
67 struct gen_l3_config;
68
69 #include <vulkan/vulkan.h>
70 #include <vulkan/vulkan_intel.h>
71 #include <vulkan/vk_icd.h>
72 #include <vulkan/vk_android_native_buffer.h>
73
74 #include "anv_entrypoints.h"
75 #include "anv_extensions.h"
76 #include "isl/isl.h"
77
78 #include "common/gen_debug.h"
79 #include "common/intel_log.h"
80 #include "wsi_common.h"
81
82 /* Allowing different clear colors requires us to perform a depth resolve at
83 * the end of certain render passes. This is because while slow clears store
84 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
85 * See the PRMs for examples describing when additional resolves would be
86 * necessary. To enable fast clears without requiring extra resolves, we set
87 * the clear value to a globally-defined one. We could allow different values
88 * if the user doesn't expect coherent data during or after a render passes
89 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
90 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
91 * 1.0f seems to be the only value used. The only application that doesn't set
92 * this value does so through the usage of an seemingly uninitialized clear
93 * value.
94 */
95 #define ANV_HZ_FC_VAL 1.0f
96
97 #define MAX_VBS 28
98 #define MAX_SETS 8
99 #define MAX_RTS 8
100 #define MAX_VIEWPORTS 16
101 #define MAX_SCISSORS 16
102 #define MAX_PUSH_CONSTANTS_SIZE 128
103 #define MAX_DYNAMIC_BUFFERS 16
104 #define MAX_IMAGES 8
105 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
106
107 #define ANV_SVGS_VB_INDEX MAX_VBS
108 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
109
110 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
111
112 static inline uint32_t
113 align_down_npot_u32(uint32_t v, uint32_t a)
114 {
115 return v - (v % a);
116 }
117
118 static inline uint32_t
119 align_u32(uint32_t v, uint32_t a)
120 {
121 assert(a != 0 && a == (a & -a));
122 return (v + a - 1) & ~(a - 1);
123 }
124
125 static inline uint64_t
126 align_u64(uint64_t v, uint64_t a)
127 {
128 assert(a != 0 && a == (a & -a));
129 return (v + a - 1) & ~(a - 1);
130 }
131
132 static inline int32_t
133 align_i32(int32_t v, int32_t a)
134 {
135 assert(a != 0 && a == (a & -a));
136 return (v + a - 1) & ~(a - 1);
137 }
138
139 /** Alignment must be a power of 2. */
140 static inline bool
141 anv_is_aligned(uintmax_t n, uintmax_t a)
142 {
143 assert(a == (a & -a));
144 return (n & (a - 1)) == 0;
145 }
146
147 static inline uint32_t
148 anv_minify(uint32_t n, uint32_t levels)
149 {
150 if (unlikely(n == 0))
151 return 0;
152 else
153 return MAX2(n >> levels, 1);
154 }
155
156 static inline float
157 anv_clamp_f(float f, float min, float max)
158 {
159 assert(min < max);
160
161 if (f > max)
162 return max;
163 else if (f < min)
164 return min;
165 else
166 return f;
167 }
168
169 static inline bool
170 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
171 {
172 if (*inout_mask & clear_mask) {
173 *inout_mask &= ~clear_mask;
174 return true;
175 } else {
176 return false;
177 }
178 }
179
180 static inline union isl_color_value
181 vk_to_isl_color(VkClearColorValue color)
182 {
183 return (union isl_color_value) {
184 .u32 = {
185 color.uint32[0],
186 color.uint32[1],
187 color.uint32[2],
188 color.uint32[3],
189 },
190 };
191 }
192
193 #define for_each_bit(b, dword) \
194 for (uint32_t __dword = (dword); \
195 (b) = __builtin_ffs(__dword) - 1, __dword; \
196 __dword &= ~(1 << (b)))
197
198 #define typed_memcpy(dest, src, count) ({ \
199 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
200 memcpy((dest), (src), (count) * sizeof(*(src))); \
201 })
202
203 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
204 * to be added here in order to utilize mapping in debug/error/perf macros.
205 */
206 #define REPORT_OBJECT_TYPE(o) \
207 __builtin_choose_expr ( \
208 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
209 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
210 __builtin_choose_expr ( \
211 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
212 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
213 __builtin_choose_expr ( \
214 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
215 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
216 __builtin_choose_expr ( \
217 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
218 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
219 __builtin_choose_expr ( \
220 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
221 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
222 __builtin_choose_expr ( \
223 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
224 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
225 __builtin_choose_expr ( \
226 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
227 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
228 __builtin_choose_expr ( \
229 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
230 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
231 __builtin_choose_expr ( \
232 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
233 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
234 __builtin_choose_expr ( \
235 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
236 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
237 __builtin_choose_expr ( \
238 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
239 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
240 __builtin_choose_expr ( \
241 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
242 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
243 __builtin_choose_expr ( \
244 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
245 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
246 __builtin_choose_expr ( \
247 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
248 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
249 __builtin_choose_expr ( \
250 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
251 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
252 __builtin_choose_expr ( \
253 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
254 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
255 __builtin_choose_expr ( \
256 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
257 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
258 __builtin_choose_expr ( \
259 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
260 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
261 __builtin_choose_expr ( \
262 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
263 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
264 __builtin_choose_expr ( \
265 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
266 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
267 __builtin_choose_expr ( \
268 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
269 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
270 __builtin_choose_expr ( \
271 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
272 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
273 __builtin_choose_expr ( \
274 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
275 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
276 __builtin_choose_expr ( \
277 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
278 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
279 __builtin_choose_expr ( \
280 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
281 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
282 __builtin_choose_expr ( \
283 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
284 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
285 __builtin_choose_expr ( \
286 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
287 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
288 __builtin_choose_expr ( \
289 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
290 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
291 __builtin_choose_expr ( \
292 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
293 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
294 __builtin_choose_expr ( \
295 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
296 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
297 __builtin_choose_expr ( \
298 __builtin_types_compatible_p (__typeof (o), void*), \
299 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
300 /* The void expression results in a compile-time error \
301 when assigning the result to something. */ \
302 (void)0)))))))))))))))))))))))))))))))
303
304 /* Whenever we generate an error, pass it through this function. Useful for
305 * debugging, where we can break on it. Only call at error site, not when
306 * propagating errors. Might be useful to plug in a stack trace here.
307 */
308
309 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
310 VkDebugReportObjectTypeEXT type, VkResult error,
311 const char *file, int line, const char *format, ...);
312
313 #ifdef DEBUG
314 #define vk_error(error) __vk_errorf(NULL, NULL,\
315 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
316 error, __FILE__, __LINE__, NULL)
317 #define vk_errorf(instance, obj, error, format, ...)\
318 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
319 __FILE__, __LINE__, format, ## __VA_ARGS__)
320 #else
321 #define vk_error(error) error
322 #define vk_errorf(instance, obj, error, format, ...) error
323 #endif
324
325 /**
326 * Warn on ignored extension structs.
327 *
328 * The Vulkan spec requires us to ignore unsupported or unknown structs in
329 * a pNext chain. In debug mode, emitting warnings for ignored structs may
330 * help us discover structs that we should not have ignored.
331 *
332 *
333 * From the Vulkan 1.0.38 spec:
334 *
335 * Any component of the implementation (the loader, any enabled layers,
336 * and drivers) must skip over, without processing (other than reading the
337 * sType and pNext members) any chained structures with sType values not
338 * defined by extensions supported by that component.
339 */
340 #define anv_debug_ignored_stype(sType) \
341 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
342
343 void __anv_perf_warn(struct anv_instance *instance, const void *object,
344 VkDebugReportObjectTypeEXT type, const char *file,
345 int line, const char *format, ...)
346 anv_printflike(6, 7);
347 void anv_loge(const char *format, ...) anv_printflike(1, 2);
348 void anv_loge_v(const char *format, va_list va);
349
350 /**
351 * Print a FINISHME message, including its source location.
352 */
353 #define anv_finishme(format, ...) \
354 do { \
355 static bool reported = false; \
356 if (!reported) { \
357 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
358 ##__VA_ARGS__); \
359 reported = true; \
360 } \
361 } while (0)
362
363 /**
364 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
365 */
366 #define anv_perf_warn(instance, obj, format, ...) \
367 do { \
368 static bool reported = false; \
369 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
370 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
371 format, ##__VA_ARGS__); \
372 reported = true; \
373 } \
374 } while (0)
375
376 /* A non-fatal assert. Useful for debugging. */
377 #ifdef DEBUG
378 #define anv_assert(x) ({ \
379 if (unlikely(!(x))) \
380 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
381 })
382 #else
383 #define anv_assert(x)
384 #endif
385
386 /* A multi-pointer allocator
387 *
388 * When copying data structures from the user (such as a render pass), it's
389 * common to need to allocate data for a bunch of different things. Instead
390 * of doing several allocations and having to handle all of the error checking
391 * that entails, it can be easier to do a single allocation. This struct
392 * helps facilitate that. The intended usage looks like this:
393 *
394 * ANV_MULTIALLOC(ma)
395 * anv_multialloc_add(&ma, &main_ptr, 1);
396 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
397 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
398 *
399 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
400 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
401 */
402 struct anv_multialloc {
403 size_t size;
404 size_t align;
405
406 uint32_t ptr_count;
407 void **ptrs[8];
408 };
409
410 #define ANV_MULTIALLOC_INIT \
411 ((struct anv_multialloc) { 0, })
412
413 #define ANV_MULTIALLOC(_name) \
414 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
415
416 __attribute__((always_inline))
417 static inline void
418 _anv_multialloc_add(struct anv_multialloc *ma,
419 void **ptr, size_t size, size_t align)
420 {
421 size_t offset = align_u64(ma->size, align);
422 ma->size = offset + size;
423 ma->align = MAX2(ma->align, align);
424
425 /* Store the offset in the pointer. */
426 *ptr = (void *)(uintptr_t)offset;
427
428 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
429 ma->ptrs[ma->ptr_count++] = ptr;
430 }
431
432 #define anv_multialloc_add_size(_ma, _ptr, _size) \
433 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
434
435 #define anv_multialloc_add(_ma, _ptr, _count) \
436 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
437
438 __attribute__((always_inline))
439 static inline void *
440 anv_multialloc_alloc(struct anv_multialloc *ma,
441 const VkAllocationCallbacks *alloc,
442 VkSystemAllocationScope scope)
443 {
444 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
445 if (!ptr)
446 return NULL;
447
448 /* Fill out each of the pointers with their final value.
449 *
450 * for (uint32_t i = 0; i < ma->ptr_count; i++)
451 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
452 *
453 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
454 * constant, GCC is incapable of figuring this out and unrolling the loop
455 * so we have to give it a little help.
456 */
457 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
458 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
459 if ((_i) < ma->ptr_count) \
460 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
461 _ANV_MULTIALLOC_UPDATE_POINTER(0);
462 _ANV_MULTIALLOC_UPDATE_POINTER(1);
463 _ANV_MULTIALLOC_UPDATE_POINTER(2);
464 _ANV_MULTIALLOC_UPDATE_POINTER(3);
465 _ANV_MULTIALLOC_UPDATE_POINTER(4);
466 _ANV_MULTIALLOC_UPDATE_POINTER(5);
467 _ANV_MULTIALLOC_UPDATE_POINTER(6);
468 _ANV_MULTIALLOC_UPDATE_POINTER(7);
469 #undef _ANV_MULTIALLOC_UPDATE_POINTER
470
471 return ptr;
472 }
473
474 __attribute__((always_inline))
475 static inline void *
476 anv_multialloc_alloc2(struct anv_multialloc *ma,
477 const VkAllocationCallbacks *parent_alloc,
478 const VkAllocationCallbacks *alloc,
479 VkSystemAllocationScope scope)
480 {
481 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
482 }
483
484 struct anv_bo {
485 uint32_t gem_handle;
486
487 /* Index into the current validation list. This is used by the
488 * validation list building alrogithm to track which buffers are already
489 * in the validation list so that we can ensure uniqueness.
490 */
491 uint32_t index;
492
493 /* Last known offset. This value is provided by the kernel when we
494 * execbuf and is used as the presumed offset for the next bunch of
495 * relocations.
496 */
497 uint64_t offset;
498
499 uint64_t size;
500 void *map;
501
502 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
503 uint32_t flags;
504 };
505
506 static inline void
507 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
508 {
509 bo->gem_handle = gem_handle;
510 bo->index = 0;
511 bo->offset = -1;
512 bo->size = size;
513 bo->map = NULL;
514 bo->flags = 0;
515 }
516
517 /* Represents a lock-free linked list of "free" things. This is used by
518 * both the block pool and the state pools. Unfortunately, in order to
519 * solve the ABA problem, we can't use a single uint32_t head.
520 */
521 union anv_free_list {
522 struct {
523 int32_t offset;
524
525 /* A simple count that is incremented every time the head changes. */
526 uint32_t count;
527 };
528 uint64_t u64;
529 };
530
531 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
532
533 struct anv_block_state {
534 union {
535 struct {
536 uint32_t next;
537 uint32_t end;
538 };
539 uint64_t u64;
540 };
541 };
542
543 struct anv_block_pool {
544 struct anv_device *device;
545
546 uint64_t bo_flags;
547
548 struct anv_bo bo;
549
550 /* The offset from the start of the bo to the "center" of the block
551 * pool. Pointers to allocated blocks are given by
552 * bo.map + center_bo_offset + offsets.
553 */
554 uint32_t center_bo_offset;
555
556 /* Current memory map of the block pool. This pointer may or may not
557 * point to the actual beginning of the block pool memory. If
558 * anv_block_pool_alloc_back has ever been called, then this pointer
559 * will point to the "center" position of the buffer and all offsets
560 * (negative or positive) given out by the block pool alloc functions
561 * will be valid relative to this pointer.
562 *
563 * In particular, map == bo.map + center_offset
564 */
565 void *map;
566 int fd;
567
568 /**
569 * Array of mmaps and gem handles owned by the block pool, reclaimed when
570 * the block pool is destroyed.
571 */
572 struct u_vector mmap_cleanups;
573
574 struct anv_block_state state;
575
576 struct anv_block_state back_state;
577 };
578
579 /* Block pools are backed by a fixed-size 1GB memfd */
580 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
581
582 /* The center of the block pool is also the middle of the memfd. This may
583 * change in the future if we decide differently for some reason.
584 */
585 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
586
587 static inline uint32_t
588 anv_block_pool_size(struct anv_block_pool *pool)
589 {
590 return pool->state.end + pool->back_state.end;
591 }
592
593 struct anv_state {
594 int32_t offset;
595 uint32_t alloc_size;
596 void *map;
597 };
598
599 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
600
601 struct anv_fixed_size_state_pool {
602 union anv_free_list free_list;
603 struct anv_block_state block;
604 };
605
606 #define ANV_MIN_STATE_SIZE_LOG2 6
607 #define ANV_MAX_STATE_SIZE_LOG2 20
608
609 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
610
611 struct anv_state_pool {
612 struct anv_block_pool block_pool;
613
614 /* The size of blocks which will be allocated from the block pool */
615 uint32_t block_size;
616
617 /** Free list for "back" allocations */
618 union anv_free_list back_alloc_free_list;
619
620 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
621 };
622
623 struct anv_state_stream_block;
624
625 struct anv_state_stream {
626 struct anv_state_pool *state_pool;
627
628 /* The size of blocks to allocate from the state pool */
629 uint32_t block_size;
630
631 /* Current block we're allocating from */
632 struct anv_state block;
633
634 /* Offset into the current block at which to allocate the next state */
635 uint32_t next;
636
637 /* List of all blocks allocated from this pool */
638 struct anv_state_stream_block *block_list;
639 };
640
641 /* The block_pool functions exported for testing only. The block pool should
642 * only be used via a state pool (see below).
643 */
644 VkResult anv_block_pool_init(struct anv_block_pool *pool,
645 struct anv_device *device,
646 uint32_t initial_size,
647 uint64_t bo_flags);
648 void anv_block_pool_finish(struct anv_block_pool *pool);
649 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
650 uint32_t block_size);
651 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
652 uint32_t block_size);
653
654 VkResult anv_state_pool_init(struct anv_state_pool *pool,
655 struct anv_device *device,
656 uint32_t block_size,
657 uint64_t bo_flags);
658 void anv_state_pool_finish(struct anv_state_pool *pool);
659 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
660 uint32_t state_size, uint32_t alignment);
661 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
662 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
663 void anv_state_stream_init(struct anv_state_stream *stream,
664 struct anv_state_pool *state_pool,
665 uint32_t block_size);
666 void anv_state_stream_finish(struct anv_state_stream *stream);
667 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
668 uint32_t size, uint32_t alignment);
669
670 /**
671 * Implements a pool of re-usable BOs. The interface is identical to that
672 * of block_pool except that each block is its own BO.
673 */
674 struct anv_bo_pool {
675 struct anv_device *device;
676
677 uint64_t bo_flags;
678
679 void *free_list[16];
680 };
681
682 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
683 uint64_t bo_flags);
684 void anv_bo_pool_finish(struct anv_bo_pool *pool);
685 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
686 uint32_t size);
687 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
688
689 struct anv_scratch_bo {
690 bool exists;
691 struct anv_bo bo;
692 };
693
694 struct anv_scratch_pool {
695 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
696 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
697 };
698
699 void anv_scratch_pool_init(struct anv_device *device,
700 struct anv_scratch_pool *pool);
701 void anv_scratch_pool_finish(struct anv_device *device,
702 struct anv_scratch_pool *pool);
703 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
704 struct anv_scratch_pool *pool,
705 gl_shader_stage stage,
706 unsigned per_thread_scratch);
707
708 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
709 struct anv_bo_cache {
710 struct hash_table *bo_map;
711 pthread_mutex_t mutex;
712 };
713
714 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
715 void anv_bo_cache_finish(struct anv_bo_cache *cache);
716 VkResult anv_bo_cache_alloc(struct anv_device *device,
717 struct anv_bo_cache *cache,
718 uint64_t size, struct anv_bo **bo);
719 VkResult anv_bo_cache_import(struct anv_device *device,
720 struct anv_bo_cache *cache,
721 int fd, struct anv_bo **bo);
722 VkResult anv_bo_cache_export(struct anv_device *device,
723 struct anv_bo_cache *cache,
724 struct anv_bo *bo_in, int *fd_out);
725 void anv_bo_cache_release(struct anv_device *device,
726 struct anv_bo_cache *cache,
727 struct anv_bo *bo);
728
729 struct anv_memory_type {
730 /* Standard bits passed on to the client */
731 VkMemoryPropertyFlags propertyFlags;
732 uint32_t heapIndex;
733
734 /* Driver-internal book-keeping */
735 VkBufferUsageFlags valid_buffer_usage;
736 };
737
738 struct anv_memory_heap {
739 /* Standard bits passed on to the client */
740 VkDeviceSize size;
741 VkMemoryHeapFlags flags;
742
743 /* Driver-internal book-keeping */
744 bool supports_48bit_addresses;
745 };
746
747 struct anv_physical_device {
748 VK_LOADER_DATA _loader_data;
749
750 struct anv_instance * instance;
751 uint32_t chipset_id;
752 char path[20];
753 const char * name;
754 struct gen_device_info info;
755 /** Amount of "GPU memory" we want to advertise
756 *
757 * Clearly, this value is bogus since Intel is a UMA architecture. On
758 * gen7 platforms, we are limited by GTT size unless we want to implement
759 * fine-grained tracking and GTT splitting. On Broadwell and above we are
760 * practically unlimited. However, we will never report more than 3/4 of
761 * the total system ram to try and avoid running out of RAM.
762 */
763 bool supports_48bit_addresses;
764 struct brw_compiler * compiler;
765 struct isl_device isl_dev;
766 int cmd_parser_version;
767 bool has_exec_async;
768 bool has_exec_capture;
769 bool has_exec_fence;
770 bool has_syncobj;
771 bool has_syncobj_wait;
772
773 struct anv_device_extension_table supported_extensions;
774
775 uint32_t eu_total;
776 uint32_t subslice_total;
777
778 struct {
779 uint32_t type_count;
780 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
781 uint32_t heap_count;
782 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
783 } memory;
784
785 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
786 uint8_t driver_uuid[VK_UUID_SIZE];
787 uint8_t device_uuid[VK_UUID_SIZE];
788
789 struct wsi_device wsi_device;
790 int local_fd;
791 };
792
793 struct anv_instance {
794 VK_LOADER_DATA _loader_data;
795
796 VkAllocationCallbacks alloc;
797
798 uint32_t apiVersion;
799 struct anv_instance_extension_table enabled_extensions;
800 struct anv_dispatch_table dispatch;
801
802 int physicalDeviceCount;
803 struct anv_physical_device physicalDevice;
804
805 struct vk_debug_report_instance debug_report_callbacks;
806 };
807
808 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
809 void anv_finish_wsi(struct anv_physical_device *physical_device);
810
811 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
812 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
813 const char *name);
814
815 struct anv_queue {
816 VK_LOADER_DATA _loader_data;
817
818 struct anv_device * device;
819
820 struct anv_state_pool * pool;
821 };
822
823 struct anv_pipeline_cache {
824 struct anv_device * device;
825 pthread_mutex_t mutex;
826
827 struct hash_table * cache;
828 };
829
830 struct anv_pipeline_bind_map;
831
832 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
833 struct anv_device *device,
834 bool cache_enabled);
835 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
836
837 struct anv_shader_bin *
838 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
839 const void *key, uint32_t key_size);
840 struct anv_shader_bin *
841 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
842 const void *key_data, uint32_t key_size,
843 const void *kernel_data, uint32_t kernel_size,
844 const struct brw_stage_prog_data *prog_data,
845 uint32_t prog_data_size,
846 const struct anv_pipeline_bind_map *bind_map);
847
848 struct anv_device {
849 VK_LOADER_DATA _loader_data;
850
851 VkAllocationCallbacks alloc;
852
853 struct anv_instance * instance;
854 uint32_t chipset_id;
855 struct gen_device_info info;
856 struct isl_device isl_dev;
857 int context_id;
858 int fd;
859 bool can_chain_batches;
860 bool robust_buffer_access;
861 struct anv_device_extension_table enabled_extensions;
862 struct anv_dispatch_table dispatch;
863
864 struct anv_bo_pool batch_bo_pool;
865
866 struct anv_bo_cache bo_cache;
867
868 struct anv_state_pool dynamic_state_pool;
869 struct anv_state_pool instruction_state_pool;
870 struct anv_state_pool surface_state_pool;
871
872 struct anv_bo workaround_bo;
873 struct anv_bo trivial_batch_bo;
874
875 struct anv_pipeline_cache blorp_shader_cache;
876 struct blorp_context blorp;
877
878 struct anv_state border_colors;
879
880 struct anv_queue queue;
881
882 struct anv_scratch_pool scratch_pool;
883
884 uint32_t default_mocs;
885
886 pthread_mutex_t mutex;
887 pthread_cond_t queue_submit;
888 bool lost;
889 };
890
891 static void inline
892 anv_state_flush(struct anv_device *device, struct anv_state state)
893 {
894 if (device->info.has_llc)
895 return;
896
897 gen_flush_range(state.map, state.alloc_size);
898 }
899
900 void anv_device_init_blorp(struct anv_device *device);
901 void anv_device_finish_blorp(struct anv_device *device);
902
903 VkResult anv_device_execbuf(struct anv_device *device,
904 struct drm_i915_gem_execbuffer2 *execbuf,
905 struct anv_bo **execbuf_bos);
906 VkResult anv_device_query_status(struct anv_device *device);
907 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
908 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
909 int64_t timeout);
910
911 void* anv_gem_mmap(struct anv_device *device,
912 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
913 void anv_gem_munmap(void *p, uint64_t size);
914 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
915 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
916 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
917 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
918 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
919 int anv_gem_execbuffer(struct anv_device *device,
920 struct drm_i915_gem_execbuffer2 *execbuf);
921 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
922 uint32_t stride, uint32_t tiling);
923 int anv_gem_create_context(struct anv_device *device);
924 int anv_gem_destroy_context(struct anv_device *device, int context);
925 int anv_gem_get_context_param(int fd, int context, uint32_t param,
926 uint64_t *value);
927 int anv_gem_get_param(int fd, uint32_t param);
928 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
929 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
930 int anv_gem_get_aperture(int fd, uint64_t *size);
931 bool anv_gem_supports_48b_addresses(int fd);
932 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
933 uint32_t *active, uint32_t *pending);
934 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
935 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
936 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
937 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
938 uint32_t read_domains, uint32_t write_domain);
939 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
940 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
941 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
942 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
943 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
944 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
945 uint32_t handle);
946 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
947 uint32_t handle, int fd);
948 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
949 bool anv_gem_supports_syncobj_wait(int fd);
950 int anv_gem_syncobj_wait(struct anv_device *device,
951 uint32_t *handles, uint32_t num_handles,
952 int64_t abs_timeout_ns, bool wait_all);
953
954 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
955
956 struct anv_reloc_list {
957 uint32_t num_relocs;
958 uint32_t array_length;
959 struct drm_i915_gem_relocation_entry * relocs;
960 struct anv_bo ** reloc_bos;
961 };
962
963 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
964 const VkAllocationCallbacks *alloc);
965 void anv_reloc_list_finish(struct anv_reloc_list *list,
966 const VkAllocationCallbacks *alloc);
967
968 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
969 const VkAllocationCallbacks *alloc,
970 uint32_t offset, struct anv_bo *target_bo,
971 uint32_t delta);
972
973 struct anv_batch_bo {
974 /* Link in the anv_cmd_buffer.owned_batch_bos list */
975 struct list_head link;
976
977 struct anv_bo bo;
978
979 /* Bytes actually consumed in this batch BO */
980 uint32_t length;
981
982 struct anv_reloc_list relocs;
983 };
984
985 struct anv_batch {
986 const VkAllocationCallbacks * alloc;
987
988 void * start;
989 void * end;
990 void * next;
991
992 struct anv_reloc_list * relocs;
993
994 /* This callback is called (with the associated user data) in the event
995 * that the batch runs out of space.
996 */
997 VkResult (*extend_cb)(struct anv_batch *, void *);
998 void * user_data;
999
1000 /**
1001 * Current error status of the command buffer. Used to track inconsistent
1002 * or incomplete command buffer states that are the consequence of run-time
1003 * errors such as out of memory scenarios. We want to track this in the
1004 * batch because the command buffer object is not visible to some parts
1005 * of the driver.
1006 */
1007 VkResult status;
1008 };
1009
1010 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1011 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1012 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1013 void *location, struct anv_bo *bo, uint32_t offset);
1014 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1015 struct anv_batch *batch);
1016
1017 static inline VkResult
1018 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1019 {
1020 assert(error != VK_SUCCESS);
1021 if (batch->status == VK_SUCCESS)
1022 batch->status = error;
1023 return batch->status;
1024 }
1025
1026 static inline bool
1027 anv_batch_has_error(struct anv_batch *batch)
1028 {
1029 return batch->status != VK_SUCCESS;
1030 }
1031
1032 struct anv_address {
1033 struct anv_bo *bo;
1034 uint32_t offset;
1035 };
1036
1037 static inline uint64_t
1038 _anv_combine_address(struct anv_batch *batch, void *location,
1039 const struct anv_address address, uint32_t delta)
1040 {
1041 if (address.bo == NULL) {
1042 return address.offset + delta;
1043 } else {
1044 assert(batch->start <= location && location < batch->end);
1045
1046 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1047 }
1048 }
1049
1050 #define __gen_address_type struct anv_address
1051 #define __gen_user_data struct anv_batch
1052 #define __gen_combine_address _anv_combine_address
1053
1054 /* Wrapper macros needed to work around preprocessor argument issues. In
1055 * particular, arguments don't get pre-evaluated if they are concatenated.
1056 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1057 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1058 * We can work around this easily enough with these helpers.
1059 */
1060 #define __anv_cmd_length(cmd) cmd ## _length
1061 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1062 #define __anv_cmd_header(cmd) cmd ## _header
1063 #define __anv_cmd_pack(cmd) cmd ## _pack
1064 #define __anv_reg_num(reg) reg ## _num
1065
1066 #define anv_pack_struct(dst, struc, ...) do { \
1067 struct struc __template = { \
1068 __VA_ARGS__ \
1069 }; \
1070 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1071 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1072 } while (0)
1073
1074 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1075 void *__dst = anv_batch_emit_dwords(batch, n); \
1076 if (__dst) { \
1077 struct cmd __template = { \
1078 __anv_cmd_header(cmd), \
1079 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1080 __VA_ARGS__ \
1081 }; \
1082 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1083 } \
1084 __dst; \
1085 })
1086
1087 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1088 do { \
1089 uint32_t *dw; \
1090 \
1091 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1092 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1093 if (!dw) \
1094 break; \
1095 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1096 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1097 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1098 } while (0)
1099
1100 #define anv_batch_emit(batch, cmd, name) \
1101 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1102 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1103 __builtin_expect(_dst != NULL, 1); \
1104 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1105 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1106 _dst = NULL; \
1107 }))
1108
1109 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
1110 .GraphicsDataTypeGFDT = 0, \
1111 .LLCCacheabilityControlLLCCC = 0, \
1112 .L3CacheabilityControlL3CC = 1, \
1113 }
1114
1115 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
1116 .LLCeLLCCacheabilityControlLLCCC = 0, \
1117 .L3CacheabilityControlL3CC = 1, \
1118 }
1119
1120 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
1121 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
1122 .TargetCache = L3DefertoPATforLLCeLLCselection, \
1123 .AgeforQUADLRU = 0 \
1124 }
1125
1126 /* Skylake: MOCS is now an index into an array of 62 different caching
1127 * configurations programmed by the kernel.
1128 */
1129
1130 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
1131 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1132 .IndextoMOCSTables = 2 \
1133 }
1134
1135 #define GEN9_MOCS_PTE { \
1136 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1137 .IndextoMOCSTables = 1 \
1138 }
1139
1140 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1141 #define GEN10_MOCS (struct GEN10_MEMORY_OBJECT_CONTROL_STATE) { \
1142 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1143 .IndextoMOCSTables = 2 \
1144 }
1145
1146 #define GEN10_MOCS_PTE { \
1147 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1148 .IndextoMOCSTables = 1 \
1149 }
1150
1151 struct anv_device_memory {
1152 struct anv_bo * bo;
1153 struct anv_memory_type * type;
1154 VkDeviceSize map_size;
1155 void * map;
1156 };
1157
1158 /**
1159 * Header for Vertex URB Entry (VUE)
1160 */
1161 struct anv_vue_header {
1162 uint32_t Reserved;
1163 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1164 uint32_t ViewportIndex;
1165 float PointWidth;
1166 };
1167
1168 struct anv_descriptor_set_binding_layout {
1169 #ifndef NDEBUG
1170 /* The type of the descriptors in this binding */
1171 VkDescriptorType type;
1172 #endif
1173
1174 /* Number of array elements in this binding */
1175 uint16_t array_size;
1176
1177 /* Index into the flattend descriptor set */
1178 uint16_t descriptor_index;
1179
1180 /* Index into the dynamic state array for a dynamic buffer */
1181 int16_t dynamic_offset_index;
1182
1183 /* Index into the descriptor set buffer views */
1184 int16_t buffer_index;
1185
1186 struct {
1187 /* Index into the binding table for the associated surface */
1188 int16_t surface_index;
1189
1190 /* Index into the sampler table for the associated sampler */
1191 int16_t sampler_index;
1192
1193 /* Index into the image table for the associated image */
1194 int16_t image_index;
1195 } stage[MESA_SHADER_STAGES];
1196
1197 /* Immutable samplers (or NULL if no immutable samplers) */
1198 struct anv_sampler **immutable_samplers;
1199 };
1200
1201 struct anv_descriptor_set_layout {
1202 /* Number of bindings in this descriptor set */
1203 uint16_t binding_count;
1204
1205 /* Total size of the descriptor set with room for all array entries */
1206 uint16_t size;
1207
1208 /* Shader stages affected by this descriptor set */
1209 uint16_t shader_stages;
1210
1211 /* Number of buffers in this descriptor set */
1212 uint16_t buffer_count;
1213
1214 /* Number of dynamic offsets used by this descriptor set */
1215 uint16_t dynamic_offset_count;
1216
1217 /* Bindings in this descriptor set */
1218 struct anv_descriptor_set_binding_layout binding[0];
1219 };
1220
1221 struct anv_descriptor {
1222 VkDescriptorType type;
1223
1224 union {
1225 struct {
1226 VkImageLayout layout;
1227 struct anv_image_view *image_view;
1228 struct anv_sampler *sampler;
1229 };
1230
1231 struct {
1232 struct anv_buffer *buffer;
1233 uint64_t offset;
1234 uint64_t range;
1235 };
1236
1237 struct anv_buffer_view *buffer_view;
1238 };
1239 };
1240
1241 struct anv_descriptor_set {
1242 const struct anv_descriptor_set_layout *layout;
1243 uint32_t size;
1244 uint32_t buffer_count;
1245 struct anv_buffer_view *buffer_views;
1246 struct anv_descriptor descriptors[0];
1247 };
1248
1249 struct anv_buffer_view {
1250 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1251 struct anv_bo *bo;
1252 uint32_t offset; /**< Offset into bo. */
1253 uint64_t range; /**< VkBufferViewCreateInfo::range */
1254
1255 struct anv_state surface_state;
1256 struct anv_state storage_surface_state;
1257 struct anv_state writeonly_storage_surface_state;
1258
1259 struct brw_image_param storage_image_param;
1260 };
1261
1262 struct anv_push_descriptor_set {
1263 struct anv_descriptor_set set;
1264
1265 /* Put this field right behind anv_descriptor_set so it fills up the
1266 * descriptors[0] field. */
1267 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1268 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1269 };
1270
1271 struct anv_descriptor_pool {
1272 uint32_t size;
1273 uint32_t next;
1274 uint32_t free_list;
1275
1276 struct anv_state_stream surface_state_stream;
1277 void *surface_state_free_list;
1278
1279 char data[0];
1280 };
1281
1282 enum anv_descriptor_template_entry_type {
1283 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1284 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1285 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1286 };
1287
1288 struct anv_descriptor_template_entry {
1289 /* The type of descriptor in this entry */
1290 VkDescriptorType type;
1291
1292 /* Binding in the descriptor set */
1293 uint32_t binding;
1294
1295 /* Offset at which to write into the descriptor set binding */
1296 uint32_t array_element;
1297
1298 /* Number of elements to write into the descriptor set binding */
1299 uint32_t array_count;
1300
1301 /* Offset into the user provided data */
1302 size_t offset;
1303
1304 /* Stride between elements into the user provided data */
1305 size_t stride;
1306 };
1307
1308 struct anv_descriptor_update_template {
1309 VkPipelineBindPoint bind_point;
1310
1311 /* The descriptor set this template corresponds to. This value is only
1312 * valid if the template was created with the templateType
1313 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR.
1314 */
1315 uint8_t set;
1316
1317 /* Number of entries in this template */
1318 uint32_t entry_count;
1319
1320 /* Entries of the template */
1321 struct anv_descriptor_template_entry entries[0];
1322 };
1323
1324 size_t
1325 anv_descriptor_set_binding_layout_get_hw_size(const struct anv_descriptor_set_binding_layout *binding);
1326
1327 size_t
1328 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1329
1330 void
1331 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
1332 const struct gen_device_info * const devinfo,
1333 const VkDescriptorImageInfo * const info,
1334 VkDescriptorType type,
1335 uint32_t binding,
1336 uint32_t element);
1337
1338 void
1339 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
1340 VkDescriptorType type,
1341 struct anv_buffer_view *buffer_view,
1342 uint32_t binding,
1343 uint32_t element);
1344
1345 void
1346 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
1347 struct anv_device *device,
1348 struct anv_state_stream *alloc_stream,
1349 VkDescriptorType type,
1350 struct anv_buffer *buffer,
1351 uint32_t binding,
1352 uint32_t element,
1353 VkDeviceSize offset,
1354 VkDeviceSize range);
1355
1356 void
1357 anv_descriptor_set_write_template(struct anv_descriptor_set *set,
1358 struct anv_device *device,
1359 struct anv_state_stream *alloc_stream,
1360 const struct anv_descriptor_update_template *template,
1361 const void *data);
1362
1363 VkResult
1364 anv_descriptor_set_create(struct anv_device *device,
1365 struct anv_descriptor_pool *pool,
1366 const struct anv_descriptor_set_layout *layout,
1367 struct anv_descriptor_set **out_set);
1368
1369 void
1370 anv_descriptor_set_destroy(struct anv_device *device,
1371 struct anv_descriptor_pool *pool,
1372 struct anv_descriptor_set *set);
1373
1374 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1375
1376 struct anv_pipeline_binding {
1377 /* The descriptor set this surface corresponds to. The special value of
1378 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1379 * to a color attachment and not a regular descriptor.
1380 */
1381 uint8_t set;
1382
1383 /* Binding in the descriptor set */
1384 uint32_t binding;
1385
1386 /* Index in the binding */
1387 uint32_t index;
1388
1389 /* Plane in the binding index */
1390 uint8_t plane;
1391
1392 /* Input attachment index (relative to the subpass) */
1393 uint8_t input_attachment_index;
1394
1395 /* For a storage image, whether it is write-only */
1396 bool write_only;
1397 };
1398
1399 struct anv_pipeline_layout {
1400 struct {
1401 struct anv_descriptor_set_layout *layout;
1402 uint32_t dynamic_offset_start;
1403 } set[MAX_SETS];
1404
1405 uint32_t num_sets;
1406
1407 struct {
1408 bool has_dynamic_offsets;
1409 } stage[MESA_SHADER_STAGES];
1410
1411 unsigned char sha1[20];
1412 };
1413
1414 struct anv_buffer {
1415 struct anv_device * device;
1416 VkDeviceSize size;
1417
1418 VkBufferUsageFlags usage;
1419
1420 /* Set when bound */
1421 struct anv_bo * bo;
1422 VkDeviceSize offset;
1423 };
1424
1425 static inline uint64_t
1426 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1427 {
1428 assert(offset <= buffer->size);
1429 if (range == VK_WHOLE_SIZE) {
1430 return buffer->size - offset;
1431 } else {
1432 assert(range <= buffer->size);
1433 return range;
1434 }
1435 }
1436
1437 enum anv_cmd_dirty_bits {
1438 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1439 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1440 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1441 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1442 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1443 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1444 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1445 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1446 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1447 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1448 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1449 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1450 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1451 };
1452 typedef uint32_t anv_cmd_dirty_mask_t;
1453
1454 enum anv_pipe_bits {
1455 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1456 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1457 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1458 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1459 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1460 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1461 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1462 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1463 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1464 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1465 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1466
1467 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1468 * a flush has happened but not a CS stall. The next time we do any sort
1469 * of invalidation we need to insert a CS stall at that time. Otherwise,
1470 * we would have to CS stall on every flush which could be bad.
1471 */
1472 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1473 };
1474
1475 #define ANV_PIPE_FLUSH_BITS ( \
1476 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1477 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1478 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1479
1480 #define ANV_PIPE_STALL_BITS ( \
1481 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1482 ANV_PIPE_DEPTH_STALL_BIT | \
1483 ANV_PIPE_CS_STALL_BIT)
1484
1485 #define ANV_PIPE_INVALIDATE_BITS ( \
1486 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1487 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1488 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1489 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1490 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1491 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1492
1493 static inline enum anv_pipe_bits
1494 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1495 {
1496 enum anv_pipe_bits pipe_bits = 0;
1497
1498 unsigned b;
1499 for_each_bit(b, flags) {
1500 switch ((VkAccessFlagBits)(1 << b)) {
1501 case VK_ACCESS_SHADER_WRITE_BIT:
1502 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1503 break;
1504 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1505 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1506 break;
1507 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1508 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1509 break;
1510 case VK_ACCESS_TRANSFER_WRITE_BIT:
1511 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1512 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1513 break;
1514 default:
1515 break; /* Nothing to do */
1516 }
1517 }
1518
1519 return pipe_bits;
1520 }
1521
1522 static inline enum anv_pipe_bits
1523 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1524 {
1525 enum anv_pipe_bits pipe_bits = 0;
1526
1527 unsigned b;
1528 for_each_bit(b, flags) {
1529 switch ((VkAccessFlagBits)(1 << b)) {
1530 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1531 case VK_ACCESS_INDEX_READ_BIT:
1532 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1533 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1534 break;
1535 case VK_ACCESS_UNIFORM_READ_BIT:
1536 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1537 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1538 break;
1539 case VK_ACCESS_SHADER_READ_BIT:
1540 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1541 case VK_ACCESS_TRANSFER_READ_BIT:
1542 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1543 break;
1544 default:
1545 break; /* Nothing to do */
1546 }
1547 }
1548
1549 return pipe_bits;
1550 }
1551
1552 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
1553 VK_IMAGE_ASPECT_COLOR_BIT | \
1554 VK_IMAGE_ASPECT_PLANE_0_BIT_KHR | \
1555 VK_IMAGE_ASPECT_PLANE_1_BIT_KHR | \
1556 VK_IMAGE_ASPECT_PLANE_2_BIT_KHR)
1557 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
1558 VK_IMAGE_ASPECT_PLANE_0_BIT_KHR | \
1559 VK_IMAGE_ASPECT_PLANE_1_BIT_KHR | \
1560 VK_IMAGE_ASPECT_PLANE_2_BIT_KHR)
1561
1562 struct anv_vertex_binding {
1563 struct anv_buffer * buffer;
1564 VkDeviceSize offset;
1565 };
1566
1567 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
1568 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
1569
1570 struct anv_push_constants {
1571 /* Current allocated size of this push constants data structure.
1572 * Because a decent chunk of it may not be used (images on SKL, for
1573 * instance), we won't actually allocate the entire structure up-front.
1574 */
1575 uint32_t size;
1576
1577 /* Push constant data provided by the client through vkPushConstants */
1578 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1579
1580 /* Image data for image_load_store on pre-SKL */
1581 struct brw_image_param images[MAX_IMAGES];
1582 };
1583
1584 struct anv_dynamic_state {
1585 struct {
1586 uint32_t count;
1587 VkViewport viewports[MAX_VIEWPORTS];
1588 } viewport;
1589
1590 struct {
1591 uint32_t count;
1592 VkRect2D scissors[MAX_SCISSORS];
1593 } scissor;
1594
1595 float line_width;
1596
1597 struct {
1598 float bias;
1599 float clamp;
1600 float slope;
1601 } depth_bias;
1602
1603 float blend_constants[4];
1604
1605 struct {
1606 float min;
1607 float max;
1608 } depth_bounds;
1609
1610 struct {
1611 uint32_t front;
1612 uint32_t back;
1613 } stencil_compare_mask;
1614
1615 struct {
1616 uint32_t front;
1617 uint32_t back;
1618 } stencil_write_mask;
1619
1620 struct {
1621 uint32_t front;
1622 uint32_t back;
1623 } stencil_reference;
1624 };
1625
1626 extern const struct anv_dynamic_state default_dynamic_state;
1627
1628 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1629 const struct anv_dynamic_state *src,
1630 uint32_t copy_mask);
1631
1632 struct anv_surface_state {
1633 struct anv_state state;
1634 /** Address of the surface referred to by this state
1635 *
1636 * This address is relative to the start of the BO.
1637 */
1638 uint64_t address;
1639 /* Address of the aux surface, if any
1640 *
1641 * This field is 0 if and only if no aux surface exists.
1642 *
1643 * This address is relative to the start of the BO. On gen7, the bottom 12
1644 * bits of this address include extra aux information.
1645 */
1646 uint64_t aux_address;
1647 };
1648
1649 /**
1650 * Attachment state when recording a renderpass instance.
1651 *
1652 * The clear value is valid only if there exists a pending clear.
1653 */
1654 struct anv_attachment_state {
1655 enum isl_aux_usage aux_usage;
1656 enum isl_aux_usage input_aux_usage;
1657 struct anv_surface_state color;
1658 struct anv_surface_state input;
1659
1660 VkImageLayout current_layout;
1661 VkImageAspectFlags pending_clear_aspects;
1662 bool fast_clear;
1663 VkClearValue clear_value;
1664 bool clear_color_is_zero_one;
1665 bool clear_color_is_zero;
1666 };
1667
1668 /** State tracking for particular pipeline bind point
1669 *
1670 * This struct is the base struct for anv_cmd_graphics_state and
1671 * anv_cmd_compute_state. These are used to track state which is bound to a
1672 * particular type of pipeline. Generic state that applies per-stage such as
1673 * binding table offsets and push constants is tracked generically with a
1674 * per-stage array in anv_cmd_state.
1675 */
1676 struct anv_cmd_pipeline_state {
1677 struct anv_pipeline *pipeline;
1678
1679 struct anv_descriptor_set *descriptors[MAX_SETS];
1680 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
1681
1682 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
1683 };
1684
1685 /** State tracking for graphics pipeline
1686 *
1687 * This has anv_cmd_pipeline_state as a base struct to track things which get
1688 * bound to a graphics pipeline. Along with general pipeline bind point state
1689 * which is in the anv_cmd_pipeline_state base struct, it also contains other
1690 * state which is graphics-specific.
1691 */
1692 struct anv_cmd_graphics_state {
1693 struct anv_cmd_pipeline_state base;
1694 };
1695
1696 /** State tracking for compute pipeline
1697 *
1698 * This has anv_cmd_pipeline_state as a base struct to track things which get
1699 * bound to a compute pipeline. Along with general pipeline bind point state
1700 * which is in the anv_cmd_pipeline_state base struct, it also contains other
1701 * state which is compute-specific.
1702 */
1703 struct anv_cmd_compute_state {
1704 struct anv_cmd_pipeline_state base;
1705 };
1706
1707 /** State required while building cmd buffer */
1708 struct anv_cmd_state {
1709 /* PIPELINE_SELECT.PipelineSelection */
1710 uint32_t current_pipeline;
1711 const struct gen_l3_config * current_l3_config;
1712
1713 struct anv_cmd_graphics_state gfx;
1714 struct anv_cmd_compute_state compute;
1715
1716 uint32_t vb_dirty;
1717 anv_cmd_dirty_mask_t dirty;
1718 anv_cmd_dirty_mask_t compute_dirty;
1719 enum anv_pipe_bits pending_pipe_bits;
1720 uint32_t num_workgroups_offset;
1721 struct anv_bo *num_workgroups_bo;
1722 VkShaderStageFlags descriptors_dirty;
1723 VkShaderStageFlags push_constants_dirty;
1724
1725 struct anv_framebuffer * framebuffer;
1726 struct anv_render_pass * pass;
1727 struct anv_subpass * subpass;
1728 VkRect2D render_area;
1729 uint32_t restart_index;
1730 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1731 VkShaderStageFlags push_constant_stages;
1732 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1733 struct anv_state binding_tables[MESA_SHADER_STAGES];
1734 struct anv_state samplers[MESA_SHADER_STAGES];
1735 struct anv_dynamic_state dynamic;
1736
1737 /**
1738 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
1739 * of any command buffer it is disabled by disabling it in EndCommandBuffer
1740 * and before invoking the secondary in ExecuteCommands.
1741 */
1742 bool pma_fix_enabled;
1743
1744 /**
1745 * Whether or not we know for certain that HiZ is enabled for the current
1746 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
1747 * enabled or not, this will be false.
1748 */
1749 bool hiz_enabled;
1750
1751 /**
1752 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1753 * valid only when recording a render pass instance.
1754 */
1755 struct anv_attachment_state * attachments;
1756
1757 /**
1758 * Surface states for color render targets. These are stored in a single
1759 * flat array. For depth-stencil attachments, the surface state is simply
1760 * left blank.
1761 */
1762 struct anv_state render_pass_states;
1763
1764 /**
1765 * A null surface state of the right size to match the framebuffer. This
1766 * is one of the states in render_pass_states.
1767 */
1768 struct anv_state null_surface_state;
1769
1770 struct {
1771 struct anv_buffer * index_buffer;
1772 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1773 uint32_t index_offset;
1774 } gen7;
1775 };
1776
1777 struct anv_cmd_pool {
1778 VkAllocationCallbacks alloc;
1779 struct list_head cmd_buffers;
1780 };
1781
1782 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1783
1784 enum anv_cmd_buffer_exec_mode {
1785 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1786 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1787 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1788 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1789 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1790 };
1791
1792 struct anv_cmd_buffer {
1793 VK_LOADER_DATA _loader_data;
1794
1795 struct anv_device * device;
1796
1797 struct anv_cmd_pool * pool;
1798 struct list_head pool_link;
1799
1800 struct anv_batch batch;
1801
1802 /* Fields required for the actual chain of anv_batch_bo's.
1803 *
1804 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1805 */
1806 struct list_head batch_bos;
1807 enum anv_cmd_buffer_exec_mode exec_mode;
1808
1809 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1810 * referenced by this command buffer
1811 *
1812 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1813 */
1814 struct u_vector seen_bbos;
1815
1816 /* A vector of int32_t's for every block of binding tables.
1817 *
1818 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1819 */
1820 struct u_vector bt_block_states;
1821 uint32_t bt_next;
1822
1823 struct anv_reloc_list surface_relocs;
1824 /** Last seen surface state block pool center bo offset */
1825 uint32_t last_ss_pool_center;
1826
1827 /* Serial for tracking buffer completion */
1828 uint32_t serial;
1829
1830 /* Stream objects for storing temporary data */
1831 struct anv_state_stream surface_state_stream;
1832 struct anv_state_stream dynamic_state_stream;
1833
1834 VkCommandBufferUsageFlags usage_flags;
1835 VkCommandBufferLevel level;
1836
1837 struct anv_cmd_state state;
1838 };
1839
1840 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1841 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1842 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1843 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1844 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1845 struct anv_cmd_buffer *secondary);
1846 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1847 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
1848 struct anv_cmd_buffer *cmd_buffer,
1849 const VkSemaphore *in_semaphores,
1850 uint32_t num_in_semaphores,
1851 const VkSemaphore *out_semaphores,
1852 uint32_t num_out_semaphores,
1853 VkFence fence);
1854
1855 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
1856
1857 VkResult
1858 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
1859 gl_shader_stage stage, uint32_t size);
1860 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
1861 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
1862 (offsetof(struct anv_push_constants, field) + \
1863 sizeof(cmd_buffer->state.push_constants[0]->field)))
1864
1865 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1866 const void *data, uint32_t size, uint32_t alignment);
1867 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1868 uint32_t *a, uint32_t *b,
1869 uint32_t dwords, uint32_t alignment);
1870
1871 struct anv_address
1872 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1873 struct anv_state
1874 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1875 uint32_t entries, uint32_t *state_offset);
1876 struct anv_state
1877 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1878 struct anv_state
1879 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1880 uint32_t size, uint32_t alignment);
1881
1882 VkResult
1883 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1884
1885 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1886 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
1887 bool depth_clamp_enable);
1888 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1889
1890 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1891 struct anv_render_pass *pass,
1892 struct anv_framebuffer *framebuffer,
1893 const VkClearValue *clear_values);
1894
1895 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1896
1897 struct anv_state
1898 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1899 gl_shader_stage stage);
1900 struct anv_state
1901 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1902
1903 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1904 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1905
1906 const struct anv_image_view *
1907 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1908
1909 VkResult
1910 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
1911 uint32_t num_entries,
1912 uint32_t *state_offset,
1913 struct anv_state *bt_state);
1914
1915 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1916
1917 enum anv_fence_type {
1918 ANV_FENCE_TYPE_NONE = 0,
1919 ANV_FENCE_TYPE_BO,
1920 ANV_FENCE_TYPE_SYNCOBJ,
1921 };
1922
1923 enum anv_bo_fence_state {
1924 /** Indicates that this is a new (or newly reset fence) */
1925 ANV_BO_FENCE_STATE_RESET,
1926
1927 /** Indicates that this fence has been submitted to the GPU but is still
1928 * (as far as we know) in use by the GPU.
1929 */
1930 ANV_BO_FENCE_STATE_SUBMITTED,
1931
1932 ANV_BO_FENCE_STATE_SIGNALED,
1933 };
1934
1935 struct anv_fence_impl {
1936 enum anv_fence_type type;
1937
1938 union {
1939 /** Fence implementation for BO fences
1940 *
1941 * These fences use a BO and a set of CPU-tracked state flags. The BO
1942 * is added to the object list of the last execbuf call in a QueueSubmit
1943 * and is marked EXEC_WRITE. The state flags track when the BO has been
1944 * submitted to the kernel. We need to do this because Vulkan lets you
1945 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
1946 * will say it's idle in this case.
1947 */
1948 struct {
1949 struct anv_bo bo;
1950 enum anv_bo_fence_state state;
1951 } bo;
1952
1953 /** DRM syncobj handle for syncobj-based fences */
1954 uint32_t syncobj;
1955 };
1956 };
1957
1958 struct anv_fence {
1959 /* Permanent fence state. Every fence has some form of permanent state
1960 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
1961 * cross-process fences) or it could just be a dummy for use internally.
1962 */
1963 struct anv_fence_impl permanent;
1964
1965 /* Temporary fence state. A fence *may* have temporary state. That state
1966 * is added to the fence by an import operation and is reset back to
1967 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
1968 * state cannot be signaled because the fence must already be signaled
1969 * before the temporary state can be exported from the fence in the other
1970 * process and imported here.
1971 */
1972 struct anv_fence_impl temporary;
1973 };
1974
1975 struct anv_event {
1976 uint64_t semaphore;
1977 struct anv_state state;
1978 };
1979
1980 enum anv_semaphore_type {
1981 ANV_SEMAPHORE_TYPE_NONE = 0,
1982 ANV_SEMAPHORE_TYPE_DUMMY,
1983 ANV_SEMAPHORE_TYPE_BO,
1984 ANV_SEMAPHORE_TYPE_SYNC_FILE,
1985 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
1986 };
1987
1988 struct anv_semaphore_impl {
1989 enum anv_semaphore_type type;
1990
1991 union {
1992 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
1993 * This BO will be added to the object list on any execbuf2 calls for
1994 * which this semaphore is used as a wait or signal fence. When used as
1995 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
1996 */
1997 struct anv_bo *bo;
1998
1999 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2000 * If the semaphore is in the unsignaled state due to either just being
2001 * created or because it has been used for a wait, fd will be -1.
2002 */
2003 int fd;
2004
2005 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2006 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2007 * import so we don't need to bother with a userspace cache.
2008 */
2009 uint32_t syncobj;
2010 };
2011 };
2012
2013 struct anv_semaphore {
2014 /* Permanent semaphore state. Every semaphore has some form of permanent
2015 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2016 * (for cross-process semaphores0 or it could just be a dummy for use
2017 * internally.
2018 */
2019 struct anv_semaphore_impl permanent;
2020
2021 /* Temporary semaphore state. A semaphore *may* have temporary state.
2022 * That state is added to the semaphore by an import operation and is reset
2023 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2024 * semaphore with temporary state cannot be signaled because the semaphore
2025 * must already be signaled before the temporary state can be exported from
2026 * the semaphore in the other process and imported here.
2027 */
2028 struct anv_semaphore_impl temporary;
2029 };
2030
2031 void anv_semaphore_reset_temporary(struct anv_device *device,
2032 struct anv_semaphore *semaphore);
2033
2034 struct anv_shader_module {
2035 unsigned char sha1[20];
2036 uint32_t size;
2037 char data[0];
2038 };
2039
2040 static inline gl_shader_stage
2041 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2042 {
2043 assert(__builtin_popcount(vk_stage) == 1);
2044 return ffs(vk_stage) - 1;
2045 }
2046
2047 static inline VkShaderStageFlagBits
2048 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2049 {
2050 return (1 << mesa_stage);
2051 }
2052
2053 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2054
2055 #define anv_foreach_stage(stage, stage_bits) \
2056 for (gl_shader_stage stage, \
2057 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2058 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2059 __tmp &= ~(1 << (stage)))
2060
2061 struct anv_pipeline_bind_map {
2062 uint32_t surface_count;
2063 uint32_t sampler_count;
2064 uint32_t image_count;
2065
2066 struct anv_pipeline_binding * surface_to_descriptor;
2067 struct anv_pipeline_binding * sampler_to_descriptor;
2068 };
2069
2070 struct anv_shader_bin_key {
2071 uint32_t size;
2072 uint8_t data[0];
2073 };
2074
2075 struct anv_shader_bin {
2076 uint32_t ref_cnt;
2077
2078 const struct anv_shader_bin_key *key;
2079
2080 struct anv_state kernel;
2081 uint32_t kernel_size;
2082
2083 const struct brw_stage_prog_data *prog_data;
2084 uint32_t prog_data_size;
2085
2086 struct anv_pipeline_bind_map bind_map;
2087 };
2088
2089 struct anv_shader_bin *
2090 anv_shader_bin_create(struct anv_device *device,
2091 const void *key, uint32_t key_size,
2092 const void *kernel, uint32_t kernel_size,
2093 const struct brw_stage_prog_data *prog_data,
2094 uint32_t prog_data_size, const void *prog_data_param,
2095 const struct anv_pipeline_bind_map *bind_map);
2096
2097 void
2098 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2099
2100 static inline void
2101 anv_shader_bin_ref(struct anv_shader_bin *shader)
2102 {
2103 assert(shader && shader->ref_cnt >= 1);
2104 p_atomic_inc(&shader->ref_cnt);
2105 }
2106
2107 static inline void
2108 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2109 {
2110 assert(shader && shader->ref_cnt >= 1);
2111 if (p_atomic_dec_zero(&shader->ref_cnt))
2112 anv_shader_bin_destroy(device, shader);
2113 }
2114
2115 struct anv_pipeline {
2116 struct anv_device * device;
2117 struct anv_batch batch;
2118 uint32_t batch_data[512];
2119 struct anv_reloc_list batch_relocs;
2120 uint32_t dynamic_state_mask;
2121 struct anv_dynamic_state dynamic_state;
2122
2123 struct anv_subpass * subpass;
2124 struct anv_pipeline_layout * layout;
2125
2126 bool needs_data_cache;
2127
2128 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2129
2130 struct {
2131 const struct gen_l3_config * l3_config;
2132 uint32_t total_size;
2133 } urb;
2134
2135 VkShaderStageFlags active_stages;
2136 struct anv_state blend_state;
2137
2138 uint32_t vb_used;
2139 uint32_t binding_stride[MAX_VBS];
2140 bool instancing_enable[MAX_VBS];
2141 bool primitive_restart;
2142 uint32_t topology;
2143
2144 uint32_t cs_right_mask;
2145
2146 bool writes_depth;
2147 bool depth_test_enable;
2148 bool writes_stencil;
2149 bool stencil_test_enable;
2150 bool depth_clamp_enable;
2151 bool sample_shading_enable;
2152 bool kill_pixel;
2153
2154 struct {
2155 uint32_t sf[7];
2156 uint32_t depth_stencil_state[3];
2157 } gen7;
2158
2159 struct {
2160 uint32_t sf[4];
2161 uint32_t raster[5];
2162 uint32_t wm_depth_stencil[3];
2163 } gen8;
2164
2165 struct {
2166 uint32_t wm_depth_stencil[4];
2167 } gen9;
2168
2169 uint32_t interface_descriptor_data[8];
2170 };
2171
2172 static inline bool
2173 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2174 gl_shader_stage stage)
2175 {
2176 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2177 }
2178
2179 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2180 static inline const struct brw_##prefix##_prog_data * \
2181 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2182 { \
2183 if (anv_pipeline_has_stage(pipeline, stage)) { \
2184 return (const struct brw_##prefix##_prog_data *) \
2185 pipeline->shaders[stage]->prog_data; \
2186 } else { \
2187 return NULL; \
2188 } \
2189 }
2190
2191 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2192 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2193 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2194 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2195 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2196 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2197
2198 static inline const struct brw_vue_prog_data *
2199 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2200 {
2201 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2202 return &get_gs_prog_data(pipeline)->base;
2203 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2204 return &get_tes_prog_data(pipeline)->base;
2205 else
2206 return &get_vs_prog_data(pipeline)->base;
2207 }
2208
2209 VkResult
2210 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2211 struct anv_pipeline_cache *cache,
2212 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2213 const VkAllocationCallbacks *alloc);
2214
2215 VkResult
2216 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2217 struct anv_pipeline_cache *cache,
2218 const VkComputePipelineCreateInfo *info,
2219 struct anv_shader_module *module,
2220 const char *entrypoint,
2221 const VkSpecializationInfo *spec_info);
2222
2223 struct anv_format_plane {
2224 enum isl_format isl_format:16;
2225 struct isl_swizzle swizzle;
2226
2227 /* Whether this plane contains chroma channels */
2228 bool has_chroma;
2229
2230 /* For downscaling of YUV planes */
2231 uint8_t denominator_scales[2];
2232
2233 /* How to map sampled ycbcr planes to a single 4 component element. */
2234 struct isl_swizzle ycbcr_swizzle;
2235 };
2236
2237
2238 struct anv_format {
2239 struct anv_format_plane planes[3];
2240 uint8_t n_planes;
2241 bool can_ycbcr;
2242 };
2243
2244 static inline uint32_t
2245 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2246 VkImageAspectFlags aspect_mask)
2247 {
2248 switch (aspect_mask) {
2249 case VK_IMAGE_ASPECT_COLOR_BIT:
2250 case VK_IMAGE_ASPECT_DEPTH_BIT:
2251 case VK_IMAGE_ASPECT_PLANE_0_BIT_KHR:
2252 return 0;
2253 case VK_IMAGE_ASPECT_STENCIL_BIT:
2254 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2255 return 0;
2256 /* Fall-through */
2257 case VK_IMAGE_ASPECT_PLANE_1_BIT_KHR:
2258 return 1;
2259 case VK_IMAGE_ASPECT_PLANE_2_BIT_KHR:
2260 return 2;
2261 default:
2262 /* Purposefully assert with depth/stencil aspects. */
2263 unreachable("invalid image aspect");
2264 }
2265 }
2266
2267 static inline uint32_t
2268 anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)
2269 {
2270 uint32_t planes = 0;
2271
2272 if (aspect_mask & (VK_IMAGE_ASPECT_COLOR_BIT |
2273 VK_IMAGE_ASPECT_DEPTH_BIT |
2274 VK_IMAGE_ASPECT_STENCIL_BIT |
2275 VK_IMAGE_ASPECT_PLANE_0_BIT_KHR))
2276 planes++;
2277 if (aspect_mask & VK_IMAGE_ASPECT_PLANE_1_BIT_KHR)
2278 planes++;
2279 if (aspect_mask & VK_IMAGE_ASPECT_PLANE_2_BIT_KHR)
2280 planes++;
2281
2282 return planes;
2283 }
2284
2285 static inline VkImageAspectFlags
2286 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2287 uint32_t plane)
2288 {
2289 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2290 if (_mesa_bitcount(image_aspects) > 1)
2291 return VK_IMAGE_ASPECT_PLANE_0_BIT_KHR << plane;
2292 return VK_IMAGE_ASPECT_COLOR_BIT;
2293 }
2294 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2295 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2296 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
2297 return VK_IMAGE_ASPECT_STENCIL_BIT;
2298 }
2299
2300 #define anv_foreach_image_aspect_bit(b, image, aspects) \
2301 for_each_bit(b, anv_image_expand_aspects(image, aspects))
2302
2303 const struct anv_format *
2304 anv_get_format(VkFormat format);
2305
2306 static inline uint32_t
2307 anv_get_format_planes(VkFormat vk_format)
2308 {
2309 const struct anv_format *format = anv_get_format(vk_format);
2310
2311 return format != NULL ? format->n_planes : 0;
2312 }
2313
2314 struct anv_format_plane
2315 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
2316 VkImageAspectFlagBits aspect, VkImageTiling tiling);
2317
2318 static inline enum isl_format
2319 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
2320 VkImageAspectFlags aspect, VkImageTiling tiling)
2321 {
2322 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
2323 }
2324
2325 static inline struct isl_swizzle
2326 anv_swizzle_for_render(struct isl_swizzle swizzle)
2327 {
2328 /* Sometimes the swizzle will have alpha map to one. We do this to fake
2329 * RGB as RGBA for texturing
2330 */
2331 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
2332 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
2333
2334 /* But it doesn't matter what we render to that channel */
2335 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
2336
2337 return swizzle;
2338 }
2339
2340 void
2341 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
2342
2343 /**
2344 * Subsurface of an anv_image.
2345 */
2346 struct anv_surface {
2347 /** Valid only if isl_surf::size > 0. */
2348 struct isl_surf isl;
2349
2350 /**
2351 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2352 */
2353 uint32_t offset;
2354 };
2355
2356 struct anv_image {
2357 VkImageType type;
2358 /* The original VkFormat provided by the client. This may not match any
2359 * of the actual surface formats.
2360 */
2361 VkFormat vk_format;
2362 const struct anv_format *format;
2363
2364 VkImageAspectFlags aspects;
2365 VkExtent3D extent;
2366 uint32_t levels;
2367 uint32_t array_size;
2368 uint32_t samples; /**< VkImageCreateInfo::samples */
2369 uint32_t n_planes;
2370 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2371 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2372
2373 /**
2374 * DRM format modifier for this image or DRM_FORMAT_MOD_INVALID.
2375 */
2376 uint64_t drm_format_mod;
2377
2378 VkDeviceSize size;
2379 uint32_t alignment;
2380
2381 /* Whether the image is made of several underlying buffer objects rather a
2382 * single one with different offsets.
2383 */
2384 bool disjoint;
2385
2386 /**
2387 * Image subsurfaces
2388 *
2389 * For each foo, anv_image::planes[x].surface is valid if and only if
2390 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
2391 * to figure the number associated with a given aspect.
2392 *
2393 * The hardware requires that the depth buffer and stencil buffer be
2394 * separate surfaces. From Vulkan's perspective, though, depth and stencil
2395 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
2396 * allocate the depth and stencil buffers as separate surfaces in the same
2397 * bo.
2398 *
2399 * Memory layout :
2400 *
2401 * -----------------------
2402 * | surface0 | /|\
2403 * ----------------------- |
2404 * | shadow surface0 | |
2405 * ----------------------- | Plane 0
2406 * | aux surface0 | |
2407 * ----------------------- |
2408 * | fast clear colors0 | \|/
2409 * -----------------------
2410 * | surface1 | /|\
2411 * ----------------------- |
2412 * | shadow surface1 | |
2413 * ----------------------- | Plane 1
2414 * | aux surface1 | |
2415 * ----------------------- |
2416 * | fast clear colors1 | \|/
2417 * -----------------------
2418 * | ... |
2419 * | |
2420 * -----------------------
2421 */
2422 struct {
2423 /**
2424 * Offset of the entire plane (whenever the image is disjoint this is
2425 * set to 0).
2426 */
2427 uint32_t offset;
2428
2429 VkDeviceSize size;
2430 uint32_t alignment;
2431
2432 struct anv_surface surface;
2433
2434 /**
2435 * A surface which shadows the main surface and may have different
2436 * tiling. This is used for sampling using a tiling that isn't supported
2437 * for other operations.
2438 */
2439 struct anv_surface shadow_surface;
2440
2441 /**
2442 * For color images, this is the aux usage for this image when not used
2443 * as a color attachment.
2444 *
2445 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
2446 * image has a HiZ buffer.
2447 */
2448 enum isl_aux_usage aux_usage;
2449
2450 struct anv_surface aux_surface;
2451
2452 /**
2453 * Offset of the fast clear state (used to compute the
2454 * fast_clear_state_offset of the following planes).
2455 */
2456 uint32_t fast_clear_state_offset;
2457
2458 /**
2459 * BO associated with this plane, set when bound.
2460 */
2461 struct anv_bo *bo;
2462 VkDeviceSize bo_offset;
2463
2464 /**
2465 * When destroying the image, also free the bo.
2466 * */
2467 bool bo_is_owned;
2468 } planes[3];
2469 };
2470
2471 /* Returns the number of auxiliary buffer levels attached to an image. */
2472 static inline uint8_t
2473 anv_image_aux_levels(const struct anv_image * const image,
2474 VkImageAspectFlagBits aspect)
2475 {
2476 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2477 return image->planes[plane].aux_surface.isl.size > 0 ?
2478 image->planes[plane].aux_surface.isl.levels : 0;
2479 }
2480
2481 /* Returns the number of auxiliary buffer layers attached to an image. */
2482 static inline uint32_t
2483 anv_image_aux_layers(const struct anv_image * const image,
2484 VkImageAspectFlagBits aspect,
2485 const uint8_t miplevel)
2486 {
2487 assert(image);
2488
2489 /* The miplevel must exist in the main buffer. */
2490 assert(miplevel < image->levels);
2491
2492 if (miplevel >= anv_image_aux_levels(image, aspect)) {
2493 /* There are no layers with auxiliary data because the miplevel has no
2494 * auxiliary data.
2495 */
2496 return 0;
2497 } else {
2498 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2499 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
2500 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
2501 }
2502 }
2503
2504 static inline unsigned
2505 anv_fast_clear_state_entry_size(const struct anv_device *device)
2506 {
2507 assert(device);
2508 /* Entry contents:
2509 * +--------------------------------------------+
2510 * | clear value dword(s) | needs resolve dword |
2511 * +--------------------------------------------+
2512 */
2513
2514 /* Ensure that the needs resolve dword is in fact dword-aligned to enable
2515 * GPU memcpy operations.
2516 */
2517 assert(device->isl_dev.ss.clear_value_size % 4 == 0);
2518 return device->isl_dev.ss.clear_value_size + 4;
2519 }
2520
2521 static inline struct anv_address
2522 anv_image_get_clear_color_addr(const struct anv_device *device,
2523 const struct anv_image *image,
2524 VkImageAspectFlagBits aspect,
2525 unsigned level)
2526 {
2527 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2528 return (struct anv_address) {
2529 .bo = image->planes[plane].bo,
2530 .offset = image->planes[plane].bo_offset +
2531 image->planes[plane].fast_clear_state_offset +
2532 anv_fast_clear_state_entry_size(device) * level,
2533 };
2534 }
2535
2536 static inline struct anv_address
2537 anv_image_get_needs_resolve_addr(const struct anv_device *device,
2538 const struct anv_image *image,
2539 VkImageAspectFlagBits aspect,
2540 unsigned level)
2541 {
2542 struct anv_address addr =
2543 anv_image_get_clear_color_addr(device, image, aspect, level);
2544 addr.offset += device->isl_dev.ss.clear_value_size;
2545 return addr;
2546 }
2547
2548 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
2549 static inline bool
2550 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
2551 const struct anv_image *image)
2552 {
2553 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
2554 return false;
2555
2556 if (devinfo->gen < 8)
2557 return false;
2558
2559 return image->samples == 1;
2560 }
2561
2562 void
2563 anv_gen8_hiz_op_resolve(struct anv_cmd_buffer *cmd_buffer,
2564 const struct anv_image *image,
2565 enum blorp_hiz_op op);
2566 void
2567 anv_ccs_resolve(struct anv_cmd_buffer * const cmd_buffer,
2568 const struct anv_image * const image,
2569 VkImageAspectFlagBits aspect,
2570 const uint8_t level,
2571 const uint32_t start_layer, const uint32_t layer_count,
2572 const enum blorp_fast_clear_op op);
2573
2574 void
2575 anv_image_fast_clear(struct anv_cmd_buffer *cmd_buffer,
2576 const struct anv_image *image,
2577 VkImageAspectFlagBits aspect,
2578 const uint32_t base_level, const uint32_t level_count,
2579 const uint32_t base_layer, uint32_t layer_count);
2580
2581 void
2582 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
2583 const struct anv_image *image,
2584 uint32_t base_level, uint32_t level_count,
2585 uint32_t base_layer, uint32_t layer_count);
2586
2587 enum isl_aux_usage
2588 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
2589 const struct anv_image *image,
2590 const VkImageAspectFlagBits aspect,
2591 const VkImageLayout layout);
2592
2593 /* This is defined as a macro so that it works for both
2594 * VkImageSubresourceRange and VkImageSubresourceLayers
2595 */
2596 #define anv_get_layerCount(_image, _range) \
2597 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
2598 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
2599
2600 static inline uint32_t
2601 anv_get_levelCount(const struct anv_image *image,
2602 const VkImageSubresourceRange *range)
2603 {
2604 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
2605 image->levels - range->baseMipLevel : range->levelCount;
2606 }
2607
2608 static inline VkImageAspectFlags
2609 anv_image_expand_aspects(const struct anv_image *image,
2610 VkImageAspectFlags aspects)
2611 {
2612 /* If the underlying image has color plane aspects and
2613 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
2614 * the underlying image. */
2615 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
2616 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
2617 return image->aspects;
2618
2619 return aspects;
2620 }
2621
2622 static inline bool
2623 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
2624 VkImageAspectFlags aspects2)
2625 {
2626 if (aspects1 == aspects2)
2627 return true;
2628
2629 /* Only 1 color aspects are compatibles. */
2630 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
2631 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
2632 _mesa_bitcount(aspects1) == _mesa_bitcount(aspects2))
2633 return true;
2634
2635 return false;
2636 }
2637
2638 struct anv_image_view {
2639 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
2640
2641 VkImageAspectFlags aspect_mask;
2642 VkFormat vk_format;
2643 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
2644
2645 unsigned n_planes;
2646 struct {
2647 uint32_t image_plane;
2648
2649 struct isl_view isl;
2650
2651 /**
2652 * RENDER_SURFACE_STATE when using image as a sampler surface with an
2653 * image layout of SHADER_READ_ONLY_OPTIMAL or
2654 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
2655 */
2656 struct anv_surface_state optimal_sampler_surface_state;
2657
2658 /**
2659 * RENDER_SURFACE_STATE when using image as a sampler surface with an
2660 * image layout of GENERAL.
2661 */
2662 struct anv_surface_state general_sampler_surface_state;
2663
2664 /**
2665 * RENDER_SURFACE_STATE when using image as a storage image. Separate
2666 * states for write-only and readable, using the real format for
2667 * write-only and the lowered format for readable.
2668 */
2669 struct anv_surface_state storage_surface_state;
2670 struct anv_surface_state writeonly_storage_surface_state;
2671
2672 struct brw_image_param storage_image_param;
2673 } planes[3];
2674 };
2675
2676 enum anv_image_view_state_flags {
2677 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
2678 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
2679 };
2680
2681 void anv_image_fill_surface_state(struct anv_device *device,
2682 const struct anv_image *image,
2683 VkImageAspectFlagBits aspect,
2684 const struct isl_view *view,
2685 isl_surf_usage_flags_t view_usage,
2686 enum isl_aux_usage aux_usage,
2687 const union isl_color_value *clear_color,
2688 enum anv_image_view_state_flags flags,
2689 struct anv_surface_state *state_inout,
2690 struct brw_image_param *image_param_out);
2691
2692 struct anv_image_create_info {
2693 const VkImageCreateInfo *vk_info;
2694
2695 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
2696 isl_tiling_flags_t isl_tiling_flags;
2697
2698 /** These flags will be added to any derived from VkImageCreateInfo. */
2699 isl_surf_usage_flags_t isl_extra_usage_flags;
2700
2701 uint32_t stride;
2702 };
2703
2704 VkResult anv_image_create(VkDevice _device,
2705 const struct anv_image_create_info *info,
2706 const VkAllocationCallbacks* alloc,
2707 VkImage *pImage);
2708
2709 #ifdef ANDROID
2710 VkResult anv_image_from_gralloc(VkDevice device_h,
2711 const VkImageCreateInfo *base_info,
2712 const VkNativeBufferANDROID *gralloc_info,
2713 const VkAllocationCallbacks *alloc,
2714 VkImage *pImage);
2715 #endif
2716
2717 const struct anv_surface *
2718 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
2719 VkImageAspectFlags aspect_mask);
2720
2721 enum isl_format
2722 anv_isl_format_for_descriptor_type(VkDescriptorType type);
2723
2724 static inline struct VkExtent3D
2725 anv_sanitize_image_extent(const VkImageType imageType,
2726 const struct VkExtent3D imageExtent)
2727 {
2728 switch (imageType) {
2729 case VK_IMAGE_TYPE_1D:
2730 return (VkExtent3D) { imageExtent.width, 1, 1 };
2731 case VK_IMAGE_TYPE_2D:
2732 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
2733 case VK_IMAGE_TYPE_3D:
2734 return imageExtent;
2735 default:
2736 unreachable("invalid image type");
2737 }
2738 }
2739
2740 static inline struct VkOffset3D
2741 anv_sanitize_image_offset(const VkImageType imageType,
2742 const struct VkOffset3D imageOffset)
2743 {
2744 switch (imageType) {
2745 case VK_IMAGE_TYPE_1D:
2746 return (VkOffset3D) { imageOffset.x, 0, 0 };
2747 case VK_IMAGE_TYPE_2D:
2748 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
2749 case VK_IMAGE_TYPE_3D:
2750 return imageOffset;
2751 default:
2752 unreachable("invalid image type");
2753 }
2754 }
2755
2756
2757 void anv_fill_buffer_surface_state(struct anv_device *device,
2758 struct anv_state state,
2759 enum isl_format format,
2760 uint32_t offset, uint32_t range,
2761 uint32_t stride);
2762
2763
2764 struct anv_ycbcr_conversion {
2765 const struct anv_format * format;
2766 VkSamplerYcbcrModelConversionKHR ycbcr_model;
2767 VkSamplerYcbcrRangeKHR ycbcr_range;
2768 VkComponentSwizzle mapping[4];
2769 VkChromaLocationKHR chroma_offsets[2];
2770 VkFilter chroma_filter;
2771 bool chroma_reconstruction;
2772 };
2773
2774 struct anv_sampler {
2775 uint32_t state[3][4];
2776 uint32_t n_planes;
2777 struct anv_ycbcr_conversion *conversion;
2778 };
2779
2780 struct anv_framebuffer {
2781 uint32_t width;
2782 uint32_t height;
2783 uint32_t layers;
2784
2785 uint32_t attachment_count;
2786 struct anv_image_view * attachments[0];
2787 };
2788
2789 struct anv_subpass {
2790 uint32_t attachment_count;
2791
2792 /**
2793 * A pointer to all attachment references used in this subpass.
2794 * Only valid if ::attachment_count > 0.
2795 */
2796 VkAttachmentReference * attachments;
2797 uint32_t input_count;
2798 VkAttachmentReference * input_attachments;
2799 uint32_t color_count;
2800 VkAttachmentReference * color_attachments;
2801 VkAttachmentReference * resolve_attachments;
2802
2803 VkAttachmentReference depth_stencil_attachment;
2804
2805 uint32_t view_mask;
2806
2807 /** Subpass has a depth/stencil self-dependency */
2808 bool has_ds_self_dep;
2809
2810 /** Subpass has at least one resolve attachment */
2811 bool has_resolve;
2812 };
2813
2814 static inline unsigned
2815 anv_subpass_view_count(const struct anv_subpass *subpass)
2816 {
2817 return MAX2(1, _mesa_bitcount(subpass->view_mask));
2818 }
2819
2820 struct anv_render_pass_attachment {
2821 /* TODO: Consider using VkAttachmentDescription instead of storing each of
2822 * its members individually.
2823 */
2824 VkFormat format;
2825 uint32_t samples;
2826 VkImageUsageFlags usage;
2827 VkAttachmentLoadOp load_op;
2828 VkAttachmentStoreOp store_op;
2829 VkAttachmentLoadOp stencil_load_op;
2830 VkImageLayout initial_layout;
2831 VkImageLayout final_layout;
2832 VkImageLayout first_subpass_layout;
2833
2834 /* The subpass id in which the attachment will be used last. */
2835 uint32_t last_subpass_idx;
2836 };
2837
2838 struct anv_render_pass {
2839 uint32_t attachment_count;
2840 uint32_t subpass_count;
2841 /* An array of subpass_count+1 flushes, one per subpass boundary */
2842 enum anv_pipe_bits * subpass_flushes;
2843 struct anv_render_pass_attachment * attachments;
2844 struct anv_subpass subpasses[0];
2845 };
2846
2847 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
2848
2849 struct anv_query_pool {
2850 VkQueryType type;
2851 VkQueryPipelineStatisticFlags pipeline_statistics;
2852 /** Stride between slots, in bytes */
2853 uint32_t stride;
2854 /** Number of slots in this query pool */
2855 uint32_t slots;
2856 struct anv_bo bo;
2857 };
2858
2859 int anv_get_entrypoint_index(const char *name);
2860
2861 bool
2862 anv_entrypoint_is_enabled(int index, uint32_t core_version,
2863 const struct anv_instance_extension_table *instance,
2864 const struct anv_device_extension_table *device);
2865
2866 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
2867 const char *name);
2868
2869 void anv_dump_image_to_ppm(struct anv_device *device,
2870 struct anv_image *image, unsigned miplevel,
2871 unsigned array_layer, VkImageAspectFlagBits aspect,
2872 const char *filename);
2873
2874 enum anv_dump_action {
2875 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
2876 };
2877
2878 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
2879 void anv_dump_finish(void);
2880
2881 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
2882 struct anv_framebuffer *fb);
2883
2884 static inline uint32_t
2885 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
2886 {
2887 /* This function must be called from within a subpass. */
2888 assert(cmd_state->pass && cmd_state->subpass);
2889
2890 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
2891
2892 /* The id of this subpass shouldn't exceed the number of subpasses in this
2893 * render pass minus 1.
2894 */
2895 assert(subpass_id < cmd_state->pass->subpass_count);
2896 return subpass_id;
2897 }
2898
2899 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
2900 \
2901 static inline struct __anv_type * \
2902 __anv_type ## _from_handle(__VkType _handle) \
2903 { \
2904 return (struct __anv_type *) _handle; \
2905 } \
2906 \
2907 static inline __VkType \
2908 __anv_type ## _to_handle(struct __anv_type *_obj) \
2909 { \
2910 return (__VkType) _obj; \
2911 }
2912
2913 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
2914 \
2915 static inline struct __anv_type * \
2916 __anv_type ## _from_handle(__VkType _handle) \
2917 { \
2918 return (struct __anv_type *)(uintptr_t) _handle; \
2919 } \
2920 \
2921 static inline __VkType \
2922 __anv_type ## _to_handle(struct __anv_type *_obj) \
2923 { \
2924 return (__VkType)(uintptr_t) _obj; \
2925 }
2926
2927 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
2928 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
2929
2930 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
2931 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
2932 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
2933 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
2934 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
2935
2936 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
2937 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
2938 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
2939 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
2940 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
2941 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
2942 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplateKHR)
2943 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
2944 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
2945 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
2946 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
2947 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
2948 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
2949 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
2950 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
2951 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
2952 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
2953 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
2954 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
2955 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
2956 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
2957 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
2958 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversionKHR)
2959
2960 /* Gen-specific function declarations */
2961 #ifdef genX
2962 # include "anv_genX.h"
2963 #else
2964 # define genX(x) gen7_##x
2965 # include "anv_genX.h"
2966 # undef genX
2967 # define genX(x) gen75_##x
2968 # include "anv_genX.h"
2969 # undef genX
2970 # define genX(x) gen8_##x
2971 # include "anv_genX.h"
2972 # undef genX
2973 # define genX(x) gen9_##x
2974 # include "anv_genX.h"
2975 # undef genX
2976 # define genX(x) gen10_##x
2977 # include "anv_genX.h"
2978 # undef genX
2979 #endif
2980
2981 #endif /* ANV_PRIVATE_H */