anv/blit2d: Customize meta blit structs and functions for blit2d API
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #pragma once
25
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdbool.h>
29 #include <pthread.h>
30 #include <assert.h>
31 #include <stdint.h>
32 #include <i915_drm.h>
33
34 #ifdef HAVE_VALGRIND
35 #include <valgrind.h>
36 #include <memcheck.h>
37 #define VG(x) x
38 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
39 #else
40 #define VG(x)
41 #endif
42
43 #include "brw_device_info.h"
44 #include "brw_compiler.h"
45 #include "util/macros.h"
46 #include "util/list.h"
47
48 /* Pre-declarations needed for WSI entrypoints */
49 struct wl_surface;
50 struct wl_display;
51 typedef struct xcb_connection_t xcb_connection_t;
52 typedef uint32_t xcb_visualid_t;
53 typedef uint32_t xcb_window_t;
54
55 #define VK_USE_PLATFORM_XCB_KHR
56 #define VK_USE_PLATFORM_WAYLAND_KHR
57
58 #define VK_PROTOTYPES
59 #include <vulkan/vulkan.h>
60 #include <vulkan/vulkan_intel.h>
61 #include <vulkan/vk_icd.h>
62
63 #include "anv_entrypoints.h"
64 #include "brw_context.h"
65 #include "isl/isl.h"
66
67 #ifdef __cplusplus
68 extern "C" {
69 #endif
70
71 #define MAX_VBS 32
72 #define MAX_SETS 8
73 #define MAX_RTS 8
74 #define MAX_VIEWPORTS 16
75 #define MAX_SCISSORS 16
76 #define MAX_PUSH_CONSTANTS_SIZE 128
77 #define MAX_DYNAMIC_BUFFERS 16
78 #define MAX_IMAGES 8
79 #define MAX_SAMPLES_LOG2 4 /* SKL supports 16 samples */
80
81 #define anv_noreturn __attribute__((__noreturn__))
82 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
83
84 #define MIN(a, b) ((a) < (b) ? (a) : (b))
85 #define MAX(a, b) ((a) > (b) ? (a) : (b))
86
87 static inline uint32_t
88 align_u32(uint32_t v, uint32_t a)
89 {
90 assert(a != 0 && a == (a & -a));
91 return (v + a - 1) & ~(a - 1);
92 }
93
94 static inline uint64_t
95 align_u64(uint64_t v, uint64_t a)
96 {
97 assert(a != 0 && a == (a & -a));
98 return (v + a - 1) & ~(a - 1);
99 }
100
101 static inline int32_t
102 align_i32(int32_t v, int32_t a)
103 {
104 assert(a != 0 && a == (a & -a));
105 return (v + a - 1) & ~(a - 1);
106 }
107
108 /** Alignment must be a power of 2. */
109 static inline bool
110 anv_is_aligned(uintmax_t n, uintmax_t a)
111 {
112 assert(a == (a & -a));
113 return (n & (a - 1)) == 0;
114 }
115
116 static inline uint32_t
117 anv_minify(uint32_t n, uint32_t levels)
118 {
119 if (unlikely(n == 0))
120 return 0;
121 else
122 return MAX(n >> levels, 1);
123 }
124
125 static inline float
126 anv_clamp_f(float f, float min, float max)
127 {
128 assert(min < max);
129
130 if (f > max)
131 return max;
132 else if (f < min)
133 return min;
134 else
135 return f;
136 }
137
138 static inline bool
139 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
140 {
141 if (*inout_mask & clear_mask) {
142 *inout_mask &= ~clear_mask;
143 return true;
144 } else {
145 return false;
146 }
147 }
148
149 #define for_each_bit(b, dword) \
150 for (uint32_t __dword = (dword); \
151 (b) = __builtin_ffs(__dword) - 1, __dword; \
152 __dword &= ~(1 << (b)))
153
154 #define typed_memcpy(dest, src, count) ({ \
155 static_assert(sizeof(*src) == sizeof(*dest), ""); \
156 memcpy((dest), (src), (count) * sizeof(*(src))); \
157 })
158
159 #define zero(x) (memset(&(x), 0, sizeof(x)))
160
161 /* Define no kernel as 1, since that's an illegal offset for a kernel */
162 #define NO_KERNEL 1
163
164 struct anv_common {
165 VkStructureType sType;
166 const void* pNext;
167 };
168
169 /* Whenever we generate an error, pass it through this function. Useful for
170 * debugging, where we can break on it. Only call at error site, not when
171 * propagating errors. Might be useful to plug in a stack trace here.
172 */
173
174 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
175
176 #ifdef DEBUG
177 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
178 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
179 #else
180 #define vk_error(error) error
181 #define vk_errorf(error, format, ...) error
182 #endif
183
184 void __anv_finishme(const char *file, int line, const char *format, ...)
185 anv_printflike(3, 4);
186 void anv_loge(const char *format, ...) anv_printflike(1, 2);
187 void anv_loge_v(const char *format, va_list va);
188
189 /**
190 * Print a FINISHME message, including its source location.
191 */
192 #define anv_finishme(format, ...) \
193 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__);
194
195 /* A non-fatal assert. Useful for debugging. */
196 #ifdef DEBUG
197 #define anv_assert(x) ({ \
198 if (unlikely(!(x))) \
199 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
200 })
201 #else
202 #define anv_assert(x)
203 #endif
204
205 /**
206 * If a block of code is annotated with anv_validate, then the block runs only
207 * in debug builds.
208 */
209 #ifdef DEBUG
210 #define anv_validate if (1)
211 #else
212 #define anv_validate if (0)
213 #endif
214
215 void anv_abortf(const char *format, ...) anv_noreturn anv_printflike(1, 2);
216 void anv_abortfv(const char *format, va_list va) anv_noreturn;
217
218 #define stub_return(v) \
219 do { \
220 anv_finishme("stub %s", __func__); \
221 return (v); \
222 } while (0)
223
224 #define stub() \
225 do { \
226 anv_finishme("stub %s", __func__); \
227 return; \
228 } while (0)
229
230 /**
231 * A dynamically growable, circular buffer. Elements are added at head and
232 * removed from tail. head and tail are free-running uint32_t indices and we
233 * only compute the modulo with size when accessing the array. This way,
234 * number of bytes in the queue is always head - tail, even in case of
235 * wraparound.
236 */
237
238 struct anv_vector {
239 uint32_t head;
240 uint32_t tail;
241 uint32_t element_size;
242 uint32_t size;
243 void *data;
244 };
245
246 int anv_vector_init(struct anv_vector *queue, uint32_t element_size, uint32_t size);
247 void *anv_vector_add(struct anv_vector *queue);
248 void *anv_vector_remove(struct anv_vector *queue);
249
250 static inline int
251 anv_vector_length(struct anv_vector *queue)
252 {
253 return (queue->head - queue->tail) / queue->element_size;
254 }
255
256 static inline void *
257 anv_vector_head(struct anv_vector *vector)
258 {
259 assert(vector->tail < vector->head);
260 return (void *)((char *)vector->data +
261 ((vector->head - vector->element_size) &
262 (vector->size - 1)));
263 }
264
265 static inline void *
266 anv_vector_tail(struct anv_vector *vector)
267 {
268 return (void *)((char *)vector->data + (vector->tail & (vector->size - 1)));
269 }
270
271 static inline void
272 anv_vector_finish(struct anv_vector *queue)
273 {
274 free(queue->data);
275 }
276
277 #define anv_vector_foreach(elem, queue) \
278 static_assert(__builtin_types_compatible_p(__typeof__(queue), struct anv_vector *), ""); \
279 for (uint32_t __anv_vector_offset = (queue)->tail; \
280 elem = (queue)->data + (__anv_vector_offset & ((queue)->size - 1)), __anv_vector_offset < (queue)->head; \
281 __anv_vector_offset += (queue)->element_size)
282
283 struct anv_bo {
284 uint32_t gem_handle;
285
286 /* Index into the current validation list. This is used by the
287 * validation list building alrogithm to track which buffers are already
288 * in the validation list so that we can ensure uniqueness.
289 */
290 uint32_t index;
291
292 /* Last known offset. This value is provided by the kernel when we
293 * execbuf and is used as the presumed offset for the next bunch of
294 * relocations.
295 */
296 uint64_t offset;
297
298 uint64_t size;
299 void *map;
300
301 /* We need to set the WRITE flag on winsys bos so GEM will know we're
302 * writing to them and synchronize uses on other rings (eg if the display
303 * server uses the blitter ring).
304 */
305 bool is_winsys_bo;
306 };
307
308 /* Represents a lock-free linked list of "free" things. This is used by
309 * both the block pool and the state pools. Unfortunately, in order to
310 * solve the ABA problem, we can't use a single uint32_t head.
311 */
312 union anv_free_list {
313 struct {
314 int32_t offset;
315
316 /* A simple count that is incremented every time the head changes. */
317 uint32_t count;
318 };
319 uint64_t u64;
320 };
321
322 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
323
324 struct anv_block_state {
325 union {
326 struct {
327 uint32_t next;
328 uint32_t end;
329 };
330 uint64_t u64;
331 };
332 };
333
334 struct anv_block_pool {
335 struct anv_device *device;
336
337 struct anv_bo bo;
338
339 /* The offset from the start of the bo to the "center" of the block
340 * pool. Pointers to allocated blocks are given by
341 * bo.map + center_bo_offset + offsets.
342 */
343 uint32_t center_bo_offset;
344
345 /* Current memory map of the block pool. This pointer may or may not
346 * point to the actual beginning of the block pool memory. If
347 * anv_block_pool_alloc_back has ever been called, then this pointer
348 * will point to the "center" position of the buffer and all offsets
349 * (negative or positive) given out by the block pool alloc functions
350 * will be valid relative to this pointer.
351 *
352 * In particular, map == bo.map + center_offset
353 */
354 void *map;
355 int fd;
356
357 /**
358 * Array of mmaps and gem handles owned by the block pool, reclaimed when
359 * the block pool is destroyed.
360 */
361 struct anv_vector mmap_cleanups;
362
363 uint32_t block_size;
364
365 union anv_free_list free_list;
366 struct anv_block_state state;
367
368 union anv_free_list back_free_list;
369 struct anv_block_state back_state;
370 };
371
372 /* Block pools are backed by a fixed-size 2GB memfd */
373 #define BLOCK_POOL_MEMFD_SIZE (1ull << 32)
374
375 /* The center of the block pool is also the middle of the memfd. This may
376 * change in the future if we decide differently for some reason.
377 */
378 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
379
380 static inline uint32_t
381 anv_block_pool_size(struct anv_block_pool *pool)
382 {
383 return pool->state.end + pool->back_state.end;
384 }
385
386 struct anv_state {
387 int32_t offset;
388 uint32_t alloc_size;
389 void *map;
390 };
391
392 struct anv_fixed_size_state_pool {
393 size_t state_size;
394 union anv_free_list free_list;
395 struct anv_block_state block;
396 };
397
398 #define ANV_MIN_STATE_SIZE_LOG2 6
399 #define ANV_MAX_STATE_SIZE_LOG2 10
400
401 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2)
402
403 struct anv_state_pool {
404 struct anv_block_pool *block_pool;
405 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
406 };
407
408 struct anv_state_stream_block;
409
410 struct anv_state_stream {
411 struct anv_block_pool *block_pool;
412
413 /* The current working block */
414 struct anv_state_stream_block *block;
415
416 /* Offset at which the current block starts */
417 uint32_t start;
418 /* Offset at which to allocate the next state */
419 uint32_t next;
420 /* Offset at which the current block ends */
421 uint32_t end;
422 };
423
424 #define CACHELINE_SIZE 64
425 #define CACHELINE_MASK 63
426
427 static inline void
428 anv_clflush_range(void *start, size_t size)
429 {
430 void *p = (void *) (((uintptr_t) start) & ~CACHELINE_MASK);
431 void *end = start + size;
432
433 __builtin_ia32_mfence();
434 while (p < end) {
435 __builtin_ia32_clflush(p);
436 p += CACHELINE_SIZE;
437 }
438 }
439
440 static void inline
441 anv_state_clflush(struct anv_state state)
442 {
443 anv_clflush_range(state.map, state.alloc_size);
444 }
445
446 void anv_block_pool_init(struct anv_block_pool *pool,
447 struct anv_device *device, uint32_t block_size);
448 void anv_block_pool_finish(struct anv_block_pool *pool);
449 int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
450 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
451 void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
452 void anv_state_pool_init(struct anv_state_pool *pool,
453 struct anv_block_pool *block_pool);
454 void anv_state_pool_finish(struct anv_state_pool *pool);
455 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
456 size_t state_size, size_t alignment);
457 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
458 void anv_state_stream_init(struct anv_state_stream *stream,
459 struct anv_block_pool *block_pool);
460 void anv_state_stream_finish(struct anv_state_stream *stream);
461 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
462 uint32_t size, uint32_t alignment);
463
464 /**
465 * Implements a pool of re-usable BOs. The interface is identical to that
466 * of block_pool except that each block is its own BO.
467 */
468 struct anv_bo_pool {
469 struct anv_device *device;
470
471 uint32_t bo_size;
472
473 void *free_list;
474 };
475
476 void anv_bo_pool_init(struct anv_bo_pool *pool,
477 struct anv_device *device, uint32_t block_size);
478 void anv_bo_pool_finish(struct anv_bo_pool *pool);
479 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo);
480 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
481
482
483 void *anv_resolve_entrypoint(uint32_t index);
484
485 extern struct anv_dispatch_table dtable;
486
487 #define ANV_CALL(func) ({ \
488 if (dtable.func == NULL) { \
489 size_t idx = offsetof(struct anv_dispatch_table, func) / sizeof(void *); \
490 dtable.entrypoints[idx] = anv_resolve_entrypoint(idx); \
491 } \
492 dtable.func; \
493 })
494
495 static inline void *
496 anv_alloc(const VkAllocationCallbacks *alloc,
497 size_t size, size_t align,
498 VkSystemAllocationScope scope)
499 {
500 return alloc->pfnAllocation(alloc->pUserData, size, align, scope);
501 }
502
503 static inline void *
504 anv_realloc(const VkAllocationCallbacks *alloc,
505 void *ptr, size_t size, size_t align,
506 VkSystemAllocationScope scope)
507 {
508 return alloc->pfnReallocation(alloc->pUserData, ptr, size, align, scope);
509 }
510
511 static inline void
512 anv_free(const VkAllocationCallbacks *alloc, void *data)
513 {
514 alloc->pfnFree(alloc->pUserData, data);
515 }
516
517 static inline void *
518 anv_alloc2(const VkAllocationCallbacks *parent_alloc,
519 const VkAllocationCallbacks *alloc,
520 size_t size, size_t align,
521 VkSystemAllocationScope scope)
522 {
523 if (alloc)
524 return anv_alloc(alloc, size, align, scope);
525 else
526 return anv_alloc(parent_alloc, size, align, scope);
527 }
528
529 static inline void
530 anv_free2(const VkAllocationCallbacks *parent_alloc,
531 const VkAllocationCallbacks *alloc,
532 void *data)
533 {
534 if (alloc)
535 anv_free(alloc, data);
536 else
537 anv_free(parent_alloc, data);
538 }
539
540 struct anv_physical_device {
541 VK_LOADER_DATA _loader_data;
542
543 struct anv_instance * instance;
544 uint32_t chipset_id;
545 const char * path;
546 const char * name;
547 const struct brw_device_info * info;
548 uint64_t aperture_size;
549 struct brw_compiler * compiler;
550 struct isl_device isl_dev;
551 };
552
553 struct anv_wsi_interaface;
554
555 #define VK_ICD_WSI_PLATFORM_MAX 5
556
557 struct anv_instance {
558 VK_LOADER_DATA _loader_data;
559
560 VkAllocationCallbacks alloc;
561
562 uint32_t apiVersion;
563 int physicalDeviceCount;
564 struct anv_physical_device physicalDevice;
565
566 struct anv_wsi_interface * wsi[VK_ICD_WSI_PLATFORM_MAX];
567 };
568
569 VkResult anv_init_wsi(struct anv_instance *instance);
570 void anv_finish_wsi(struct anv_instance *instance);
571
572 struct anv_meta_state {
573 VkAllocationCallbacks alloc;
574
575 /**
576 * Use array element `i` for images with `2^i` samples.
577 */
578 struct {
579 /**
580 * Pipeline N is used to clear color attachment N of the current
581 * subpass.
582 *
583 * HACK: We use one pipeline per color attachment to work around the
584 * compiler's inability to dynamically set the render target index of
585 * the render target write message.
586 */
587 struct anv_pipeline *color_pipelines[MAX_RTS];
588
589 struct anv_pipeline *depth_only_pipeline;
590 struct anv_pipeline *stencil_only_pipeline;
591 struct anv_pipeline *depthstencil_pipeline;
592 } clear[1 + MAX_SAMPLES_LOG2];
593
594 struct {
595 VkRenderPass render_pass;
596
597 /** Pipeline that blits from a 1D image. */
598 VkPipeline pipeline_1d_src;
599
600 /** Pipeline that blits from a 2D image. */
601 VkPipeline pipeline_2d_src;
602
603 /** Pipeline that blits from a 3D image. */
604 VkPipeline pipeline_3d_src;
605
606 VkPipelineLayout pipeline_layout;
607 VkDescriptorSetLayout ds_layout;
608 } blit;
609
610 struct {
611 VkRenderPass render_pass;
612
613 /** Pipeline that copies from a 2D image. */
614 VkPipeline pipeline_2d_src;
615
616 VkPipelineLayout pipeline_layout;
617 VkDescriptorSetLayout ds_layout;
618 } blit2d;
619
620 struct {
621 /** Pipeline [i] resolves an image with 2^(i+1) samples. */
622 VkPipeline pipelines[MAX_SAMPLES_LOG2];
623
624 VkRenderPass pass;
625 VkPipelineLayout pipeline_layout;
626 VkDescriptorSetLayout ds_layout;
627 } resolve;
628 };
629
630 struct anv_queue {
631 VK_LOADER_DATA _loader_data;
632
633 struct anv_device * device;
634
635 struct anv_state_pool * pool;
636 };
637
638 struct anv_pipeline_cache {
639 struct anv_device * device;
640 struct anv_state_stream program_stream;
641 pthread_mutex_t mutex;
642
643 uint32_t total_size;
644 uint32_t table_size;
645 uint32_t kernel_count;
646 uint32_t * hash_table;
647 };
648
649 struct anv_pipeline_bind_map;
650
651 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
652 struct anv_device *device);
653 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
654 uint32_t anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
655 const unsigned char *sha1,
656 const struct brw_stage_prog_data **prog_data,
657 struct anv_pipeline_bind_map *map);
658 uint32_t anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
659 const unsigned char *sha1,
660 const void *kernel,
661 size_t kernel_size,
662 const struct brw_stage_prog_data **prog_data,
663 size_t prog_data_size,
664 struct anv_pipeline_bind_map *map);
665
666 struct anv_device {
667 VK_LOADER_DATA _loader_data;
668
669 VkAllocationCallbacks alloc;
670
671 struct anv_instance * instance;
672 uint32_t chipset_id;
673 struct brw_device_info info;
674 struct isl_device isl_dev;
675 int context_id;
676 int fd;
677
678 struct anv_bo_pool batch_bo_pool;
679
680 struct anv_block_pool dynamic_state_block_pool;
681 struct anv_state_pool dynamic_state_pool;
682
683 struct anv_block_pool instruction_block_pool;
684 struct anv_pipeline_cache default_pipeline_cache;
685
686 struct anv_block_pool surface_state_block_pool;
687 struct anv_state_pool surface_state_pool;
688
689 struct anv_bo workaround_bo;
690
691 struct anv_meta_state meta_state;
692
693 struct anv_state border_colors;
694
695 struct anv_queue queue;
696
697 struct anv_block_pool scratch_block_pool;
698
699 uint32_t default_mocs;
700
701 pthread_mutex_t mutex;
702 };
703
704 void anv_device_get_cache_uuid(void *uuid);
705
706
707 void* anv_gem_mmap(struct anv_device *device,
708 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
709 void anv_gem_munmap(void *p, uint64_t size);
710 uint32_t anv_gem_create(struct anv_device *device, size_t size);
711 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
712 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
713 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
714 int anv_gem_execbuffer(struct anv_device *device,
715 struct drm_i915_gem_execbuffer2 *execbuf);
716 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
717 uint32_t stride, uint32_t tiling);
718 int anv_gem_create_context(struct anv_device *device);
719 int anv_gem_destroy_context(struct anv_device *device, int context);
720 int anv_gem_get_param(int fd, uint32_t param);
721 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
722 int anv_gem_get_aperture(int fd, uint64_t *size);
723 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
724 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
725 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
726 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
727 uint32_t read_domains, uint32_t write_domain);
728
729 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
730
731 struct anv_reloc_list {
732 size_t num_relocs;
733 size_t array_length;
734 struct drm_i915_gem_relocation_entry * relocs;
735 struct anv_bo ** reloc_bos;
736 };
737
738 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
739 const VkAllocationCallbacks *alloc);
740 void anv_reloc_list_finish(struct anv_reloc_list *list,
741 const VkAllocationCallbacks *alloc);
742
743 uint64_t anv_reloc_list_add(struct anv_reloc_list *list,
744 const VkAllocationCallbacks *alloc,
745 uint32_t offset, struct anv_bo *target_bo,
746 uint32_t delta);
747
748 struct anv_batch_bo {
749 /* Link in the anv_cmd_buffer.owned_batch_bos list */
750 struct list_head link;
751
752 struct anv_bo bo;
753
754 /* Bytes actually consumed in this batch BO */
755 size_t length;
756
757 /* Last seen surface state block pool bo offset */
758 uint32_t last_ss_pool_bo_offset;
759
760 struct anv_reloc_list relocs;
761 };
762
763 struct anv_batch {
764 const VkAllocationCallbacks * alloc;
765
766 void * start;
767 void * end;
768 void * next;
769
770 struct anv_reloc_list * relocs;
771
772 /* This callback is called (with the associated user data) in the event
773 * that the batch runs out of space.
774 */
775 VkResult (*extend_cb)(struct anv_batch *, void *);
776 void * user_data;
777 };
778
779 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
780 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
781 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
782 void *location, struct anv_bo *bo, uint32_t offset);
783 VkResult anv_device_submit_simple_batch(struct anv_device *device,
784 struct anv_batch *batch);
785
786 struct anv_address {
787 struct anv_bo *bo;
788 uint32_t offset;
789 };
790
791 #define __gen_address_type struct anv_address
792 #define __gen_user_data struct anv_batch
793
794 static inline uint64_t
795 __gen_combine_address(struct anv_batch *batch, void *location,
796 const struct anv_address address, uint32_t delta)
797 {
798 if (address.bo == NULL) {
799 return address.offset + delta;
800 } else {
801 assert(batch->start <= location && location < batch->end);
802
803 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
804 }
805 }
806
807 /* Wrapper macros needed to work around preprocessor argument issues. In
808 * particular, arguments don't get pre-evaluated if they are concatenated.
809 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
810 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
811 * We can work around this easily enough with these helpers.
812 */
813 #define __anv_cmd_length(cmd) cmd ## _length
814 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
815 #define __anv_cmd_header(cmd) cmd ## _header
816 #define __anv_cmd_pack(cmd) cmd ## _pack
817
818 #define anv_batch_emit(batch, cmd, ...) do { \
819 void *__dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
820 struct cmd __template = { \
821 __anv_cmd_header(cmd), \
822 __VA_ARGS__ \
823 }; \
824 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
825 VG(VALGRIND_CHECK_MEM_IS_DEFINED(__dst, __anv_cmd_length(cmd) * 4)); \
826 } while (0)
827
828 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
829 void *__dst = anv_batch_emit_dwords(batch, n); \
830 struct cmd __template = { \
831 __anv_cmd_header(cmd), \
832 .DWordLength = n - __anv_cmd_length_bias(cmd), \
833 __VA_ARGS__ \
834 }; \
835 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
836 __dst; \
837 })
838
839 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
840 do { \
841 uint32_t *dw; \
842 \
843 static_assert(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1), "mismatch merge"); \
844 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
845 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
846 dw[i] = (dwords0)[i] | (dwords1)[i]; \
847 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
848 } while (0)
849
850 #define anv_state_pool_emit(pool, cmd, align, ...) ({ \
851 const uint32_t __size = __anv_cmd_length(cmd) * 4; \
852 struct anv_state __state = \
853 anv_state_pool_alloc((pool), __size, align); \
854 struct cmd __template = { \
855 __VA_ARGS__ \
856 }; \
857 __anv_cmd_pack(cmd)(NULL, __state.map, &__template); \
858 VG(VALGRIND_CHECK_MEM_IS_DEFINED(__state.map, __anv_cmd_length(cmd) * 4)); \
859 if (!(pool)->block_pool->device->info.has_llc) \
860 anv_state_clflush(__state); \
861 __state; \
862 })
863
864 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
865 .GraphicsDataTypeGFDT = 0, \
866 .LLCCacheabilityControlLLCCC = 0, \
867 .L3CacheabilityControlL3CC = 1, \
868 }
869
870 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
871 .LLCeLLCCacheabilityControlLLCCC = 0, \
872 .L3CacheabilityControlL3CC = 1, \
873 }
874
875 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
876 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
877 .TargetCache = L3DefertoPATforLLCeLLCselection, \
878 .AgeforQUADLRU = 0 \
879 }
880
881 /* Skylake: MOCS is now an index into an array of 62 different caching
882 * configurations programmed by the kernel.
883 */
884
885 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
886 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
887 .IndextoMOCSTables = 2 \
888 }
889
890 #define GEN9_MOCS_PTE { \
891 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
892 .IndextoMOCSTables = 1 \
893 }
894
895 struct anv_device_memory {
896 struct anv_bo bo;
897 uint32_t type_index;
898 VkDeviceSize map_size;
899 void * map;
900 };
901
902 /**
903 * Header for Vertex URB Entry (VUE)
904 */
905 struct anv_vue_header {
906 uint32_t Reserved;
907 uint32_t RTAIndex; /* RenderTargetArrayIndex */
908 uint32_t ViewportIndex;
909 float PointWidth;
910 };
911
912 struct anv_descriptor_set_binding_layout {
913 /* Number of array elements in this binding */
914 uint16_t array_size;
915
916 /* Index into the flattend descriptor set */
917 uint16_t descriptor_index;
918
919 /* Index into the dynamic state array for a dynamic buffer */
920 int16_t dynamic_offset_index;
921
922 /* Index into the descriptor set buffer views */
923 int16_t buffer_index;
924
925 struct {
926 /* Index into the binding table for the associated surface */
927 int16_t surface_index;
928
929 /* Index into the sampler table for the associated sampler */
930 int16_t sampler_index;
931
932 /* Index into the image table for the associated image */
933 int16_t image_index;
934 } stage[MESA_SHADER_STAGES];
935
936 /* Immutable samplers (or NULL if no immutable samplers) */
937 struct anv_sampler **immutable_samplers;
938 };
939
940 struct anv_descriptor_set_layout {
941 /* Number of bindings in this descriptor set */
942 uint16_t binding_count;
943
944 /* Total size of the descriptor set with room for all array entries */
945 uint16_t size;
946
947 /* Shader stages affected by this descriptor set */
948 uint16_t shader_stages;
949
950 /* Number of buffers in this descriptor set */
951 uint16_t buffer_count;
952
953 /* Number of dynamic offsets used by this descriptor set */
954 uint16_t dynamic_offset_count;
955
956 /* Bindings in this descriptor set */
957 struct anv_descriptor_set_binding_layout binding[0];
958 };
959
960 struct anv_descriptor {
961 VkDescriptorType type;
962
963 union {
964 struct {
965 struct anv_image_view *image_view;
966 struct anv_sampler *sampler;
967 };
968
969 struct anv_buffer_view *buffer_view;
970 };
971 };
972
973 struct anv_descriptor_set {
974 const struct anv_descriptor_set_layout *layout;
975 uint32_t size;
976 uint32_t buffer_count;
977 struct anv_buffer_view *buffer_views;
978 struct anv_descriptor descriptors[0];
979 };
980
981 struct anv_descriptor_pool {
982 uint32_t size;
983 uint32_t next;
984 uint32_t free_list;
985
986 struct anv_state_stream surface_state_stream;
987 void *surface_state_free_list;
988
989 char data[0];
990 };
991
992 VkResult
993 anv_descriptor_set_create(struct anv_device *device,
994 struct anv_descriptor_pool *pool,
995 const struct anv_descriptor_set_layout *layout,
996 struct anv_descriptor_set **out_set);
997
998 void
999 anv_descriptor_set_destroy(struct anv_device *device,
1000 struct anv_descriptor_pool *pool,
1001 struct anv_descriptor_set *set);
1002
1003 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT16_MAX
1004
1005 struct anv_pipeline_binding {
1006 /* The descriptor set this surface corresponds to. The special value of
1007 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1008 * to a color attachment and not a regular descriptor.
1009 */
1010 uint16_t set;
1011
1012 /* Offset into the descriptor set or attachment list. */
1013 uint16_t offset;
1014 };
1015
1016 struct anv_pipeline_layout {
1017 struct {
1018 struct anv_descriptor_set_layout *layout;
1019 uint32_t dynamic_offset_start;
1020 } set[MAX_SETS];
1021
1022 uint32_t num_sets;
1023
1024 struct {
1025 bool has_dynamic_offsets;
1026 } stage[MESA_SHADER_STAGES];
1027 };
1028
1029 struct anv_buffer {
1030 struct anv_device * device;
1031 VkDeviceSize size;
1032
1033 VkBufferUsageFlags usage;
1034
1035 /* Set when bound */
1036 struct anv_bo * bo;
1037 VkDeviceSize offset;
1038 };
1039
1040 enum anv_cmd_dirty_bits {
1041 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1042 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1043 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1044 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1045 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1046 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1047 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1048 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1049 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1050 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1051 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1052 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1053 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1054 };
1055 typedef uint32_t anv_cmd_dirty_mask_t;
1056
1057 struct anv_vertex_binding {
1058 struct anv_buffer * buffer;
1059 VkDeviceSize offset;
1060 };
1061
1062 struct anv_push_constants {
1063 /* Current allocated size of this push constants data structure.
1064 * Because a decent chunk of it may not be used (images on SKL, for
1065 * instance), we won't actually allocate the entire structure up-front.
1066 */
1067 uint32_t size;
1068
1069 /* Push constant data provided by the client through vkPushConstants */
1070 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1071
1072 /* Our hardware only provides zero-based vertex and instance id so, in
1073 * order to satisfy the vulkan requirements, we may have to push one or
1074 * both of these into the shader.
1075 */
1076 uint32_t base_vertex;
1077 uint32_t base_instance;
1078
1079 /* Offsets and ranges for dynamically bound buffers */
1080 struct {
1081 uint32_t offset;
1082 uint32_t range;
1083 } dynamic[MAX_DYNAMIC_BUFFERS];
1084
1085 /* Image data for image_load_store on pre-SKL */
1086 struct brw_image_param images[MAX_IMAGES];
1087 };
1088
1089 struct anv_dynamic_state {
1090 struct {
1091 uint32_t count;
1092 VkViewport viewports[MAX_VIEWPORTS];
1093 } viewport;
1094
1095 struct {
1096 uint32_t count;
1097 VkRect2D scissors[MAX_SCISSORS];
1098 } scissor;
1099
1100 float line_width;
1101
1102 struct {
1103 float bias;
1104 float clamp;
1105 float slope;
1106 } depth_bias;
1107
1108 float blend_constants[4];
1109
1110 struct {
1111 float min;
1112 float max;
1113 } depth_bounds;
1114
1115 struct {
1116 uint32_t front;
1117 uint32_t back;
1118 } stencil_compare_mask;
1119
1120 struct {
1121 uint32_t front;
1122 uint32_t back;
1123 } stencil_write_mask;
1124
1125 struct {
1126 uint32_t front;
1127 uint32_t back;
1128 } stencil_reference;
1129 };
1130
1131 extern const struct anv_dynamic_state default_dynamic_state;
1132
1133 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1134 const struct anv_dynamic_state *src,
1135 uint32_t copy_mask);
1136
1137 /**
1138 * Attachment state when recording a renderpass instance.
1139 *
1140 * The clear value is valid only if there exists a pending clear.
1141 */
1142 struct anv_attachment_state {
1143 VkImageAspectFlags pending_clear_aspects;
1144 VkClearValue clear_value;
1145 };
1146
1147 /** State required while building cmd buffer */
1148 struct anv_cmd_state {
1149 /* PIPELINE_SELECT.PipelineSelection */
1150 uint32_t current_pipeline;
1151 uint32_t current_l3_config;
1152 uint32_t vb_dirty;
1153 anv_cmd_dirty_mask_t dirty;
1154 anv_cmd_dirty_mask_t compute_dirty;
1155 uint32_t num_workgroups_offset;
1156 struct anv_bo *num_workgroups_bo;
1157 VkShaderStageFlags descriptors_dirty;
1158 VkShaderStageFlags push_constants_dirty;
1159 uint32_t scratch_size;
1160 struct anv_pipeline * pipeline;
1161 struct anv_pipeline * compute_pipeline;
1162 struct anv_framebuffer * framebuffer;
1163 struct anv_render_pass * pass;
1164 struct anv_subpass * subpass;
1165 uint32_t restart_index;
1166 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1167 struct anv_descriptor_set * descriptors[MAX_SETS];
1168 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1169 struct anv_state binding_tables[MESA_SHADER_STAGES];
1170 struct anv_state samplers[MESA_SHADER_STAGES];
1171 struct anv_dynamic_state dynamic;
1172 bool need_query_wa;
1173
1174 /**
1175 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1176 * valid only when recording a render pass instance.
1177 */
1178 struct anv_attachment_state * attachments;
1179
1180 struct {
1181 struct anv_buffer * index_buffer;
1182 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1183 uint32_t index_offset;
1184 } gen7;
1185 };
1186
1187 struct anv_cmd_pool {
1188 VkAllocationCallbacks alloc;
1189 struct list_head cmd_buffers;
1190 };
1191
1192 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1193
1194 enum anv_cmd_buffer_exec_mode {
1195 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1196 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1197 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1198 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1199 };
1200
1201 struct anv_cmd_buffer {
1202 VK_LOADER_DATA _loader_data;
1203
1204 struct anv_device * device;
1205
1206 struct anv_cmd_pool * pool;
1207 struct list_head pool_link;
1208
1209 struct anv_batch batch;
1210
1211 /* Fields required for the actual chain of anv_batch_bo's.
1212 *
1213 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1214 */
1215 struct list_head batch_bos;
1216 enum anv_cmd_buffer_exec_mode exec_mode;
1217
1218 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1219 * referenced by this command buffer
1220 *
1221 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1222 */
1223 struct anv_vector seen_bbos;
1224
1225 /* A vector of int32_t's for every block of binding tables.
1226 *
1227 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1228 */
1229 struct anv_vector bt_blocks;
1230 uint32_t bt_next;
1231 struct anv_reloc_list surface_relocs;
1232
1233 /* Information needed for execbuf
1234 *
1235 * These fields are generated by anv_cmd_buffer_prepare_execbuf().
1236 */
1237 struct {
1238 struct drm_i915_gem_execbuffer2 execbuf;
1239
1240 struct drm_i915_gem_exec_object2 * objects;
1241 uint32_t bo_count;
1242 struct anv_bo ** bos;
1243
1244 /* Allocated length of the 'objects' and 'bos' arrays */
1245 uint32_t array_length;
1246
1247 bool need_reloc;
1248 } execbuf2;
1249
1250 /* Serial for tracking buffer completion */
1251 uint32_t serial;
1252
1253 /* Stream objects for storing temporary data */
1254 struct anv_state_stream surface_state_stream;
1255 struct anv_state_stream dynamic_state_stream;
1256
1257 VkCommandBufferUsageFlags usage_flags;
1258 VkCommandBufferLevel level;
1259
1260 struct anv_cmd_state state;
1261 };
1262
1263 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1264 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1265 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1266 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1267 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1268 struct anv_cmd_buffer *secondary);
1269 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1270
1271 VkResult anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1272 unsigned stage, struct anv_state *bt_state);
1273 VkResult anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1274 unsigned stage, struct anv_state *state);
1275 uint32_t gen7_cmd_buffer_flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer);
1276 void gen7_cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
1277 uint32_t stages);
1278
1279 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1280 const void *data, uint32_t size, uint32_t alignment);
1281 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1282 uint32_t *a, uint32_t *b,
1283 uint32_t dwords, uint32_t alignment);
1284
1285 struct anv_address
1286 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1287 struct anv_state
1288 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1289 uint32_t entries, uint32_t *state_offset);
1290 struct anv_state
1291 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1292 struct anv_state
1293 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1294 uint32_t size, uint32_t alignment);
1295
1296 VkResult
1297 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1298
1299 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1300 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1301
1302 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1303
1304 void anv_cmd_state_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1305 const VkRenderPassBeginInfo *info);
1306
1307 void anv_cmd_buffer_set_subpass(struct anv_cmd_buffer *cmd_buffer,
1308 struct anv_subpass *subpass);
1309
1310 struct anv_state
1311 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1312 gl_shader_stage stage);
1313 struct anv_state
1314 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1315
1316 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1317 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1318
1319 const struct anv_image_view *
1320 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1321
1322 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1323
1324 struct anv_fence {
1325 struct anv_bo bo;
1326 struct drm_i915_gem_execbuffer2 execbuf;
1327 struct drm_i915_gem_exec_object2 exec2_objects[1];
1328 bool ready;
1329 };
1330
1331 struct anv_event {
1332 uint64_t semaphore;
1333 struct anv_state state;
1334 };
1335
1336 struct nir_shader;
1337
1338 struct anv_shader_module {
1339 struct nir_shader * nir;
1340
1341 unsigned char sha1[20];
1342 uint32_t size;
1343 char data[0];
1344 };
1345
1346 void anv_hash_shader(unsigned char *hash, const void *key, size_t key_size,
1347 struct anv_shader_module *module,
1348 const char *entrypoint,
1349 const VkSpecializationInfo *spec_info);
1350
1351 static inline gl_shader_stage
1352 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1353 {
1354 assert(__builtin_popcount(vk_stage) == 1);
1355 return ffs(vk_stage) - 1;
1356 }
1357
1358 static inline VkShaderStageFlagBits
1359 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1360 {
1361 return (1 << mesa_stage);
1362 }
1363
1364 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
1365
1366 #define anv_foreach_stage(stage, stage_bits) \
1367 for (gl_shader_stage stage, \
1368 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
1369 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1370 __tmp &= ~(1 << (stage)))
1371
1372 struct anv_pipeline_bind_map {
1373 uint32_t surface_count;
1374 uint32_t sampler_count;
1375 uint32_t image_count;
1376 uint32_t attachment_count;
1377
1378 struct anv_pipeline_binding * surface_to_descriptor;
1379 struct anv_pipeline_binding * sampler_to_descriptor;
1380 uint32_t * surface_to_attachment;
1381 };
1382
1383 struct anv_pipeline {
1384 struct anv_device * device;
1385 struct anv_batch batch;
1386 uint32_t batch_data[512];
1387 struct anv_reloc_list batch_relocs;
1388 uint32_t dynamic_state_mask;
1389 struct anv_dynamic_state dynamic_state;
1390
1391 struct anv_pipeline_layout * layout;
1392 struct anv_pipeline_bind_map bindings[MESA_SHADER_STAGES];
1393
1394 bool use_repclear;
1395
1396 const struct brw_stage_prog_data * prog_data[MESA_SHADER_STAGES];
1397 uint32_t scratch_start[MESA_SHADER_STAGES];
1398 uint32_t total_scratch;
1399 struct {
1400 uint8_t push_size[MESA_SHADER_FRAGMENT + 1];
1401 uint32_t start[MESA_SHADER_GEOMETRY + 1];
1402 uint32_t size[MESA_SHADER_GEOMETRY + 1];
1403 uint32_t entries[MESA_SHADER_GEOMETRY + 1];
1404 } urb;
1405
1406 VkShaderStageFlags active_stages;
1407 struct anv_state blend_state;
1408 uint32_t vs_simd8;
1409 uint32_t vs_vec4;
1410 uint32_t ps_simd8;
1411 uint32_t ps_simd16;
1412 uint32_t ps_ksp0;
1413 uint32_t ps_ksp2;
1414 uint32_t ps_grf_start0;
1415 uint32_t ps_grf_start2;
1416 uint32_t gs_kernel;
1417 uint32_t cs_simd;
1418
1419 uint32_t vb_used;
1420 uint32_t binding_stride[MAX_VBS];
1421 bool instancing_enable[MAX_VBS];
1422 bool primitive_restart;
1423 uint32_t topology;
1424
1425 uint32_t cs_thread_width_max;
1426 uint32_t cs_right_mask;
1427
1428 struct {
1429 uint32_t sf[7];
1430 uint32_t depth_stencil_state[3];
1431 } gen7;
1432
1433 struct {
1434 uint32_t sf[4];
1435 uint32_t raster[5];
1436 uint32_t wm_depth_stencil[3];
1437 } gen8;
1438
1439 struct {
1440 uint32_t wm_depth_stencil[4];
1441 } gen9;
1442 };
1443
1444 static inline const struct brw_vs_prog_data *
1445 get_vs_prog_data(struct anv_pipeline *pipeline)
1446 {
1447 return (const struct brw_vs_prog_data *) pipeline->prog_data[MESA_SHADER_VERTEX];
1448 }
1449
1450 static inline const struct brw_gs_prog_data *
1451 get_gs_prog_data(struct anv_pipeline *pipeline)
1452 {
1453 return (const struct brw_gs_prog_data *) pipeline->prog_data[MESA_SHADER_GEOMETRY];
1454 }
1455
1456 static inline const struct brw_wm_prog_data *
1457 get_wm_prog_data(struct anv_pipeline *pipeline)
1458 {
1459 return (const struct brw_wm_prog_data *) pipeline->prog_data[MESA_SHADER_FRAGMENT];
1460 }
1461
1462 static inline const struct brw_cs_prog_data *
1463 get_cs_prog_data(struct anv_pipeline *pipeline)
1464 {
1465 return (const struct brw_cs_prog_data *) pipeline->prog_data[MESA_SHADER_COMPUTE];
1466 }
1467
1468 struct anv_graphics_pipeline_create_info {
1469 /**
1470 * If non-negative, overrides the color attachment count of the pipeline's
1471 * subpass.
1472 */
1473 int8_t color_attachment_count;
1474
1475 bool use_repclear;
1476 bool disable_viewport;
1477 bool disable_scissor;
1478 bool disable_vs;
1479 bool use_rectlist;
1480 };
1481
1482 VkResult
1483 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1484 struct anv_pipeline_cache *cache,
1485 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1486 const struct anv_graphics_pipeline_create_info *extra,
1487 const VkAllocationCallbacks *alloc);
1488
1489 VkResult
1490 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1491 struct anv_pipeline_cache *cache,
1492 const VkComputePipelineCreateInfo *info,
1493 struct anv_shader_module *module,
1494 const char *entrypoint,
1495 const VkSpecializationInfo *spec_info);
1496
1497 VkResult
1498 anv_graphics_pipeline_create(VkDevice device,
1499 VkPipelineCache cache,
1500 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1501 const struct anv_graphics_pipeline_create_info *extra,
1502 const VkAllocationCallbacks *alloc,
1503 VkPipeline *pPipeline);
1504
1505 struct anv_format_swizzle {
1506 unsigned r:2;
1507 unsigned g:2;
1508 unsigned b:2;
1509 unsigned a:2;
1510 };
1511
1512 struct anv_format {
1513 const VkFormat vk_format;
1514 const char *name;
1515 enum isl_format isl_format; /**< RENDER_SURFACE_STATE.SurfaceFormat */
1516 const struct isl_format_layout *isl_layout;
1517 struct anv_format_swizzle swizzle;
1518 bool has_depth;
1519 bool has_stencil;
1520 };
1521
1522 const struct anv_format *
1523 anv_format_for_vk_format(VkFormat format);
1524
1525 enum isl_format
1526 anv_get_isl_format(VkFormat format, VkImageAspectFlags aspect,
1527 VkImageTiling tiling, struct anv_format_swizzle *swizzle);
1528
1529 static inline bool
1530 anv_format_is_color(const struct anv_format *format)
1531 {
1532 return !format->has_depth && !format->has_stencil;
1533 }
1534
1535 static inline bool
1536 anv_format_is_depth_or_stencil(const struct anv_format *format)
1537 {
1538 return format->has_depth || format->has_stencil;
1539 }
1540
1541 /**
1542 * Subsurface of an anv_image.
1543 */
1544 struct anv_surface {
1545 struct isl_surf isl;
1546
1547 /**
1548 * Offset from VkImage's base address, as bound by vkBindImageMemory().
1549 */
1550 uint32_t offset;
1551 };
1552
1553 struct anv_image {
1554 VkImageType type;
1555 /* The original VkFormat provided by the client. This may not match any
1556 * of the actual surface formats.
1557 */
1558 VkFormat vk_format;
1559 const struct anv_format *format;
1560 VkExtent3D extent;
1561 uint32_t levels;
1562 uint32_t array_size;
1563 uint32_t samples; /**< VkImageCreateInfo::samples */
1564 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1565 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1566
1567 VkDeviceSize size;
1568 uint32_t alignment;
1569
1570 /* Set when bound */
1571 struct anv_bo *bo;
1572 VkDeviceSize offset;
1573
1574 /**
1575 * Image subsurfaces
1576 *
1577 * For each foo, anv_image::foo_surface is valid if and only if
1578 * anv_image::format has a foo aspect.
1579 *
1580 * The hardware requires that the depth buffer and stencil buffer be
1581 * separate surfaces. From Vulkan's perspective, though, depth and stencil
1582 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
1583 * allocate the depth and stencil buffers as separate surfaces in the same
1584 * bo.
1585 */
1586 union {
1587 struct anv_surface color_surface;
1588
1589 struct {
1590 struct anv_surface depth_surface;
1591 struct anv_surface stencil_surface;
1592 };
1593 };
1594 };
1595
1596 static inline uint32_t
1597 anv_get_layerCount(const struct anv_image *image,
1598 const VkImageSubresourceRange *range)
1599 {
1600 return range->layerCount == VK_REMAINING_ARRAY_LAYERS ?
1601 image->array_size - range->baseArrayLayer : range->layerCount;
1602 }
1603
1604 static inline uint32_t
1605 anv_get_levelCount(const struct anv_image *image,
1606 const VkImageSubresourceRange *range)
1607 {
1608 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
1609 image->levels - range->baseMipLevel : range->levelCount;
1610 }
1611
1612
1613 struct anv_image_view {
1614 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
1615 struct anv_bo *bo;
1616 uint32_t offset; /**< Offset into bo. */
1617
1618 VkImageAspectFlags aspect_mask;
1619 VkFormat vk_format;
1620 uint32_t base_layer;
1621 uint32_t base_mip;
1622 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
1623
1624 /** RENDER_SURFACE_STATE when using image as a color render target. */
1625 struct anv_state color_rt_surface_state;
1626
1627 /** RENDER_SURFACE_STATE when using image as a sampler surface. */
1628 struct anv_state sampler_surface_state;
1629
1630 /** RENDER_SURFACE_STATE when using image as a storage image. */
1631 struct anv_state storage_surface_state;
1632
1633 struct brw_image_param storage_image_param;
1634 };
1635
1636 struct anv_image_create_info {
1637 const VkImageCreateInfo *vk_info;
1638 isl_tiling_flags_t isl_tiling_flags;
1639 uint32_t stride;
1640 };
1641
1642 VkResult anv_image_create(VkDevice _device,
1643 const struct anv_image_create_info *info,
1644 const VkAllocationCallbacks* alloc,
1645 VkImage *pImage);
1646
1647 struct anv_surface *
1648 anv_image_get_surface_for_aspect_mask(struct anv_image *image,
1649 VkImageAspectFlags aspect_mask);
1650
1651 void anv_image_view_init(struct anv_image_view *view,
1652 struct anv_device *device,
1653 const VkImageViewCreateInfo* pCreateInfo,
1654 struct anv_cmd_buffer *cmd_buffer,
1655 uint32_t offset,
1656 VkImageUsageFlags usage_mask);
1657
1658 struct anv_buffer_view {
1659 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1660 struct anv_bo *bo;
1661 uint32_t offset; /**< Offset into bo. */
1662 uint64_t range; /**< VkBufferViewCreateInfo::range */
1663
1664 struct anv_state surface_state;
1665 struct anv_state storage_surface_state;
1666
1667 struct brw_image_param storage_image_param;
1668 };
1669
1670 const struct anv_format *
1671 anv_format_for_descriptor_type(VkDescriptorType type);
1672
1673 void anv_fill_buffer_surface_state(struct anv_device *device,
1674 struct anv_state state,
1675 enum isl_format format,
1676 uint32_t offset, uint32_t range,
1677 uint32_t stride);
1678
1679 void anv_image_view_fill_image_param(struct anv_device *device,
1680 struct anv_image_view *view,
1681 struct brw_image_param *param);
1682 void anv_buffer_view_fill_image_param(struct anv_device *device,
1683 struct anv_buffer_view *view,
1684 struct brw_image_param *param);
1685
1686 struct anv_sampler {
1687 uint32_t state[4];
1688 };
1689
1690 struct anv_framebuffer {
1691 uint32_t width;
1692 uint32_t height;
1693 uint32_t layers;
1694
1695 uint32_t attachment_count;
1696 struct anv_image_view * attachments[0];
1697 };
1698
1699 struct anv_subpass {
1700 uint32_t input_count;
1701 uint32_t * input_attachments;
1702 uint32_t color_count;
1703 uint32_t * color_attachments;
1704 uint32_t * resolve_attachments;
1705 uint32_t depth_stencil_attachment;
1706
1707 /** Subpass has at least one resolve attachment */
1708 bool has_resolve;
1709 };
1710
1711 struct anv_render_pass_attachment {
1712 const struct anv_format *format;
1713 uint32_t samples;
1714 VkAttachmentLoadOp load_op;
1715 VkAttachmentLoadOp stencil_load_op;
1716 };
1717
1718 struct anv_render_pass {
1719 uint32_t attachment_count;
1720 uint32_t subpass_count;
1721 uint32_t * subpass_attachments;
1722 struct anv_render_pass_attachment * attachments;
1723 struct anv_subpass subpasses[0];
1724 };
1725
1726 extern struct anv_render_pass anv_meta_dummy_renderpass;
1727
1728 struct anv_query_pool_slot {
1729 uint64_t begin;
1730 uint64_t end;
1731 uint64_t available;
1732 };
1733
1734 struct anv_query_pool {
1735 VkQueryType type;
1736 uint32_t slots;
1737 struct anv_bo bo;
1738 };
1739
1740 VkResult anv_device_init_meta(struct anv_device *device);
1741 void anv_device_finish_meta(struct anv_device *device);
1742
1743 void *anv_lookup_entrypoint(const char *name);
1744
1745 void anv_dump_image_to_ppm(struct anv_device *device,
1746 struct anv_image *image, unsigned miplevel,
1747 unsigned array_layer, const char *filename);
1748
1749 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
1750 \
1751 static inline struct __anv_type * \
1752 __anv_type ## _from_handle(__VkType _handle) \
1753 { \
1754 return (struct __anv_type *) _handle; \
1755 } \
1756 \
1757 static inline __VkType \
1758 __anv_type ## _to_handle(struct __anv_type *_obj) \
1759 { \
1760 return (__VkType) _obj; \
1761 }
1762
1763 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
1764 \
1765 static inline struct __anv_type * \
1766 __anv_type ## _from_handle(__VkType _handle) \
1767 { \
1768 return (struct __anv_type *)(uintptr_t) _handle; \
1769 } \
1770 \
1771 static inline __VkType \
1772 __anv_type ## _to_handle(struct __anv_type *_obj) \
1773 { \
1774 return (__VkType)(uintptr_t) _obj; \
1775 }
1776
1777 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
1778 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
1779
1780 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
1781 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
1782 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
1783 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
1784 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
1785
1786 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
1787 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
1788 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
1789 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
1790 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
1791 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
1792 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
1793 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
1794 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
1795 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
1796 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
1797 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
1798 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
1799 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
1800 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
1801 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
1802 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
1803 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
1804 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
1805
1806 #define ANV_DEFINE_STRUCT_CASTS(__anv_type, __VkType) \
1807 \
1808 static inline const __VkType * \
1809 __anv_type ## _to_ ## __VkType(const struct __anv_type *__anv_obj) \
1810 { \
1811 return (const __VkType *) __anv_obj; \
1812 }
1813
1814 #define ANV_COMMON_TO_STRUCT(__VkType, __vk_name, __common_name) \
1815 const __VkType *__vk_name = anv_common_to_ ## __VkType(__common_name)
1816
1817 ANV_DEFINE_STRUCT_CASTS(anv_common, VkMemoryBarrier)
1818 ANV_DEFINE_STRUCT_CASTS(anv_common, VkBufferMemoryBarrier)
1819 ANV_DEFINE_STRUCT_CASTS(anv_common, VkImageMemoryBarrier)
1820
1821 /* Gen-specific function declarations */
1822 #ifdef genX
1823 # include "anv_genX.h"
1824 #else
1825 # define genX(x) gen7_##x
1826 # include "anv_genX.h"
1827 # undef genX
1828 # define genX(x) gen75_##x
1829 # include "anv_genX.h"
1830 # undef genX
1831 # define genX(x) gen8_##x
1832 # include "anv_genX.h"
1833 # undef genX
1834 # define genX(x) gen9_##x
1835 # include "anv_genX.h"
1836 # undef genX
1837 #endif
1838
1839 #ifdef __cplusplus
1840 }
1841 #endif