anv: enable multiple planes per image/imageView
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
40 #else
41 #define VG(x)
42 #endif
43
44 #include "common/gen_clflush.h"
45 #include "common/gen_device_info.h"
46 #include "blorp/blorp.h"
47 #include "compiler/brw_compiler.h"
48 #include "util/macros.h"
49 #include "util/list.h"
50 #include "util/u_atomic.h"
51 #include "util/u_vector.h"
52 #include "vk_alloc.h"
53
54 /* Pre-declarations needed for WSI entrypoints */
55 struct wl_surface;
56 struct wl_display;
57 typedef struct xcb_connection_t xcb_connection_t;
58 typedef uint32_t xcb_visualid_t;
59 typedef uint32_t xcb_window_t;
60
61 struct anv_buffer;
62 struct anv_buffer_view;
63 struct anv_image_view;
64 struct anv_instance;
65 struct anv_debug_report_callback;
66
67 struct gen_l3_config;
68
69 #include <vulkan/vulkan.h>
70 #include <vulkan/vulkan_intel.h>
71 #include <vulkan/vk_icd.h>
72
73 #include "anv_entrypoints.h"
74 #include "isl/isl.h"
75
76 #include "common/gen_debug.h"
77 #include "wsi_common.h"
78
79 /* Allowing different clear colors requires us to perform a depth resolve at
80 * the end of certain render passes. This is because while slow clears store
81 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
82 * See the PRMs for examples describing when additional resolves would be
83 * necessary. To enable fast clears without requiring extra resolves, we set
84 * the clear value to a globally-defined one. We could allow different values
85 * if the user doesn't expect coherent data during or after a render passes
86 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
87 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
88 * 1.0f seems to be the only value used. The only application that doesn't set
89 * this value does so through the usage of an seemingly uninitialized clear
90 * value.
91 */
92 #define ANV_HZ_FC_VAL 1.0f
93
94 #define MAX_VBS 28
95 #define MAX_SETS 8
96 #define MAX_RTS 8
97 #define MAX_VIEWPORTS 16
98 #define MAX_SCISSORS 16
99 #define MAX_PUSH_CONSTANTS_SIZE 128
100 #define MAX_DYNAMIC_BUFFERS 16
101 #define MAX_IMAGES 8
102 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
103
104 #define ANV_SVGS_VB_INDEX MAX_VBS
105 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
106
107 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
108
109 static inline uint32_t
110 align_down_npot_u32(uint32_t v, uint32_t a)
111 {
112 return v - (v % a);
113 }
114
115 static inline uint32_t
116 align_u32(uint32_t v, uint32_t a)
117 {
118 assert(a != 0 && a == (a & -a));
119 return (v + a - 1) & ~(a - 1);
120 }
121
122 static inline uint64_t
123 align_u64(uint64_t v, uint64_t a)
124 {
125 assert(a != 0 && a == (a & -a));
126 return (v + a - 1) & ~(a - 1);
127 }
128
129 static inline int32_t
130 align_i32(int32_t v, int32_t a)
131 {
132 assert(a != 0 && a == (a & -a));
133 return (v + a - 1) & ~(a - 1);
134 }
135
136 /** Alignment must be a power of 2. */
137 static inline bool
138 anv_is_aligned(uintmax_t n, uintmax_t a)
139 {
140 assert(a == (a & -a));
141 return (n & (a - 1)) == 0;
142 }
143
144 static inline uint32_t
145 anv_minify(uint32_t n, uint32_t levels)
146 {
147 if (unlikely(n == 0))
148 return 0;
149 else
150 return MAX2(n >> levels, 1);
151 }
152
153 static inline float
154 anv_clamp_f(float f, float min, float max)
155 {
156 assert(min < max);
157
158 if (f > max)
159 return max;
160 else if (f < min)
161 return min;
162 else
163 return f;
164 }
165
166 static inline bool
167 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
168 {
169 if (*inout_mask & clear_mask) {
170 *inout_mask &= ~clear_mask;
171 return true;
172 } else {
173 return false;
174 }
175 }
176
177 static inline union isl_color_value
178 vk_to_isl_color(VkClearColorValue color)
179 {
180 return (union isl_color_value) {
181 .u32 = {
182 color.uint32[0],
183 color.uint32[1],
184 color.uint32[2],
185 color.uint32[3],
186 },
187 };
188 }
189
190 #define for_each_bit(b, dword) \
191 for (uint32_t __dword = (dword); \
192 (b) = __builtin_ffs(__dword) - 1, __dword; \
193 __dword &= ~(1 << (b)))
194
195 #define typed_memcpy(dest, src, count) ({ \
196 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
197 memcpy((dest), (src), (count) * sizeof(*(src))); \
198 })
199
200 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
201 * to be added here in order to utilize mapping in debug/error/perf macros.
202 */
203 #define REPORT_OBJECT_TYPE(o) \
204 __builtin_choose_expr ( \
205 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
206 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
207 __builtin_choose_expr ( \
208 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
209 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
210 __builtin_choose_expr ( \
211 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
212 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
213 __builtin_choose_expr ( \
214 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
215 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
216 __builtin_choose_expr ( \
217 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
218 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
219 __builtin_choose_expr ( \
220 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
221 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
222 __builtin_choose_expr ( \
223 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
224 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
225 __builtin_choose_expr ( \
226 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
227 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
228 __builtin_choose_expr ( \
229 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
230 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
231 __builtin_choose_expr ( \
232 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
233 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
234 __builtin_choose_expr ( \
235 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
236 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
237 __builtin_choose_expr ( \
238 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
239 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
240 __builtin_choose_expr ( \
241 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
242 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
243 __builtin_choose_expr ( \
244 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
245 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
246 __builtin_choose_expr ( \
247 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
248 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
249 __builtin_choose_expr ( \
250 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
251 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
252 __builtin_choose_expr ( \
253 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
254 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
255 __builtin_choose_expr ( \
256 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
257 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
258 __builtin_choose_expr ( \
259 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
260 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
261 __builtin_choose_expr ( \
262 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
263 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
264 __builtin_choose_expr ( \
265 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
266 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
267 __builtin_choose_expr ( \
268 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
269 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
270 __builtin_choose_expr ( \
271 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
272 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
273 __builtin_choose_expr ( \
274 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
275 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
276 __builtin_choose_expr ( \
277 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
278 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
279 __builtin_choose_expr ( \
280 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
281 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
282 __builtin_choose_expr ( \
283 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
284 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
285 __builtin_choose_expr ( \
286 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
287 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
288 __builtin_choose_expr ( \
289 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
290 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
291 __builtin_choose_expr ( \
292 __builtin_types_compatible_p (__typeof (o), struct anv_debug_callback*), \
293 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
294 __builtin_choose_expr ( \
295 __builtin_types_compatible_p (__typeof (o), void*), \
296 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
297 /* The void expression results in a compile-time error \
298 when assigning the result to something. */ \
299 (void)0)))))))))))))))))))))))))))))))
300
301 /* Whenever we generate an error, pass it through this function. Useful for
302 * debugging, where we can break on it. Only call at error site, not when
303 * propagating errors. Might be useful to plug in a stack trace here.
304 */
305
306 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
307 VkDebugReportObjectTypeEXT type, VkResult error,
308 const char *file, int line, const char *format, ...);
309
310 #ifdef DEBUG
311 #define vk_error(error) __vk_errorf(NULL, NULL,\
312 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
313 error, __FILE__, __LINE__, NULL);
314 #define vk_errorf(instance, obj, error, format, ...)\
315 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
316 __FILE__, __LINE__, format, ## __VA_ARGS__);
317 #define anv_debug(format, ...) fprintf(stderr, "debug: " format, ##__VA_ARGS__)
318 #else
319 #define vk_error(error) error
320 #define vk_errorf(instance, obj, error, format, ...) error
321 #define anv_debug(format, ...)
322 #endif
323
324 /**
325 * Warn on ignored extension structs.
326 *
327 * The Vulkan spec requires us to ignore unsupported or unknown structs in
328 * a pNext chain. In debug mode, emitting warnings for ignored structs may
329 * help us discover structs that we should not have ignored.
330 *
331 *
332 * From the Vulkan 1.0.38 spec:
333 *
334 * Any component of the implementation (the loader, any enabled layers,
335 * and drivers) must skip over, without processing (other than reading the
336 * sType and pNext members) any chained structures with sType values not
337 * defined by extensions supported by that component.
338 */
339 #define anv_debug_ignored_stype(sType) \
340 anv_debug("%s: ignored VkStructureType %u\n", __func__, (sType))
341
342 void __anv_finishme(const char *file, int line, const char *format, ...)
343 anv_printflike(3, 4);
344 void __anv_perf_warn(struct anv_instance *instance, const void *object,
345 VkDebugReportObjectTypeEXT type, const char *file,
346 int line, const char *format, ...)
347 anv_printflike(6, 7);
348 void anv_loge(const char *format, ...) anv_printflike(1, 2);
349 void anv_loge_v(const char *format, va_list va);
350
351 void anv_debug_report(struct anv_instance *instance,
352 VkDebugReportFlagsEXT flags,
353 VkDebugReportObjectTypeEXT object_type,
354 uint64_t handle,
355 size_t location,
356 int32_t messageCode,
357 const char* pLayerPrefix,
358 const char *pMessage);
359
360 /**
361 * Print a FINISHME message, including its source location.
362 */
363 #define anv_finishme(format, ...) \
364 do { \
365 static bool reported = false; \
366 if (!reported) { \
367 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
368 reported = true; \
369 } \
370 } while (0)
371
372 /**
373 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
374 */
375 #define anv_perf_warn(instance, obj, format, ...) \
376 do { \
377 static bool reported = false; \
378 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
379 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
380 format, ##__VA_ARGS__); \
381 reported = true; \
382 } \
383 } while (0)
384
385 /* A non-fatal assert. Useful for debugging. */
386 #ifdef DEBUG
387 #define anv_assert(x) ({ \
388 if (unlikely(!(x))) \
389 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
390 })
391 #else
392 #define anv_assert(x)
393 #endif
394
395 /* A multi-pointer allocator
396 *
397 * When copying data structures from the user (such as a render pass), it's
398 * common to need to allocate data for a bunch of different things. Instead
399 * of doing several allocations and having to handle all of the error checking
400 * that entails, it can be easier to do a single allocation. This struct
401 * helps facilitate that. The intended usage looks like this:
402 *
403 * ANV_MULTIALLOC(ma)
404 * anv_multialloc_add(&ma, &main_ptr, 1);
405 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
406 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
407 *
408 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
409 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
410 */
411 struct anv_multialloc {
412 size_t size;
413 size_t align;
414
415 uint32_t ptr_count;
416 void **ptrs[8];
417 };
418
419 #define ANV_MULTIALLOC_INIT \
420 ((struct anv_multialloc) { 0, })
421
422 #define ANV_MULTIALLOC(_name) \
423 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
424
425 __attribute__((always_inline))
426 static inline void
427 _anv_multialloc_add(struct anv_multialloc *ma,
428 void **ptr, size_t size, size_t align)
429 {
430 size_t offset = align_u64(ma->size, align);
431 ma->size = offset + size;
432 ma->align = MAX2(ma->align, align);
433
434 /* Store the offset in the pointer. */
435 *ptr = (void *)(uintptr_t)offset;
436
437 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
438 ma->ptrs[ma->ptr_count++] = ptr;
439 }
440
441 #define anv_multialloc_add(_ma, _ptr, _count) \
442 _anv_multialloc_add((_ma), (void **)(_ptr), \
443 (_count) * sizeof(**(_ptr)), __alignof__(**(_ptr)))
444
445 __attribute__((always_inline))
446 static inline void *
447 anv_multialloc_alloc(struct anv_multialloc *ma,
448 const VkAllocationCallbacks *alloc,
449 VkSystemAllocationScope scope)
450 {
451 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
452 if (!ptr)
453 return NULL;
454
455 /* Fill out each of the pointers with their final value.
456 *
457 * for (uint32_t i = 0; i < ma->ptr_count; i++)
458 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
459 *
460 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
461 * constant, GCC is incapable of figuring this out and unrolling the loop
462 * so we have to give it a little help.
463 */
464 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
465 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
466 if ((_i) < ma->ptr_count) \
467 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
468 _ANV_MULTIALLOC_UPDATE_POINTER(0);
469 _ANV_MULTIALLOC_UPDATE_POINTER(1);
470 _ANV_MULTIALLOC_UPDATE_POINTER(2);
471 _ANV_MULTIALLOC_UPDATE_POINTER(3);
472 _ANV_MULTIALLOC_UPDATE_POINTER(4);
473 _ANV_MULTIALLOC_UPDATE_POINTER(5);
474 _ANV_MULTIALLOC_UPDATE_POINTER(6);
475 _ANV_MULTIALLOC_UPDATE_POINTER(7);
476 #undef _ANV_MULTIALLOC_UPDATE_POINTER
477
478 return ptr;
479 }
480
481 __attribute__((always_inline))
482 static inline void *
483 anv_multialloc_alloc2(struct anv_multialloc *ma,
484 const VkAllocationCallbacks *parent_alloc,
485 const VkAllocationCallbacks *alloc,
486 VkSystemAllocationScope scope)
487 {
488 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
489 }
490
491 struct anv_bo {
492 uint32_t gem_handle;
493
494 /* Index into the current validation list. This is used by the
495 * validation list building alrogithm to track which buffers are already
496 * in the validation list so that we can ensure uniqueness.
497 */
498 uint32_t index;
499
500 /* Last known offset. This value is provided by the kernel when we
501 * execbuf and is used as the presumed offset for the next bunch of
502 * relocations.
503 */
504 uint64_t offset;
505
506 uint64_t size;
507 void *map;
508
509 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
510 uint32_t flags;
511 };
512
513 static inline void
514 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
515 {
516 bo->gem_handle = gem_handle;
517 bo->index = 0;
518 bo->offset = -1;
519 bo->size = size;
520 bo->map = NULL;
521 bo->flags = 0;
522 }
523
524 /* Represents a lock-free linked list of "free" things. This is used by
525 * both the block pool and the state pools. Unfortunately, in order to
526 * solve the ABA problem, we can't use a single uint32_t head.
527 */
528 union anv_free_list {
529 struct {
530 int32_t offset;
531
532 /* A simple count that is incremented every time the head changes. */
533 uint32_t count;
534 };
535 uint64_t u64;
536 };
537
538 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
539
540 struct anv_block_state {
541 union {
542 struct {
543 uint32_t next;
544 uint32_t end;
545 };
546 uint64_t u64;
547 };
548 };
549
550 struct anv_block_pool {
551 struct anv_device *device;
552
553 struct anv_bo bo;
554
555 /* The offset from the start of the bo to the "center" of the block
556 * pool. Pointers to allocated blocks are given by
557 * bo.map + center_bo_offset + offsets.
558 */
559 uint32_t center_bo_offset;
560
561 /* Current memory map of the block pool. This pointer may or may not
562 * point to the actual beginning of the block pool memory. If
563 * anv_block_pool_alloc_back has ever been called, then this pointer
564 * will point to the "center" position of the buffer and all offsets
565 * (negative or positive) given out by the block pool alloc functions
566 * will be valid relative to this pointer.
567 *
568 * In particular, map == bo.map + center_offset
569 */
570 void *map;
571 int fd;
572
573 /**
574 * Array of mmaps and gem handles owned by the block pool, reclaimed when
575 * the block pool is destroyed.
576 */
577 struct u_vector mmap_cleanups;
578
579 struct anv_block_state state;
580
581 struct anv_block_state back_state;
582 };
583
584 /* Block pools are backed by a fixed-size 1GB memfd */
585 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
586
587 /* The center of the block pool is also the middle of the memfd. This may
588 * change in the future if we decide differently for some reason.
589 */
590 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
591
592 static inline uint32_t
593 anv_block_pool_size(struct anv_block_pool *pool)
594 {
595 return pool->state.end + pool->back_state.end;
596 }
597
598 struct anv_state {
599 int32_t offset;
600 uint32_t alloc_size;
601 void *map;
602 };
603
604 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
605
606 struct anv_fixed_size_state_pool {
607 union anv_free_list free_list;
608 struct anv_block_state block;
609 };
610
611 #define ANV_MIN_STATE_SIZE_LOG2 6
612 #define ANV_MAX_STATE_SIZE_LOG2 20
613
614 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
615
616 struct anv_state_pool {
617 struct anv_block_pool block_pool;
618
619 /* The size of blocks which will be allocated from the block pool */
620 uint32_t block_size;
621
622 /** Free list for "back" allocations */
623 union anv_free_list back_alloc_free_list;
624
625 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
626 };
627
628 struct anv_state_stream_block;
629
630 struct anv_state_stream {
631 struct anv_state_pool *state_pool;
632
633 /* The size of blocks to allocate from the state pool */
634 uint32_t block_size;
635
636 /* Current block we're allocating from */
637 struct anv_state block;
638
639 /* Offset into the current block at which to allocate the next state */
640 uint32_t next;
641
642 /* List of all blocks allocated from this pool */
643 struct anv_state_stream_block *block_list;
644 };
645
646 /* The block_pool functions exported for testing only. The block pool should
647 * only be used via a state pool (see below).
648 */
649 VkResult anv_block_pool_init(struct anv_block_pool *pool,
650 struct anv_device *device,
651 uint32_t initial_size);
652 void anv_block_pool_finish(struct anv_block_pool *pool);
653 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
654 uint32_t block_size);
655 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
656 uint32_t block_size);
657
658 VkResult anv_state_pool_init(struct anv_state_pool *pool,
659 struct anv_device *device,
660 uint32_t block_size);
661 void anv_state_pool_finish(struct anv_state_pool *pool);
662 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
663 uint32_t state_size, uint32_t alignment);
664 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
665 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
666 void anv_state_stream_init(struct anv_state_stream *stream,
667 struct anv_state_pool *state_pool,
668 uint32_t block_size);
669 void anv_state_stream_finish(struct anv_state_stream *stream);
670 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
671 uint32_t size, uint32_t alignment);
672
673 /**
674 * Implements a pool of re-usable BOs. The interface is identical to that
675 * of block_pool except that each block is its own BO.
676 */
677 struct anv_bo_pool {
678 struct anv_device *device;
679
680 void *free_list[16];
681 };
682
683 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
684 void anv_bo_pool_finish(struct anv_bo_pool *pool);
685 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
686 uint32_t size);
687 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
688
689 struct anv_scratch_bo {
690 bool exists;
691 struct anv_bo bo;
692 };
693
694 struct anv_scratch_pool {
695 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
696 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
697 };
698
699 void anv_scratch_pool_init(struct anv_device *device,
700 struct anv_scratch_pool *pool);
701 void anv_scratch_pool_finish(struct anv_device *device,
702 struct anv_scratch_pool *pool);
703 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
704 struct anv_scratch_pool *pool,
705 gl_shader_stage stage,
706 unsigned per_thread_scratch);
707
708 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
709 struct anv_bo_cache {
710 struct hash_table *bo_map;
711 pthread_mutex_t mutex;
712 };
713
714 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
715 void anv_bo_cache_finish(struct anv_bo_cache *cache);
716 VkResult anv_bo_cache_alloc(struct anv_device *device,
717 struct anv_bo_cache *cache,
718 uint64_t size, struct anv_bo **bo);
719 VkResult anv_bo_cache_import(struct anv_device *device,
720 struct anv_bo_cache *cache,
721 int fd, uint64_t size, struct anv_bo **bo);
722 VkResult anv_bo_cache_export(struct anv_device *device,
723 struct anv_bo_cache *cache,
724 struct anv_bo *bo_in, int *fd_out);
725 void anv_bo_cache_release(struct anv_device *device,
726 struct anv_bo_cache *cache,
727 struct anv_bo *bo);
728
729 struct anv_memory_type {
730 /* Standard bits passed on to the client */
731 VkMemoryPropertyFlags propertyFlags;
732 uint32_t heapIndex;
733
734 /* Driver-internal book-keeping */
735 VkBufferUsageFlags valid_buffer_usage;
736 };
737
738 struct anv_memory_heap {
739 /* Standard bits passed on to the client */
740 VkDeviceSize size;
741 VkMemoryHeapFlags flags;
742
743 /* Driver-internal book-keeping */
744 bool supports_48bit_addresses;
745 };
746
747 struct anv_physical_device {
748 VK_LOADER_DATA _loader_data;
749
750 struct anv_instance * instance;
751 uint32_t chipset_id;
752 char path[20];
753 const char * name;
754 struct gen_device_info info;
755 /** Amount of "GPU memory" we want to advertise
756 *
757 * Clearly, this value is bogus since Intel is a UMA architecture. On
758 * gen7 platforms, we are limited by GTT size unless we want to implement
759 * fine-grained tracking and GTT splitting. On Broadwell and above we are
760 * practically unlimited. However, we will never report more than 3/4 of
761 * the total system ram to try and avoid running out of RAM.
762 */
763 bool supports_48bit_addresses;
764 struct brw_compiler * compiler;
765 struct isl_device isl_dev;
766 int cmd_parser_version;
767 bool has_exec_async;
768 bool has_exec_fence;
769 bool has_syncobj;
770 bool has_syncobj_wait;
771
772 uint32_t eu_total;
773 uint32_t subslice_total;
774
775 struct {
776 uint32_t type_count;
777 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
778 uint32_t heap_count;
779 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
780 } memory;
781
782 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
783 uint8_t driver_uuid[VK_UUID_SIZE];
784 uint8_t device_uuid[VK_UUID_SIZE];
785
786 struct wsi_device wsi_device;
787 int local_fd;
788 };
789
790 struct anv_debug_report_callback {
791 /* Link in the 'callbacks' list in anv_instance struct. */
792 struct list_head link;
793 VkDebugReportFlagsEXT flags;
794 PFN_vkDebugReportCallbackEXT callback;
795 void * data;
796 };
797
798 struct anv_instance {
799 VK_LOADER_DATA _loader_data;
800
801 VkAllocationCallbacks alloc;
802
803 uint32_t apiVersion;
804 int physicalDeviceCount;
805 struct anv_physical_device physicalDevice;
806
807 /* VK_EXT_debug_report debug callbacks */
808 pthread_mutex_t callbacks_mutex;
809 struct list_head callbacks;
810 struct anv_debug_report_callback destroy_debug_cb;
811 };
812
813 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
814 void anv_finish_wsi(struct anv_physical_device *physical_device);
815
816 bool anv_instance_extension_supported(const char *name);
817 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
818 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
819 const char *name);
820
821 struct anv_queue {
822 VK_LOADER_DATA _loader_data;
823
824 struct anv_device * device;
825
826 struct anv_state_pool * pool;
827 };
828
829 struct anv_pipeline_cache {
830 struct anv_device * device;
831 pthread_mutex_t mutex;
832
833 struct hash_table * cache;
834 };
835
836 struct anv_pipeline_bind_map;
837
838 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
839 struct anv_device *device,
840 bool cache_enabled);
841 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
842
843 struct anv_shader_bin *
844 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
845 const void *key, uint32_t key_size);
846 struct anv_shader_bin *
847 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
848 const void *key_data, uint32_t key_size,
849 const void *kernel_data, uint32_t kernel_size,
850 const struct brw_stage_prog_data *prog_data,
851 uint32_t prog_data_size,
852 const struct anv_pipeline_bind_map *bind_map);
853
854 struct anv_device {
855 VK_LOADER_DATA _loader_data;
856
857 VkAllocationCallbacks alloc;
858
859 struct anv_instance * instance;
860 uint32_t chipset_id;
861 struct gen_device_info info;
862 struct isl_device isl_dev;
863 int context_id;
864 int fd;
865 bool can_chain_batches;
866 bool robust_buffer_access;
867
868 struct anv_bo_pool batch_bo_pool;
869
870 struct anv_bo_cache bo_cache;
871
872 struct anv_state_pool dynamic_state_pool;
873 struct anv_state_pool instruction_state_pool;
874 struct anv_state_pool surface_state_pool;
875
876 struct anv_bo workaround_bo;
877 struct anv_bo trivial_batch_bo;
878
879 struct anv_pipeline_cache blorp_shader_cache;
880 struct blorp_context blorp;
881
882 struct anv_state border_colors;
883
884 struct anv_queue queue;
885
886 struct anv_scratch_pool scratch_pool;
887
888 uint32_t default_mocs;
889
890 pthread_mutex_t mutex;
891 pthread_cond_t queue_submit;
892 bool lost;
893 };
894
895 static void inline
896 anv_state_flush(struct anv_device *device, struct anv_state state)
897 {
898 if (device->info.has_llc)
899 return;
900
901 gen_flush_range(state.map, state.alloc_size);
902 }
903
904 void anv_device_init_blorp(struct anv_device *device);
905 void anv_device_finish_blorp(struct anv_device *device);
906
907 VkResult anv_device_execbuf(struct anv_device *device,
908 struct drm_i915_gem_execbuffer2 *execbuf,
909 struct anv_bo **execbuf_bos);
910 VkResult anv_device_query_status(struct anv_device *device);
911 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
912 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
913 int64_t timeout);
914
915 void* anv_gem_mmap(struct anv_device *device,
916 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
917 void anv_gem_munmap(void *p, uint64_t size);
918 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
919 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
920 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
921 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
922 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
923 int anv_gem_execbuffer(struct anv_device *device,
924 struct drm_i915_gem_execbuffer2 *execbuf);
925 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
926 uint32_t stride, uint32_t tiling);
927 int anv_gem_create_context(struct anv_device *device);
928 int anv_gem_destroy_context(struct anv_device *device, int context);
929 int anv_gem_get_context_param(int fd, int context, uint32_t param,
930 uint64_t *value);
931 int anv_gem_get_param(int fd, uint32_t param);
932 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
933 int anv_gem_get_aperture(int fd, uint64_t *size);
934 bool anv_gem_supports_48b_addresses(int fd);
935 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
936 uint32_t *active, uint32_t *pending);
937 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
938 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
939 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
940 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
941 uint32_t read_domains, uint32_t write_domain);
942 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
943 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
944 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
945 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
946 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
947 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
948 uint32_t handle);
949 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
950 uint32_t handle, int fd);
951 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
952 bool anv_gem_supports_syncobj_wait(int fd);
953 int anv_gem_syncobj_wait(struct anv_device *device,
954 uint32_t *handles, uint32_t num_handles,
955 int64_t abs_timeout_ns, bool wait_all);
956
957 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
958
959 struct anv_reloc_list {
960 uint32_t num_relocs;
961 uint32_t array_length;
962 struct drm_i915_gem_relocation_entry * relocs;
963 struct anv_bo ** reloc_bos;
964 };
965
966 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
967 const VkAllocationCallbacks *alloc);
968 void anv_reloc_list_finish(struct anv_reloc_list *list,
969 const VkAllocationCallbacks *alloc);
970
971 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
972 const VkAllocationCallbacks *alloc,
973 uint32_t offset, struct anv_bo *target_bo,
974 uint32_t delta);
975
976 struct anv_batch_bo {
977 /* Link in the anv_cmd_buffer.owned_batch_bos list */
978 struct list_head link;
979
980 struct anv_bo bo;
981
982 /* Bytes actually consumed in this batch BO */
983 uint32_t length;
984
985 struct anv_reloc_list relocs;
986 };
987
988 struct anv_batch {
989 const VkAllocationCallbacks * alloc;
990
991 void * start;
992 void * end;
993 void * next;
994
995 struct anv_reloc_list * relocs;
996
997 /* This callback is called (with the associated user data) in the event
998 * that the batch runs out of space.
999 */
1000 VkResult (*extend_cb)(struct anv_batch *, void *);
1001 void * user_data;
1002
1003 /**
1004 * Current error status of the command buffer. Used to track inconsistent
1005 * or incomplete command buffer states that are the consequence of run-time
1006 * errors such as out of memory scenarios. We want to track this in the
1007 * batch because the command buffer object is not visible to some parts
1008 * of the driver.
1009 */
1010 VkResult status;
1011 };
1012
1013 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1014 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1015 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1016 void *location, struct anv_bo *bo, uint32_t offset);
1017 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1018 struct anv_batch *batch);
1019
1020 static inline VkResult
1021 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1022 {
1023 assert(error != VK_SUCCESS);
1024 if (batch->status == VK_SUCCESS)
1025 batch->status = error;
1026 return batch->status;
1027 }
1028
1029 static inline bool
1030 anv_batch_has_error(struct anv_batch *batch)
1031 {
1032 return batch->status != VK_SUCCESS;
1033 }
1034
1035 struct anv_address {
1036 struct anv_bo *bo;
1037 uint32_t offset;
1038 };
1039
1040 static inline uint64_t
1041 _anv_combine_address(struct anv_batch *batch, void *location,
1042 const struct anv_address address, uint32_t delta)
1043 {
1044 if (address.bo == NULL) {
1045 return address.offset + delta;
1046 } else {
1047 assert(batch->start <= location && location < batch->end);
1048
1049 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1050 }
1051 }
1052
1053 #define __gen_address_type struct anv_address
1054 #define __gen_user_data struct anv_batch
1055 #define __gen_combine_address _anv_combine_address
1056
1057 /* Wrapper macros needed to work around preprocessor argument issues. In
1058 * particular, arguments don't get pre-evaluated if they are concatenated.
1059 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1060 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1061 * We can work around this easily enough with these helpers.
1062 */
1063 #define __anv_cmd_length(cmd) cmd ## _length
1064 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1065 #define __anv_cmd_header(cmd) cmd ## _header
1066 #define __anv_cmd_pack(cmd) cmd ## _pack
1067 #define __anv_reg_num(reg) reg ## _num
1068
1069 #define anv_pack_struct(dst, struc, ...) do { \
1070 struct struc __template = { \
1071 __VA_ARGS__ \
1072 }; \
1073 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1074 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1075 } while (0)
1076
1077 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1078 void *__dst = anv_batch_emit_dwords(batch, n); \
1079 if (__dst) { \
1080 struct cmd __template = { \
1081 __anv_cmd_header(cmd), \
1082 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1083 __VA_ARGS__ \
1084 }; \
1085 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1086 } \
1087 __dst; \
1088 })
1089
1090 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1091 do { \
1092 uint32_t *dw; \
1093 \
1094 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1095 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1096 if (!dw) \
1097 break; \
1098 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1099 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1100 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1101 } while (0)
1102
1103 #define anv_batch_emit(batch, cmd, name) \
1104 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1105 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1106 __builtin_expect(_dst != NULL, 1); \
1107 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1108 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1109 _dst = NULL; \
1110 }))
1111
1112 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
1113 .GraphicsDataTypeGFDT = 0, \
1114 .LLCCacheabilityControlLLCCC = 0, \
1115 .L3CacheabilityControlL3CC = 1, \
1116 }
1117
1118 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
1119 .LLCeLLCCacheabilityControlLLCCC = 0, \
1120 .L3CacheabilityControlL3CC = 1, \
1121 }
1122
1123 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
1124 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
1125 .TargetCache = L3DefertoPATforLLCeLLCselection, \
1126 .AgeforQUADLRU = 0 \
1127 }
1128
1129 /* Skylake: MOCS is now an index into an array of 62 different caching
1130 * configurations programmed by the kernel.
1131 */
1132
1133 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
1134 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1135 .IndextoMOCSTables = 2 \
1136 }
1137
1138 #define GEN9_MOCS_PTE { \
1139 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1140 .IndextoMOCSTables = 1 \
1141 }
1142
1143 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1144 #define GEN10_MOCS (struct GEN10_MEMORY_OBJECT_CONTROL_STATE) { \
1145 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1146 .IndextoMOCSTables = 2 \
1147 }
1148
1149 #define GEN10_MOCS_PTE { \
1150 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1151 .IndextoMOCSTables = 1 \
1152 }
1153
1154 struct anv_device_memory {
1155 struct anv_bo * bo;
1156 struct anv_memory_type * type;
1157 VkDeviceSize map_size;
1158 void * map;
1159 };
1160
1161 /**
1162 * Header for Vertex URB Entry (VUE)
1163 */
1164 struct anv_vue_header {
1165 uint32_t Reserved;
1166 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1167 uint32_t ViewportIndex;
1168 float PointWidth;
1169 };
1170
1171 struct anv_descriptor_set_binding_layout {
1172 #ifndef NDEBUG
1173 /* The type of the descriptors in this binding */
1174 VkDescriptorType type;
1175 #endif
1176
1177 /* Number of array elements in this binding */
1178 uint16_t array_size;
1179
1180 /* Index into the flattend descriptor set */
1181 uint16_t descriptor_index;
1182
1183 /* Index into the dynamic state array for a dynamic buffer */
1184 int16_t dynamic_offset_index;
1185
1186 /* Index into the descriptor set buffer views */
1187 int16_t buffer_index;
1188
1189 struct {
1190 /* Index into the binding table for the associated surface */
1191 int16_t surface_index;
1192
1193 /* Index into the sampler table for the associated sampler */
1194 int16_t sampler_index;
1195
1196 /* Index into the image table for the associated image */
1197 int16_t image_index;
1198 } stage[MESA_SHADER_STAGES];
1199
1200 /* Immutable samplers (or NULL if no immutable samplers) */
1201 struct anv_sampler **immutable_samplers;
1202 };
1203
1204 struct anv_descriptor_set_layout {
1205 /* Number of bindings in this descriptor set */
1206 uint16_t binding_count;
1207
1208 /* Total size of the descriptor set with room for all array entries */
1209 uint16_t size;
1210
1211 /* Shader stages affected by this descriptor set */
1212 uint16_t shader_stages;
1213
1214 /* Number of buffers in this descriptor set */
1215 uint16_t buffer_count;
1216
1217 /* Number of dynamic offsets used by this descriptor set */
1218 uint16_t dynamic_offset_count;
1219
1220 /* Bindings in this descriptor set */
1221 struct anv_descriptor_set_binding_layout binding[0];
1222 };
1223
1224 struct anv_descriptor {
1225 VkDescriptorType type;
1226
1227 union {
1228 struct {
1229 VkImageLayout layout;
1230 struct anv_image_view *image_view;
1231 struct anv_sampler *sampler;
1232 };
1233
1234 struct {
1235 struct anv_buffer *buffer;
1236 uint64_t offset;
1237 uint64_t range;
1238 };
1239
1240 struct anv_buffer_view *buffer_view;
1241 };
1242 };
1243
1244 struct anv_descriptor_set {
1245 const struct anv_descriptor_set_layout *layout;
1246 uint32_t size;
1247 uint32_t buffer_count;
1248 struct anv_buffer_view *buffer_views;
1249 struct anv_descriptor descriptors[0];
1250 };
1251
1252 struct anv_buffer_view {
1253 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1254 struct anv_bo *bo;
1255 uint32_t offset; /**< Offset into bo. */
1256 uint64_t range; /**< VkBufferViewCreateInfo::range */
1257
1258 struct anv_state surface_state;
1259 struct anv_state storage_surface_state;
1260 struct anv_state writeonly_storage_surface_state;
1261
1262 struct brw_image_param storage_image_param;
1263 };
1264
1265 struct anv_push_descriptor_set {
1266 struct anv_descriptor_set set;
1267
1268 /* Put this field right behind anv_descriptor_set so it fills up the
1269 * descriptors[0] field. */
1270 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1271
1272 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1273 };
1274
1275 struct anv_descriptor_pool {
1276 uint32_t size;
1277 uint32_t next;
1278 uint32_t free_list;
1279
1280 struct anv_state_stream surface_state_stream;
1281 void *surface_state_free_list;
1282
1283 char data[0];
1284 };
1285
1286 enum anv_descriptor_template_entry_type {
1287 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1288 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1289 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1290 };
1291
1292 struct anv_descriptor_template_entry {
1293 /* The type of descriptor in this entry */
1294 VkDescriptorType type;
1295
1296 /* Binding in the descriptor set */
1297 uint32_t binding;
1298
1299 /* Offset at which to write into the descriptor set binding */
1300 uint32_t array_element;
1301
1302 /* Number of elements to write into the descriptor set binding */
1303 uint32_t array_count;
1304
1305 /* Offset into the user provided data */
1306 size_t offset;
1307
1308 /* Stride between elements into the user provided data */
1309 size_t stride;
1310 };
1311
1312 struct anv_descriptor_update_template {
1313 /* The descriptor set this template corresponds to. This value is only
1314 * valid if the template was created with the templateType
1315 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR.
1316 */
1317 uint8_t set;
1318
1319 /* Number of entries in this template */
1320 uint32_t entry_count;
1321
1322 /* Entries of the template */
1323 struct anv_descriptor_template_entry entries[0];
1324 };
1325
1326 size_t
1327 anv_descriptor_set_binding_layout_get_hw_size(const struct anv_descriptor_set_binding_layout *binding);
1328
1329 size_t
1330 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1331
1332 void
1333 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
1334 const struct gen_device_info * const devinfo,
1335 const VkDescriptorImageInfo * const info,
1336 VkDescriptorType type,
1337 uint32_t binding,
1338 uint32_t element);
1339
1340 void
1341 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
1342 VkDescriptorType type,
1343 struct anv_buffer_view *buffer_view,
1344 uint32_t binding,
1345 uint32_t element);
1346
1347 void
1348 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
1349 struct anv_device *device,
1350 struct anv_state_stream *alloc_stream,
1351 VkDescriptorType type,
1352 struct anv_buffer *buffer,
1353 uint32_t binding,
1354 uint32_t element,
1355 VkDeviceSize offset,
1356 VkDeviceSize range);
1357
1358 void
1359 anv_descriptor_set_write_template(struct anv_descriptor_set *set,
1360 struct anv_device *device,
1361 struct anv_state_stream *alloc_stream,
1362 const struct anv_descriptor_update_template *template,
1363 const void *data);
1364
1365 VkResult
1366 anv_descriptor_set_create(struct anv_device *device,
1367 struct anv_descriptor_pool *pool,
1368 const struct anv_descriptor_set_layout *layout,
1369 struct anv_descriptor_set **out_set);
1370
1371 void
1372 anv_descriptor_set_destroy(struct anv_device *device,
1373 struct anv_descriptor_pool *pool,
1374 struct anv_descriptor_set *set);
1375
1376 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1377
1378 struct anv_pipeline_binding {
1379 /* The descriptor set this surface corresponds to. The special value of
1380 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1381 * to a color attachment and not a regular descriptor.
1382 */
1383 uint8_t set;
1384
1385 /* Binding in the descriptor set */
1386 uint32_t binding;
1387
1388 /* Index in the binding */
1389 uint32_t index;
1390
1391 /* Plane in the binding index */
1392 uint8_t plane;
1393
1394 /* Input attachment index (relative to the subpass) */
1395 uint8_t input_attachment_index;
1396
1397 /* For a storage image, whether it is write-only */
1398 bool write_only;
1399 };
1400
1401 struct anv_pipeline_layout {
1402 struct {
1403 struct anv_descriptor_set_layout *layout;
1404 uint32_t dynamic_offset_start;
1405 } set[MAX_SETS];
1406
1407 uint32_t num_sets;
1408
1409 struct {
1410 bool has_dynamic_offsets;
1411 } stage[MESA_SHADER_STAGES];
1412
1413 unsigned char sha1[20];
1414 };
1415
1416 struct anv_buffer {
1417 struct anv_device * device;
1418 VkDeviceSize size;
1419
1420 VkBufferUsageFlags usage;
1421
1422 /* Set when bound */
1423 struct anv_bo * bo;
1424 VkDeviceSize offset;
1425 };
1426
1427 static inline uint64_t
1428 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1429 {
1430 assert(offset <= buffer->size);
1431 if (range == VK_WHOLE_SIZE) {
1432 return buffer->size - offset;
1433 } else {
1434 assert(range <= buffer->size);
1435 return range;
1436 }
1437 }
1438
1439 enum anv_cmd_dirty_bits {
1440 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1441 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1442 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1443 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1444 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1445 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1446 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1447 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1448 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1449 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1450 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1451 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1452 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1453 };
1454 typedef uint32_t anv_cmd_dirty_mask_t;
1455
1456 enum anv_pipe_bits {
1457 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1458 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1459 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1460 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1461 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1462 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1463 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1464 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1465 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1466 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1467 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1468
1469 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1470 * a flush has happened but not a CS stall. The next time we do any sort
1471 * of invalidation we need to insert a CS stall at that time. Otherwise,
1472 * we would have to CS stall on every flush which could be bad.
1473 */
1474 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1475 };
1476
1477 #define ANV_PIPE_FLUSH_BITS ( \
1478 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1479 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1480 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1481
1482 #define ANV_PIPE_STALL_BITS ( \
1483 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1484 ANV_PIPE_DEPTH_STALL_BIT | \
1485 ANV_PIPE_CS_STALL_BIT)
1486
1487 #define ANV_PIPE_INVALIDATE_BITS ( \
1488 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1489 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1490 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1491 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1492 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1493 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1494
1495 static inline enum anv_pipe_bits
1496 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1497 {
1498 enum anv_pipe_bits pipe_bits = 0;
1499
1500 unsigned b;
1501 for_each_bit(b, flags) {
1502 switch ((VkAccessFlagBits)(1 << b)) {
1503 case VK_ACCESS_SHADER_WRITE_BIT:
1504 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1505 break;
1506 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1507 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1508 break;
1509 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1510 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1511 break;
1512 case VK_ACCESS_TRANSFER_WRITE_BIT:
1513 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1514 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1515 break;
1516 default:
1517 break; /* Nothing to do */
1518 }
1519 }
1520
1521 return pipe_bits;
1522 }
1523
1524 static inline enum anv_pipe_bits
1525 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1526 {
1527 enum anv_pipe_bits pipe_bits = 0;
1528
1529 unsigned b;
1530 for_each_bit(b, flags) {
1531 switch ((VkAccessFlagBits)(1 << b)) {
1532 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1533 case VK_ACCESS_INDEX_READ_BIT:
1534 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1535 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1536 break;
1537 case VK_ACCESS_UNIFORM_READ_BIT:
1538 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1539 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1540 break;
1541 case VK_ACCESS_SHADER_READ_BIT:
1542 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1543 case VK_ACCESS_TRANSFER_READ_BIT:
1544 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1545 break;
1546 default:
1547 break; /* Nothing to do */
1548 }
1549 }
1550
1551 return pipe_bits;
1552 }
1553
1554 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT ( \
1555 VK_IMAGE_ASPECT_COLOR_BIT | \
1556 VK_IMAGE_ASPECT_PLANE_0_BIT_KHR | \
1557 VK_IMAGE_ASPECT_PLANE_1_BIT_KHR | \
1558 VK_IMAGE_ASPECT_PLANE_2_BIT_KHR)
1559 #define VK_IMAGE_ASPECT_PLANES_BITS ( \
1560 VK_IMAGE_ASPECT_PLANE_0_BIT_KHR | \
1561 VK_IMAGE_ASPECT_PLANE_1_BIT_KHR | \
1562 VK_IMAGE_ASPECT_PLANE_2_BIT_KHR)
1563
1564 struct anv_vertex_binding {
1565 struct anv_buffer * buffer;
1566 VkDeviceSize offset;
1567 };
1568
1569 struct anv_push_constants {
1570 /* Current allocated size of this push constants data structure.
1571 * Because a decent chunk of it may not be used (images on SKL, for
1572 * instance), we won't actually allocate the entire structure up-front.
1573 */
1574 uint32_t size;
1575
1576 /* Push constant data provided by the client through vkPushConstants */
1577 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1578
1579 /* Image data for image_load_store on pre-SKL */
1580 struct brw_image_param images[MAX_IMAGES];
1581 };
1582
1583 struct anv_dynamic_state {
1584 struct {
1585 uint32_t count;
1586 VkViewport viewports[MAX_VIEWPORTS];
1587 } viewport;
1588
1589 struct {
1590 uint32_t count;
1591 VkRect2D scissors[MAX_SCISSORS];
1592 } scissor;
1593
1594 float line_width;
1595
1596 struct {
1597 float bias;
1598 float clamp;
1599 float slope;
1600 } depth_bias;
1601
1602 float blend_constants[4];
1603
1604 struct {
1605 float min;
1606 float max;
1607 } depth_bounds;
1608
1609 struct {
1610 uint32_t front;
1611 uint32_t back;
1612 } stencil_compare_mask;
1613
1614 struct {
1615 uint32_t front;
1616 uint32_t back;
1617 } stencil_write_mask;
1618
1619 struct {
1620 uint32_t front;
1621 uint32_t back;
1622 } stencil_reference;
1623 };
1624
1625 extern const struct anv_dynamic_state default_dynamic_state;
1626
1627 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1628 const struct anv_dynamic_state *src,
1629 uint32_t copy_mask);
1630
1631 struct anv_surface_state {
1632 struct anv_state state;
1633 /** Address of the surface referred to by this state
1634 *
1635 * This address is relative to the start of the BO.
1636 */
1637 uint64_t address;
1638 /* Address of the aux surface, if any
1639 *
1640 * This field is 0 if and only if no aux surface exists.
1641 *
1642 * This address is relative to the start of the BO. On gen7, the bottom 12
1643 * bits of this address include extra aux information.
1644 */
1645 uint64_t aux_address;
1646 };
1647
1648 /**
1649 * Attachment state when recording a renderpass instance.
1650 *
1651 * The clear value is valid only if there exists a pending clear.
1652 */
1653 struct anv_attachment_state {
1654 enum isl_aux_usage aux_usage;
1655 enum isl_aux_usage input_aux_usage;
1656 struct anv_surface_state color;
1657 struct anv_surface_state input;
1658
1659 VkImageLayout current_layout;
1660 VkImageAspectFlags pending_clear_aspects;
1661 bool fast_clear;
1662 VkClearValue clear_value;
1663 bool clear_color_is_zero_one;
1664 bool clear_color_is_zero;
1665 };
1666
1667 /** State required while building cmd buffer */
1668 struct anv_cmd_state {
1669 /* PIPELINE_SELECT.PipelineSelection */
1670 uint32_t current_pipeline;
1671 const struct gen_l3_config * current_l3_config;
1672 uint32_t vb_dirty;
1673 anv_cmd_dirty_mask_t dirty;
1674 anv_cmd_dirty_mask_t compute_dirty;
1675 enum anv_pipe_bits pending_pipe_bits;
1676 uint32_t num_workgroups_offset;
1677 struct anv_bo *num_workgroups_bo;
1678 VkShaderStageFlags descriptors_dirty;
1679 VkShaderStageFlags push_constants_dirty;
1680 uint32_t scratch_size;
1681 struct anv_pipeline * pipeline;
1682 struct anv_pipeline * compute_pipeline;
1683 struct anv_framebuffer * framebuffer;
1684 struct anv_render_pass * pass;
1685 struct anv_subpass * subpass;
1686 VkRect2D render_area;
1687 uint32_t restart_index;
1688 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1689 struct anv_descriptor_set * descriptors[MAX_SETS];
1690 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
1691 VkShaderStageFlags push_constant_stages;
1692 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1693 struct anv_state binding_tables[MESA_SHADER_STAGES];
1694 struct anv_state samplers[MESA_SHADER_STAGES];
1695 struct anv_dynamic_state dynamic;
1696 bool need_query_wa;
1697
1698 struct anv_push_descriptor_set push_descriptor;
1699
1700 /**
1701 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
1702 * of any command buffer it is disabled by disabling it in EndCommandBuffer
1703 * and before invoking the secondary in ExecuteCommands.
1704 */
1705 bool pma_fix_enabled;
1706
1707 /**
1708 * Whether or not we know for certain that HiZ is enabled for the current
1709 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
1710 * enabled or not, this will be false.
1711 */
1712 bool hiz_enabled;
1713
1714 /**
1715 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1716 * valid only when recording a render pass instance.
1717 */
1718 struct anv_attachment_state * attachments;
1719
1720 /**
1721 * Surface states for color render targets. These are stored in a single
1722 * flat array. For depth-stencil attachments, the surface state is simply
1723 * left blank.
1724 */
1725 struct anv_state render_pass_states;
1726
1727 /**
1728 * A null surface state of the right size to match the framebuffer. This
1729 * is one of the states in render_pass_states.
1730 */
1731 struct anv_state null_surface_state;
1732
1733 struct {
1734 struct anv_buffer * index_buffer;
1735 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1736 uint32_t index_offset;
1737 } gen7;
1738 };
1739
1740 struct anv_cmd_pool {
1741 VkAllocationCallbacks alloc;
1742 struct list_head cmd_buffers;
1743 };
1744
1745 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1746
1747 enum anv_cmd_buffer_exec_mode {
1748 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1749 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1750 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1751 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1752 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1753 };
1754
1755 struct anv_cmd_buffer {
1756 VK_LOADER_DATA _loader_data;
1757
1758 struct anv_device * device;
1759
1760 struct anv_cmd_pool * pool;
1761 struct list_head pool_link;
1762
1763 struct anv_batch batch;
1764
1765 /* Fields required for the actual chain of anv_batch_bo's.
1766 *
1767 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1768 */
1769 struct list_head batch_bos;
1770 enum anv_cmd_buffer_exec_mode exec_mode;
1771
1772 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1773 * referenced by this command buffer
1774 *
1775 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1776 */
1777 struct u_vector seen_bbos;
1778
1779 /* A vector of int32_t's for every block of binding tables.
1780 *
1781 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1782 */
1783 struct u_vector bt_block_states;
1784 uint32_t bt_next;
1785
1786 struct anv_reloc_list surface_relocs;
1787 /** Last seen surface state block pool center bo offset */
1788 uint32_t last_ss_pool_center;
1789
1790 /* Serial for tracking buffer completion */
1791 uint32_t serial;
1792
1793 /* Stream objects for storing temporary data */
1794 struct anv_state_stream surface_state_stream;
1795 struct anv_state_stream dynamic_state_stream;
1796
1797 VkCommandBufferUsageFlags usage_flags;
1798 VkCommandBufferLevel level;
1799
1800 struct anv_cmd_state state;
1801 };
1802
1803 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1804 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1805 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1806 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1807 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1808 struct anv_cmd_buffer *secondary);
1809 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1810 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
1811 struct anv_cmd_buffer *cmd_buffer,
1812 const VkSemaphore *in_semaphores,
1813 uint32_t num_in_semaphores,
1814 const VkSemaphore *out_semaphores,
1815 uint32_t num_out_semaphores,
1816 VkFence fence);
1817
1818 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
1819
1820 VkResult
1821 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
1822 gl_shader_stage stage, uint32_t size);
1823 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
1824 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
1825 (offsetof(struct anv_push_constants, field) + \
1826 sizeof(cmd_buffer->state.push_constants[0]->field)))
1827
1828 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1829 const void *data, uint32_t size, uint32_t alignment);
1830 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1831 uint32_t *a, uint32_t *b,
1832 uint32_t dwords, uint32_t alignment);
1833
1834 struct anv_address
1835 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1836 struct anv_state
1837 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1838 uint32_t entries, uint32_t *state_offset);
1839 struct anv_state
1840 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1841 struct anv_state
1842 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1843 uint32_t size, uint32_t alignment);
1844
1845 VkResult
1846 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1847
1848 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1849 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
1850 bool depth_clamp_enable);
1851 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1852
1853 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1854 struct anv_render_pass *pass,
1855 struct anv_framebuffer *framebuffer,
1856 const VkClearValue *clear_values);
1857
1858 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1859
1860 struct anv_state
1861 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1862 gl_shader_stage stage);
1863 struct anv_state
1864 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1865
1866 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1867 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1868
1869 const struct anv_image_view *
1870 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1871
1872 VkResult
1873 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
1874 uint32_t num_entries,
1875 uint32_t *state_offset,
1876 struct anv_state *bt_state);
1877
1878 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1879
1880 enum anv_fence_type {
1881 ANV_FENCE_TYPE_NONE = 0,
1882 ANV_FENCE_TYPE_BO,
1883 ANV_FENCE_TYPE_SYNCOBJ,
1884 };
1885
1886 enum anv_bo_fence_state {
1887 /** Indicates that this is a new (or newly reset fence) */
1888 ANV_BO_FENCE_STATE_RESET,
1889
1890 /** Indicates that this fence has been submitted to the GPU but is still
1891 * (as far as we know) in use by the GPU.
1892 */
1893 ANV_BO_FENCE_STATE_SUBMITTED,
1894
1895 ANV_BO_FENCE_STATE_SIGNALED,
1896 };
1897
1898 struct anv_fence_impl {
1899 enum anv_fence_type type;
1900
1901 union {
1902 /** Fence implementation for BO fences
1903 *
1904 * These fences use a BO and a set of CPU-tracked state flags. The BO
1905 * is added to the object list of the last execbuf call in a QueueSubmit
1906 * and is marked EXEC_WRITE. The state flags track when the BO has been
1907 * submitted to the kernel. We need to do this because Vulkan lets you
1908 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
1909 * will say it's idle in this case.
1910 */
1911 struct {
1912 struct anv_bo bo;
1913 enum anv_bo_fence_state state;
1914 } bo;
1915
1916 /** DRM syncobj handle for syncobj-based fences */
1917 uint32_t syncobj;
1918 };
1919 };
1920
1921 struct anv_fence {
1922 /* Permanent fence state. Every fence has some form of permanent state
1923 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
1924 * cross-process fences) or it could just be a dummy for use internally.
1925 */
1926 struct anv_fence_impl permanent;
1927
1928 /* Temporary fence state. A fence *may* have temporary state. That state
1929 * is added to the fence by an import operation and is reset back to
1930 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
1931 * state cannot be signaled because the fence must already be signaled
1932 * before the temporary state can be exported from the fence in the other
1933 * process and imported here.
1934 */
1935 struct anv_fence_impl temporary;
1936 };
1937
1938 struct anv_event {
1939 uint64_t semaphore;
1940 struct anv_state state;
1941 };
1942
1943 enum anv_semaphore_type {
1944 ANV_SEMAPHORE_TYPE_NONE = 0,
1945 ANV_SEMAPHORE_TYPE_DUMMY,
1946 ANV_SEMAPHORE_TYPE_BO,
1947 ANV_SEMAPHORE_TYPE_SYNC_FILE,
1948 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
1949 };
1950
1951 struct anv_semaphore_impl {
1952 enum anv_semaphore_type type;
1953
1954 union {
1955 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
1956 * This BO will be added to the object list on any execbuf2 calls for
1957 * which this semaphore is used as a wait or signal fence. When used as
1958 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
1959 */
1960 struct anv_bo *bo;
1961
1962 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
1963 * If the semaphore is in the unsignaled state due to either just being
1964 * created or because it has been used for a wait, fd will be -1.
1965 */
1966 int fd;
1967
1968 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
1969 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
1970 * import so we don't need to bother with a userspace cache.
1971 */
1972 uint32_t syncobj;
1973 };
1974 };
1975
1976 struct anv_semaphore {
1977 /* Permanent semaphore state. Every semaphore has some form of permanent
1978 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
1979 * (for cross-process semaphores0 or it could just be a dummy for use
1980 * internally.
1981 */
1982 struct anv_semaphore_impl permanent;
1983
1984 /* Temporary semaphore state. A semaphore *may* have temporary state.
1985 * That state is added to the semaphore by an import operation and is reset
1986 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
1987 * semaphore with temporary state cannot be signaled because the semaphore
1988 * must already be signaled before the temporary state can be exported from
1989 * the semaphore in the other process and imported here.
1990 */
1991 struct anv_semaphore_impl temporary;
1992 };
1993
1994 void anv_semaphore_reset_temporary(struct anv_device *device,
1995 struct anv_semaphore *semaphore);
1996
1997 struct anv_shader_module {
1998 unsigned char sha1[20];
1999 uint32_t size;
2000 char data[0];
2001 };
2002
2003 static inline gl_shader_stage
2004 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2005 {
2006 assert(__builtin_popcount(vk_stage) == 1);
2007 return ffs(vk_stage) - 1;
2008 }
2009
2010 static inline VkShaderStageFlagBits
2011 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2012 {
2013 return (1 << mesa_stage);
2014 }
2015
2016 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2017
2018 #define anv_foreach_stage(stage, stage_bits) \
2019 for (gl_shader_stage stage, \
2020 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2021 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2022 __tmp &= ~(1 << (stage)))
2023
2024 struct anv_pipeline_bind_map {
2025 uint32_t surface_count;
2026 uint32_t sampler_count;
2027 uint32_t image_count;
2028
2029 struct anv_pipeline_binding * surface_to_descriptor;
2030 struct anv_pipeline_binding * sampler_to_descriptor;
2031 };
2032
2033 struct anv_shader_bin_key {
2034 uint32_t size;
2035 uint8_t data[0];
2036 };
2037
2038 struct anv_shader_bin {
2039 uint32_t ref_cnt;
2040
2041 const struct anv_shader_bin_key *key;
2042
2043 struct anv_state kernel;
2044 uint32_t kernel_size;
2045
2046 const struct brw_stage_prog_data *prog_data;
2047 uint32_t prog_data_size;
2048
2049 struct anv_pipeline_bind_map bind_map;
2050
2051 /* Prog data follows, then params, then the key, all aligned to 8-bytes */
2052 };
2053
2054 struct anv_shader_bin *
2055 anv_shader_bin_create(struct anv_device *device,
2056 const void *key, uint32_t key_size,
2057 const void *kernel, uint32_t kernel_size,
2058 const struct brw_stage_prog_data *prog_data,
2059 uint32_t prog_data_size, const void *prog_data_param,
2060 const struct anv_pipeline_bind_map *bind_map);
2061
2062 void
2063 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2064
2065 static inline void
2066 anv_shader_bin_ref(struct anv_shader_bin *shader)
2067 {
2068 assert(shader && shader->ref_cnt >= 1);
2069 p_atomic_inc(&shader->ref_cnt);
2070 }
2071
2072 static inline void
2073 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2074 {
2075 assert(shader && shader->ref_cnt >= 1);
2076 if (p_atomic_dec_zero(&shader->ref_cnt))
2077 anv_shader_bin_destroy(device, shader);
2078 }
2079
2080 struct anv_pipeline {
2081 struct anv_device * device;
2082 struct anv_batch batch;
2083 uint32_t batch_data[512];
2084 struct anv_reloc_list batch_relocs;
2085 uint32_t dynamic_state_mask;
2086 struct anv_dynamic_state dynamic_state;
2087
2088 struct anv_subpass * subpass;
2089 struct anv_pipeline_layout * layout;
2090
2091 bool needs_data_cache;
2092
2093 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2094
2095 struct {
2096 const struct gen_l3_config * l3_config;
2097 uint32_t total_size;
2098 } urb;
2099
2100 VkShaderStageFlags active_stages;
2101 struct anv_state blend_state;
2102
2103 uint32_t vb_used;
2104 uint32_t binding_stride[MAX_VBS];
2105 bool instancing_enable[MAX_VBS];
2106 bool primitive_restart;
2107 uint32_t topology;
2108
2109 uint32_t cs_right_mask;
2110
2111 bool writes_depth;
2112 bool depth_test_enable;
2113 bool writes_stencil;
2114 bool stencil_test_enable;
2115 bool depth_clamp_enable;
2116 bool sample_shading_enable;
2117 bool kill_pixel;
2118
2119 struct {
2120 uint32_t sf[7];
2121 uint32_t depth_stencil_state[3];
2122 } gen7;
2123
2124 struct {
2125 uint32_t sf[4];
2126 uint32_t raster[5];
2127 uint32_t wm_depth_stencil[3];
2128 } gen8;
2129
2130 struct {
2131 uint32_t wm_depth_stencil[4];
2132 } gen9;
2133
2134 uint32_t interface_descriptor_data[8];
2135 };
2136
2137 static inline bool
2138 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2139 gl_shader_stage stage)
2140 {
2141 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2142 }
2143
2144 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2145 static inline const struct brw_##prefix##_prog_data * \
2146 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2147 { \
2148 if (anv_pipeline_has_stage(pipeline, stage)) { \
2149 return (const struct brw_##prefix##_prog_data *) \
2150 pipeline->shaders[stage]->prog_data; \
2151 } else { \
2152 return NULL; \
2153 } \
2154 }
2155
2156 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2157 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2158 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2159 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2160 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2161 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2162
2163 static inline const struct brw_vue_prog_data *
2164 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2165 {
2166 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2167 return &get_gs_prog_data(pipeline)->base;
2168 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2169 return &get_tes_prog_data(pipeline)->base;
2170 else
2171 return &get_vs_prog_data(pipeline)->base;
2172 }
2173
2174 VkResult
2175 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2176 struct anv_pipeline_cache *cache,
2177 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2178 const VkAllocationCallbacks *alloc);
2179
2180 VkResult
2181 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2182 struct anv_pipeline_cache *cache,
2183 const VkComputePipelineCreateInfo *info,
2184 struct anv_shader_module *module,
2185 const char *entrypoint,
2186 const VkSpecializationInfo *spec_info);
2187
2188 struct anv_format_plane {
2189 enum isl_format isl_format:16;
2190 struct isl_swizzle swizzle;
2191
2192 /* Whether this plane contains chroma channels */
2193 bool has_chroma;
2194
2195 /* For downscaling of YUV planes */
2196 uint8_t denominator_scales[2];
2197
2198 /* How to map sampled ycbcr planes to a single 4 component element. */
2199 struct isl_swizzle ycbcr_swizzle;
2200 };
2201
2202
2203 struct anv_format {
2204 struct anv_format_plane planes[3];
2205 uint8_t n_planes;
2206 bool can_ycbcr;
2207 };
2208
2209 static inline uint32_t
2210 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2211 VkImageAspectFlags aspect_mask)
2212 {
2213 switch (aspect_mask) {
2214 case VK_IMAGE_ASPECT_COLOR_BIT:
2215 case VK_IMAGE_ASPECT_DEPTH_BIT:
2216 case VK_IMAGE_ASPECT_PLANE_0_BIT_KHR:
2217 return 0;
2218 case VK_IMAGE_ASPECT_STENCIL_BIT:
2219 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2220 return 0;
2221 /* Fall-through */
2222 case VK_IMAGE_ASPECT_PLANE_1_BIT_KHR:
2223 return 1;
2224 case VK_IMAGE_ASPECT_PLANE_2_BIT_KHR:
2225 return 2;
2226 default:
2227 /* Purposefully assert with depth/stencil aspects. */
2228 unreachable("invalid image aspect");
2229 }
2230 }
2231
2232 static inline uint32_t
2233 anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)
2234 {
2235 uint32_t planes = 0;
2236
2237 if (aspect_mask & (VK_IMAGE_ASPECT_COLOR_BIT |
2238 VK_IMAGE_ASPECT_DEPTH_BIT |
2239 VK_IMAGE_ASPECT_STENCIL_BIT |
2240 VK_IMAGE_ASPECT_PLANE_0_BIT_KHR))
2241 planes++;
2242 if (aspect_mask & VK_IMAGE_ASPECT_PLANE_1_BIT_KHR)
2243 planes++;
2244 if (aspect_mask & VK_IMAGE_ASPECT_PLANE_2_BIT_KHR)
2245 planes++;
2246
2247 return planes;
2248 }
2249
2250 static inline VkImageAspectFlags
2251 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2252 uint32_t plane)
2253 {
2254 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT) {
2255 if (_mesa_bitcount(image_aspects) > 1)
2256 return VK_IMAGE_ASPECT_PLANE_0_BIT_KHR << plane;
2257 return VK_IMAGE_ASPECT_COLOR_BIT;
2258 }
2259 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2260 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2261 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
2262 return VK_IMAGE_ASPECT_STENCIL_BIT;
2263 }
2264
2265 #define anv_foreach_image_aspect_bit(b, image, aspects) \
2266 for_each_bit(b, anv_image_expand_aspects(image, aspects))
2267
2268 const struct anv_format *
2269 anv_get_format(VkFormat format);
2270
2271 static inline uint32_t
2272 anv_get_format_planes(VkFormat vk_format)
2273 {
2274 const struct anv_format *format = anv_get_format(vk_format);
2275
2276 return format != NULL ? format->n_planes : 0;
2277 }
2278
2279 struct anv_format_plane
2280 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
2281 VkImageAspectFlags aspect, VkImageTiling tiling);
2282
2283 static inline enum isl_format
2284 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
2285 VkImageAspectFlags aspect, VkImageTiling tiling)
2286 {
2287 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
2288 }
2289
2290 static inline struct isl_swizzle
2291 anv_swizzle_for_render(struct isl_swizzle swizzle)
2292 {
2293 /* Sometimes the swizzle will have alpha map to one. We do this to fake
2294 * RGB as RGBA for texturing
2295 */
2296 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
2297 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
2298
2299 /* But it doesn't matter what we render to that channel */
2300 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
2301
2302 return swizzle;
2303 }
2304
2305 void
2306 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
2307
2308 /**
2309 * Subsurface of an anv_image.
2310 */
2311 struct anv_surface {
2312 /** Valid only if isl_surf::size > 0. */
2313 struct isl_surf isl;
2314
2315 /**
2316 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2317 */
2318 uint32_t offset;
2319 };
2320
2321 struct anv_image {
2322 VkImageType type;
2323 /* The original VkFormat provided by the client. This may not match any
2324 * of the actual surface formats.
2325 */
2326 VkFormat vk_format;
2327 const struct anv_format *format;
2328
2329 VkImageAspectFlags aspects;
2330 VkExtent3D extent;
2331 uint32_t levels;
2332 uint32_t array_size;
2333 uint32_t samples; /**< VkImageCreateInfo::samples */
2334 uint32_t n_planes;
2335 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2336 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2337
2338 VkDeviceSize size;
2339 uint32_t alignment;
2340
2341 bool disjoint;
2342
2343 /**
2344 * Image subsurfaces
2345 *
2346 * For each foo, anv_image::planes[x].surface is valid if and only if
2347 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
2348 * to figure the number associated with a given aspect.
2349 *
2350 * The hardware requires that the depth buffer and stencil buffer be
2351 * separate surfaces. From Vulkan's perspective, though, depth and stencil
2352 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
2353 * allocate the depth and stencil buffers as separate surfaces in the same
2354 * bo.
2355 *
2356 * Memory layout :
2357 *
2358 * -----------------------
2359 * | surface0 | /|\
2360 * ----------------------- |
2361 * | shadow surface0 | |
2362 * ----------------------- | Plane 0
2363 * | aux surface0 | |
2364 * ----------------------- |
2365 * | fast clear colors0 | \|/
2366 * -----------------------
2367 * | surface1 | /|\
2368 * ----------------------- |
2369 * | shadow surface1 | |
2370 * ----------------------- | Plane 1
2371 * | aux surface1 | |
2372 * ----------------------- |
2373 * | fast clear colors1 | \|/
2374 * -----------------------
2375 * | ... |
2376 * | |
2377 * -----------------------
2378 */
2379 struct {
2380 /**
2381 * Offset of the entire plane (whenever the image is disjoint this is
2382 * set to 0).
2383 */
2384 uint32_t offset;
2385
2386 VkDeviceSize size;
2387 uint32_t alignment;
2388
2389 struct anv_surface surface;
2390
2391 /**
2392 * A surface which shadows the main surface and may have different
2393 * tiling. This is used for sampling using a tiling that isn't supported
2394 * for other operations.
2395 */
2396 struct anv_surface shadow_surface;
2397
2398 /**
2399 * For color images, this is the aux usage for this image when not used
2400 * as a color attachment.
2401 *
2402 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
2403 * image has a HiZ buffer.
2404 */
2405 enum isl_aux_usage aux_usage;
2406
2407 struct anv_surface aux_surface;
2408
2409 /**
2410 * Offset of the fast clear state (used to compute the
2411 * fast_clear_state_offset of the following planes).
2412 */
2413 uint32_t fast_clear_state_offset;
2414
2415 /**
2416 * BO associated with this plane, set when bound.
2417 */
2418 struct anv_bo *bo;
2419 VkDeviceSize bo_offset;
2420 } planes[3];
2421 };
2422
2423 /* Returns the number of auxiliary buffer levels attached to an image. */
2424 static inline uint8_t
2425 anv_image_aux_levels(const struct anv_image * const image,
2426 VkImageAspectFlagBits aspect)
2427 {
2428 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2429 return image->planes[plane].aux_surface.isl.size > 0 ?
2430 image->planes[plane].aux_surface.isl.levels : 0;
2431 }
2432
2433 /* Returns the number of auxiliary buffer layers attached to an image. */
2434 static inline uint32_t
2435 anv_image_aux_layers(const struct anv_image * const image,
2436 VkImageAspectFlagBits aspect,
2437 const uint8_t miplevel)
2438 {
2439 assert(image);
2440
2441 /* The miplevel must exist in the main buffer. */
2442 assert(miplevel < image->levels);
2443
2444 if (miplevel >= anv_image_aux_levels(image, aspect)) {
2445 /* There are no layers with auxiliary data because the miplevel has no
2446 * auxiliary data.
2447 */
2448 return 0;
2449 } else {
2450 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2451 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
2452 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
2453 }
2454 }
2455
2456 static inline unsigned
2457 anv_fast_clear_state_entry_size(const struct anv_device *device)
2458 {
2459 assert(device);
2460 /* Entry contents:
2461 * +--------------------------------------------+
2462 * | clear value dword(s) | needs resolve dword |
2463 * +--------------------------------------------+
2464 */
2465
2466 /* Ensure that the needs resolve dword is in fact dword-aligned to enable
2467 * GPU memcpy operations.
2468 */
2469 assert(device->isl_dev.ss.clear_value_size % 4 == 0);
2470 return device->isl_dev.ss.clear_value_size + 4;
2471 }
2472
2473 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
2474 static inline bool
2475 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
2476 const struct anv_image *image)
2477 {
2478 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
2479 return false;
2480
2481 if (devinfo->gen < 8)
2482 return false;
2483
2484 return image->samples == 1;
2485 }
2486
2487 void
2488 anv_gen8_hiz_op_resolve(struct anv_cmd_buffer *cmd_buffer,
2489 const struct anv_image *image,
2490 enum blorp_hiz_op op);
2491 void
2492 anv_ccs_resolve(struct anv_cmd_buffer * const cmd_buffer,
2493 const struct anv_state surface_state,
2494 const struct anv_image * const image,
2495 VkImageAspectFlagBits aspect,
2496 const uint8_t level, const uint32_t layer_count,
2497 const enum blorp_fast_clear_op op);
2498
2499 void
2500 anv_image_fast_clear(struct anv_cmd_buffer *cmd_buffer,
2501 const struct anv_image *image,
2502 VkImageAspectFlagBits aspect,
2503 const uint32_t base_level, const uint32_t level_count,
2504 const uint32_t base_layer, uint32_t layer_count);
2505
2506 void
2507 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
2508 const struct anv_image *image,
2509 uint32_t base_level, uint32_t level_count,
2510 uint32_t base_layer, uint32_t layer_count);
2511
2512 enum isl_aux_usage
2513 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
2514 const struct anv_image *image,
2515 const VkImageAspectFlagBits aspect,
2516 const VkImageLayout layout);
2517
2518 /* This is defined as a macro so that it works for both
2519 * VkImageSubresourceRange and VkImageSubresourceLayers
2520 */
2521 #define anv_get_layerCount(_image, _range) \
2522 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
2523 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
2524
2525 static inline uint32_t
2526 anv_get_levelCount(const struct anv_image *image,
2527 const VkImageSubresourceRange *range)
2528 {
2529 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
2530 image->levels - range->baseMipLevel : range->levelCount;
2531 }
2532
2533 static inline VkImageAspectFlags
2534 anv_image_expand_aspects(const struct anv_image *image,
2535 VkImageAspectFlags aspects)
2536 {
2537 /* If the underlying image has color plane aspects and
2538 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
2539 * the underlying image. */
2540 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS) != 0 &&
2541 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
2542 return image->aspects;
2543
2544 return aspects;
2545 }
2546
2547 static inline bool
2548 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
2549 VkImageAspectFlags aspects2)
2550 {
2551 if (aspects1 == aspects2)
2552 return true;
2553
2554 /* Only 1 color aspects are compatibles. */
2555 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT) != 0 &&
2556 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT) != 0 &&
2557 _mesa_bitcount(aspects1) == _mesa_bitcount(aspects2))
2558 return true;
2559
2560 return false;
2561 }
2562
2563 struct anv_image_view {
2564 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
2565
2566 VkImageAspectFlags aspect_mask;
2567 VkFormat vk_format;
2568 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
2569
2570 unsigned n_planes;
2571 struct {
2572 uint32_t image_plane;
2573
2574 struct isl_view isl;
2575
2576 /**
2577 * RENDER_SURFACE_STATE when using image as a sampler surface with an
2578 * image layout of SHADER_READ_ONLY_OPTIMAL or
2579 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
2580 */
2581 struct anv_surface_state optimal_sampler_surface_state;
2582
2583 /**
2584 * RENDER_SURFACE_STATE when using image as a sampler surface with an
2585 * image layout of GENERAL.
2586 */
2587 struct anv_surface_state general_sampler_surface_state;
2588
2589 /**
2590 * RENDER_SURFACE_STATE when using image as a storage image. Separate
2591 * states for write-only and readable, using the real format for
2592 * write-only and the lowered format for readable.
2593 */
2594 struct anv_surface_state storage_surface_state;
2595 struct anv_surface_state writeonly_storage_surface_state;
2596
2597 struct brw_image_param storage_image_param;
2598 } planes[3];
2599 };
2600
2601 enum anv_image_view_state_flags {
2602 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
2603 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
2604 };
2605
2606 void anv_image_fill_surface_state(struct anv_device *device,
2607 const struct anv_image *image,
2608 VkImageAspectFlagBits aspect,
2609 const struct isl_view *view,
2610 isl_surf_usage_flags_t view_usage,
2611 enum isl_aux_usage aux_usage,
2612 const union isl_color_value *clear_color,
2613 enum anv_image_view_state_flags flags,
2614 struct anv_surface_state *state_inout,
2615 struct brw_image_param *image_param_out);
2616
2617 struct anv_image_create_info {
2618 const VkImageCreateInfo *vk_info;
2619
2620 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
2621 isl_tiling_flags_t isl_tiling_flags;
2622
2623 uint32_t stride;
2624 };
2625
2626 VkResult anv_image_create(VkDevice _device,
2627 const struct anv_image_create_info *info,
2628 const VkAllocationCallbacks* alloc,
2629 VkImage *pImage);
2630
2631 const struct anv_surface *
2632 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
2633 VkImageAspectFlags aspect_mask);
2634
2635 enum isl_format
2636 anv_isl_format_for_descriptor_type(VkDescriptorType type);
2637
2638 static inline struct VkExtent3D
2639 anv_sanitize_image_extent(const VkImageType imageType,
2640 const struct VkExtent3D imageExtent)
2641 {
2642 switch (imageType) {
2643 case VK_IMAGE_TYPE_1D:
2644 return (VkExtent3D) { imageExtent.width, 1, 1 };
2645 case VK_IMAGE_TYPE_2D:
2646 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
2647 case VK_IMAGE_TYPE_3D:
2648 return imageExtent;
2649 default:
2650 unreachable("invalid image type");
2651 }
2652 }
2653
2654 static inline struct VkOffset3D
2655 anv_sanitize_image_offset(const VkImageType imageType,
2656 const struct VkOffset3D imageOffset)
2657 {
2658 switch (imageType) {
2659 case VK_IMAGE_TYPE_1D:
2660 return (VkOffset3D) { imageOffset.x, 0, 0 };
2661 case VK_IMAGE_TYPE_2D:
2662 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
2663 case VK_IMAGE_TYPE_3D:
2664 return imageOffset;
2665 default:
2666 unreachable("invalid image type");
2667 }
2668 }
2669
2670
2671 void anv_fill_buffer_surface_state(struct anv_device *device,
2672 struct anv_state state,
2673 enum isl_format format,
2674 uint32_t offset, uint32_t range,
2675 uint32_t stride);
2676
2677
2678 struct anv_ycbcr_conversion {
2679 const struct anv_format * format;
2680 VkSamplerYcbcrModelConversionKHR ycbcr_model;
2681 VkSamplerYcbcrRangeKHR ycbcr_range;
2682 VkComponentSwizzle mapping[4];
2683 VkChromaLocationKHR chroma_offsets[2];
2684 VkFilter chroma_filter;
2685 bool chroma_reconstruction;
2686 };
2687
2688 struct anv_sampler {
2689 uint32_t state[3][4];
2690 uint32_t n_planes;
2691 struct anv_ycbcr_conversion *conversion;
2692 };
2693
2694 struct anv_framebuffer {
2695 uint32_t width;
2696 uint32_t height;
2697 uint32_t layers;
2698
2699 uint32_t attachment_count;
2700 struct anv_image_view * attachments[0];
2701 };
2702
2703 struct anv_subpass {
2704 uint32_t attachment_count;
2705
2706 /**
2707 * A pointer to all attachment references used in this subpass.
2708 * Only valid if ::attachment_count > 0.
2709 */
2710 VkAttachmentReference * attachments;
2711 uint32_t input_count;
2712 VkAttachmentReference * input_attachments;
2713 uint32_t color_count;
2714 VkAttachmentReference * color_attachments;
2715 VkAttachmentReference * resolve_attachments;
2716
2717 VkAttachmentReference depth_stencil_attachment;
2718
2719 uint32_t view_mask;
2720
2721 /** Subpass has a depth/stencil self-dependency */
2722 bool has_ds_self_dep;
2723
2724 /** Subpass has at least one resolve attachment */
2725 bool has_resolve;
2726 };
2727
2728 static inline unsigned
2729 anv_subpass_view_count(const struct anv_subpass *subpass)
2730 {
2731 return MAX2(1, _mesa_bitcount(subpass->view_mask));
2732 }
2733
2734 struct anv_render_pass_attachment {
2735 /* TODO: Consider using VkAttachmentDescription instead of storing each of
2736 * its members individually.
2737 */
2738 VkFormat format;
2739 uint32_t samples;
2740 VkImageUsageFlags usage;
2741 VkAttachmentLoadOp load_op;
2742 VkAttachmentStoreOp store_op;
2743 VkAttachmentLoadOp stencil_load_op;
2744 VkImageLayout initial_layout;
2745 VkImageLayout final_layout;
2746 VkImageLayout first_subpass_layout;
2747
2748 /* The subpass id in which the attachment will be used last. */
2749 uint32_t last_subpass_idx;
2750 };
2751
2752 struct anv_render_pass {
2753 uint32_t attachment_count;
2754 uint32_t subpass_count;
2755 /* An array of subpass_count+1 flushes, one per subpass boundary */
2756 enum anv_pipe_bits * subpass_flushes;
2757 struct anv_render_pass_attachment * attachments;
2758 struct anv_subpass subpasses[0];
2759 };
2760
2761 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
2762
2763 struct anv_query_pool {
2764 VkQueryType type;
2765 VkQueryPipelineStatisticFlags pipeline_statistics;
2766 /** Stride between slots, in bytes */
2767 uint32_t stride;
2768 /** Number of slots in this query pool */
2769 uint32_t slots;
2770 struct anv_bo bo;
2771 };
2772
2773 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
2774 const char *name);
2775
2776 void anv_dump_image_to_ppm(struct anv_device *device,
2777 struct anv_image *image, unsigned miplevel,
2778 unsigned array_layer, VkImageAspectFlagBits aspect,
2779 const char *filename);
2780
2781 enum anv_dump_action {
2782 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
2783 };
2784
2785 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
2786 void anv_dump_finish(void);
2787
2788 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
2789 struct anv_framebuffer *fb);
2790
2791 static inline uint32_t
2792 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
2793 {
2794 /* This function must be called from within a subpass. */
2795 assert(cmd_state->pass && cmd_state->subpass);
2796
2797 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
2798
2799 /* The id of this subpass shouldn't exceed the number of subpasses in this
2800 * render pass minus 1.
2801 */
2802 assert(subpass_id < cmd_state->pass->subpass_count);
2803 return subpass_id;
2804 }
2805
2806 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
2807 \
2808 static inline struct __anv_type * \
2809 __anv_type ## _from_handle(__VkType _handle) \
2810 { \
2811 return (struct __anv_type *) _handle; \
2812 } \
2813 \
2814 static inline __VkType \
2815 __anv_type ## _to_handle(struct __anv_type *_obj) \
2816 { \
2817 return (__VkType) _obj; \
2818 }
2819
2820 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
2821 \
2822 static inline struct __anv_type * \
2823 __anv_type ## _from_handle(__VkType _handle) \
2824 { \
2825 return (struct __anv_type *)(uintptr_t) _handle; \
2826 } \
2827 \
2828 static inline __VkType \
2829 __anv_type ## _to_handle(struct __anv_type *_obj) \
2830 { \
2831 return (__VkType)(uintptr_t) _obj; \
2832 }
2833
2834 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
2835 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
2836
2837 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
2838 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
2839 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
2840 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
2841 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
2842
2843 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
2844 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
2845 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
2846 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
2847 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
2848 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
2849 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplateKHR)
2850 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
2851 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
2852 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
2853 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
2854 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
2855 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
2856 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
2857 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
2858 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
2859 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
2860 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
2861 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
2862 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
2863 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
2864 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_debug_report_callback, VkDebugReportCallbackEXT)
2865
2866 /* Gen-specific function declarations */
2867 #ifdef genX
2868 # include "anv_genX.h"
2869 #else
2870 # define genX(x) gen7_##x
2871 # include "anv_genX.h"
2872 # undef genX
2873 # define genX(x) gen75_##x
2874 # include "anv_genX.h"
2875 # undef genX
2876 # define genX(x) gen8_##x
2877 # include "anv_genX.h"
2878 # undef genX
2879 # define genX(x) gen9_##x
2880 # include "anv_genX.h"
2881 # undef genX
2882 # define genX(x) gen10_##x
2883 # include "anv_genX.h"
2884 # undef genX
2885 #endif
2886
2887 #endif /* ANV_PRIVATE_H */