anv: Set up VMA heaps independently from memory heaps
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_batch;
73 struct anv_buffer;
74 struct anv_buffer_view;
75 struct anv_image_view;
76 struct anv_instance;
77
78 struct gen_aux_map_context;
79 struct gen_l3_config;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131
132 #define LOW_HEAP_SIZE \
133 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
134 #define DYNAMIC_STATE_POOL_SIZE \
135 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
136 #define BINDING_TABLE_POOL_SIZE \
137 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
138 #define SURFACE_STATE_POOL_SIZE \
139 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
140 #define INSTRUCTION_STATE_POOL_SIZE \
141 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
142
143 /* Allowing different clear colors requires us to perform a depth resolve at
144 * the end of certain render passes. This is because while slow clears store
145 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
146 * See the PRMs for examples describing when additional resolves would be
147 * necessary. To enable fast clears without requiring extra resolves, we set
148 * the clear value to a globally-defined one. We could allow different values
149 * if the user doesn't expect coherent data during or after a render passes
150 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
151 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
152 * 1.0f seems to be the only value used. The only application that doesn't set
153 * this value does so through the usage of an seemingly uninitialized clear
154 * value.
155 */
156 #define ANV_HZ_FC_VAL 1.0f
157
158 #define MAX_VBS 28
159 #define MAX_XFB_BUFFERS 4
160 #define MAX_XFB_STREAMS 4
161 #define MAX_SETS 8
162 #define MAX_RTS 8
163 #define MAX_VIEWPORTS 16
164 #define MAX_SCISSORS 16
165 #define MAX_PUSH_CONSTANTS_SIZE 128
166 #define MAX_DYNAMIC_BUFFERS 16
167 #define MAX_IMAGES 64
168 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
169 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
170 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
171
172 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
173 *
174 * "The surface state model is used when a Binding Table Index (specified
175 * in the message descriptor) of less than 240 is specified. In this model,
176 * the Binding Table Index is used to index into the binding table, and the
177 * binding table entry contains a pointer to the SURFACE_STATE."
178 *
179 * Binding table values above 240 are used for various things in the hardware
180 * such as stateless, stateless with incoherent cache, SLM, and bindless.
181 */
182 #define MAX_BINDING_TABLE_SIZE 240
183
184 /* The kernel relocation API has a limitation of a 32-bit delta value
185 * applied to the address before it is written which, in spite of it being
186 * unsigned, is treated as signed . Because of the way that this maps to
187 * the Vulkan API, we cannot handle an offset into a buffer that does not
188 * fit into a signed 32 bits. The only mechanism we have for dealing with
189 * this at the moment is to limit all VkDeviceMemory objects to a maximum
190 * of 2GB each. The Vulkan spec allows us to do this:
191 *
192 * "Some platforms may have a limit on the maximum size of a single
193 * allocation. For example, certain systems may fail to create
194 * allocations with a size greater than or equal to 4GB. Such a limit is
195 * implementation-dependent, and if such a failure occurs then the error
196 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
197 *
198 * We don't use vk_error here because it's not an error so much as an
199 * indication to the application that the allocation is too large.
200 */
201 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
202
203 #define ANV_SVGS_VB_INDEX MAX_VBS
204 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
205
206 /* We reserve this MI ALU register for the purpose of handling predication.
207 * Other code which uses the MI ALU should leave it alone.
208 */
209 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
210
211 /* For gen12 we set the streamout buffers using 4 separate commands
212 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
213 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
214 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
215 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
216 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
217 * 3DSTATE_SO_BUFFER_INDEX_0.
218 */
219 #define SO_BUFFER_INDEX_0_CMD 0x60
220 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
221
222 static inline uint32_t
223 align_down_npot_u32(uint32_t v, uint32_t a)
224 {
225 return v - (v % a);
226 }
227
228 static inline uint32_t
229 align_u32(uint32_t v, uint32_t a)
230 {
231 assert(a != 0 && a == (a & -a));
232 return (v + a - 1) & ~(a - 1);
233 }
234
235 static inline uint64_t
236 align_u64(uint64_t v, uint64_t a)
237 {
238 assert(a != 0 && a == (a & -a));
239 return (v + a - 1) & ~(a - 1);
240 }
241
242 static inline int32_t
243 align_i32(int32_t v, int32_t a)
244 {
245 assert(a != 0 && a == (a & -a));
246 return (v + a - 1) & ~(a - 1);
247 }
248
249 /** Alignment must be a power of 2. */
250 static inline bool
251 anv_is_aligned(uintmax_t n, uintmax_t a)
252 {
253 assert(a == (a & -a));
254 return (n & (a - 1)) == 0;
255 }
256
257 static inline uint32_t
258 anv_minify(uint32_t n, uint32_t levels)
259 {
260 if (unlikely(n == 0))
261 return 0;
262 else
263 return MAX2(n >> levels, 1);
264 }
265
266 static inline float
267 anv_clamp_f(float f, float min, float max)
268 {
269 assert(min < max);
270
271 if (f > max)
272 return max;
273 else if (f < min)
274 return min;
275 else
276 return f;
277 }
278
279 static inline bool
280 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
281 {
282 if (*inout_mask & clear_mask) {
283 *inout_mask &= ~clear_mask;
284 return true;
285 } else {
286 return false;
287 }
288 }
289
290 static inline union isl_color_value
291 vk_to_isl_color(VkClearColorValue color)
292 {
293 return (union isl_color_value) {
294 .u32 = {
295 color.uint32[0],
296 color.uint32[1],
297 color.uint32[2],
298 color.uint32[3],
299 },
300 };
301 }
302
303 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
304 {
305 uintptr_t mask = (1ull << bits) - 1;
306 *flags = ptr & mask;
307 return (void *) (ptr & ~mask);
308 }
309
310 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
311 {
312 uintptr_t value = (uintptr_t) ptr;
313 uintptr_t mask = (1ull << bits) - 1;
314 return value | (mask & flags);
315 }
316
317 #define for_each_bit(b, dword) \
318 for (uint32_t __dword = (dword); \
319 (b) = __builtin_ffs(__dword) - 1, __dword; \
320 __dword &= ~(1 << (b)))
321
322 #define typed_memcpy(dest, src, count) ({ \
323 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
324 memcpy((dest), (src), (count) * sizeof(*(src))); \
325 })
326
327 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
328 * to be added here in order to utilize mapping in debug/error/perf macros.
329 */
330 #define REPORT_OBJECT_TYPE(o) \
331 __builtin_choose_expr ( \
332 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
333 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
334 __builtin_choose_expr ( \
335 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
336 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
337 __builtin_choose_expr ( \
338 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
339 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
340 __builtin_choose_expr ( \
341 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
342 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
343 __builtin_choose_expr ( \
344 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
345 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
346 __builtin_choose_expr ( \
347 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
348 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
349 __builtin_choose_expr ( \
350 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
351 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
352 __builtin_choose_expr ( \
353 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
354 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
355 __builtin_choose_expr ( \
356 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
357 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
358 __builtin_choose_expr ( \
359 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
360 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
361 __builtin_choose_expr ( \
362 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
363 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
364 __builtin_choose_expr ( \
365 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
366 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
367 __builtin_choose_expr ( \
368 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
369 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
370 __builtin_choose_expr ( \
371 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
372 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
373 __builtin_choose_expr ( \
374 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
375 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
376 __builtin_choose_expr ( \
377 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
378 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
379 __builtin_choose_expr ( \
380 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
381 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
382 __builtin_choose_expr ( \
383 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
384 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
385 __builtin_choose_expr ( \
386 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
387 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
388 __builtin_choose_expr ( \
389 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
390 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
391 __builtin_choose_expr ( \
392 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
393 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
394 __builtin_choose_expr ( \
395 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
396 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
397 __builtin_choose_expr ( \
398 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
399 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
400 __builtin_choose_expr ( \
401 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
402 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
403 __builtin_choose_expr ( \
404 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
405 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
406 __builtin_choose_expr ( \
407 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
408 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
409 __builtin_choose_expr ( \
410 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
411 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
412 __builtin_choose_expr ( \
413 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
414 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
415 __builtin_choose_expr ( \
416 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
417 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
418 __builtin_choose_expr ( \
419 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
420 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
421 __builtin_choose_expr ( \
422 __builtin_types_compatible_p (__typeof (o), void*), \
423 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
424 /* The void expression results in a compile-time error \
425 when assigning the result to something. */ \
426 (void)0)))))))))))))))))))))))))))))))
427
428 /* Whenever we generate an error, pass it through this function. Useful for
429 * debugging, where we can break on it. Only call at error site, not when
430 * propagating errors. Might be useful to plug in a stack trace here.
431 */
432
433 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
434 VkDebugReportObjectTypeEXT type, VkResult error,
435 const char *file, int line, const char *format,
436 va_list args);
437
438 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
439 VkDebugReportObjectTypeEXT type, VkResult error,
440 const char *file, int line, const char *format, ...)
441 anv_printflike(7, 8);
442
443 #ifdef DEBUG
444 #define vk_error(error) __vk_errorf(NULL, NULL,\
445 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
446 error, __FILE__, __LINE__, NULL)
447 #define vk_errorv(instance, obj, error, format, args)\
448 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
449 __FILE__, __LINE__, format, args)
450 #define vk_errorf(instance, obj, error, format, ...)\
451 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
452 __FILE__, __LINE__, format, ## __VA_ARGS__)
453 #else
454 #define vk_error(error) error
455 #define vk_errorf(instance, obj, error, format, ...) error
456 #endif
457
458 /**
459 * Warn on ignored extension structs.
460 *
461 * The Vulkan spec requires us to ignore unsupported or unknown structs in
462 * a pNext chain. In debug mode, emitting warnings for ignored structs may
463 * help us discover structs that we should not have ignored.
464 *
465 *
466 * From the Vulkan 1.0.38 spec:
467 *
468 * Any component of the implementation (the loader, any enabled layers,
469 * and drivers) must skip over, without processing (other than reading the
470 * sType and pNext members) any chained structures with sType values not
471 * defined by extensions supported by that component.
472 */
473 #define anv_debug_ignored_stype(sType) \
474 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
475
476 void __anv_perf_warn(struct anv_instance *instance, const void *object,
477 VkDebugReportObjectTypeEXT type, const char *file,
478 int line, const char *format, ...)
479 anv_printflike(6, 7);
480 void anv_loge(const char *format, ...) anv_printflike(1, 2);
481 void anv_loge_v(const char *format, va_list va);
482
483 /**
484 * Print a FINISHME message, including its source location.
485 */
486 #define anv_finishme(format, ...) \
487 do { \
488 static bool reported = false; \
489 if (!reported) { \
490 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
491 ##__VA_ARGS__); \
492 reported = true; \
493 } \
494 } while (0)
495
496 /**
497 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
498 */
499 #define anv_perf_warn(instance, obj, format, ...) \
500 do { \
501 static bool reported = false; \
502 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
503 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
504 format, ##__VA_ARGS__); \
505 reported = true; \
506 } \
507 } while (0)
508
509 /* A non-fatal assert. Useful for debugging. */
510 #ifdef DEBUG
511 #define anv_assert(x) ({ \
512 if (unlikely(!(x))) \
513 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
514 })
515 #else
516 #define anv_assert(x)
517 #endif
518
519 /* A multi-pointer allocator
520 *
521 * When copying data structures from the user (such as a render pass), it's
522 * common to need to allocate data for a bunch of different things. Instead
523 * of doing several allocations and having to handle all of the error checking
524 * that entails, it can be easier to do a single allocation. This struct
525 * helps facilitate that. The intended usage looks like this:
526 *
527 * ANV_MULTIALLOC(ma)
528 * anv_multialloc_add(&ma, &main_ptr, 1);
529 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
530 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
531 *
532 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
533 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
534 */
535 struct anv_multialloc {
536 size_t size;
537 size_t align;
538
539 uint32_t ptr_count;
540 void **ptrs[8];
541 };
542
543 #define ANV_MULTIALLOC_INIT \
544 ((struct anv_multialloc) { 0, })
545
546 #define ANV_MULTIALLOC(_name) \
547 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
548
549 __attribute__((always_inline))
550 static inline void
551 _anv_multialloc_add(struct anv_multialloc *ma,
552 void **ptr, size_t size, size_t align)
553 {
554 size_t offset = align_u64(ma->size, align);
555 ma->size = offset + size;
556 ma->align = MAX2(ma->align, align);
557
558 /* Store the offset in the pointer. */
559 *ptr = (void *)(uintptr_t)offset;
560
561 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
562 ma->ptrs[ma->ptr_count++] = ptr;
563 }
564
565 #define anv_multialloc_add_size(_ma, _ptr, _size) \
566 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
567
568 #define anv_multialloc_add(_ma, _ptr, _count) \
569 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
570
571 __attribute__((always_inline))
572 static inline void *
573 anv_multialloc_alloc(struct anv_multialloc *ma,
574 const VkAllocationCallbacks *alloc,
575 VkSystemAllocationScope scope)
576 {
577 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
578 if (!ptr)
579 return NULL;
580
581 /* Fill out each of the pointers with their final value.
582 *
583 * for (uint32_t i = 0; i < ma->ptr_count; i++)
584 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
585 *
586 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
587 * constant, GCC is incapable of figuring this out and unrolling the loop
588 * so we have to give it a little help.
589 */
590 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
591 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
592 if ((_i) < ma->ptr_count) \
593 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
594 _ANV_MULTIALLOC_UPDATE_POINTER(0);
595 _ANV_MULTIALLOC_UPDATE_POINTER(1);
596 _ANV_MULTIALLOC_UPDATE_POINTER(2);
597 _ANV_MULTIALLOC_UPDATE_POINTER(3);
598 _ANV_MULTIALLOC_UPDATE_POINTER(4);
599 _ANV_MULTIALLOC_UPDATE_POINTER(5);
600 _ANV_MULTIALLOC_UPDATE_POINTER(6);
601 _ANV_MULTIALLOC_UPDATE_POINTER(7);
602 #undef _ANV_MULTIALLOC_UPDATE_POINTER
603
604 return ptr;
605 }
606
607 __attribute__((always_inline))
608 static inline void *
609 anv_multialloc_alloc2(struct anv_multialloc *ma,
610 const VkAllocationCallbacks *parent_alloc,
611 const VkAllocationCallbacks *alloc,
612 VkSystemAllocationScope scope)
613 {
614 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
615 }
616
617 struct anv_bo {
618 uint32_t gem_handle;
619
620 uint32_t refcount;
621
622 /* Index into the current validation list. This is used by the
623 * validation list building alrogithm to track which buffers are already
624 * in the validation list so that we can ensure uniqueness.
625 */
626 uint32_t index;
627
628 /* Index for use with util_sparse_array_free_list */
629 uint32_t free_index;
630
631 /* Last known offset. This value is provided by the kernel when we
632 * execbuf and is used as the presumed offset for the next bunch of
633 * relocations.
634 */
635 uint64_t offset;
636
637 uint64_t size;
638
639 /* Map for internally mapped BOs.
640 *
641 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
642 */
643 void *map;
644
645 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
646 uint32_t flags;
647
648 /** True if this BO may be shared with other processes */
649 bool is_external:1;
650
651 /** True if this BO is a wrapper
652 *
653 * When set to true, none of the fields in this BO are meaningful except
654 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
655 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
656 * is set in the physical device.
657 */
658 bool is_wrapper:1;
659
660 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
661 bool has_fixed_address:1;
662
663 /** True if this BO wraps a host pointer */
664 bool from_host_ptr:1;
665 };
666
667 static inline struct anv_bo *
668 anv_bo_unwrap(struct anv_bo *bo)
669 {
670 while (bo->is_wrapper)
671 bo = bo->map;
672 return bo;
673 }
674
675 /* Represents a lock-free linked list of "free" things. This is used by
676 * both the block pool and the state pools. Unfortunately, in order to
677 * solve the ABA problem, we can't use a single uint32_t head.
678 */
679 union anv_free_list {
680 struct {
681 uint32_t offset;
682
683 /* A simple count that is incremented every time the head changes. */
684 uint32_t count;
685 };
686 /* Make sure it's aligned to 64 bits. This will make atomic operations
687 * faster on 32 bit platforms.
688 */
689 uint64_t u64 __attribute__ ((aligned (8)));
690 };
691
692 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
693
694 struct anv_block_state {
695 union {
696 struct {
697 uint32_t next;
698 uint32_t end;
699 };
700 /* Make sure it's aligned to 64 bits. This will make atomic operations
701 * faster on 32 bit platforms.
702 */
703 uint64_t u64 __attribute__ ((aligned (8)));
704 };
705 };
706
707 #define anv_block_pool_foreach_bo(bo, pool) \
708 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
709 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
710 _pp_bo++)
711
712 #define ANV_MAX_BLOCK_POOL_BOS 20
713
714 struct anv_block_pool {
715 struct anv_device *device;
716 bool use_softpin;
717
718 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
719 * around the actual BO so that we grow the pool after the wrapper BO has
720 * been put in a relocation list. This is only used in the non-softpin
721 * case.
722 */
723 struct anv_bo wrapper_bo;
724
725 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
726 struct anv_bo *bo;
727 uint32_t nbos;
728
729 uint64_t size;
730
731 /* The address where the start of the pool is pinned. The various bos that
732 * are created as the pool grows will have addresses in the range
733 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
734 */
735 uint64_t start_address;
736
737 /* The offset from the start of the bo to the "center" of the block
738 * pool. Pointers to allocated blocks are given by
739 * bo.map + center_bo_offset + offsets.
740 */
741 uint32_t center_bo_offset;
742
743 /* Current memory map of the block pool. This pointer may or may not
744 * point to the actual beginning of the block pool memory. If
745 * anv_block_pool_alloc_back has ever been called, then this pointer
746 * will point to the "center" position of the buffer and all offsets
747 * (negative or positive) given out by the block pool alloc functions
748 * will be valid relative to this pointer.
749 *
750 * In particular, map == bo.map + center_offset
751 *
752 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
753 * since it will handle the softpin case as well, where this points to NULL.
754 */
755 void *map;
756 int fd;
757
758 /**
759 * Array of mmaps and gem handles owned by the block pool, reclaimed when
760 * the block pool is destroyed.
761 */
762 struct u_vector mmap_cleanups;
763
764 struct anv_block_state state;
765
766 struct anv_block_state back_state;
767 };
768
769 /* Block pools are backed by a fixed-size 1GB memfd */
770 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
771
772 /* The center of the block pool is also the middle of the memfd. This may
773 * change in the future if we decide differently for some reason.
774 */
775 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
776
777 static inline uint32_t
778 anv_block_pool_size(struct anv_block_pool *pool)
779 {
780 return pool->state.end + pool->back_state.end;
781 }
782
783 struct anv_state {
784 int32_t offset;
785 uint32_t alloc_size;
786 void *map;
787 uint32_t idx;
788 };
789
790 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
791
792 struct anv_fixed_size_state_pool {
793 union anv_free_list free_list;
794 struct anv_block_state block;
795 };
796
797 #define ANV_MIN_STATE_SIZE_LOG2 6
798 #define ANV_MAX_STATE_SIZE_LOG2 21
799
800 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
801
802 struct anv_free_entry {
803 uint32_t next;
804 struct anv_state state;
805 };
806
807 struct anv_state_table {
808 struct anv_device *device;
809 int fd;
810 struct anv_free_entry *map;
811 uint32_t size;
812 struct anv_block_state state;
813 struct u_vector cleanups;
814 };
815
816 struct anv_state_pool {
817 struct anv_block_pool block_pool;
818
819 struct anv_state_table table;
820
821 /* The size of blocks which will be allocated from the block pool */
822 uint32_t block_size;
823
824 /** Free list for "back" allocations */
825 union anv_free_list back_alloc_free_list;
826
827 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
828 };
829
830 struct anv_state_stream_block;
831
832 struct anv_state_stream {
833 struct anv_state_pool *state_pool;
834
835 /* The size of blocks to allocate from the state pool */
836 uint32_t block_size;
837
838 /* Current block we're allocating from */
839 struct anv_state block;
840
841 /* Offset into the current block at which to allocate the next state */
842 uint32_t next;
843
844 /* List of all blocks allocated from this pool */
845 struct anv_state_stream_block *block_list;
846 };
847
848 /* The block_pool functions exported for testing only. The block pool should
849 * only be used via a state pool (see below).
850 */
851 VkResult anv_block_pool_init(struct anv_block_pool *pool,
852 struct anv_device *device,
853 uint64_t start_address,
854 uint32_t initial_size);
855 void anv_block_pool_finish(struct anv_block_pool *pool);
856 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
857 uint32_t block_size, uint32_t *padding);
858 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
859 uint32_t block_size);
860 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
861
862 VkResult anv_state_pool_init(struct anv_state_pool *pool,
863 struct anv_device *device,
864 uint64_t start_address,
865 uint32_t block_size);
866 void anv_state_pool_finish(struct anv_state_pool *pool);
867 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
868 uint32_t state_size, uint32_t alignment);
869 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
870 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
871 void anv_state_stream_init(struct anv_state_stream *stream,
872 struct anv_state_pool *state_pool,
873 uint32_t block_size);
874 void anv_state_stream_finish(struct anv_state_stream *stream);
875 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
876 uint32_t size, uint32_t alignment);
877
878 VkResult anv_state_table_init(struct anv_state_table *table,
879 struct anv_device *device,
880 uint32_t initial_entries);
881 void anv_state_table_finish(struct anv_state_table *table);
882 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
883 uint32_t count);
884 void anv_free_list_push(union anv_free_list *list,
885 struct anv_state_table *table,
886 uint32_t idx, uint32_t count);
887 struct anv_state* anv_free_list_pop(union anv_free_list *list,
888 struct anv_state_table *table);
889
890
891 static inline struct anv_state *
892 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
893 {
894 return &table->map[idx].state;
895 }
896 /**
897 * Implements a pool of re-usable BOs. The interface is identical to that
898 * of block_pool except that each block is its own BO.
899 */
900 struct anv_bo_pool {
901 struct anv_device *device;
902
903 struct util_sparse_array_free_list free_list[16];
904 };
905
906 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
907 void anv_bo_pool_finish(struct anv_bo_pool *pool);
908 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
909 struct anv_bo **bo_out);
910 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
911
912 struct anv_scratch_pool {
913 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
914 struct anv_bo *bos[16][MESA_SHADER_STAGES];
915 };
916
917 void anv_scratch_pool_init(struct anv_device *device,
918 struct anv_scratch_pool *pool);
919 void anv_scratch_pool_finish(struct anv_device *device,
920 struct anv_scratch_pool *pool);
921 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
922 struct anv_scratch_pool *pool,
923 gl_shader_stage stage,
924 unsigned per_thread_scratch);
925
926 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
927 struct anv_bo_cache {
928 struct util_sparse_array bo_map;
929 pthread_mutex_t mutex;
930 };
931
932 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
933 void anv_bo_cache_finish(struct anv_bo_cache *cache);
934
935 struct anv_memory_type {
936 /* Standard bits passed on to the client */
937 VkMemoryPropertyFlags propertyFlags;
938 uint32_t heapIndex;
939
940 /* Driver-internal book-keeping */
941 VkBufferUsageFlags valid_buffer_usage;
942 };
943
944 struct anv_memory_heap {
945 /* Standard bits passed on to the client */
946 VkDeviceSize size;
947 VkMemoryHeapFlags flags;
948
949 /* Driver-internal book-keeping */
950 bool supports_48bit_addresses;
951 VkDeviceSize used;
952 };
953
954 struct anv_physical_device {
955 VK_LOADER_DATA _loader_data;
956
957 struct anv_instance * instance;
958 uint32_t chipset_id;
959 bool no_hw;
960 char path[20];
961 const char * name;
962 struct {
963 uint16_t domain;
964 uint8_t bus;
965 uint8_t device;
966 uint8_t function;
967 } pci_info;
968 struct gen_device_info info;
969 /** Amount of "GPU memory" we want to advertise
970 *
971 * Clearly, this value is bogus since Intel is a UMA architecture. On
972 * gen7 platforms, we are limited by GTT size unless we want to implement
973 * fine-grained tracking and GTT splitting. On Broadwell and above we are
974 * practically unlimited. However, we will never report more than 3/4 of
975 * the total system ram to try and avoid running out of RAM.
976 */
977 bool supports_48bit_addresses;
978 struct brw_compiler * compiler;
979 struct isl_device isl_dev;
980 struct gen_perf_config * perf;
981 int cmd_parser_version;
982 bool has_softpin;
983 bool has_exec_async;
984 bool has_exec_capture;
985 bool has_exec_fence;
986 bool has_syncobj;
987 bool has_syncobj_wait;
988 bool has_context_priority;
989 bool has_context_isolation;
990 bool has_mem_available;
991 uint64_t gtt_size;
992
993 bool use_softpin;
994 bool always_use_bindless;
995
996 /** True if we can access buffers using A64 messages */
997 bool has_a64_buffer_access;
998 /** True if we can use bindless access for images */
999 bool has_bindless_images;
1000 /** True if we can use bindless access for samplers */
1001 bool has_bindless_samplers;
1002
1003 bool always_flush_cache;
1004
1005 struct anv_device_extension_table supported_extensions;
1006 struct anv_physical_device_dispatch_table dispatch;
1007
1008 uint32_t eu_total;
1009 uint32_t subslice_total;
1010
1011 struct {
1012 uint32_t type_count;
1013 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1014 uint32_t heap_count;
1015 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1016 } memory;
1017
1018 uint8_t driver_build_sha1[20];
1019 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1020 uint8_t driver_uuid[VK_UUID_SIZE];
1021 uint8_t device_uuid[VK_UUID_SIZE];
1022
1023 struct disk_cache * disk_cache;
1024
1025 struct wsi_device wsi_device;
1026 int local_fd;
1027 int master_fd;
1028 };
1029
1030 struct anv_app_info {
1031 const char* app_name;
1032 uint32_t app_version;
1033 const char* engine_name;
1034 uint32_t engine_version;
1035 uint32_t api_version;
1036 };
1037
1038 struct anv_instance {
1039 VK_LOADER_DATA _loader_data;
1040
1041 VkAllocationCallbacks alloc;
1042
1043 struct anv_app_info app_info;
1044
1045 struct anv_instance_extension_table enabled_extensions;
1046 struct anv_instance_dispatch_table dispatch;
1047 struct anv_device_dispatch_table device_dispatch;
1048
1049 int physicalDeviceCount;
1050 struct anv_physical_device physicalDevice;
1051
1052 bool pipeline_cache_enabled;
1053
1054 struct vk_debug_report_instance debug_report_callbacks;
1055
1056 struct driOptionCache dri_options;
1057 struct driOptionCache available_dri_options;
1058 };
1059
1060 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1061 void anv_finish_wsi(struct anv_physical_device *physical_device);
1062
1063 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1064 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1065 const char *name);
1066
1067 struct anv_queue_submit {
1068 struct anv_cmd_buffer * cmd_buffer;
1069
1070 uint32_t fence_count;
1071 uint32_t fence_array_length;
1072 struct drm_i915_gem_exec_fence * fences;
1073
1074 uint32_t temporary_semaphore_count;
1075 uint32_t temporary_semaphore_array_length;
1076 struct anv_semaphore_impl * temporary_semaphores;
1077
1078 /* Semaphores to be signaled with a SYNC_FD. */
1079 struct anv_semaphore ** sync_fd_semaphores;
1080 uint32_t sync_fd_semaphore_count;
1081 uint32_t sync_fd_semaphore_array_length;
1082
1083 /* Allocated only with non shareable timelines. */
1084 struct anv_timeline ** wait_timelines;
1085 uint32_t wait_timeline_count;
1086 uint32_t wait_timeline_array_length;
1087 uint64_t * wait_timeline_values;
1088
1089 struct anv_timeline ** signal_timelines;
1090 uint32_t signal_timeline_count;
1091 uint32_t signal_timeline_array_length;
1092 uint64_t * signal_timeline_values;
1093
1094 int in_fence;
1095 bool need_out_fence;
1096 int out_fence;
1097
1098 uint32_t fence_bo_count;
1099 uint32_t fence_bo_array_length;
1100 /* An array of struct anv_bo pointers with lower bit used as a flag to
1101 * signal we will wait on that BO (see anv_(un)pack_ptr).
1102 */
1103 uintptr_t * fence_bos;
1104
1105 const VkAllocationCallbacks * alloc;
1106 VkSystemAllocationScope alloc_scope;
1107
1108 struct anv_bo * simple_bo;
1109 uint32_t simple_bo_size;
1110
1111 struct list_head link;
1112 };
1113
1114 struct anv_queue {
1115 VK_LOADER_DATA _loader_data;
1116
1117 struct anv_device * device;
1118
1119 /*
1120 * A list of struct anv_queue_submit to be submitted to i915.
1121 */
1122 struct list_head queued_submits;
1123
1124 VkDeviceQueueCreateFlags flags;
1125 };
1126
1127 struct anv_pipeline_cache {
1128 struct anv_device * device;
1129 pthread_mutex_t mutex;
1130
1131 struct hash_table * nir_cache;
1132
1133 struct hash_table * cache;
1134 };
1135
1136 struct nir_xfb_info;
1137 struct anv_pipeline_bind_map;
1138
1139 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1140 struct anv_device *device,
1141 bool cache_enabled);
1142 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1143
1144 struct anv_shader_bin *
1145 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1146 const void *key, uint32_t key_size);
1147 struct anv_shader_bin *
1148 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1149 const void *key_data, uint32_t key_size,
1150 const void *kernel_data, uint32_t kernel_size,
1151 const void *constant_data,
1152 uint32_t constant_data_size,
1153 const struct brw_stage_prog_data *prog_data,
1154 uint32_t prog_data_size,
1155 const struct brw_compile_stats *stats,
1156 uint32_t num_stats,
1157 const struct nir_xfb_info *xfb_info,
1158 const struct anv_pipeline_bind_map *bind_map);
1159
1160 struct anv_shader_bin *
1161 anv_device_search_for_kernel(struct anv_device *device,
1162 struct anv_pipeline_cache *cache,
1163 const void *key_data, uint32_t key_size,
1164 bool *user_cache_bit);
1165
1166 struct anv_shader_bin *
1167 anv_device_upload_kernel(struct anv_device *device,
1168 struct anv_pipeline_cache *cache,
1169 const void *key_data, uint32_t key_size,
1170 const void *kernel_data, uint32_t kernel_size,
1171 const void *constant_data,
1172 uint32_t constant_data_size,
1173 const struct brw_stage_prog_data *prog_data,
1174 uint32_t prog_data_size,
1175 const struct brw_compile_stats *stats,
1176 uint32_t num_stats,
1177 const struct nir_xfb_info *xfb_info,
1178 const struct anv_pipeline_bind_map *bind_map);
1179
1180 struct nir_shader;
1181 struct nir_shader_compiler_options;
1182
1183 struct nir_shader *
1184 anv_device_search_for_nir(struct anv_device *device,
1185 struct anv_pipeline_cache *cache,
1186 const struct nir_shader_compiler_options *nir_options,
1187 unsigned char sha1_key[20],
1188 void *mem_ctx);
1189
1190 void
1191 anv_device_upload_nir(struct anv_device *device,
1192 struct anv_pipeline_cache *cache,
1193 const struct nir_shader *nir,
1194 unsigned char sha1_key[20]);
1195
1196 struct anv_device {
1197 VK_LOADER_DATA _loader_data;
1198
1199 VkAllocationCallbacks alloc;
1200
1201 struct anv_instance * instance;
1202 uint32_t chipset_id;
1203 bool no_hw;
1204 struct gen_device_info info;
1205 struct isl_device isl_dev;
1206 int context_id;
1207 int fd;
1208 bool can_chain_batches;
1209 bool robust_buffer_access;
1210 struct anv_device_extension_table enabled_extensions;
1211 struct anv_device_dispatch_table dispatch;
1212
1213 pthread_mutex_t vma_mutex;
1214 struct util_vma_heap vma_lo;
1215 struct util_vma_heap vma_hi;
1216
1217 /** List of all anv_device_memory objects */
1218 struct list_head memory_objects;
1219
1220 struct anv_bo_pool batch_bo_pool;
1221
1222 struct anv_bo_cache bo_cache;
1223
1224 struct anv_state_pool dynamic_state_pool;
1225 struct anv_state_pool instruction_state_pool;
1226 struct anv_state_pool binding_table_pool;
1227 struct anv_state_pool surface_state_pool;
1228
1229 struct anv_bo * workaround_bo;
1230 struct anv_bo * trivial_batch_bo;
1231 struct anv_bo * hiz_clear_bo;
1232
1233 struct anv_pipeline_cache default_pipeline_cache;
1234 struct blorp_context blorp;
1235
1236 struct anv_state border_colors;
1237
1238 struct anv_state slice_hash;
1239
1240 struct anv_queue queue;
1241
1242 struct anv_scratch_pool scratch_pool;
1243
1244 pthread_mutex_t mutex;
1245 pthread_cond_t queue_submit;
1246 int _lost;
1247
1248 struct gen_batch_decode_ctx decoder_ctx;
1249 /*
1250 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1251 * the cmd_buffer's list.
1252 */
1253 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1254
1255 int perf_fd; /* -1 if no opened */
1256 uint64_t perf_metric; /* 0 if unset */
1257
1258 struct gen_aux_map_context *aux_map_ctx;
1259 };
1260
1261 static inline struct anv_state_pool *
1262 anv_binding_table_pool(struct anv_device *device)
1263 {
1264 if (device->instance->physicalDevice.use_softpin)
1265 return &device->binding_table_pool;
1266 else
1267 return &device->surface_state_pool;
1268 }
1269
1270 static inline struct anv_state
1271 anv_binding_table_pool_alloc(struct anv_device *device) {
1272 if (device->instance->physicalDevice.use_softpin)
1273 return anv_state_pool_alloc(&device->binding_table_pool,
1274 device->binding_table_pool.block_size, 0);
1275 else
1276 return anv_state_pool_alloc_back(&device->surface_state_pool);
1277 }
1278
1279 static inline void
1280 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1281 anv_state_pool_free(anv_binding_table_pool(device), state);
1282 }
1283
1284 static inline uint32_t
1285 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1286 {
1287 if (bo->is_external)
1288 return device->isl_dev.mocs.external;
1289 else
1290 return device->isl_dev.mocs.internal;
1291 }
1292
1293 void anv_device_init_blorp(struct anv_device *device);
1294 void anv_device_finish_blorp(struct anv_device *device);
1295
1296 void _anv_device_set_all_queue_lost(struct anv_device *device);
1297 VkResult _anv_device_set_lost(struct anv_device *device,
1298 const char *file, int line,
1299 const char *msg, ...)
1300 anv_printflike(4, 5);
1301 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1302 const char *file, int line,
1303 const char *msg, ...)
1304 anv_printflike(4, 5);
1305 #define anv_device_set_lost(dev, ...) \
1306 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1307 #define anv_queue_set_lost(queue, ...) \
1308 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1309
1310 static inline bool
1311 anv_device_is_lost(struct anv_device *device)
1312 {
1313 return unlikely(p_atomic_read(&device->_lost));
1314 }
1315
1316 VkResult anv_device_query_status(struct anv_device *device);
1317
1318
1319 enum anv_bo_alloc_flags {
1320 /** Specifies that the BO must have a 32-bit address
1321 *
1322 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1323 */
1324 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1325
1326 /** Specifies that the BO may be shared externally */
1327 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1328
1329 /** Specifies that the BO should be mapped */
1330 ANV_BO_ALLOC_MAPPED = (1 << 2),
1331
1332 /** Specifies that the BO should be snooped so we get coherency */
1333 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1334
1335 /** Specifies that the BO should be captured in error states */
1336 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1337
1338 /** Specifies that the BO will have an address assigned by the caller */
1339 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1340
1341 /** Enables implicit synchronization on the BO
1342 *
1343 * This is the opposite of EXEC_OBJECT_ASYNC.
1344 */
1345 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1346
1347 /** Enables implicit synchronization on the BO
1348 *
1349 * This is equivalent to EXEC_OBJECT_WRITE.
1350 */
1351 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1352 };
1353
1354 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1355 enum anv_bo_alloc_flags alloc_flags,
1356 struct anv_bo **bo);
1357 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1358 void *host_ptr, uint32_t size,
1359 enum anv_bo_alloc_flags alloc_flags,
1360 struct anv_bo **bo_out);
1361 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1362 enum anv_bo_alloc_flags alloc_flags,
1363 struct anv_bo **bo);
1364 VkResult anv_device_export_bo(struct anv_device *device,
1365 struct anv_bo *bo, int *fd_out);
1366 void anv_device_release_bo(struct anv_device *device,
1367 struct anv_bo *bo);
1368
1369 static inline struct anv_bo *
1370 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1371 {
1372 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1373 }
1374
1375 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1376 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1377 int64_t timeout);
1378
1379 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1380 void anv_queue_finish(struct anv_queue *queue);
1381
1382 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1383 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1384 struct anv_batch *batch);
1385
1386 uint64_t anv_gettime_ns(void);
1387 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1388
1389 void* anv_gem_mmap(struct anv_device *device,
1390 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1391 void anv_gem_munmap(void *p, uint64_t size);
1392 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1393 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1394 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1395 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1396 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1397 int anv_gem_execbuffer(struct anv_device *device,
1398 struct drm_i915_gem_execbuffer2 *execbuf);
1399 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1400 uint32_t stride, uint32_t tiling);
1401 int anv_gem_create_context(struct anv_device *device);
1402 bool anv_gem_has_context_priority(int fd);
1403 int anv_gem_destroy_context(struct anv_device *device, int context);
1404 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1405 uint64_t value);
1406 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1407 uint64_t *value);
1408 int anv_gem_get_param(int fd, uint32_t param);
1409 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1410 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1411 int anv_gem_get_aperture(int fd, uint64_t *size);
1412 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1413 uint32_t *active, uint32_t *pending);
1414 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1415 int anv_gem_reg_read(struct anv_device *device,
1416 uint32_t offset, uint64_t *result);
1417 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1418 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1419 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1420 uint32_t read_domains, uint32_t write_domain);
1421 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1422 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1423 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1424 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1425 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1426 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1427 uint32_t handle);
1428 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1429 uint32_t handle, int fd);
1430 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1431 bool anv_gem_supports_syncobj_wait(int fd);
1432 int anv_gem_syncobj_wait(struct anv_device *device,
1433 uint32_t *handles, uint32_t num_handles,
1434 int64_t abs_timeout_ns, bool wait_all);
1435
1436 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1437 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1438
1439 struct anv_reloc_list {
1440 uint32_t num_relocs;
1441 uint32_t array_length;
1442 struct drm_i915_gem_relocation_entry * relocs;
1443 struct anv_bo ** reloc_bos;
1444 uint32_t dep_words;
1445 BITSET_WORD * deps;
1446 };
1447
1448 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1449 const VkAllocationCallbacks *alloc);
1450 void anv_reloc_list_finish(struct anv_reloc_list *list,
1451 const VkAllocationCallbacks *alloc);
1452
1453 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1454 const VkAllocationCallbacks *alloc,
1455 uint32_t offset, struct anv_bo *target_bo,
1456 uint32_t delta, uint64_t *address_u64_out);
1457
1458 struct anv_batch_bo {
1459 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1460 struct list_head link;
1461
1462 struct anv_bo * bo;
1463
1464 /* Bytes actually consumed in this batch BO */
1465 uint32_t length;
1466
1467 struct anv_reloc_list relocs;
1468 };
1469
1470 struct anv_batch {
1471 const VkAllocationCallbacks * alloc;
1472
1473 void * start;
1474 void * end;
1475 void * next;
1476
1477 struct anv_reloc_list * relocs;
1478
1479 /* This callback is called (with the associated user data) in the event
1480 * that the batch runs out of space.
1481 */
1482 VkResult (*extend_cb)(struct anv_batch *, void *);
1483 void * user_data;
1484
1485 /**
1486 * Current error status of the command buffer. Used to track inconsistent
1487 * or incomplete command buffer states that are the consequence of run-time
1488 * errors such as out of memory scenarios. We want to track this in the
1489 * batch because the command buffer object is not visible to some parts
1490 * of the driver.
1491 */
1492 VkResult status;
1493 };
1494
1495 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1496 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1497 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1498 void *location, struct anv_bo *bo, uint32_t offset);
1499
1500 static inline VkResult
1501 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1502 {
1503 assert(error != VK_SUCCESS);
1504 if (batch->status == VK_SUCCESS)
1505 batch->status = error;
1506 return batch->status;
1507 }
1508
1509 static inline bool
1510 anv_batch_has_error(struct anv_batch *batch)
1511 {
1512 return batch->status != VK_SUCCESS;
1513 }
1514
1515 struct anv_address {
1516 struct anv_bo *bo;
1517 uint32_t offset;
1518 };
1519
1520 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1521
1522 static inline bool
1523 anv_address_is_null(struct anv_address addr)
1524 {
1525 return addr.bo == NULL && addr.offset == 0;
1526 }
1527
1528 static inline uint64_t
1529 anv_address_physical(struct anv_address addr)
1530 {
1531 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1532 return gen_canonical_address(addr.bo->offset + addr.offset);
1533 else
1534 return gen_canonical_address(addr.offset);
1535 }
1536
1537 static inline struct anv_address
1538 anv_address_add(struct anv_address addr, uint64_t offset)
1539 {
1540 addr.offset += offset;
1541 return addr;
1542 }
1543
1544 static inline void
1545 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1546 {
1547 unsigned reloc_size = 0;
1548 if (device->info.gen >= 8) {
1549 reloc_size = sizeof(uint64_t);
1550 *(uint64_t *)p = gen_canonical_address(v);
1551 } else {
1552 reloc_size = sizeof(uint32_t);
1553 *(uint32_t *)p = v;
1554 }
1555
1556 if (flush && !device->info.has_llc)
1557 gen_flush_range(p, reloc_size);
1558 }
1559
1560 static inline uint64_t
1561 _anv_combine_address(struct anv_batch *batch, void *location,
1562 const struct anv_address address, uint32_t delta)
1563 {
1564 if (address.bo == NULL) {
1565 return address.offset + delta;
1566 } else {
1567 assert(batch->start <= location && location < batch->end);
1568
1569 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1570 }
1571 }
1572
1573 #define __gen_address_type struct anv_address
1574 #define __gen_user_data struct anv_batch
1575 #define __gen_combine_address _anv_combine_address
1576
1577 /* Wrapper macros needed to work around preprocessor argument issues. In
1578 * particular, arguments don't get pre-evaluated if they are concatenated.
1579 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1580 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1581 * We can work around this easily enough with these helpers.
1582 */
1583 #define __anv_cmd_length(cmd) cmd ## _length
1584 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1585 #define __anv_cmd_header(cmd) cmd ## _header
1586 #define __anv_cmd_pack(cmd) cmd ## _pack
1587 #define __anv_reg_num(reg) reg ## _num
1588
1589 #define anv_pack_struct(dst, struc, ...) do { \
1590 struct struc __template = { \
1591 __VA_ARGS__ \
1592 }; \
1593 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1594 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1595 } while (0)
1596
1597 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1598 void *__dst = anv_batch_emit_dwords(batch, n); \
1599 if (__dst) { \
1600 struct cmd __template = { \
1601 __anv_cmd_header(cmd), \
1602 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1603 __VA_ARGS__ \
1604 }; \
1605 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1606 } \
1607 __dst; \
1608 })
1609
1610 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1611 do { \
1612 uint32_t *dw; \
1613 \
1614 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1615 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1616 if (!dw) \
1617 break; \
1618 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1619 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1620 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1621 } while (0)
1622
1623 #define anv_batch_emit(batch, cmd, name) \
1624 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1625 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1626 __builtin_expect(_dst != NULL, 1); \
1627 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1628 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1629 _dst = NULL; \
1630 }))
1631
1632 struct anv_device_memory {
1633 struct list_head link;
1634
1635 struct anv_bo * bo;
1636 struct anv_memory_type * type;
1637 VkDeviceSize map_size;
1638 void * map;
1639
1640 /* If set, we are holding reference to AHardwareBuffer
1641 * which we must release when memory is freed.
1642 */
1643 struct AHardwareBuffer * ahw;
1644
1645 /* If set, this memory comes from a host pointer. */
1646 void * host_ptr;
1647 };
1648
1649 /**
1650 * Header for Vertex URB Entry (VUE)
1651 */
1652 struct anv_vue_header {
1653 uint32_t Reserved;
1654 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1655 uint32_t ViewportIndex;
1656 float PointWidth;
1657 };
1658
1659 /** Struct representing a sampled image descriptor
1660 *
1661 * This descriptor layout is used for sampled images, bare sampler, and
1662 * combined image/sampler descriptors.
1663 */
1664 struct anv_sampled_image_descriptor {
1665 /** Bindless image handle
1666 *
1667 * This is expected to already be shifted such that the 20-bit
1668 * SURFACE_STATE table index is in the top 20 bits.
1669 */
1670 uint32_t image;
1671
1672 /** Bindless sampler handle
1673 *
1674 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1675 * to the dynamic state base address.
1676 */
1677 uint32_t sampler;
1678 };
1679
1680 struct anv_texture_swizzle_descriptor {
1681 /** Texture swizzle
1682 *
1683 * See also nir_intrinsic_channel_select_intel
1684 */
1685 uint8_t swizzle[4];
1686
1687 /** Unused padding to ensure the struct is a multiple of 64 bits */
1688 uint32_t _pad;
1689 };
1690
1691 /** Struct representing a storage image descriptor */
1692 struct anv_storage_image_descriptor {
1693 /** Bindless image handles
1694 *
1695 * These are expected to already be shifted such that the 20-bit
1696 * SURFACE_STATE table index is in the top 20 bits.
1697 */
1698 uint32_t read_write;
1699 uint32_t write_only;
1700 };
1701
1702 /** Struct representing a address/range descriptor
1703 *
1704 * The fields of this struct correspond directly to the data layout of
1705 * nir_address_format_64bit_bounded_global addresses. The last field is the
1706 * offset in the NIR address so it must be zero so that when you load the
1707 * descriptor you get a pointer to the start of the range.
1708 */
1709 struct anv_address_range_descriptor {
1710 uint64_t address;
1711 uint32_t range;
1712 uint32_t zero;
1713 };
1714
1715 enum anv_descriptor_data {
1716 /** The descriptor contains a BTI reference to a surface state */
1717 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1718 /** The descriptor contains a BTI reference to a sampler state */
1719 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1720 /** The descriptor contains an actual buffer view */
1721 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1722 /** The descriptor contains auxiliary image layout data */
1723 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1724 /** The descriptor contains auxiliary image layout data */
1725 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1726 /** anv_address_range_descriptor with a buffer address and range */
1727 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1728 /** Bindless surface handle */
1729 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1730 /** Storage image handles */
1731 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1732 /** Storage image handles */
1733 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1734 };
1735
1736 struct anv_descriptor_set_binding_layout {
1737 #ifndef NDEBUG
1738 /* The type of the descriptors in this binding */
1739 VkDescriptorType type;
1740 #endif
1741
1742 /* Flags provided when this binding was created */
1743 VkDescriptorBindingFlagsEXT flags;
1744
1745 /* Bitfield representing the type of data this descriptor contains */
1746 enum anv_descriptor_data data;
1747
1748 /* Maximum number of YCbCr texture/sampler planes */
1749 uint8_t max_plane_count;
1750
1751 /* Number of array elements in this binding (or size in bytes for inline
1752 * uniform data)
1753 */
1754 uint16_t array_size;
1755
1756 /* Index into the flattend descriptor set */
1757 uint16_t descriptor_index;
1758
1759 /* Index into the dynamic state array for a dynamic buffer */
1760 int16_t dynamic_offset_index;
1761
1762 /* Index into the descriptor set buffer views */
1763 int16_t buffer_view_index;
1764
1765 /* Offset into the descriptor buffer where this descriptor lives */
1766 uint32_t descriptor_offset;
1767
1768 /* Immutable samplers (or NULL if no immutable samplers) */
1769 struct anv_sampler **immutable_samplers;
1770 };
1771
1772 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1773
1774 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1775 VkDescriptorType type);
1776
1777 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1778 const struct anv_descriptor_set_binding_layout *binding,
1779 bool sampler);
1780
1781 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1782 const struct anv_descriptor_set_binding_layout *binding,
1783 bool sampler);
1784
1785 struct anv_descriptor_set_layout {
1786 /* Descriptor set layouts can be destroyed at almost any time */
1787 uint32_t ref_cnt;
1788
1789 /* Number of bindings in this descriptor set */
1790 uint16_t binding_count;
1791
1792 /* Total size of the descriptor set with room for all array entries */
1793 uint16_t size;
1794
1795 /* Shader stages affected by this descriptor set */
1796 uint16_t shader_stages;
1797
1798 /* Number of buffer views in this descriptor set */
1799 uint16_t buffer_view_count;
1800
1801 /* Number of dynamic offsets used by this descriptor set */
1802 uint16_t dynamic_offset_count;
1803
1804 /* For each shader stage, which offsets apply to that stage */
1805 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1806
1807 /* Size of the descriptor buffer for this descriptor set */
1808 uint32_t descriptor_buffer_size;
1809
1810 /* Bindings in this descriptor set */
1811 struct anv_descriptor_set_binding_layout binding[0];
1812 };
1813
1814 static inline void
1815 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1816 {
1817 assert(layout && layout->ref_cnt >= 1);
1818 p_atomic_inc(&layout->ref_cnt);
1819 }
1820
1821 static inline void
1822 anv_descriptor_set_layout_unref(struct anv_device *device,
1823 struct anv_descriptor_set_layout *layout)
1824 {
1825 assert(layout && layout->ref_cnt >= 1);
1826 if (p_atomic_dec_zero(&layout->ref_cnt))
1827 vk_free(&device->alloc, layout);
1828 }
1829
1830 struct anv_descriptor {
1831 VkDescriptorType type;
1832
1833 union {
1834 struct {
1835 VkImageLayout layout;
1836 struct anv_image_view *image_view;
1837 struct anv_sampler *sampler;
1838 };
1839
1840 struct {
1841 struct anv_buffer *buffer;
1842 uint64_t offset;
1843 uint64_t range;
1844 };
1845
1846 struct anv_buffer_view *buffer_view;
1847 };
1848 };
1849
1850 struct anv_descriptor_set {
1851 struct anv_descriptor_pool *pool;
1852 struct anv_descriptor_set_layout *layout;
1853 uint32_t size;
1854
1855 /* State relative to anv_descriptor_pool::bo */
1856 struct anv_state desc_mem;
1857 /* Surface state for the descriptor buffer */
1858 struct anv_state desc_surface_state;
1859
1860 uint32_t buffer_view_count;
1861 struct anv_buffer_view *buffer_views;
1862
1863 /* Link to descriptor pool's desc_sets list . */
1864 struct list_head pool_link;
1865
1866 struct anv_descriptor descriptors[0];
1867 };
1868
1869 struct anv_buffer_view {
1870 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1871 uint64_t range; /**< VkBufferViewCreateInfo::range */
1872
1873 struct anv_address address;
1874
1875 struct anv_state surface_state;
1876 struct anv_state storage_surface_state;
1877 struct anv_state writeonly_storage_surface_state;
1878
1879 struct brw_image_param storage_image_param;
1880 };
1881
1882 struct anv_push_descriptor_set {
1883 struct anv_descriptor_set set;
1884
1885 /* Put this field right behind anv_descriptor_set so it fills up the
1886 * descriptors[0] field. */
1887 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1888
1889 /** True if the descriptor set buffer has been referenced by a draw or
1890 * dispatch command.
1891 */
1892 bool set_used_on_gpu;
1893
1894 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1895 };
1896
1897 struct anv_descriptor_pool {
1898 uint32_t size;
1899 uint32_t next;
1900 uint32_t free_list;
1901
1902 struct anv_bo *bo;
1903 struct util_vma_heap bo_heap;
1904
1905 struct anv_state_stream surface_state_stream;
1906 void *surface_state_free_list;
1907
1908 struct list_head desc_sets;
1909
1910 char data[0];
1911 };
1912
1913 enum anv_descriptor_template_entry_type {
1914 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1915 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1916 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1917 };
1918
1919 struct anv_descriptor_template_entry {
1920 /* The type of descriptor in this entry */
1921 VkDescriptorType type;
1922
1923 /* Binding in the descriptor set */
1924 uint32_t binding;
1925
1926 /* Offset at which to write into the descriptor set binding */
1927 uint32_t array_element;
1928
1929 /* Number of elements to write into the descriptor set binding */
1930 uint32_t array_count;
1931
1932 /* Offset into the user provided data */
1933 size_t offset;
1934
1935 /* Stride between elements into the user provided data */
1936 size_t stride;
1937 };
1938
1939 struct anv_descriptor_update_template {
1940 VkPipelineBindPoint bind_point;
1941
1942 /* The descriptor set this template corresponds to. This value is only
1943 * valid if the template was created with the templateType
1944 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1945 */
1946 uint8_t set;
1947
1948 /* Number of entries in this template */
1949 uint32_t entry_count;
1950
1951 /* Entries of the template */
1952 struct anv_descriptor_template_entry entries[0];
1953 };
1954
1955 size_t
1956 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1957
1958 void
1959 anv_descriptor_set_write_image_view(struct anv_device *device,
1960 struct anv_descriptor_set *set,
1961 const VkDescriptorImageInfo * const info,
1962 VkDescriptorType type,
1963 uint32_t binding,
1964 uint32_t element);
1965
1966 void
1967 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1968 struct anv_descriptor_set *set,
1969 VkDescriptorType type,
1970 struct anv_buffer_view *buffer_view,
1971 uint32_t binding,
1972 uint32_t element);
1973
1974 void
1975 anv_descriptor_set_write_buffer(struct anv_device *device,
1976 struct anv_descriptor_set *set,
1977 struct anv_state_stream *alloc_stream,
1978 VkDescriptorType type,
1979 struct anv_buffer *buffer,
1980 uint32_t binding,
1981 uint32_t element,
1982 VkDeviceSize offset,
1983 VkDeviceSize range);
1984 void
1985 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1986 struct anv_descriptor_set *set,
1987 uint32_t binding,
1988 const void *data,
1989 size_t offset,
1990 size_t size);
1991
1992 void
1993 anv_descriptor_set_write_template(struct anv_device *device,
1994 struct anv_descriptor_set *set,
1995 struct anv_state_stream *alloc_stream,
1996 const struct anv_descriptor_update_template *template,
1997 const void *data);
1998
1999 VkResult
2000 anv_descriptor_set_create(struct anv_device *device,
2001 struct anv_descriptor_pool *pool,
2002 struct anv_descriptor_set_layout *layout,
2003 struct anv_descriptor_set **out_set);
2004
2005 void
2006 anv_descriptor_set_destroy(struct anv_device *device,
2007 struct anv_descriptor_pool *pool,
2008 struct anv_descriptor_set *set);
2009
2010 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2011 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2012 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2013 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2014 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2015 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2016
2017 struct anv_pipeline_binding {
2018 /** Index in the descriptor set
2019 *
2020 * This is a flattened index; the descriptor set layout is already taken
2021 * into account.
2022 */
2023 uint32_t index;
2024
2025 /** The descriptor set this surface corresponds to.
2026 *
2027 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2028 * binding is not a normal descriptor set but something else.
2029 */
2030 uint8_t set;
2031
2032 union {
2033 /** Plane in the binding index for images */
2034 uint8_t plane;
2035
2036 /** Input attachment index (relative to the subpass) */
2037 uint8_t input_attachment_index;
2038
2039 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2040 uint8_t dynamic_offset_index;
2041 };
2042
2043 /** For a storage image, whether it is write-only */
2044 uint8_t write_only;
2045
2046 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2047 * assuming POD zero-initialization.
2048 */
2049 uint8_t pad;
2050 };
2051
2052 struct anv_push_range {
2053 /** Index in the descriptor set */
2054 uint32_t index;
2055
2056 /** Descriptor set index */
2057 uint8_t set;
2058
2059 /** Dynamic offset index (for dynamic UBOs) */
2060 uint8_t dynamic_offset_index;
2061
2062 /** Start offset in units of 32B */
2063 uint8_t start;
2064
2065 /** Range in units of 32B */
2066 uint8_t length;
2067 };
2068
2069 struct anv_pipeline_layout {
2070 struct {
2071 struct anv_descriptor_set_layout *layout;
2072 uint32_t dynamic_offset_start;
2073 } set[MAX_SETS];
2074
2075 uint32_t num_sets;
2076
2077 unsigned char sha1[20];
2078 };
2079
2080 struct anv_buffer {
2081 struct anv_device * device;
2082 VkDeviceSize size;
2083
2084 VkBufferUsageFlags usage;
2085
2086 /* Set when bound */
2087 struct anv_address address;
2088 };
2089
2090 static inline uint64_t
2091 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2092 {
2093 assert(offset <= buffer->size);
2094 if (range == VK_WHOLE_SIZE) {
2095 return buffer->size - offset;
2096 } else {
2097 assert(range + offset >= range);
2098 assert(range + offset <= buffer->size);
2099 return range;
2100 }
2101 }
2102
2103 enum anv_cmd_dirty_bits {
2104 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2105 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2106 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2107 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2108 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2109 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2110 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2111 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2112 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2113 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2114 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2115 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2116 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2117 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2118 };
2119 typedef uint32_t anv_cmd_dirty_mask_t;
2120
2121 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2122 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2123 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2124 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2125 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2126 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2127 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2128 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2129 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2130 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2131 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2132
2133 static inline enum anv_cmd_dirty_bits
2134 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2135 {
2136 switch (vk_state) {
2137 case VK_DYNAMIC_STATE_VIEWPORT:
2138 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2139 case VK_DYNAMIC_STATE_SCISSOR:
2140 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2141 case VK_DYNAMIC_STATE_LINE_WIDTH:
2142 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2143 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2144 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2145 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2146 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2147 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2148 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2149 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2150 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2151 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2152 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2153 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2154 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2155 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2156 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2157 default:
2158 assert(!"Unsupported dynamic state");
2159 return 0;
2160 }
2161 }
2162
2163
2164 enum anv_pipe_bits {
2165 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2166 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2167 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2168 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2169 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2170 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2171 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2172 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2173 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2174 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2175 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2176 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2177
2178 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2179 * a flush has happened but not a CS stall. The next time we do any sort
2180 * of invalidation we need to insert a CS stall at that time. Otherwise,
2181 * we would have to CS stall on every flush which could be bad.
2182 */
2183 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2184
2185 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2186 * target operations related to transfer commands with VkBuffer as
2187 * destination are ongoing. Some operations like copies on the command
2188 * streamer might need to be aware of this to trigger the appropriate stall
2189 * before they can proceed with the copy.
2190 */
2191 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2192 };
2193
2194 #define ANV_PIPE_FLUSH_BITS ( \
2195 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2196 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2197 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2198 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2199
2200 #define ANV_PIPE_STALL_BITS ( \
2201 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2202 ANV_PIPE_DEPTH_STALL_BIT | \
2203 ANV_PIPE_CS_STALL_BIT)
2204
2205 #define ANV_PIPE_INVALIDATE_BITS ( \
2206 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2207 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2208 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2209 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2210 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2211 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2212
2213 static inline enum anv_pipe_bits
2214 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2215 {
2216 enum anv_pipe_bits pipe_bits = 0;
2217
2218 unsigned b;
2219 for_each_bit(b, flags) {
2220 switch ((VkAccessFlagBits)(1 << b)) {
2221 case VK_ACCESS_SHADER_WRITE_BIT:
2222 /* We're transitioning a buffer that was previously used as write
2223 * destination through the data port. To make its content available
2224 * to future operations, flush the data cache.
2225 */
2226 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2227 break;
2228 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2229 /* We're transitioning a buffer that was previously used as render
2230 * target. To make its content available to future operations, flush
2231 * the render target cache.
2232 */
2233 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2234 break;
2235 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2236 /* We're transitioning a buffer that was previously used as depth
2237 * buffer. To make its content available to future operations, flush
2238 * the depth cache.
2239 */
2240 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2241 break;
2242 case VK_ACCESS_TRANSFER_WRITE_BIT:
2243 /* We're transitioning a buffer that was previously used as a
2244 * transfer write destination. Generic write operations include color
2245 * & depth operations as well as buffer operations like :
2246 * - vkCmdClearColorImage()
2247 * - vkCmdClearDepthStencilImage()
2248 * - vkCmdBlitImage()
2249 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2250 *
2251 * Most of these operations are implemented using Blorp which writes
2252 * through the render target, so flush that cache to make it visible
2253 * to future operations. And for depth related operations we also
2254 * need to flush the depth cache.
2255 */
2256 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2257 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2258 break;
2259 case VK_ACCESS_MEMORY_WRITE_BIT:
2260 /* We're transitioning a buffer for generic write operations. Flush
2261 * all the caches.
2262 */
2263 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2264 break;
2265 default:
2266 break; /* Nothing to do */
2267 }
2268 }
2269
2270 return pipe_bits;
2271 }
2272
2273 static inline enum anv_pipe_bits
2274 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2275 {
2276 enum anv_pipe_bits pipe_bits = 0;
2277
2278 unsigned b;
2279 for_each_bit(b, flags) {
2280 switch ((VkAccessFlagBits)(1 << b)) {
2281 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2282 /* Indirect draw commands take a buffer as input that we're going to
2283 * read from the command streamer to load some of the HW registers
2284 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2285 * command streamer stall so that all the cache flushes have
2286 * completed before the command streamer loads from memory.
2287 */
2288 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2289 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2290 * through a vertex buffer, so invalidate that cache.
2291 */
2292 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2293 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2294 * UBO from the buffer, so we need to invalidate constant cache.
2295 */
2296 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2297 break;
2298 case VK_ACCESS_INDEX_READ_BIT:
2299 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2300 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2301 * commands, so we invalidate the VF cache to make sure there is no
2302 * stale data when we start rendering.
2303 */
2304 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2305 break;
2306 case VK_ACCESS_UNIFORM_READ_BIT:
2307 /* We transitioning a buffer to be used as uniform data. Because
2308 * uniform is accessed through the data port & sampler, we need to
2309 * invalidate the texture cache (sampler) & constant cache (data
2310 * port) to avoid stale data.
2311 */
2312 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2313 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2314 break;
2315 case VK_ACCESS_SHADER_READ_BIT:
2316 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2317 case VK_ACCESS_TRANSFER_READ_BIT:
2318 /* Transitioning a buffer to be read through the sampler, so
2319 * invalidate the texture cache, we don't want any stale data.
2320 */
2321 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2322 break;
2323 case VK_ACCESS_MEMORY_READ_BIT:
2324 /* Transitioning a buffer for generic read, invalidate all the
2325 * caches.
2326 */
2327 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2328 break;
2329 case VK_ACCESS_MEMORY_WRITE_BIT:
2330 /* Generic write, make sure all previously written things land in
2331 * memory.
2332 */
2333 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2334 break;
2335 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2336 /* Transitioning a buffer for conditional rendering. We'll load the
2337 * content of this buffer into HW registers using the command
2338 * streamer, so we need to stall the command streamer to make sure
2339 * any in-flight flush operations have completed.
2340 */
2341 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2342 break;
2343 default:
2344 break; /* Nothing to do */
2345 }
2346 }
2347
2348 return pipe_bits;
2349 }
2350
2351 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2352 VK_IMAGE_ASPECT_COLOR_BIT | \
2353 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2354 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2355 VK_IMAGE_ASPECT_PLANE_2_BIT)
2356 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2357 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2358 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2359 VK_IMAGE_ASPECT_PLANE_2_BIT)
2360
2361 struct anv_vertex_binding {
2362 struct anv_buffer * buffer;
2363 VkDeviceSize offset;
2364 };
2365
2366 struct anv_xfb_binding {
2367 struct anv_buffer * buffer;
2368 VkDeviceSize offset;
2369 VkDeviceSize size;
2370 };
2371
2372 struct anv_push_constants {
2373 /** Push constant data provided by the client through vkPushConstants */
2374 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2375
2376 /** Dynamic offsets for dynamic UBOs and SSBOs */
2377 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2378
2379 struct {
2380 /** Base workgroup ID
2381 *
2382 * Used for vkCmdDispatchBase.
2383 */
2384 uint32_t base_work_group_id[3];
2385
2386 /** Subgroup ID
2387 *
2388 * This is never set by software but is implicitly filled out when
2389 * uploading the push constants for compute shaders.
2390 */
2391 uint32_t subgroup_id;
2392
2393 /** Pad out to a multiple of 32 bytes */
2394 uint32_t pad[4];
2395 } cs;
2396 };
2397
2398 struct anv_dynamic_state {
2399 struct {
2400 uint32_t count;
2401 VkViewport viewports[MAX_VIEWPORTS];
2402 } viewport;
2403
2404 struct {
2405 uint32_t count;
2406 VkRect2D scissors[MAX_SCISSORS];
2407 } scissor;
2408
2409 float line_width;
2410
2411 struct {
2412 float bias;
2413 float clamp;
2414 float slope;
2415 } depth_bias;
2416
2417 float blend_constants[4];
2418
2419 struct {
2420 float min;
2421 float max;
2422 } depth_bounds;
2423
2424 struct {
2425 uint32_t front;
2426 uint32_t back;
2427 } stencil_compare_mask;
2428
2429 struct {
2430 uint32_t front;
2431 uint32_t back;
2432 } stencil_write_mask;
2433
2434 struct {
2435 uint32_t front;
2436 uint32_t back;
2437 } stencil_reference;
2438
2439 struct {
2440 uint32_t factor;
2441 uint16_t pattern;
2442 } line_stipple;
2443 };
2444
2445 extern const struct anv_dynamic_state default_dynamic_state;
2446
2447 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2448 const struct anv_dynamic_state *src,
2449 uint32_t copy_mask);
2450
2451 struct anv_surface_state {
2452 struct anv_state state;
2453 /** Address of the surface referred to by this state
2454 *
2455 * This address is relative to the start of the BO.
2456 */
2457 struct anv_address address;
2458 /* Address of the aux surface, if any
2459 *
2460 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2461 *
2462 * With the exception of gen8, the bottom 12 bits of this address' offset
2463 * include extra aux information.
2464 */
2465 struct anv_address aux_address;
2466 /* Address of the clear color, if any
2467 *
2468 * This address is relative to the start of the BO.
2469 */
2470 struct anv_address clear_address;
2471 };
2472
2473 /**
2474 * Attachment state when recording a renderpass instance.
2475 *
2476 * The clear value is valid only if there exists a pending clear.
2477 */
2478 struct anv_attachment_state {
2479 enum isl_aux_usage aux_usage;
2480 enum isl_aux_usage input_aux_usage;
2481 struct anv_surface_state color;
2482 struct anv_surface_state input;
2483
2484 VkImageLayout current_layout;
2485 VkImageLayout current_stencil_layout;
2486 VkImageAspectFlags pending_clear_aspects;
2487 VkImageAspectFlags pending_load_aspects;
2488 bool fast_clear;
2489 VkClearValue clear_value;
2490 bool clear_color_is_zero_one;
2491 bool clear_color_is_zero;
2492
2493 /* When multiview is active, attachments with a renderpass clear
2494 * operation have their respective layers cleared on the first
2495 * subpass that uses them, and only in that subpass. We keep track
2496 * of this using a bitfield to indicate which layers of an attachment
2497 * have not been cleared yet when multiview is active.
2498 */
2499 uint32_t pending_clear_views;
2500 struct anv_image_view * image_view;
2501 };
2502
2503 /** State tracking for vertex buffer flushes
2504 *
2505 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2506 * addresses. If you happen to have two vertex buffers which get placed
2507 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2508 * collisions. In order to solve this problem, we track vertex address ranges
2509 * which are live in the cache and invalidate the cache if one ever exceeds 32
2510 * bits.
2511 */
2512 struct anv_vb_cache_range {
2513 /* Virtual address at which the live vertex buffer cache range starts for
2514 * this vertex buffer index.
2515 */
2516 uint64_t start;
2517
2518 /* Virtual address of the byte after where vertex buffer cache range ends.
2519 * This is exclusive such that end - start is the size of the range.
2520 */
2521 uint64_t end;
2522 };
2523
2524 /** State tracking for particular pipeline bind point
2525 *
2526 * This struct is the base struct for anv_cmd_graphics_state and
2527 * anv_cmd_compute_state. These are used to track state which is bound to a
2528 * particular type of pipeline. Generic state that applies per-stage such as
2529 * binding table offsets and push constants is tracked generically with a
2530 * per-stage array in anv_cmd_state.
2531 */
2532 struct anv_cmd_pipeline_state {
2533 struct anv_pipeline *pipeline;
2534
2535 struct anv_descriptor_set *descriptors[MAX_SETS];
2536 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2537 };
2538
2539 /** State tracking for graphics pipeline
2540 *
2541 * This has anv_cmd_pipeline_state as a base struct to track things which get
2542 * bound to a graphics pipeline. Along with general pipeline bind point state
2543 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2544 * state which is graphics-specific.
2545 */
2546 struct anv_cmd_graphics_state {
2547 struct anv_cmd_pipeline_state base;
2548
2549 anv_cmd_dirty_mask_t dirty;
2550 uint32_t vb_dirty;
2551
2552 struct anv_vb_cache_range ib_bound_range;
2553 struct anv_vb_cache_range ib_dirty_range;
2554 struct anv_vb_cache_range vb_bound_ranges[33];
2555 struct anv_vb_cache_range vb_dirty_ranges[33];
2556
2557 struct anv_dynamic_state dynamic;
2558
2559 struct {
2560 struct anv_buffer *index_buffer;
2561 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2562 uint32_t index_offset;
2563 } gen7;
2564 };
2565
2566 /** State tracking for compute pipeline
2567 *
2568 * This has anv_cmd_pipeline_state as a base struct to track things which get
2569 * bound to a compute pipeline. Along with general pipeline bind point state
2570 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2571 * state which is compute-specific.
2572 */
2573 struct anv_cmd_compute_state {
2574 struct anv_cmd_pipeline_state base;
2575
2576 bool pipeline_dirty;
2577
2578 struct anv_address num_workgroups;
2579 };
2580
2581 /** State required while building cmd buffer */
2582 struct anv_cmd_state {
2583 /* PIPELINE_SELECT.PipelineSelection */
2584 uint32_t current_pipeline;
2585 const struct gen_l3_config * current_l3_config;
2586 uint32_t last_aux_map_state;
2587
2588 struct anv_cmd_graphics_state gfx;
2589 struct anv_cmd_compute_state compute;
2590
2591 enum anv_pipe_bits pending_pipe_bits;
2592 VkShaderStageFlags descriptors_dirty;
2593 VkShaderStageFlags push_constants_dirty;
2594
2595 struct anv_framebuffer * framebuffer;
2596 struct anv_render_pass * pass;
2597 struct anv_subpass * subpass;
2598 VkRect2D render_area;
2599 uint32_t restart_index;
2600 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2601 bool xfb_enabled;
2602 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2603 VkShaderStageFlags push_constant_stages;
2604 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2605 struct anv_state binding_tables[MESA_SHADER_STAGES];
2606 struct anv_state samplers[MESA_SHADER_STAGES];
2607
2608 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2609 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2610 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2611
2612 /**
2613 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2614 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2615 * and before invoking the secondary in ExecuteCommands.
2616 */
2617 bool pma_fix_enabled;
2618
2619 /**
2620 * Whether or not we know for certain that HiZ is enabled for the current
2621 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2622 * enabled or not, this will be false.
2623 */
2624 bool hiz_enabled;
2625
2626 bool conditional_render_enabled;
2627
2628 /**
2629 * Last rendering scale argument provided to
2630 * genX(cmd_buffer_emit_hashing_mode)().
2631 */
2632 unsigned current_hash_scale;
2633
2634 /**
2635 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2636 * valid only when recording a render pass instance.
2637 */
2638 struct anv_attachment_state * attachments;
2639
2640 /**
2641 * Surface states for color render targets. These are stored in a single
2642 * flat array. For depth-stencil attachments, the surface state is simply
2643 * left blank.
2644 */
2645 struct anv_state render_pass_states;
2646
2647 /**
2648 * A null surface state of the right size to match the framebuffer. This
2649 * is one of the states in render_pass_states.
2650 */
2651 struct anv_state null_surface_state;
2652 };
2653
2654 struct anv_cmd_pool {
2655 VkAllocationCallbacks alloc;
2656 struct list_head cmd_buffers;
2657 };
2658
2659 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2660
2661 enum anv_cmd_buffer_exec_mode {
2662 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2663 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2664 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2665 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2666 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2667 };
2668
2669 struct anv_cmd_buffer {
2670 VK_LOADER_DATA _loader_data;
2671
2672 struct anv_device * device;
2673
2674 struct anv_cmd_pool * pool;
2675 struct list_head pool_link;
2676
2677 struct anv_batch batch;
2678
2679 /* Fields required for the actual chain of anv_batch_bo's.
2680 *
2681 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2682 */
2683 struct list_head batch_bos;
2684 enum anv_cmd_buffer_exec_mode exec_mode;
2685
2686 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2687 * referenced by this command buffer
2688 *
2689 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2690 */
2691 struct u_vector seen_bbos;
2692
2693 /* A vector of int32_t's for every block of binding tables.
2694 *
2695 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2696 */
2697 struct u_vector bt_block_states;
2698 struct anv_state bt_next;
2699
2700 struct anv_reloc_list surface_relocs;
2701 /** Last seen surface state block pool center bo offset */
2702 uint32_t last_ss_pool_center;
2703
2704 /* Serial for tracking buffer completion */
2705 uint32_t serial;
2706
2707 /* Stream objects for storing temporary data */
2708 struct anv_state_stream surface_state_stream;
2709 struct anv_state_stream dynamic_state_stream;
2710
2711 VkCommandBufferUsageFlags usage_flags;
2712 VkCommandBufferLevel level;
2713
2714 struct anv_cmd_state state;
2715
2716 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2717 uint64_t intel_perf_marker;
2718 };
2719
2720 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2721 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2722 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2723 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2724 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2725 struct anv_cmd_buffer *secondary);
2726 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2727 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2728 struct anv_cmd_buffer *cmd_buffer,
2729 const VkSemaphore *in_semaphores,
2730 const uint64_t *in_wait_values,
2731 uint32_t num_in_semaphores,
2732 const VkSemaphore *out_semaphores,
2733 const uint64_t *out_signal_values,
2734 uint32_t num_out_semaphores,
2735 VkFence fence);
2736
2737 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2738
2739 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2740 const void *data, uint32_t size, uint32_t alignment);
2741 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2742 uint32_t *a, uint32_t *b,
2743 uint32_t dwords, uint32_t alignment);
2744
2745 struct anv_address
2746 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2747 struct anv_state
2748 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2749 uint32_t entries, uint32_t *state_offset);
2750 struct anv_state
2751 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2752 struct anv_state
2753 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2754 uint32_t size, uint32_t alignment);
2755
2756 VkResult
2757 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2758
2759 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2760 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2761 bool depth_clamp_enable);
2762 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2763
2764 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2765 struct anv_render_pass *pass,
2766 struct anv_framebuffer *framebuffer,
2767 const VkClearValue *clear_values);
2768
2769 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2770
2771 struct anv_state
2772 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2773 gl_shader_stage stage);
2774 struct anv_state
2775 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2776
2777 const struct anv_image_view *
2778 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2779
2780 VkResult
2781 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2782 uint32_t num_entries,
2783 uint32_t *state_offset,
2784 struct anv_state *bt_state);
2785
2786 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2787
2788 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2789
2790 enum anv_fence_type {
2791 ANV_FENCE_TYPE_NONE = 0,
2792 ANV_FENCE_TYPE_BO,
2793 ANV_FENCE_TYPE_SYNCOBJ,
2794 ANV_FENCE_TYPE_WSI,
2795 };
2796
2797 enum anv_bo_fence_state {
2798 /** Indicates that this is a new (or newly reset fence) */
2799 ANV_BO_FENCE_STATE_RESET,
2800
2801 /** Indicates that this fence has been submitted to the GPU but is still
2802 * (as far as we know) in use by the GPU.
2803 */
2804 ANV_BO_FENCE_STATE_SUBMITTED,
2805
2806 ANV_BO_FENCE_STATE_SIGNALED,
2807 };
2808
2809 struct anv_fence_impl {
2810 enum anv_fence_type type;
2811
2812 union {
2813 /** Fence implementation for BO fences
2814 *
2815 * These fences use a BO and a set of CPU-tracked state flags. The BO
2816 * is added to the object list of the last execbuf call in a QueueSubmit
2817 * and is marked EXEC_WRITE. The state flags track when the BO has been
2818 * submitted to the kernel. We need to do this because Vulkan lets you
2819 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2820 * will say it's idle in this case.
2821 */
2822 struct {
2823 struct anv_bo *bo;
2824 enum anv_bo_fence_state state;
2825 } bo;
2826
2827 /** DRM syncobj handle for syncobj-based fences */
2828 uint32_t syncobj;
2829
2830 /** WSI fence */
2831 struct wsi_fence *fence_wsi;
2832 };
2833 };
2834
2835 struct anv_fence {
2836 /* Permanent fence state. Every fence has some form of permanent state
2837 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2838 * cross-process fences) or it could just be a dummy for use internally.
2839 */
2840 struct anv_fence_impl permanent;
2841
2842 /* Temporary fence state. A fence *may* have temporary state. That state
2843 * is added to the fence by an import operation and is reset back to
2844 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2845 * state cannot be signaled because the fence must already be signaled
2846 * before the temporary state can be exported from the fence in the other
2847 * process and imported here.
2848 */
2849 struct anv_fence_impl temporary;
2850 };
2851
2852 struct anv_event {
2853 uint64_t semaphore;
2854 struct anv_state state;
2855 };
2856
2857 enum anv_semaphore_type {
2858 ANV_SEMAPHORE_TYPE_NONE = 0,
2859 ANV_SEMAPHORE_TYPE_DUMMY,
2860 ANV_SEMAPHORE_TYPE_BO,
2861 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2862 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2863 ANV_SEMAPHORE_TYPE_TIMELINE,
2864 };
2865
2866 struct anv_timeline_point {
2867 struct list_head link;
2868
2869 uint64_t serial;
2870
2871 /* Number of waiter on this point, when > 0 the point should not be garbage
2872 * collected.
2873 */
2874 int waiting;
2875
2876 /* BO used for synchronization. */
2877 struct anv_bo *bo;
2878 };
2879
2880 struct anv_timeline {
2881 pthread_mutex_t mutex;
2882 pthread_cond_t cond;
2883
2884 uint64_t highest_past;
2885 uint64_t highest_pending;
2886
2887 struct list_head points;
2888 struct list_head free_points;
2889 };
2890
2891 struct anv_semaphore_impl {
2892 enum anv_semaphore_type type;
2893
2894 union {
2895 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2896 * This BO will be added to the object list on any execbuf2 calls for
2897 * which this semaphore is used as a wait or signal fence. When used as
2898 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2899 */
2900 struct anv_bo *bo;
2901
2902 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2903 * If the semaphore is in the unsignaled state due to either just being
2904 * created or because it has been used for a wait, fd will be -1.
2905 */
2906 int fd;
2907
2908 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2909 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2910 * import so we don't need to bother with a userspace cache.
2911 */
2912 uint32_t syncobj;
2913
2914 /* Non shareable timeline semaphore
2915 *
2916 * Used when kernel don't have support for timeline semaphores.
2917 */
2918 struct anv_timeline timeline;
2919 };
2920 };
2921
2922 struct anv_semaphore {
2923 uint32_t refcount;
2924
2925 /* Permanent semaphore state. Every semaphore has some form of permanent
2926 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2927 * (for cross-process semaphores0 or it could just be a dummy for use
2928 * internally.
2929 */
2930 struct anv_semaphore_impl permanent;
2931
2932 /* Temporary semaphore state. A semaphore *may* have temporary state.
2933 * That state is added to the semaphore by an import operation and is reset
2934 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2935 * semaphore with temporary state cannot be signaled because the semaphore
2936 * must already be signaled before the temporary state can be exported from
2937 * the semaphore in the other process and imported here.
2938 */
2939 struct anv_semaphore_impl temporary;
2940 };
2941
2942 void anv_semaphore_reset_temporary(struct anv_device *device,
2943 struct anv_semaphore *semaphore);
2944
2945 struct anv_shader_module {
2946 unsigned char sha1[20];
2947 uint32_t size;
2948 char data[0];
2949 };
2950
2951 static inline gl_shader_stage
2952 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2953 {
2954 assert(__builtin_popcount(vk_stage) == 1);
2955 return ffs(vk_stage) - 1;
2956 }
2957
2958 static inline VkShaderStageFlagBits
2959 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2960 {
2961 return (1 << mesa_stage);
2962 }
2963
2964 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2965
2966 #define anv_foreach_stage(stage, stage_bits) \
2967 for (gl_shader_stage stage, \
2968 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2969 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2970 __tmp &= ~(1 << (stage)))
2971
2972 struct anv_pipeline_bind_map {
2973 unsigned char surface_sha1[20];
2974 unsigned char sampler_sha1[20];
2975 unsigned char push_sha1[20];
2976
2977 uint32_t surface_count;
2978 uint32_t sampler_count;
2979
2980 struct anv_pipeline_binding * surface_to_descriptor;
2981 struct anv_pipeline_binding * sampler_to_descriptor;
2982
2983 struct anv_push_range push_ranges[4];
2984 };
2985
2986 struct anv_shader_bin_key {
2987 uint32_t size;
2988 uint8_t data[0];
2989 };
2990
2991 struct anv_shader_bin {
2992 uint32_t ref_cnt;
2993
2994 const struct anv_shader_bin_key *key;
2995
2996 struct anv_state kernel;
2997 uint32_t kernel_size;
2998
2999 struct anv_state constant_data;
3000 uint32_t constant_data_size;
3001
3002 const struct brw_stage_prog_data *prog_data;
3003 uint32_t prog_data_size;
3004
3005 struct brw_compile_stats stats[3];
3006 uint32_t num_stats;
3007
3008 struct nir_xfb_info *xfb_info;
3009
3010 struct anv_pipeline_bind_map bind_map;
3011 };
3012
3013 struct anv_shader_bin *
3014 anv_shader_bin_create(struct anv_device *device,
3015 const void *key, uint32_t key_size,
3016 const void *kernel, uint32_t kernel_size,
3017 const void *constant_data, uint32_t constant_data_size,
3018 const struct brw_stage_prog_data *prog_data,
3019 uint32_t prog_data_size, const void *prog_data_param,
3020 const struct brw_compile_stats *stats, uint32_t num_stats,
3021 const struct nir_xfb_info *xfb_info,
3022 const struct anv_pipeline_bind_map *bind_map);
3023
3024 void
3025 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3026
3027 static inline void
3028 anv_shader_bin_ref(struct anv_shader_bin *shader)
3029 {
3030 assert(shader && shader->ref_cnt >= 1);
3031 p_atomic_inc(&shader->ref_cnt);
3032 }
3033
3034 static inline void
3035 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3036 {
3037 assert(shader && shader->ref_cnt >= 1);
3038 if (p_atomic_dec_zero(&shader->ref_cnt))
3039 anv_shader_bin_destroy(device, shader);
3040 }
3041
3042 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
3043 #define MAX_PIPELINE_EXECUTABLES 7
3044
3045 struct anv_pipeline_executable {
3046 gl_shader_stage stage;
3047
3048 struct brw_compile_stats stats;
3049
3050 char *nir;
3051 char *disasm;
3052 };
3053
3054 struct anv_pipeline {
3055 struct anv_device * device;
3056 struct anv_batch batch;
3057 uint32_t batch_data[512];
3058 struct anv_reloc_list batch_relocs;
3059 anv_cmd_dirty_mask_t dynamic_state_mask;
3060 struct anv_dynamic_state dynamic_state;
3061
3062 void * mem_ctx;
3063
3064 VkPipelineCreateFlags flags;
3065 struct anv_subpass * subpass;
3066
3067 bool needs_data_cache;
3068
3069 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3070
3071 uint32_t num_executables;
3072 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
3073
3074 struct {
3075 const struct gen_l3_config * l3_config;
3076 uint32_t total_size;
3077 } urb;
3078
3079 VkShaderStageFlags active_stages;
3080 struct anv_state blend_state;
3081
3082 uint32_t vb_used;
3083 struct anv_pipeline_vertex_binding {
3084 uint32_t stride;
3085 bool instanced;
3086 uint32_t instance_divisor;
3087 } vb[MAX_VBS];
3088
3089 uint8_t xfb_used;
3090
3091 bool primitive_restart;
3092 uint32_t topology;
3093
3094 uint32_t cs_right_mask;
3095
3096 bool writes_depth;
3097 bool depth_test_enable;
3098 bool writes_stencil;
3099 bool stencil_test_enable;
3100 bool depth_clamp_enable;
3101 bool depth_clip_enable;
3102 bool sample_shading_enable;
3103 bool kill_pixel;
3104 bool depth_bounds_test_enable;
3105
3106 struct {
3107 uint32_t sf[7];
3108 uint32_t depth_stencil_state[3];
3109 } gen7;
3110
3111 struct {
3112 uint32_t sf[4];
3113 uint32_t raster[5];
3114 uint32_t wm_depth_stencil[3];
3115 } gen8;
3116
3117 struct {
3118 uint32_t wm_depth_stencil[4];
3119 } gen9;
3120
3121 uint32_t interface_descriptor_data[8];
3122 };
3123
3124 static inline bool
3125 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3126 gl_shader_stage stage)
3127 {
3128 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3129 }
3130
3131 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3132 static inline const struct brw_##prefix##_prog_data * \
3133 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3134 { \
3135 if (anv_pipeline_has_stage(pipeline, stage)) { \
3136 return (const struct brw_##prefix##_prog_data *) \
3137 pipeline->shaders[stage]->prog_data; \
3138 } else { \
3139 return NULL; \
3140 } \
3141 }
3142
3143 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3144 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3145 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3146 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3147 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3148 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3149
3150 static inline const struct brw_vue_prog_data *
3151 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3152 {
3153 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3154 return &get_gs_prog_data(pipeline)->base;
3155 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3156 return &get_tes_prog_data(pipeline)->base;
3157 else
3158 return &get_vs_prog_data(pipeline)->base;
3159 }
3160
3161 VkResult
3162 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3163 struct anv_pipeline_cache *cache,
3164 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3165 const VkAllocationCallbacks *alloc);
3166
3167 VkResult
3168 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3169 struct anv_pipeline_cache *cache,
3170 const VkComputePipelineCreateInfo *info,
3171 const struct anv_shader_module *module,
3172 const char *entrypoint,
3173 const VkSpecializationInfo *spec_info);
3174
3175 struct anv_format_plane {
3176 enum isl_format isl_format:16;
3177 struct isl_swizzle swizzle;
3178
3179 /* Whether this plane contains chroma channels */
3180 bool has_chroma;
3181
3182 /* For downscaling of YUV planes */
3183 uint8_t denominator_scales[2];
3184
3185 /* How to map sampled ycbcr planes to a single 4 component element. */
3186 struct isl_swizzle ycbcr_swizzle;
3187
3188 /* What aspect is associated to this plane */
3189 VkImageAspectFlags aspect;
3190 };
3191
3192
3193 struct anv_format {
3194 struct anv_format_plane planes[3];
3195 VkFormat vk_format;
3196 uint8_t n_planes;
3197 bool can_ycbcr;
3198 };
3199
3200 static inline uint32_t
3201 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3202 VkImageAspectFlags aspect_mask)
3203 {
3204 switch (aspect_mask) {
3205 case VK_IMAGE_ASPECT_COLOR_BIT:
3206 case VK_IMAGE_ASPECT_DEPTH_BIT:
3207 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3208 return 0;
3209 case VK_IMAGE_ASPECT_STENCIL_BIT:
3210 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3211 return 0;
3212 /* Fall-through */
3213 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3214 return 1;
3215 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3216 return 2;
3217 default:
3218 /* Purposefully assert with depth/stencil aspects. */
3219 unreachable("invalid image aspect");
3220 }
3221 }
3222
3223 static inline VkImageAspectFlags
3224 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3225 uint32_t plane)
3226 {
3227 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3228 if (util_bitcount(image_aspects) > 1)
3229 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3230 return VK_IMAGE_ASPECT_COLOR_BIT;
3231 }
3232 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3233 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3234 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3235 return VK_IMAGE_ASPECT_STENCIL_BIT;
3236 }
3237
3238 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3239 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3240
3241 const struct anv_format *
3242 anv_get_format(VkFormat format);
3243
3244 static inline uint32_t
3245 anv_get_format_planes(VkFormat vk_format)
3246 {
3247 const struct anv_format *format = anv_get_format(vk_format);
3248
3249 return format != NULL ? format->n_planes : 0;
3250 }
3251
3252 struct anv_format_plane
3253 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3254 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3255
3256 static inline enum isl_format
3257 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3258 VkImageAspectFlags aspect, VkImageTiling tiling)
3259 {
3260 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3261 }
3262
3263 static inline struct isl_swizzle
3264 anv_swizzle_for_render(struct isl_swizzle swizzle)
3265 {
3266 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3267 * RGB as RGBA for texturing
3268 */
3269 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3270 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3271
3272 /* But it doesn't matter what we render to that channel */
3273 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3274
3275 return swizzle;
3276 }
3277
3278 void
3279 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3280
3281 /**
3282 * Subsurface of an anv_image.
3283 */
3284 struct anv_surface {
3285 /** Valid only if isl_surf::size_B > 0. */
3286 struct isl_surf isl;
3287
3288 /**
3289 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3290 */
3291 uint32_t offset;
3292 };
3293
3294 struct anv_image {
3295 VkImageType type; /**< VkImageCreateInfo::imageType */
3296 /* The original VkFormat provided by the client. This may not match any
3297 * of the actual surface formats.
3298 */
3299 VkFormat vk_format;
3300 const struct anv_format *format;
3301
3302 VkImageAspectFlags aspects;
3303 VkExtent3D extent;
3304 uint32_t levels;
3305 uint32_t array_size;
3306 uint32_t samples; /**< VkImageCreateInfo::samples */
3307 uint32_t n_planes;
3308 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3309 VkImageUsageFlags stencil_usage;
3310 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3311 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3312
3313 /** True if this is needs to be bound to an appropriately tiled BO.
3314 *
3315 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3316 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3317 * we require a dedicated allocation so that we can know to allocate a
3318 * tiled buffer.
3319 */
3320 bool needs_set_tiling;
3321
3322 /**
3323 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3324 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3325 */
3326 uint64_t drm_format_mod;
3327
3328 VkDeviceSize size;
3329 uint32_t alignment;
3330
3331 /* Whether the image is made of several underlying buffer objects rather a
3332 * single one with different offsets.
3333 */
3334 bool disjoint;
3335
3336 /* All the formats that can be used when creating views of this image
3337 * are CCS_E compatible.
3338 */
3339 bool ccs_e_compatible;
3340
3341 /* Image was created with external format. */
3342 bool external_format;
3343
3344 /**
3345 * Image subsurfaces
3346 *
3347 * For each foo, anv_image::planes[x].surface is valid if and only if
3348 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3349 * to figure the number associated with a given aspect.
3350 *
3351 * The hardware requires that the depth buffer and stencil buffer be
3352 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3353 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3354 * allocate the depth and stencil buffers as separate surfaces in the same
3355 * bo.
3356 *
3357 * Memory layout :
3358 *
3359 * -----------------------
3360 * | surface0 | /|\
3361 * ----------------------- |
3362 * | shadow surface0 | |
3363 * ----------------------- | Plane 0
3364 * | aux surface0 | |
3365 * ----------------------- |
3366 * | fast clear colors0 | \|/
3367 * -----------------------
3368 * | surface1 | /|\
3369 * ----------------------- |
3370 * | shadow surface1 | |
3371 * ----------------------- | Plane 1
3372 * | aux surface1 | |
3373 * ----------------------- |
3374 * | fast clear colors1 | \|/
3375 * -----------------------
3376 * | ... |
3377 * | |
3378 * -----------------------
3379 */
3380 struct {
3381 /**
3382 * Offset of the entire plane (whenever the image is disjoint this is
3383 * set to 0).
3384 */
3385 uint32_t offset;
3386
3387 VkDeviceSize size;
3388 uint32_t alignment;
3389
3390 struct anv_surface surface;
3391
3392 /**
3393 * A surface which shadows the main surface and may have different
3394 * tiling. This is used for sampling using a tiling that isn't supported
3395 * for other operations.
3396 */
3397 struct anv_surface shadow_surface;
3398
3399 /**
3400 * For color images, this is the aux usage for this image when not used
3401 * as a color attachment.
3402 *
3403 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3404 * image has a HiZ buffer.
3405 */
3406 enum isl_aux_usage aux_usage;
3407
3408 struct anv_surface aux_surface;
3409
3410 /**
3411 * Offset of the fast clear state (used to compute the
3412 * fast_clear_state_offset of the following planes).
3413 */
3414 uint32_t fast_clear_state_offset;
3415
3416 /**
3417 * BO associated with this plane, set when bound.
3418 */
3419 struct anv_address address;
3420
3421 /**
3422 * Address of the main surface used to fill the aux map table. This is
3423 * used at destruction of the image since the Vulkan spec does not
3424 * guarantee that the address.bo field we still be valid at destruction.
3425 */
3426 uint64_t aux_map_surface_address;
3427
3428 /**
3429 * When destroying the image, also free the bo.
3430 * */
3431 bool bo_is_owned;
3432 } planes[3];
3433 };
3434
3435 /* The ordering of this enum is important */
3436 enum anv_fast_clear_type {
3437 /** Image does not have/support any fast-clear blocks */
3438 ANV_FAST_CLEAR_NONE = 0,
3439 /** Image has/supports fast-clear but only to the default value */
3440 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3441 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3442 ANV_FAST_CLEAR_ANY = 2,
3443 };
3444
3445 /* Returns the number of auxiliary buffer levels attached to an image. */
3446 static inline uint8_t
3447 anv_image_aux_levels(const struct anv_image * const image,
3448 VkImageAspectFlagBits aspect)
3449 {
3450 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3451
3452 /* The Gen12 CCS aux surface is represented with only one level. */
3453 const uint8_t aux_logical_levels =
3454 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3455 image->planes[plane].surface.isl.levels :
3456 image->planes[plane].aux_surface.isl.levels;
3457
3458 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3459 aux_logical_levels : 0;
3460 }
3461
3462 /* Returns the number of auxiliary buffer layers attached to an image. */
3463 static inline uint32_t
3464 anv_image_aux_layers(const struct anv_image * const image,
3465 VkImageAspectFlagBits aspect,
3466 const uint8_t miplevel)
3467 {
3468 assert(image);
3469
3470 /* The miplevel must exist in the main buffer. */
3471 assert(miplevel < image->levels);
3472
3473 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3474 /* There are no layers with auxiliary data because the miplevel has no
3475 * auxiliary data.
3476 */
3477 return 0;
3478 } else {
3479 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3480
3481 /* The Gen12 CCS aux surface is represented with only one layer. */
3482 const struct isl_extent4d *aux_logical_level0_px =
3483 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3484 &image->planes[plane].surface.isl.logical_level0_px :
3485 &image->planes[plane].aux_surface.isl.logical_level0_px;
3486
3487 return MAX2(aux_logical_level0_px->array_len,
3488 aux_logical_level0_px->depth >> miplevel);
3489 }
3490 }
3491
3492 static inline struct anv_address
3493 anv_image_get_clear_color_addr(const struct anv_device *device,
3494 const struct anv_image *image,
3495 VkImageAspectFlagBits aspect)
3496 {
3497 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3498
3499 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3500 return anv_address_add(image->planes[plane].address,
3501 image->planes[plane].fast_clear_state_offset);
3502 }
3503
3504 static inline struct anv_address
3505 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3506 const struct anv_image *image,
3507 VkImageAspectFlagBits aspect)
3508 {
3509 struct anv_address addr =
3510 anv_image_get_clear_color_addr(device, image, aspect);
3511
3512 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3513 device->isl_dev.ss.clear_color_state_size :
3514 device->isl_dev.ss.clear_value_size;
3515 return anv_address_add(addr, clear_color_state_size);
3516 }
3517
3518 static inline struct anv_address
3519 anv_image_get_compression_state_addr(const struct anv_device *device,
3520 const struct anv_image *image,
3521 VkImageAspectFlagBits aspect,
3522 uint32_t level, uint32_t array_layer)
3523 {
3524 assert(level < anv_image_aux_levels(image, aspect));
3525 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3526 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3527 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3528
3529 struct anv_address addr =
3530 anv_image_get_fast_clear_type_addr(device, image, aspect);
3531 addr.offset += 4; /* Go past the fast clear type */
3532
3533 if (image->type == VK_IMAGE_TYPE_3D) {
3534 for (uint32_t l = 0; l < level; l++)
3535 addr.offset += anv_minify(image->extent.depth, l) * 4;
3536 } else {
3537 addr.offset += level * image->array_size * 4;
3538 }
3539 addr.offset += array_layer * 4;
3540
3541 assert(addr.offset <
3542 image->planes[plane].address.offset + image->planes[plane].size);
3543 return addr;
3544 }
3545
3546 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3547 static inline bool
3548 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3549 const struct anv_image *image)
3550 {
3551 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3552 return false;
3553
3554 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3555 * struct. There's documentation which suggests that this feature actually
3556 * reduces performance on BDW, but it has only been observed to help so
3557 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3558 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3559 */
3560 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3561 return false;
3562
3563 return image->samples == 1;
3564 }
3565
3566 static inline bool
3567 anv_image_plane_uses_aux_map(const struct anv_device *device,
3568 const struct anv_image *image,
3569 uint32_t plane)
3570 {
3571 return device->info.has_aux_map &&
3572 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3573 }
3574
3575 void
3576 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3577 const struct anv_image *image,
3578 VkImageAspectFlagBits aspect,
3579 enum isl_aux_usage aux_usage,
3580 uint32_t level,
3581 uint32_t base_layer,
3582 uint32_t layer_count);
3583
3584 void
3585 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3586 const struct anv_image *image,
3587 VkImageAspectFlagBits aspect,
3588 enum isl_aux_usage aux_usage,
3589 enum isl_format format, struct isl_swizzle swizzle,
3590 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3591 VkRect2D area, union isl_color_value clear_color);
3592 void
3593 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3594 const struct anv_image *image,
3595 VkImageAspectFlags aspects,
3596 enum isl_aux_usage depth_aux_usage,
3597 uint32_t level,
3598 uint32_t base_layer, uint32_t layer_count,
3599 VkRect2D area,
3600 float depth_value, uint8_t stencil_value);
3601 void
3602 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3603 const struct anv_image *src_image,
3604 enum isl_aux_usage src_aux_usage,
3605 uint32_t src_level, uint32_t src_base_layer,
3606 const struct anv_image *dst_image,
3607 enum isl_aux_usage dst_aux_usage,
3608 uint32_t dst_level, uint32_t dst_base_layer,
3609 VkImageAspectFlagBits aspect,
3610 uint32_t src_x, uint32_t src_y,
3611 uint32_t dst_x, uint32_t dst_y,
3612 uint32_t width, uint32_t height,
3613 uint32_t layer_count,
3614 enum blorp_filter filter);
3615 void
3616 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3617 const struct anv_image *image,
3618 VkImageAspectFlagBits aspect, uint32_t level,
3619 uint32_t base_layer, uint32_t layer_count,
3620 enum isl_aux_op hiz_op);
3621 void
3622 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3623 const struct anv_image *image,
3624 VkImageAspectFlags aspects,
3625 uint32_t level,
3626 uint32_t base_layer, uint32_t layer_count,
3627 VkRect2D area, uint8_t stencil_value);
3628 void
3629 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3630 const struct anv_image *image,
3631 enum isl_format format,
3632 VkImageAspectFlagBits aspect,
3633 uint32_t base_layer, uint32_t layer_count,
3634 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3635 bool predicate);
3636 void
3637 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3638 const struct anv_image *image,
3639 enum isl_format format,
3640 VkImageAspectFlagBits aspect, uint32_t level,
3641 uint32_t base_layer, uint32_t layer_count,
3642 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3643 bool predicate);
3644
3645 void
3646 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3647 const struct anv_image *image,
3648 VkImageAspectFlagBits aspect,
3649 uint32_t base_level, uint32_t level_count,
3650 uint32_t base_layer, uint32_t layer_count);
3651
3652 enum isl_aux_usage
3653 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3654 const struct anv_image *image,
3655 const VkImageAspectFlagBits aspect,
3656 const VkImageLayout layout);
3657
3658 enum anv_fast_clear_type
3659 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3660 const struct anv_image * const image,
3661 const VkImageAspectFlagBits aspect,
3662 const VkImageLayout layout);
3663
3664 /* This is defined as a macro so that it works for both
3665 * VkImageSubresourceRange and VkImageSubresourceLayers
3666 */
3667 #define anv_get_layerCount(_image, _range) \
3668 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3669 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3670
3671 static inline uint32_t
3672 anv_get_levelCount(const struct anv_image *image,
3673 const VkImageSubresourceRange *range)
3674 {
3675 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3676 image->levels - range->baseMipLevel : range->levelCount;
3677 }
3678
3679 static inline VkImageAspectFlags
3680 anv_image_expand_aspects(const struct anv_image *image,
3681 VkImageAspectFlags aspects)
3682 {
3683 /* If the underlying image has color plane aspects and
3684 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3685 * the underlying image. */
3686 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3687 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3688 return image->aspects;
3689
3690 return aspects;
3691 }
3692
3693 static inline bool
3694 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3695 VkImageAspectFlags aspects2)
3696 {
3697 if (aspects1 == aspects2)
3698 return true;
3699
3700 /* Only 1 color aspects are compatibles. */
3701 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3702 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3703 util_bitcount(aspects1) == util_bitcount(aspects2))
3704 return true;
3705
3706 return false;
3707 }
3708
3709 struct anv_image_view {
3710 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3711
3712 VkImageAspectFlags aspect_mask;
3713 VkFormat vk_format;
3714 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3715
3716 unsigned n_planes;
3717 struct {
3718 uint32_t image_plane;
3719
3720 struct isl_view isl;
3721
3722 /**
3723 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3724 * image layout of SHADER_READ_ONLY_OPTIMAL or
3725 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3726 */
3727 struct anv_surface_state optimal_sampler_surface_state;
3728
3729 /**
3730 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3731 * image layout of GENERAL.
3732 */
3733 struct anv_surface_state general_sampler_surface_state;
3734
3735 /**
3736 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3737 * states for write-only and readable, using the real format for
3738 * write-only and the lowered format for readable.
3739 */
3740 struct anv_surface_state storage_surface_state;
3741 struct anv_surface_state writeonly_storage_surface_state;
3742
3743 struct brw_image_param storage_image_param;
3744 } planes[3];
3745 };
3746
3747 enum anv_image_view_state_flags {
3748 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3749 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3750 };
3751
3752 void anv_image_fill_surface_state(struct anv_device *device,
3753 const struct anv_image *image,
3754 VkImageAspectFlagBits aspect,
3755 const struct isl_view *view,
3756 isl_surf_usage_flags_t view_usage,
3757 enum isl_aux_usage aux_usage,
3758 const union isl_color_value *clear_color,
3759 enum anv_image_view_state_flags flags,
3760 struct anv_surface_state *state_inout,
3761 struct brw_image_param *image_param_out);
3762
3763 struct anv_image_create_info {
3764 const VkImageCreateInfo *vk_info;
3765
3766 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3767 isl_tiling_flags_t isl_tiling_flags;
3768
3769 /** These flags will be added to any derived from VkImageCreateInfo. */
3770 isl_surf_usage_flags_t isl_extra_usage_flags;
3771
3772 uint32_t stride;
3773 bool external_format;
3774 };
3775
3776 VkResult anv_image_create(VkDevice _device,
3777 const struct anv_image_create_info *info,
3778 const VkAllocationCallbacks* alloc,
3779 VkImage *pImage);
3780
3781 const struct anv_surface *
3782 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3783 VkImageAspectFlags aspect_mask);
3784
3785 enum isl_format
3786 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3787
3788 static inline struct VkExtent3D
3789 anv_sanitize_image_extent(const VkImageType imageType,
3790 const struct VkExtent3D imageExtent)
3791 {
3792 switch (imageType) {
3793 case VK_IMAGE_TYPE_1D:
3794 return (VkExtent3D) { imageExtent.width, 1, 1 };
3795 case VK_IMAGE_TYPE_2D:
3796 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3797 case VK_IMAGE_TYPE_3D:
3798 return imageExtent;
3799 default:
3800 unreachable("invalid image type");
3801 }
3802 }
3803
3804 static inline struct VkOffset3D
3805 anv_sanitize_image_offset(const VkImageType imageType,
3806 const struct VkOffset3D imageOffset)
3807 {
3808 switch (imageType) {
3809 case VK_IMAGE_TYPE_1D:
3810 return (VkOffset3D) { imageOffset.x, 0, 0 };
3811 case VK_IMAGE_TYPE_2D:
3812 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3813 case VK_IMAGE_TYPE_3D:
3814 return imageOffset;
3815 default:
3816 unreachable("invalid image type");
3817 }
3818 }
3819
3820 VkFormatFeatureFlags
3821 anv_get_image_format_features(const struct gen_device_info *devinfo,
3822 VkFormat vk_format,
3823 const struct anv_format *anv_format,
3824 VkImageTiling vk_tiling);
3825
3826 void anv_fill_buffer_surface_state(struct anv_device *device,
3827 struct anv_state state,
3828 enum isl_format format,
3829 struct anv_address address,
3830 uint32_t range, uint32_t stride);
3831
3832 static inline void
3833 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3834 const struct anv_attachment_state *att_state,
3835 const struct anv_image_view *iview)
3836 {
3837 const struct isl_format_layout *view_fmtl =
3838 isl_format_get_layout(iview->planes[0].isl.format);
3839
3840 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3841 if (view_fmtl->channels.c.bits) \
3842 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3843
3844 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3845 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3846 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3847 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3848
3849 #undef COPY_CLEAR_COLOR_CHANNEL
3850 }
3851
3852
3853 struct anv_ycbcr_conversion {
3854 const struct anv_format * format;
3855 VkSamplerYcbcrModelConversion ycbcr_model;
3856 VkSamplerYcbcrRange ycbcr_range;
3857 VkComponentSwizzle mapping[4];
3858 VkChromaLocation chroma_offsets[2];
3859 VkFilter chroma_filter;
3860 bool chroma_reconstruction;
3861 };
3862
3863 struct anv_sampler {
3864 uint32_t state[3][4];
3865 uint32_t n_planes;
3866 struct anv_ycbcr_conversion *conversion;
3867
3868 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3869 * and with a 32-byte stride for use as bindless samplers.
3870 */
3871 struct anv_state bindless_state;
3872 };
3873
3874 struct anv_framebuffer {
3875 uint32_t width;
3876 uint32_t height;
3877 uint32_t layers;
3878
3879 uint32_t attachment_count;
3880 struct anv_image_view * attachments[0];
3881 };
3882
3883 struct anv_subpass_attachment {
3884 VkImageUsageFlagBits usage;
3885 uint32_t attachment;
3886 VkImageLayout layout;
3887
3888 /* Used only with attachment containing stencil data. */
3889 VkImageLayout stencil_layout;
3890 };
3891
3892 struct anv_subpass {
3893 uint32_t attachment_count;
3894
3895 /**
3896 * A pointer to all attachment references used in this subpass.
3897 * Only valid if ::attachment_count > 0.
3898 */
3899 struct anv_subpass_attachment * attachments;
3900 uint32_t input_count;
3901 struct anv_subpass_attachment * input_attachments;
3902 uint32_t color_count;
3903 struct anv_subpass_attachment * color_attachments;
3904 struct anv_subpass_attachment * resolve_attachments;
3905
3906 struct anv_subpass_attachment * depth_stencil_attachment;
3907 struct anv_subpass_attachment * ds_resolve_attachment;
3908 VkResolveModeFlagBitsKHR depth_resolve_mode;
3909 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3910
3911 uint32_t view_mask;
3912
3913 /** Subpass has a depth/stencil self-dependency */
3914 bool has_ds_self_dep;
3915
3916 /** Subpass has at least one color resolve attachment */
3917 bool has_color_resolve;
3918 };
3919
3920 static inline unsigned
3921 anv_subpass_view_count(const struct anv_subpass *subpass)
3922 {
3923 return MAX2(1, util_bitcount(subpass->view_mask));
3924 }
3925
3926 struct anv_render_pass_attachment {
3927 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3928 * its members individually.
3929 */
3930 VkFormat format;
3931 uint32_t samples;
3932 VkImageUsageFlags usage;
3933 VkAttachmentLoadOp load_op;
3934 VkAttachmentStoreOp store_op;
3935 VkAttachmentLoadOp stencil_load_op;
3936 VkImageLayout initial_layout;
3937 VkImageLayout final_layout;
3938 VkImageLayout first_subpass_layout;
3939
3940 VkImageLayout stencil_initial_layout;
3941 VkImageLayout stencil_final_layout;
3942
3943 /* The subpass id in which the attachment will be used last. */
3944 uint32_t last_subpass_idx;
3945 };
3946
3947 struct anv_render_pass {
3948 uint32_t attachment_count;
3949 uint32_t subpass_count;
3950 /* An array of subpass_count+1 flushes, one per subpass boundary */
3951 enum anv_pipe_bits * subpass_flushes;
3952 struct anv_render_pass_attachment * attachments;
3953 struct anv_subpass subpasses[0];
3954 };
3955
3956 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3957
3958 struct anv_query_pool {
3959 VkQueryType type;
3960 VkQueryPipelineStatisticFlags pipeline_statistics;
3961 /** Stride between slots, in bytes */
3962 uint32_t stride;
3963 /** Number of slots in this query pool */
3964 uint32_t slots;
3965 struct anv_bo * bo;
3966 };
3967
3968 int anv_get_instance_entrypoint_index(const char *name);
3969 int anv_get_device_entrypoint_index(const char *name);
3970 int anv_get_physical_device_entrypoint_index(const char *name);
3971
3972 const char *anv_get_instance_entry_name(int index);
3973 const char *anv_get_physical_device_entry_name(int index);
3974 const char *anv_get_device_entry_name(int index);
3975
3976 bool
3977 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3978 const struct anv_instance_extension_table *instance);
3979 bool
3980 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3981 const struct anv_instance_extension_table *instance);
3982 bool
3983 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3984 const struct anv_instance_extension_table *instance,
3985 const struct anv_device_extension_table *device);
3986
3987 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3988 const char *name);
3989
3990 void anv_dump_image_to_ppm(struct anv_device *device,
3991 struct anv_image *image, unsigned miplevel,
3992 unsigned array_layer, VkImageAspectFlagBits aspect,
3993 const char *filename);
3994
3995 enum anv_dump_action {
3996 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3997 };
3998
3999 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4000 void anv_dump_finish(void);
4001
4002 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4003
4004 static inline uint32_t
4005 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4006 {
4007 /* This function must be called from within a subpass. */
4008 assert(cmd_state->pass && cmd_state->subpass);
4009
4010 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4011
4012 /* The id of this subpass shouldn't exceed the number of subpasses in this
4013 * render pass minus 1.
4014 */
4015 assert(subpass_id < cmd_state->pass->subpass_count);
4016 return subpass_id;
4017 }
4018
4019 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4020 void anv_device_perf_init(struct anv_device *device);
4021
4022 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4023 \
4024 static inline struct __anv_type * \
4025 __anv_type ## _from_handle(__VkType _handle) \
4026 { \
4027 return (struct __anv_type *) _handle; \
4028 } \
4029 \
4030 static inline __VkType \
4031 __anv_type ## _to_handle(struct __anv_type *_obj) \
4032 { \
4033 return (__VkType) _obj; \
4034 }
4035
4036 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4037 \
4038 static inline struct __anv_type * \
4039 __anv_type ## _from_handle(__VkType _handle) \
4040 { \
4041 return (struct __anv_type *)(uintptr_t) _handle; \
4042 } \
4043 \
4044 static inline __VkType \
4045 __anv_type ## _to_handle(struct __anv_type *_obj) \
4046 { \
4047 return (__VkType)(uintptr_t) _obj; \
4048 }
4049
4050 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4051 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4052
4053 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4054 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4055 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4056 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4057 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4058
4059 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4060 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4061 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4062 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4063 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4064 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4065 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4066 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4067 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4068 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4069 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4070 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4071 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4072 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4073 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4074 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4075 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4076 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4077 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4078 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4079 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4080 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4081 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4082
4083 /* Gen-specific function declarations */
4084 #ifdef genX
4085 # include "anv_genX.h"
4086 #else
4087 # define genX(x) gen7_##x
4088 # include "anv_genX.h"
4089 # undef genX
4090 # define genX(x) gen75_##x
4091 # include "anv_genX.h"
4092 # undef genX
4093 # define genX(x) gen8_##x
4094 # include "anv_genX.h"
4095 # undef genX
4096 # define genX(x) gen9_##x
4097 # include "anv_genX.h"
4098 # undef genX
4099 # define genX(x) gen10_##x
4100 # include "anv_genX.h"
4101 # undef genX
4102 # define genX(x) gen11_##x
4103 # include "anv_genX.h"
4104 # undef genX
4105 # define genX(x) gen12_##x
4106 # include "anv_genX.h"
4107 # undef genX
4108 #endif
4109
4110 #endif /* ANV_PRIVATE_H */