anv/physical_device: Rename uuid to pipeline_cache_uuid
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
40 #else
41 #define VG(x)
42 #endif
43
44 #include "common/gen_device_info.h"
45 #include "blorp/blorp.h"
46 #include "compiler/brw_compiler.h"
47 #include "util/macros.h"
48 #include "util/list.h"
49 #include "util/u_vector.h"
50 #include "util/vk_alloc.h"
51
52 /* Pre-declarations needed for WSI entrypoints */
53 struct wl_surface;
54 struct wl_display;
55 typedef struct xcb_connection_t xcb_connection_t;
56 typedef uint32_t xcb_visualid_t;
57 typedef uint32_t xcb_window_t;
58
59 struct anv_buffer;
60 struct anv_buffer_view;
61 struct anv_image_view;
62
63 struct gen_l3_config;
64
65 #include <vulkan/vulkan.h>
66 #include <vulkan/vulkan_intel.h>
67 #include <vulkan/vk_icd.h>
68
69 #include "anv_entrypoints.h"
70 #include "isl/isl.h"
71
72 #include "common/gen_debug.h"
73 #include "wsi_common.h"
74
75 /* Allowing different clear colors requires us to perform a depth resolve at
76 * the end of certain render passes. This is because while slow clears store
77 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
78 * See the PRMs for examples describing when additional resolves would be
79 * necessary. To enable fast clears without requiring extra resolves, we set
80 * the clear value to a globally-defined one. We could allow different values
81 * if the user doesn't expect coherent data during or after a render passes
82 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
83 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
84 * 1.0f seems to be the only value used. The only application that doesn't set
85 * this value does so through the usage of an seemingly uninitialized clear
86 * value.
87 */
88 #define ANV_HZ_FC_VAL 1.0f
89
90 #define MAX_VBS 31
91 #define MAX_SETS 8
92 #define MAX_RTS 8
93 #define MAX_VIEWPORTS 16
94 #define MAX_SCISSORS 16
95 #define MAX_PUSH_CONSTANTS_SIZE 128
96 #define MAX_DYNAMIC_BUFFERS 16
97 #define MAX_IMAGES 8
98 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
99
100 #define ANV_SVGS_VB_INDEX MAX_VBS
101 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
102
103 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
104
105 static inline uint32_t
106 align_down_npot_u32(uint32_t v, uint32_t a)
107 {
108 return v - (v % a);
109 }
110
111 static inline uint32_t
112 align_u32(uint32_t v, uint32_t a)
113 {
114 assert(a != 0 && a == (a & -a));
115 return (v + a - 1) & ~(a - 1);
116 }
117
118 static inline uint64_t
119 align_u64(uint64_t v, uint64_t a)
120 {
121 assert(a != 0 && a == (a & -a));
122 return (v + a - 1) & ~(a - 1);
123 }
124
125 static inline int32_t
126 align_i32(int32_t v, int32_t a)
127 {
128 assert(a != 0 && a == (a & -a));
129 return (v + a - 1) & ~(a - 1);
130 }
131
132 /** Alignment must be a power of 2. */
133 static inline bool
134 anv_is_aligned(uintmax_t n, uintmax_t a)
135 {
136 assert(a == (a & -a));
137 return (n & (a - 1)) == 0;
138 }
139
140 static inline uint32_t
141 anv_minify(uint32_t n, uint32_t levels)
142 {
143 if (unlikely(n == 0))
144 return 0;
145 else
146 return MAX2(n >> levels, 1);
147 }
148
149 static inline float
150 anv_clamp_f(float f, float min, float max)
151 {
152 assert(min < max);
153
154 if (f > max)
155 return max;
156 else if (f < min)
157 return min;
158 else
159 return f;
160 }
161
162 static inline bool
163 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
164 {
165 if (*inout_mask & clear_mask) {
166 *inout_mask &= ~clear_mask;
167 return true;
168 } else {
169 return false;
170 }
171 }
172
173 static inline union isl_color_value
174 vk_to_isl_color(VkClearColorValue color)
175 {
176 return (union isl_color_value) {
177 .u32 = {
178 color.uint32[0],
179 color.uint32[1],
180 color.uint32[2],
181 color.uint32[3],
182 },
183 };
184 }
185
186 #define for_each_bit(b, dword) \
187 for (uint32_t __dword = (dword); \
188 (b) = __builtin_ffs(__dword) - 1, __dword; \
189 __dword &= ~(1 << (b)))
190
191 #define typed_memcpy(dest, src, count) ({ \
192 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
193 memcpy((dest), (src), (count) * sizeof(*(src))); \
194 })
195
196 /* Whenever we generate an error, pass it through this function. Useful for
197 * debugging, where we can break on it. Only call at error site, not when
198 * propagating errors. Might be useful to plug in a stack trace here.
199 */
200
201 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
202
203 #ifdef DEBUG
204 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
205 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
206 #define anv_debug(format, ...) fprintf(stderr, "debug: " format, ##__VA_ARGS__)
207 #else
208 #define vk_error(error) error
209 #define vk_errorf(error, format, ...) error
210 #define anv_debug(format, ...)
211 #endif
212
213 /**
214 * Warn on ignored extension structs.
215 *
216 * The Vulkan spec requires us to ignore unsupported or unknown structs in
217 * a pNext chain. In debug mode, emitting warnings for ignored structs may
218 * help us discover structs that we should not have ignored.
219 *
220 *
221 * From the Vulkan 1.0.38 spec:
222 *
223 * Any component of the implementation (the loader, any enabled layers,
224 * and drivers) must skip over, without processing (other than reading the
225 * sType and pNext members) any chained structures with sType values not
226 * defined by extensions supported by that component.
227 */
228 #define anv_debug_ignored_stype(sType) \
229 anv_debug("debug: %s: ignored VkStructureType %u\n", __func__, (sType))
230
231 void __anv_finishme(const char *file, int line, const char *format, ...)
232 anv_printflike(3, 4);
233 void __anv_perf_warn(const char *file, int line, const char *format, ...)
234 anv_printflike(3, 4);
235 void anv_loge(const char *format, ...) anv_printflike(1, 2);
236 void anv_loge_v(const char *format, va_list va);
237
238 /**
239 * Print a FINISHME message, including its source location.
240 */
241 #define anv_finishme(format, ...) \
242 do { \
243 static bool reported = false; \
244 if (!reported) { \
245 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
246 reported = true; \
247 } \
248 } while (0)
249
250 /**
251 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
252 */
253 #define anv_perf_warn(format, ...) \
254 do { \
255 static bool reported = false; \
256 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
257 __anv_perf_warn(__FILE__, __LINE__, format, ##__VA_ARGS__); \
258 reported = true; \
259 } \
260 } while (0)
261
262 /* A non-fatal assert. Useful for debugging. */
263 #ifdef DEBUG
264 #define anv_assert(x) ({ \
265 if (unlikely(!(x))) \
266 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
267 })
268 #else
269 #define anv_assert(x)
270 #endif
271
272 /* A multi-pointer allocator
273 *
274 * When copying data structures from the user (such as a render pass), it's
275 * common to need to allocate data for a bunch of different things. Instead
276 * of doing several allocations and having to handle all of the error checking
277 * that entails, it can be easier to do a single allocation. This struct
278 * helps facilitate that. The intended usage looks like this:
279 *
280 * ANV_MULTIALLOC(ma)
281 * anv_multialloc_add(&ma, &main_ptr, 1);
282 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
283 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
284 *
285 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
286 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
287 */
288 struct anv_multialloc {
289 size_t size;
290 size_t align;
291
292 uint32_t ptr_count;
293 void **ptrs[8];
294 };
295
296 #define ANV_MULTIALLOC_INIT \
297 ((struct anv_multialloc) { 0, })
298
299 #define ANV_MULTIALLOC(_name) \
300 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
301
302 __attribute__((always_inline))
303 static inline void
304 _anv_multialloc_add(struct anv_multialloc *ma,
305 void **ptr, size_t size, size_t align)
306 {
307 size_t offset = align_u64(ma->size, align);
308 ma->size = offset + size;
309 ma->align = MAX2(ma->align, align);
310
311 /* Store the offset in the pointer. */
312 *ptr = (void *)(uintptr_t)offset;
313
314 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
315 ma->ptrs[ma->ptr_count++] = ptr;
316 }
317
318 #define anv_multialloc_add(_ma, _ptr, _count) \
319 _anv_multialloc_add((_ma), (void **)(_ptr), \
320 (_count) * sizeof(**(_ptr)), __alignof__(**(_ptr)))
321
322 __attribute__((always_inline))
323 static inline void *
324 anv_multialloc_alloc(struct anv_multialloc *ma,
325 const VkAllocationCallbacks *alloc,
326 VkSystemAllocationScope scope)
327 {
328 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
329 if (!ptr)
330 return NULL;
331
332 /* Fill out each of the pointers with their final value.
333 *
334 * for (uint32_t i = 0; i < ma->ptr_count; i++)
335 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
336 *
337 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
338 * constant, GCC is incapable of figuring this out and unrolling the loop
339 * so we have to give it a little help.
340 */
341 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
342 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
343 if ((_i) < ma->ptr_count) \
344 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
345 _ANV_MULTIALLOC_UPDATE_POINTER(0);
346 _ANV_MULTIALLOC_UPDATE_POINTER(1);
347 _ANV_MULTIALLOC_UPDATE_POINTER(2);
348 _ANV_MULTIALLOC_UPDATE_POINTER(3);
349 _ANV_MULTIALLOC_UPDATE_POINTER(4);
350 _ANV_MULTIALLOC_UPDATE_POINTER(5);
351 _ANV_MULTIALLOC_UPDATE_POINTER(6);
352 _ANV_MULTIALLOC_UPDATE_POINTER(7);
353 #undef _ANV_MULTIALLOC_UPDATE_POINTER
354
355 return ptr;
356 }
357
358 __attribute__((always_inline))
359 static inline void *
360 anv_multialloc_alloc2(struct anv_multialloc *ma,
361 const VkAllocationCallbacks *parent_alloc,
362 const VkAllocationCallbacks *alloc,
363 VkSystemAllocationScope scope)
364 {
365 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
366 }
367
368 /**
369 * A dynamically growable, circular buffer. Elements are added at head and
370 * removed from tail. head and tail are free-running uint32_t indices and we
371 * only compute the modulo with size when accessing the array. This way,
372 * number of bytes in the queue is always head - tail, even in case of
373 * wraparound.
374 */
375
376 struct anv_bo {
377 uint32_t gem_handle;
378
379 /* Index into the current validation list. This is used by the
380 * validation list building alrogithm to track which buffers are already
381 * in the validation list so that we can ensure uniqueness.
382 */
383 uint32_t index;
384
385 /* Last known offset. This value is provided by the kernel when we
386 * execbuf and is used as the presumed offset for the next bunch of
387 * relocations.
388 */
389 uint64_t offset;
390
391 uint64_t size;
392 void *map;
393
394 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
395 uint32_t flags;
396 };
397
398 static inline void
399 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
400 {
401 bo->gem_handle = gem_handle;
402 bo->index = 0;
403 bo->offset = -1;
404 bo->size = size;
405 bo->map = NULL;
406 bo->flags = 0;
407 }
408
409 /* Represents a lock-free linked list of "free" things. This is used by
410 * both the block pool and the state pools. Unfortunately, in order to
411 * solve the ABA problem, we can't use a single uint32_t head.
412 */
413 union anv_free_list {
414 struct {
415 int32_t offset;
416
417 /* A simple count that is incremented every time the head changes. */
418 uint32_t count;
419 };
420 uint64_t u64;
421 };
422
423 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
424
425 struct anv_block_state {
426 union {
427 struct {
428 uint32_t next;
429 uint32_t end;
430 };
431 uint64_t u64;
432 };
433 };
434
435 struct anv_block_pool {
436 struct anv_device *device;
437
438 struct anv_bo bo;
439
440 /* The offset from the start of the bo to the "center" of the block
441 * pool. Pointers to allocated blocks are given by
442 * bo.map + center_bo_offset + offsets.
443 */
444 uint32_t center_bo_offset;
445
446 /* Current memory map of the block pool. This pointer may or may not
447 * point to the actual beginning of the block pool memory. If
448 * anv_block_pool_alloc_back has ever been called, then this pointer
449 * will point to the "center" position of the buffer and all offsets
450 * (negative or positive) given out by the block pool alloc functions
451 * will be valid relative to this pointer.
452 *
453 * In particular, map == bo.map + center_offset
454 */
455 void *map;
456 int fd;
457
458 /**
459 * Array of mmaps and gem handles owned by the block pool, reclaimed when
460 * the block pool is destroyed.
461 */
462 struct u_vector mmap_cleanups;
463
464 uint32_t block_size;
465
466 union anv_free_list free_list;
467 struct anv_block_state state;
468
469 union anv_free_list back_free_list;
470 struct anv_block_state back_state;
471 };
472
473 /* Block pools are backed by a fixed-size 1GB memfd */
474 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
475
476 /* The center of the block pool is also the middle of the memfd. This may
477 * change in the future if we decide differently for some reason.
478 */
479 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
480
481 static inline uint32_t
482 anv_block_pool_size(struct anv_block_pool *pool)
483 {
484 return pool->state.end + pool->back_state.end;
485 }
486
487 struct anv_state {
488 int32_t offset;
489 uint32_t alloc_size;
490 void *map;
491 };
492
493 struct anv_fixed_size_state_pool {
494 size_t state_size;
495 union anv_free_list free_list;
496 struct anv_block_state block;
497 };
498
499 #define ANV_MIN_STATE_SIZE_LOG2 6
500 #define ANV_MAX_STATE_SIZE_LOG2 20
501
502 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
503
504 struct anv_state_pool {
505 struct anv_block_pool *block_pool;
506 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
507 };
508
509 struct anv_state_stream_block;
510
511 struct anv_state_stream {
512 struct anv_block_pool *block_pool;
513
514 /* The current working block */
515 struct anv_state_stream_block *block;
516
517 /* Offset at which the current block starts */
518 uint32_t start;
519 /* Offset at which to allocate the next state */
520 uint32_t next;
521 /* Offset at which the current block ends */
522 uint32_t end;
523 };
524
525 #define CACHELINE_SIZE 64
526 #define CACHELINE_MASK 63
527
528 static inline void
529 anv_clflush_range(void *start, size_t size)
530 {
531 void *p = (void *) (((uintptr_t) start) & ~CACHELINE_MASK);
532 void *end = start + size;
533
534 while (p < end) {
535 __builtin_ia32_clflush(p);
536 p += CACHELINE_SIZE;
537 }
538 }
539
540 static inline void
541 anv_flush_range(void *start, size_t size)
542 {
543 __builtin_ia32_mfence();
544 anv_clflush_range(start, size);
545 }
546
547 static inline void
548 anv_invalidate_range(void *start, size_t size)
549 {
550 anv_clflush_range(start, size);
551 __builtin_ia32_mfence();
552 }
553
554 VkResult anv_block_pool_init(struct anv_block_pool *pool,
555 struct anv_device *device, uint32_t block_size);
556 void anv_block_pool_finish(struct anv_block_pool *pool);
557 int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
558 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
559 void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
560 void anv_state_pool_init(struct anv_state_pool *pool,
561 struct anv_block_pool *block_pool);
562 void anv_state_pool_finish(struct anv_state_pool *pool);
563 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
564 size_t state_size, size_t alignment);
565 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
566 void anv_state_stream_init(struct anv_state_stream *stream,
567 struct anv_block_pool *block_pool);
568 void anv_state_stream_finish(struct anv_state_stream *stream);
569 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
570 uint32_t size, uint32_t alignment);
571
572 /**
573 * Implements a pool of re-usable BOs. The interface is identical to that
574 * of block_pool except that each block is its own BO.
575 */
576 struct anv_bo_pool {
577 struct anv_device *device;
578
579 void *free_list[16];
580 };
581
582 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
583 void anv_bo_pool_finish(struct anv_bo_pool *pool);
584 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
585 uint32_t size);
586 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
587
588 struct anv_scratch_bo {
589 bool exists;
590 struct anv_bo bo;
591 };
592
593 struct anv_scratch_pool {
594 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
595 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
596 };
597
598 void anv_scratch_pool_init(struct anv_device *device,
599 struct anv_scratch_pool *pool);
600 void anv_scratch_pool_finish(struct anv_device *device,
601 struct anv_scratch_pool *pool);
602 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
603 struct anv_scratch_pool *pool,
604 gl_shader_stage stage,
605 unsigned per_thread_scratch);
606
607 struct anv_physical_device {
608 VK_LOADER_DATA _loader_data;
609
610 struct anv_instance * instance;
611 uint32_t chipset_id;
612 char path[20];
613 const char * name;
614 struct gen_device_info info;
615 /** Amount of "GPU memory" we want to advertise
616 *
617 * Clearly, this value is bogus since Intel is a UMA architecture. On
618 * gen7 platforms, we are limited by GTT size unless we want to implement
619 * fine-grained tracking and GTT splitting. On Broadwell and above we are
620 * practically unlimited. However, we will never report more than 3/4 of
621 * the total system ram to try and avoid running out of RAM.
622 */
623 uint64_t heap_size;
624 bool supports_48bit_addresses;
625 struct brw_compiler * compiler;
626 struct isl_device isl_dev;
627 int cmd_parser_version;
628 bool has_exec_async;
629
630 uint32_t eu_total;
631 uint32_t subslice_total;
632
633 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
634
635 struct wsi_device wsi_device;
636 int local_fd;
637 };
638
639 struct anv_instance {
640 VK_LOADER_DATA _loader_data;
641
642 VkAllocationCallbacks alloc;
643
644 uint32_t apiVersion;
645 int physicalDeviceCount;
646 struct anv_physical_device physicalDevice;
647 };
648
649 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
650 void anv_finish_wsi(struct anv_physical_device *physical_device);
651
652 struct anv_queue {
653 VK_LOADER_DATA _loader_data;
654
655 struct anv_device * device;
656
657 struct anv_state_pool * pool;
658 };
659
660 struct anv_pipeline_cache {
661 struct anv_device * device;
662 pthread_mutex_t mutex;
663
664 struct hash_table * cache;
665 };
666
667 struct anv_pipeline_bind_map;
668
669 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
670 struct anv_device *device,
671 bool cache_enabled);
672 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
673
674 struct anv_shader_bin *
675 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
676 const void *key, uint32_t key_size);
677 struct anv_shader_bin *
678 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
679 const void *key_data, uint32_t key_size,
680 const void *kernel_data, uint32_t kernel_size,
681 const struct brw_stage_prog_data *prog_data,
682 uint32_t prog_data_size,
683 const struct anv_pipeline_bind_map *bind_map);
684
685 struct anv_device {
686 VK_LOADER_DATA _loader_data;
687
688 VkAllocationCallbacks alloc;
689
690 struct anv_instance * instance;
691 uint32_t chipset_id;
692 struct gen_device_info info;
693 struct isl_device isl_dev;
694 int context_id;
695 int fd;
696 bool can_chain_batches;
697 bool robust_buffer_access;
698
699 struct anv_bo_pool batch_bo_pool;
700
701 struct anv_block_pool dynamic_state_block_pool;
702 struct anv_state_pool dynamic_state_pool;
703
704 struct anv_block_pool instruction_block_pool;
705 struct anv_state_pool instruction_state_pool;
706
707 struct anv_block_pool surface_state_block_pool;
708 struct anv_state_pool surface_state_pool;
709
710 struct anv_bo workaround_bo;
711
712 struct anv_pipeline_cache blorp_shader_cache;
713 struct blorp_context blorp;
714
715 struct anv_state border_colors;
716
717 struct anv_queue queue;
718
719 struct anv_scratch_pool scratch_pool;
720
721 uint32_t default_mocs;
722
723 pthread_mutex_t mutex;
724 pthread_cond_t queue_submit;
725 bool lost;
726 };
727
728 static void inline
729 anv_state_flush(struct anv_device *device, struct anv_state state)
730 {
731 if (device->info.has_llc)
732 return;
733
734 anv_flush_range(state.map, state.alloc_size);
735 }
736
737 void anv_device_init_blorp(struct anv_device *device);
738 void anv_device_finish_blorp(struct anv_device *device);
739
740 VkResult anv_device_execbuf(struct anv_device *device,
741 struct drm_i915_gem_execbuffer2 *execbuf,
742 struct anv_bo **execbuf_bos);
743 VkResult anv_device_query_status(struct anv_device *device);
744 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
745 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
746 int64_t timeout);
747
748 void* anv_gem_mmap(struct anv_device *device,
749 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
750 void anv_gem_munmap(void *p, uint64_t size);
751 uint32_t anv_gem_create(struct anv_device *device, size_t size);
752 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
753 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
754 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
755 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
756 int anv_gem_execbuffer(struct anv_device *device,
757 struct drm_i915_gem_execbuffer2 *execbuf);
758 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
759 uint32_t stride, uint32_t tiling);
760 int anv_gem_create_context(struct anv_device *device);
761 int anv_gem_destroy_context(struct anv_device *device, int context);
762 int anv_gem_get_context_param(int fd, int context, uint32_t param,
763 uint64_t *value);
764 int anv_gem_get_param(int fd, uint32_t param);
765 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
766 int anv_gem_get_aperture(int fd, uint64_t *size);
767 bool anv_gem_supports_48b_addresses(int fd);
768 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
769 uint32_t *active, uint32_t *pending);
770 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
771 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
772 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
773 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
774 uint32_t read_domains, uint32_t write_domain);
775
776 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
777
778 struct anv_reloc_list {
779 size_t num_relocs;
780 size_t array_length;
781 struct drm_i915_gem_relocation_entry * relocs;
782 struct anv_bo ** reloc_bos;
783 };
784
785 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
786 const VkAllocationCallbacks *alloc);
787 void anv_reloc_list_finish(struct anv_reloc_list *list,
788 const VkAllocationCallbacks *alloc);
789
790 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
791 const VkAllocationCallbacks *alloc,
792 uint32_t offset, struct anv_bo *target_bo,
793 uint32_t delta);
794
795 struct anv_batch_bo {
796 /* Link in the anv_cmd_buffer.owned_batch_bos list */
797 struct list_head link;
798
799 struct anv_bo bo;
800
801 /* Bytes actually consumed in this batch BO */
802 size_t length;
803
804 struct anv_reloc_list relocs;
805 };
806
807 struct anv_batch {
808 const VkAllocationCallbacks * alloc;
809
810 void * start;
811 void * end;
812 void * next;
813
814 struct anv_reloc_list * relocs;
815
816 /* This callback is called (with the associated user data) in the event
817 * that the batch runs out of space.
818 */
819 VkResult (*extend_cb)(struct anv_batch *, void *);
820 void * user_data;
821
822 /**
823 * Current error status of the command buffer. Used to track inconsistent
824 * or incomplete command buffer states that are the consequence of run-time
825 * errors such as out of memory scenarios. We want to track this in the
826 * batch because the command buffer object is not visible to some parts
827 * of the driver.
828 */
829 VkResult status;
830 };
831
832 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
833 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
834 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
835 void *location, struct anv_bo *bo, uint32_t offset);
836 VkResult anv_device_submit_simple_batch(struct anv_device *device,
837 struct anv_batch *batch);
838
839 static inline VkResult
840 anv_batch_set_error(struct anv_batch *batch, VkResult error)
841 {
842 assert(error != VK_SUCCESS);
843 if (batch->status == VK_SUCCESS)
844 batch->status = error;
845 return batch->status;
846 }
847
848 static inline bool
849 anv_batch_has_error(struct anv_batch *batch)
850 {
851 return batch->status != VK_SUCCESS;
852 }
853
854 struct anv_address {
855 struct anv_bo *bo;
856 uint32_t offset;
857 };
858
859 static inline uint64_t
860 _anv_combine_address(struct anv_batch *batch, void *location,
861 const struct anv_address address, uint32_t delta)
862 {
863 if (address.bo == NULL) {
864 return address.offset + delta;
865 } else {
866 assert(batch->start <= location && location < batch->end);
867
868 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
869 }
870 }
871
872 #define __gen_address_type struct anv_address
873 #define __gen_user_data struct anv_batch
874 #define __gen_combine_address _anv_combine_address
875
876 /* Wrapper macros needed to work around preprocessor argument issues. In
877 * particular, arguments don't get pre-evaluated if they are concatenated.
878 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
879 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
880 * We can work around this easily enough with these helpers.
881 */
882 #define __anv_cmd_length(cmd) cmd ## _length
883 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
884 #define __anv_cmd_header(cmd) cmd ## _header
885 #define __anv_cmd_pack(cmd) cmd ## _pack
886 #define __anv_reg_num(reg) reg ## _num
887
888 #define anv_pack_struct(dst, struc, ...) do { \
889 struct struc __template = { \
890 __VA_ARGS__ \
891 }; \
892 __anv_cmd_pack(struc)(NULL, dst, &__template); \
893 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
894 } while (0)
895
896 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
897 void *__dst = anv_batch_emit_dwords(batch, n); \
898 if (__dst) { \
899 struct cmd __template = { \
900 __anv_cmd_header(cmd), \
901 .DWordLength = n - __anv_cmd_length_bias(cmd), \
902 __VA_ARGS__ \
903 }; \
904 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
905 } \
906 __dst; \
907 })
908
909 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
910 do { \
911 uint32_t *dw; \
912 \
913 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
914 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
915 if (!dw) \
916 break; \
917 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
918 dw[i] = (dwords0)[i] | (dwords1)[i]; \
919 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
920 } while (0)
921
922 #define anv_batch_emit(batch, cmd, name) \
923 for (struct cmd name = { __anv_cmd_header(cmd) }, \
924 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
925 __builtin_expect(_dst != NULL, 1); \
926 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
927 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
928 _dst = NULL; \
929 }))
930
931 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
932 .GraphicsDataTypeGFDT = 0, \
933 .LLCCacheabilityControlLLCCC = 0, \
934 .L3CacheabilityControlL3CC = 1, \
935 }
936
937 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
938 .LLCeLLCCacheabilityControlLLCCC = 0, \
939 .L3CacheabilityControlL3CC = 1, \
940 }
941
942 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
943 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
944 .TargetCache = L3DefertoPATforLLCeLLCselection, \
945 .AgeforQUADLRU = 0 \
946 }
947
948 /* Skylake: MOCS is now an index into an array of 62 different caching
949 * configurations programmed by the kernel.
950 */
951
952 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
953 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
954 .IndextoMOCSTables = 2 \
955 }
956
957 #define GEN9_MOCS_PTE { \
958 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
959 .IndextoMOCSTables = 1 \
960 }
961
962 struct anv_device_memory {
963 struct anv_bo bo;
964 uint32_t type_index;
965 VkDeviceSize map_size;
966 void * map;
967 };
968
969 /**
970 * Header for Vertex URB Entry (VUE)
971 */
972 struct anv_vue_header {
973 uint32_t Reserved;
974 uint32_t RTAIndex; /* RenderTargetArrayIndex */
975 uint32_t ViewportIndex;
976 float PointWidth;
977 };
978
979 struct anv_descriptor_set_binding_layout {
980 #ifndef NDEBUG
981 /* The type of the descriptors in this binding */
982 VkDescriptorType type;
983 #endif
984
985 /* Number of array elements in this binding */
986 uint16_t array_size;
987
988 /* Index into the flattend descriptor set */
989 uint16_t descriptor_index;
990
991 /* Index into the dynamic state array for a dynamic buffer */
992 int16_t dynamic_offset_index;
993
994 /* Index into the descriptor set buffer views */
995 int16_t buffer_index;
996
997 struct {
998 /* Index into the binding table for the associated surface */
999 int16_t surface_index;
1000
1001 /* Index into the sampler table for the associated sampler */
1002 int16_t sampler_index;
1003
1004 /* Index into the image table for the associated image */
1005 int16_t image_index;
1006 } stage[MESA_SHADER_STAGES];
1007
1008 /* Immutable samplers (or NULL if no immutable samplers) */
1009 struct anv_sampler **immutable_samplers;
1010 };
1011
1012 struct anv_descriptor_set_layout {
1013 /* Number of bindings in this descriptor set */
1014 uint16_t binding_count;
1015
1016 /* Total size of the descriptor set with room for all array entries */
1017 uint16_t size;
1018
1019 /* Shader stages affected by this descriptor set */
1020 uint16_t shader_stages;
1021
1022 /* Number of buffers in this descriptor set */
1023 uint16_t buffer_count;
1024
1025 /* Number of dynamic offsets used by this descriptor set */
1026 uint16_t dynamic_offset_count;
1027
1028 /* Bindings in this descriptor set */
1029 struct anv_descriptor_set_binding_layout binding[0];
1030 };
1031
1032 struct anv_descriptor {
1033 VkDescriptorType type;
1034
1035 union {
1036 struct {
1037 struct anv_image_view *image_view;
1038 struct anv_sampler *sampler;
1039
1040 /* Used to determine whether or not we need the surface state to have
1041 * the auxiliary buffer enabled.
1042 */
1043 enum isl_aux_usage aux_usage;
1044 };
1045
1046 struct {
1047 struct anv_buffer *buffer;
1048 uint64_t offset;
1049 uint64_t range;
1050 };
1051
1052 struct anv_buffer_view *buffer_view;
1053 };
1054 };
1055
1056 struct anv_descriptor_set {
1057 const struct anv_descriptor_set_layout *layout;
1058 uint32_t size;
1059 uint32_t buffer_count;
1060 struct anv_buffer_view *buffer_views;
1061 struct anv_descriptor descriptors[0];
1062 };
1063
1064 struct anv_buffer_view {
1065 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1066 struct anv_bo *bo;
1067 uint32_t offset; /**< Offset into bo. */
1068 uint64_t range; /**< VkBufferViewCreateInfo::range */
1069
1070 struct anv_state surface_state;
1071 struct anv_state storage_surface_state;
1072 struct anv_state writeonly_storage_surface_state;
1073
1074 struct brw_image_param storage_image_param;
1075 };
1076
1077 struct anv_push_descriptor_set {
1078 struct anv_descriptor_set set;
1079
1080 /* Put this field right behind anv_descriptor_set so it fills up the
1081 * descriptors[0] field. */
1082 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1083
1084 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1085 };
1086
1087 struct anv_descriptor_pool {
1088 uint32_t size;
1089 uint32_t next;
1090 uint32_t free_list;
1091
1092 struct anv_state_stream surface_state_stream;
1093 void *surface_state_free_list;
1094
1095 char data[0];
1096 };
1097
1098 enum anv_descriptor_template_entry_type {
1099 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1100 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1101 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1102 };
1103
1104 struct anv_descriptor_template_entry {
1105 /* The type of descriptor in this entry */
1106 VkDescriptorType type;
1107
1108 /* Binding in the descriptor set */
1109 uint32_t binding;
1110
1111 /* Offset at which to write into the descriptor set binding */
1112 uint32_t array_element;
1113
1114 /* Number of elements to write into the descriptor set binding */
1115 uint32_t array_count;
1116
1117 /* Offset into the user provided data */
1118 size_t offset;
1119
1120 /* Stride between elements into the user provided data */
1121 size_t stride;
1122 };
1123
1124 struct anv_descriptor_update_template {
1125 /* The descriptor set this template corresponds to. This value is only
1126 * valid if the template was created with the templateType
1127 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR.
1128 */
1129 uint8_t set;
1130
1131 /* Number of entries in this template */
1132 uint32_t entry_count;
1133
1134 /* Entries of the template */
1135 struct anv_descriptor_template_entry entries[0];
1136 };
1137
1138 size_t
1139 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1140
1141 void
1142 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
1143 const struct gen_device_info * const devinfo,
1144 const VkDescriptorImageInfo * const info,
1145 VkDescriptorType type,
1146 uint32_t binding,
1147 uint32_t element);
1148
1149 void
1150 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
1151 VkDescriptorType type,
1152 struct anv_buffer_view *buffer_view,
1153 uint32_t binding,
1154 uint32_t element);
1155
1156 void
1157 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
1158 struct anv_device *device,
1159 struct anv_state_stream *alloc_stream,
1160 VkDescriptorType type,
1161 struct anv_buffer *buffer,
1162 uint32_t binding,
1163 uint32_t element,
1164 VkDeviceSize offset,
1165 VkDeviceSize range);
1166
1167 void
1168 anv_descriptor_set_write_template(struct anv_descriptor_set *set,
1169 struct anv_device *device,
1170 struct anv_state_stream *alloc_stream,
1171 const struct anv_descriptor_update_template *template,
1172 const void *data);
1173
1174 VkResult
1175 anv_descriptor_set_create(struct anv_device *device,
1176 struct anv_descriptor_pool *pool,
1177 const struct anv_descriptor_set_layout *layout,
1178 struct anv_descriptor_set **out_set);
1179
1180 void
1181 anv_descriptor_set_destroy(struct anv_device *device,
1182 struct anv_descriptor_pool *pool,
1183 struct anv_descriptor_set *set);
1184
1185 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1186
1187 struct anv_pipeline_binding {
1188 /* The descriptor set this surface corresponds to. The special value of
1189 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1190 * to a color attachment and not a regular descriptor.
1191 */
1192 uint8_t set;
1193
1194 /* Binding in the descriptor set */
1195 uint8_t binding;
1196
1197 /* Index in the binding */
1198 uint8_t index;
1199
1200 /* Input attachment index (relative to the subpass) */
1201 uint8_t input_attachment_index;
1202
1203 /* For a storage image, whether it is write-only */
1204 bool write_only;
1205 };
1206
1207 struct anv_pipeline_layout {
1208 struct {
1209 struct anv_descriptor_set_layout *layout;
1210 uint32_t dynamic_offset_start;
1211 } set[MAX_SETS];
1212
1213 uint32_t num_sets;
1214
1215 struct {
1216 bool has_dynamic_offsets;
1217 } stage[MESA_SHADER_STAGES];
1218
1219 unsigned char sha1[20];
1220 };
1221
1222 struct anv_buffer {
1223 struct anv_device * device;
1224 VkDeviceSize size;
1225
1226 VkBufferUsageFlags usage;
1227
1228 /* Set when bound */
1229 struct anv_bo * bo;
1230 VkDeviceSize offset;
1231 };
1232
1233 static inline uint64_t
1234 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1235 {
1236 assert(offset <= buffer->size);
1237 if (range == VK_WHOLE_SIZE) {
1238 return buffer->size - offset;
1239 } else {
1240 assert(range <= buffer->size);
1241 return range;
1242 }
1243 }
1244
1245 enum anv_cmd_dirty_bits {
1246 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1247 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1248 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1249 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1250 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1251 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1252 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1253 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1254 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1255 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1256 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1257 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1258 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1259 };
1260 typedef uint32_t anv_cmd_dirty_mask_t;
1261
1262 enum anv_pipe_bits {
1263 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1264 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1265 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1266 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1267 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1268 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1269 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1270 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1271 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1272 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1273 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1274
1275 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1276 * a flush has happened but not a CS stall. The next time we do any sort
1277 * of invalidation we need to insert a CS stall at that time. Otherwise,
1278 * we would have to CS stall on every flush which could be bad.
1279 */
1280 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1281 };
1282
1283 #define ANV_PIPE_FLUSH_BITS ( \
1284 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1285 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1286 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1287
1288 #define ANV_PIPE_STALL_BITS ( \
1289 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1290 ANV_PIPE_DEPTH_STALL_BIT | \
1291 ANV_PIPE_CS_STALL_BIT)
1292
1293 #define ANV_PIPE_INVALIDATE_BITS ( \
1294 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1295 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1296 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1297 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1298 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1299 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1300
1301 static inline enum anv_pipe_bits
1302 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1303 {
1304 enum anv_pipe_bits pipe_bits = 0;
1305
1306 unsigned b;
1307 for_each_bit(b, flags) {
1308 switch ((VkAccessFlagBits)(1 << b)) {
1309 case VK_ACCESS_SHADER_WRITE_BIT:
1310 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1311 break;
1312 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1313 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1314 break;
1315 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1316 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1317 break;
1318 case VK_ACCESS_TRANSFER_WRITE_BIT:
1319 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1320 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1321 break;
1322 default:
1323 break; /* Nothing to do */
1324 }
1325 }
1326
1327 return pipe_bits;
1328 }
1329
1330 static inline enum anv_pipe_bits
1331 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1332 {
1333 enum anv_pipe_bits pipe_bits = 0;
1334
1335 unsigned b;
1336 for_each_bit(b, flags) {
1337 switch ((VkAccessFlagBits)(1 << b)) {
1338 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1339 case VK_ACCESS_INDEX_READ_BIT:
1340 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1341 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1342 break;
1343 case VK_ACCESS_UNIFORM_READ_BIT:
1344 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1345 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1346 break;
1347 case VK_ACCESS_SHADER_READ_BIT:
1348 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1349 case VK_ACCESS_TRANSFER_READ_BIT:
1350 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1351 break;
1352 default:
1353 break; /* Nothing to do */
1354 }
1355 }
1356
1357 return pipe_bits;
1358 }
1359
1360 struct anv_vertex_binding {
1361 struct anv_buffer * buffer;
1362 VkDeviceSize offset;
1363 };
1364
1365 struct anv_push_constants {
1366 /* Current allocated size of this push constants data structure.
1367 * Because a decent chunk of it may not be used (images on SKL, for
1368 * instance), we won't actually allocate the entire structure up-front.
1369 */
1370 uint32_t size;
1371
1372 /* Push constant data provided by the client through vkPushConstants */
1373 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1374
1375 /* Our hardware only provides zero-based vertex and instance id so, in
1376 * order to satisfy the vulkan requirements, we may have to push one or
1377 * both of these into the shader.
1378 */
1379 uint32_t base_vertex;
1380 uint32_t base_instance;
1381
1382 /* Image data for image_load_store on pre-SKL */
1383 struct brw_image_param images[MAX_IMAGES];
1384 };
1385
1386 struct anv_dynamic_state {
1387 struct {
1388 uint32_t count;
1389 VkViewport viewports[MAX_VIEWPORTS];
1390 } viewport;
1391
1392 struct {
1393 uint32_t count;
1394 VkRect2D scissors[MAX_SCISSORS];
1395 } scissor;
1396
1397 float line_width;
1398
1399 struct {
1400 float bias;
1401 float clamp;
1402 float slope;
1403 } depth_bias;
1404
1405 float blend_constants[4];
1406
1407 struct {
1408 float min;
1409 float max;
1410 } depth_bounds;
1411
1412 struct {
1413 uint32_t front;
1414 uint32_t back;
1415 } stencil_compare_mask;
1416
1417 struct {
1418 uint32_t front;
1419 uint32_t back;
1420 } stencil_write_mask;
1421
1422 struct {
1423 uint32_t front;
1424 uint32_t back;
1425 } stencil_reference;
1426 };
1427
1428 extern const struct anv_dynamic_state default_dynamic_state;
1429
1430 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1431 const struct anv_dynamic_state *src,
1432 uint32_t copy_mask);
1433
1434 /**
1435 * Attachment state when recording a renderpass instance.
1436 *
1437 * The clear value is valid only if there exists a pending clear.
1438 */
1439 struct anv_attachment_state {
1440 enum isl_aux_usage aux_usage;
1441 enum isl_aux_usage input_aux_usage;
1442 struct anv_state color_rt_state;
1443 struct anv_state input_att_state;
1444
1445 VkImageLayout current_layout;
1446 VkImageAspectFlags pending_clear_aspects;
1447 bool fast_clear;
1448 VkClearValue clear_value;
1449 bool clear_color_is_zero_one;
1450 };
1451
1452 /** State required while building cmd buffer */
1453 struct anv_cmd_state {
1454 /* PIPELINE_SELECT.PipelineSelection */
1455 uint32_t current_pipeline;
1456 const struct gen_l3_config * current_l3_config;
1457 uint32_t vb_dirty;
1458 anv_cmd_dirty_mask_t dirty;
1459 anv_cmd_dirty_mask_t compute_dirty;
1460 enum anv_pipe_bits pending_pipe_bits;
1461 uint32_t num_workgroups_offset;
1462 struct anv_bo *num_workgroups_bo;
1463 VkShaderStageFlags descriptors_dirty;
1464 VkShaderStageFlags push_constants_dirty;
1465 uint32_t scratch_size;
1466 struct anv_pipeline * pipeline;
1467 struct anv_pipeline * compute_pipeline;
1468 struct anv_framebuffer * framebuffer;
1469 struct anv_render_pass * pass;
1470 struct anv_subpass * subpass;
1471 VkRect2D render_area;
1472 uint32_t restart_index;
1473 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1474 struct anv_descriptor_set * descriptors[MAX_SETS];
1475 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
1476 VkShaderStageFlags push_constant_stages;
1477 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1478 struct anv_state binding_tables[MESA_SHADER_STAGES];
1479 struct anv_state samplers[MESA_SHADER_STAGES];
1480 struct anv_dynamic_state dynamic;
1481 bool need_query_wa;
1482
1483 struct anv_push_descriptor_set push_descriptor;
1484
1485 /**
1486 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
1487 * of any command buffer it is disabled by disabling it in EndCommandBuffer
1488 * and before invoking the secondary in ExecuteCommands.
1489 */
1490 bool pma_fix_enabled;
1491
1492 /**
1493 * Whether or not we know for certain that HiZ is enabled for the current
1494 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
1495 * enabled or not, this will be false.
1496 */
1497 bool hiz_enabled;
1498
1499 /**
1500 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1501 * valid only when recording a render pass instance.
1502 */
1503 struct anv_attachment_state * attachments;
1504
1505 /**
1506 * Surface states for color render targets. These are stored in a single
1507 * flat array. For depth-stencil attachments, the surface state is simply
1508 * left blank.
1509 */
1510 struct anv_state render_pass_states;
1511
1512 /**
1513 * A null surface state of the right size to match the framebuffer. This
1514 * is one of the states in render_pass_states.
1515 */
1516 struct anv_state null_surface_state;
1517
1518 struct {
1519 struct anv_buffer * index_buffer;
1520 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1521 uint32_t index_offset;
1522 } gen7;
1523 };
1524
1525 struct anv_cmd_pool {
1526 VkAllocationCallbacks alloc;
1527 struct list_head cmd_buffers;
1528 };
1529
1530 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1531
1532 enum anv_cmd_buffer_exec_mode {
1533 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1534 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1535 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1536 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1537 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1538 };
1539
1540 struct anv_cmd_buffer {
1541 VK_LOADER_DATA _loader_data;
1542
1543 struct anv_device * device;
1544
1545 struct anv_cmd_pool * pool;
1546 struct list_head pool_link;
1547
1548 struct anv_batch batch;
1549
1550 /* Fields required for the actual chain of anv_batch_bo's.
1551 *
1552 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1553 */
1554 struct list_head batch_bos;
1555 enum anv_cmd_buffer_exec_mode exec_mode;
1556
1557 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1558 * referenced by this command buffer
1559 *
1560 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1561 */
1562 struct u_vector seen_bbos;
1563
1564 /* A vector of int32_t's for every block of binding tables.
1565 *
1566 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1567 */
1568 struct u_vector bt_blocks;
1569 uint32_t bt_next;
1570
1571 struct anv_reloc_list surface_relocs;
1572 /** Last seen surface state block pool center bo offset */
1573 uint32_t last_ss_pool_center;
1574
1575 /* Serial for tracking buffer completion */
1576 uint32_t serial;
1577
1578 /* Stream objects for storing temporary data */
1579 struct anv_state_stream surface_state_stream;
1580 struct anv_state_stream dynamic_state_stream;
1581
1582 VkCommandBufferUsageFlags usage_flags;
1583 VkCommandBufferLevel level;
1584
1585 struct anv_cmd_state state;
1586 };
1587
1588 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1589 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1590 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1591 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1592 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1593 struct anv_cmd_buffer *secondary);
1594 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1595 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
1596 struct anv_cmd_buffer *cmd_buffer);
1597
1598 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
1599
1600 VkResult
1601 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
1602 gl_shader_stage stage, uint32_t size);
1603 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
1604 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
1605 (offsetof(struct anv_push_constants, field) + \
1606 sizeof(cmd_buffer->state.push_constants[0]->field)))
1607
1608 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1609 const void *data, uint32_t size, uint32_t alignment);
1610 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1611 uint32_t *a, uint32_t *b,
1612 uint32_t dwords, uint32_t alignment);
1613
1614 struct anv_address
1615 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1616 struct anv_state
1617 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1618 uint32_t entries, uint32_t *state_offset);
1619 struct anv_state
1620 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1621 struct anv_state
1622 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1623 uint32_t size, uint32_t alignment);
1624
1625 VkResult
1626 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1627
1628 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1629 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
1630 bool depth_clamp_enable);
1631 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1632
1633 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1634 struct anv_render_pass *pass,
1635 struct anv_framebuffer *framebuffer,
1636 const VkClearValue *clear_values);
1637
1638 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1639
1640 struct anv_state
1641 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1642 gl_shader_stage stage);
1643 struct anv_state
1644 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1645
1646 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1647 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1648
1649 const struct anv_image_view *
1650 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1651
1652 VkResult
1653 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
1654 uint32_t num_entries,
1655 uint32_t *state_offset,
1656 struct anv_state *bt_state);
1657
1658 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1659
1660 enum anv_fence_state {
1661 /** Indicates that this is a new (or newly reset fence) */
1662 ANV_FENCE_STATE_RESET,
1663
1664 /** Indicates that this fence has been submitted to the GPU but is still
1665 * (as far as we know) in use by the GPU.
1666 */
1667 ANV_FENCE_STATE_SUBMITTED,
1668
1669 ANV_FENCE_STATE_SIGNALED,
1670 };
1671
1672 struct anv_fence {
1673 struct anv_bo bo;
1674 struct drm_i915_gem_execbuffer2 execbuf;
1675 struct drm_i915_gem_exec_object2 exec2_objects[1];
1676 enum anv_fence_state state;
1677 };
1678
1679 struct anv_event {
1680 uint64_t semaphore;
1681 struct anv_state state;
1682 };
1683
1684 struct anv_shader_module {
1685 unsigned char sha1[20];
1686 uint32_t size;
1687 char data[0];
1688 };
1689
1690 void anv_hash_shader(unsigned char *hash, const void *key, size_t key_size,
1691 struct anv_shader_module *module,
1692 const char *entrypoint,
1693 const struct anv_pipeline_layout *pipeline_layout,
1694 const VkSpecializationInfo *spec_info);
1695
1696 static inline gl_shader_stage
1697 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1698 {
1699 assert(__builtin_popcount(vk_stage) == 1);
1700 return ffs(vk_stage) - 1;
1701 }
1702
1703 static inline VkShaderStageFlagBits
1704 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1705 {
1706 return (1 << mesa_stage);
1707 }
1708
1709 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
1710
1711 #define anv_foreach_stage(stage, stage_bits) \
1712 for (gl_shader_stage stage, \
1713 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
1714 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1715 __tmp &= ~(1 << (stage)))
1716
1717 struct anv_pipeline_bind_map {
1718 uint32_t surface_count;
1719 uint32_t sampler_count;
1720 uint32_t image_count;
1721
1722 struct anv_pipeline_binding * surface_to_descriptor;
1723 struct anv_pipeline_binding * sampler_to_descriptor;
1724 };
1725
1726 struct anv_shader_bin_key {
1727 uint32_t size;
1728 uint8_t data[0];
1729 };
1730
1731 struct anv_shader_bin {
1732 uint32_t ref_cnt;
1733
1734 const struct anv_shader_bin_key *key;
1735
1736 struct anv_state kernel;
1737 uint32_t kernel_size;
1738
1739 const struct brw_stage_prog_data *prog_data;
1740 uint32_t prog_data_size;
1741
1742 struct anv_pipeline_bind_map bind_map;
1743
1744 /* Prog data follows, then params, then the key, all aligned to 8-bytes */
1745 };
1746
1747 struct anv_shader_bin *
1748 anv_shader_bin_create(struct anv_device *device,
1749 const void *key, uint32_t key_size,
1750 const void *kernel, uint32_t kernel_size,
1751 const struct brw_stage_prog_data *prog_data,
1752 uint32_t prog_data_size, const void *prog_data_param,
1753 const struct anv_pipeline_bind_map *bind_map);
1754
1755 void
1756 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
1757
1758 static inline void
1759 anv_shader_bin_ref(struct anv_shader_bin *shader)
1760 {
1761 assert(shader && shader->ref_cnt >= 1);
1762 __sync_fetch_and_add(&shader->ref_cnt, 1);
1763 }
1764
1765 static inline void
1766 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
1767 {
1768 assert(shader && shader->ref_cnt >= 1);
1769 if (__sync_fetch_and_add(&shader->ref_cnt, -1) == 1)
1770 anv_shader_bin_destroy(device, shader);
1771 }
1772
1773 struct anv_pipeline {
1774 struct anv_device * device;
1775 struct anv_batch batch;
1776 uint32_t batch_data[512];
1777 struct anv_reloc_list batch_relocs;
1778 uint32_t dynamic_state_mask;
1779 struct anv_dynamic_state dynamic_state;
1780
1781 struct anv_pipeline_layout * layout;
1782
1783 bool needs_data_cache;
1784
1785 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
1786
1787 struct {
1788 const struct gen_l3_config * l3_config;
1789 uint32_t total_size;
1790 } urb;
1791
1792 VkShaderStageFlags active_stages;
1793 struct anv_state blend_state;
1794
1795 uint32_t vb_used;
1796 uint32_t binding_stride[MAX_VBS];
1797 bool instancing_enable[MAX_VBS];
1798 bool primitive_restart;
1799 uint32_t topology;
1800
1801 uint32_t cs_right_mask;
1802
1803 bool writes_depth;
1804 bool depth_test_enable;
1805 bool writes_stencil;
1806 bool stencil_test_enable;
1807 bool depth_clamp_enable;
1808 bool sample_shading_enable;
1809 bool kill_pixel;
1810
1811 struct {
1812 uint32_t sf[7];
1813 uint32_t depth_stencil_state[3];
1814 } gen7;
1815
1816 struct {
1817 uint32_t sf[4];
1818 uint32_t raster[5];
1819 uint32_t wm_depth_stencil[3];
1820 } gen8;
1821
1822 struct {
1823 uint32_t wm_depth_stencil[4];
1824 } gen9;
1825
1826 uint32_t interface_descriptor_data[8];
1827 };
1828
1829 static inline bool
1830 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
1831 gl_shader_stage stage)
1832 {
1833 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
1834 }
1835
1836 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
1837 static inline const struct brw_##prefix##_prog_data * \
1838 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
1839 { \
1840 if (anv_pipeline_has_stage(pipeline, stage)) { \
1841 return (const struct brw_##prefix##_prog_data *) \
1842 pipeline->shaders[stage]->prog_data; \
1843 } else { \
1844 return NULL; \
1845 } \
1846 }
1847
1848 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
1849 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
1850 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
1851 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
1852 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
1853 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
1854
1855 static inline const struct brw_vue_prog_data *
1856 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
1857 {
1858 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
1859 return &get_gs_prog_data(pipeline)->base;
1860 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1861 return &get_tes_prog_data(pipeline)->base;
1862 else
1863 return &get_vs_prog_data(pipeline)->base;
1864 }
1865
1866 VkResult
1867 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1868 struct anv_pipeline_cache *cache,
1869 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1870 const VkAllocationCallbacks *alloc);
1871
1872 VkResult
1873 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1874 struct anv_pipeline_cache *cache,
1875 const VkComputePipelineCreateInfo *info,
1876 struct anv_shader_module *module,
1877 const char *entrypoint,
1878 const VkSpecializationInfo *spec_info);
1879
1880 struct anv_format {
1881 enum isl_format isl_format:16;
1882 struct isl_swizzle swizzle;
1883 };
1884
1885 struct anv_format
1886 anv_get_format(const struct gen_device_info *devinfo, VkFormat format,
1887 VkImageAspectFlags aspect, VkImageTiling tiling);
1888
1889 static inline enum isl_format
1890 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
1891 VkImageAspectFlags aspect, VkImageTiling tiling)
1892 {
1893 return anv_get_format(devinfo, vk_format, aspect, tiling).isl_format;
1894 }
1895
1896 static inline struct isl_swizzle
1897 anv_swizzle_for_render(struct isl_swizzle swizzle)
1898 {
1899 /* Sometimes the swizzle will have alpha map to one. We do this to fake
1900 * RGB as RGBA for texturing
1901 */
1902 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
1903 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
1904
1905 /* But it doesn't matter what we render to that channel */
1906 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
1907
1908 return swizzle;
1909 }
1910
1911 void
1912 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
1913
1914 /**
1915 * Subsurface of an anv_image.
1916 */
1917 struct anv_surface {
1918 /** Valid only if isl_surf::size > 0. */
1919 struct isl_surf isl;
1920
1921 /**
1922 * Offset from VkImage's base address, as bound by vkBindImageMemory().
1923 */
1924 uint32_t offset;
1925 };
1926
1927 struct anv_image {
1928 VkImageType type;
1929 /* The original VkFormat provided by the client. This may not match any
1930 * of the actual surface formats.
1931 */
1932 VkFormat vk_format;
1933 VkImageAspectFlags aspects;
1934 VkExtent3D extent;
1935 uint32_t levels;
1936 uint32_t array_size;
1937 uint32_t samples; /**< VkImageCreateInfo::samples */
1938 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1939 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1940
1941 VkDeviceSize size;
1942 uint32_t alignment;
1943
1944 /* Set when bound */
1945 struct anv_bo *bo;
1946 VkDeviceSize offset;
1947
1948 /**
1949 * Image subsurfaces
1950 *
1951 * For each foo, anv_image::foo_surface is valid if and only if
1952 * anv_image::aspects has a foo aspect.
1953 *
1954 * The hardware requires that the depth buffer and stencil buffer be
1955 * separate surfaces. From Vulkan's perspective, though, depth and stencil
1956 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
1957 * allocate the depth and stencil buffers as separate surfaces in the same
1958 * bo.
1959 */
1960 union {
1961 struct anv_surface color_surface;
1962
1963 struct {
1964 struct anv_surface depth_surface;
1965 struct anv_surface stencil_surface;
1966 };
1967 };
1968
1969 /**
1970 * For color images, this is the aux usage for this image when not used as a
1971 * color attachment.
1972 *
1973 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the image
1974 * has a HiZ buffer.
1975 */
1976 enum isl_aux_usage aux_usage;
1977
1978 struct anv_surface aux_surface;
1979 };
1980
1981 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
1982 static inline bool
1983 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
1984 const VkImageAspectFlags aspect_mask,
1985 const uint32_t samples)
1986 {
1987 /* Validate the inputs. */
1988 assert(devinfo && aspect_mask && samples);
1989 return devinfo->gen >= 8 && (aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) &&
1990 samples == 1;
1991 }
1992
1993 void
1994 anv_gen8_hiz_op_resolve(struct anv_cmd_buffer *cmd_buffer,
1995 const struct anv_image *image,
1996 enum blorp_hiz_op op);
1997
1998 enum isl_aux_usage
1999 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
2000 const struct anv_image *image,
2001 const VkImageAspectFlags aspects,
2002 const VkImageLayout layout);
2003
2004 /* This is defined as a macro so that it works for both
2005 * VkImageSubresourceRange and VkImageSubresourceLayers
2006 */
2007 #define anv_get_layerCount(_image, _range) \
2008 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
2009 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
2010
2011 static inline uint32_t
2012 anv_get_levelCount(const struct anv_image *image,
2013 const VkImageSubresourceRange *range)
2014 {
2015 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
2016 image->levels - range->baseMipLevel : range->levelCount;
2017 }
2018
2019
2020 struct anv_image_view {
2021 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
2022 struct anv_bo *bo;
2023 uint32_t offset; /**< Offset into bo. */
2024
2025 struct isl_view isl;
2026
2027 VkImageAspectFlags aspect_mask;
2028 VkFormat vk_format;
2029 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
2030
2031 /** RENDER_SURFACE_STATE when using image as a sampler surface. */
2032 struct anv_state sampler_surface_state;
2033
2034 /**
2035 * RENDER_SURFACE_STATE when using image as a sampler surface with the
2036 * auxiliary buffer disabled.
2037 */
2038 struct anv_state no_aux_sampler_surface_state;
2039
2040 /**
2041 * RENDER_SURFACE_STATE when using image as a storage image. Separate states
2042 * for write-only and readable, using the real format for write-only and the
2043 * lowered format for readable.
2044 */
2045 struct anv_state storage_surface_state;
2046 struct anv_state writeonly_storage_surface_state;
2047
2048 struct brw_image_param storage_image_param;
2049 };
2050
2051 struct anv_image_create_info {
2052 const VkImageCreateInfo *vk_info;
2053
2054 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
2055 isl_tiling_flags_t isl_tiling_flags;
2056
2057 uint32_t stride;
2058 };
2059
2060 VkResult anv_image_create(VkDevice _device,
2061 const struct anv_image_create_info *info,
2062 const VkAllocationCallbacks* alloc,
2063 VkImage *pImage);
2064
2065 const struct anv_surface *
2066 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
2067 VkImageAspectFlags aspect_mask);
2068
2069 enum isl_format
2070 anv_isl_format_for_descriptor_type(VkDescriptorType type);
2071
2072 static inline struct VkExtent3D
2073 anv_sanitize_image_extent(const VkImageType imageType,
2074 const struct VkExtent3D imageExtent)
2075 {
2076 switch (imageType) {
2077 case VK_IMAGE_TYPE_1D:
2078 return (VkExtent3D) { imageExtent.width, 1, 1 };
2079 case VK_IMAGE_TYPE_2D:
2080 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
2081 case VK_IMAGE_TYPE_3D:
2082 return imageExtent;
2083 default:
2084 unreachable("invalid image type");
2085 }
2086 }
2087
2088 static inline struct VkOffset3D
2089 anv_sanitize_image_offset(const VkImageType imageType,
2090 const struct VkOffset3D imageOffset)
2091 {
2092 switch (imageType) {
2093 case VK_IMAGE_TYPE_1D:
2094 return (VkOffset3D) { imageOffset.x, 0, 0 };
2095 case VK_IMAGE_TYPE_2D:
2096 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
2097 case VK_IMAGE_TYPE_3D:
2098 return imageOffset;
2099 default:
2100 unreachable("invalid image type");
2101 }
2102 }
2103
2104
2105 void anv_fill_buffer_surface_state(struct anv_device *device,
2106 struct anv_state state,
2107 enum isl_format format,
2108 uint32_t offset, uint32_t range,
2109 uint32_t stride);
2110
2111 void anv_image_view_fill_image_param(struct anv_device *device,
2112 struct anv_image_view *view,
2113 struct brw_image_param *param);
2114 void anv_buffer_view_fill_image_param(struct anv_device *device,
2115 struct anv_buffer_view *view,
2116 struct brw_image_param *param);
2117
2118 struct anv_sampler {
2119 uint32_t state[4];
2120 };
2121
2122 struct anv_framebuffer {
2123 uint32_t width;
2124 uint32_t height;
2125 uint32_t layers;
2126
2127 uint32_t attachment_count;
2128 struct anv_image_view * attachments[0];
2129 };
2130
2131 struct anv_subpass {
2132 uint32_t attachment_count;
2133
2134 /**
2135 * A pointer to all attachment references used in this subpass.
2136 * Only valid if ::attachment_count > 0.
2137 */
2138 VkAttachmentReference * attachments;
2139 uint32_t input_count;
2140 VkAttachmentReference * input_attachments;
2141 uint32_t color_count;
2142 VkAttachmentReference * color_attachments;
2143 VkAttachmentReference * resolve_attachments;
2144
2145 VkAttachmentReference depth_stencil_attachment;
2146
2147 /** Subpass has a depth/stencil self-dependency */
2148 bool has_ds_self_dep;
2149
2150 /** Subpass has at least one resolve attachment */
2151 bool has_resolve;
2152 };
2153
2154 enum anv_subpass_usage {
2155 ANV_SUBPASS_USAGE_DRAW = (1 << 0),
2156 ANV_SUBPASS_USAGE_INPUT = (1 << 1),
2157 ANV_SUBPASS_USAGE_RESOLVE_SRC = (1 << 2),
2158 ANV_SUBPASS_USAGE_RESOLVE_DST = (1 << 3),
2159 };
2160
2161 struct anv_render_pass_attachment {
2162 /* TODO: Consider using VkAttachmentDescription instead of storing each of
2163 * its members individually.
2164 */
2165 VkFormat format;
2166 uint32_t samples;
2167 VkImageUsageFlags usage;
2168 VkAttachmentLoadOp load_op;
2169 VkAttachmentStoreOp store_op;
2170 VkAttachmentLoadOp stencil_load_op;
2171 VkImageLayout initial_layout;
2172 VkImageLayout final_layout;
2173
2174 /* An array, indexed by subpass id, of how the attachment will be used. */
2175 enum anv_subpass_usage * subpass_usage;
2176
2177 /* The subpass id in which the attachment will be used last. */
2178 uint32_t last_subpass_idx;
2179 };
2180
2181 struct anv_render_pass {
2182 uint32_t attachment_count;
2183 uint32_t subpass_count;
2184 /* An array of subpass_count+1 flushes, one per subpass boundary */
2185 enum anv_pipe_bits * subpass_flushes;
2186 struct anv_render_pass_attachment * attachments;
2187 struct anv_subpass subpasses[0];
2188 };
2189
2190 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
2191
2192 struct anv_query_pool {
2193 VkQueryType type;
2194 VkQueryPipelineStatisticFlags pipeline_statistics;
2195 /** Stride between slots, in bytes */
2196 uint32_t stride;
2197 /** Number of slots in this query pool */
2198 uint32_t slots;
2199 struct anv_bo bo;
2200 };
2201
2202 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
2203 const char *name);
2204
2205 void anv_dump_image_to_ppm(struct anv_device *device,
2206 struct anv_image *image, unsigned miplevel,
2207 unsigned array_layer, VkImageAspectFlagBits aspect,
2208 const char *filename);
2209
2210 enum anv_dump_action {
2211 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
2212 };
2213
2214 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
2215 void anv_dump_finish(void);
2216
2217 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
2218 struct anv_framebuffer *fb);
2219
2220 static inline uint32_t
2221 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
2222 {
2223 /* This function must be called from within a subpass. */
2224 assert(cmd_state->pass && cmd_state->subpass);
2225
2226 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
2227
2228 /* The id of this subpass shouldn't exceed the number of subpasses in this
2229 * render pass minus 1.
2230 */
2231 assert(subpass_id < cmd_state->pass->subpass_count);
2232 return subpass_id;
2233 }
2234
2235 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
2236 \
2237 static inline struct __anv_type * \
2238 __anv_type ## _from_handle(__VkType _handle) \
2239 { \
2240 return (struct __anv_type *) _handle; \
2241 } \
2242 \
2243 static inline __VkType \
2244 __anv_type ## _to_handle(struct __anv_type *_obj) \
2245 { \
2246 return (__VkType) _obj; \
2247 }
2248
2249 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
2250 \
2251 static inline struct __anv_type * \
2252 __anv_type ## _from_handle(__VkType _handle) \
2253 { \
2254 return (struct __anv_type *)(uintptr_t) _handle; \
2255 } \
2256 \
2257 static inline __VkType \
2258 __anv_type ## _to_handle(struct __anv_type *_obj) \
2259 { \
2260 return (__VkType)(uintptr_t) _obj; \
2261 }
2262
2263 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
2264 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
2265
2266 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
2267 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
2268 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
2269 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
2270 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
2271
2272 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
2273 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
2274 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
2275 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
2276 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
2277 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
2278 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplateKHR)
2279 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
2280 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
2281 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
2282 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
2283 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
2284 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
2285 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
2286 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
2287 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
2288 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
2289 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
2290 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
2291 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
2292
2293 /* Gen-specific function declarations */
2294 #ifdef genX
2295 # include "anv_genX.h"
2296 #else
2297 # define genX(x) gen7_##x
2298 # include "anv_genX.h"
2299 # undef genX
2300 # define genX(x) gen75_##x
2301 # include "anv_genX.h"
2302 # undef genX
2303 # define genX(x) gen8_##x
2304 # include "anv_genX.h"
2305 # undef genX
2306 # define genX(x) gen9_##x
2307 # include "anv_genX.h"
2308 # undef genX
2309 #endif
2310
2311 #endif /* ANV_PRIVATE_H */