anv: Use an anv_address in anv_buffer
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
40 #else
41 #define VG(x)
42 #endif
43
44 #include "common/gen_clflush.h"
45 #include "common/gen_gem.h"
46 #include "dev/gen_device_info.h"
47 #include "blorp/blorp.h"
48 #include "compiler/brw_compiler.h"
49 #include "util/macros.h"
50 #include "util/list.h"
51 #include "util/u_atomic.h"
52 #include "util/u_vector.h"
53 #include "util/vma.h"
54 #include "vk_alloc.h"
55 #include "vk_debug_report.h"
56
57 /* Pre-declarations needed for WSI entrypoints */
58 struct wl_surface;
59 struct wl_display;
60 typedef struct xcb_connection_t xcb_connection_t;
61 typedef uint32_t xcb_visualid_t;
62 typedef uint32_t xcb_window_t;
63
64 struct anv_buffer;
65 struct anv_buffer_view;
66 struct anv_image_view;
67 struct anv_instance;
68
69 struct gen_l3_config;
70
71 #include <vulkan/vulkan.h>
72 #include <vulkan/vulkan_intel.h>
73 #include <vulkan/vk_icd.h>
74 #include <vulkan/vk_android_native_buffer.h>
75
76 #include "anv_entrypoints.h"
77 #include "anv_extensions.h"
78 #include "isl/isl.h"
79
80 #include "common/gen_debug.h"
81 #include "common/intel_log.h"
82 #include "wsi_common.h"
83
84 /* anv Virtual Memory Layout
85 * =========================
86 *
87 * When the anv driver is determining the virtual graphics addresses of memory
88 * objects itself using the softpin mechanism, the following memory ranges
89 * will be used.
90 *
91 * Three special considerations to notice:
92 *
93 * (1) the dynamic state pool is located within the same 4 GiB as the low
94 * heap. This is to work around a VF cache issue described in a comment in
95 * anv_physical_device_init_heaps.
96 *
97 * (2) the binding table pool is located at lower addresses than the surface
98 * state pool, within a 4 GiB range. This allows surface state base addresses
99 * to cover both binding tables (16 bit offsets) and surface states (32 bit
100 * offsets).
101 *
102 * (3) the last 4 GiB of the address space is withheld from the high
103 * heap. Various hardware units will read past the end of an object for
104 * various reasons. This healthy margin prevents reads from wrapping around
105 * 48-bit addresses.
106 */
107 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
108 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
109 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
110 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
111 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
112 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
113 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
114 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
115 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
116 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
117 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
118 #define HIGH_HEAP_MAX_ADDRESS 0xfffeffffffffULL
119
120 #define LOW_HEAP_SIZE \
121 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
122 #define HIGH_HEAP_SIZE \
123 (HIGH_HEAP_MAX_ADDRESS - HIGH_HEAP_MIN_ADDRESS + 1)
124 #define DYNAMIC_STATE_POOL_SIZE \
125 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
126 #define BINDING_TABLE_POOL_SIZE \
127 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
128 #define SURFACE_STATE_POOL_SIZE \
129 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
130 #define INSTRUCTION_STATE_POOL_SIZE \
131 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
132
133 /* Allowing different clear colors requires us to perform a depth resolve at
134 * the end of certain render passes. This is because while slow clears store
135 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
136 * See the PRMs for examples describing when additional resolves would be
137 * necessary. To enable fast clears without requiring extra resolves, we set
138 * the clear value to a globally-defined one. We could allow different values
139 * if the user doesn't expect coherent data during or after a render passes
140 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
141 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
142 * 1.0f seems to be the only value used. The only application that doesn't set
143 * this value does so through the usage of an seemingly uninitialized clear
144 * value.
145 */
146 #define ANV_HZ_FC_VAL 1.0f
147
148 #define MAX_VBS 28
149 #define MAX_SETS 8
150 #define MAX_RTS 8
151 #define MAX_VIEWPORTS 16
152 #define MAX_SCISSORS 16
153 #define MAX_PUSH_CONSTANTS_SIZE 128
154 #define MAX_DYNAMIC_BUFFERS 16
155 #define MAX_IMAGES 8
156 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
157
158 /* The kernel relocation API has a limitation of a 32-bit delta value
159 * applied to the address before it is written which, in spite of it being
160 * unsigned, is treated as signed . Because of the way that this maps to
161 * the Vulkan API, we cannot handle an offset into a buffer that does not
162 * fit into a signed 32 bits. The only mechanism we have for dealing with
163 * this at the moment is to limit all VkDeviceMemory objects to a maximum
164 * of 2GB each. The Vulkan spec allows us to do this:
165 *
166 * "Some platforms may have a limit on the maximum size of a single
167 * allocation. For example, certain systems may fail to create
168 * allocations with a size greater than or equal to 4GB. Such a limit is
169 * implementation-dependent, and if such a failure occurs then the error
170 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
171 *
172 * We don't use vk_error here because it's not an error so much as an
173 * indication to the application that the allocation is too large.
174 */
175 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
176
177 #define ANV_SVGS_VB_INDEX MAX_VBS
178 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
179
180 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
181
182 static inline uint32_t
183 align_down_npot_u32(uint32_t v, uint32_t a)
184 {
185 return v - (v % a);
186 }
187
188 static inline uint32_t
189 align_u32(uint32_t v, uint32_t a)
190 {
191 assert(a != 0 && a == (a & -a));
192 return (v + a - 1) & ~(a - 1);
193 }
194
195 static inline uint64_t
196 align_u64(uint64_t v, uint64_t a)
197 {
198 assert(a != 0 && a == (a & -a));
199 return (v + a - 1) & ~(a - 1);
200 }
201
202 static inline int32_t
203 align_i32(int32_t v, int32_t a)
204 {
205 assert(a != 0 && a == (a & -a));
206 return (v + a - 1) & ~(a - 1);
207 }
208
209 /** Alignment must be a power of 2. */
210 static inline bool
211 anv_is_aligned(uintmax_t n, uintmax_t a)
212 {
213 assert(a == (a & -a));
214 return (n & (a - 1)) == 0;
215 }
216
217 static inline uint32_t
218 anv_minify(uint32_t n, uint32_t levels)
219 {
220 if (unlikely(n == 0))
221 return 0;
222 else
223 return MAX2(n >> levels, 1);
224 }
225
226 static inline float
227 anv_clamp_f(float f, float min, float max)
228 {
229 assert(min < max);
230
231 if (f > max)
232 return max;
233 else if (f < min)
234 return min;
235 else
236 return f;
237 }
238
239 static inline bool
240 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
241 {
242 if (*inout_mask & clear_mask) {
243 *inout_mask &= ~clear_mask;
244 return true;
245 } else {
246 return false;
247 }
248 }
249
250 static inline union isl_color_value
251 vk_to_isl_color(VkClearColorValue color)
252 {
253 return (union isl_color_value) {
254 .u32 = {
255 color.uint32[0],
256 color.uint32[1],
257 color.uint32[2],
258 color.uint32[3],
259 },
260 };
261 }
262
263 #define for_each_bit(b, dword) \
264 for (uint32_t __dword = (dword); \
265 (b) = __builtin_ffs(__dword) - 1, __dword; \
266 __dword &= ~(1 << (b)))
267
268 #define typed_memcpy(dest, src, count) ({ \
269 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
270 memcpy((dest), (src), (count) * sizeof(*(src))); \
271 })
272
273 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
274 * to be added here in order to utilize mapping in debug/error/perf macros.
275 */
276 #define REPORT_OBJECT_TYPE(o) \
277 __builtin_choose_expr ( \
278 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
279 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
280 __builtin_choose_expr ( \
281 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
282 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
283 __builtin_choose_expr ( \
284 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
285 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
286 __builtin_choose_expr ( \
287 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
288 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
289 __builtin_choose_expr ( \
290 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
291 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
292 __builtin_choose_expr ( \
293 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
294 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
295 __builtin_choose_expr ( \
296 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
297 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
298 __builtin_choose_expr ( \
299 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
300 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
301 __builtin_choose_expr ( \
302 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
303 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
304 __builtin_choose_expr ( \
305 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
306 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
307 __builtin_choose_expr ( \
308 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
309 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
310 __builtin_choose_expr ( \
311 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
312 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
313 __builtin_choose_expr ( \
314 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
315 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
316 __builtin_choose_expr ( \
317 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
318 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
319 __builtin_choose_expr ( \
320 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
321 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
322 __builtin_choose_expr ( \
323 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
324 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
325 __builtin_choose_expr ( \
326 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
327 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
328 __builtin_choose_expr ( \
329 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
330 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
331 __builtin_choose_expr ( \
332 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
333 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
334 __builtin_choose_expr ( \
335 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
336 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
337 __builtin_choose_expr ( \
338 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
339 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
340 __builtin_choose_expr ( \
341 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
342 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
343 __builtin_choose_expr ( \
344 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
345 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
346 __builtin_choose_expr ( \
347 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
348 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
349 __builtin_choose_expr ( \
350 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
351 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
352 __builtin_choose_expr ( \
353 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
354 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
355 __builtin_choose_expr ( \
356 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
357 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
358 __builtin_choose_expr ( \
359 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
360 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
361 __builtin_choose_expr ( \
362 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
363 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
364 __builtin_choose_expr ( \
365 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
366 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
367 __builtin_choose_expr ( \
368 __builtin_types_compatible_p (__typeof (o), void*), \
369 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
370 /* The void expression results in a compile-time error \
371 when assigning the result to something. */ \
372 (void)0)))))))))))))))))))))))))))))))
373
374 /* Whenever we generate an error, pass it through this function. Useful for
375 * debugging, where we can break on it. Only call at error site, not when
376 * propagating errors. Might be useful to plug in a stack trace here.
377 */
378
379 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
380 VkDebugReportObjectTypeEXT type, VkResult error,
381 const char *file, int line, const char *format, ...);
382
383 #ifdef DEBUG
384 #define vk_error(error) __vk_errorf(NULL, NULL,\
385 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
386 error, __FILE__, __LINE__, NULL)
387 #define vk_errorf(instance, obj, error, format, ...)\
388 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
389 __FILE__, __LINE__, format, ## __VA_ARGS__)
390 #else
391 #define vk_error(error) error
392 #define vk_errorf(instance, obj, error, format, ...) error
393 #endif
394
395 /**
396 * Warn on ignored extension structs.
397 *
398 * The Vulkan spec requires us to ignore unsupported or unknown structs in
399 * a pNext chain. In debug mode, emitting warnings for ignored structs may
400 * help us discover structs that we should not have ignored.
401 *
402 *
403 * From the Vulkan 1.0.38 spec:
404 *
405 * Any component of the implementation (the loader, any enabled layers,
406 * and drivers) must skip over, without processing (other than reading the
407 * sType and pNext members) any chained structures with sType values not
408 * defined by extensions supported by that component.
409 */
410 #define anv_debug_ignored_stype(sType) \
411 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
412
413 void __anv_perf_warn(struct anv_instance *instance, const void *object,
414 VkDebugReportObjectTypeEXT type, const char *file,
415 int line, const char *format, ...)
416 anv_printflike(6, 7);
417 void anv_loge(const char *format, ...) anv_printflike(1, 2);
418 void anv_loge_v(const char *format, va_list va);
419
420 /**
421 * Print a FINISHME message, including its source location.
422 */
423 #define anv_finishme(format, ...) \
424 do { \
425 static bool reported = false; \
426 if (!reported) { \
427 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
428 ##__VA_ARGS__); \
429 reported = true; \
430 } \
431 } while (0)
432
433 /**
434 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
435 */
436 #define anv_perf_warn(instance, obj, format, ...) \
437 do { \
438 static bool reported = false; \
439 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
440 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
441 format, ##__VA_ARGS__); \
442 reported = true; \
443 } \
444 } while (0)
445
446 /* A non-fatal assert. Useful for debugging. */
447 #ifdef DEBUG
448 #define anv_assert(x) ({ \
449 if (unlikely(!(x))) \
450 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
451 })
452 #else
453 #define anv_assert(x)
454 #endif
455
456 /* A multi-pointer allocator
457 *
458 * When copying data structures from the user (such as a render pass), it's
459 * common to need to allocate data for a bunch of different things. Instead
460 * of doing several allocations and having to handle all of the error checking
461 * that entails, it can be easier to do a single allocation. This struct
462 * helps facilitate that. The intended usage looks like this:
463 *
464 * ANV_MULTIALLOC(ma)
465 * anv_multialloc_add(&ma, &main_ptr, 1);
466 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
467 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
468 *
469 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
470 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
471 */
472 struct anv_multialloc {
473 size_t size;
474 size_t align;
475
476 uint32_t ptr_count;
477 void **ptrs[8];
478 };
479
480 #define ANV_MULTIALLOC_INIT \
481 ((struct anv_multialloc) { 0, })
482
483 #define ANV_MULTIALLOC(_name) \
484 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
485
486 __attribute__((always_inline))
487 static inline void
488 _anv_multialloc_add(struct anv_multialloc *ma,
489 void **ptr, size_t size, size_t align)
490 {
491 size_t offset = align_u64(ma->size, align);
492 ma->size = offset + size;
493 ma->align = MAX2(ma->align, align);
494
495 /* Store the offset in the pointer. */
496 *ptr = (void *)(uintptr_t)offset;
497
498 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
499 ma->ptrs[ma->ptr_count++] = ptr;
500 }
501
502 #define anv_multialloc_add_size(_ma, _ptr, _size) \
503 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
504
505 #define anv_multialloc_add(_ma, _ptr, _count) \
506 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
507
508 __attribute__((always_inline))
509 static inline void *
510 anv_multialloc_alloc(struct anv_multialloc *ma,
511 const VkAllocationCallbacks *alloc,
512 VkSystemAllocationScope scope)
513 {
514 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
515 if (!ptr)
516 return NULL;
517
518 /* Fill out each of the pointers with their final value.
519 *
520 * for (uint32_t i = 0; i < ma->ptr_count; i++)
521 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
522 *
523 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
524 * constant, GCC is incapable of figuring this out and unrolling the loop
525 * so we have to give it a little help.
526 */
527 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
528 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
529 if ((_i) < ma->ptr_count) \
530 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
531 _ANV_MULTIALLOC_UPDATE_POINTER(0);
532 _ANV_MULTIALLOC_UPDATE_POINTER(1);
533 _ANV_MULTIALLOC_UPDATE_POINTER(2);
534 _ANV_MULTIALLOC_UPDATE_POINTER(3);
535 _ANV_MULTIALLOC_UPDATE_POINTER(4);
536 _ANV_MULTIALLOC_UPDATE_POINTER(5);
537 _ANV_MULTIALLOC_UPDATE_POINTER(6);
538 _ANV_MULTIALLOC_UPDATE_POINTER(7);
539 #undef _ANV_MULTIALLOC_UPDATE_POINTER
540
541 return ptr;
542 }
543
544 __attribute__((always_inline))
545 static inline void *
546 anv_multialloc_alloc2(struct anv_multialloc *ma,
547 const VkAllocationCallbacks *parent_alloc,
548 const VkAllocationCallbacks *alloc,
549 VkSystemAllocationScope scope)
550 {
551 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
552 }
553
554 struct anv_bo {
555 uint32_t gem_handle;
556
557 /* Index into the current validation list. This is used by the
558 * validation list building alrogithm to track which buffers are already
559 * in the validation list so that we can ensure uniqueness.
560 */
561 uint32_t index;
562
563 /* Last known offset. This value is provided by the kernel when we
564 * execbuf and is used as the presumed offset for the next bunch of
565 * relocations.
566 */
567 uint64_t offset;
568
569 uint64_t size;
570 void *map;
571
572 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
573 uint32_t flags;
574 };
575
576 static inline void
577 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
578 {
579 bo->gem_handle = gem_handle;
580 bo->index = 0;
581 bo->offset = -1;
582 bo->size = size;
583 bo->map = NULL;
584 bo->flags = 0;
585 }
586
587 /* Represents a lock-free linked list of "free" things. This is used by
588 * both the block pool and the state pools. Unfortunately, in order to
589 * solve the ABA problem, we can't use a single uint32_t head.
590 */
591 union anv_free_list {
592 struct {
593 int32_t offset;
594
595 /* A simple count that is incremented every time the head changes. */
596 uint32_t count;
597 };
598 uint64_t u64;
599 };
600
601 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
602
603 struct anv_block_state {
604 union {
605 struct {
606 uint32_t next;
607 uint32_t end;
608 };
609 uint64_t u64;
610 };
611 };
612
613 struct anv_block_pool {
614 struct anv_device *device;
615
616 uint64_t bo_flags;
617
618 struct anv_bo bo;
619
620 /* The offset from the start of the bo to the "center" of the block
621 * pool. Pointers to allocated blocks are given by
622 * bo.map + center_bo_offset + offsets.
623 */
624 uint32_t center_bo_offset;
625
626 /* Current memory map of the block pool. This pointer may or may not
627 * point to the actual beginning of the block pool memory. If
628 * anv_block_pool_alloc_back has ever been called, then this pointer
629 * will point to the "center" position of the buffer and all offsets
630 * (negative or positive) given out by the block pool alloc functions
631 * will be valid relative to this pointer.
632 *
633 * In particular, map == bo.map + center_offset
634 */
635 void *map;
636 int fd;
637
638 /**
639 * Array of mmaps and gem handles owned by the block pool, reclaimed when
640 * the block pool is destroyed.
641 */
642 struct u_vector mmap_cleanups;
643
644 struct anv_block_state state;
645
646 struct anv_block_state back_state;
647 };
648
649 /* Block pools are backed by a fixed-size 1GB memfd */
650 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
651
652 /* The center of the block pool is also the middle of the memfd. This may
653 * change in the future if we decide differently for some reason.
654 */
655 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
656
657 static inline uint32_t
658 anv_block_pool_size(struct anv_block_pool *pool)
659 {
660 return pool->state.end + pool->back_state.end;
661 }
662
663 struct anv_state {
664 int32_t offset;
665 uint32_t alloc_size;
666 void *map;
667 };
668
669 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
670
671 struct anv_fixed_size_state_pool {
672 union anv_free_list free_list;
673 struct anv_block_state block;
674 };
675
676 #define ANV_MIN_STATE_SIZE_LOG2 6
677 #define ANV_MAX_STATE_SIZE_LOG2 20
678
679 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
680
681 struct anv_state_pool {
682 struct anv_block_pool block_pool;
683
684 /* The size of blocks which will be allocated from the block pool */
685 uint32_t block_size;
686
687 /** Free list for "back" allocations */
688 union anv_free_list back_alloc_free_list;
689
690 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
691 };
692
693 struct anv_state_stream_block;
694
695 struct anv_state_stream {
696 struct anv_state_pool *state_pool;
697
698 /* The size of blocks to allocate from the state pool */
699 uint32_t block_size;
700
701 /* Current block we're allocating from */
702 struct anv_state block;
703
704 /* Offset into the current block at which to allocate the next state */
705 uint32_t next;
706
707 /* List of all blocks allocated from this pool */
708 struct anv_state_stream_block *block_list;
709 };
710
711 /* The block_pool functions exported for testing only. The block pool should
712 * only be used via a state pool (see below).
713 */
714 VkResult anv_block_pool_init(struct anv_block_pool *pool,
715 struct anv_device *device,
716 uint32_t initial_size,
717 uint64_t bo_flags);
718 void anv_block_pool_finish(struct anv_block_pool *pool);
719 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
720 uint32_t block_size);
721 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
722 uint32_t block_size);
723
724 VkResult anv_state_pool_init(struct anv_state_pool *pool,
725 struct anv_device *device,
726 uint32_t block_size,
727 uint64_t bo_flags);
728 void anv_state_pool_finish(struct anv_state_pool *pool);
729 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
730 uint32_t state_size, uint32_t alignment);
731 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
732 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
733 void anv_state_stream_init(struct anv_state_stream *stream,
734 struct anv_state_pool *state_pool,
735 uint32_t block_size);
736 void anv_state_stream_finish(struct anv_state_stream *stream);
737 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
738 uint32_t size, uint32_t alignment);
739
740 /**
741 * Implements a pool of re-usable BOs. The interface is identical to that
742 * of block_pool except that each block is its own BO.
743 */
744 struct anv_bo_pool {
745 struct anv_device *device;
746
747 uint64_t bo_flags;
748
749 void *free_list[16];
750 };
751
752 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
753 uint64_t bo_flags);
754 void anv_bo_pool_finish(struct anv_bo_pool *pool);
755 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
756 uint32_t size);
757 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
758
759 struct anv_scratch_bo {
760 bool exists;
761 struct anv_bo bo;
762 };
763
764 struct anv_scratch_pool {
765 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
766 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
767 };
768
769 void anv_scratch_pool_init(struct anv_device *device,
770 struct anv_scratch_pool *pool);
771 void anv_scratch_pool_finish(struct anv_device *device,
772 struct anv_scratch_pool *pool);
773 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
774 struct anv_scratch_pool *pool,
775 gl_shader_stage stage,
776 unsigned per_thread_scratch);
777
778 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
779 struct anv_bo_cache {
780 struct hash_table *bo_map;
781 pthread_mutex_t mutex;
782 };
783
784 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
785 void anv_bo_cache_finish(struct anv_bo_cache *cache);
786 VkResult anv_bo_cache_alloc(struct anv_device *device,
787 struct anv_bo_cache *cache,
788 uint64_t size, struct anv_bo **bo);
789 VkResult anv_bo_cache_import(struct anv_device *device,
790 struct anv_bo_cache *cache,
791 int fd, struct anv_bo **bo);
792 VkResult anv_bo_cache_export(struct anv_device *device,
793 struct anv_bo_cache *cache,
794 struct anv_bo *bo_in, int *fd_out);
795 void anv_bo_cache_release(struct anv_device *device,
796 struct anv_bo_cache *cache,
797 struct anv_bo *bo);
798
799 struct anv_memory_type {
800 /* Standard bits passed on to the client */
801 VkMemoryPropertyFlags propertyFlags;
802 uint32_t heapIndex;
803
804 /* Driver-internal book-keeping */
805 VkBufferUsageFlags valid_buffer_usage;
806 };
807
808 struct anv_memory_heap {
809 /* Standard bits passed on to the client */
810 VkDeviceSize size;
811 VkMemoryHeapFlags flags;
812
813 /* Driver-internal book-keeping */
814 bool supports_48bit_addresses;
815 };
816
817 struct anv_physical_device {
818 VK_LOADER_DATA _loader_data;
819
820 struct anv_instance * instance;
821 uint32_t chipset_id;
822 bool no_hw;
823 char path[20];
824 const char * name;
825 struct gen_device_info info;
826 /** Amount of "GPU memory" we want to advertise
827 *
828 * Clearly, this value is bogus since Intel is a UMA architecture. On
829 * gen7 platforms, we are limited by GTT size unless we want to implement
830 * fine-grained tracking and GTT splitting. On Broadwell and above we are
831 * practically unlimited. However, we will never report more than 3/4 of
832 * the total system ram to try and avoid running out of RAM.
833 */
834 bool supports_48bit_addresses;
835 struct brw_compiler * compiler;
836 struct isl_device isl_dev;
837 int cmd_parser_version;
838 bool has_exec_async;
839 bool has_exec_capture;
840 bool has_exec_fence;
841 bool has_syncobj;
842 bool has_syncobj_wait;
843 bool has_context_priority;
844 bool use_softpin;
845
846 struct anv_device_extension_table supported_extensions;
847
848 uint32_t eu_total;
849 uint32_t subslice_total;
850
851 struct {
852 uint32_t type_count;
853 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
854 uint32_t heap_count;
855 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
856 } memory;
857
858 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
859 uint8_t driver_uuid[VK_UUID_SIZE];
860 uint8_t device_uuid[VK_UUID_SIZE];
861
862 struct wsi_device wsi_device;
863 int local_fd;
864 };
865
866 struct anv_instance {
867 VK_LOADER_DATA _loader_data;
868
869 VkAllocationCallbacks alloc;
870
871 uint32_t apiVersion;
872 struct anv_instance_extension_table enabled_extensions;
873 struct anv_dispatch_table dispatch;
874
875 int physicalDeviceCount;
876 struct anv_physical_device physicalDevice;
877
878 struct vk_debug_report_instance debug_report_callbacks;
879 };
880
881 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
882 void anv_finish_wsi(struct anv_physical_device *physical_device);
883
884 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
885 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
886 const char *name);
887
888 struct anv_queue {
889 VK_LOADER_DATA _loader_data;
890
891 struct anv_device * device;
892
893 VkDeviceQueueCreateFlags flags;
894 };
895
896 struct anv_pipeline_cache {
897 struct anv_device * device;
898 pthread_mutex_t mutex;
899
900 struct hash_table * cache;
901 };
902
903 struct anv_pipeline_bind_map;
904
905 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
906 struct anv_device *device,
907 bool cache_enabled);
908 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
909
910 struct anv_shader_bin *
911 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
912 const void *key, uint32_t key_size);
913 struct anv_shader_bin *
914 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
915 const void *key_data, uint32_t key_size,
916 const void *kernel_data, uint32_t kernel_size,
917 const struct brw_stage_prog_data *prog_data,
918 uint32_t prog_data_size,
919 const struct anv_pipeline_bind_map *bind_map);
920
921 struct anv_device {
922 VK_LOADER_DATA _loader_data;
923
924 VkAllocationCallbacks alloc;
925
926 struct anv_instance * instance;
927 uint32_t chipset_id;
928 bool no_hw;
929 struct gen_device_info info;
930 struct isl_device isl_dev;
931 int context_id;
932 int fd;
933 bool can_chain_batches;
934 bool robust_buffer_access;
935 struct anv_device_extension_table enabled_extensions;
936 struct anv_dispatch_table dispatch;
937
938 pthread_mutex_t vma_mutex;
939 struct util_vma_heap vma_lo;
940 struct util_vma_heap vma_hi;
941 uint64_t vma_lo_available;
942 uint64_t vma_hi_available;
943
944 struct anv_bo_pool batch_bo_pool;
945
946 struct anv_bo_cache bo_cache;
947
948 struct anv_state_pool dynamic_state_pool;
949 struct anv_state_pool instruction_state_pool;
950 struct anv_state_pool surface_state_pool;
951
952 struct anv_bo workaround_bo;
953 struct anv_bo trivial_batch_bo;
954 struct anv_bo hiz_clear_bo;
955
956 struct anv_pipeline_cache blorp_shader_cache;
957 struct blorp_context blorp;
958
959 struct anv_state border_colors;
960
961 struct anv_queue queue;
962
963 struct anv_scratch_pool scratch_pool;
964
965 uint32_t default_mocs;
966
967 pthread_mutex_t mutex;
968 pthread_cond_t queue_submit;
969 bool lost;
970 };
971
972 static void inline
973 anv_state_flush(struct anv_device *device, struct anv_state state)
974 {
975 if (device->info.has_llc)
976 return;
977
978 gen_flush_range(state.map, state.alloc_size);
979 }
980
981 void anv_device_init_blorp(struct anv_device *device);
982 void anv_device_finish_blorp(struct anv_device *device);
983
984 VkResult anv_device_execbuf(struct anv_device *device,
985 struct drm_i915_gem_execbuffer2 *execbuf,
986 struct anv_bo **execbuf_bos);
987 VkResult anv_device_query_status(struct anv_device *device);
988 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
989 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
990 int64_t timeout);
991
992 void* anv_gem_mmap(struct anv_device *device,
993 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
994 void anv_gem_munmap(void *p, uint64_t size);
995 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
996 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
997 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
998 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
999 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1000 int anv_gem_execbuffer(struct anv_device *device,
1001 struct drm_i915_gem_execbuffer2 *execbuf);
1002 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1003 uint32_t stride, uint32_t tiling);
1004 int anv_gem_create_context(struct anv_device *device);
1005 bool anv_gem_has_context_priority(int fd);
1006 int anv_gem_destroy_context(struct anv_device *device, int context);
1007 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1008 uint64_t value);
1009 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1010 uint64_t *value);
1011 int anv_gem_get_param(int fd, uint32_t param);
1012 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1013 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1014 int anv_gem_get_aperture(int fd, uint64_t *size);
1015 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1016 uint32_t *active, uint32_t *pending);
1017 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1018 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1019 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1020 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1021 uint32_t read_domains, uint32_t write_domain);
1022 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1023 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1024 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1025 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1026 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1027 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1028 uint32_t handle);
1029 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1030 uint32_t handle, int fd);
1031 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1032 bool anv_gem_supports_syncobj_wait(int fd);
1033 int anv_gem_syncobj_wait(struct anv_device *device,
1034 uint32_t *handles, uint32_t num_handles,
1035 int64_t abs_timeout_ns, bool wait_all);
1036
1037 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1038 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1039
1040 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1041
1042 struct anv_reloc_list {
1043 uint32_t num_relocs;
1044 uint32_t array_length;
1045 struct drm_i915_gem_relocation_entry * relocs;
1046 struct anv_bo ** reloc_bos;
1047 };
1048
1049 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1050 const VkAllocationCallbacks *alloc);
1051 void anv_reloc_list_finish(struct anv_reloc_list *list,
1052 const VkAllocationCallbacks *alloc);
1053
1054 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1055 const VkAllocationCallbacks *alloc,
1056 uint32_t offset, struct anv_bo *target_bo,
1057 uint32_t delta);
1058
1059 struct anv_batch_bo {
1060 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1061 struct list_head link;
1062
1063 struct anv_bo bo;
1064
1065 /* Bytes actually consumed in this batch BO */
1066 uint32_t length;
1067
1068 struct anv_reloc_list relocs;
1069 };
1070
1071 struct anv_batch {
1072 const VkAllocationCallbacks * alloc;
1073
1074 void * start;
1075 void * end;
1076 void * next;
1077
1078 struct anv_reloc_list * relocs;
1079
1080 /* This callback is called (with the associated user data) in the event
1081 * that the batch runs out of space.
1082 */
1083 VkResult (*extend_cb)(struct anv_batch *, void *);
1084 void * user_data;
1085
1086 /**
1087 * Current error status of the command buffer. Used to track inconsistent
1088 * or incomplete command buffer states that are the consequence of run-time
1089 * errors such as out of memory scenarios. We want to track this in the
1090 * batch because the command buffer object is not visible to some parts
1091 * of the driver.
1092 */
1093 VkResult status;
1094 };
1095
1096 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1097 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1098 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1099 void *location, struct anv_bo *bo, uint32_t offset);
1100 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1101 struct anv_batch *batch);
1102
1103 static inline VkResult
1104 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1105 {
1106 assert(error != VK_SUCCESS);
1107 if (batch->status == VK_SUCCESS)
1108 batch->status = error;
1109 return batch->status;
1110 }
1111
1112 static inline bool
1113 anv_batch_has_error(struct anv_batch *batch)
1114 {
1115 return batch->status != VK_SUCCESS;
1116 }
1117
1118 struct anv_address {
1119 struct anv_bo *bo;
1120 uint32_t offset;
1121 };
1122
1123 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1124
1125 static inline bool
1126 anv_address_is_null(struct anv_address addr)
1127 {
1128 return addr.bo == NULL && addr.offset == 0;
1129 }
1130
1131 static inline uint64_t
1132 anv_address_physical(struct anv_address addr)
1133 {
1134 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1135 return gen_canonical_address(addr.bo->offset + addr.offset);
1136 else
1137 return gen_canonical_address(addr.offset);
1138 }
1139
1140 static inline struct anv_address
1141 anv_address_add(struct anv_address addr, uint64_t offset)
1142 {
1143 addr.offset += offset;
1144 return addr;
1145 }
1146
1147 static inline uint64_t
1148 _anv_combine_address(struct anv_batch *batch, void *location,
1149 const struct anv_address address, uint32_t delta)
1150 {
1151 if (address.bo == NULL) {
1152 return address.offset + delta;
1153 } else {
1154 assert(batch->start <= location && location < batch->end);
1155
1156 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1157 }
1158 }
1159
1160 #define __gen_address_type struct anv_address
1161 #define __gen_user_data struct anv_batch
1162 #define __gen_combine_address _anv_combine_address
1163
1164 /* Wrapper macros needed to work around preprocessor argument issues. In
1165 * particular, arguments don't get pre-evaluated if they are concatenated.
1166 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1167 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1168 * We can work around this easily enough with these helpers.
1169 */
1170 #define __anv_cmd_length(cmd) cmd ## _length
1171 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1172 #define __anv_cmd_header(cmd) cmd ## _header
1173 #define __anv_cmd_pack(cmd) cmd ## _pack
1174 #define __anv_reg_num(reg) reg ## _num
1175
1176 #define anv_pack_struct(dst, struc, ...) do { \
1177 struct struc __template = { \
1178 __VA_ARGS__ \
1179 }; \
1180 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1181 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1182 } while (0)
1183
1184 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1185 void *__dst = anv_batch_emit_dwords(batch, n); \
1186 if (__dst) { \
1187 struct cmd __template = { \
1188 __anv_cmd_header(cmd), \
1189 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1190 __VA_ARGS__ \
1191 }; \
1192 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1193 } \
1194 __dst; \
1195 })
1196
1197 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1198 do { \
1199 uint32_t *dw; \
1200 \
1201 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1202 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1203 if (!dw) \
1204 break; \
1205 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1206 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1207 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1208 } while (0)
1209
1210 #define anv_batch_emit(batch, cmd, name) \
1211 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1212 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1213 __builtin_expect(_dst != NULL, 1); \
1214 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1215 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1216 _dst = NULL; \
1217 }))
1218
1219 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
1220 .GraphicsDataTypeGFDT = 0, \
1221 .LLCCacheabilityControlLLCCC = 0, \
1222 .L3CacheabilityControlL3CC = 1, \
1223 }
1224
1225 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
1226 .LLCeLLCCacheabilityControlLLCCC = 0, \
1227 .L3CacheabilityControlL3CC = 1, \
1228 }
1229
1230 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
1231 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
1232 .TargetCache = L3DefertoPATforLLCeLLCselection, \
1233 .AgeforQUADLRU = 0 \
1234 }
1235
1236 /* Skylake: MOCS is now an index into an array of 62 different caching
1237 * configurations programmed by the kernel.
1238 */
1239
1240 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
1241 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1242 .IndextoMOCSTables = 2 \
1243 }
1244
1245 #define GEN9_MOCS_PTE { \
1246 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1247 .IndextoMOCSTables = 1 \
1248 }
1249
1250 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1251 #define GEN10_MOCS (struct GEN10_MEMORY_OBJECT_CONTROL_STATE) { \
1252 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1253 .IndextoMOCSTables = 2 \
1254 }
1255
1256 #define GEN10_MOCS_PTE { \
1257 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1258 .IndextoMOCSTables = 1 \
1259 }
1260
1261 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1262 #define GEN11_MOCS (struct GEN11_MEMORY_OBJECT_CONTROL_STATE) { \
1263 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1264 .IndextoMOCSTables = 2 \
1265 }
1266
1267 #define GEN11_MOCS_PTE { \
1268 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1269 .IndextoMOCSTables = 1 \
1270 }
1271
1272 struct anv_device_memory {
1273 struct anv_bo * bo;
1274 struct anv_memory_type * type;
1275 VkDeviceSize map_size;
1276 void * map;
1277 };
1278
1279 /**
1280 * Header for Vertex URB Entry (VUE)
1281 */
1282 struct anv_vue_header {
1283 uint32_t Reserved;
1284 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1285 uint32_t ViewportIndex;
1286 float PointWidth;
1287 };
1288
1289 struct anv_descriptor_set_binding_layout {
1290 #ifndef NDEBUG
1291 /* The type of the descriptors in this binding */
1292 VkDescriptorType type;
1293 #endif
1294
1295 /* Number of array elements in this binding */
1296 uint16_t array_size;
1297
1298 /* Index into the flattend descriptor set */
1299 uint16_t descriptor_index;
1300
1301 /* Index into the dynamic state array for a dynamic buffer */
1302 int16_t dynamic_offset_index;
1303
1304 /* Index into the descriptor set buffer views */
1305 int16_t buffer_index;
1306
1307 struct {
1308 /* Index into the binding table for the associated surface */
1309 int16_t surface_index;
1310
1311 /* Index into the sampler table for the associated sampler */
1312 int16_t sampler_index;
1313
1314 /* Index into the image table for the associated image */
1315 int16_t image_index;
1316 } stage[MESA_SHADER_STAGES];
1317
1318 /* Immutable samplers (or NULL if no immutable samplers) */
1319 struct anv_sampler **immutable_samplers;
1320 };
1321
1322 struct anv_descriptor_set_layout {
1323 /* Descriptor set layouts can be destroyed at almost any time */
1324 uint32_t ref_cnt;
1325
1326 /* Number of bindings in this descriptor set */
1327 uint16_t binding_count;
1328
1329 /* Total size of the descriptor set with room for all array entries */
1330 uint16_t size;
1331
1332 /* Shader stages affected by this descriptor set */
1333 uint16_t shader_stages;
1334
1335 /* Number of buffers in this descriptor set */
1336 uint16_t buffer_count;
1337
1338 /* Number of dynamic offsets used by this descriptor set */
1339 uint16_t dynamic_offset_count;
1340
1341 /* Bindings in this descriptor set */
1342 struct anv_descriptor_set_binding_layout binding[0];
1343 };
1344
1345 static inline void
1346 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1347 {
1348 assert(layout && layout->ref_cnt >= 1);
1349 p_atomic_inc(&layout->ref_cnt);
1350 }
1351
1352 static inline void
1353 anv_descriptor_set_layout_unref(struct anv_device *device,
1354 struct anv_descriptor_set_layout *layout)
1355 {
1356 assert(layout && layout->ref_cnt >= 1);
1357 if (p_atomic_dec_zero(&layout->ref_cnt))
1358 vk_free(&device->alloc, layout);
1359 }
1360
1361 struct anv_descriptor {
1362 VkDescriptorType type;
1363
1364 union {
1365 struct {
1366 VkImageLayout layout;
1367 struct anv_image_view *image_view;
1368 struct anv_sampler *sampler;
1369 };
1370
1371 struct {
1372 struct anv_buffer *buffer;
1373 uint64_t offset;
1374 uint64_t range;
1375 };
1376
1377 struct anv_buffer_view *buffer_view;
1378 };
1379 };
1380
1381 struct anv_descriptor_set {
1382 struct anv_descriptor_set_layout *layout;
1383 uint32_t size;
1384 uint32_t buffer_count;
1385 struct anv_buffer_view *buffer_views;
1386 struct anv_descriptor descriptors[0];
1387 };
1388
1389 struct anv_buffer_view {
1390 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1391 uint64_t range; /**< VkBufferViewCreateInfo::range */
1392
1393 struct anv_address address;
1394
1395 struct anv_state surface_state;
1396 struct anv_state storage_surface_state;
1397 struct anv_state writeonly_storage_surface_state;
1398
1399 struct brw_image_param storage_image_param;
1400 };
1401
1402 struct anv_push_descriptor_set {
1403 struct anv_descriptor_set set;
1404
1405 /* Put this field right behind anv_descriptor_set so it fills up the
1406 * descriptors[0] field. */
1407 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1408 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1409 };
1410
1411 struct anv_descriptor_pool {
1412 uint32_t size;
1413 uint32_t next;
1414 uint32_t free_list;
1415
1416 struct anv_state_stream surface_state_stream;
1417 void *surface_state_free_list;
1418
1419 char data[0];
1420 };
1421
1422 enum anv_descriptor_template_entry_type {
1423 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1424 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1425 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1426 };
1427
1428 struct anv_descriptor_template_entry {
1429 /* The type of descriptor in this entry */
1430 VkDescriptorType type;
1431
1432 /* Binding in the descriptor set */
1433 uint32_t binding;
1434
1435 /* Offset at which to write into the descriptor set binding */
1436 uint32_t array_element;
1437
1438 /* Number of elements to write into the descriptor set binding */
1439 uint32_t array_count;
1440
1441 /* Offset into the user provided data */
1442 size_t offset;
1443
1444 /* Stride between elements into the user provided data */
1445 size_t stride;
1446 };
1447
1448 struct anv_descriptor_update_template {
1449 VkPipelineBindPoint bind_point;
1450
1451 /* The descriptor set this template corresponds to. This value is only
1452 * valid if the template was created with the templateType
1453 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR.
1454 */
1455 uint8_t set;
1456
1457 /* Number of entries in this template */
1458 uint32_t entry_count;
1459
1460 /* Entries of the template */
1461 struct anv_descriptor_template_entry entries[0];
1462 };
1463
1464 size_t
1465 anv_descriptor_set_binding_layout_get_hw_size(const struct anv_descriptor_set_binding_layout *binding);
1466
1467 size_t
1468 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1469
1470 void
1471 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
1472 const struct gen_device_info * const devinfo,
1473 const VkDescriptorImageInfo * const info,
1474 VkDescriptorType type,
1475 uint32_t binding,
1476 uint32_t element);
1477
1478 void
1479 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
1480 VkDescriptorType type,
1481 struct anv_buffer_view *buffer_view,
1482 uint32_t binding,
1483 uint32_t element);
1484
1485 void
1486 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
1487 struct anv_device *device,
1488 struct anv_state_stream *alloc_stream,
1489 VkDescriptorType type,
1490 struct anv_buffer *buffer,
1491 uint32_t binding,
1492 uint32_t element,
1493 VkDeviceSize offset,
1494 VkDeviceSize range);
1495
1496 void
1497 anv_descriptor_set_write_template(struct anv_descriptor_set *set,
1498 struct anv_device *device,
1499 struct anv_state_stream *alloc_stream,
1500 const struct anv_descriptor_update_template *template,
1501 const void *data);
1502
1503 VkResult
1504 anv_descriptor_set_create(struct anv_device *device,
1505 struct anv_descriptor_pool *pool,
1506 struct anv_descriptor_set_layout *layout,
1507 struct anv_descriptor_set **out_set);
1508
1509 void
1510 anv_descriptor_set_destroy(struct anv_device *device,
1511 struct anv_descriptor_pool *pool,
1512 struct anv_descriptor_set *set);
1513
1514 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1515
1516 struct anv_pipeline_binding {
1517 /* The descriptor set this surface corresponds to. The special value of
1518 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1519 * to a color attachment and not a regular descriptor.
1520 */
1521 uint8_t set;
1522
1523 /* Binding in the descriptor set */
1524 uint32_t binding;
1525
1526 /* Index in the binding */
1527 uint32_t index;
1528
1529 /* Plane in the binding index */
1530 uint8_t plane;
1531
1532 /* Input attachment index (relative to the subpass) */
1533 uint8_t input_attachment_index;
1534
1535 /* For a storage image, whether it is write-only */
1536 bool write_only;
1537 };
1538
1539 struct anv_pipeline_layout {
1540 struct {
1541 struct anv_descriptor_set_layout *layout;
1542 uint32_t dynamic_offset_start;
1543 } set[MAX_SETS];
1544
1545 uint32_t num_sets;
1546
1547 struct {
1548 bool has_dynamic_offsets;
1549 } stage[MESA_SHADER_STAGES];
1550
1551 unsigned char sha1[20];
1552 };
1553
1554 struct anv_buffer {
1555 struct anv_device * device;
1556 VkDeviceSize size;
1557
1558 VkBufferUsageFlags usage;
1559
1560 /* Set when bound */
1561 struct anv_address address;
1562 };
1563
1564 static inline uint64_t
1565 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1566 {
1567 assert(offset <= buffer->size);
1568 if (range == VK_WHOLE_SIZE) {
1569 return buffer->size - offset;
1570 } else {
1571 assert(range <= buffer->size);
1572 return range;
1573 }
1574 }
1575
1576 enum anv_cmd_dirty_bits {
1577 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1578 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1579 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1580 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1581 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1582 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1583 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1584 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1585 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1586 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1587 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1588 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1589 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1590 };
1591 typedef uint32_t anv_cmd_dirty_mask_t;
1592
1593 enum anv_pipe_bits {
1594 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1595 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1596 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1597 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1598 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1599 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1600 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1601 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1602 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1603 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1604 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1605
1606 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1607 * a flush has happened but not a CS stall. The next time we do any sort
1608 * of invalidation we need to insert a CS stall at that time. Otherwise,
1609 * we would have to CS stall on every flush which could be bad.
1610 */
1611 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1612 };
1613
1614 #define ANV_PIPE_FLUSH_BITS ( \
1615 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1616 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1617 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1618
1619 #define ANV_PIPE_STALL_BITS ( \
1620 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1621 ANV_PIPE_DEPTH_STALL_BIT | \
1622 ANV_PIPE_CS_STALL_BIT)
1623
1624 #define ANV_PIPE_INVALIDATE_BITS ( \
1625 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1626 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1627 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1628 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1629 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1630 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1631
1632 static inline enum anv_pipe_bits
1633 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1634 {
1635 enum anv_pipe_bits pipe_bits = 0;
1636
1637 unsigned b;
1638 for_each_bit(b, flags) {
1639 switch ((VkAccessFlagBits)(1 << b)) {
1640 case VK_ACCESS_SHADER_WRITE_BIT:
1641 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1642 break;
1643 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1644 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1645 break;
1646 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1647 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1648 break;
1649 case VK_ACCESS_TRANSFER_WRITE_BIT:
1650 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1651 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1652 break;
1653 default:
1654 break; /* Nothing to do */
1655 }
1656 }
1657
1658 return pipe_bits;
1659 }
1660
1661 static inline enum anv_pipe_bits
1662 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1663 {
1664 enum anv_pipe_bits pipe_bits = 0;
1665
1666 unsigned b;
1667 for_each_bit(b, flags) {
1668 switch ((VkAccessFlagBits)(1 << b)) {
1669 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1670 case VK_ACCESS_INDEX_READ_BIT:
1671 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1672 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1673 break;
1674 case VK_ACCESS_UNIFORM_READ_BIT:
1675 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1676 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1677 break;
1678 case VK_ACCESS_SHADER_READ_BIT:
1679 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1680 case VK_ACCESS_TRANSFER_READ_BIT:
1681 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1682 break;
1683 default:
1684 break; /* Nothing to do */
1685 }
1686 }
1687
1688 return pipe_bits;
1689 }
1690
1691 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
1692 VK_IMAGE_ASPECT_COLOR_BIT | \
1693 VK_IMAGE_ASPECT_PLANE_0_BIT | \
1694 VK_IMAGE_ASPECT_PLANE_1_BIT | \
1695 VK_IMAGE_ASPECT_PLANE_2_BIT)
1696 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
1697 VK_IMAGE_ASPECT_PLANE_0_BIT | \
1698 VK_IMAGE_ASPECT_PLANE_1_BIT | \
1699 VK_IMAGE_ASPECT_PLANE_2_BIT)
1700
1701 struct anv_vertex_binding {
1702 struct anv_buffer * buffer;
1703 VkDeviceSize offset;
1704 };
1705
1706 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
1707 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
1708
1709 struct anv_push_constants {
1710 /* Current allocated size of this push constants data structure.
1711 * Because a decent chunk of it may not be used (images on SKL, for
1712 * instance), we won't actually allocate the entire structure up-front.
1713 */
1714 uint32_t size;
1715
1716 /* Push constant data provided by the client through vkPushConstants */
1717 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1718
1719 /* Used for vkCmdDispatchBase */
1720 uint32_t base_work_group_id[3];
1721
1722 /* Image data for image_load_store on pre-SKL */
1723 struct brw_image_param images[MAX_IMAGES];
1724 };
1725
1726 struct anv_dynamic_state {
1727 struct {
1728 uint32_t count;
1729 VkViewport viewports[MAX_VIEWPORTS];
1730 } viewport;
1731
1732 struct {
1733 uint32_t count;
1734 VkRect2D scissors[MAX_SCISSORS];
1735 } scissor;
1736
1737 float line_width;
1738
1739 struct {
1740 float bias;
1741 float clamp;
1742 float slope;
1743 } depth_bias;
1744
1745 float blend_constants[4];
1746
1747 struct {
1748 float min;
1749 float max;
1750 } depth_bounds;
1751
1752 struct {
1753 uint32_t front;
1754 uint32_t back;
1755 } stencil_compare_mask;
1756
1757 struct {
1758 uint32_t front;
1759 uint32_t back;
1760 } stencil_write_mask;
1761
1762 struct {
1763 uint32_t front;
1764 uint32_t back;
1765 } stencil_reference;
1766 };
1767
1768 extern const struct anv_dynamic_state default_dynamic_state;
1769
1770 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1771 const struct anv_dynamic_state *src,
1772 uint32_t copy_mask);
1773
1774 struct anv_surface_state {
1775 struct anv_state state;
1776 /** Address of the surface referred to by this state
1777 *
1778 * This address is relative to the start of the BO.
1779 */
1780 struct anv_address address;
1781 /* Address of the aux surface, if any
1782 *
1783 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
1784 *
1785 * With the exception of gen8, the bottom 12 bits of this address' offset
1786 * include extra aux information.
1787 */
1788 struct anv_address aux_address;
1789 /* Address of the clear color, if any
1790 *
1791 * This address is relative to the start of the BO.
1792 */
1793 struct anv_address clear_address;
1794 };
1795
1796 /**
1797 * Attachment state when recording a renderpass instance.
1798 *
1799 * The clear value is valid only if there exists a pending clear.
1800 */
1801 struct anv_attachment_state {
1802 enum isl_aux_usage aux_usage;
1803 enum isl_aux_usage input_aux_usage;
1804 struct anv_surface_state color;
1805 struct anv_surface_state input;
1806
1807 VkImageLayout current_layout;
1808 VkImageAspectFlags pending_clear_aspects;
1809 VkImageAspectFlags pending_load_aspects;
1810 bool fast_clear;
1811 VkClearValue clear_value;
1812 bool clear_color_is_zero_one;
1813 bool clear_color_is_zero;
1814
1815 /* When multiview is active, attachments with a renderpass clear
1816 * operation have their respective layers cleared on the first
1817 * subpass that uses them, and only in that subpass. We keep track
1818 * of this using a bitfield to indicate which layers of an attachment
1819 * have not been cleared yet when multiview is active.
1820 */
1821 uint32_t pending_clear_views;
1822 };
1823
1824 /** State tracking for particular pipeline bind point
1825 *
1826 * This struct is the base struct for anv_cmd_graphics_state and
1827 * anv_cmd_compute_state. These are used to track state which is bound to a
1828 * particular type of pipeline. Generic state that applies per-stage such as
1829 * binding table offsets and push constants is tracked generically with a
1830 * per-stage array in anv_cmd_state.
1831 */
1832 struct anv_cmd_pipeline_state {
1833 struct anv_pipeline *pipeline;
1834 struct anv_pipeline_layout *layout;
1835
1836 struct anv_descriptor_set *descriptors[MAX_SETS];
1837 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
1838
1839 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
1840 };
1841
1842 /** State tracking for graphics pipeline
1843 *
1844 * This has anv_cmd_pipeline_state as a base struct to track things which get
1845 * bound to a graphics pipeline. Along with general pipeline bind point state
1846 * which is in the anv_cmd_pipeline_state base struct, it also contains other
1847 * state which is graphics-specific.
1848 */
1849 struct anv_cmd_graphics_state {
1850 struct anv_cmd_pipeline_state base;
1851
1852 anv_cmd_dirty_mask_t dirty;
1853 uint32_t vb_dirty;
1854
1855 struct anv_dynamic_state dynamic;
1856
1857 struct {
1858 struct anv_buffer *index_buffer;
1859 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1860 uint32_t index_offset;
1861 } gen7;
1862 };
1863
1864 /** State tracking for compute pipeline
1865 *
1866 * This has anv_cmd_pipeline_state as a base struct to track things which get
1867 * bound to a compute pipeline. Along with general pipeline bind point state
1868 * which is in the anv_cmd_pipeline_state base struct, it also contains other
1869 * state which is compute-specific.
1870 */
1871 struct anv_cmd_compute_state {
1872 struct anv_cmd_pipeline_state base;
1873
1874 bool pipeline_dirty;
1875
1876 struct anv_address num_workgroups;
1877 };
1878
1879 /** State required while building cmd buffer */
1880 struct anv_cmd_state {
1881 /* PIPELINE_SELECT.PipelineSelection */
1882 uint32_t current_pipeline;
1883 const struct gen_l3_config * current_l3_config;
1884
1885 struct anv_cmd_graphics_state gfx;
1886 struct anv_cmd_compute_state compute;
1887
1888 enum anv_pipe_bits pending_pipe_bits;
1889 VkShaderStageFlags descriptors_dirty;
1890 VkShaderStageFlags push_constants_dirty;
1891
1892 struct anv_framebuffer * framebuffer;
1893 struct anv_render_pass * pass;
1894 struct anv_subpass * subpass;
1895 VkRect2D render_area;
1896 uint32_t restart_index;
1897 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1898 VkShaderStageFlags push_constant_stages;
1899 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1900 struct anv_state binding_tables[MESA_SHADER_STAGES];
1901 struct anv_state samplers[MESA_SHADER_STAGES];
1902
1903 /**
1904 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
1905 * of any command buffer it is disabled by disabling it in EndCommandBuffer
1906 * and before invoking the secondary in ExecuteCommands.
1907 */
1908 bool pma_fix_enabled;
1909
1910 /**
1911 * Whether or not we know for certain that HiZ is enabled for the current
1912 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
1913 * enabled or not, this will be false.
1914 */
1915 bool hiz_enabled;
1916
1917 /**
1918 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1919 * valid only when recording a render pass instance.
1920 */
1921 struct anv_attachment_state * attachments;
1922
1923 /**
1924 * Surface states for color render targets. These are stored in a single
1925 * flat array. For depth-stencil attachments, the surface state is simply
1926 * left blank.
1927 */
1928 struct anv_state render_pass_states;
1929
1930 /**
1931 * A null surface state of the right size to match the framebuffer. This
1932 * is one of the states in render_pass_states.
1933 */
1934 struct anv_state null_surface_state;
1935 };
1936
1937 struct anv_cmd_pool {
1938 VkAllocationCallbacks alloc;
1939 struct list_head cmd_buffers;
1940 };
1941
1942 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1943
1944 enum anv_cmd_buffer_exec_mode {
1945 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1946 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1947 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1948 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1949 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1950 };
1951
1952 struct anv_cmd_buffer {
1953 VK_LOADER_DATA _loader_data;
1954
1955 struct anv_device * device;
1956
1957 struct anv_cmd_pool * pool;
1958 struct list_head pool_link;
1959
1960 struct anv_batch batch;
1961
1962 /* Fields required for the actual chain of anv_batch_bo's.
1963 *
1964 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1965 */
1966 struct list_head batch_bos;
1967 enum anv_cmd_buffer_exec_mode exec_mode;
1968
1969 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1970 * referenced by this command buffer
1971 *
1972 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1973 */
1974 struct u_vector seen_bbos;
1975
1976 /* A vector of int32_t's for every block of binding tables.
1977 *
1978 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1979 */
1980 struct u_vector bt_block_states;
1981 uint32_t bt_next;
1982
1983 struct anv_reloc_list surface_relocs;
1984 /** Last seen surface state block pool center bo offset */
1985 uint32_t last_ss_pool_center;
1986
1987 /* Serial for tracking buffer completion */
1988 uint32_t serial;
1989
1990 /* Stream objects for storing temporary data */
1991 struct anv_state_stream surface_state_stream;
1992 struct anv_state_stream dynamic_state_stream;
1993
1994 VkCommandBufferUsageFlags usage_flags;
1995 VkCommandBufferLevel level;
1996
1997 struct anv_cmd_state state;
1998 };
1999
2000 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2001 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2002 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2003 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2004 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2005 struct anv_cmd_buffer *secondary);
2006 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2007 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2008 struct anv_cmd_buffer *cmd_buffer,
2009 const VkSemaphore *in_semaphores,
2010 uint32_t num_in_semaphores,
2011 const VkSemaphore *out_semaphores,
2012 uint32_t num_out_semaphores,
2013 VkFence fence);
2014
2015 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2016
2017 VkResult
2018 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
2019 gl_shader_stage stage, uint32_t size);
2020 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
2021 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
2022 (offsetof(struct anv_push_constants, field) + \
2023 sizeof(cmd_buffer->state.push_constants[0]->field)))
2024
2025 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2026 const void *data, uint32_t size, uint32_t alignment);
2027 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2028 uint32_t *a, uint32_t *b,
2029 uint32_t dwords, uint32_t alignment);
2030
2031 struct anv_address
2032 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2033 struct anv_state
2034 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2035 uint32_t entries, uint32_t *state_offset);
2036 struct anv_state
2037 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2038 struct anv_state
2039 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2040 uint32_t size, uint32_t alignment);
2041
2042 VkResult
2043 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2044
2045 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2046 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2047 bool depth_clamp_enable);
2048 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2049
2050 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2051 struct anv_render_pass *pass,
2052 struct anv_framebuffer *framebuffer,
2053 const VkClearValue *clear_values);
2054
2055 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2056
2057 struct anv_state
2058 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2059 gl_shader_stage stage);
2060 struct anv_state
2061 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2062
2063 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
2064
2065 const struct anv_image_view *
2066 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2067
2068 VkResult
2069 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2070 uint32_t num_entries,
2071 uint32_t *state_offset,
2072 struct anv_state *bt_state);
2073
2074 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2075
2076 enum anv_fence_type {
2077 ANV_FENCE_TYPE_NONE = 0,
2078 ANV_FENCE_TYPE_BO,
2079 ANV_FENCE_TYPE_SYNCOBJ,
2080 };
2081
2082 enum anv_bo_fence_state {
2083 /** Indicates that this is a new (or newly reset fence) */
2084 ANV_BO_FENCE_STATE_RESET,
2085
2086 /** Indicates that this fence has been submitted to the GPU but is still
2087 * (as far as we know) in use by the GPU.
2088 */
2089 ANV_BO_FENCE_STATE_SUBMITTED,
2090
2091 ANV_BO_FENCE_STATE_SIGNALED,
2092 };
2093
2094 struct anv_fence_impl {
2095 enum anv_fence_type type;
2096
2097 union {
2098 /** Fence implementation for BO fences
2099 *
2100 * These fences use a BO and a set of CPU-tracked state flags. The BO
2101 * is added to the object list of the last execbuf call in a QueueSubmit
2102 * and is marked EXEC_WRITE. The state flags track when the BO has been
2103 * submitted to the kernel. We need to do this because Vulkan lets you
2104 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2105 * will say it's idle in this case.
2106 */
2107 struct {
2108 struct anv_bo bo;
2109 enum anv_bo_fence_state state;
2110 } bo;
2111
2112 /** DRM syncobj handle for syncobj-based fences */
2113 uint32_t syncobj;
2114 };
2115 };
2116
2117 struct anv_fence {
2118 /* Permanent fence state. Every fence has some form of permanent state
2119 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2120 * cross-process fences) or it could just be a dummy for use internally.
2121 */
2122 struct anv_fence_impl permanent;
2123
2124 /* Temporary fence state. A fence *may* have temporary state. That state
2125 * is added to the fence by an import operation and is reset back to
2126 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2127 * state cannot be signaled because the fence must already be signaled
2128 * before the temporary state can be exported from the fence in the other
2129 * process and imported here.
2130 */
2131 struct anv_fence_impl temporary;
2132 };
2133
2134 struct anv_event {
2135 uint64_t semaphore;
2136 struct anv_state state;
2137 };
2138
2139 enum anv_semaphore_type {
2140 ANV_SEMAPHORE_TYPE_NONE = 0,
2141 ANV_SEMAPHORE_TYPE_DUMMY,
2142 ANV_SEMAPHORE_TYPE_BO,
2143 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2144 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2145 };
2146
2147 struct anv_semaphore_impl {
2148 enum anv_semaphore_type type;
2149
2150 union {
2151 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2152 * This BO will be added to the object list on any execbuf2 calls for
2153 * which this semaphore is used as a wait or signal fence. When used as
2154 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2155 */
2156 struct anv_bo *bo;
2157
2158 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2159 * If the semaphore is in the unsignaled state due to either just being
2160 * created or because it has been used for a wait, fd will be -1.
2161 */
2162 int fd;
2163
2164 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2165 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2166 * import so we don't need to bother with a userspace cache.
2167 */
2168 uint32_t syncobj;
2169 };
2170 };
2171
2172 struct anv_semaphore {
2173 /* Permanent semaphore state. Every semaphore has some form of permanent
2174 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2175 * (for cross-process semaphores0 or it could just be a dummy for use
2176 * internally.
2177 */
2178 struct anv_semaphore_impl permanent;
2179
2180 /* Temporary semaphore state. A semaphore *may* have temporary state.
2181 * That state is added to the semaphore by an import operation and is reset
2182 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2183 * semaphore with temporary state cannot be signaled because the semaphore
2184 * must already be signaled before the temporary state can be exported from
2185 * the semaphore in the other process and imported here.
2186 */
2187 struct anv_semaphore_impl temporary;
2188 };
2189
2190 void anv_semaphore_reset_temporary(struct anv_device *device,
2191 struct anv_semaphore *semaphore);
2192
2193 struct anv_shader_module {
2194 unsigned char sha1[20];
2195 uint32_t size;
2196 char data[0];
2197 };
2198
2199 static inline gl_shader_stage
2200 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2201 {
2202 assert(__builtin_popcount(vk_stage) == 1);
2203 return ffs(vk_stage) - 1;
2204 }
2205
2206 static inline VkShaderStageFlagBits
2207 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2208 {
2209 return (1 << mesa_stage);
2210 }
2211
2212 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2213
2214 #define anv_foreach_stage(stage, stage_bits) \
2215 for (gl_shader_stage stage, \
2216 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2217 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2218 __tmp &= ~(1 << (stage)))
2219
2220 struct anv_pipeline_bind_map {
2221 uint32_t surface_count;
2222 uint32_t sampler_count;
2223 uint32_t image_count;
2224
2225 struct anv_pipeline_binding * surface_to_descriptor;
2226 struct anv_pipeline_binding * sampler_to_descriptor;
2227 };
2228
2229 struct anv_shader_bin_key {
2230 uint32_t size;
2231 uint8_t data[0];
2232 };
2233
2234 struct anv_shader_bin {
2235 uint32_t ref_cnt;
2236
2237 const struct anv_shader_bin_key *key;
2238
2239 struct anv_state kernel;
2240 uint32_t kernel_size;
2241
2242 const struct brw_stage_prog_data *prog_data;
2243 uint32_t prog_data_size;
2244
2245 struct anv_pipeline_bind_map bind_map;
2246 };
2247
2248 struct anv_shader_bin *
2249 anv_shader_bin_create(struct anv_device *device,
2250 const void *key, uint32_t key_size,
2251 const void *kernel, uint32_t kernel_size,
2252 const struct brw_stage_prog_data *prog_data,
2253 uint32_t prog_data_size, const void *prog_data_param,
2254 const struct anv_pipeline_bind_map *bind_map);
2255
2256 void
2257 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2258
2259 static inline void
2260 anv_shader_bin_ref(struct anv_shader_bin *shader)
2261 {
2262 assert(shader && shader->ref_cnt >= 1);
2263 p_atomic_inc(&shader->ref_cnt);
2264 }
2265
2266 static inline void
2267 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2268 {
2269 assert(shader && shader->ref_cnt >= 1);
2270 if (p_atomic_dec_zero(&shader->ref_cnt))
2271 anv_shader_bin_destroy(device, shader);
2272 }
2273
2274 struct anv_pipeline {
2275 struct anv_device * device;
2276 struct anv_batch batch;
2277 uint32_t batch_data[512];
2278 struct anv_reloc_list batch_relocs;
2279 uint32_t dynamic_state_mask;
2280 struct anv_dynamic_state dynamic_state;
2281
2282 struct anv_subpass * subpass;
2283
2284 bool needs_data_cache;
2285
2286 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2287
2288 struct {
2289 const struct gen_l3_config * l3_config;
2290 uint32_t total_size;
2291 } urb;
2292
2293 VkShaderStageFlags active_stages;
2294 struct anv_state blend_state;
2295
2296 uint32_t vb_used;
2297 uint32_t binding_stride[MAX_VBS];
2298 bool instancing_enable[MAX_VBS];
2299 bool primitive_restart;
2300 uint32_t topology;
2301
2302 uint32_t cs_right_mask;
2303
2304 bool writes_depth;
2305 bool depth_test_enable;
2306 bool writes_stencil;
2307 bool stencil_test_enable;
2308 bool depth_clamp_enable;
2309 bool sample_shading_enable;
2310 bool kill_pixel;
2311
2312 struct {
2313 uint32_t sf[7];
2314 uint32_t depth_stencil_state[3];
2315 } gen7;
2316
2317 struct {
2318 uint32_t sf[4];
2319 uint32_t raster[5];
2320 uint32_t wm_depth_stencil[3];
2321 } gen8;
2322
2323 struct {
2324 uint32_t wm_depth_stencil[4];
2325 } gen9;
2326
2327 uint32_t interface_descriptor_data[8];
2328 };
2329
2330 static inline bool
2331 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2332 gl_shader_stage stage)
2333 {
2334 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2335 }
2336
2337 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2338 static inline const struct brw_##prefix##_prog_data * \
2339 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2340 { \
2341 if (anv_pipeline_has_stage(pipeline, stage)) { \
2342 return (const struct brw_##prefix##_prog_data *) \
2343 pipeline->shaders[stage]->prog_data; \
2344 } else { \
2345 return NULL; \
2346 } \
2347 }
2348
2349 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2350 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2351 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2352 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2353 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2354 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2355
2356 static inline const struct brw_vue_prog_data *
2357 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2358 {
2359 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2360 return &get_gs_prog_data(pipeline)->base;
2361 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2362 return &get_tes_prog_data(pipeline)->base;
2363 else
2364 return &get_vs_prog_data(pipeline)->base;
2365 }
2366
2367 VkResult
2368 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2369 struct anv_pipeline_cache *cache,
2370 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2371 const VkAllocationCallbacks *alloc);
2372
2373 VkResult
2374 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2375 struct anv_pipeline_cache *cache,
2376 const VkComputePipelineCreateInfo *info,
2377 struct anv_shader_module *module,
2378 const char *entrypoint,
2379 const VkSpecializationInfo *spec_info);
2380
2381 struct anv_format_plane {
2382 enum isl_format isl_format:16;
2383 struct isl_swizzle swizzle;
2384
2385 /* Whether this plane contains chroma channels */
2386 bool has_chroma;
2387
2388 /* For downscaling of YUV planes */
2389 uint8_t denominator_scales[2];
2390
2391 /* How to map sampled ycbcr planes to a single 4 component element. */
2392 struct isl_swizzle ycbcr_swizzle;
2393 };
2394
2395
2396 struct anv_format {
2397 struct anv_format_plane planes[3];
2398 uint8_t n_planes;
2399 bool can_ycbcr;
2400 };
2401
2402 static inline uint32_t
2403 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2404 VkImageAspectFlags aspect_mask)
2405 {
2406 switch (aspect_mask) {
2407 case VK_IMAGE_ASPECT_COLOR_BIT:
2408 case VK_IMAGE_ASPECT_DEPTH_BIT:
2409 case VK_IMAGE_ASPECT_PLANE_0_BIT:
2410 return 0;
2411 case VK_IMAGE_ASPECT_STENCIL_BIT:
2412 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2413 return 0;
2414 /* Fall-through */
2415 case VK_IMAGE_ASPECT_PLANE_1_BIT:
2416 return 1;
2417 case VK_IMAGE_ASPECT_PLANE_2_BIT:
2418 return 2;
2419 default:
2420 /* Purposefully assert with depth/stencil aspects. */
2421 unreachable("invalid image aspect");
2422 }
2423 }
2424
2425 static inline uint32_t
2426 anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)
2427 {
2428 uint32_t planes = 0;
2429
2430 if (aspect_mask & (VK_IMAGE_ASPECT_COLOR_BIT |
2431 VK_IMAGE_ASPECT_DEPTH_BIT |
2432 VK_IMAGE_ASPECT_STENCIL_BIT |
2433 VK_IMAGE_ASPECT_PLANE_0_BIT))
2434 planes++;
2435 if (aspect_mask & VK_IMAGE_ASPECT_PLANE_1_BIT)
2436 planes++;
2437 if (aspect_mask & VK_IMAGE_ASPECT_PLANE_2_BIT)
2438 planes++;
2439
2440 if ((aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) != 0 &&
2441 (aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) != 0)
2442 planes++;
2443
2444 return planes;
2445 }
2446
2447 static inline VkImageAspectFlags
2448 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2449 uint32_t plane)
2450 {
2451 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2452 if (_mesa_bitcount(image_aspects) > 1)
2453 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
2454 return VK_IMAGE_ASPECT_COLOR_BIT;
2455 }
2456 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2457 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2458 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
2459 return VK_IMAGE_ASPECT_STENCIL_BIT;
2460 }
2461
2462 #define anv_foreach_image_aspect_bit(b, image, aspects) \
2463 for_each_bit(b, anv_image_expand_aspects(image, aspects))
2464
2465 const struct anv_format *
2466 anv_get_format(VkFormat format);
2467
2468 static inline uint32_t
2469 anv_get_format_planes(VkFormat vk_format)
2470 {
2471 const struct anv_format *format = anv_get_format(vk_format);
2472
2473 return format != NULL ? format->n_planes : 0;
2474 }
2475
2476 struct anv_format_plane
2477 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
2478 VkImageAspectFlagBits aspect, VkImageTiling tiling);
2479
2480 static inline enum isl_format
2481 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
2482 VkImageAspectFlags aspect, VkImageTiling tiling)
2483 {
2484 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
2485 }
2486
2487 static inline struct isl_swizzle
2488 anv_swizzle_for_render(struct isl_swizzle swizzle)
2489 {
2490 /* Sometimes the swizzle will have alpha map to one. We do this to fake
2491 * RGB as RGBA for texturing
2492 */
2493 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
2494 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
2495
2496 /* But it doesn't matter what we render to that channel */
2497 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
2498
2499 return swizzle;
2500 }
2501
2502 void
2503 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
2504
2505 /**
2506 * Subsurface of an anv_image.
2507 */
2508 struct anv_surface {
2509 /** Valid only if isl_surf::size > 0. */
2510 struct isl_surf isl;
2511
2512 /**
2513 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2514 */
2515 uint32_t offset;
2516 };
2517
2518 struct anv_image {
2519 VkImageType type;
2520 /* The original VkFormat provided by the client. This may not match any
2521 * of the actual surface formats.
2522 */
2523 VkFormat vk_format;
2524 const struct anv_format *format;
2525
2526 VkImageAspectFlags aspects;
2527 VkExtent3D extent;
2528 uint32_t levels;
2529 uint32_t array_size;
2530 uint32_t samples; /**< VkImageCreateInfo::samples */
2531 uint32_t n_planes;
2532 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2533 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2534
2535 /** True if this is needs to be bound to an appropriately tiled BO.
2536 *
2537 * When not using modifiers, consumers such as X11, Wayland, and KMS need
2538 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
2539 * we require a dedicated allocation so that we can know to allocate a
2540 * tiled buffer.
2541 */
2542 bool needs_set_tiling;
2543
2544 /**
2545 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
2546 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
2547 */
2548 uint64_t drm_format_mod;
2549
2550 VkDeviceSize size;
2551 uint32_t alignment;
2552
2553 /* Whether the image is made of several underlying buffer objects rather a
2554 * single one with different offsets.
2555 */
2556 bool disjoint;
2557
2558 /**
2559 * Image subsurfaces
2560 *
2561 * For each foo, anv_image::planes[x].surface is valid if and only if
2562 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
2563 * to figure the number associated with a given aspect.
2564 *
2565 * The hardware requires that the depth buffer and stencil buffer be
2566 * separate surfaces. From Vulkan's perspective, though, depth and stencil
2567 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
2568 * allocate the depth and stencil buffers as separate surfaces in the same
2569 * bo.
2570 *
2571 * Memory layout :
2572 *
2573 * -----------------------
2574 * | surface0 | /|\
2575 * ----------------------- |
2576 * | shadow surface0 | |
2577 * ----------------------- | Plane 0
2578 * | aux surface0 | |
2579 * ----------------------- |
2580 * | fast clear colors0 | \|/
2581 * -----------------------
2582 * | surface1 | /|\
2583 * ----------------------- |
2584 * | shadow surface1 | |
2585 * ----------------------- | Plane 1
2586 * | aux surface1 | |
2587 * ----------------------- |
2588 * | fast clear colors1 | \|/
2589 * -----------------------
2590 * | ... |
2591 * | |
2592 * -----------------------
2593 */
2594 struct {
2595 /**
2596 * Offset of the entire plane (whenever the image is disjoint this is
2597 * set to 0).
2598 */
2599 uint32_t offset;
2600
2601 VkDeviceSize size;
2602 uint32_t alignment;
2603
2604 struct anv_surface surface;
2605
2606 /**
2607 * A surface which shadows the main surface and may have different
2608 * tiling. This is used for sampling using a tiling that isn't supported
2609 * for other operations.
2610 */
2611 struct anv_surface shadow_surface;
2612
2613 /**
2614 * For color images, this is the aux usage for this image when not used
2615 * as a color attachment.
2616 *
2617 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
2618 * image has a HiZ buffer.
2619 */
2620 enum isl_aux_usage aux_usage;
2621
2622 struct anv_surface aux_surface;
2623
2624 /**
2625 * Offset of the fast clear state (used to compute the
2626 * fast_clear_state_offset of the following planes).
2627 */
2628 uint32_t fast_clear_state_offset;
2629
2630 /**
2631 * BO associated with this plane, set when bound.
2632 */
2633 struct anv_bo *bo;
2634 VkDeviceSize bo_offset;
2635
2636 /**
2637 * When destroying the image, also free the bo.
2638 * */
2639 bool bo_is_owned;
2640 } planes[3];
2641 };
2642
2643 /* The ordering of this enum is important */
2644 enum anv_fast_clear_type {
2645 /** Image does not have/support any fast-clear blocks */
2646 ANV_FAST_CLEAR_NONE = 0,
2647 /** Image has/supports fast-clear but only to the default value */
2648 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
2649 /** Image has/supports fast-clear with an arbitrary fast-clear value */
2650 ANV_FAST_CLEAR_ANY = 2,
2651 };
2652
2653 /* Returns the number of auxiliary buffer levels attached to an image. */
2654 static inline uint8_t
2655 anv_image_aux_levels(const struct anv_image * const image,
2656 VkImageAspectFlagBits aspect)
2657 {
2658 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2659 return image->planes[plane].aux_surface.isl.size > 0 ?
2660 image->planes[plane].aux_surface.isl.levels : 0;
2661 }
2662
2663 /* Returns the number of auxiliary buffer layers attached to an image. */
2664 static inline uint32_t
2665 anv_image_aux_layers(const struct anv_image * const image,
2666 VkImageAspectFlagBits aspect,
2667 const uint8_t miplevel)
2668 {
2669 assert(image);
2670
2671 /* The miplevel must exist in the main buffer. */
2672 assert(miplevel < image->levels);
2673
2674 if (miplevel >= anv_image_aux_levels(image, aspect)) {
2675 /* There are no layers with auxiliary data because the miplevel has no
2676 * auxiliary data.
2677 */
2678 return 0;
2679 } else {
2680 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2681 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
2682 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
2683 }
2684 }
2685
2686 static inline struct anv_address
2687 anv_image_get_clear_color_addr(const struct anv_device *device,
2688 const struct anv_image *image,
2689 VkImageAspectFlagBits aspect)
2690 {
2691 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
2692
2693 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2694 return (struct anv_address) {
2695 .bo = image->planes[plane].bo,
2696 .offset = image->planes[plane].bo_offset +
2697 image->planes[plane].fast_clear_state_offset,
2698 };
2699 }
2700
2701 static inline struct anv_address
2702 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
2703 const struct anv_image *image,
2704 VkImageAspectFlagBits aspect)
2705 {
2706 struct anv_address addr =
2707 anv_image_get_clear_color_addr(device, image, aspect);
2708
2709 const unsigned clear_color_state_size = device->info.gen >= 10 ?
2710 device->isl_dev.ss.clear_color_state_size :
2711 device->isl_dev.ss.clear_value_size;
2712 addr.offset += clear_color_state_size;
2713 return addr;
2714 }
2715
2716 static inline struct anv_address
2717 anv_image_get_compression_state_addr(const struct anv_device *device,
2718 const struct anv_image *image,
2719 VkImageAspectFlagBits aspect,
2720 uint32_t level, uint32_t array_layer)
2721 {
2722 assert(level < anv_image_aux_levels(image, aspect));
2723 assert(array_layer < anv_image_aux_layers(image, aspect, level));
2724 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2725 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
2726
2727 struct anv_address addr =
2728 anv_image_get_fast_clear_type_addr(device, image, aspect);
2729 addr.offset += 4; /* Go past the fast clear type */
2730
2731 if (image->type == VK_IMAGE_TYPE_3D) {
2732 for (uint32_t l = 0; l < level; l++)
2733 addr.offset += anv_minify(image->extent.depth, l) * 4;
2734 } else {
2735 addr.offset += level * image->array_size * 4;
2736 }
2737 addr.offset += array_layer * 4;
2738
2739 return addr;
2740 }
2741
2742 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
2743 static inline bool
2744 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
2745 const struct anv_image *image)
2746 {
2747 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
2748 return false;
2749
2750 if (devinfo->gen < 8)
2751 return false;
2752
2753 return image->samples == 1;
2754 }
2755
2756 void
2757 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
2758 const struct anv_image *image,
2759 VkImageAspectFlagBits aspect,
2760 enum isl_aux_usage aux_usage,
2761 uint32_t level,
2762 uint32_t base_layer,
2763 uint32_t layer_count);
2764
2765 void
2766 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
2767 const struct anv_image *image,
2768 VkImageAspectFlagBits aspect,
2769 enum isl_aux_usage aux_usage,
2770 enum isl_format format, struct isl_swizzle swizzle,
2771 uint32_t level, uint32_t base_layer, uint32_t layer_count,
2772 VkRect2D area, union isl_color_value clear_color);
2773 void
2774 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
2775 const struct anv_image *image,
2776 VkImageAspectFlags aspects,
2777 enum isl_aux_usage depth_aux_usage,
2778 uint32_t level,
2779 uint32_t base_layer, uint32_t layer_count,
2780 VkRect2D area,
2781 float depth_value, uint8_t stencil_value);
2782 void
2783 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
2784 const struct anv_image *image,
2785 VkImageAspectFlagBits aspect, uint32_t level,
2786 uint32_t base_layer, uint32_t layer_count,
2787 enum isl_aux_op hiz_op);
2788 void
2789 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
2790 const struct anv_image *image,
2791 VkImageAspectFlags aspects,
2792 uint32_t level,
2793 uint32_t base_layer, uint32_t layer_count,
2794 VkRect2D area, uint8_t stencil_value);
2795 void
2796 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
2797 const struct anv_image *image,
2798 VkImageAspectFlagBits aspect,
2799 uint32_t base_layer, uint32_t layer_count,
2800 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
2801 bool predicate);
2802 void
2803 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
2804 const struct anv_image *image,
2805 VkImageAspectFlagBits aspect, uint32_t level,
2806 uint32_t base_layer, uint32_t layer_count,
2807 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
2808 bool predicate);
2809
2810 void
2811 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
2812 const struct anv_image *image,
2813 uint32_t base_level, uint32_t level_count,
2814 uint32_t base_layer, uint32_t layer_count);
2815
2816 enum isl_aux_usage
2817 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
2818 const struct anv_image *image,
2819 const VkImageAspectFlagBits aspect,
2820 const VkImageLayout layout);
2821
2822 enum anv_fast_clear_type
2823 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
2824 const struct anv_image * const image,
2825 const VkImageAspectFlagBits aspect,
2826 const VkImageLayout layout);
2827
2828 /* This is defined as a macro so that it works for both
2829 * VkImageSubresourceRange and VkImageSubresourceLayers
2830 */
2831 #define anv_get_layerCount(_image, _range) \
2832 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
2833 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
2834
2835 static inline uint32_t
2836 anv_get_levelCount(const struct anv_image *image,
2837 const VkImageSubresourceRange *range)
2838 {
2839 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
2840 image->levels - range->baseMipLevel : range->levelCount;
2841 }
2842
2843 static inline VkImageAspectFlags
2844 anv_image_expand_aspects(const struct anv_image *image,
2845 VkImageAspectFlags aspects)
2846 {
2847 /* If the underlying image has color plane aspects and
2848 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
2849 * the underlying image. */
2850 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
2851 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
2852 return image->aspects;
2853
2854 return aspects;
2855 }
2856
2857 static inline bool
2858 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
2859 VkImageAspectFlags aspects2)
2860 {
2861 if (aspects1 == aspects2)
2862 return true;
2863
2864 /* Only 1 color aspects are compatibles. */
2865 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
2866 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
2867 _mesa_bitcount(aspects1) == _mesa_bitcount(aspects2))
2868 return true;
2869
2870 return false;
2871 }
2872
2873 struct anv_image_view {
2874 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
2875
2876 VkImageAspectFlags aspect_mask;
2877 VkFormat vk_format;
2878 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
2879
2880 unsigned n_planes;
2881 struct {
2882 uint32_t image_plane;
2883
2884 struct isl_view isl;
2885
2886 /**
2887 * RENDER_SURFACE_STATE when using image as a sampler surface with an
2888 * image layout of SHADER_READ_ONLY_OPTIMAL or
2889 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
2890 */
2891 struct anv_surface_state optimal_sampler_surface_state;
2892
2893 /**
2894 * RENDER_SURFACE_STATE when using image as a sampler surface with an
2895 * image layout of GENERAL.
2896 */
2897 struct anv_surface_state general_sampler_surface_state;
2898
2899 /**
2900 * RENDER_SURFACE_STATE when using image as a storage image. Separate
2901 * states for write-only and readable, using the real format for
2902 * write-only and the lowered format for readable.
2903 */
2904 struct anv_surface_state storage_surface_state;
2905 struct anv_surface_state writeonly_storage_surface_state;
2906
2907 struct brw_image_param storage_image_param;
2908 } planes[3];
2909 };
2910
2911 enum anv_image_view_state_flags {
2912 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
2913 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
2914 };
2915
2916 void anv_image_fill_surface_state(struct anv_device *device,
2917 const struct anv_image *image,
2918 VkImageAspectFlagBits aspect,
2919 const struct isl_view *view,
2920 isl_surf_usage_flags_t view_usage,
2921 enum isl_aux_usage aux_usage,
2922 const union isl_color_value *clear_color,
2923 enum anv_image_view_state_flags flags,
2924 struct anv_surface_state *state_inout,
2925 struct brw_image_param *image_param_out);
2926
2927 struct anv_image_create_info {
2928 const VkImageCreateInfo *vk_info;
2929
2930 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
2931 isl_tiling_flags_t isl_tiling_flags;
2932
2933 /** These flags will be added to any derived from VkImageCreateInfo. */
2934 isl_surf_usage_flags_t isl_extra_usage_flags;
2935
2936 uint32_t stride;
2937 };
2938
2939 VkResult anv_image_create(VkDevice _device,
2940 const struct anv_image_create_info *info,
2941 const VkAllocationCallbacks* alloc,
2942 VkImage *pImage);
2943
2944 #ifdef ANDROID
2945 VkResult anv_image_from_gralloc(VkDevice device_h,
2946 const VkImageCreateInfo *base_info,
2947 const VkNativeBufferANDROID *gralloc_info,
2948 const VkAllocationCallbacks *alloc,
2949 VkImage *pImage);
2950 #endif
2951
2952 const struct anv_surface *
2953 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
2954 VkImageAspectFlags aspect_mask);
2955
2956 enum isl_format
2957 anv_isl_format_for_descriptor_type(VkDescriptorType type);
2958
2959 static inline struct VkExtent3D
2960 anv_sanitize_image_extent(const VkImageType imageType,
2961 const struct VkExtent3D imageExtent)
2962 {
2963 switch (imageType) {
2964 case VK_IMAGE_TYPE_1D:
2965 return (VkExtent3D) { imageExtent.width, 1, 1 };
2966 case VK_IMAGE_TYPE_2D:
2967 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
2968 case VK_IMAGE_TYPE_3D:
2969 return imageExtent;
2970 default:
2971 unreachable("invalid image type");
2972 }
2973 }
2974
2975 static inline struct VkOffset3D
2976 anv_sanitize_image_offset(const VkImageType imageType,
2977 const struct VkOffset3D imageOffset)
2978 {
2979 switch (imageType) {
2980 case VK_IMAGE_TYPE_1D:
2981 return (VkOffset3D) { imageOffset.x, 0, 0 };
2982 case VK_IMAGE_TYPE_2D:
2983 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
2984 case VK_IMAGE_TYPE_3D:
2985 return imageOffset;
2986 default:
2987 unreachable("invalid image type");
2988 }
2989 }
2990
2991
2992 void anv_fill_buffer_surface_state(struct anv_device *device,
2993 struct anv_state state,
2994 enum isl_format format,
2995 struct anv_address address,
2996 uint32_t range, uint32_t stride);
2997
2998 static inline void
2999 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3000 const struct anv_attachment_state *att_state,
3001 const struct anv_image_view *iview)
3002 {
3003 const struct isl_format_layout *view_fmtl =
3004 isl_format_get_layout(iview->planes[0].isl.format);
3005
3006 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3007 if (view_fmtl->channels.c.bits) \
3008 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3009
3010 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3011 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3012 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3013 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3014
3015 #undef COPY_CLEAR_COLOR_CHANNEL
3016 }
3017
3018
3019 struct anv_ycbcr_conversion {
3020 const struct anv_format * format;
3021 VkSamplerYcbcrModelConversion ycbcr_model;
3022 VkSamplerYcbcrRange ycbcr_range;
3023 VkComponentSwizzle mapping[4];
3024 VkChromaLocation chroma_offsets[2];
3025 VkFilter chroma_filter;
3026 bool chroma_reconstruction;
3027 };
3028
3029 struct anv_sampler {
3030 uint32_t state[3][4];
3031 uint32_t n_planes;
3032 struct anv_ycbcr_conversion *conversion;
3033 };
3034
3035 struct anv_framebuffer {
3036 uint32_t width;
3037 uint32_t height;
3038 uint32_t layers;
3039
3040 uint32_t attachment_count;
3041 struct anv_image_view * attachments[0];
3042 };
3043
3044 struct anv_subpass_attachment {
3045 VkImageUsageFlagBits usage;
3046 uint32_t attachment;
3047 VkImageLayout layout;
3048 };
3049
3050 struct anv_subpass {
3051 uint32_t attachment_count;
3052
3053 /**
3054 * A pointer to all attachment references used in this subpass.
3055 * Only valid if ::attachment_count > 0.
3056 */
3057 struct anv_subpass_attachment * attachments;
3058 uint32_t input_count;
3059 struct anv_subpass_attachment * input_attachments;
3060 uint32_t color_count;
3061 struct anv_subpass_attachment * color_attachments;
3062 struct anv_subpass_attachment * resolve_attachments;
3063
3064 struct anv_subpass_attachment depth_stencil_attachment;
3065
3066 uint32_t view_mask;
3067
3068 /** Subpass has a depth/stencil self-dependency */
3069 bool has_ds_self_dep;
3070
3071 /** Subpass has at least one resolve attachment */
3072 bool has_resolve;
3073 };
3074
3075 static inline unsigned
3076 anv_subpass_view_count(const struct anv_subpass *subpass)
3077 {
3078 return MAX2(1, _mesa_bitcount(subpass->view_mask));
3079 }
3080
3081 struct anv_render_pass_attachment {
3082 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3083 * its members individually.
3084 */
3085 VkFormat format;
3086 uint32_t samples;
3087 VkImageUsageFlags usage;
3088 VkAttachmentLoadOp load_op;
3089 VkAttachmentStoreOp store_op;
3090 VkAttachmentLoadOp stencil_load_op;
3091 VkImageLayout initial_layout;
3092 VkImageLayout final_layout;
3093 VkImageLayout first_subpass_layout;
3094
3095 /* The subpass id in which the attachment will be used last. */
3096 uint32_t last_subpass_idx;
3097 };
3098
3099 struct anv_render_pass {
3100 uint32_t attachment_count;
3101 uint32_t subpass_count;
3102 /* An array of subpass_count+1 flushes, one per subpass boundary */
3103 enum anv_pipe_bits * subpass_flushes;
3104 struct anv_render_pass_attachment * attachments;
3105 struct anv_subpass subpasses[0];
3106 };
3107
3108 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3109
3110 struct anv_query_pool {
3111 VkQueryType type;
3112 VkQueryPipelineStatisticFlags pipeline_statistics;
3113 /** Stride between slots, in bytes */
3114 uint32_t stride;
3115 /** Number of slots in this query pool */
3116 uint32_t slots;
3117 struct anv_bo bo;
3118 };
3119
3120 int anv_get_entrypoint_index(const char *name);
3121
3122 bool
3123 anv_entrypoint_is_enabled(int index, uint32_t core_version,
3124 const struct anv_instance_extension_table *instance,
3125 const struct anv_device_extension_table *device);
3126
3127 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3128 const char *name);
3129
3130 void anv_dump_image_to_ppm(struct anv_device *device,
3131 struct anv_image *image, unsigned miplevel,
3132 unsigned array_layer, VkImageAspectFlagBits aspect,
3133 const char *filename);
3134
3135 enum anv_dump_action {
3136 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3137 };
3138
3139 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3140 void anv_dump_finish(void);
3141
3142 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
3143 struct anv_framebuffer *fb);
3144
3145 static inline uint32_t
3146 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3147 {
3148 /* This function must be called from within a subpass. */
3149 assert(cmd_state->pass && cmd_state->subpass);
3150
3151 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3152
3153 /* The id of this subpass shouldn't exceed the number of subpasses in this
3154 * render pass minus 1.
3155 */
3156 assert(subpass_id < cmd_state->pass->subpass_count);
3157 return subpass_id;
3158 }
3159
3160 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3161 \
3162 static inline struct __anv_type * \
3163 __anv_type ## _from_handle(__VkType _handle) \
3164 { \
3165 return (struct __anv_type *) _handle; \
3166 } \
3167 \
3168 static inline __VkType \
3169 __anv_type ## _to_handle(struct __anv_type *_obj) \
3170 { \
3171 return (__VkType) _obj; \
3172 }
3173
3174 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3175 \
3176 static inline struct __anv_type * \
3177 __anv_type ## _from_handle(__VkType _handle) \
3178 { \
3179 return (struct __anv_type *)(uintptr_t) _handle; \
3180 } \
3181 \
3182 static inline __VkType \
3183 __anv_type ## _to_handle(struct __anv_type *_obj) \
3184 { \
3185 return (__VkType)(uintptr_t) _obj; \
3186 }
3187
3188 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3189 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3190
3191 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3192 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3193 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3194 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3195 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3196
3197 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3198 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3199 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3200 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3201 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3202 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3203 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplateKHR)
3204 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3205 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3206 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3207 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3208 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3209 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3210 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3211 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3212 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3213 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3214 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3215 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3216 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3217 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3218 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3219 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3220
3221 /* Gen-specific function declarations */
3222 #ifdef genX
3223 # include "anv_genX.h"
3224 #else
3225 # define genX(x) gen7_##x
3226 # include "anv_genX.h"
3227 # undef genX
3228 # define genX(x) gen75_##x
3229 # include "anv_genX.h"
3230 # undef genX
3231 # define genX(x) gen8_##x
3232 # include "anv_genX.h"
3233 # undef genX
3234 # define genX(x) gen9_##x
3235 # include "anv_genX.h"
3236 # undef genX
3237 # define genX(x) gen10_##x
3238 # include "anv_genX.h"
3239 # undef genX
3240 # define genX(x) gen11_##x
3241 # include "anv_genX.h"
3242 # undef genX
3243 #endif
3244
3245 #endif /* ANV_PRIVATE_H */