anv/gem: Add a flags parameter to syncobj_create
[mesa.git] / src / intel / vulkan / anv_queue.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /**
25 * This file implements VkQueue, VkFence, and VkSemaphore
26 */
27
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/eventfd.h>
31
32 #include "anv_private.h"
33 #include "vk_util.h"
34
35 #include "genxml/gen7_pack.h"
36
37 VkResult
38 anv_device_execbuf(struct anv_device *device,
39 struct drm_i915_gem_execbuffer2 *execbuf,
40 struct anv_bo **execbuf_bos)
41 {
42 int ret = anv_gem_execbuffer(device, execbuf);
43 if (ret != 0) {
44 /* We don't know the real error. */
45 device->lost = true;
46 return vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
47 }
48
49 struct drm_i915_gem_exec_object2 *objects =
50 (void *)(uintptr_t)execbuf->buffers_ptr;
51 for (uint32_t k = 0; k < execbuf->buffer_count; k++)
52 execbuf_bos[k]->offset = objects[k].offset;
53
54 return VK_SUCCESS;
55 }
56
57 VkResult
58 anv_device_submit_simple_batch(struct anv_device *device,
59 struct anv_batch *batch)
60 {
61 struct drm_i915_gem_execbuffer2 execbuf;
62 struct drm_i915_gem_exec_object2 exec2_objects[1];
63 struct anv_bo bo, *exec_bos[1];
64 VkResult result = VK_SUCCESS;
65 uint32_t size;
66
67 /* Kernel driver requires 8 byte aligned batch length */
68 size = align_u32(batch->next - batch->start, 8);
69 result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
70 if (result != VK_SUCCESS)
71 return result;
72
73 memcpy(bo.map, batch->start, size);
74 if (!device->info.has_llc)
75 gen_flush_range(bo.map, size);
76
77 exec_bos[0] = &bo;
78 exec2_objects[0].handle = bo.gem_handle;
79 exec2_objects[0].relocation_count = 0;
80 exec2_objects[0].relocs_ptr = 0;
81 exec2_objects[0].alignment = 0;
82 exec2_objects[0].offset = bo.offset;
83 exec2_objects[0].flags = 0;
84 exec2_objects[0].rsvd1 = 0;
85 exec2_objects[0].rsvd2 = 0;
86
87 execbuf.buffers_ptr = (uintptr_t) exec2_objects;
88 execbuf.buffer_count = 1;
89 execbuf.batch_start_offset = 0;
90 execbuf.batch_len = size;
91 execbuf.cliprects_ptr = 0;
92 execbuf.num_cliprects = 0;
93 execbuf.DR1 = 0;
94 execbuf.DR4 = 0;
95
96 execbuf.flags =
97 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
98 execbuf.rsvd1 = device->context_id;
99 execbuf.rsvd2 = 0;
100
101 result = anv_device_execbuf(device, &execbuf, exec_bos);
102 if (result != VK_SUCCESS)
103 goto fail;
104
105 result = anv_device_wait(device, &bo, INT64_MAX);
106
107 fail:
108 anv_bo_pool_free(&device->batch_bo_pool, &bo);
109
110 return result;
111 }
112
113 VkResult anv_QueueSubmit(
114 VkQueue _queue,
115 uint32_t submitCount,
116 const VkSubmitInfo* pSubmits,
117 VkFence fence)
118 {
119 ANV_FROM_HANDLE(anv_queue, queue, _queue);
120 struct anv_device *device = queue->device;
121
122 /* Query for device status prior to submitting. Technically, we don't need
123 * to do this. However, if we have a client that's submitting piles of
124 * garbage, we would rather break as early as possible to keep the GPU
125 * hanging contained. If we don't check here, we'll either be waiting for
126 * the kernel to kick us or we'll have to wait until the client waits on a
127 * fence before we actually know whether or not we've hung.
128 */
129 VkResult result = anv_device_query_status(device);
130 if (result != VK_SUCCESS)
131 return result;
132
133 /* We lock around QueueSubmit for three main reasons:
134 *
135 * 1) When a block pool is resized, we create a new gem handle with a
136 * different size and, in the case of surface states, possibly a
137 * different center offset but we re-use the same anv_bo struct when
138 * we do so. If this happens in the middle of setting up an execbuf,
139 * we could end up with our list of BOs out of sync with our list of
140 * gem handles.
141 *
142 * 2) The algorithm we use for building the list of unique buffers isn't
143 * thread-safe. While the client is supposed to syncronize around
144 * QueueSubmit, this would be extremely difficult to debug if it ever
145 * came up in the wild due to a broken app. It's better to play it
146 * safe and just lock around QueueSubmit.
147 *
148 * 3) The anv_cmd_buffer_execbuf function may perform relocations in
149 * userspace. Due to the fact that the surface state buffer is shared
150 * between batches, we can't afford to have that happen from multiple
151 * threads at the same time. Even though the user is supposed to
152 * ensure this doesn't happen, we play it safe as in (2) above.
153 *
154 * Since the only other things that ever take the device lock such as block
155 * pool resize only rarely happen, this will almost never be contended so
156 * taking a lock isn't really an expensive operation in this case.
157 */
158 pthread_mutex_lock(&device->mutex);
159
160 if (fence && submitCount == 0) {
161 /* If we don't have any command buffers, we need to submit a dummy
162 * batch to give GEM something to wait on. We could, potentially,
163 * come up with something more efficient but this shouldn't be a
164 * common case.
165 */
166 result = anv_cmd_buffer_execbuf(device, NULL, NULL, 0, NULL, 0, fence);
167 goto out;
168 }
169
170 for (uint32_t i = 0; i < submitCount; i++) {
171 /* Fence for this submit. NULL for all but the last one */
172 VkFence submit_fence = (i == submitCount - 1) ? fence : NULL;
173
174 if (pSubmits[i].commandBufferCount == 0) {
175 /* If we don't have any command buffers, we need to submit a dummy
176 * batch to give GEM something to wait on. We could, potentially,
177 * come up with something more efficient but this shouldn't be a
178 * common case.
179 */
180 result = anv_cmd_buffer_execbuf(device, NULL,
181 pSubmits[i].pWaitSemaphores,
182 pSubmits[i].waitSemaphoreCount,
183 pSubmits[i].pSignalSemaphores,
184 pSubmits[i].signalSemaphoreCount,
185 submit_fence);
186 if (result != VK_SUCCESS)
187 goto out;
188
189 continue;
190 }
191
192 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
193 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
194 pSubmits[i].pCommandBuffers[j]);
195 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
196 assert(!anv_batch_has_error(&cmd_buffer->batch));
197
198 /* Fence for this execbuf. NULL for all but the last one */
199 VkFence execbuf_fence =
200 (j == pSubmits[i].commandBufferCount - 1) ? submit_fence : NULL;
201
202 const VkSemaphore *in_semaphores = NULL, *out_semaphores = NULL;
203 uint32_t num_in_semaphores = 0, num_out_semaphores = 0;
204 if (j == 0) {
205 /* Only the first batch gets the in semaphores */
206 in_semaphores = pSubmits[i].pWaitSemaphores;
207 num_in_semaphores = pSubmits[i].waitSemaphoreCount;
208 }
209
210 if (j == pSubmits[i].commandBufferCount - 1) {
211 /* Only the last batch gets the out semaphores */
212 out_semaphores = pSubmits[i].pSignalSemaphores;
213 num_out_semaphores = pSubmits[i].signalSemaphoreCount;
214 }
215
216 result = anv_cmd_buffer_execbuf(device, cmd_buffer,
217 in_semaphores, num_in_semaphores,
218 out_semaphores, num_out_semaphores,
219 execbuf_fence);
220 if (result != VK_SUCCESS)
221 goto out;
222 }
223 }
224
225 pthread_cond_broadcast(&device->queue_submit);
226
227 out:
228 if (result != VK_SUCCESS) {
229 /* In the case that something has gone wrong we may end up with an
230 * inconsistent state from which it may not be trivial to recover.
231 * For example, we might have computed address relocations and
232 * any future attempt to re-submit this job will need to know about
233 * this and avoid computing relocation addresses again.
234 *
235 * To avoid this sort of issues, we assume that if something was
236 * wrong during submission we must already be in a really bad situation
237 * anyway (such us being out of memory) and return
238 * VK_ERROR_DEVICE_LOST to ensure that clients do not attempt to
239 * submit the same job again to this device.
240 */
241 result = vk_errorf(VK_ERROR_DEVICE_LOST, "vkQueueSubmit() failed");
242 device->lost = true;
243 }
244
245 pthread_mutex_unlock(&device->mutex);
246
247 return result;
248 }
249
250 VkResult anv_QueueWaitIdle(
251 VkQueue _queue)
252 {
253 ANV_FROM_HANDLE(anv_queue, queue, _queue);
254
255 return anv_DeviceWaitIdle(anv_device_to_handle(queue->device));
256 }
257
258 VkResult anv_CreateFence(
259 VkDevice _device,
260 const VkFenceCreateInfo* pCreateInfo,
261 const VkAllocationCallbacks* pAllocator,
262 VkFence* pFence)
263 {
264 ANV_FROM_HANDLE(anv_device, device, _device);
265 struct anv_fence *fence;
266
267 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
268
269 fence = vk_zalloc2(&device->alloc, pAllocator, sizeof(*fence), 8,
270 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
271 if (fence == NULL)
272 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
273
274 fence->permanent.type = ANV_FENCE_TYPE_BO;
275
276 VkResult result = anv_bo_pool_alloc(&device->batch_bo_pool,
277 &fence->permanent.bo.bo, 4096);
278 if (result != VK_SUCCESS)
279 return result;
280
281 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
282 fence->permanent.bo.state = ANV_BO_FENCE_STATE_SIGNALED;
283 } else {
284 fence->permanent.bo.state = ANV_BO_FENCE_STATE_RESET;
285 }
286
287 *pFence = anv_fence_to_handle(fence);
288
289 return VK_SUCCESS;
290 }
291
292 static void
293 anv_fence_impl_cleanup(struct anv_device *device,
294 struct anv_fence_impl *impl)
295 {
296 switch (impl->type) {
297 case ANV_FENCE_TYPE_NONE:
298 /* Dummy. Nothing to do */
299 return;
300
301 case ANV_FENCE_TYPE_BO:
302 anv_bo_pool_free(&device->batch_bo_pool, &impl->bo.bo);
303 return;
304 }
305
306 unreachable("Invalid fence type");
307 }
308
309 void anv_DestroyFence(
310 VkDevice _device,
311 VkFence _fence,
312 const VkAllocationCallbacks* pAllocator)
313 {
314 ANV_FROM_HANDLE(anv_device, device, _device);
315 ANV_FROM_HANDLE(anv_fence, fence, _fence);
316
317 if (!fence)
318 return;
319
320 anv_fence_impl_cleanup(device, &fence->temporary);
321 anv_fence_impl_cleanup(device, &fence->permanent);
322
323 vk_free2(&device->alloc, pAllocator, fence);
324 }
325
326 VkResult anv_ResetFences(
327 VkDevice _device,
328 uint32_t fenceCount,
329 const VkFence* pFences)
330 {
331 for (uint32_t i = 0; i < fenceCount; i++) {
332 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
333
334 assert(fence->temporary.type == ANV_FENCE_TYPE_NONE);
335 struct anv_fence_impl *impl = &fence->permanent;
336
337 switch (impl->type) {
338 case ANV_FENCE_TYPE_BO:
339 impl->bo.state = ANV_BO_FENCE_STATE_RESET;
340 break;
341
342 default:
343 unreachable("Invalid fence type");
344 }
345 }
346
347 return VK_SUCCESS;
348 }
349
350 VkResult anv_GetFenceStatus(
351 VkDevice _device,
352 VkFence _fence)
353 {
354 ANV_FROM_HANDLE(anv_device, device, _device);
355 ANV_FROM_HANDLE(anv_fence, fence, _fence);
356
357 if (unlikely(device->lost))
358 return VK_ERROR_DEVICE_LOST;
359
360 assert(fence->temporary.type == ANV_FENCE_TYPE_NONE);
361 struct anv_fence_impl *impl = &fence->permanent;
362
363 switch (impl->type) {
364 case ANV_FENCE_TYPE_BO:
365 switch (impl->bo.state) {
366 case ANV_BO_FENCE_STATE_RESET:
367 /* If it hasn't even been sent off to the GPU yet, it's not ready */
368 return VK_NOT_READY;
369
370 case ANV_BO_FENCE_STATE_SIGNALED:
371 /* It's been signaled, return success */
372 return VK_SUCCESS;
373
374 case ANV_BO_FENCE_STATE_SUBMITTED: {
375 VkResult result = anv_device_bo_busy(device, &impl->bo.bo);
376 if (result == VK_SUCCESS) {
377 impl->bo.state = ANV_BO_FENCE_STATE_SIGNALED;
378 return VK_SUCCESS;
379 } else {
380 return result;
381 }
382 }
383 default:
384 unreachable("Invalid fence status");
385 }
386
387 default:
388 unreachable("Invalid fence type");
389 }
390 }
391
392 #define NSEC_PER_SEC 1000000000
393 #define INT_TYPE_MAX(type) ((1ull << (sizeof(type) * 8 - 1)) - 1)
394
395 static VkResult
396 anv_wait_for_bo_fences(struct anv_device *device,
397 uint32_t fenceCount,
398 const VkFence *pFences,
399 bool waitAll,
400 uint64_t _timeout)
401 {
402 int ret;
403
404 /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
405 * to block indefinitely timeouts <= 0. Unfortunately, this was broken
406 * for a couple of kernel releases. Since there's no way to know
407 * whether or not the kernel we're using is one of the broken ones, the
408 * best we can do is to clamp the timeout to INT64_MAX. This limits the
409 * maximum timeout from 584 years to 292 years - likely not a big deal.
410 */
411 int64_t timeout = MIN2(_timeout, INT64_MAX);
412
413 VkResult result = VK_SUCCESS;
414 uint32_t pending_fences = fenceCount;
415 while (pending_fences) {
416 pending_fences = 0;
417 bool signaled_fences = false;
418 for (uint32_t i = 0; i < fenceCount; i++) {
419 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
420
421 /* This function assumes that all fences are BO fences and that they
422 * have no temporary state. Since BO fences will never be exported,
423 * this should be a safe assumption.
424 */
425 assert(fence->permanent.type == ANV_FENCE_TYPE_BO);
426 assert(fence->temporary.type == ANV_FENCE_TYPE_NONE);
427 struct anv_fence_impl *impl = &fence->permanent;
428
429 switch (impl->bo.state) {
430 case ANV_BO_FENCE_STATE_RESET:
431 /* This fence hasn't been submitted yet, we'll catch it the next
432 * time around. Yes, this may mean we dead-loop but, short of
433 * lots of locking and a condition variable, there's not much that
434 * we can do about that.
435 */
436 pending_fences++;
437 continue;
438
439 case ANV_BO_FENCE_STATE_SIGNALED:
440 /* This fence is not pending. If waitAll isn't set, we can return
441 * early. Otherwise, we have to keep going.
442 */
443 if (!waitAll) {
444 result = VK_SUCCESS;
445 goto done;
446 }
447 continue;
448
449 case ANV_BO_FENCE_STATE_SUBMITTED:
450 /* These are the fences we really care about. Go ahead and wait
451 * on it until we hit a timeout.
452 */
453 result = anv_device_wait(device, &impl->bo.bo, timeout);
454 switch (result) {
455 case VK_SUCCESS:
456 impl->bo.state = ANV_BO_FENCE_STATE_SIGNALED;
457 signaled_fences = true;
458 if (!waitAll)
459 goto done;
460 break;
461
462 case VK_TIMEOUT:
463 goto done;
464
465 default:
466 return result;
467 }
468 }
469 }
470
471 if (pending_fences && !signaled_fences) {
472 /* If we've hit this then someone decided to vkWaitForFences before
473 * they've actually submitted any of them to a queue. This is a
474 * fairly pessimal case, so it's ok to lock here and use a standard
475 * pthreads condition variable.
476 */
477 pthread_mutex_lock(&device->mutex);
478
479 /* It's possible that some of the fences have changed state since the
480 * last time we checked. Now that we have the lock, check for
481 * pending fences again and don't wait if it's changed.
482 */
483 uint32_t now_pending_fences = 0;
484 for (uint32_t i = 0; i < fenceCount; i++) {
485 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
486 if (fence->permanent.bo.state == ANV_BO_FENCE_STATE_RESET)
487 now_pending_fences++;
488 }
489 assert(now_pending_fences <= pending_fences);
490
491 if (now_pending_fences == pending_fences) {
492 struct timespec before;
493 clock_gettime(CLOCK_MONOTONIC, &before);
494
495 uint32_t abs_nsec = before.tv_nsec + timeout % NSEC_PER_SEC;
496 uint64_t abs_sec = before.tv_sec + (abs_nsec / NSEC_PER_SEC) +
497 (timeout / NSEC_PER_SEC);
498 abs_nsec %= NSEC_PER_SEC;
499
500 /* Avoid roll-over in tv_sec on 32-bit systems if the user
501 * provided timeout is UINT64_MAX
502 */
503 struct timespec abstime;
504 abstime.tv_nsec = abs_nsec;
505 abstime.tv_sec = MIN2(abs_sec, INT_TYPE_MAX(abstime.tv_sec));
506
507 ret = pthread_cond_timedwait(&device->queue_submit,
508 &device->mutex, &abstime);
509 assert(ret != EINVAL);
510
511 struct timespec after;
512 clock_gettime(CLOCK_MONOTONIC, &after);
513 uint64_t time_elapsed =
514 ((uint64_t)after.tv_sec * NSEC_PER_SEC + after.tv_nsec) -
515 ((uint64_t)before.tv_sec * NSEC_PER_SEC + before.tv_nsec);
516
517 if (time_elapsed >= timeout) {
518 pthread_mutex_unlock(&device->mutex);
519 result = VK_TIMEOUT;
520 goto done;
521 }
522
523 timeout -= time_elapsed;
524 }
525
526 pthread_mutex_unlock(&device->mutex);
527 }
528 }
529
530 done:
531 if (unlikely(device->lost))
532 return VK_ERROR_DEVICE_LOST;
533
534 return result;
535 }
536
537 VkResult anv_WaitForFences(
538 VkDevice _device,
539 uint32_t fenceCount,
540 const VkFence* pFences,
541 VkBool32 waitAll,
542 uint64_t timeout)
543 {
544 ANV_FROM_HANDLE(anv_device, device, _device);
545
546 if (unlikely(device->lost))
547 return VK_ERROR_DEVICE_LOST;
548
549 return anv_wait_for_bo_fences(device, fenceCount, pFences, waitAll, timeout);
550 }
551
552 // Queue semaphore functions
553
554 VkResult anv_CreateSemaphore(
555 VkDevice _device,
556 const VkSemaphoreCreateInfo* pCreateInfo,
557 const VkAllocationCallbacks* pAllocator,
558 VkSemaphore* pSemaphore)
559 {
560 ANV_FROM_HANDLE(anv_device, device, _device);
561 struct anv_semaphore *semaphore;
562
563 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO);
564
565 semaphore = vk_alloc2(&device->alloc, pAllocator, sizeof(*semaphore), 8,
566 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
567 if (semaphore == NULL)
568 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
569
570 const VkExportSemaphoreCreateInfoKHR *export =
571 vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO_KHR);
572 VkExternalSemaphoreHandleTypeFlagsKHR handleTypes =
573 export ? export->handleTypes : 0;
574
575 if (handleTypes == 0) {
576 /* The DRM execbuffer ioctl always execute in-oder so long as you stay
577 * on the same ring. Since we don't expose the blit engine as a DMA
578 * queue, a dummy no-op semaphore is a perfectly valid implementation.
579 */
580 semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DUMMY;
581 } else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR) {
582 assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR);
583 if (device->instance->physicalDevice.has_syncobj) {
584 semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ;
585 semaphore->permanent.syncobj = anv_gem_syncobj_create(device, 0);
586 if (!semaphore->permanent.syncobj) {
587 vk_free2(&device->alloc, pAllocator, semaphore);
588 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
589 }
590 } else {
591 semaphore->permanent.type = ANV_SEMAPHORE_TYPE_BO;
592 VkResult result = anv_bo_cache_alloc(device, &device->bo_cache,
593 4096, &semaphore->permanent.bo);
594 if (result != VK_SUCCESS) {
595 vk_free2(&device->alloc, pAllocator, semaphore);
596 return result;
597 }
598
599 /* If we're going to use this as a fence, we need to *not* have the
600 * EXEC_OBJECT_ASYNC bit set.
601 */
602 assert(!(semaphore->permanent.bo->flags & EXEC_OBJECT_ASYNC));
603 }
604 } else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR) {
605 assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR);
606
607 semaphore->permanent.type = ANV_SEMAPHORE_TYPE_SYNC_FILE;
608 semaphore->permanent.fd = -1;
609 } else {
610 assert(!"Unknown handle type");
611 vk_free2(&device->alloc, pAllocator, semaphore);
612 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
613 }
614
615 semaphore->temporary.type = ANV_SEMAPHORE_TYPE_NONE;
616
617 *pSemaphore = anv_semaphore_to_handle(semaphore);
618
619 return VK_SUCCESS;
620 }
621
622 static void
623 anv_semaphore_impl_cleanup(struct anv_device *device,
624 struct anv_semaphore_impl *impl)
625 {
626 switch (impl->type) {
627 case ANV_SEMAPHORE_TYPE_NONE:
628 case ANV_SEMAPHORE_TYPE_DUMMY:
629 /* Dummy. Nothing to do */
630 return;
631
632 case ANV_SEMAPHORE_TYPE_BO:
633 anv_bo_cache_release(device, &device->bo_cache, impl->bo);
634 return;
635
636 case ANV_SEMAPHORE_TYPE_SYNC_FILE:
637 close(impl->fd);
638 return;
639
640 case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ:
641 anv_gem_syncobj_destroy(device, impl->syncobj);
642 return;
643 }
644
645 unreachable("Invalid semaphore type");
646 }
647
648 void
649 anv_semaphore_reset_temporary(struct anv_device *device,
650 struct anv_semaphore *semaphore)
651 {
652 if (semaphore->temporary.type == ANV_SEMAPHORE_TYPE_NONE)
653 return;
654
655 anv_semaphore_impl_cleanup(device, &semaphore->temporary);
656 semaphore->temporary.type = ANV_SEMAPHORE_TYPE_NONE;
657 }
658
659 void anv_DestroySemaphore(
660 VkDevice _device,
661 VkSemaphore _semaphore,
662 const VkAllocationCallbacks* pAllocator)
663 {
664 ANV_FROM_HANDLE(anv_device, device, _device);
665 ANV_FROM_HANDLE(anv_semaphore, semaphore, _semaphore);
666
667 if (semaphore == NULL)
668 return;
669
670 anv_semaphore_impl_cleanup(device, &semaphore->temporary);
671 anv_semaphore_impl_cleanup(device, &semaphore->permanent);
672
673 vk_free2(&device->alloc, pAllocator, semaphore);
674 }
675
676 void anv_GetPhysicalDeviceExternalSemaphorePropertiesKHR(
677 VkPhysicalDevice physicalDevice,
678 const VkPhysicalDeviceExternalSemaphoreInfoKHR* pExternalSemaphoreInfo,
679 VkExternalSemaphorePropertiesKHR* pExternalSemaphoreProperties)
680 {
681 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
682
683 switch (pExternalSemaphoreInfo->handleType) {
684 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
685 pExternalSemaphoreProperties->exportFromImportedHandleTypes =
686 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR;
687 pExternalSemaphoreProperties->compatibleHandleTypes =
688 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR;
689 pExternalSemaphoreProperties->externalSemaphoreFeatures =
690 VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHR |
691 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR;
692 return;
693
694 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR:
695 if (device->has_exec_fence) {
696 pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
697 pExternalSemaphoreProperties->compatibleHandleTypes =
698 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR;
699 pExternalSemaphoreProperties->externalSemaphoreFeatures =
700 VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHR |
701 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR;
702 return;
703 }
704 break;
705
706 default:
707 break;
708 }
709
710 pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
711 pExternalSemaphoreProperties->compatibleHandleTypes = 0;
712 pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
713 }
714
715 VkResult anv_ImportSemaphoreFdKHR(
716 VkDevice _device,
717 const VkImportSemaphoreFdInfoKHR* pImportSemaphoreFdInfo)
718 {
719 ANV_FROM_HANDLE(anv_device, device, _device);
720 ANV_FROM_HANDLE(anv_semaphore, semaphore, pImportSemaphoreFdInfo->semaphore);
721 int fd = pImportSemaphoreFdInfo->fd;
722
723 struct anv_semaphore_impl new_impl = {
724 .type = ANV_SEMAPHORE_TYPE_NONE,
725 };
726
727 switch (pImportSemaphoreFdInfo->handleType) {
728 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
729 if (device->instance->physicalDevice.has_syncobj) {
730 new_impl.type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ;
731
732 new_impl.syncobj = anv_gem_syncobj_fd_to_handle(device, fd);
733 if (!new_impl.syncobj)
734 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
735
736 /* From the Vulkan spec:
737 *
738 * "Importing semaphore state from a file descriptor transfers
739 * ownership of the file descriptor from the application to the
740 * Vulkan implementation. The application must not perform any
741 * operations on the file descriptor after a successful import."
742 *
743 * If the import fails, we leave the file descriptor open.
744 */
745 close(pImportSemaphoreFdInfo->fd);
746 } else {
747 new_impl.type = ANV_SEMAPHORE_TYPE_BO;
748
749 VkResult result = anv_bo_cache_import(device, &device->bo_cache,
750 fd, 4096, &new_impl.bo);
751 if (result != VK_SUCCESS)
752 return result;
753
754 /* If we're going to use this as a fence, we need to *not* have the
755 * EXEC_OBJECT_ASYNC bit set.
756 */
757 assert(!(new_impl.bo->flags & EXEC_OBJECT_ASYNC));
758 }
759 break;
760
761 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR:
762 new_impl = (struct anv_semaphore_impl) {
763 .type = ANV_SEMAPHORE_TYPE_SYNC_FILE,
764 .fd = fd,
765 };
766 break;
767
768 default:
769 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
770 }
771
772 if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT_KHR) {
773 anv_semaphore_impl_cleanup(device, &semaphore->temporary);
774 semaphore->temporary = new_impl;
775 } else {
776 anv_semaphore_impl_cleanup(device, &semaphore->permanent);
777 semaphore->permanent = new_impl;
778 }
779
780 return VK_SUCCESS;
781 }
782
783 VkResult anv_GetSemaphoreFdKHR(
784 VkDevice _device,
785 const VkSemaphoreGetFdInfoKHR* pGetFdInfo,
786 int* pFd)
787 {
788 ANV_FROM_HANDLE(anv_device, device, _device);
789 ANV_FROM_HANDLE(anv_semaphore, semaphore, pGetFdInfo->semaphore);
790 VkResult result;
791 int fd;
792
793 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR);
794
795 struct anv_semaphore_impl *impl =
796 semaphore->temporary.type != ANV_SEMAPHORE_TYPE_NONE ?
797 &semaphore->temporary : &semaphore->permanent;
798
799 switch (impl->type) {
800 case ANV_SEMAPHORE_TYPE_BO:
801 result = anv_bo_cache_export(device, &device->bo_cache, impl->bo, pFd);
802 if (result != VK_SUCCESS)
803 return result;
804 break;
805
806 case ANV_SEMAPHORE_TYPE_SYNC_FILE:
807 /* There are two reasons why this could happen:
808 *
809 * 1) The user is trying to export without submitting something that
810 * signals the semaphore. If this is the case, it's their bug so
811 * what we return here doesn't matter.
812 *
813 * 2) The kernel didn't give us a file descriptor. The most likely
814 * reason for this is running out of file descriptors.
815 */
816 if (impl->fd < 0)
817 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
818
819 *pFd = impl->fd;
820
821 /* From the Vulkan 1.0.53 spec:
822 *
823 * "...exporting a semaphore payload to a handle with copy
824 * transference has the same side effects on the source
825 * semaphore’s payload as executing a semaphore wait operation."
826 *
827 * In other words, it may still be a SYNC_FD semaphore, but it's now
828 * considered to have been waited on and no longer has a sync file
829 * attached.
830 */
831 impl->fd = -1;
832 return VK_SUCCESS;
833
834 case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ:
835 fd = anv_gem_syncobj_handle_to_fd(device, impl->syncobj);
836 if (fd < 0)
837 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
838 *pFd = fd;
839 break;
840
841 default:
842 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
843 }
844
845 /* From the Vulkan 1.0.53 spec:
846 *
847 * "Export operations have the same transference as the specified handle
848 * type’s import operations. [...] If the semaphore was using a
849 * temporarily imported payload, the semaphore’s prior permanent payload
850 * will be restored.
851 */
852 if (impl == &semaphore->temporary)
853 anv_semaphore_impl_cleanup(device, impl);
854
855 return VK_SUCCESS;
856 }