anv: Use DRM sync objects to back fences whenever possible
[mesa.git] / src / intel / vulkan / anv_queue.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /**
25 * This file implements VkQueue, VkFence, and VkSemaphore
26 */
27
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/eventfd.h>
31
32 #include "anv_private.h"
33 #include "vk_util.h"
34
35 #include "genxml/gen7_pack.h"
36
37 VkResult
38 anv_device_execbuf(struct anv_device *device,
39 struct drm_i915_gem_execbuffer2 *execbuf,
40 struct anv_bo **execbuf_bos)
41 {
42 int ret = anv_gem_execbuffer(device, execbuf);
43 if (ret != 0) {
44 /* We don't know the real error. */
45 device->lost = true;
46 return vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
47 }
48
49 struct drm_i915_gem_exec_object2 *objects =
50 (void *)(uintptr_t)execbuf->buffers_ptr;
51 for (uint32_t k = 0; k < execbuf->buffer_count; k++)
52 execbuf_bos[k]->offset = objects[k].offset;
53
54 return VK_SUCCESS;
55 }
56
57 VkResult
58 anv_device_submit_simple_batch(struct anv_device *device,
59 struct anv_batch *batch)
60 {
61 struct drm_i915_gem_execbuffer2 execbuf;
62 struct drm_i915_gem_exec_object2 exec2_objects[1];
63 struct anv_bo bo, *exec_bos[1];
64 VkResult result = VK_SUCCESS;
65 uint32_t size;
66
67 /* Kernel driver requires 8 byte aligned batch length */
68 size = align_u32(batch->next - batch->start, 8);
69 result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
70 if (result != VK_SUCCESS)
71 return result;
72
73 memcpy(bo.map, batch->start, size);
74 if (!device->info.has_llc)
75 gen_flush_range(bo.map, size);
76
77 exec_bos[0] = &bo;
78 exec2_objects[0].handle = bo.gem_handle;
79 exec2_objects[0].relocation_count = 0;
80 exec2_objects[0].relocs_ptr = 0;
81 exec2_objects[0].alignment = 0;
82 exec2_objects[0].offset = bo.offset;
83 exec2_objects[0].flags = 0;
84 exec2_objects[0].rsvd1 = 0;
85 exec2_objects[0].rsvd2 = 0;
86
87 execbuf.buffers_ptr = (uintptr_t) exec2_objects;
88 execbuf.buffer_count = 1;
89 execbuf.batch_start_offset = 0;
90 execbuf.batch_len = size;
91 execbuf.cliprects_ptr = 0;
92 execbuf.num_cliprects = 0;
93 execbuf.DR1 = 0;
94 execbuf.DR4 = 0;
95
96 execbuf.flags =
97 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
98 execbuf.rsvd1 = device->context_id;
99 execbuf.rsvd2 = 0;
100
101 result = anv_device_execbuf(device, &execbuf, exec_bos);
102 if (result != VK_SUCCESS)
103 goto fail;
104
105 result = anv_device_wait(device, &bo, INT64_MAX);
106
107 fail:
108 anv_bo_pool_free(&device->batch_bo_pool, &bo);
109
110 return result;
111 }
112
113 VkResult anv_QueueSubmit(
114 VkQueue _queue,
115 uint32_t submitCount,
116 const VkSubmitInfo* pSubmits,
117 VkFence fence)
118 {
119 ANV_FROM_HANDLE(anv_queue, queue, _queue);
120 struct anv_device *device = queue->device;
121
122 /* Query for device status prior to submitting. Technically, we don't need
123 * to do this. However, if we have a client that's submitting piles of
124 * garbage, we would rather break as early as possible to keep the GPU
125 * hanging contained. If we don't check here, we'll either be waiting for
126 * the kernel to kick us or we'll have to wait until the client waits on a
127 * fence before we actually know whether or not we've hung.
128 */
129 VkResult result = anv_device_query_status(device);
130 if (result != VK_SUCCESS)
131 return result;
132
133 /* We lock around QueueSubmit for three main reasons:
134 *
135 * 1) When a block pool is resized, we create a new gem handle with a
136 * different size and, in the case of surface states, possibly a
137 * different center offset but we re-use the same anv_bo struct when
138 * we do so. If this happens in the middle of setting up an execbuf,
139 * we could end up with our list of BOs out of sync with our list of
140 * gem handles.
141 *
142 * 2) The algorithm we use for building the list of unique buffers isn't
143 * thread-safe. While the client is supposed to syncronize around
144 * QueueSubmit, this would be extremely difficult to debug if it ever
145 * came up in the wild due to a broken app. It's better to play it
146 * safe and just lock around QueueSubmit.
147 *
148 * 3) The anv_cmd_buffer_execbuf function may perform relocations in
149 * userspace. Due to the fact that the surface state buffer is shared
150 * between batches, we can't afford to have that happen from multiple
151 * threads at the same time. Even though the user is supposed to
152 * ensure this doesn't happen, we play it safe as in (2) above.
153 *
154 * Since the only other things that ever take the device lock such as block
155 * pool resize only rarely happen, this will almost never be contended so
156 * taking a lock isn't really an expensive operation in this case.
157 */
158 pthread_mutex_lock(&device->mutex);
159
160 if (fence && submitCount == 0) {
161 /* If we don't have any command buffers, we need to submit a dummy
162 * batch to give GEM something to wait on. We could, potentially,
163 * come up with something more efficient but this shouldn't be a
164 * common case.
165 */
166 result = anv_cmd_buffer_execbuf(device, NULL, NULL, 0, NULL, 0, fence);
167 goto out;
168 }
169
170 for (uint32_t i = 0; i < submitCount; i++) {
171 /* Fence for this submit. NULL for all but the last one */
172 VkFence submit_fence = (i == submitCount - 1) ? fence : NULL;
173
174 if (pSubmits[i].commandBufferCount == 0) {
175 /* If we don't have any command buffers, we need to submit a dummy
176 * batch to give GEM something to wait on. We could, potentially,
177 * come up with something more efficient but this shouldn't be a
178 * common case.
179 */
180 result = anv_cmd_buffer_execbuf(device, NULL,
181 pSubmits[i].pWaitSemaphores,
182 pSubmits[i].waitSemaphoreCount,
183 pSubmits[i].pSignalSemaphores,
184 pSubmits[i].signalSemaphoreCount,
185 submit_fence);
186 if (result != VK_SUCCESS)
187 goto out;
188
189 continue;
190 }
191
192 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
193 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
194 pSubmits[i].pCommandBuffers[j]);
195 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
196 assert(!anv_batch_has_error(&cmd_buffer->batch));
197
198 /* Fence for this execbuf. NULL for all but the last one */
199 VkFence execbuf_fence =
200 (j == pSubmits[i].commandBufferCount - 1) ? submit_fence : NULL;
201
202 const VkSemaphore *in_semaphores = NULL, *out_semaphores = NULL;
203 uint32_t num_in_semaphores = 0, num_out_semaphores = 0;
204 if (j == 0) {
205 /* Only the first batch gets the in semaphores */
206 in_semaphores = pSubmits[i].pWaitSemaphores;
207 num_in_semaphores = pSubmits[i].waitSemaphoreCount;
208 }
209
210 if (j == pSubmits[i].commandBufferCount - 1) {
211 /* Only the last batch gets the out semaphores */
212 out_semaphores = pSubmits[i].pSignalSemaphores;
213 num_out_semaphores = pSubmits[i].signalSemaphoreCount;
214 }
215
216 result = anv_cmd_buffer_execbuf(device, cmd_buffer,
217 in_semaphores, num_in_semaphores,
218 out_semaphores, num_out_semaphores,
219 execbuf_fence);
220 if (result != VK_SUCCESS)
221 goto out;
222 }
223 }
224
225 pthread_cond_broadcast(&device->queue_submit);
226
227 out:
228 if (result != VK_SUCCESS) {
229 /* In the case that something has gone wrong we may end up with an
230 * inconsistent state from which it may not be trivial to recover.
231 * For example, we might have computed address relocations and
232 * any future attempt to re-submit this job will need to know about
233 * this and avoid computing relocation addresses again.
234 *
235 * To avoid this sort of issues, we assume that if something was
236 * wrong during submission we must already be in a really bad situation
237 * anyway (such us being out of memory) and return
238 * VK_ERROR_DEVICE_LOST to ensure that clients do not attempt to
239 * submit the same job again to this device.
240 */
241 result = vk_errorf(VK_ERROR_DEVICE_LOST, "vkQueueSubmit() failed");
242 device->lost = true;
243 }
244
245 pthread_mutex_unlock(&device->mutex);
246
247 return result;
248 }
249
250 VkResult anv_QueueWaitIdle(
251 VkQueue _queue)
252 {
253 ANV_FROM_HANDLE(anv_queue, queue, _queue);
254
255 return anv_DeviceWaitIdle(anv_device_to_handle(queue->device));
256 }
257
258 VkResult anv_CreateFence(
259 VkDevice _device,
260 const VkFenceCreateInfo* pCreateInfo,
261 const VkAllocationCallbacks* pAllocator,
262 VkFence* pFence)
263 {
264 ANV_FROM_HANDLE(anv_device, device, _device);
265 struct anv_fence *fence;
266
267 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
268
269 fence = vk_zalloc2(&device->alloc, pAllocator, sizeof(*fence), 8,
270 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
271 if (fence == NULL)
272 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
273
274 if (device->instance->physicalDevice.has_syncobj_wait) {
275 fence->permanent.type = ANV_FENCE_TYPE_SYNCOBJ;
276
277 uint32_t create_flags = 0;
278 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT)
279 create_flags |= DRM_SYNCOBJ_CREATE_SIGNALED;
280
281 fence->permanent.syncobj = anv_gem_syncobj_create(device, create_flags);
282 if (!fence->permanent.syncobj)
283 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
284 } else {
285 fence->permanent.type = ANV_FENCE_TYPE_BO;
286
287 VkResult result = anv_bo_pool_alloc(&device->batch_bo_pool,
288 &fence->permanent.bo.bo, 4096);
289 if (result != VK_SUCCESS)
290 return result;
291
292 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
293 fence->permanent.bo.state = ANV_BO_FENCE_STATE_SIGNALED;
294 } else {
295 fence->permanent.bo.state = ANV_BO_FENCE_STATE_RESET;
296 }
297 }
298
299 *pFence = anv_fence_to_handle(fence);
300
301 return VK_SUCCESS;
302 }
303
304 static void
305 anv_fence_impl_cleanup(struct anv_device *device,
306 struct anv_fence_impl *impl)
307 {
308 switch (impl->type) {
309 case ANV_FENCE_TYPE_NONE:
310 /* Dummy. Nothing to do */
311 return;
312
313 case ANV_FENCE_TYPE_BO:
314 anv_bo_pool_free(&device->batch_bo_pool, &impl->bo.bo);
315 return;
316
317 case ANV_FENCE_TYPE_SYNCOBJ:
318 anv_gem_syncobj_destroy(device, impl->syncobj);
319 return;
320 }
321
322 unreachable("Invalid fence type");
323 }
324
325 void anv_DestroyFence(
326 VkDevice _device,
327 VkFence _fence,
328 const VkAllocationCallbacks* pAllocator)
329 {
330 ANV_FROM_HANDLE(anv_device, device, _device);
331 ANV_FROM_HANDLE(anv_fence, fence, _fence);
332
333 if (!fence)
334 return;
335
336 anv_fence_impl_cleanup(device, &fence->temporary);
337 anv_fence_impl_cleanup(device, &fence->permanent);
338
339 vk_free2(&device->alloc, pAllocator, fence);
340 }
341
342 VkResult anv_ResetFences(
343 VkDevice _device,
344 uint32_t fenceCount,
345 const VkFence* pFences)
346 {
347 ANV_FROM_HANDLE(anv_device, device, _device);
348
349 for (uint32_t i = 0; i < fenceCount; i++) {
350 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
351
352 assert(fence->temporary.type == ANV_FENCE_TYPE_NONE);
353 struct anv_fence_impl *impl = &fence->permanent;
354
355 switch (impl->type) {
356 case ANV_FENCE_TYPE_BO:
357 impl->bo.state = ANV_BO_FENCE_STATE_RESET;
358 break;
359
360 case ANV_FENCE_TYPE_SYNCOBJ:
361 anv_gem_syncobj_reset(device, impl->syncobj);
362 break;
363
364 default:
365 unreachable("Invalid fence type");
366 }
367 }
368
369 return VK_SUCCESS;
370 }
371
372 VkResult anv_GetFenceStatus(
373 VkDevice _device,
374 VkFence _fence)
375 {
376 ANV_FROM_HANDLE(anv_device, device, _device);
377 ANV_FROM_HANDLE(anv_fence, fence, _fence);
378
379 if (unlikely(device->lost))
380 return VK_ERROR_DEVICE_LOST;
381
382 assert(fence->temporary.type == ANV_FENCE_TYPE_NONE);
383 struct anv_fence_impl *impl = &fence->permanent;
384
385 switch (impl->type) {
386 case ANV_FENCE_TYPE_BO:
387 switch (impl->bo.state) {
388 case ANV_BO_FENCE_STATE_RESET:
389 /* If it hasn't even been sent off to the GPU yet, it's not ready */
390 return VK_NOT_READY;
391
392 case ANV_BO_FENCE_STATE_SIGNALED:
393 /* It's been signaled, return success */
394 return VK_SUCCESS;
395
396 case ANV_BO_FENCE_STATE_SUBMITTED: {
397 VkResult result = anv_device_bo_busy(device, &impl->bo.bo);
398 if (result == VK_SUCCESS) {
399 impl->bo.state = ANV_BO_FENCE_STATE_SIGNALED;
400 return VK_SUCCESS;
401 } else {
402 return result;
403 }
404 }
405 default:
406 unreachable("Invalid fence status");
407 }
408
409 case ANV_FENCE_TYPE_SYNCOBJ: {
410 int ret = anv_gem_syncobj_wait(device, &impl->syncobj, 1, 0, true);
411 if (ret == -1) {
412 if (errno == ETIME) {
413 return VK_NOT_READY;
414 } else {
415 /* We don't know the real error. */
416 device->lost = true;
417 return vk_errorf(VK_ERROR_DEVICE_LOST,
418 "drm_syncobj_wait failed: %m");
419 }
420 } else {
421 return VK_SUCCESS;
422 }
423 }
424
425 default:
426 unreachable("Invalid fence type");
427 }
428 }
429
430 #define NSEC_PER_SEC 1000000000
431 #define INT_TYPE_MAX(type) ((1ull << (sizeof(type) * 8 - 1)) - 1)
432
433 static uint64_t
434 gettime_ns(void)
435 {
436 struct timespec current;
437 clock_gettime(CLOCK_MONOTONIC, &current);
438 return (uint64_t)current.tv_sec * NSEC_PER_SEC + current.tv_nsec;
439 }
440
441 static VkResult
442 anv_wait_for_syncobj_fences(struct anv_device *device,
443 uint32_t fenceCount,
444 const VkFence *pFences,
445 bool waitAll,
446 uint64_t _timeout)
447 {
448 uint32_t *syncobjs = vk_zalloc(&device->alloc,
449 sizeof(*syncobjs) * fenceCount, 8,
450 VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
451 if (!syncobjs)
452 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
453
454 for (uint32_t i = 0; i < fenceCount; i++) {
455 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
456 assert(fence->permanent.type == ANV_FENCE_TYPE_SYNCOBJ);
457
458 struct anv_fence_impl *impl =
459 fence->temporary.type != ANV_FENCE_TYPE_NONE ?
460 &fence->temporary : &fence->permanent;
461
462 assert(impl->type == ANV_FENCE_TYPE_SYNCOBJ);
463 syncobjs[i] = impl->syncobj;
464 }
465
466 int64_t abs_timeout_ns = 0;
467 if (_timeout > 0) {
468 uint64_t current_ns = gettime_ns();
469
470 /* Add but saturate to INT32_MAX */
471 if (current_ns + _timeout < current_ns)
472 abs_timeout_ns = INT64_MAX;
473 else if (current_ns + _timeout > INT64_MAX)
474 abs_timeout_ns = INT64_MAX;
475 else
476 abs_timeout_ns = current_ns + _timeout;
477 }
478
479 /* The gem_syncobj_wait ioctl may return early due to an inherent
480 * limitation in the way it computes timeouts. Loop until we've actually
481 * passed the timeout.
482 */
483 int ret;
484 do {
485 ret = anv_gem_syncobj_wait(device, syncobjs, fenceCount,
486 abs_timeout_ns, waitAll);
487 } while (ret == -1 && errno == ETIME && gettime_ns() < abs_timeout_ns);
488
489 vk_free(&device->alloc, syncobjs);
490
491 if (ret == -1) {
492 if (errno == ETIME) {
493 return VK_TIMEOUT;
494 } else {
495 /* We don't know the real error. */
496 device->lost = true;
497 return vk_errorf(VK_ERROR_DEVICE_LOST,
498 "drm_syncobj_wait failed: %m");
499 }
500 } else {
501 return VK_SUCCESS;
502 }
503 }
504
505 static VkResult
506 anv_wait_for_bo_fences(struct anv_device *device,
507 uint32_t fenceCount,
508 const VkFence *pFences,
509 bool waitAll,
510 uint64_t _timeout)
511 {
512 int ret;
513
514 /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
515 * to block indefinitely timeouts <= 0. Unfortunately, this was broken
516 * for a couple of kernel releases. Since there's no way to know
517 * whether or not the kernel we're using is one of the broken ones, the
518 * best we can do is to clamp the timeout to INT64_MAX. This limits the
519 * maximum timeout from 584 years to 292 years - likely not a big deal.
520 */
521 int64_t timeout = MIN2(_timeout, INT64_MAX);
522
523 VkResult result = VK_SUCCESS;
524 uint32_t pending_fences = fenceCount;
525 while (pending_fences) {
526 pending_fences = 0;
527 bool signaled_fences = false;
528 for (uint32_t i = 0; i < fenceCount; i++) {
529 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
530
531 /* This function assumes that all fences are BO fences and that they
532 * have no temporary state. Since BO fences will never be exported,
533 * this should be a safe assumption.
534 */
535 assert(fence->permanent.type == ANV_FENCE_TYPE_BO);
536 assert(fence->temporary.type == ANV_FENCE_TYPE_NONE);
537 struct anv_fence_impl *impl = &fence->permanent;
538
539 switch (impl->bo.state) {
540 case ANV_BO_FENCE_STATE_RESET:
541 /* This fence hasn't been submitted yet, we'll catch it the next
542 * time around. Yes, this may mean we dead-loop but, short of
543 * lots of locking and a condition variable, there's not much that
544 * we can do about that.
545 */
546 pending_fences++;
547 continue;
548
549 case ANV_BO_FENCE_STATE_SIGNALED:
550 /* This fence is not pending. If waitAll isn't set, we can return
551 * early. Otherwise, we have to keep going.
552 */
553 if (!waitAll) {
554 result = VK_SUCCESS;
555 goto done;
556 }
557 continue;
558
559 case ANV_BO_FENCE_STATE_SUBMITTED:
560 /* These are the fences we really care about. Go ahead and wait
561 * on it until we hit a timeout.
562 */
563 result = anv_device_wait(device, &impl->bo.bo, timeout);
564 switch (result) {
565 case VK_SUCCESS:
566 impl->bo.state = ANV_BO_FENCE_STATE_SIGNALED;
567 signaled_fences = true;
568 if (!waitAll)
569 goto done;
570 break;
571
572 case VK_TIMEOUT:
573 goto done;
574
575 default:
576 return result;
577 }
578 }
579 }
580
581 if (pending_fences && !signaled_fences) {
582 /* If we've hit this then someone decided to vkWaitForFences before
583 * they've actually submitted any of them to a queue. This is a
584 * fairly pessimal case, so it's ok to lock here and use a standard
585 * pthreads condition variable.
586 */
587 pthread_mutex_lock(&device->mutex);
588
589 /* It's possible that some of the fences have changed state since the
590 * last time we checked. Now that we have the lock, check for
591 * pending fences again and don't wait if it's changed.
592 */
593 uint32_t now_pending_fences = 0;
594 for (uint32_t i = 0; i < fenceCount; i++) {
595 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
596 if (fence->permanent.bo.state == ANV_BO_FENCE_STATE_RESET)
597 now_pending_fences++;
598 }
599 assert(now_pending_fences <= pending_fences);
600
601 if (now_pending_fences == pending_fences) {
602 struct timespec before;
603 clock_gettime(CLOCK_MONOTONIC, &before);
604
605 uint32_t abs_nsec = before.tv_nsec + timeout % NSEC_PER_SEC;
606 uint64_t abs_sec = before.tv_sec + (abs_nsec / NSEC_PER_SEC) +
607 (timeout / NSEC_PER_SEC);
608 abs_nsec %= NSEC_PER_SEC;
609
610 /* Avoid roll-over in tv_sec on 32-bit systems if the user
611 * provided timeout is UINT64_MAX
612 */
613 struct timespec abstime;
614 abstime.tv_nsec = abs_nsec;
615 abstime.tv_sec = MIN2(abs_sec, INT_TYPE_MAX(abstime.tv_sec));
616
617 ret = pthread_cond_timedwait(&device->queue_submit,
618 &device->mutex, &abstime);
619 assert(ret != EINVAL);
620
621 struct timespec after;
622 clock_gettime(CLOCK_MONOTONIC, &after);
623 uint64_t time_elapsed =
624 ((uint64_t)after.tv_sec * NSEC_PER_SEC + after.tv_nsec) -
625 ((uint64_t)before.tv_sec * NSEC_PER_SEC + before.tv_nsec);
626
627 if (time_elapsed >= timeout) {
628 pthread_mutex_unlock(&device->mutex);
629 result = VK_TIMEOUT;
630 goto done;
631 }
632
633 timeout -= time_elapsed;
634 }
635
636 pthread_mutex_unlock(&device->mutex);
637 }
638 }
639
640 done:
641 if (unlikely(device->lost))
642 return VK_ERROR_DEVICE_LOST;
643
644 return result;
645 }
646
647 VkResult anv_WaitForFences(
648 VkDevice _device,
649 uint32_t fenceCount,
650 const VkFence* pFences,
651 VkBool32 waitAll,
652 uint64_t timeout)
653 {
654 ANV_FROM_HANDLE(anv_device, device, _device);
655
656 if (unlikely(device->lost))
657 return VK_ERROR_DEVICE_LOST;
658
659 if (device->instance->physicalDevice.has_syncobj_wait) {
660 return anv_wait_for_syncobj_fences(device, fenceCount, pFences,
661 waitAll, timeout);
662 } else {
663 return anv_wait_for_bo_fences(device, fenceCount, pFences,
664 waitAll, timeout);
665 }
666 }
667
668 // Queue semaphore functions
669
670 VkResult anv_CreateSemaphore(
671 VkDevice _device,
672 const VkSemaphoreCreateInfo* pCreateInfo,
673 const VkAllocationCallbacks* pAllocator,
674 VkSemaphore* pSemaphore)
675 {
676 ANV_FROM_HANDLE(anv_device, device, _device);
677 struct anv_semaphore *semaphore;
678
679 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO);
680
681 semaphore = vk_alloc2(&device->alloc, pAllocator, sizeof(*semaphore), 8,
682 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
683 if (semaphore == NULL)
684 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
685
686 const VkExportSemaphoreCreateInfoKHR *export =
687 vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO_KHR);
688 VkExternalSemaphoreHandleTypeFlagsKHR handleTypes =
689 export ? export->handleTypes : 0;
690
691 if (handleTypes == 0) {
692 /* The DRM execbuffer ioctl always execute in-oder so long as you stay
693 * on the same ring. Since we don't expose the blit engine as a DMA
694 * queue, a dummy no-op semaphore is a perfectly valid implementation.
695 */
696 semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DUMMY;
697 } else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR) {
698 assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR);
699 if (device->instance->physicalDevice.has_syncobj) {
700 semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ;
701 semaphore->permanent.syncobj = anv_gem_syncobj_create(device, 0);
702 if (!semaphore->permanent.syncobj) {
703 vk_free2(&device->alloc, pAllocator, semaphore);
704 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
705 }
706 } else {
707 semaphore->permanent.type = ANV_SEMAPHORE_TYPE_BO;
708 VkResult result = anv_bo_cache_alloc(device, &device->bo_cache,
709 4096, &semaphore->permanent.bo);
710 if (result != VK_SUCCESS) {
711 vk_free2(&device->alloc, pAllocator, semaphore);
712 return result;
713 }
714
715 /* If we're going to use this as a fence, we need to *not* have the
716 * EXEC_OBJECT_ASYNC bit set.
717 */
718 assert(!(semaphore->permanent.bo->flags & EXEC_OBJECT_ASYNC));
719 }
720 } else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR) {
721 assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR);
722
723 semaphore->permanent.type = ANV_SEMAPHORE_TYPE_SYNC_FILE;
724 semaphore->permanent.fd = -1;
725 } else {
726 assert(!"Unknown handle type");
727 vk_free2(&device->alloc, pAllocator, semaphore);
728 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
729 }
730
731 semaphore->temporary.type = ANV_SEMAPHORE_TYPE_NONE;
732
733 *pSemaphore = anv_semaphore_to_handle(semaphore);
734
735 return VK_SUCCESS;
736 }
737
738 static void
739 anv_semaphore_impl_cleanup(struct anv_device *device,
740 struct anv_semaphore_impl *impl)
741 {
742 switch (impl->type) {
743 case ANV_SEMAPHORE_TYPE_NONE:
744 case ANV_SEMAPHORE_TYPE_DUMMY:
745 /* Dummy. Nothing to do */
746 return;
747
748 case ANV_SEMAPHORE_TYPE_BO:
749 anv_bo_cache_release(device, &device->bo_cache, impl->bo);
750 return;
751
752 case ANV_SEMAPHORE_TYPE_SYNC_FILE:
753 close(impl->fd);
754 return;
755
756 case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ:
757 anv_gem_syncobj_destroy(device, impl->syncobj);
758 return;
759 }
760
761 unreachable("Invalid semaphore type");
762 }
763
764 void
765 anv_semaphore_reset_temporary(struct anv_device *device,
766 struct anv_semaphore *semaphore)
767 {
768 if (semaphore->temporary.type == ANV_SEMAPHORE_TYPE_NONE)
769 return;
770
771 anv_semaphore_impl_cleanup(device, &semaphore->temporary);
772 semaphore->temporary.type = ANV_SEMAPHORE_TYPE_NONE;
773 }
774
775 void anv_DestroySemaphore(
776 VkDevice _device,
777 VkSemaphore _semaphore,
778 const VkAllocationCallbacks* pAllocator)
779 {
780 ANV_FROM_HANDLE(anv_device, device, _device);
781 ANV_FROM_HANDLE(anv_semaphore, semaphore, _semaphore);
782
783 if (semaphore == NULL)
784 return;
785
786 anv_semaphore_impl_cleanup(device, &semaphore->temporary);
787 anv_semaphore_impl_cleanup(device, &semaphore->permanent);
788
789 vk_free2(&device->alloc, pAllocator, semaphore);
790 }
791
792 void anv_GetPhysicalDeviceExternalSemaphorePropertiesKHR(
793 VkPhysicalDevice physicalDevice,
794 const VkPhysicalDeviceExternalSemaphoreInfoKHR* pExternalSemaphoreInfo,
795 VkExternalSemaphorePropertiesKHR* pExternalSemaphoreProperties)
796 {
797 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
798
799 switch (pExternalSemaphoreInfo->handleType) {
800 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
801 pExternalSemaphoreProperties->exportFromImportedHandleTypes =
802 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR;
803 pExternalSemaphoreProperties->compatibleHandleTypes =
804 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR;
805 pExternalSemaphoreProperties->externalSemaphoreFeatures =
806 VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHR |
807 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR;
808 return;
809
810 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR:
811 if (device->has_exec_fence) {
812 pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
813 pExternalSemaphoreProperties->compatibleHandleTypes =
814 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR;
815 pExternalSemaphoreProperties->externalSemaphoreFeatures =
816 VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHR |
817 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR;
818 return;
819 }
820 break;
821
822 default:
823 break;
824 }
825
826 pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
827 pExternalSemaphoreProperties->compatibleHandleTypes = 0;
828 pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
829 }
830
831 VkResult anv_ImportSemaphoreFdKHR(
832 VkDevice _device,
833 const VkImportSemaphoreFdInfoKHR* pImportSemaphoreFdInfo)
834 {
835 ANV_FROM_HANDLE(anv_device, device, _device);
836 ANV_FROM_HANDLE(anv_semaphore, semaphore, pImportSemaphoreFdInfo->semaphore);
837 int fd = pImportSemaphoreFdInfo->fd;
838
839 struct anv_semaphore_impl new_impl = {
840 .type = ANV_SEMAPHORE_TYPE_NONE,
841 };
842
843 switch (pImportSemaphoreFdInfo->handleType) {
844 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
845 if (device->instance->physicalDevice.has_syncobj) {
846 new_impl.type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ;
847
848 new_impl.syncobj = anv_gem_syncobj_fd_to_handle(device, fd);
849 if (!new_impl.syncobj)
850 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
851
852 /* From the Vulkan spec:
853 *
854 * "Importing semaphore state from a file descriptor transfers
855 * ownership of the file descriptor from the application to the
856 * Vulkan implementation. The application must not perform any
857 * operations on the file descriptor after a successful import."
858 *
859 * If the import fails, we leave the file descriptor open.
860 */
861 close(pImportSemaphoreFdInfo->fd);
862 } else {
863 new_impl.type = ANV_SEMAPHORE_TYPE_BO;
864
865 VkResult result = anv_bo_cache_import(device, &device->bo_cache,
866 fd, 4096, &new_impl.bo);
867 if (result != VK_SUCCESS)
868 return result;
869
870 /* If we're going to use this as a fence, we need to *not* have the
871 * EXEC_OBJECT_ASYNC bit set.
872 */
873 assert(!(new_impl.bo->flags & EXEC_OBJECT_ASYNC));
874 }
875 break;
876
877 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR:
878 new_impl = (struct anv_semaphore_impl) {
879 .type = ANV_SEMAPHORE_TYPE_SYNC_FILE,
880 .fd = fd,
881 };
882 break;
883
884 default:
885 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
886 }
887
888 if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT_KHR) {
889 anv_semaphore_impl_cleanup(device, &semaphore->temporary);
890 semaphore->temporary = new_impl;
891 } else {
892 anv_semaphore_impl_cleanup(device, &semaphore->permanent);
893 semaphore->permanent = new_impl;
894 }
895
896 return VK_SUCCESS;
897 }
898
899 VkResult anv_GetSemaphoreFdKHR(
900 VkDevice _device,
901 const VkSemaphoreGetFdInfoKHR* pGetFdInfo,
902 int* pFd)
903 {
904 ANV_FROM_HANDLE(anv_device, device, _device);
905 ANV_FROM_HANDLE(anv_semaphore, semaphore, pGetFdInfo->semaphore);
906 VkResult result;
907 int fd;
908
909 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR);
910
911 struct anv_semaphore_impl *impl =
912 semaphore->temporary.type != ANV_SEMAPHORE_TYPE_NONE ?
913 &semaphore->temporary : &semaphore->permanent;
914
915 switch (impl->type) {
916 case ANV_SEMAPHORE_TYPE_BO:
917 result = anv_bo_cache_export(device, &device->bo_cache, impl->bo, pFd);
918 if (result != VK_SUCCESS)
919 return result;
920 break;
921
922 case ANV_SEMAPHORE_TYPE_SYNC_FILE:
923 /* There are two reasons why this could happen:
924 *
925 * 1) The user is trying to export without submitting something that
926 * signals the semaphore. If this is the case, it's their bug so
927 * what we return here doesn't matter.
928 *
929 * 2) The kernel didn't give us a file descriptor. The most likely
930 * reason for this is running out of file descriptors.
931 */
932 if (impl->fd < 0)
933 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
934
935 *pFd = impl->fd;
936
937 /* From the Vulkan 1.0.53 spec:
938 *
939 * "...exporting a semaphore payload to a handle with copy
940 * transference has the same side effects on the source
941 * semaphore’s payload as executing a semaphore wait operation."
942 *
943 * In other words, it may still be a SYNC_FD semaphore, but it's now
944 * considered to have been waited on and no longer has a sync file
945 * attached.
946 */
947 impl->fd = -1;
948 return VK_SUCCESS;
949
950 case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ:
951 fd = anv_gem_syncobj_handle_to_fd(device, impl->syncobj);
952 if (fd < 0)
953 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
954 *pFd = fd;
955 break;
956
957 default:
958 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
959 }
960
961 /* From the Vulkan 1.0.53 spec:
962 *
963 * "Export operations have the same transference as the specified handle
964 * type’s import operations. [...] If the semaphore was using a
965 * temporarily imported payload, the semaphore’s prior permanent payload
966 * will be restored.
967 */
968 if (impl == &semaphore->temporary)
969 anv_semaphore_impl_cleanup(device, impl);
970
971 return VK_SUCCESS;
972 }