anv/pipeline/gen8: Set 3DSTATE_GS::InstanceControl
[mesa.git] / src / intel / vulkan / gen8_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 #include "genX_pipeline_util.h"
36
37 static void
38 emit_ia_state(struct anv_pipeline *pipeline,
39 const VkPipelineInputAssemblyStateCreateInfo *info)
40 {
41 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
42 vft.PrimitiveTopologyType = pipeline->topology;
43 }
44 }
45
46 VkResult
47 genX(graphics_pipeline_create)(
48 VkDevice _device,
49 struct anv_pipeline_cache * cache,
50 const VkGraphicsPipelineCreateInfo* pCreateInfo,
51 const VkAllocationCallbacks* pAllocator,
52 VkPipeline* pPipeline)
53 {
54 ANV_FROM_HANDLE(anv_device, device, _device);
55 ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
56 const struct anv_physical_device *physical_device =
57 &device->instance->physicalDevice;
58 const struct gen_device_info *devinfo = &physical_device->info;
59 struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
60 struct anv_pipeline *pipeline;
61 VkResult result;
62
63 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
64
65 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
66 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
67 if (pipeline == NULL)
68 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
69
70 result = anv_pipeline_init(pipeline, device, cache,
71 pCreateInfo, pAllocator);
72 if (result != VK_SUCCESS) {
73 vk_free2(&device->alloc, pAllocator, pipeline);
74 return result;
75 }
76
77 assert(pCreateInfo->pVertexInputState);
78 emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
79 assert(pCreateInfo->pInputAssemblyState);
80 emit_ia_state(pipeline, pCreateInfo->pInputAssemblyState);
81 assert(pCreateInfo->pRasterizationState);
82 emit_rs_state(pipeline, pCreateInfo->pRasterizationState,
83 pCreateInfo->pMultisampleState, pass, subpass);
84 emit_ms_state(pipeline, pCreateInfo->pMultisampleState);
85 emit_ds_state(pipeline, pCreateInfo->pDepthStencilState, pass, subpass);
86 emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
87 pCreateInfo->pMultisampleState);
88
89 emit_urb_setup(pipeline);
90
91 emit_3dstate_clip(pipeline, pCreateInfo->pViewportState,
92 pCreateInfo->pRasterizationState);
93 emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);
94
95 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
96 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
97 wm.StatisticsEnable = true;
98 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
99 wm.LineAntialiasingRegionWidth = _10pixels;
100 wm.ForceThreadDispatchEnable = NORMAL;
101 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
102
103 if (wm_prog_data && wm_prog_data->early_fragment_tests) {
104 wm.EarlyDepthStencilControl = PREPS;
105 } else if (wm_prog_data && wm_prog_data->has_side_effects) {
106 wm.EarlyDepthStencilControl = PSEXEC;
107 } else {
108 wm.EarlyDepthStencilControl = NORMAL;
109 }
110
111 wm.BarycentricInterpolationMode =
112 wm_prog_data ? wm_prog_data->barycentric_interp_modes : 0;
113 }
114
115 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
116 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
117 } else {
118 const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
119 const struct anv_shader_bin *gs_bin =
120 pipeline->shaders[MESA_SHADER_GEOMETRY];
121
122 uint32_t offset = 1;
123 uint32_t length = (gs_prog_data->base.vue_map.num_slots + 1) / 2 - offset;
124
125 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
126 gs.SingleProgramFlow = false;
127 gs.KernelStartPointer = gs_bin->kernel.offset;
128 gs.VectorMaskEnable = false;
129 gs.SamplerCount = get_sampler_count(gs_bin);
130 gs.BindingTableEntryCount = get_binding_table_entry_count(gs_bin);
131 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
132
133 gs.ScratchSpaceBasePointer = (struct anv_address) {
134 .bo = anv_scratch_pool_alloc(device, &device->scratch_pool,
135 MESA_SHADER_GEOMETRY,
136 gs_prog_data->base.base.total_scratch),
137 .offset = 0,
138 };
139 gs.PerThreadScratchSpace = scratch_space(&gs_prog_data->base.base);
140 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
141 gs.OutputTopology = gs_prog_data->output_topology;
142 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
143 gs.IncludeVertexHandles = gs_prog_data->base.include_vue_handles;
144
145 gs.DispatchGRFStartRegisterForURBData =
146 gs_prog_data->base.base.dispatch_grf_start_reg;
147
148 gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
149 gs.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords;
150 gs.InstanceControl = MAX2(gs_prog_data->invocations, 1) - 1;
151 gs.DispatchMode = gs_prog_data->base.dispatch_mode;
152 gs.StatisticsEnable = true;
153 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
154 gs.ReorderMode = TRAILING;
155 gs.FunctionEnable = true;
156
157 gs.ControlDataFormat = gs_prog_data->control_data_format;
158
159 gs.StaticOutput = gs_prog_data->static_vertex_count >= 0;
160 gs.StaticOutputVertexCount =
161 gs_prog_data->static_vertex_count >= 0 ?
162 gs_prog_data->static_vertex_count : 0;
163
164 /* FIXME: mesa sets this based on ctx->Transform.ClipPlanesEnabled:
165 * UserClipDistanceClipTestEnableBitmask_3DSTATE_GS(v)
166 * UserClipDistanceCullTestEnableBitmask(v)
167 */
168
169 gs.VertexURBEntryOutputReadOffset = offset;
170 gs.VertexURBEntryOutputLength = length;
171 }
172 }
173
174 emit_3dstate_vs(pipeline);
175
176 const int num_thread_bias = GEN_GEN == 8 ? 2 : 1;
177 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
178 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps);
179 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), extra) {
180 extra.PixelShaderValid = false;
181 }
182 } else {
183 const struct anv_shader_bin *fs_bin =
184 pipeline->shaders[MESA_SHADER_FRAGMENT];
185
186 emit_3dstate_sbe(pipeline);
187
188 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
189 ps.KernelStartPointer0 = fs_bin->kernel.offset;
190 ps.KernelStartPointer1 = 0;
191 ps.KernelStartPointer2 = fs_bin->kernel.offset +
192 wm_prog_data->prog_offset_2;
193 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
194 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
195 ps._32PixelDispatchEnable = false;
196 ps.SingleProgramFlow = false;
197 ps.VectorMaskEnable = true;
198 ps.SamplerCount = get_sampler_count(fs_bin);
199 ps.BindingTableEntryCount = get_binding_table_entry_count(fs_bin);
200 ps.PushConstantEnable = wm_prog_data->base.nr_params > 0;
201 ps.PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ?
202 POSOFFSET_SAMPLE: POSOFFSET_NONE;
203
204 ps.MaximumNumberofThreadsPerPSD = 64 - num_thread_bias;
205
206 ps.ScratchSpaceBasePointer = (struct anv_address) {
207 .bo = anv_scratch_pool_alloc(device, &device->scratch_pool,
208 MESA_SHADER_FRAGMENT,
209 wm_prog_data->base.total_scratch),
210 .offset = 0,
211 };
212 ps.PerThreadScratchSpace = scratch_space(&wm_prog_data->base);
213
214 ps.DispatchGRFStartRegisterForConstantSetupData0 =
215 wm_prog_data->base.dispatch_grf_start_reg;
216 ps.DispatchGRFStartRegisterForConstantSetupData1 = 0;
217 ps.DispatchGRFStartRegisterForConstantSetupData2 =
218 wm_prog_data->dispatch_grf_start_reg_2;
219 }
220
221 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
222 ps.PixelShaderValid = true;
223 ps.PixelShaderKillsPixel = wm_prog_data->uses_kill;
224 ps.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
225 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
226 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
227 ps.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
228 ps.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
229 ps.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
230 #if GEN_GEN >= 9
231 ps.PixelShaderPullsBary = wm_prog_data->pulls_bary;
232 ps.InputCoverageMaskState = wm_prog_data->uses_sample_mask ?
233 ICMS_INNER_CONSERVATIVE : ICMS_NONE;
234 #else
235 ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
236 #endif
237 }
238 }
239
240 *pPipeline = anv_pipeline_to_handle(pipeline);
241
242 return VK_SUCCESS;
243 }