anv: Pass buffer addresses into emit_push_constant*
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 #include "util/fast_idiv_by_const.h"
31
32 #include "common/gen_aux_map.h"
33 #include "common/gen_l3_config.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
36
37 /* We reserve GPR 14 and 15 for conditional rendering */
38 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
39 #define __gen_get_batch_dwords anv_batch_emit_dwords
40 #define __gen_address_offset anv_address_add
41 #include "common/gen_mi_builder.h"
42
43 static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
44 uint32_t pipeline);
45
46 static void
47 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
48 {
49 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
50 lri.RegisterOffset = reg;
51 lri.DataDWord = imm;
52 }
53 }
54
55 void
56 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
57 {
58 struct anv_device *device = cmd_buffer->device;
59 UNUSED const struct gen_device_info *devinfo = &device->info;
60 uint32_t mocs = device->isl_dev.mocs.internal;
61
62 /* If we are emitting a new state base address we probably need to re-emit
63 * binding tables.
64 */
65 cmd_buffer->state.descriptors_dirty |= ~0;
66
67 /* Emit a render target cache flush.
68 *
69 * This isn't documented anywhere in the PRM. However, it seems to be
70 * necessary prior to changing the surface state base adress. Without
71 * this, we get GPU hangs when using multi-level command buffers which
72 * clear depth, reset state base address, and then go render stuff.
73 */
74 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
75 pc.DCFlushEnable = true;
76 pc.RenderTargetCacheFlushEnable = true;
77 pc.CommandStreamerStallEnable = true;
78 #if GEN_GEN >= 12
79 pc.TileCacheFlushEnable = true;
80 #endif
81 #if GEN_GEN == 12
82 /* GEN:BUG:1606662791:
83 *
84 * Software must program PIPE_CONTROL command with "HDC Pipeline
85 * Flush" prior to programming of the below two non-pipeline state :
86 * * STATE_BASE_ADDRESS
87 * * 3DSTATE_BINDING_TABLE_POOL_ALLOC
88 */
89 if (devinfo->revision == 0 /* A0 */)
90 pc.HDCPipelineFlushEnable = true;
91 #endif
92 }
93
94 #if GEN_GEN == 12
95 /* GEN:BUG:1607854226:
96 *
97 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
98 * mode by putting the pipeline temporarily in 3D mode.
99 */
100 uint32_t gen12_wa_pipeline = cmd_buffer->state.current_pipeline;
101 genX(flush_pipeline_select_3d)(cmd_buffer);
102 #endif
103
104 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
105 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
106 sba.GeneralStateMOCS = mocs;
107 sba.GeneralStateBaseAddressModifyEnable = true;
108
109 sba.StatelessDataPortAccessMOCS = mocs;
110
111 sba.SurfaceStateBaseAddress =
112 anv_cmd_buffer_surface_base_address(cmd_buffer);
113 sba.SurfaceStateMOCS = mocs;
114 sba.SurfaceStateBaseAddressModifyEnable = true;
115
116 sba.DynamicStateBaseAddress =
117 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
118 sba.DynamicStateMOCS = mocs;
119 sba.DynamicStateBaseAddressModifyEnable = true;
120
121 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
122 sba.IndirectObjectMOCS = mocs;
123 sba.IndirectObjectBaseAddressModifyEnable = true;
124
125 sba.InstructionBaseAddress =
126 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
127 sba.InstructionMOCS = mocs;
128 sba.InstructionBaseAddressModifyEnable = true;
129
130 # if (GEN_GEN >= 8)
131 /* Broadwell requires that we specify a buffer size for a bunch of
132 * these fields. However, since we will be growing the BO's live, we
133 * just set them all to the maximum.
134 */
135 sba.GeneralStateBufferSize = 0xfffff;
136 sba.IndirectObjectBufferSize = 0xfffff;
137 if (device->physical->use_softpin) {
138 /* With softpin, we use fixed addresses so we actually know how big
139 * our base addresses are.
140 */
141 sba.DynamicStateBufferSize = DYNAMIC_STATE_POOL_SIZE / 4096;
142 sba.InstructionBufferSize = INSTRUCTION_STATE_POOL_SIZE / 4096;
143 } else {
144 sba.DynamicStateBufferSize = 0xfffff;
145 sba.InstructionBufferSize = 0xfffff;
146 }
147 sba.GeneralStateBufferSizeModifyEnable = true;
148 sba.IndirectObjectBufferSizeModifyEnable = true;
149 sba.DynamicStateBufferSizeModifyEnable = true;
150 sba.InstructionBuffersizeModifyEnable = true;
151 # else
152 /* On gen7, we have upper bounds instead. According to the docs,
153 * setting an upper bound of zero means that no bounds checking is
154 * performed so, in theory, we should be able to leave them zero.
155 * However, border color is broken and the GPU bounds-checks anyway.
156 * To avoid this and other potential problems, we may as well set it
157 * for everything.
158 */
159 sba.GeneralStateAccessUpperBound =
160 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
161 sba.GeneralStateAccessUpperBoundModifyEnable = true;
162 sba.DynamicStateAccessUpperBound =
163 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
164 sba.DynamicStateAccessUpperBoundModifyEnable = true;
165 sba.InstructionAccessUpperBound =
166 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
167 sba.InstructionAccessUpperBoundModifyEnable = true;
168 # endif
169 # if (GEN_GEN >= 9)
170 if (cmd_buffer->device->physical->use_softpin) {
171 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
172 .bo = device->surface_state_pool.block_pool.bo,
173 .offset = 0,
174 };
175 sba.BindlessSurfaceStateSize = (1 << 20) - 1;
176 } else {
177 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
178 sba.BindlessSurfaceStateSize = 0;
179 }
180 sba.BindlessSurfaceStateMOCS = mocs;
181 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
182 # endif
183 # if (GEN_GEN >= 10)
184 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
185 sba.BindlessSamplerStateMOCS = mocs;
186 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
187 sba.BindlessSamplerStateBufferSize = 0;
188 # endif
189 }
190
191 #if GEN_GEN == 12
192 /* GEN:BUG:1607854226:
193 *
194 * Put the pipeline back into its current mode.
195 */
196 if (gen12_wa_pipeline != UINT32_MAX)
197 genX(flush_pipeline_select)(cmd_buffer, gen12_wa_pipeline);
198 #endif
199
200 /* After re-setting the surface state base address, we have to do some
201 * cache flusing so that the sampler engine will pick up the new
202 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
203 * Shared Function > 3D Sampler > State > State Caching (page 96):
204 *
205 * Coherency with system memory in the state cache, like the texture
206 * cache is handled partially by software. It is expected that the
207 * command stream or shader will issue Cache Flush operation or
208 * Cache_Flush sampler message to ensure that the L1 cache remains
209 * coherent with system memory.
210 *
211 * [...]
212 *
213 * Whenever the value of the Dynamic_State_Base_Addr,
214 * Surface_State_Base_Addr are altered, the L1 state cache must be
215 * invalidated to ensure the new surface or sampler state is fetched
216 * from system memory.
217 *
218 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
219 * which, according the PIPE_CONTROL instruction documentation in the
220 * Broadwell PRM:
221 *
222 * Setting this bit is independent of any other bit in this packet.
223 * This bit controls the invalidation of the L1 and L2 state caches
224 * at the top of the pipe i.e. at the parsing time.
225 *
226 * Unfortunately, experimentation seems to indicate that state cache
227 * invalidation through a PIPE_CONTROL does nothing whatsoever in
228 * regards to surface state and binding tables. In stead, it seems that
229 * invalidating the texture cache is what is actually needed.
230 *
231 * XXX: As far as we have been able to determine through
232 * experimentation, shows that flush the texture cache appears to be
233 * sufficient. The theory here is that all of the sampling/rendering
234 * units cache the binding table in the texture cache. However, we have
235 * yet to be able to actually confirm this.
236 */
237 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
238 pc.TextureCacheInvalidationEnable = true;
239 pc.ConstantCacheInvalidationEnable = true;
240 pc.StateCacheInvalidationEnable = true;
241 }
242 }
243
244 static void
245 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
246 struct anv_state state, struct anv_address addr)
247 {
248 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
249
250 VkResult result =
251 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
252 state.offset + isl_dev->ss.addr_offset,
253 addr.bo, addr.offset, NULL);
254 if (result != VK_SUCCESS)
255 anv_batch_set_error(&cmd_buffer->batch, result);
256 }
257
258 static void
259 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
260 struct anv_surface_state state)
261 {
262 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
263
264 assert(!anv_address_is_null(state.address));
265 add_surface_reloc(cmd_buffer, state.state, state.address);
266
267 if (!anv_address_is_null(state.aux_address)) {
268 VkResult result =
269 anv_reloc_list_add(&cmd_buffer->surface_relocs,
270 &cmd_buffer->pool->alloc,
271 state.state.offset + isl_dev->ss.aux_addr_offset,
272 state.aux_address.bo,
273 state.aux_address.offset,
274 NULL);
275 if (result != VK_SUCCESS)
276 anv_batch_set_error(&cmd_buffer->batch, result);
277 }
278
279 if (!anv_address_is_null(state.clear_address)) {
280 VkResult result =
281 anv_reloc_list_add(&cmd_buffer->surface_relocs,
282 &cmd_buffer->pool->alloc,
283 state.state.offset +
284 isl_dev->ss.clear_color_state_offset,
285 state.clear_address.bo,
286 state.clear_address.offset,
287 NULL);
288 if (result != VK_SUCCESS)
289 anv_batch_set_error(&cmd_buffer->batch, result);
290 }
291 }
292
293 static void
294 color_attachment_compute_aux_usage(struct anv_device * device,
295 struct anv_cmd_state * cmd_state,
296 uint32_t att, VkRect2D render_area,
297 union isl_color_value *fast_clear_color)
298 {
299 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
300 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
301
302 assert(iview->n_planes == 1);
303
304 if (iview->planes[0].isl.base_array_layer >=
305 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
306 iview->planes[0].isl.base_level)) {
307 /* There is no aux buffer which corresponds to the level and layer(s)
308 * being accessed.
309 */
310 att_state->aux_usage = ISL_AUX_USAGE_NONE;
311 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
312 att_state->fast_clear = false;
313 return;
314 }
315
316 att_state->aux_usage =
317 anv_layout_to_aux_usage(&device->info, iview->image,
318 VK_IMAGE_ASPECT_COLOR_BIT,
319 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
320 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
321
322 /* If we don't have aux, then we should have returned early in the layer
323 * check above. If we got here, we must have something.
324 */
325 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
326
327 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
328 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
329 att_state->input_aux_usage = att_state->aux_usage;
330 } else {
331 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
332 *
333 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
334 * setting is only allowed if Surface Format supported for Fast
335 * Clear. In addition, if the surface is bound to the sampling
336 * engine, Surface Format must be supported for Render Target
337 * Compression for surfaces bound to the sampling engine."
338 *
339 * In other words, we can only sample from a fast-cleared image if it
340 * also supports color compression.
341 */
342 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format) &&
343 isl_format_supports_ccs_d(&device->info, iview->planes[0].isl.format)) {
344 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
345
346 /* While fast-clear resolves and partial resolves are fairly cheap in the
347 * case where you render to most of the pixels, full resolves are not
348 * because they potentially involve reading and writing the entire
349 * framebuffer. If we can't texture with CCS_E, we should leave it off and
350 * limit ourselves to fast clears.
351 */
352 if (cmd_state->pass->attachments[att].first_subpass_layout ==
353 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
354 anv_perf_warn(device, iview->image,
355 "Not temporarily enabling CCS_E.");
356 }
357 } else {
358 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
359 }
360 }
361
362 assert(iview->image->planes[0].aux_surface.isl.usage &
363 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
364
365 union isl_color_value clear_color = {};
366 anv_clear_color_from_att_state(&clear_color, att_state, iview);
367
368 att_state->clear_color_is_zero_one =
369 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
370 att_state->clear_color_is_zero =
371 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
372
373 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
374 /* Start by getting the fast clear type. We use the first subpass
375 * layout here because we don't want to fast-clear if the first subpass
376 * to use the attachment can't handle fast-clears.
377 */
378 enum anv_fast_clear_type fast_clear_type =
379 anv_layout_to_fast_clear_type(&device->info, iview->image,
380 VK_IMAGE_ASPECT_COLOR_BIT,
381 cmd_state->pass->attachments[att].first_subpass_layout);
382 switch (fast_clear_type) {
383 case ANV_FAST_CLEAR_NONE:
384 att_state->fast_clear = false;
385 break;
386 case ANV_FAST_CLEAR_DEFAULT_VALUE:
387 att_state->fast_clear = att_state->clear_color_is_zero;
388 break;
389 case ANV_FAST_CLEAR_ANY:
390 att_state->fast_clear = true;
391 break;
392 }
393
394 /* Potentially, we could do partial fast-clears but doing so has crazy
395 * alignment restrictions. It's easier to just restrict to full size
396 * fast clears for now.
397 */
398 if (render_area.offset.x != 0 ||
399 render_area.offset.y != 0 ||
400 render_area.extent.width != iview->extent.width ||
401 render_area.extent.height != iview->extent.height)
402 att_state->fast_clear = false;
403
404 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
405 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
406 att_state->fast_clear = false;
407
408 /* We only allow fast clears to the first slice of an image (level 0,
409 * layer 0) and only for the entire slice. This guarantees us that, at
410 * any given time, there is only one clear color on any given image at
411 * any given time. At the time of our testing (Jan 17, 2018), there
412 * were no known applications which would benefit from fast-clearing
413 * more than just the first slice.
414 */
415 if (att_state->fast_clear &&
416 (iview->planes[0].isl.base_level > 0 ||
417 iview->planes[0].isl.base_array_layer > 0)) {
418 anv_perf_warn(device, iview->image,
419 "Rendering with multi-lod or multi-layer framebuffer "
420 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
421 "baseArrayLayer > 0. Not fast clearing.");
422 att_state->fast_clear = false;
423 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
424 anv_perf_warn(device, iview->image,
425 "Rendering to a multi-layer framebuffer with "
426 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
427 }
428
429 if (att_state->fast_clear)
430 *fast_clear_color = clear_color;
431 } else {
432 att_state->fast_clear = false;
433 }
434 }
435
436 static void
437 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
438 struct anv_cmd_state *cmd_state,
439 uint32_t att, VkRect2D render_area)
440 {
441 struct anv_render_pass_attachment *pass_att =
442 &cmd_state->pass->attachments[att];
443 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
444 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
445
446 /* These will be initialized after the first subpass transition. */
447 att_state->aux_usage = ISL_AUX_USAGE_NONE;
448 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
449
450 /* This is unused for depth/stencil but valgrind complains if it
451 * isn't initialized
452 */
453 att_state->clear_color_is_zero_one = false;
454
455 if (GEN_GEN == 7) {
456 /* We don't do any HiZ or depth fast-clears on gen7 yet */
457 att_state->fast_clear = false;
458 return;
459 }
460
461 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
462 /* If we're just clearing stencil, we can always HiZ clear */
463 att_state->fast_clear = true;
464 return;
465 }
466
467 /* Default to false for now */
468 att_state->fast_clear = false;
469
470 /* We must have depth in order to have HiZ */
471 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
472 return;
473
474 const enum isl_aux_usage first_subpass_aux_usage =
475 anv_layout_to_aux_usage(&device->info, iview->image,
476 VK_IMAGE_ASPECT_DEPTH_BIT,
477 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
478 pass_att->first_subpass_layout);
479 if (!blorp_can_hiz_clear_depth(&device->info,
480 &iview->image->planes[0].surface.isl,
481 first_subpass_aux_usage,
482 iview->planes[0].isl.base_level,
483 iview->planes[0].isl.base_array_layer,
484 render_area.offset.x,
485 render_area.offset.y,
486 render_area.offset.x +
487 render_area.extent.width,
488 render_area.offset.y +
489 render_area.extent.height))
490 return;
491
492 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
493 return;
494
495 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
496 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
497 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
498 * only supports returning 0.0f. Gens prior to gen8 do not support this
499 * feature at all.
500 */
501 return;
502 }
503
504 /* If we got here, then we can fast clear */
505 att_state->fast_clear = true;
506 }
507
508 static bool
509 need_input_attachment_state(const struct anv_render_pass_attachment *att)
510 {
511 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
512 return false;
513
514 /* We only allocate input attachment states for color surfaces. Compression
515 * is not yet enabled for depth textures and stencil doesn't allow
516 * compression so we can just use the texture surface state from the view.
517 */
518 return vk_format_is_color(att->format);
519 }
520
521 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
522 * the initial layout is undefined, the HiZ buffer and depth buffer will
523 * represent the same data at the end of this operation.
524 */
525 static void
526 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
527 const struct anv_image *image,
528 VkImageLayout initial_layout,
529 VkImageLayout final_layout)
530 {
531 uint32_t depth_plane =
532 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
533 if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE)
534 return;
535
536 const enum isl_aux_state initial_state =
537 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
538 VK_IMAGE_ASPECT_DEPTH_BIT,
539 initial_layout);
540 const enum isl_aux_state final_state =
541 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
542 VK_IMAGE_ASPECT_DEPTH_BIT,
543 final_layout);
544
545 const bool initial_depth_valid =
546 isl_aux_state_has_valid_primary(initial_state);
547 const bool initial_hiz_valid =
548 isl_aux_state_has_valid_aux(initial_state);
549 const bool final_needs_depth =
550 isl_aux_state_has_valid_primary(final_state);
551 const bool final_needs_hiz =
552 isl_aux_state_has_valid_aux(final_state);
553
554 /* Getting into the pass-through state for Depth is tricky and involves
555 * both a resolve and an ambiguate. We don't handle that state right now
556 * as anv_layout_to_aux_state never returns it.
557 */
558 assert(final_state != ISL_AUX_STATE_PASS_THROUGH);
559
560 if (final_needs_depth && !initial_depth_valid) {
561 assert(initial_hiz_valid);
562 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
563 0, 0, 1, ISL_AUX_OP_FULL_RESOLVE);
564 } else if (final_needs_hiz && !initial_hiz_valid) {
565 assert(initial_depth_valid);
566 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
567 0, 0, 1, ISL_AUX_OP_AMBIGUATE);
568 }
569 }
570
571 static inline bool
572 vk_image_layout_stencil_write_optimal(VkImageLayout layout)
573 {
574 return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
575 layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
576 layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
577 }
578
579 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
580 * the initial layout is undefined, the HiZ buffer and depth buffer will
581 * represent the same data at the end of this operation.
582 */
583 static void
584 transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
585 const struct anv_image *image,
586 uint32_t base_level, uint32_t level_count,
587 uint32_t base_layer, uint32_t layer_count,
588 VkImageLayout initial_layout,
589 VkImageLayout final_layout)
590 {
591 #if GEN_GEN == 7
592 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
593 VK_IMAGE_ASPECT_STENCIL_BIT);
594
595 /* On gen7, we have to store a texturable version of the stencil buffer in
596 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
597 * forth at strategic points. Stencil writes are only allowed in following
598 * layouts:
599 *
600 * - VK_IMAGE_LAYOUT_GENERAL
601 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
602 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
603 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
604 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
605 *
606 * For general, we have no nice opportunity to transition so we do the copy
607 * to the shadow unconditionally at the end of the subpass. For transfer
608 * destinations, we can update it as part of the transfer op. For the other
609 * layouts, we delay the copy until a transition into some other layout.
610 */
611 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
612 vk_image_layout_stencil_write_optimal(initial_layout) &&
613 !vk_image_layout_stencil_write_optimal(final_layout)) {
614 anv_image_copy_to_shadow(cmd_buffer, image,
615 VK_IMAGE_ASPECT_STENCIL_BIT,
616 base_level, level_count,
617 base_layer, layer_count);
618 }
619 #endif /* GEN_GEN == 7 */
620 }
621
622 #define MI_PREDICATE_SRC0 0x2400
623 #define MI_PREDICATE_SRC1 0x2408
624 #define MI_PREDICATE_RESULT 0x2418
625
626 static void
627 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
628 const struct anv_image *image,
629 VkImageAspectFlagBits aspect,
630 uint32_t level,
631 uint32_t base_layer, uint32_t layer_count,
632 bool compressed)
633 {
634 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
635
636 /* We only have compression tracking for CCS_E */
637 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
638 return;
639
640 for (uint32_t a = 0; a < layer_count; a++) {
641 uint32_t layer = base_layer + a;
642 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
643 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
644 image, aspect,
645 level, layer);
646 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
647 }
648 }
649 }
650
651 static void
652 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
653 const struct anv_image *image,
654 VkImageAspectFlagBits aspect,
655 enum anv_fast_clear_type fast_clear)
656 {
657 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
658 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
659 image, aspect);
660 sdi.ImmediateData = fast_clear;
661 }
662
663 /* Whenever we have fast-clear, we consider that slice to be compressed.
664 * This makes building predicates much easier.
665 */
666 if (fast_clear != ANV_FAST_CLEAR_NONE)
667 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
668 }
669
670 /* This is only really practical on haswell and above because it requires
671 * MI math in order to get it correct.
672 */
673 #if GEN_GEN >= 8 || GEN_IS_HASWELL
674 static void
675 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
676 const struct anv_image *image,
677 VkImageAspectFlagBits aspect,
678 uint32_t level, uint32_t array_layer,
679 enum isl_aux_op resolve_op,
680 enum anv_fast_clear_type fast_clear_supported)
681 {
682 struct gen_mi_builder b;
683 gen_mi_builder_init(&b, &cmd_buffer->batch);
684
685 const struct gen_mi_value fast_clear_type =
686 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
687 image, aspect));
688
689 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
690 /* In this case, we're doing a full resolve which means we want the
691 * resolve to happen if any compression (including fast-clears) is
692 * present.
693 *
694 * In order to simplify the logic a bit, we make the assumption that,
695 * if the first slice has been fast-cleared, it is also marked as
696 * compressed. See also set_image_fast_clear_state.
697 */
698 const struct gen_mi_value compression_state =
699 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
700 image, aspect,
701 level, array_layer));
702 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
703 compression_state);
704 gen_mi_store(&b, compression_state, gen_mi_imm(0));
705
706 if (level == 0 && array_layer == 0) {
707 /* If the predicate is true, we want to write 0 to the fast clear type
708 * and, if it's false, leave it alone. We can do this by writing
709 *
710 * clear_type = clear_type & ~predicate;
711 */
712 struct gen_mi_value new_fast_clear_type =
713 gen_mi_iand(&b, fast_clear_type,
714 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
715 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
716 }
717 } else if (level == 0 && array_layer == 0) {
718 /* In this case, we are doing a partial resolve to get rid of fast-clear
719 * colors. We don't care about the compression state but we do care
720 * about how much fast clear is allowed by the final layout.
721 */
722 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
723 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
724
725 /* We need to compute (fast_clear_supported < image->fast_clear) */
726 struct gen_mi_value pred =
727 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
728 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
729 gen_mi_value_ref(&b, pred));
730
731 /* If the predicate is true, we want to write 0 to the fast clear type
732 * and, if it's false, leave it alone. We can do this by writing
733 *
734 * clear_type = clear_type & ~predicate;
735 */
736 struct gen_mi_value new_fast_clear_type =
737 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
738 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
739 } else {
740 /* In this case, we're trying to do a partial resolve on a slice that
741 * doesn't have clear color. There's nothing to do.
742 */
743 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
744 return;
745 }
746
747 /* Set src1 to 0 and use a != condition */
748 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
749
750 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
751 mip.LoadOperation = LOAD_LOADINV;
752 mip.CombineOperation = COMBINE_SET;
753 mip.CompareOperation = COMPARE_SRCS_EQUAL;
754 }
755 }
756 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
757
758 #if GEN_GEN <= 8
759 static void
760 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
761 const struct anv_image *image,
762 VkImageAspectFlagBits aspect,
763 uint32_t level, uint32_t array_layer,
764 enum isl_aux_op resolve_op,
765 enum anv_fast_clear_type fast_clear_supported)
766 {
767 struct gen_mi_builder b;
768 gen_mi_builder_init(&b, &cmd_buffer->batch);
769
770 struct gen_mi_value fast_clear_type_mem =
771 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
772 image, aspect));
773
774 /* This only works for partial resolves and only when the clear color is
775 * all or nothing. On the upside, this emits less command streamer code
776 * and works on Ivybridge and Bay Trail.
777 */
778 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
779 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
780
781 /* We don't support fast clears on anything other than the first slice. */
782 if (level > 0 || array_layer > 0)
783 return;
784
785 /* On gen8, we don't have a concept of default clear colors because we
786 * can't sample from CCS surfaces. It's enough to just load the fast clear
787 * state into the predicate register.
788 */
789 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
790 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
791 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
792
793 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
794 mip.LoadOperation = LOAD_LOADINV;
795 mip.CombineOperation = COMBINE_SET;
796 mip.CompareOperation = COMPARE_SRCS_EQUAL;
797 }
798 }
799 #endif /* GEN_GEN <= 8 */
800
801 static void
802 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
803 const struct anv_image *image,
804 enum isl_format format,
805 VkImageAspectFlagBits aspect,
806 uint32_t level, uint32_t array_layer,
807 enum isl_aux_op resolve_op,
808 enum anv_fast_clear_type fast_clear_supported)
809 {
810 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
811
812 #if GEN_GEN >= 9
813 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
814 aspect, level, array_layer,
815 resolve_op, fast_clear_supported);
816 #else /* GEN_GEN <= 8 */
817 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
818 aspect, level, array_layer,
819 resolve_op, fast_clear_supported);
820 #endif
821
822 /* CCS_D only supports full resolves and BLORP will assert on us if we try
823 * to do a partial resolve on a CCS_D surface.
824 */
825 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
826 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D)
827 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
828
829 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
830 array_layer, 1, resolve_op, NULL, true);
831 }
832
833 static void
834 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
835 const struct anv_image *image,
836 enum isl_format format,
837 VkImageAspectFlagBits aspect,
838 uint32_t array_layer,
839 enum isl_aux_op resolve_op,
840 enum anv_fast_clear_type fast_clear_supported)
841 {
842 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
843 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
844
845 #if GEN_GEN >= 8 || GEN_IS_HASWELL
846 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
847 aspect, 0, array_layer,
848 resolve_op, fast_clear_supported);
849
850 anv_image_mcs_op(cmd_buffer, image, format, aspect,
851 array_layer, 1, resolve_op, NULL, true);
852 #else
853 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
854 #endif
855 }
856
857 void
858 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
859 const struct anv_image *image,
860 VkImageAspectFlagBits aspect,
861 enum isl_aux_usage aux_usage,
862 uint32_t level,
863 uint32_t base_layer,
864 uint32_t layer_count)
865 {
866 /* The aspect must be exactly one of the image aspects. */
867 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
868
869 /* The only compression types with more than just fast-clears are MCS,
870 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
871 * track the current fast-clear and compression state. This leaves us
872 * with just MCS and CCS_E.
873 */
874 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
875 aux_usage != ISL_AUX_USAGE_MCS)
876 return;
877
878 set_image_compressed_bit(cmd_buffer, image, aspect,
879 level, base_layer, layer_count, true);
880 }
881
882 static void
883 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
884 const struct anv_image *image,
885 VkImageAspectFlagBits aspect)
886 {
887 assert(cmd_buffer && image);
888 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
889
890 set_image_fast_clear_state(cmd_buffer, image, aspect,
891 ANV_FAST_CLEAR_NONE);
892
893 /* Initialize the struct fields that are accessed for fast-clears so that
894 * the HW restrictions on the field values are satisfied.
895 */
896 struct anv_address addr =
897 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
898
899 if (GEN_GEN >= 9) {
900 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
901 const unsigned num_dwords = GEN_GEN >= 10 ?
902 isl_dev->ss.clear_color_state_size / 4 :
903 isl_dev->ss.clear_value_size / 4;
904 for (unsigned i = 0; i < num_dwords; i++) {
905 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
906 sdi.Address = addr;
907 sdi.Address.offset += i * 4;
908 sdi.ImmediateData = 0;
909 }
910 }
911 } else {
912 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
913 sdi.Address = addr;
914 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
915 /* Pre-SKL, the dword containing the clear values also contains
916 * other fields, so we need to initialize those fields to match the
917 * values that would be in a color attachment.
918 */
919 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
920 ISL_CHANNEL_SELECT_GREEN << 22 |
921 ISL_CHANNEL_SELECT_BLUE << 19 |
922 ISL_CHANNEL_SELECT_ALPHA << 16;
923 } else if (GEN_GEN == 7) {
924 /* On IVB, the dword containing the clear values also contains
925 * other fields that must be zero or can be zero.
926 */
927 sdi.ImmediateData = 0;
928 }
929 }
930 }
931 }
932
933 /* Copy the fast-clear value dword(s) between a surface state object and an
934 * image's fast clear state buffer.
935 */
936 static void
937 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
938 struct anv_state surface_state,
939 const struct anv_image *image,
940 VkImageAspectFlagBits aspect,
941 bool copy_from_surface_state)
942 {
943 assert(cmd_buffer && image);
944 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
945
946 struct anv_address ss_clear_addr = {
947 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
948 .offset = surface_state.offset +
949 cmd_buffer->device->isl_dev.ss.clear_value_offset,
950 };
951 const struct anv_address entry_addr =
952 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
953 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
954
955 #if GEN_GEN == 7
956 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
957 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
958 * in-flight when they are issued even if the memory touched is not
959 * currently active for rendering. The weird bit is that it is not the
960 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
961 * rendering hangs such that the next stalling command after the
962 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
963 *
964 * It is unclear exactly why this hang occurs. Both MI commands come with
965 * warnings about the 3D pipeline but that doesn't seem to fully explain
966 * it. My (Jason's) best theory is that it has something to do with the
967 * fact that we're using a GPU state register as our temporary and that
968 * something with reading/writing it is causing problems.
969 *
970 * In order to work around this issue, we emit a PIPE_CONTROL with the
971 * command streamer stall bit set.
972 */
973 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
974 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
975 #endif
976
977 struct gen_mi_builder b;
978 gen_mi_builder_init(&b, &cmd_buffer->batch);
979
980 if (copy_from_surface_state) {
981 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
982 } else {
983 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
984
985 /* Updating a surface state object may require that the state cache be
986 * invalidated. From the SKL PRM, Shared Functions -> State -> State
987 * Caching:
988 *
989 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
990 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
991 * modified [...], the L1 state cache must be invalidated to ensure
992 * the new surface or sampler state is fetched from system memory.
993 *
994 * In testing, SKL doesn't actually seem to need this, but HSW does.
995 */
996 cmd_buffer->state.pending_pipe_bits |=
997 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
998 }
999 }
1000
1001 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
1002
1003 #if GEN_GEN == 12
1004 static void
1005 anv_image_init_aux_tt(struct anv_cmd_buffer *cmd_buffer,
1006 const struct anv_image *image,
1007 VkImageAspectFlagBits aspect,
1008 uint32_t base_level, uint32_t level_count,
1009 uint32_t base_layer, uint32_t layer_count)
1010 {
1011 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1012
1013 uint64_t base_address =
1014 anv_address_physical(image->planes[plane].address);
1015
1016 const struct isl_surf *isl_surf = &image->planes[plane].surface.isl;
1017 uint64_t format_bits = gen_aux_map_format_bits_for_isl_surf(isl_surf);
1018
1019 /* We're about to live-update the AUX-TT. We really don't want anyone else
1020 * trying to read it while we're doing this. We could probably get away
1021 * with not having this stall in some cases if we were really careful but
1022 * it's better to play it safe. Full stall the GPU.
1023 */
1024 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1025 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1026
1027 struct gen_mi_builder b;
1028 gen_mi_builder_init(&b, &cmd_buffer->batch);
1029
1030 for (uint32_t a = 0; a < layer_count; a++) {
1031 const uint32_t layer = base_layer + a;
1032
1033 uint64_t start_offset_B = UINT64_MAX, end_offset_B = 0;
1034 for (uint32_t l = 0; l < level_count; l++) {
1035 const uint32_t level = base_level + l;
1036
1037 uint32_t logical_array_layer, logical_z_offset_px;
1038 if (image->type == VK_IMAGE_TYPE_3D) {
1039 logical_array_layer = 0;
1040
1041 /* If the given miplevel does not have this layer, then any higher
1042 * miplevels won't either because miplevels only get smaller the
1043 * higher the LOD.
1044 */
1045 assert(layer < image->extent.depth);
1046 if (layer >= anv_minify(image->extent.depth, level))
1047 break;
1048 logical_z_offset_px = layer;
1049 } else {
1050 assert(layer < image->array_size);
1051 logical_array_layer = layer;
1052 logical_z_offset_px = 0;
1053 }
1054
1055 uint32_t slice_start_offset_B, slice_end_offset_B;
1056 isl_surf_get_image_range_B_tile(isl_surf, level,
1057 logical_array_layer,
1058 logical_z_offset_px,
1059 &slice_start_offset_B,
1060 &slice_end_offset_B);
1061
1062 start_offset_B = MIN2(start_offset_B, slice_start_offset_B);
1063 end_offset_B = MAX2(end_offset_B, slice_end_offset_B);
1064 }
1065
1066 /* Aux operates 64K at a time */
1067 start_offset_B = align_down_u64(start_offset_B, 64 * 1024);
1068 end_offset_B = align_u64(end_offset_B, 64 * 1024);
1069
1070 for (uint64_t offset = start_offset_B;
1071 offset < end_offset_B; offset += 64 * 1024) {
1072 uint64_t address = base_address + offset;
1073
1074 uint64_t aux_entry_addr64, *aux_entry_map;
1075 aux_entry_map = gen_aux_map_get_entry(cmd_buffer->device->aux_map_ctx,
1076 address, &aux_entry_addr64);
1077
1078 assert(cmd_buffer->device->physical->use_softpin);
1079 struct anv_address aux_entry_address = {
1080 .bo = NULL,
1081 .offset = aux_entry_addr64,
1082 };
1083
1084 const uint64_t old_aux_entry = READ_ONCE(*aux_entry_map);
1085 uint64_t new_aux_entry =
1086 (old_aux_entry & GEN_AUX_MAP_ADDRESS_MASK) | format_bits;
1087
1088 if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage))
1089 new_aux_entry |= GEN_AUX_MAP_ENTRY_VALID_BIT;
1090
1091 gen_mi_store(&b, gen_mi_mem64(aux_entry_address),
1092 gen_mi_imm(new_aux_entry));
1093 }
1094 }
1095
1096 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1097 }
1098 #endif /* GEN_GEN == 12 */
1099
1100 /**
1101 * @brief Transitions a color buffer from one layout to another.
1102 *
1103 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
1104 * more information.
1105 *
1106 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
1107 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
1108 * this represents the maximum layers to transition at each
1109 * specified miplevel.
1110 */
1111 static void
1112 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
1113 const struct anv_image *image,
1114 VkImageAspectFlagBits aspect,
1115 const uint32_t base_level, uint32_t level_count,
1116 uint32_t base_layer, uint32_t layer_count,
1117 VkImageLayout initial_layout,
1118 VkImageLayout final_layout)
1119 {
1120 struct anv_device *device = cmd_buffer->device;
1121 const struct gen_device_info *devinfo = &device->info;
1122 /* Validate the inputs. */
1123 assert(cmd_buffer);
1124 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1125 /* These values aren't supported for simplicity's sake. */
1126 assert(level_count != VK_REMAINING_MIP_LEVELS &&
1127 layer_count != VK_REMAINING_ARRAY_LAYERS);
1128 /* Ensure the subresource range is valid. */
1129 UNUSED uint64_t last_level_num = base_level + level_count;
1130 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
1131 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
1132 assert((uint64_t)base_layer + layer_count <= image_layers);
1133 assert(last_level_num <= image->levels);
1134 /* The spec disallows these final layouts. */
1135 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
1136 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
1137
1138 /* No work is necessary if the layout stays the same or if this subresource
1139 * range lacks auxiliary data.
1140 */
1141 if (initial_layout == final_layout)
1142 return;
1143
1144 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1145
1146 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1147 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
1148 /* This surface is a linear compressed image with a tiled shadow surface
1149 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
1150 * we need to ensure the shadow copy is up-to-date.
1151 */
1152 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1153 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
1154 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1155 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
1156 assert(plane == 0);
1157 anv_image_copy_to_shadow(cmd_buffer, image,
1158 VK_IMAGE_ASPECT_COLOR_BIT,
1159 base_level, level_count,
1160 base_layer, layer_count);
1161 }
1162
1163 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
1164 return;
1165
1166 assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR);
1167
1168 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
1169 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
1170 #if GEN_GEN == 12
1171 if (device->physical->has_implicit_ccs && devinfo->has_aux_map) {
1172 anv_image_init_aux_tt(cmd_buffer, image, aspect,
1173 base_level, level_count,
1174 base_layer, layer_count);
1175 }
1176 #else
1177 assert(!(device->physical->has_implicit_ccs && devinfo->has_aux_map));
1178 #endif
1179
1180 /* A subresource in the undefined layout may have been aliased and
1181 * populated with any arrangement of bits. Therefore, we must initialize
1182 * the related aux buffer and clear buffer entry with desirable values.
1183 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
1184 * images with VK_IMAGE_TILING_OPTIMAL.
1185 *
1186 * Initialize the relevant clear buffer entries.
1187 */
1188 if (base_level == 0 && base_layer == 0)
1189 init_fast_clear_color(cmd_buffer, image, aspect);
1190
1191 /* Initialize the aux buffers to enable correct rendering. In order to
1192 * ensure that things such as storage images work correctly, aux buffers
1193 * need to be initialized to valid data.
1194 *
1195 * Having an aux buffer with invalid data is a problem for two reasons:
1196 *
1197 * 1) Having an invalid value in the buffer can confuse the hardware.
1198 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1199 * invalid and leads to the hardware doing strange things. It
1200 * doesn't hang as far as we can tell but rendering corruption can
1201 * occur.
1202 *
1203 * 2) If this transition is into the GENERAL layout and we then use the
1204 * image as a storage image, then we must have the aux buffer in the
1205 * pass-through state so that, if we then go to texture from the
1206 * image, we get the results of our storage image writes and not the
1207 * fast clear color or other random data.
1208 *
1209 * For CCS both of the problems above are real demonstrable issues. In
1210 * that case, the only thing we can do is to perform an ambiguate to
1211 * transition the aux surface into the pass-through state.
1212 *
1213 * For MCS, (2) is never an issue because we don't support multisampled
1214 * storage images. In theory, issue (1) is a problem with MCS but we've
1215 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1216 * theory, be interpreted as something but we don't know that all bit
1217 * patterns are actually valid. For 2x and 8x, you could easily end up
1218 * with the MCS referring to an invalid plane because not all bits of
1219 * the MCS value are actually used. Even though we've never seen issues
1220 * in the wild, it's best to play it safe and initialize the MCS. We
1221 * can use a fast-clear for MCS because we only ever touch from render
1222 * and texture (no image load store).
1223 */
1224 if (image->samples == 1) {
1225 for (uint32_t l = 0; l < level_count; l++) {
1226 const uint32_t level = base_level + l;
1227
1228 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1229 if (base_layer >= aux_layers)
1230 break; /* We will only get fewer layers as level increases */
1231 uint32_t level_layer_count =
1232 MIN2(layer_count, aux_layers - base_layer);
1233
1234 anv_image_ccs_op(cmd_buffer, image,
1235 image->planes[plane].surface.isl.format,
1236 aspect, level, base_layer, level_layer_count,
1237 ISL_AUX_OP_AMBIGUATE, NULL, false);
1238
1239 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1240 set_image_compressed_bit(cmd_buffer, image, aspect,
1241 level, base_layer, level_layer_count,
1242 false);
1243 }
1244 }
1245 } else {
1246 if (image->samples == 4 || image->samples == 16) {
1247 anv_perf_warn(cmd_buffer->device, image,
1248 "Doing a potentially unnecessary fast-clear to "
1249 "define an MCS buffer.");
1250 }
1251
1252 assert(base_level == 0 && level_count == 1);
1253 anv_image_mcs_op(cmd_buffer, image,
1254 image->planes[plane].surface.isl.format,
1255 aspect, base_layer, layer_count,
1256 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1257 }
1258 return;
1259 }
1260
1261 const enum isl_aux_usage initial_aux_usage =
1262 anv_layout_to_aux_usage(devinfo, image, aspect, 0, initial_layout);
1263 const enum isl_aux_usage final_aux_usage =
1264 anv_layout_to_aux_usage(devinfo, image, aspect, 0, final_layout);
1265
1266 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1267 * We can handle transitions between CCS_D/E to and from NONE. What we
1268 * don't yet handle is switching between CCS_E and CCS_D within a given
1269 * image. Doing so in a performant way requires more detailed aux state
1270 * tracking such as what is done in i965. For now, just assume that we
1271 * only have one type of compression.
1272 */
1273 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1274 final_aux_usage == ISL_AUX_USAGE_NONE ||
1275 initial_aux_usage == final_aux_usage);
1276
1277 /* If initial aux usage is NONE, there is nothing to resolve */
1278 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1279 return;
1280
1281 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1282
1283 /* If the initial layout supports more fast clear than the final layout
1284 * then we need at least a partial resolve.
1285 */
1286 const enum anv_fast_clear_type initial_fast_clear =
1287 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1288 const enum anv_fast_clear_type final_fast_clear =
1289 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1290 if (final_fast_clear < initial_fast_clear)
1291 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1292
1293 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1294 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1295 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1296
1297 if (resolve_op == ISL_AUX_OP_NONE)
1298 return;
1299
1300 /* Perform a resolve to synchronize data between the main and aux buffer.
1301 * Before we begin, we must satisfy the cache flushing requirement specified
1302 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1303 *
1304 * Any transition from any value in {Clear, Render, Resolve} to a
1305 * different value in {Clear, Render, Resolve} requires end of pipe
1306 * synchronization.
1307 *
1308 * We perform a flush of the write cache before and after the clear and
1309 * resolve operations to meet this requirement.
1310 *
1311 * Unlike other drawing, fast clear operations are not properly
1312 * synchronized. The first PIPE_CONTROL here likely ensures that the
1313 * contents of the previous render or clear hit the render target before we
1314 * resolve and the second likely ensures that the resolve is complete before
1315 * we do any more rendering or clearing.
1316 */
1317 cmd_buffer->state.pending_pipe_bits |=
1318 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT;
1319
1320 for (uint32_t l = 0; l < level_count; l++) {
1321 uint32_t level = base_level + l;
1322
1323 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1324 if (base_layer >= aux_layers)
1325 break; /* We will only get fewer layers as level increases */
1326 uint32_t level_layer_count =
1327 MIN2(layer_count, aux_layers - base_layer);
1328
1329 for (uint32_t a = 0; a < level_layer_count; a++) {
1330 uint32_t array_layer = base_layer + a;
1331 if (image->samples == 1) {
1332 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1333 image->planes[plane].surface.isl.format,
1334 aspect, level, array_layer, resolve_op,
1335 final_fast_clear);
1336 } else {
1337 /* We only support fast-clear on the first layer so partial
1338 * resolves should not be used on other layers as they will use
1339 * the clear color stored in memory that is only valid for layer0.
1340 */
1341 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1342 array_layer != 0)
1343 continue;
1344
1345 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1346 image->planes[plane].surface.isl.format,
1347 aspect, array_layer, resolve_op,
1348 final_fast_clear);
1349 }
1350 }
1351 }
1352
1353 cmd_buffer->state.pending_pipe_bits |=
1354 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT;
1355 }
1356
1357 /**
1358 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1359 */
1360 static VkResult
1361 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1362 struct anv_render_pass *pass,
1363 const VkRenderPassBeginInfo *begin)
1364 {
1365 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1366 struct anv_cmd_state *state = &cmd_buffer->state;
1367 struct anv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
1368
1369 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1370
1371 if (pass->attachment_count > 0) {
1372 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1373 pass->attachment_count *
1374 sizeof(state->attachments[0]),
1375 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1376 if (state->attachments == NULL) {
1377 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1378 return anv_batch_set_error(&cmd_buffer->batch,
1379 VK_ERROR_OUT_OF_HOST_MEMORY);
1380 }
1381 } else {
1382 state->attachments = NULL;
1383 }
1384
1385 /* Reserve one for the NULL state. */
1386 unsigned num_states = 1;
1387 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1388 if (vk_format_is_color(pass->attachments[i].format))
1389 num_states++;
1390
1391 if (need_input_attachment_state(&pass->attachments[i]))
1392 num_states++;
1393 }
1394
1395 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1396 state->render_pass_states =
1397 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1398 num_states * ss_stride, isl_dev->ss.align);
1399
1400 struct anv_state next_state = state->render_pass_states;
1401 next_state.alloc_size = isl_dev->ss.size;
1402
1403 state->null_surface_state = next_state;
1404 next_state.offset += ss_stride;
1405 next_state.map += ss_stride;
1406
1407 const VkRenderPassAttachmentBeginInfoKHR *begin_attachment =
1408 vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
1409
1410 if (begin && !begin_attachment)
1411 assert(pass->attachment_count == framebuffer->attachment_count);
1412
1413 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1414 if (vk_format_is_color(pass->attachments[i].format)) {
1415 state->attachments[i].color.state = next_state;
1416 next_state.offset += ss_stride;
1417 next_state.map += ss_stride;
1418 }
1419
1420 if (need_input_attachment_state(&pass->attachments[i])) {
1421 state->attachments[i].input.state = next_state;
1422 next_state.offset += ss_stride;
1423 next_state.map += ss_stride;
1424 }
1425
1426 if (begin_attachment && begin_attachment->attachmentCount != 0) {
1427 assert(begin_attachment->attachmentCount == pass->attachment_count);
1428 ANV_FROM_HANDLE(anv_image_view, iview, begin_attachment->pAttachments[i]);
1429 cmd_buffer->state.attachments[i].image_view = iview;
1430 } else if (framebuffer && i < framebuffer->attachment_count) {
1431 cmd_buffer->state.attachments[i].image_view = framebuffer->attachments[i];
1432 }
1433 }
1434 assert(next_state.offset == state->render_pass_states.offset +
1435 state->render_pass_states.alloc_size);
1436
1437 if (begin) {
1438 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1439 isl_extent3d(framebuffer->width,
1440 framebuffer->height,
1441 framebuffer->layers));
1442
1443 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1444 struct anv_render_pass_attachment *att = &pass->attachments[i];
1445 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1446 VkImageAspectFlags clear_aspects = 0;
1447 VkImageAspectFlags load_aspects = 0;
1448
1449 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1450 /* color attachment */
1451 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1452 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1453 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1454 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1455 }
1456 } else {
1457 /* depthstencil attachment */
1458 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1459 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1460 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1461 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1462 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1463 }
1464 }
1465 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1466 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1467 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1468 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1469 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1470 }
1471 }
1472 }
1473
1474 state->attachments[i].current_layout = att->initial_layout;
1475 state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
1476 state->attachments[i].pending_clear_aspects = clear_aspects;
1477 state->attachments[i].pending_load_aspects = load_aspects;
1478 if (clear_aspects)
1479 state->attachments[i].clear_value = begin->pClearValues[i];
1480
1481 struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
1482 anv_assert(iview->vk_format == att->format);
1483
1484 const uint32_t num_layers = iview->planes[0].isl.array_len;
1485 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1486
1487 union isl_color_value clear_color = { .u32 = { 0, } };
1488 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1489 anv_assert(iview->n_planes == 1);
1490 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1491 color_attachment_compute_aux_usage(cmd_buffer->device,
1492 state, i, begin->renderArea,
1493 &clear_color);
1494
1495 anv_image_fill_surface_state(cmd_buffer->device,
1496 iview->image,
1497 VK_IMAGE_ASPECT_COLOR_BIT,
1498 &iview->planes[0].isl,
1499 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1500 state->attachments[i].aux_usage,
1501 &clear_color,
1502 0,
1503 &state->attachments[i].color,
1504 NULL);
1505
1506 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1507 } else {
1508 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1509 state, i,
1510 begin->renderArea);
1511 }
1512
1513 if (need_input_attachment_state(&pass->attachments[i])) {
1514 anv_image_fill_surface_state(cmd_buffer->device,
1515 iview->image,
1516 VK_IMAGE_ASPECT_COLOR_BIT,
1517 &iview->planes[0].isl,
1518 ISL_SURF_USAGE_TEXTURE_BIT,
1519 state->attachments[i].input_aux_usage,
1520 &clear_color,
1521 0,
1522 &state->attachments[i].input,
1523 NULL);
1524
1525 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1526 }
1527 }
1528 }
1529
1530 return VK_SUCCESS;
1531 }
1532
1533 VkResult
1534 genX(BeginCommandBuffer)(
1535 VkCommandBuffer commandBuffer,
1536 const VkCommandBufferBeginInfo* pBeginInfo)
1537 {
1538 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1539
1540 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1541 * command buffer's state. Otherwise, we must *reset* its state. In both
1542 * cases we reset it.
1543 *
1544 * From the Vulkan 1.0 spec:
1545 *
1546 * If a command buffer is in the executable state and the command buffer
1547 * was allocated from a command pool with the
1548 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1549 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1550 * as if vkResetCommandBuffer had been called with
1551 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1552 * the command buffer in the recording state.
1553 */
1554 anv_cmd_buffer_reset(cmd_buffer);
1555
1556 cmd_buffer->usage_flags = pBeginInfo->flags;
1557
1558 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1559 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1560
1561 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1562
1563 /* We sometimes store vertex data in the dynamic state buffer for blorp
1564 * operations and our dynamic state stream may re-use data from previous
1565 * command buffers. In order to prevent stale cache data, we flush the VF
1566 * cache. We could do this on every blorp call but that's not really
1567 * needed as all of the data will get written by the CPU prior to the GPU
1568 * executing anything. The chances are fairly high that they will use
1569 * blorp at least once per primary command buffer so it shouldn't be
1570 * wasted.
1571 *
1572 * There is also a workaround on gen8 which requires us to invalidate the
1573 * VF cache occasionally. It's easier if we can assume we start with a
1574 * fresh cache (See also genX(cmd_buffer_set_binding_for_gen8_vb_flush).)
1575 */
1576 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1577
1578 /* Re-emit the aux table register in every command buffer. This way we're
1579 * ensured that we have the table even if this command buffer doesn't
1580 * initialize any images.
1581 */
1582 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1583
1584 /* We send an "Indirect State Pointers Disable" packet at
1585 * EndCommandBuffer, so all push contant packets are ignored during a
1586 * context restore. Documentation says after that command, we need to
1587 * emit push constants again before any rendering operation. So we
1588 * flag them dirty here to make sure they get emitted.
1589 */
1590 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1591
1592 VkResult result = VK_SUCCESS;
1593 if (cmd_buffer->usage_flags &
1594 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1595 assert(pBeginInfo->pInheritanceInfo);
1596 cmd_buffer->state.pass =
1597 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1598 cmd_buffer->state.subpass =
1599 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1600
1601 /* This is optional in the inheritance info. */
1602 cmd_buffer->state.framebuffer =
1603 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1604
1605 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1606 cmd_buffer->state.pass, NULL);
1607
1608 /* Record that HiZ is enabled if we can. */
1609 if (cmd_buffer->state.framebuffer) {
1610 const struct anv_image_view * const iview =
1611 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1612
1613 if (iview) {
1614 VkImageLayout layout =
1615 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1616
1617 enum isl_aux_usage aux_usage =
1618 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1619 VK_IMAGE_ASPECT_DEPTH_BIT,
1620 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
1621 layout);
1622
1623 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1624 }
1625 }
1626
1627 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1628 }
1629
1630 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1631 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1632 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1633 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1634
1635 /* If secondary buffer supports conditional rendering
1636 * we should emit commands as if conditional rendering is enabled.
1637 */
1638 cmd_buffer->state.conditional_render_enabled =
1639 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1640 }
1641 #endif
1642
1643 return result;
1644 }
1645
1646 /* From the PRM, Volume 2a:
1647 *
1648 * "Indirect State Pointers Disable
1649 *
1650 * At the completion of the post-sync operation associated with this pipe
1651 * control packet, the indirect state pointers in the hardware are
1652 * considered invalid; the indirect pointers are not saved in the context.
1653 * If any new indirect state commands are executed in the command stream
1654 * while the pipe control is pending, the new indirect state commands are
1655 * preserved.
1656 *
1657 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1658 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1659 * commands are only considered as Indirect State Pointers. Once ISP is
1660 * issued in a context, SW must initialize by programming push constant
1661 * commands for all the shaders (at least to zero length) before attempting
1662 * any rendering operation for the same context."
1663 *
1664 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1665 * even though they point to a BO that has been already unreferenced at
1666 * the end of the previous batch buffer. This has been fine so far since
1667 * we are protected by these scratch page (every address not covered by
1668 * a BO should be pointing to the scratch page). But on CNL, it is
1669 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1670 * instruction.
1671 *
1672 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1673 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1674 * context restore, so the mentioned hang doesn't happen. However,
1675 * software must program push constant commands for all stages prior to
1676 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1677 *
1678 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1679 * constants have been loaded into the EUs prior to disable the push constants
1680 * so that it doesn't hang a previous 3DPRIMITIVE.
1681 */
1682 static void
1683 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1684 {
1685 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1686 pc.StallAtPixelScoreboard = true;
1687 pc.CommandStreamerStallEnable = true;
1688 }
1689 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1690 pc.IndirectStatePointersDisable = true;
1691 pc.CommandStreamerStallEnable = true;
1692 }
1693 }
1694
1695 VkResult
1696 genX(EndCommandBuffer)(
1697 VkCommandBuffer commandBuffer)
1698 {
1699 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1700
1701 if (anv_batch_has_error(&cmd_buffer->batch))
1702 return cmd_buffer->batch.status;
1703
1704 /* We want every command buffer to start with the PMA fix in a known state,
1705 * so we disable it at the end of the command buffer.
1706 */
1707 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1708
1709 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1710
1711 emit_isp_disable(cmd_buffer);
1712
1713 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1714
1715 return VK_SUCCESS;
1716 }
1717
1718 void
1719 genX(CmdExecuteCommands)(
1720 VkCommandBuffer commandBuffer,
1721 uint32_t commandBufferCount,
1722 const VkCommandBuffer* pCmdBuffers)
1723 {
1724 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1725
1726 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1727
1728 if (anv_batch_has_error(&primary->batch))
1729 return;
1730
1731 /* The secondary command buffers will assume that the PMA fix is disabled
1732 * when they begin executing. Make sure this is true.
1733 */
1734 genX(cmd_buffer_enable_pma_fix)(primary, false);
1735
1736 /* The secondary command buffer doesn't know which textures etc. have been
1737 * flushed prior to their execution. Apply those flushes now.
1738 */
1739 genX(cmd_buffer_apply_pipe_flushes)(primary);
1740
1741 for (uint32_t i = 0; i < commandBufferCount; i++) {
1742 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1743
1744 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1745 assert(!anv_batch_has_error(&secondary->batch));
1746
1747 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1748 if (secondary->state.conditional_render_enabled) {
1749 if (!primary->state.conditional_render_enabled) {
1750 /* Secondary buffer is constructed as if it will be executed
1751 * with conditional rendering, we should satisfy this dependency
1752 * regardless of conditional rendering being enabled in primary.
1753 */
1754 struct gen_mi_builder b;
1755 gen_mi_builder_init(&b, &primary->batch);
1756 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
1757 gen_mi_imm(UINT64_MAX));
1758 }
1759 }
1760 #endif
1761
1762 if (secondary->usage_flags &
1763 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1764 /* If we're continuing a render pass from the primary, we need to
1765 * copy the surface states for the current subpass into the storage
1766 * we allocated for them in BeginCommandBuffer.
1767 */
1768 struct anv_bo *ss_bo =
1769 primary->device->surface_state_pool.block_pool.bo;
1770 struct anv_state src_state = primary->state.render_pass_states;
1771 struct anv_state dst_state = secondary->state.render_pass_states;
1772 assert(src_state.alloc_size == dst_state.alloc_size);
1773
1774 genX(cmd_buffer_so_memcpy)(primary,
1775 (struct anv_address) {
1776 .bo = ss_bo,
1777 .offset = dst_state.offset,
1778 },
1779 (struct anv_address) {
1780 .bo = ss_bo,
1781 .offset = src_state.offset,
1782 },
1783 src_state.alloc_size);
1784 }
1785
1786 anv_cmd_buffer_add_secondary(primary, secondary);
1787 }
1788
1789 /* The secondary isn't counted in our VF cache tracking so we need to
1790 * invalidate the whole thing.
1791 */
1792 if (GEN_GEN >= 8 && GEN_GEN <= 9) {
1793 primary->state.pending_pipe_bits |=
1794 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1795 }
1796
1797 /* The secondary may have selected a different pipeline (3D or compute) and
1798 * may have changed the current L3$ configuration. Reset our tracking
1799 * variables to invalid values to ensure that we re-emit these in the case
1800 * where we do any draws or compute dispatches from the primary after the
1801 * secondary has returned.
1802 */
1803 primary->state.current_pipeline = UINT32_MAX;
1804 primary->state.current_l3_config = NULL;
1805 primary->state.current_hash_scale = 0;
1806
1807 /* Each of the secondary command buffers will use its own state base
1808 * address. We need to re-emit state base address for the primary after
1809 * all of the secondaries are done.
1810 *
1811 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1812 * address calls?
1813 */
1814 genX(cmd_buffer_emit_state_base_address)(primary);
1815 }
1816
1817 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1818 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1819 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1820
1821 /**
1822 * Program the hardware to use the specified L3 configuration.
1823 */
1824 void
1825 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1826 const struct gen_l3_config *cfg)
1827 {
1828 assert(cfg);
1829 if (cfg == cmd_buffer->state.current_l3_config)
1830 return;
1831
1832 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1833 intel_logd("L3 config transition: ");
1834 gen_dump_l3_config(cfg, stderr);
1835 }
1836
1837 UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM];
1838
1839 /* According to the hardware docs, the L3 partitioning can only be changed
1840 * while the pipeline is completely drained and the caches are flushed,
1841 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1842 */
1843 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1844 pc.DCFlushEnable = true;
1845 pc.PostSyncOperation = NoWrite;
1846 pc.CommandStreamerStallEnable = true;
1847 }
1848
1849 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1850 * invalidation of the relevant caches. Note that because RO invalidation
1851 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1852 * command is processed by the CS) we cannot combine it with the previous
1853 * stalling flush as the hardware documentation suggests, because that
1854 * would cause the CS to stall on previous rendering *after* RO
1855 * invalidation and wouldn't prevent the RO caches from being polluted by
1856 * concurrent rendering before the stall completes. This intentionally
1857 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1858 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1859 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1860 * already guarantee that there is no concurrent GPGPU kernel execution
1861 * (see SKL HSD 2132585).
1862 */
1863 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1864 pc.TextureCacheInvalidationEnable = true;
1865 pc.ConstantCacheInvalidationEnable = true;
1866 pc.InstructionCacheInvalidateEnable = true;
1867 pc.StateCacheInvalidationEnable = true;
1868 pc.PostSyncOperation = NoWrite;
1869 }
1870
1871 /* Now send a third stalling flush to make sure that invalidation is
1872 * complete when the L3 configuration registers are modified.
1873 */
1874 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1875 pc.DCFlushEnable = true;
1876 pc.PostSyncOperation = NoWrite;
1877 pc.CommandStreamerStallEnable = true;
1878 }
1879
1880 #if GEN_GEN >= 8
1881
1882 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1883
1884 #if GEN_GEN >= 12
1885 #define L3_ALLOCATION_REG GENX(L3ALLOC)
1886 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
1887 #else
1888 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
1889 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
1890 #endif
1891
1892 uint32_t l3cr;
1893 anv_pack_struct(&l3cr, L3_ALLOCATION_REG,
1894 #if GEN_GEN < 11
1895 .SLMEnable = has_slm,
1896 #endif
1897 #if GEN_GEN == 11
1898 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1899 * in L3CNTLREG register. The default setting of the bit is not the
1900 * desirable behavior.
1901 */
1902 .ErrorDetectionBehaviorControl = true,
1903 .UseFullWays = true,
1904 #endif
1905 .URBAllocation = cfg->n[GEN_L3P_URB],
1906 .ROAllocation = cfg->n[GEN_L3P_RO],
1907 .DCAllocation = cfg->n[GEN_L3P_DC],
1908 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1909
1910 /* Set up the L3 partitioning. */
1911 emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr);
1912
1913 #else
1914
1915 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1916 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1917 cfg->n[GEN_L3P_ALL];
1918 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1919 cfg->n[GEN_L3P_ALL];
1920 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1921 cfg->n[GEN_L3P_ALL];
1922
1923 assert(!cfg->n[GEN_L3P_ALL]);
1924
1925 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1926 * the matching space on the remaining banks has to be allocated to a
1927 * client (URB for all validated configurations) set to the
1928 * lower-bandwidth 2-bank address hashing mode.
1929 */
1930 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1931 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1932 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1933
1934 /* Minimum number of ways that can be allocated to the URB. */
1935 const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1936 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1937
1938 uint32_t l3sqcr1, l3cr2, l3cr3;
1939 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1940 .ConvertDC_UC = !has_dc,
1941 .ConvertIS_UC = !has_is,
1942 .ConvertC_UC = !has_c,
1943 .ConvertT_UC = !has_t);
1944 l3sqcr1 |=
1945 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1946 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1947 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1948
1949 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1950 .SLMEnable = has_slm,
1951 .URBLowBandwidth = urb_low_bw,
1952 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1953 #if !GEN_IS_HASWELL
1954 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1955 #endif
1956 .ROAllocation = cfg->n[GEN_L3P_RO],
1957 .DCAllocation = cfg->n[GEN_L3P_DC]);
1958
1959 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1960 .ISAllocation = cfg->n[GEN_L3P_IS],
1961 .ISLowBandwidth = 0,
1962 .CAllocation = cfg->n[GEN_L3P_C],
1963 .CLowBandwidth = 0,
1964 .TAllocation = cfg->n[GEN_L3P_T],
1965 .TLowBandwidth = 0);
1966
1967 /* Set up the L3 partitioning. */
1968 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1969 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1970 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1971
1972 #if GEN_IS_HASWELL
1973 if (cmd_buffer->device->physical->cmd_parser_version >= 4) {
1974 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1975 * them disabled to avoid crashing the system hard.
1976 */
1977 uint32_t scratch1, chicken3;
1978 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1979 .L3AtomicDisable = !has_dc);
1980 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1981 .L3AtomicDisableMask = true,
1982 .L3AtomicDisable = !has_dc);
1983 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1984 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1985 }
1986 #endif
1987
1988 #endif
1989
1990 cmd_buffer->state.current_l3_config = cfg;
1991 }
1992
1993 void
1994 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1995 {
1996 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1997 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1998
1999 if (cmd_buffer->device->physical->always_flush_cache)
2000 bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
2001
2002 /*
2003 * From Sandybridge PRM, volume 2, "1.7.2 End-of-Pipe Synchronization":
2004 *
2005 * Write synchronization is a special case of end-of-pipe
2006 * synchronization that requires that the render cache and/or depth
2007 * related caches are flushed to memory, where the data will become
2008 * globally visible. This type of synchronization is required prior to
2009 * SW (CPU) actually reading the result data from memory, or initiating
2010 * an operation that will use as a read surface (such as a texture
2011 * surface) a previous render target and/or depth/stencil buffer
2012 *
2013 *
2014 * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
2015 *
2016 * Exercising the write cache flush bits (Render Target Cache Flush
2017 * Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only
2018 * ensures the write caches are flushed and doesn't guarantee the data
2019 * is globally visible.
2020 *
2021 * SW can track the completion of the end-of-pipe-synchronization by
2022 * using "Notify Enable" and "PostSync Operation - Write Immediate
2023 * Data" in the PIPE_CONTROL command.
2024 *
2025 * In other words, flushes are pipelined while invalidations are handled
2026 * immediately. Therefore, if we're flushing anything then we need to
2027 * schedule an end-of-pipe sync before any invalidations can happen.
2028 */
2029 if (bits & ANV_PIPE_FLUSH_BITS)
2030 bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2031
2032
2033 /* HSD 1209978178: docs say that before programming the aux table:
2034 *
2035 * "Driver must ensure that the engine is IDLE but ensure it doesn't
2036 * add extra flushes in the case it knows that the engine is already
2037 * IDLE."
2038 */
2039 if (GEN_GEN == 12 && ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2040 bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2041
2042 /* If we're going to do an invalidate and we have a pending end-of-pipe
2043 * sync that has yet to be resolved, we do the end-of-pipe sync now.
2044 */
2045 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
2046 (bits & ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT)) {
2047 bits |= ANV_PIPE_END_OF_PIPE_SYNC_BIT;
2048 bits &= ~ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2049 }
2050
2051 if (GEN_GEN >= 12 &&
2052 ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) ||
2053 (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) {
2054 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
2055 * Enable):
2056 *
2057 * Unified Cache (Tile Cache Disabled):
2058 *
2059 * When the Color and Depth (Z) streams are enabled to be cached in
2060 * the DC space of L2, Software must use "Render Target Cache Flush
2061 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
2062 * Flush" for getting the color and depth (Z) write data to be
2063 * globally observable. In this mode of operation it is not required
2064 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
2065 */
2066 bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2067 }
2068
2069 /* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which
2070 * invalidates the instruction cache
2071 */
2072 if (GEN_GEN == 12 && (bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT))
2073 bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2074
2075 if ((GEN_GEN >= 8 && GEN_GEN <= 9) &&
2076 (bits & ANV_PIPE_CS_STALL_BIT) &&
2077 (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
2078 /* If we are doing a VF cache invalidate AND a CS stall (it must be
2079 * both) then we can reset our vertex cache tracking.
2080 */
2081 memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
2082 sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
2083 memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
2084 sizeof(cmd_buffer->state.gfx.ib_dirty_range));
2085 }
2086
2087 /* Project: SKL / Argument: LRI Post Sync Operation [23]
2088 *
2089 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
2090 * programmed prior to programming a PIPECONTROL command with "LRI
2091 * Post Sync Operation" in GPGPU mode of operation (i.e when
2092 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
2093 *
2094 * The same text exists a few rows below for Post Sync Op.
2095 *
2096 * On Gen12 this is GEN:BUG:1607156449.
2097 */
2098 if (bits & ANV_PIPE_POST_SYNC_BIT) {
2099 if ((GEN_GEN == 9 || (GEN_GEN == 12 && devinfo->revision == 0 /* A0 */)) &&
2100 cmd_buffer->state.current_pipeline == GPGPU)
2101 bits |= ANV_PIPE_CS_STALL_BIT;
2102 bits &= ~ANV_PIPE_POST_SYNC_BIT;
2103 }
2104
2105 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT |
2106 ANV_PIPE_END_OF_PIPE_SYNC_BIT)) {
2107 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2108 #if GEN_GEN >= 12
2109 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2110 #endif
2111 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2112 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2113 pipe.RenderTargetCacheFlushEnable =
2114 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2115
2116 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
2117 * be set with any PIPE_CONTROL with Depth Flush Enable bit set.
2118 */
2119 #if GEN_GEN >= 12
2120 pipe.DepthStallEnable =
2121 pipe.DepthCacheFlushEnable || (bits & ANV_PIPE_DEPTH_STALL_BIT);
2122 #else
2123 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
2124 #endif
2125
2126 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
2127 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2128
2129 /* From Sandybridge PRM, volume 2, "1.7.3.1 Writing a Value to Memory":
2130 *
2131 * "The most common action to perform upon reaching a
2132 * synchronization point is to write a value out to memory. An
2133 * immediate value (included with the synchronization command) may
2134 * be written."
2135 *
2136 *
2137 * From Broadwell PRM, volume 7, "End-of-Pipe Synchronization":
2138 *
2139 * "In case the data flushed out by the render engine is to be
2140 * read back in to the render engine in coherent manner, then the
2141 * render engine has to wait for the fence completion before
2142 * accessing the flushed data. This can be achieved by following
2143 * means on various products: PIPE_CONTROL command with CS Stall
2144 * and the required write caches flushed with Post-Sync-Operation
2145 * as Write Immediate Data.
2146 *
2147 * Example:
2148 * - Workload-1 (3D/GPGPU/MEDIA)
2149 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
2150 * Immediate Data, Required Write Cache Flush bits set)
2151 * - Workload-2 (Can use the data produce or output by
2152 * Workload-1)
2153 */
2154 if (bits & ANV_PIPE_END_OF_PIPE_SYNC_BIT) {
2155 pipe.CommandStreamerStallEnable = true;
2156 pipe.PostSyncOperation = WriteImmediateData;
2157 pipe.Address = (struct anv_address) {
2158 .bo = cmd_buffer->device->workaround_bo,
2159 .offset = 0
2160 };
2161 }
2162
2163 /*
2164 * According to the Broadwell documentation, any PIPE_CONTROL with the
2165 * "Command Streamer Stall" bit set must also have another bit set,
2166 * with five different options:
2167 *
2168 * - Render Target Cache Flush
2169 * - Depth Cache Flush
2170 * - Stall at Pixel Scoreboard
2171 * - Post-Sync Operation
2172 * - Depth Stall
2173 * - DC Flush Enable
2174 *
2175 * I chose "Stall at Pixel Scoreboard" since that's what we use in
2176 * mesa and it seems to work fine. The choice is fairly arbitrary.
2177 */
2178 if (pipe.CommandStreamerStallEnable &&
2179 !pipe.RenderTargetCacheFlushEnable &&
2180 !pipe.DepthCacheFlushEnable &&
2181 !pipe.StallAtPixelScoreboard &&
2182 !pipe.PostSyncOperation &&
2183 !pipe.DepthStallEnable &&
2184 !pipe.DCFlushEnable)
2185 pipe.StallAtPixelScoreboard = true;
2186 }
2187
2188 /* If a render target flush was emitted, then we can toggle off the bit
2189 * saying that render target writes are ongoing.
2190 */
2191 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
2192 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
2193
2194 if (GEN_IS_HASWELL) {
2195 /* Haswell needs addition work-arounds:
2196 *
2197 * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
2198 *
2199 * Option 1:
2200 * PIPE_CONTROL command with the CS Stall and the required write
2201 * caches flushed with Post-SyncOperation as Write Immediate Data
2202 * followed by eight dummy MI_STORE_DATA_IMM (write to scratch
2203 * spce) commands.
2204 *
2205 * Example:
2206 * - Workload-1
2207 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
2208 * Immediate Data, Required Write Cache Flush bits set)
2209 * - MI_STORE_DATA_IMM (8 times) (Dummy data, Scratch Address)
2210 * - Workload-2 (Can use the data produce or output by
2211 * Workload-1)
2212 *
2213 * Unfortunately, both the PRMs and the internal docs are a bit
2214 * out-of-date in this regard. What the windows driver does (and
2215 * this appears to actually work) is to emit a register read from the
2216 * memory address written by the pipe control above.
2217 *
2218 * What register we load into doesn't matter. We choose an indirect
2219 * rendering register because we know it always exists and it's one
2220 * of the first registers the command parser allows us to write. If
2221 * you don't have command parser support in your kernel (pre-4.2),
2222 * this will get turned into MI_NOOP and you won't get the
2223 * workaround. Unfortunately, there's just not much we can do in
2224 * that case. This register is perfectly safe to write since we
2225 * always re-load all of the indirect draw registers right before
2226 * 3DPRIMITIVE when needed anyway.
2227 */
2228 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
2229 lrm.RegisterAddress = 0x243C; /* GEN7_3DPRIM_START_INSTANCE */
2230 lrm.MemoryAddress = (struct anv_address) {
2231 .bo = cmd_buffer->device->workaround_bo,
2232 .offset = 0
2233 };
2234 }
2235 }
2236
2237 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT |
2238 ANV_PIPE_END_OF_PIPE_SYNC_BIT);
2239 }
2240
2241 if (bits & ANV_PIPE_INVALIDATE_BITS) {
2242 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2243 *
2244 * "If the VF Cache Invalidation Enable is set to a 1 in a
2245 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
2246 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
2247 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
2248 * a 1."
2249 *
2250 * This appears to hang Broadwell, so we restrict it to just gen9.
2251 */
2252 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
2253 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
2254
2255 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2256 pipe.StateCacheInvalidationEnable =
2257 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
2258 pipe.ConstantCacheInvalidationEnable =
2259 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2260 pipe.VFCacheInvalidationEnable =
2261 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2262 pipe.TextureCacheInvalidationEnable =
2263 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2264 pipe.InstructionCacheInvalidateEnable =
2265 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
2266
2267 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2268 *
2269 * "When VF Cache Invalidate is set “Post Sync Operation” must be
2270 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
2271 * “Write Timestamp”.
2272 */
2273 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
2274 pipe.PostSyncOperation = WriteImmediateData;
2275 pipe.Address =
2276 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
2277 }
2278 }
2279
2280 #if GEN_GEN == 12
2281 if ((bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT) &&
2282 cmd_buffer->device->info.has_aux_map) {
2283 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2284 lri.RegisterOffset = GENX(GFX_CCS_AUX_INV_num);
2285 lri.DataDWord = 1;
2286 }
2287 }
2288 #endif
2289
2290 bits &= ~ANV_PIPE_INVALIDATE_BITS;
2291 }
2292
2293 cmd_buffer->state.pending_pipe_bits = bits;
2294 }
2295
2296 void genX(CmdPipelineBarrier)(
2297 VkCommandBuffer commandBuffer,
2298 VkPipelineStageFlags srcStageMask,
2299 VkPipelineStageFlags destStageMask,
2300 VkBool32 byRegion,
2301 uint32_t memoryBarrierCount,
2302 const VkMemoryBarrier* pMemoryBarriers,
2303 uint32_t bufferMemoryBarrierCount,
2304 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
2305 uint32_t imageMemoryBarrierCount,
2306 const VkImageMemoryBarrier* pImageMemoryBarriers)
2307 {
2308 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2309
2310 /* XXX: Right now, we're really dumb and just flush whatever categories
2311 * the app asks for. One of these days we may make this a bit better
2312 * but right now that's all the hardware allows for in most areas.
2313 */
2314 VkAccessFlags src_flags = 0;
2315 VkAccessFlags dst_flags = 0;
2316
2317 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
2318 src_flags |= pMemoryBarriers[i].srcAccessMask;
2319 dst_flags |= pMemoryBarriers[i].dstAccessMask;
2320 }
2321
2322 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
2323 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
2324 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
2325 }
2326
2327 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
2328 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
2329 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
2330 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
2331 const VkImageSubresourceRange *range =
2332 &pImageMemoryBarriers[i].subresourceRange;
2333
2334 uint32_t base_layer, layer_count;
2335 if (image->type == VK_IMAGE_TYPE_3D) {
2336 base_layer = 0;
2337 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
2338 } else {
2339 base_layer = range->baseArrayLayer;
2340 layer_count = anv_get_layerCount(image, range);
2341 }
2342
2343 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
2344 transition_depth_buffer(cmd_buffer, image,
2345 pImageMemoryBarriers[i].oldLayout,
2346 pImageMemoryBarriers[i].newLayout);
2347 }
2348
2349 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
2350 transition_stencil_buffer(cmd_buffer, image,
2351 range->baseMipLevel,
2352 anv_get_levelCount(image, range),
2353 base_layer, layer_count,
2354 pImageMemoryBarriers[i].oldLayout,
2355 pImageMemoryBarriers[i].newLayout);
2356 }
2357
2358 if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2359 VkImageAspectFlags color_aspects =
2360 anv_image_expand_aspects(image, range->aspectMask);
2361 uint32_t aspect_bit;
2362 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
2363 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
2364 range->baseMipLevel,
2365 anv_get_levelCount(image, range),
2366 base_layer, layer_count,
2367 pImageMemoryBarriers[i].oldLayout,
2368 pImageMemoryBarriers[i].newLayout);
2369 }
2370 }
2371 }
2372
2373 cmd_buffer->state.pending_pipe_bits |=
2374 anv_pipe_flush_bits_for_access_flags(src_flags) |
2375 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
2376 }
2377
2378 static void
2379 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2380 {
2381 VkShaderStageFlags stages =
2382 cmd_buffer->state.gfx.base.pipeline->active_stages;
2383
2384 /* In order to avoid thrash, we assume that vertex and fragment stages
2385 * always exist. In the rare case where one is missing *and* the other
2386 * uses push concstants, this may be suboptimal. However, avoiding stalls
2387 * seems more important.
2388 */
2389 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
2390
2391 if (stages == cmd_buffer->state.push_constant_stages)
2392 return;
2393
2394 #if GEN_GEN >= 8
2395 const unsigned push_constant_kb = 32;
2396 #elif GEN_IS_HASWELL
2397 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
2398 #else
2399 const unsigned push_constant_kb = 16;
2400 #endif
2401
2402 const unsigned num_stages =
2403 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2404 unsigned size_per_stage = push_constant_kb / num_stages;
2405
2406 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2407 * units of 2KB. Incidentally, these are the same platforms that have
2408 * 32KB worth of push constant space.
2409 */
2410 if (push_constant_kb == 32)
2411 size_per_stage &= ~1u;
2412
2413 uint32_t kb_used = 0;
2414 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2415 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2416 anv_batch_emit(&cmd_buffer->batch,
2417 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2418 alloc._3DCommandSubOpcode = 18 + i;
2419 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2420 alloc.ConstantBufferSize = push_size;
2421 }
2422 kb_used += push_size;
2423 }
2424
2425 anv_batch_emit(&cmd_buffer->batch,
2426 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2427 alloc.ConstantBufferOffset = kb_used;
2428 alloc.ConstantBufferSize = push_constant_kb - kb_used;
2429 }
2430
2431 cmd_buffer->state.push_constant_stages = stages;
2432
2433 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2434 *
2435 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2436 * the next 3DPRIMITIVE command after programming the
2437 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2438 *
2439 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2440 * pipeline setup, we need to dirty push constants.
2441 */
2442 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2443 }
2444
2445 static struct anv_address
2446 anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
2447 struct anv_descriptor_set *set)
2448 {
2449 if (set->pool) {
2450 /* This is a normal descriptor set */
2451 return (struct anv_address) {
2452 .bo = set->pool->bo,
2453 .offset = set->desc_mem.offset,
2454 };
2455 } else {
2456 /* This is a push descriptor set. We have to flag it as used on the GPU
2457 * so that the next time we push descriptors, we grab a new memory.
2458 */
2459 struct anv_push_descriptor_set *push_set =
2460 (struct anv_push_descriptor_set *)set;
2461 push_set->set_used_on_gpu = true;
2462
2463 return (struct anv_address) {
2464 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
2465 .offset = set->desc_mem.offset,
2466 };
2467 }
2468 }
2469
2470 static struct anv_cmd_pipeline_state *
2471 pipe_state_for_stage(struct anv_cmd_buffer *cmd_buffer,
2472 gl_shader_stage stage)
2473 {
2474 switch (stage) {
2475 case MESA_SHADER_COMPUTE:
2476 return &cmd_buffer->state.compute.base;
2477
2478 case MESA_SHADER_VERTEX:
2479 case MESA_SHADER_TESS_CTRL:
2480 case MESA_SHADER_TESS_EVAL:
2481 case MESA_SHADER_GEOMETRY:
2482 case MESA_SHADER_FRAGMENT:
2483 return &cmd_buffer->state.gfx.base;
2484
2485 default:
2486 unreachable("invalid stage");
2487 }
2488 }
2489
2490 static VkResult
2491 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2492 gl_shader_stage stage,
2493 struct anv_state *bt_state)
2494 {
2495 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2496 uint32_t state_offset;
2497
2498 struct anv_cmd_pipeline_state *pipe_state =
2499 pipe_state_for_stage(cmd_buffer, stage);
2500 struct anv_pipeline *pipeline = pipe_state->pipeline;
2501
2502 if (!anv_pipeline_has_stage(pipeline, stage)) {
2503 *bt_state = (struct anv_state) { 0, };
2504 return VK_SUCCESS;
2505 }
2506
2507 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2508 if (map->surface_count == 0) {
2509 *bt_state = (struct anv_state) { 0, };
2510 return VK_SUCCESS;
2511 }
2512
2513 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2514 map->surface_count,
2515 &state_offset);
2516 uint32_t *bt_map = bt_state->map;
2517
2518 if (bt_state->map == NULL)
2519 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2520
2521 /* We only need to emit relocs if we're not using softpin. If we are using
2522 * softpin then we always keep all user-allocated memory objects resident.
2523 */
2524 const bool need_client_mem_relocs =
2525 !cmd_buffer->device->physical->use_softpin;
2526
2527 for (uint32_t s = 0; s < map->surface_count; s++) {
2528 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2529
2530 struct anv_state surface_state;
2531
2532 switch (binding->set) {
2533 case ANV_DESCRIPTOR_SET_NULL:
2534 bt_map[s] = 0;
2535 break;
2536
2537 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
2538 /* Color attachment binding */
2539 assert(stage == MESA_SHADER_FRAGMENT);
2540 if (binding->index < subpass->color_count) {
2541 const unsigned att =
2542 subpass->color_attachments[binding->index].attachment;
2543
2544 /* From the Vulkan 1.0.46 spec:
2545 *
2546 * "If any color or depth/stencil attachments are
2547 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2548 * attachments."
2549 */
2550 if (att == VK_ATTACHMENT_UNUSED) {
2551 surface_state = cmd_buffer->state.null_surface_state;
2552 } else {
2553 surface_state = cmd_buffer->state.attachments[att].color.state;
2554 }
2555 } else {
2556 surface_state = cmd_buffer->state.null_surface_state;
2557 }
2558
2559 bt_map[s] = surface_state.offset + state_offset;
2560 break;
2561
2562 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
2563 struct anv_state surface_state =
2564 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2565
2566 struct anv_address constant_data = {
2567 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2568 .offset = pipeline->shaders[stage]->constant_data.offset,
2569 };
2570 unsigned constant_data_size =
2571 pipeline->shaders[stage]->constant_data_size;
2572
2573 const enum isl_format format =
2574 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2575 anv_fill_buffer_surface_state(cmd_buffer->device,
2576 surface_state, format,
2577 constant_data, constant_data_size, 1);
2578
2579 bt_map[s] = surface_state.offset + state_offset;
2580 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2581 break;
2582 }
2583
2584 case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
2585 /* This is always the first binding for compute shaders */
2586 assert(stage == MESA_SHADER_COMPUTE && s == 0);
2587
2588 struct anv_state surface_state =
2589 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2590
2591 const enum isl_format format =
2592 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2593 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2594 format,
2595 cmd_buffer->state.compute.num_workgroups,
2596 12, 1);
2597 bt_map[s] = surface_state.offset + state_offset;
2598 if (need_client_mem_relocs) {
2599 add_surface_reloc(cmd_buffer, surface_state,
2600 cmd_buffer->state.compute.num_workgroups);
2601 }
2602 break;
2603 }
2604
2605 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2606 /* This is a descriptor set buffer so the set index is actually
2607 * given by binding->binding. (Yes, that's confusing.)
2608 */
2609 struct anv_descriptor_set *set =
2610 pipe_state->descriptors[binding->index];
2611 assert(set->desc_mem.alloc_size);
2612 assert(set->desc_surface_state.alloc_size);
2613 bt_map[s] = set->desc_surface_state.offset + state_offset;
2614 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2615 anv_descriptor_set_address(cmd_buffer, set));
2616 break;
2617 }
2618
2619 default: {
2620 assert(binding->set < MAX_SETS);
2621 const struct anv_descriptor *desc =
2622 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2623
2624 switch (desc->type) {
2625 case VK_DESCRIPTOR_TYPE_SAMPLER:
2626 /* Nothing for us to do here */
2627 continue;
2628
2629 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2630 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2631 struct anv_surface_state sstate =
2632 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2633 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2634 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2635 surface_state = sstate.state;
2636 assert(surface_state.alloc_size);
2637 if (need_client_mem_relocs)
2638 add_surface_state_relocs(cmd_buffer, sstate);
2639 break;
2640 }
2641 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2642 assert(stage == MESA_SHADER_FRAGMENT);
2643 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2644 /* For depth and stencil input attachments, we treat it like any
2645 * old texture that a user may have bound.
2646 */
2647 assert(desc->image_view->n_planes == 1);
2648 struct anv_surface_state sstate =
2649 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2650 desc->image_view->planes[0].general_sampler_surface_state :
2651 desc->image_view->planes[0].optimal_sampler_surface_state;
2652 surface_state = sstate.state;
2653 assert(surface_state.alloc_size);
2654 if (need_client_mem_relocs)
2655 add_surface_state_relocs(cmd_buffer, sstate);
2656 } else {
2657 /* For color input attachments, we create the surface state at
2658 * vkBeginRenderPass time so that we can include aux and clear
2659 * color information.
2660 */
2661 assert(binding->input_attachment_index < subpass->input_count);
2662 const unsigned subpass_att = binding->input_attachment_index;
2663 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2664 surface_state = cmd_buffer->state.attachments[att].input.state;
2665 }
2666 break;
2667
2668 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2669 struct anv_surface_state sstate = (binding->write_only)
2670 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2671 : desc->image_view->planes[binding->plane].storage_surface_state;
2672 surface_state = sstate.state;
2673 assert(surface_state.alloc_size);
2674 if (need_client_mem_relocs)
2675 add_surface_state_relocs(cmd_buffer, sstate);
2676 break;
2677 }
2678
2679 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2680 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2681 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2682 surface_state = desc->buffer_view->surface_state;
2683 assert(surface_state.alloc_size);
2684 if (need_client_mem_relocs) {
2685 add_surface_reloc(cmd_buffer, surface_state,
2686 desc->buffer_view->address);
2687 }
2688 break;
2689
2690 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2691 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2692 /* Compute the offset within the buffer */
2693 struct anv_push_constants *push =
2694 &cmd_buffer->state.push_constants[stage];
2695
2696 uint32_t dynamic_offset =
2697 push->dynamic_offsets[binding->dynamic_offset_index];
2698 uint64_t offset = desc->offset + dynamic_offset;
2699 /* Clamp to the buffer size */
2700 offset = MIN2(offset, desc->buffer->size);
2701 /* Clamp the range to the buffer size */
2702 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2703
2704 struct anv_address address =
2705 anv_address_add(desc->buffer->address, offset);
2706
2707 surface_state =
2708 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2709 enum isl_format format =
2710 anv_isl_format_for_descriptor_type(desc->type);
2711
2712 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2713 format, address, range, 1);
2714 if (need_client_mem_relocs)
2715 add_surface_reloc(cmd_buffer, surface_state, address);
2716 break;
2717 }
2718
2719 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2720 surface_state = (binding->write_only)
2721 ? desc->buffer_view->writeonly_storage_surface_state
2722 : desc->buffer_view->storage_surface_state;
2723 assert(surface_state.alloc_size);
2724 if (need_client_mem_relocs) {
2725 add_surface_reloc(cmd_buffer, surface_state,
2726 desc->buffer_view->address);
2727 }
2728 break;
2729
2730 default:
2731 assert(!"Invalid descriptor type");
2732 continue;
2733 }
2734 bt_map[s] = surface_state.offset + state_offset;
2735 break;
2736 }
2737 }
2738 }
2739
2740 return VK_SUCCESS;
2741 }
2742
2743 static VkResult
2744 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2745 gl_shader_stage stage,
2746 struct anv_state *state)
2747 {
2748 struct anv_cmd_pipeline_state *pipe_state =
2749 pipe_state_for_stage(cmd_buffer, stage);
2750 struct anv_pipeline *pipeline = pipe_state->pipeline;
2751
2752 if (!anv_pipeline_has_stage(pipeline, stage)) {
2753 *state = (struct anv_state) { 0, };
2754 return VK_SUCCESS;
2755 }
2756
2757 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2758 if (map->sampler_count == 0) {
2759 *state = (struct anv_state) { 0, };
2760 return VK_SUCCESS;
2761 }
2762
2763 uint32_t size = map->sampler_count * 16;
2764 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2765
2766 if (state->map == NULL)
2767 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2768
2769 for (uint32_t s = 0; s < map->sampler_count; s++) {
2770 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2771 const struct anv_descriptor *desc =
2772 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2773
2774 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2775 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2776 continue;
2777
2778 struct anv_sampler *sampler = desc->sampler;
2779
2780 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2781 * happens to be zero.
2782 */
2783 if (sampler == NULL)
2784 continue;
2785
2786 memcpy(state->map + (s * 16),
2787 sampler->state[binding->plane], sizeof(sampler->state[0]));
2788 }
2789
2790 return VK_SUCCESS;
2791 }
2792
2793 static uint32_t
2794 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer,
2795 struct anv_pipeline *pipeline)
2796 {
2797 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2798 pipeline->active_stages;
2799
2800 VkResult result = VK_SUCCESS;
2801 anv_foreach_stage(s, dirty) {
2802 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2803 if (result != VK_SUCCESS)
2804 break;
2805 result = emit_binding_table(cmd_buffer, s,
2806 &cmd_buffer->state.binding_tables[s]);
2807 if (result != VK_SUCCESS)
2808 break;
2809 }
2810
2811 if (result != VK_SUCCESS) {
2812 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2813
2814 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2815 if (result != VK_SUCCESS)
2816 return 0;
2817
2818 /* Re-emit state base addresses so we get the new surface state base
2819 * address before we start emitting binding tables etc.
2820 */
2821 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2822
2823 /* Re-emit all active binding tables */
2824 dirty |= pipeline->active_stages;
2825 anv_foreach_stage(s, dirty) {
2826 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2827 if (result != VK_SUCCESS) {
2828 anv_batch_set_error(&cmd_buffer->batch, result);
2829 return 0;
2830 }
2831 result = emit_binding_table(cmd_buffer, s,
2832 &cmd_buffer->state.binding_tables[s]);
2833 if (result != VK_SUCCESS) {
2834 anv_batch_set_error(&cmd_buffer->batch, result);
2835 return 0;
2836 }
2837 }
2838 }
2839
2840 cmd_buffer->state.descriptors_dirty &= ~dirty;
2841
2842 return dirty;
2843 }
2844
2845 static void
2846 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2847 uint32_t stages)
2848 {
2849 static const uint32_t sampler_state_opcodes[] = {
2850 [MESA_SHADER_VERTEX] = 43,
2851 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2852 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2853 [MESA_SHADER_GEOMETRY] = 46,
2854 [MESA_SHADER_FRAGMENT] = 47,
2855 [MESA_SHADER_COMPUTE] = 0,
2856 };
2857
2858 static const uint32_t binding_table_opcodes[] = {
2859 [MESA_SHADER_VERTEX] = 38,
2860 [MESA_SHADER_TESS_CTRL] = 39,
2861 [MESA_SHADER_TESS_EVAL] = 40,
2862 [MESA_SHADER_GEOMETRY] = 41,
2863 [MESA_SHADER_FRAGMENT] = 42,
2864 [MESA_SHADER_COMPUTE] = 0,
2865 };
2866
2867 anv_foreach_stage(s, stages) {
2868 assert(s < ARRAY_SIZE(binding_table_opcodes));
2869 assert(binding_table_opcodes[s] > 0);
2870
2871 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2872 anv_batch_emit(&cmd_buffer->batch,
2873 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2874 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2875 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2876 }
2877 }
2878
2879 /* Always emit binding table pointers if we're asked to, since on SKL
2880 * this is what flushes push constants. */
2881 anv_batch_emit(&cmd_buffer->batch,
2882 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2883 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2884 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2885 }
2886 }
2887 }
2888
2889 static struct anv_address
2890 get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
2891 gl_shader_stage stage,
2892 const struct anv_push_range *range)
2893 {
2894 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2895 switch (range->set) {
2896 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2897 /* This is a descriptor set buffer so the set index is
2898 * actually given by binding->binding. (Yes, that's
2899 * confusing.)
2900 */
2901 struct anv_descriptor_set *set =
2902 gfx_state->base.descriptors[range->index];
2903 return anv_descriptor_set_address(cmd_buffer, set);
2904 break;
2905 }
2906
2907 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
2908 struct anv_state state =
2909 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2910 return (struct anv_address) {
2911 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2912 .offset = state.offset,
2913 };
2914 break;
2915 }
2916
2917 default: {
2918 assert(range->set < MAX_SETS);
2919 struct anv_descriptor_set *set =
2920 gfx_state->base.descriptors[range->set];
2921 const struct anv_descriptor *desc =
2922 &set->descriptors[range->index];
2923
2924 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2925 return desc->buffer_view->address;
2926 } else {
2927 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2928 struct anv_push_constants *push =
2929 &cmd_buffer->state.push_constants[stage];
2930 uint32_t dynamic_offset =
2931 push->dynamic_offsets[range->dynamic_offset_index];
2932 return anv_address_add(desc->buffer->address,
2933 desc->offset + dynamic_offset);
2934 }
2935 }
2936 }
2937 }
2938
2939 static void
2940 cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
2941 gl_shader_stage stage,
2942 struct anv_address *buffers,
2943 unsigned buffer_count)
2944 {
2945 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2946 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2947
2948 static const uint32_t push_constant_opcodes[] = {
2949 [MESA_SHADER_VERTEX] = 21,
2950 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2951 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2952 [MESA_SHADER_GEOMETRY] = 22,
2953 [MESA_SHADER_FRAGMENT] = 23,
2954 [MESA_SHADER_COMPUTE] = 0,
2955 };
2956
2957 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2958 assert(push_constant_opcodes[stage] > 0);
2959
2960 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2961 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2962
2963 if (anv_pipeline_has_stage(pipeline, stage)) {
2964 const struct anv_pipeline_bind_map *bind_map =
2965 &pipeline->shaders[stage]->bind_map;
2966
2967 #if GEN_GEN >= 12
2968 c.MOCS = cmd_buffer->device->isl_dev.mocs.internal;
2969 #endif
2970
2971 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2972 /* The Skylake PRM contains the following restriction:
2973 *
2974 * "The driver must ensure The following case does not occur
2975 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2976 * buffer 3 read length equal to zero committed followed by a
2977 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2978 * zero committed."
2979 *
2980 * To avoid this, we program the buffers in the highest slots.
2981 * This way, slot 0 is only used if slot 3 is also used.
2982 */
2983 assert(buffer_count <= 4);
2984 const unsigned shift = 4 - buffer_count;
2985 for (unsigned i = 0; i < buffer_count; i++) {
2986 const struct anv_push_range *range = &bind_map->push_ranges[i];
2987
2988 /* At this point we only have non-empty ranges */
2989 assert(range->length > 0);
2990
2991 /* For Ivy Bridge, make sure we only set the first range (actual
2992 * push constants)
2993 */
2994 assert((GEN_GEN >= 8 || GEN_IS_HASWELL) || i == 0);
2995
2996 c.ConstantBody.ReadLength[i + shift] = range->length;
2997 c.ConstantBody.Buffer[i + shift] =
2998 anv_address_add(buffers[i], range->start * 32);
2999 }
3000 #else
3001 /* For Ivy Bridge, push constants are relative to dynamic state
3002 * base address and we only ever push actual push constants.
3003 */
3004 if (bind_map->push_ranges[0].length > 0) {
3005 assert(buffer_count == 1);
3006 assert(bind_map->push_ranges[0].set ==
3007 ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
3008 assert(buffers[0].bo ==
3009 cmd_buffer->device->dynamic_state_pool.block_pool.bo);
3010 c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
3011 c.ConstantBody.Buffer[0].bo = NULL;
3012 c.ConstantBody.Buffer[0].offset = buffers[0].offset;
3013 }
3014 assert(bind_map->push_ranges[1].length == 0);
3015 assert(bind_map->push_ranges[2].length == 0);
3016 assert(bind_map->push_ranges[3].length == 0);
3017 #endif
3018 }
3019 }
3020 }
3021
3022 #if GEN_GEN >= 12
3023 static void
3024 cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
3025 uint32_t shader_mask,
3026 struct anv_address *buffers,
3027 uint32_t buffer_count)
3028 {
3029 if (buffer_count == 0) {
3030 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
3031 c.ShaderUpdateEnable = shader_mask;
3032 c.MOCS = cmd_buffer->device->isl_dev.mocs.internal;
3033 }
3034 return;
3035 }
3036
3037 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3038 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
3039
3040 static const uint32_t push_constant_opcodes[] = {
3041 [MESA_SHADER_VERTEX] = 21,
3042 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3043 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3044 [MESA_SHADER_GEOMETRY] = 22,
3045 [MESA_SHADER_FRAGMENT] = 23,
3046 [MESA_SHADER_COMPUTE] = 0,
3047 };
3048
3049 gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
3050 assert(stage < ARRAY_SIZE(push_constant_opcodes));
3051 assert(push_constant_opcodes[stage] > 0);
3052
3053 const struct anv_pipeline_bind_map *bind_map =
3054 &pipeline->shaders[stage]->bind_map;
3055
3056 uint32_t *dw;
3057 const uint32_t buffer_mask = (1 << buffer_count) - 1;
3058 const uint32_t num_dwords = 2 + 2 * buffer_count;
3059
3060 dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3061 GENX(3DSTATE_CONSTANT_ALL),
3062 .ShaderUpdateEnable = shader_mask,
3063 .PointerBufferMask = buffer_mask,
3064 .MOCS = cmd_buffer->device->isl_dev.mocs.internal);
3065
3066 for (int i = 0; i < buffer_count; i++) {
3067 const struct anv_push_range *range = &bind_map->push_ranges[i];
3068 GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
3069 &cmd_buffer->batch, dw + 2 + i * 2,
3070 &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
3071 .PointerToConstantBuffer =
3072 anv_address_add(buffers[i], range->start * 32),
3073 .ConstantBufferReadLength = range->length,
3074 });
3075 }
3076 }
3077 #endif
3078
3079 static void
3080 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
3081 VkShaderStageFlags dirty_stages)
3082 {
3083 VkShaderStageFlags flushed = 0;
3084 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3085 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
3086
3087 #if GEN_GEN >= 12
3088 uint32_t nobuffer_stages = 0;
3089 #endif
3090
3091 anv_foreach_stage(stage, dirty_stages) {
3092 unsigned buffer_count = 0;
3093 flushed |= mesa_to_vk_shader_stage(stage);
3094 UNUSED uint32_t max_push_range = 0;
3095
3096 struct anv_address buffers[4] = {};
3097 if (anv_pipeline_has_stage(pipeline, stage)) {
3098 const struct anv_pipeline_bind_map *bind_map =
3099 &pipeline->shaders[stage]->bind_map;
3100
3101 for (unsigned i = 0; i < 4; i++) {
3102 const struct anv_push_range *range = &bind_map->push_ranges[i];
3103 if (range->length == 0)
3104 break;
3105
3106 buffers[i] = get_push_range_address(cmd_buffer, stage, range);
3107 max_push_range = MAX2(max_push_range, range->length);
3108 buffer_count++;
3109 }
3110
3111 /* We have at most 4 buffers but they should be tightly packed */
3112 for (unsigned i = buffer_count; i < 4; i++)
3113 assert(bind_map->push_ranges[i].length == 0);
3114 }
3115
3116 #if GEN_GEN >= 12
3117 /* If this stage doesn't have any push constants, emit it later in a
3118 * single CONSTANT_ALL packet.
3119 */
3120 if (buffer_count == 0) {
3121 nobuffer_stages |= 1 << stage;
3122 continue;
3123 }
3124
3125 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
3126 * contains only 5 bits, so we can only use it for buffers smaller than
3127 * 32.
3128 */
3129 if (max_push_range < 32) {
3130 cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
3131 buffers, buffer_count);
3132 continue;
3133 }
3134 #endif
3135
3136 cmd_buffer_emit_push_constant(cmd_buffer, stage, buffers, buffer_count);
3137 }
3138
3139 #if GEN_GEN >= 12
3140 if (nobuffer_stages)
3141 cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, NULL, 0);
3142 #endif
3143
3144 cmd_buffer->state.push_constants_dirty &= ~flushed;
3145 }
3146
3147 void
3148 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
3149 {
3150 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3151 uint32_t *p;
3152
3153 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
3154 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
3155 vb_emit |= pipeline->vb_used;
3156
3157 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
3158
3159 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->l3_config);
3160
3161 genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
3162
3163 genX(flush_pipeline_select_3d)(cmd_buffer);
3164
3165 if (vb_emit) {
3166 const uint32_t num_buffers = __builtin_popcount(vb_emit);
3167 const uint32_t num_dwords = 1 + num_buffers * 4;
3168
3169 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3170 GENX(3DSTATE_VERTEX_BUFFERS));
3171 uint32_t vb, i = 0;
3172 for_each_bit(vb, vb_emit) {
3173 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
3174 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
3175
3176 struct GENX(VERTEX_BUFFER_STATE) state = {
3177 .VertexBufferIndex = vb,
3178
3179 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
3180 #if GEN_GEN <= 7
3181 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
3182 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
3183 #endif
3184
3185 .AddressModifyEnable = true,
3186 .BufferPitch = pipeline->vb[vb].stride,
3187 .BufferStartingAddress = anv_address_add(buffer->address, offset),
3188
3189 #if GEN_GEN >= 8
3190 .BufferSize = buffer->size - offset
3191 #else
3192 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
3193 #endif
3194 };
3195
3196 #if GEN_GEN >= 8 && GEN_GEN <= 9
3197 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, vb,
3198 state.BufferStartingAddress,
3199 state.BufferSize);
3200 #endif
3201
3202 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
3203 i++;
3204 }
3205 }
3206
3207 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
3208
3209 #if GEN_GEN >= 8
3210 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
3211 /* We don't need any per-buffer dirty tracking because you're not
3212 * allowed to bind different XFB buffers while XFB is enabled.
3213 */
3214 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3215 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
3216 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
3217 #if GEN_GEN < 12
3218 sob.SOBufferIndex = idx;
3219 #else
3220 sob._3DCommandOpcode = 0;
3221 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
3222 #endif
3223
3224 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
3225 sob.SOBufferEnable = true;
3226 sob.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
3227 sob.StreamOffsetWriteEnable = false;
3228 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
3229 xfb->offset);
3230 /* Size is in DWords - 1 */
3231 sob.SurfaceSize = xfb->size / 4 - 1;
3232 }
3233 }
3234 }
3235
3236 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
3237 if (GEN_GEN >= 10)
3238 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3239 }
3240 #endif
3241
3242 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
3243 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3244
3245 /* If the pipeline changed, we may need to re-allocate push constant
3246 * space in the URB.
3247 */
3248 cmd_buffer_alloc_push_constants(cmd_buffer);
3249 }
3250
3251 #if GEN_GEN <= 7
3252 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
3253 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
3254 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
3255 *
3256 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
3257 * stall needs to be sent just prior to any 3DSTATE_VS,
3258 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
3259 * 3DSTATE_BINDING_TABLE_POINTER_VS,
3260 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
3261 * PIPE_CONTROL needs to be sent before any combination of VS
3262 * associated 3DSTATE."
3263 */
3264 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3265 pc.DepthStallEnable = true;
3266 pc.PostSyncOperation = WriteImmediateData;
3267 pc.Address =
3268 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
3269 }
3270 }
3271 #endif
3272
3273 /* Render targets live in the same binding table as fragment descriptors */
3274 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
3275 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
3276
3277 /* We emit the binding tables and sampler tables first, then emit push
3278 * constants and then finally emit binding table and sampler table
3279 * pointers. It has to happen in this order, since emitting the binding
3280 * tables may change the push constants (in case of storage images). After
3281 * emitting push constants, on SKL+ we have to emit the corresponding
3282 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
3283 */
3284 uint32_t dirty = 0;
3285 if (cmd_buffer->state.descriptors_dirty)
3286 dirty = flush_descriptor_sets(cmd_buffer, pipeline);
3287
3288 if (dirty || cmd_buffer->state.push_constants_dirty) {
3289 /* Because we're pushing UBOs, we have to push whenever either
3290 * descriptors or push constants is dirty.
3291 */
3292 dirty |= cmd_buffer->state.push_constants_dirty;
3293 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
3294 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
3295 }
3296
3297 if (dirty)
3298 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
3299
3300 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
3301 gen8_cmd_buffer_emit_viewport(cmd_buffer);
3302
3303 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
3304 ANV_CMD_DIRTY_PIPELINE)) {
3305 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
3306 pipeline->depth_clamp_enable);
3307 }
3308
3309 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
3310 ANV_CMD_DIRTY_RENDER_TARGETS))
3311 gen7_cmd_buffer_emit_scissor(cmd_buffer);
3312
3313 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
3314 }
3315
3316 static void
3317 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
3318 struct anv_address addr,
3319 uint32_t size, uint32_t index)
3320 {
3321 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
3322 GENX(3DSTATE_VERTEX_BUFFERS));
3323
3324 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
3325 &(struct GENX(VERTEX_BUFFER_STATE)) {
3326 .VertexBufferIndex = index,
3327 .AddressModifyEnable = true,
3328 .BufferPitch = 0,
3329 .MOCS = addr.bo ? anv_mocs_for_bo(cmd_buffer->device, addr.bo) : 0,
3330 .NullVertexBuffer = size == 0,
3331 #if (GEN_GEN >= 8)
3332 .BufferStartingAddress = addr,
3333 .BufferSize = size
3334 #else
3335 .BufferStartingAddress = addr,
3336 .EndAddress = anv_address_add(addr, size),
3337 #endif
3338 });
3339
3340 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer,
3341 index, addr, size);
3342 }
3343
3344 static void
3345 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
3346 struct anv_address addr)
3347 {
3348 emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
3349 }
3350
3351 static void
3352 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
3353 uint32_t base_vertex, uint32_t base_instance)
3354 {
3355 if (base_vertex == 0 && base_instance == 0) {
3356 emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
3357 } else {
3358 struct anv_state id_state =
3359 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
3360
3361 ((uint32_t *)id_state.map)[0] = base_vertex;
3362 ((uint32_t *)id_state.map)[1] = base_instance;
3363
3364 struct anv_address addr = {
3365 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3366 .offset = id_state.offset,
3367 };
3368
3369 emit_base_vertex_instance_bo(cmd_buffer, addr);
3370 }
3371 }
3372
3373 static void
3374 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
3375 {
3376 struct anv_state state =
3377 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
3378
3379 ((uint32_t *)state.map)[0] = draw_index;
3380
3381 struct anv_address addr = {
3382 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3383 .offset = state.offset,
3384 };
3385
3386 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
3387 }
3388
3389 static void
3390 update_dirty_vbs_for_gen8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
3391 uint32_t access_type)
3392 {
3393 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3394 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3395
3396 uint64_t vb_used = pipeline->vb_used;
3397 if (vs_prog_data->uses_firstvertex ||
3398 vs_prog_data->uses_baseinstance)
3399 vb_used |= 1ull << ANV_SVGS_VB_INDEX;
3400 if (vs_prog_data->uses_drawid)
3401 vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
3402
3403 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(cmd_buffer,
3404 access_type == RANDOM,
3405 vb_used);
3406 }
3407
3408 void genX(CmdDraw)(
3409 VkCommandBuffer commandBuffer,
3410 uint32_t vertexCount,
3411 uint32_t instanceCount,
3412 uint32_t firstVertex,
3413 uint32_t firstInstance)
3414 {
3415 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3416 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3417 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3418
3419 if (anv_batch_has_error(&cmd_buffer->batch))
3420 return;
3421
3422 genX(cmd_buffer_flush_state)(cmd_buffer);
3423
3424 if (cmd_buffer->state.conditional_render_enabled)
3425 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3426
3427 if (vs_prog_data->uses_firstvertex ||
3428 vs_prog_data->uses_baseinstance)
3429 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3430 if (vs_prog_data->uses_drawid)
3431 emit_draw_index(cmd_buffer, 0);
3432
3433 /* Emitting draw index or vertex index BOs may result in needing
3434 * additional VF cache flushes.
3435 */
3436 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3437
3438 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3439 * different views. We need to multiply instanceCount by the view count.
3440 */
3441 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3442
3443 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3444 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3445 prim.VertexAccessType = SEQUENTIAL;
3446 prim.PrimitiveTopologyType = pipeline->topology;
3447 prim.VertexCountPerInstance = vertexCount;
3448 prim.StartVertexLocation = firstVertex;
3449 prim.InstanceCount = instanceCount;
3450 prim.StartInstanceLocation = firstInstance;
3451 prim.BaseVertexLocation = 0;
3452 }
3453
3454 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3455 }
3456
3457 void genX(CmdDrawIndexed)(
3458 VkCommandBuffer commandBuffer,
3459 uint32_t indexCount,
3460 uint32_t instanceCount,
3461 uint32_t firstIndex,
3462 int32_t vertexOffset,
3463 uint32_t firstInstance)
3464 {
3465 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3466 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3467 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3468
3469 if (anv_batch_has_error(&cmd_buffer->batch))
3470 return;
3471
3472 genX(cmd_buffer_flush_state)(cmd_buffer);
3473
3474 if (cmd_buffer->state.conditional_render_enabled)
3475 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3476
3477 if (vs_prog_data->uses_firstvertex ||
3478 vs_prog_data->uses_baseinstance)
3479 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
3480 if (vs_prog_data->uses_drawid)
3481 emit_draw_index(cmd_buffer, 0);
3482
3483 /* Emitting draw index or vertex index BOs may result in needing
3484 * additional VF cache flushes.
3485 */
3486 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3487
3488 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3489 * different views. We need to multiply instanceCount by the view count.
3490 */
3491 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3492
3493 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3494 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3495 prim.VertexAccessType = RANDOM;
3496 prim.PrimitiveTopologyType = pipeline->topology;
3497 prim.VertexCountPerInstance = indexCount;
3498 prim.StartVertexLocation = firstIndex;
3499 prim.InstanceCount = instanceCount;
3500 prim.StartInstanceLocation = firstInstance;
3501 prim.BaseVertexLocation = vertexOffset;
3502 }
3503
3504 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3505 }
3506
3507 /* Auto-Draw / Indirect Registers */
3508 #define GEN7_3DPRIM_END_OFFSET 0x2420
3509 #define GEN7_3DPRIM_START_VERTEX 0x2430
3510 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
3511 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
3512 #define GEN7_3DPRIM_START_INSTANCE 0x243C
3513 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
3514
3515 void genX(CmdDrawIndirectByteCountEXT)(
3516 VkCommandBuffer commandBuffer,
3517 uint32_t instanceCount,
3518 uint32_t firstInstance,
3519 VkBuffer counterBuffer,
3520 VkDeviceSize counterBufferOffset,
3521 uint32_t counterOffset,
3522 uint32_t vertexStride)
3523 {
3524 #if GEN_IS_HASWELL || GEN_GEN >= 8
3525 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3526 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
3527 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3528 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3529
3530 /* firstVertex is always zero for this draw function */
3531 const uint32_t firstVertex = 0;
3532
3533 if (anv_batch_has_error(&cmd_buffer->batch))
3534 return;
3535
3536 genX(cmd_buffer_flush_state)(cmd_buffer);
3537
3538 if (vs_prog_data->uses_firstvertex ||
3539 vs_prog_data->uses_baseinstance)
3540 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3541 if (vs_prog_data->uses_drawid)
3542 emit_draw_index(cmd_buffer, 0);
3543
3544 /* Emitting draw index or vertex index BOs may result in needing
3545 * additional VF cache flushes.
3546 */
3547 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3548
3549 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3550 * different views. We need to multiply instanceCount by the view count.
3551 */
3552 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3553
3554 struct gen_mi_builder b;
3555 gen_mi_builder_init(&b, &cmd_buffer->batch);
3556 struct gen_mi_value count =
3557 gen_mi_mem32(anv_address_add(counter_buffer->address,
3558 counterBufferOffset));
3559 if (counterOffset)
3560 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
3561 count = gen_mi_udiv32_imm(&b, count, vertexStride);
3562 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
3563
3564 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3565 gen_mi_imm(firstVertex));
3566 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
3567 gen_mi_imm(instanceCount));
3568 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3569 gen_mi_imm(firstInstance));
3570 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3571
3572 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3573 prim.IndirectParameterEnable = true;
3574 prim.VertexAccessType = SEQUENTIAL;
3575 prim.PrimitiveTopologyType = pipeline->topology;
3576 }
3577
3578 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3579 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
3580 }
3581
3582 static void
3583 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
3584 struct anv_address addr,
3585 bool indexed)
3586 {
3587 struct gen_mi_builder b;
3588 gen_mi_builder_init(&b, &cmd_buffer->batch);
3589
3590 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
3591 gen_mi_mem32(anv_address_add(addr, 0)));
3592
3593 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
3594 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
3595 if (view_count > 1) {
3596 #if GEN_IS_HASWELL || GEN_GEN >= 8
3597 instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
3598 #else
3599 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3600 "MI_MATH is not supported on Ivy Bridge");
3601 #endif
3602 }
3603 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
3604
3605 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3606 gen_mi_mem32(anv_address_add(addr, 8)));
3607
3608 if (indexed) {
3609 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
3610 gen_mi_mem32(anv_address_add(addr, 12)));
3611 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3612 gen_mi_mem32(anv_address_add(addr, 16)));
3613 } else {
3614 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3615 gen_mi_mem32(anv_address_add(addr, 12)));
3616 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3617 }
3618 }
3619
3620 void genX(CmdDrawIndirect)(
3621 VkCommandBuffer commandBuffer,
3622 VkBuffer _buffer,
3623 VkDeviceSize offset,
3624 uint32_t drawCount,
3625 uint32_t stride)
3626 {
3627 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3628 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3629 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3630 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3631
3632 if (anv_batch_has_error(&cmd_buffer->batch))
3633 return;
3634
3635 genX(cmd_buffer_flush_state)(cmd_buffer);
3636
3637 if (cmd_buffer->state.conditional_render_enabled)
3638 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3639
3640 for (uint32_t i = 0; i < drawCount; i++) {
3641 struct anv_address draw = anv_address_add(buffer->address, offset);
3642
3643 if (vs_prog_data->uses_firstvertex ||
3644 vs_prog_data->uses_baseinstance)
3645 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3646 if (vs_prog_data->uses_drawid)
3647 emit_draw_index(cmd_buffer, i);
3648
3649 /* Emitting draw index or vertex index BOs may result in needing
3650 * additional VF cache flushes.
3651 */
3652 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3653
3654 load_indirect_parameters(cmd_buffer, draw, false);
3655
3656 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3657 prim.IndirectParameterEnable = true;
3658 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3659 prim.VertexAccessType = SEQUENTIAL;
3660 prim.PrimitiveTopologyType = pipeline->topology;
3661 }
3662
3663 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3664
3665 offset += stride;
3666 }
3667 }
3668
3669 void genX(CmdDrawIndexedIndirect)(
3670 VkCommandBuffer commandBuffer,
3671 VkBuffer _buffer,
3672 VkDeviceSize offset,
3673 uint32_t drawCount,
3674 uint32_t stride)
3675 {
3676 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3677 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3678 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3679 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3680
3681 if (anv_batch_has_error(&cmd_buffer->batch))
3682 return;
3683
3684 genX(cmd_buffer_flush_state)(cmd_buffer);
3685
3686 if (cmd_buffer->state.conditional_render_enabled)
3687 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3688
3689 for (uint32_t i = 0; i < drawCount; i++) {
3690 struct anv_address draw = anv_address_add(buffer->address, offset);
3691
3692 /* TODO: We need to stomp base vertex to 0 somehow */
3693 if (vs_prog_data->uses_firstvertex ||
3694 vs_prog_data->uses_baseinstance)
3695 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3696 if (vs_prog_data->uses_drawid)
3697 emit_draw_index(cmd_buffer, i);
3698
3699 /* Emitting draw index or vertex index BOs may result in needing
3700 * additional VF cache flushes.
3701 */
3702 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3703
3704 load_indirect_parameters(cmd_buffer, draw, true);
3705
3706 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3707 prim.IndirectParameterEnable = true;
3708 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3709 prim.VertexAccessType = RANDOM;
3710 prim.PrimitiveTopologyType = pipeline->topology;
3711 }
3712
3713 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3714
3715 offset += stride;
3716 }
3717 }
3718
3719 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3720
3721 static void
3722 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3723 struct anv_address count_address,
3724 const bool conditional_render_enabled)
3725 {
3726 struct gen_mi_builder b;
3727 gen_mi_builder_init(&b, &cmd_buffer->batch);
3728
3729 if (conditional_render_enabled) {
3730 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3731 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
3732 gen_mi_mem32(count_address));
3733 #endif
3734 } else {
3735 /* Upload the current draw count from the draw parameters buffer to
3736 * MI_PREDICATE_SRC0.
3737 */
3738 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
3739 gen_mi_mem32(count_address));
3740
3741 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
3742 }
3743 }
3744
3745 static void
3746 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3747 uint32_t draw_index)
3748 {
3749 struct gen_mi_builder b;
3750 gen_mi_builder_init(&b, &cmd_buffer->batch);
3751
3752 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3753 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
3754
3755 if (draw_index == 0) {
3756 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3757 mip.LoadOperation = LOAD_LOADINV;
3758 mip.CombineOperation = COMBINE_SET;
3759 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3760 }
3761 } else {
3762 /* While draw_index < draw_count the predicate's result will be
3763 * (draw_index == draw_count) ^ TRUE = TRUE
3764 * When draw_index == draw_count the result is
3765 * (TRUE) ^ TRUE = FALSE
3766 * After this all results will be:
3767 * (FALSE) ^ FALSE = FALSE
3768 */
3769 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3770 mip.LoadOperation = LOAD_LOAD;
3771 mip.CombineOperation = COMBINE_XOR;
3772 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3773 }
3774 }
3775 }
3776
3777 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3778 static void
3779 emit_draw_count_predicate_with_conditional_render(
3780 struct anv_cmd_buffer *cmd_buffer,
3781 uint32_t draw_index)
3782 {
3783 struct gen_mi_builder b;
3784 gen_mi_builder_init(&b, &cmd_buffer->batch);
3785
3786 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
3787 gen_mi_reg64(TMP_DRAW_COUNT_REG));
3788 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
3789
3790 #if GEN_GEN >= 8
3791 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
3792 #else
3793 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3794 * so we emit MI_PREDICATE to set it.
3795 */
3796
3797 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
3798 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3799
3800 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3801 mip.LoadOperation = LOAD_LOADINV;
3802 mip.CombineOperation = COMBINE_SET;
3803 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3804 }
3805 #endif
3806 }
3807 #endif
3808
3809 void genX(CmdDrawIndirectCount)(
3810 VkCommandBuffer commandBuffer,
3811 VkBuffer _buffer,
3812 VkDeviceSize offset,
3813 VkBuffer _countBuffer,
3814 VkDeviceSize countBufferOffset,
3815 uint32_t maxDrawCount,
3816 uint32_t stride)
3817 {
3818 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3819 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3820 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3821 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3822 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3823 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3824
3825 if (anv_batch_has_error(&cmd_buffer->batch))
3826 return;
3827
3828 genX(cmd_buffer_flush_state)(cmd_buffer);
3829
3830 struct anv_address count_address =
3831 anv_address_add(count_buffer->address, countBufferOffset);
3832
3833 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3834 cmd_state->conditional_render_enabled);
3835
3836 for (uint32_t i = 0; i < maxDrawCount; i++) {
3837 struct anv_address draw = anv_address_add(buffer->address, offset);
3838
3839 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3840 if (cmd_state->conditional_render_enabled) {
3841 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3842 } else {
3843 emit_draw_count_predicate(cmd_buffer, i);
3844 }
3845 #else
3846 emit_draw_count_predicate(cmd_buffer, i);
3847 #endif
3848
3849 if (vs_prog_data->uses_firstvertex ||
3850 vs_prog_data->uses_baseinstance)
3851 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3852 if (vs_prog_data->uses_drawid)
3853 emit_draw_index(cmd_buffer, i);
3854
3855 /* Emitting draw index or vertex index BOs may result in needing
3856 * additional VF cache flushes.
3857 */
3858 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3859
3860 load_indirect_parameters(cmd_buffer, draw, false);
3861
3862 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3863 prim.IndirectParameterEnable = true;
3864 prim.PredicateEnable = true;
3865 prim.VertexAccessType = SEQUENTIAL;
3866 prim.PrimitiveTopologyType = pipeline->topology;
3867 }
3868
3869 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3870
3871 offset += stride;
3872 }
3873 }
3874
3875 void genX(CmdDrawIndexedIndirectCount)(
3876 VkCommandBuffer commandBuffer,
3877 VkBuffer _buffer,
3878 VkDeviceSize offset,
3879 VkBuffer _countBuffer,
3880 VkDeviceSize countBufferOffset,
3881 uint32_t maxDrawCount,
3882 uint32_t stride)
3883 {
3884 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3885 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3886 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3887 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3888 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3889 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3890
3891 if (anv_batch_has_error(&cmd_buffer->batch))
3892 return;
3893
3894 genX(cmd_buffer_flush_state)(cmd_buffer);
3895
3896 struct anv_address count_address =
3897 anv_address_add(count_buffer->address, countBufferOffset);
3898
3899 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3900 cmd_state->conditional_render_enabled);
3901
3902 for (uint32_t i = 0; i < maxDrawCount; i++) {
3903 struct anv_address draw = anv_address_add(buffer->address, offset);
3904
3905 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3906 if (cmd_state->conditional_render_enabled) {
3907 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3908 } else {
3909 emit_draw_count_predicate(cmd_buffer, i);
3910 }
3911 #else
3912 emit_draw_count_predicate(cmd_buffer, i);
3913 #endif
3914
3915 /* TODO: We need to stomp base vertex to 0 somehow */
3916 if (vs_prog_data->uses_firstvertex ||
3917 vs_prog_data->uses_baseinstance)
3918 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3919 if (vs_prog_data->uses_drawid)
3920 emit_draw_index(cmd_buffer, i);
3921
3922 /* Emitting draw index or vertex index BOs may result in needing
3923 * additional VF cache flushes.
3924 */
3925 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3926
3927 load_indirect_parameters(cmd_buffer, draw, true);
3928
3929 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3930 prim.IndirectParameterEnable = true;
3931 prim.PredicateEnable = true;
3932 prim.VertexAccessType = RANDOM;
3933 prim.PrimitiveTopologyType = pipeline->topology;
3934 }
3935
3936 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3937
3938 offset += stride;
3939 }
3940 }
3941
3942 void genX(CmdBeginTransformFeedbackEXT)(
3943 VkCommandBuffer commandBuffer,
3944 uint32_t firstCounterBuffer,
3945 uint32_t counterBufferCount,
3946 const VkBuffer* pCounterBuffers,
3947 const VkDeviceSize* pCounterBufferOffsets)
3948 {
3949 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3950
3951 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3952 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3953 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3954
3955 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3956 *
3957 * "Ssoftware must ensure that no HW stream output operations can be in
3958 * process or otherwise pending at the point that the MI_LOAD/STORE
3959 * commands are processed. This will likely require a pipeline flush."
3960 */
3961 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3962 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3963
3964 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3965 /* If we have a counter buffer, this is a resume so we need to load the
3966 * value into the streamout offset register. Otherwise, this is a begin
3967 * and we need to reset it to zero.
3968 */
3969 if (pCounterBuffers &&
3970 idx >= firstCounterBuffer &&
3971 idx - firstCounterBuffer < counterBufferCount &&
3972 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
3973 uint32_t cb_idx = idx - firstCounterBuffer;
3974 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3975 uint64_t offset = pCounterBufferOffsets ?
3976 pCounterBufferOffsets[cb_idx] : 0;
3977
3978 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3979 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3980 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
3981 offset);
3982 }
3983 } else {
3984 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
3985 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3986 lri.DataDWord = 0;
3987 }
3988 }
3989 }
3990
3991 cmd_buffer->state.xfb_enabled = true;
3992 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3993 }
3994
3995 void genX(CmdEndTransformFeedbackEXT)(
3996 VkCommandBuffer commandBuffer,
3997 uint32_t firstCounterBuffer,
3998 uint32_t counterBufferCount,
3999 const VkBuffer* pCounterBuffers,
4000 const VkDeviceSize* pCounterBufferOffsets)
4001 {
4002 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4003
4004 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
4005 assert(counterBufferCount <= MAX_XFB_BUFFERS);
4006 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
4007
4008 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
4009 *
4010 * "Ssoftware must ensure that no HW stream output operations can be in
4011 * process or otherwise pending at the point that the MI_LOAD/STORE
4012 * commands are processed. This will likely require a pipeline flush."
4013 */
4014 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4015 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4016
4017 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
4018 unsigned idx = firstCounterBuffer + cb_idx;
4019
4020 /* If we have a counter buffer, this is a resume so we need to load the
4021 * value into the streamout offset register. Otherwise, this is a begin
4022 * and we need to reset it to zero.
4023 */
4024 if (pCounterBuffers &&
4025 cb_idx < counterBufferCount &&
4026 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
4027 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
4028 uint64_t offset = pCounterBufferOffsets ?
4029 pCounterBufferOffsets[cb_idx] : 0;
4030
4031 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4032 srm.MemoryAddress = anv_address_add(counter_buffer->address,
4033 offset);
4034 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4035 }
4036 }
4037 }
4038
4039 cmd_buffer->state.xfb_enabled = false;
4040 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
4041 }
4042
4043 void
4044 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
4045 {
4046 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4047
4048 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
4049
4050 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->l3_config);
4051
4052 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
4053
4054 if (cmd_buffer->state.compute.pipeline_dirty) {
4055 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
4056 *
4057 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4058 * the only bits that are changed are scoreboard related: Scoreboard
4059 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4060 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4061 * sufficient."
4062 */
4063 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4064 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4065
4066 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
4067
4068 /* The workgroup size of the pipeline affects our push constant layout
4069 * so flag push constants as dirty if we change the pipeline.
4070 */
4071 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4072 }
4073
4074 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
4075 cmd_buffer->state.compute.pipeline_dirty) {
4076 flush_descriptor_sets(cmd_buffer, pipeline);
4077
4078 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4079 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
4080 .BindingTablePointer =
4081 cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
4082 .SamplerStatePointer =
4083 cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
4084 };
4085 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
4086
4087 struct anv_state state =
4088 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
4089 pipeline->interface_descriptor_data,
4090 GENX(INTERFACE_DESCRIPTOR_DATA_length),
4091 64);
4092
4093 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4094 anv_batch_emit(&cmd_buffer->batch,
4095 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
4096 mid.InterfaceDescriptorTotalLength = size;
4097 mid.InterfaceDescriptorDataStartAddress = state.offset;
4098 }
4099 }
4100
4101 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
4102 struct anv_state push_state =
4103 anv_cmd_buffer_cs_push_constants(cmd_buffer);
4104
4105 if (push_state.alloc_size) {
4106 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4107 curbe.CURBETotalDataLength = push_state.alloc_size;
4108 curbe.CURBEDataStartAddress = push_state.offset;
4109 }
4110 }
4111
4112 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
4113 }
4114
4115 cmd_buffer->state.compute.pipeline_dirty = false;
4116
4117 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4118 }
4119
4120 #if GEN_GEN == 7
4121
4122 static VkResult
4123 verify_cmd_parser(const struct anv_device *device,
4124 int required_version,
4125 const char *function)
4126 {
4127 if (device->physical->cmd_parser_version < required_version) {
4128 return vk_errorf(device, device->physical,
4129 VK_ERROR_FEATURE_NOT_PRESENT,
4130 "cmd parser version %d is required for %s",
4131 required_version, function);
4132 } else {
4133 return VK_SUCCESS;
4134 }
4135 }
4136
4137 #endif
4138
4139 static void
4140 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
4141 uint32_t baseGroupX,
4142 uint32_t baseGroupY,
4143 uint32_t baseGroupZ)
4144 {
4145 if (anv_batch_has_error(&cmd_buffer->batch))
4146 return;
4147
4148 struct anv_push_constants *push =
4149 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
4150 if (push->cs.base_work_group_id[0] != baseGroupX ||
4151 push->cs.base_work_group_id[1] != baseGroupY ||
4152 push->cs.base_work_group_id[2] != baseGroupZ) {
4153 push->cs.base_work_group_id[0] = baseGroupX;
4154 push->cs.base_work_group_id[1] = baseGroupY;
4155 push->cs.base_work_group_id[2] = baseGroupZ;
4156
4157 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4158 }
4159 }
4160
4161 void genX(CmdDispatch)(
4162 VkCommandBuffer commandBuffer,
4163 uint32_t x,
4164 uint32_t y,
4165 uint32_t z)
4166 {
4167 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
4168 }
4169
4170 void genX(CmdDispatchBase)(
4171 VkCommandBuffer commandBuffer,
4172 uint32_t baseGroupX,
4173 uint32_t baseGroupY,
4174 uint32_t baseGroupZ,
4175 uint32_t groupCountX,
4176 uint32_t groupCountY,
4177 uint32_t groupCountZ)
4178 {
4179 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4180 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4181 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4182
4183 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
4184 baseGroupY, baseGroupZ);
4185
4186 if (anv_batch_has_error(&cmd_buffer->batch))
4187 return;
4188
4189 if (prog_data->uses_num_work_groups) {
4190 struct anv_state state =
4191 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
4192 uint32_t *sizes = state.map;
4193 sizes[0] = groupCountX;
4194 sizes[1] = groupCountY;
4195 sizes[2] = groupCountZ;
4196 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
4197 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
4198 .offset = state.offset,
4199 };
4200
4201 /* The num_workgroups buffer goes in the binding table */
4202 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4203 }
4204
4205 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4206
4207 if (cmd_buffer->state.conditional_render_enabled)
4208 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4209
4210 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
4211 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
4212 ggw.SIMDSize = prog_data->simd_size / 16;
4213 ggw.ThreadDepthCounterMaximum = 0;
4214 ggw.ThreadHeightCounterMaximum = 0;
4215 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4216 ggw.ThreadGroupIDXDimension = groupCountX;
4217 ggw.ThreadGroupIDYDimension = groupCountY;
4218 ggw.ThreadGroupIDZDimension = groupCountZ;
4219 ggw.RightExecutionMask = pipeline->cs_right_mask;
4220 ggw.BottomExecutionMask = 0xffffffff;
4221 }
4222
4223 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
4224 }
4225
4226 #define GPGPU_DISPATCHDIMX 0x2500
4227 #define GPGPU_DISPATCHDIMY 0x2504
4228 #define GPGPU_DISPATCHDIMZ 0x2508
4229
4230 void genX(CmdDispatchIndirect)(
4231 VkCommandBuffer commandBuffer,
4232 VkBuffer _buffer,
4233 VkDeviceSize offset)
4234 {
4235 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4236 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4237 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4238 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4239 struct anv_address addr = anv_address_add(buffer->address, offset);
4240 struct anv_batch *batch = &cmd_buffer->batch;
4241
4242 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
4243
4244 #if GEN_GEN == 7
4245 /* Linux 4.4 added command parser version 5 which allows the GPGPU
4246 * indirect dispatch registers to be written.
4247 */
4248 if (verify_cmd_parser(cmd_buffer->device, 5,
4249 "vkCmdDispatchIndirect") != VK_SUCCESS)
4250 return;
4251 #endif
4252
4253 if (prog_data->uses_num_work_groups) {
4254 cmd_buffer->state.compute.num_workgroups = addr;
4255
4256 /* The num_workgroups buffer goes in the binding table */
4257 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4258 }
4259
4260 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4261
4262 struct gen_mi_builder b;
4263 gen_mi_builder_init(&b, &cmd_buffer->batch);
4264
4265 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
4266 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
4267 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
4268
4269 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
4270 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
4271 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
4272
4273 #if GEN_GEN <= 7
4274 /* predicate = (compute_dispatch_indirect_x_size == 0); */
4275 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
4276 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
4277 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4278 mip.LoadOperation = LOAD_LOAD;
4279 mip.CombineOperation = COMBINE_SET;
4280 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4281 }
4282
4283 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
4284 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
4285 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4286 mip.LoadOperation = LOAD_LOAD;
4287 mip.CombineOperation = COMBINE_OR;
4288 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4289 }
4290
4291 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
4292 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
4293 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4294 mip.LoadOperation = LOAD_LOAD;
4295 mip.CombineOperation = COMBINE_OR;
4296 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4297 }
4298
4299 /* predicate = !predicate; */
4300 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4301 mip.LoadOperation = LOAD_LOADINV;
4302 mip.CombineOperation = COMBINE_OR;
4303 mip.CompareOperation = COMPARE_FALSE;
4304 }
4305
4306 #if GEN_IS_HASWELL
4307 if (cmd_buffer->state.conditional_render_enabled) {
4308 /* predicate &= !(conditional_rendering_predicate == 0); */
4309 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
4310 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
4311 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4312 mip.LoadOperation = LOAD_LOADINV;
4313 mip.CombineOperation = COMBINE_AND;
4314 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4315 }
4316 }
4317 #endif
4318
4319 #else /* GEN_GEN > 7 */
4320 if (cmd_buffer->state.conditional_render_enabled)
4321 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4322 #endif
4323
4324 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
4325 ggw.IndirectParameterEnable = true;
4326 ggw.PredicateEnable = GEN_GEN <= 7 ||
4327 cmd_buffer->state.conditional_render_enabled;
4328 ggw.SIMDSize = prog_data->simd_size / 16;
4329 ggw.ThreadDepthCounterMaximum = 0;
4330 ggw.ThreadHeightCounterMaximum = 0;
4331 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4332 ggw.RightExecutionMask = pipeline->cs_right_mask;
4333 ggw.BottomExecutionMask = 0xffffffff;
4334 }
4335
4336 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
4337 }
4338
4339 static void
4340 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
4341 uint32_t pipeline)
4342 {
4343 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4344
4345 if (cmd_buffer->state.current_pipeline == pipeline)
4346 return;
4347
4348 #if GEN_GEN >= 8 && GEN_GEN < 10
4349 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
4350 *
4351 * Software must clear the COLOR_CALC_STATE Valid field in
4352 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
4353 * with Pipeline Select set to GPGPU.
4354 *
4355 * The internal hardware docs recommend the same workaround for Gen9
4356 * hardware too.
4357 */
4358 if (pipeline == GPGPU)
4359 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
4360 #endif
4361
4362 #if GEN_GEN == 9
4363 if (pipeline == _3D) {
4364 /* There is a mid-object preemption workaround which requires you to
4365 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
4366 * even without preemption, we have issues with geometry flickering when
4367 * GPGPU and 3D are back-to-back and this seems to fix it. We don't
4368 * really know why.
4369 */
4370 const uint32_t subslices =
4371 MAX2(cmd_buffer->device->physical->subslice_total, 1);
4372 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
4373 vfe.MaximumNumberofThreads =
4374 devinfo->max_cs_threads * subslices - 1;
4375 vfe.NumberofURBEntries = 2;
4376 vfe.URBEntryAllocationSize = 2;
4377 }
4378
4379 /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
4380 * invalid. Set the compute pipeline to dirty to force a re-emit of the
4381 * pipeline in case we get back-to-back dispatch calls with the same
4382 * pipeline and a PIPELINE_SELECT in between.
4383 */
4384 cmd_buffer->state.compute.pipeline_dirty = true;
4385 }
4386 #endif
4387
4388 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
4389 * PIPELINE_SELECT [DevBWR+]":
4390 *
4391 * Project: DEVSNB+
4392 *
4393 * Software must ensure all the write caches are flushed through a
4394 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
4395 * command to invalidate read only caches prior to programming
4396 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
4397 */
4398 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4399 pc.RenderTargetCacheFlushEnable = true;
4400 pc.DepthCacheFlushEnable = true;
4401 pc.DCFlushEnable = true;
4402 pc.PostSyncOperation = NoWrite;
4403 pc.CommandStreamerStallEnable = true;
4404 #if GEN_GEN >= 12
4405 pc.TileCacheFlushEnable = true;
4406
4407 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must be
4408 * set with any PIPE_CONTROL with Depth Flush Enable bit set.
4409 */
4410 pc.DepthStallEnable = true;
4411 #endif
4412 }
4413
4414 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4415 pc.TextureCacheInvalidationEnable = true;
4416 pc.ConstantCacheInvalidationEnable = true;
4417 pc.StateCacheInvalidationEnable = true;
4418 pc.InstructionCacheInvalidateEnable = true;
4419 pc.PostSyncOperation = NoWrite;
4420 #if GEN_GEN >= 12
4421 pc.TileCacheFlushEnable = true;
4422 #endif
4423 }
4424
4425 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
4426 #if GEN_GEN >= 9
4427 ps.MaskBits = 3;
4428 #endif
4429 ps.PipelineSelection = pipeline;
4430 }
4431
4432 #if GEN_GEN == 9
4433 if (devinfo->is_geminilake) {
4434 /* Project: DevGLK
4435 *
4436 * "This chicken bit works around a hardware issue with barrier logic
4437 * encountered when switching between GPGPU and 3D pipelines. To
4438 * workaround the issue, this mode bit should be set after a pipeline
4439 * is selected."
4440 */
4441 uint32_t scec;
4442 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
4443 .GLKBarrierMode =
4444 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
4445 : GLK_BARRIER_MODE_3D_HULL,
4446 .GLKBarrierModeMask = 1);
4447 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
4448 }
4449 #endif
4450
4451 cmd_buffer->state.current_pipeline = pipeline;
4452 }
4453
4454 void
4455 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
4456 {
4457 genX(flush_pipeline_select)(cmd_buffer, _3D);
4458 }
4459
4460 void
4461 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
4462 {
4463 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
4464 }
4465
4466 void
4467 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
4468 {
4469 if (GEN_GEN >= 8)
4470 return;
4471
4472 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
4473 *
4474 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
4475 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
4476 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
4477 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
4478 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
4479 * Depth Flush Bit set, followed by another pipelined depth stall
4480 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
4481 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
4482 * via a preceding MI_FLUSH)."
4483 */
4484 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4485 pipe.DepthStallEnable = true;
4486 }
4487 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4488 pipe.DepthCacheFlushEnable = true;
4489 #if GEN_GEN >= 12
4490 pipe.TileCacheFlushEnable = true;
4491 #endif
4492 }
4493 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4494 pipe.DepthStallEnable = true;
4495 }
4496 }
4497
4498 /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
4499 *
4500 * "The VF cache needs to be invalidated before binding and then using
4501 * Vertex Buffers that overlap with any previously bound Vertex Buffer
4502 * (at a 64B granularity) since the last invalidation. A VF cache
4503 * invalidate is performed by setting the "VF Cache Invalidation Enable"
4504 * bit in PIPE_CONTROL."
4505 *
4506 * This is implemented by carefully tracking all vertex and index buffer
4507 * bindings and flushing if the cache ever ends up with a range in the cache
4508 * that would exceed 4 GiB. This is implemented in three parts:
4509 *
4510 * 1. genX(cmd_buffer_set_binding_for_gen8_vb_flush)() which must be called
4511 * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
4512 * tracking code of the new binding. If this new binding would cause
4513 * the cache to have a too-large range on the next draw call, a pipeline
4514 * stall and VF cache invalidate are added to pending_pipeline_bits.
4515 *
4516 * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
4517 * empty whenever we emit a VF invalidate.
4518 *
4519 * 3. genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)() must be called
4520 * after every 3DPRIMITIVE and copies the bound range into the dirty
4521 * range for each used buffer. This has to be a separate step because
4522 * we don't always re-bind all buffers and so 1. can't know which
4523 * buffers are actually bound.
4524 */
4525 void
4526 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4527 int vb_index,
4528 struct anv_address vb_address,
4529 uint32_t vb_size)
4530 {
4531 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4532 !cmd_buffer->device->physical->use_softpin)
4533 return;
4534
4535 struct anv_vb_cache_range *bound, *dirty;
4536 if (vb_index == -1) {
4537 bound = &cmd_buffer->state.gfx.ib_bound_range;
4538 dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4539 } else {
4540 assert(vb_index >= 0);
4541 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4542 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4543 bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
4544 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
4545 }
4546
4547 if (vb_size == 0) {
4548 bound->start = 0;
4549 bound->end = 0;
4550 return;
4551 }
4552
4553 assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED));
4554 bound->start = gen_48b_address(anv_address_physical(vb_address));
4555 bound->end = bound->start + vb_size;
4556 assert(bound->end > bound->start); /* No overflow */
4557
4558 /* Align everything to a cache line */
4559 bound->start &= ~(64ull - 1ull);
4560 bound->end = align_u64(bound->end, 64);
4561
4562 /* Compute the dirty range */
4563 dirty->start = MIN2(dirty->start, bound->start);
4564 dirty->end = MAX2(dirty->end, bound->end);
4565
4566 /* If our range is larger than 32 bits, we have to flush */
4567 assert(bound->end - bound->start <= (1ull << 32));
4568 if (dirty->end - dirty->start > (1ull << 32)) {
4569 cmd_buffer->state.pending_pipe_bits |=
4570 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
4571 }
4572 }
4573
4574 void
4575 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4576 uint32_t access_type,
4577 uint64_t vb_used)
4578 {
4579 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4580 !cmd_buffer->device->physical->use_softpin)
4581 return;
4582
4583 if (access_type == RANDOM) {
4584 /* We have an index buffer */
4585 struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
4586 struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4587
4588 if (bound->end > bound->start) {
4589 dirty->start = MIN2(dirty->start, bound->start);
4590 dirty->end = MAX2(dirty->end, bound->end);
4591 }
4592 }
4593
4594 uint64_t mask = vb_used;
4595 while (mask) {
4596 int i = u_bit_scan64(&mask);
4597 assert(i >= 0);
4598 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4599 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4600
4601 struct anv_vb_cache_range *bound, *dirty;
4602 bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
4603 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
4604
4605 if (bound->end > bound->start) {
4606 dirty->start = MIN2(dirty->start, bound->start);
4607 dirty->end = MAX2(dirty->end, bound->end);
4608 }
4609 }
4610 }
4611
4612 /**
4613 * Update the pixel hashing modes that determine the balancing of PS threads
4614 * across subslices and slices.
4615 *
4616 * \param width Width bound of the rendering area (already scaled down if \p
4617 * scale is greater than 1).
4618 * \param height Height bound of the rendering area (already scaled down if \p
4619 * scale is greater than 1).
4620 * \param scale The number of framebuffer samples that could potentially be
4621 * affected by an individual channel of the PS thread. This is
4622 * typically one for single-sampled rendering, but for operations
4623 * like CCS resolves and fast clears a single PS invocation may
4624 * update a huge number of pixels, in which case a finer
4625 * balancing is desirable in order to maximally utilize the
4626 * bandwidth available. UINT_MAX can be used as shorthand for
4627 * "finest hashing mode available".
4628 */
4629 void
4630 genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
4631 unsigned width, unsigned height,
4632 unsigned scale)
4633 {
4634 #if GEN_GEN == 9
4635 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4636 const unsigned slice_hashing[] = {
4637 /* Because all Gen9 platforms with more than one slice require
4638 * three-way subslice hashing, a single "normal" 16x16 slice hashing
4639 * block is guaranteed to suffer from substantial imbalance, with one
4640 * subslice receiving twice as much work as the other two in the
4641 * slice.
4642 *
4643 * The performance impact of that would be particularly severe when
4644 * three-way hashing is also in use for slice balancing (which is the
4645 * case for all Gen9 GT4 platforms), because one of the slices
4646 * receives one every three 16x16 blocks in either direction, which
4647 * is roughly the periodicity of the underlying subslice imbalance
4648 * pattern ("roughly" because in reality the hardware's
4649 * implementation of three-way hashing doesn't do exact modulo 3
4650 * arithmetic, which somewhat decreases the magnitude of this effect
4651 * in practice). This leads to a systematic subslice imbalance
4652 * within that slice regardless of the size of the primitive. The
4653 * 32x32 hashing mode guarantees that the subslice imbalance within a
4654 * single slice hashing block is minimal, largely eliminating this
4655 * effect.
4656 */
4657 _32x32,
4658 /* Finest slice hashing mode available. */
4659 NORMAL
4660 };
4661 const unsigned subslice_hashing[] = {
4662 /* 16x16 would provide a slight cache locality benefit especially
4663 * visible in the sampler L1 cache efficiency of low-bandwidth
4664 * non-LLC platforms, but it comes at the cost of greater subslice
4665 * imbalance for primitives of dimensions approximately intermediate
4666 * between 16x4 and 16x16.
4667 */
4668 _16x4,
4669 /* Finest subslice hashing mode available. */
4670 _8x4
4671 };
4672 /* Dimensions of the smallest hashing block of a given hashing mode. If
4673 * the rendering area is smaller than this there can't possibly be any
4674 * benefit from switching to this mode, so we optimize out the
4675 * transition.
4676 */
4677 const unsigned min_size[][2] = {
4678 { 16, 4 },
4679 { 8, 4 }
4680 };
4681 const unsigned idx = scale > 1;
4682
4683 if (cmd_buffer->state.current_hash_scale != scale &&
4684 (width > min_size[idx][0] || height > min_size[idx][1])) {
4685 uint32_t gt_mode;
4686
4687 anv_pack_struct(&gt_mode, GENX(GT_MODE),
4688 .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0),
4689 .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0),
4690 .SubsliceHashing = subslice_hashing[idx],
4691 .SubsliceHashingMask = -1);
4692
4693 cmd_buffer->state.pending_pipe_bits |=
4694 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
4695 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4696
4697 emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode);
4698
4699 cmd_buffer->state.current_hash_scale = scale;
4700 }
4701 #endif
4702 }
4703
4704 static void
4705 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
4706 {
4707 struct anv_device *device = cmd_buffer->device;
4708 const struct anv_image_view *iview =
4709 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
4710 const struct anv_image *image = iview ? iview->image : NULL;
4711
4712 /* FIXME: Width and Height are wrong */
4713
4714 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
4715
4716 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
4717 device->isl_dev.ds.size / 4);
4718 if (dw == NULL)
4719 return;
4720
4721 struct isl_depth_stencil_hiz_emit_info info = { };
4722
4723 if (iview)
4724 info.view = &iview->planes[0].isl;
4725
4726 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4727 uint32_t depth_plane =
4728 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
4729 const struct anv_surface *surface = &image->planes[depth_plane].surface;
4730
4731 info.depth_surf = &surface->isl;
4732
4733 info.depth_address =
4734 anv_batch_emit_reloc(&cmd_buffer->batch,
4735 dw + device->isl_dev.ds.depth_offset / 4,
4736 image->planes[depth_plane].address.bo,
4737 image->planes[depth_plane].address.offset +
4738 surface->offset);
4739 info.mocs =
4740 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
4741
4742 const uint32_t ds =
4743 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
4744 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
4745 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
4746 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
4747
4748 info.hiz_address =
4749 anv_batch_emit_reloc(&cmd_buffer->batch,
4750 dw + device->isl_dev.ds.hiz_offset / 4,
4751 image->planes[depth_plane].address.bo,
4752 image->planes[depth_plane].address.offset +
4753 image->planes[depth_plane].aux_surface.offset);
4754
4755 info.depth_clear_value = ANV_HZ_FC_VAL;
4756 }
4757 }
4758
4759 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
4760 uint32_t stencil_plane =
4761 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
4762 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
4763
4764 info.stencil_surf = &surface->isl;
4765
4766 info.stencil_address =
4767 anv_batch_emit_reloc(&cmd_buffer->batch,
4768 dw + device->isl_dev.ds.stencil_offset / 4,
4769 image->planes[stencil_plane].address.bo,
4770 image->planes[stencil_plane].address.offset +
4771 surface->offset);
4772 info.mocs =
4773 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
4774 }
4775
4776 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
4777
4778 if (GEN_GEN >= 12) {
4779 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
4780 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4781
4782 /* GEN:BUG:1408224581
4783 *
4784 * Workaround: Gen12LP Astep only An additional pipe control with
4785 * post-sync = store dword operation would be required.( w/a is to
4786 * have an additional pipe control after the stencil state whenever
4787 * the surface state bits of this state is changing).
4788 */
4789 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4790 pc.PostSyncOperation = WriteImmediateData;
4791 pc.Address =
4792 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
4793 }
4794 }
4795 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
4796 }
4797
4798 /**
4799 * This ANDs the view mask of the current subpass with the pending clear
4800 * views in the attachment to get the mask of views active in the subpass
4801 * that still need to be cleared.
4802 */
4803 static inline uint32_t
4804 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
4805 const struct anv_attachment_state *att_state)
4806 {
4807 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
4808 }
4809
4810 static inline bool
4811 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
4812 const struct anv_attachment_state *att_state)
4813 {
4814 if (!cmd_state->subpass->view_mask)
4815 return true;
4816
4817 uint32_t pending_clear_mask =
4818 get_multiview_subpass_clear_mask(cmd_state, att_state);
4819
4820 return pending_clear_mask & 1;
4821 }
4822
4823 static inline bool
4824 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
4825 uint32_t att_idx)
4826 {
4827 const uint32_t last_subpass_idx =
4828 cmd_state->pass->attachments[att_idx].last_subpass_idx;
4829 const struct anv_subpass *last_subpass =
4830 &cmd_state->pass->subpasses[last_subpass_idx];
4831 return last_subpass == cmd_state->subpass;
4832 }
4833
4834 static void
4835 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
4836 uint32_t subpass_id)
4837 {
4838 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4839 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
4840 cmd_state->subpass = subpass;
4841
4842 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
4843
4844 /* Our implementation of VK_KHR_multiview uses instancing to draw the
4845 * different views. If the client asks for instancing, we need to use the
4846 * Instance Data Step Rate to ensure that we repeat the client's
4847 * per-instance data once for each view. Since this bit is in
4848 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
4849 * of each subpass.
4850 */
4851 if (GEN_GEN == 7)
4852 cmd_buffer->state.gfx.vb_dirty |= ~0;
4853
4854 /* It is possible to start a render pass with an old pipeline. Because the
4855 * render pass and subpass index are both baked into the pipeline, this is
4856 * highly unlikely. In order to do so, it requires that you have a render
4857 * pass with a single subpass and that you use that render pass twice
4858 * back-to-back and use the same pipeline at the start of the second render
4859 * pass as at the end of the first. In order to avoid unpredictable issues
4860 * with this edge case, we just dirty the pipeline at the start of every
4861 * subpass.
4862 */
4863 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
4864
4865 /* Accumulate any subpass flushes that need to happen before the subpass */
4866 cmd_buffer->state.pending_pipe_bits |=
4867 cmd_buffer->state.pass->subpass_flushes[subpass_id];
4868
4869 VkRect2D render_area = cmd_buffer->state.render_area;
4870 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4871
4872 bool is_multiview = subpass->view_mask != 0;
4873
4874 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4875 const uint32_t a = subpass->attachments[i].attachment;
4876 if (a == VK_ATTACHMENT_UNUSED)
4877 continue;
4878
4879 assert(a < cmd_state->pass->attachment_count);
4880 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4881
4882 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
4883 const struct anv_image *image = iview->image;
4884
4885 /* A resolve is necessary before use as an input attachment if the clear
4886 * color or auxiliary buffer usage isn't supported by the sampler.
4887 */
4888 const bool input_needs_resolve =
4889 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
4890 att_state->input_aux_usage != att_state->aux_usage;
4891
4892 VkImageLayout target_layout;
4893 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
4894 !input_needs_resolve) {
4895 /* Layout transitions before the final only help to enable sampling
4896 * as an input attachment. If the input attachment supports sampling
4897 * using the auxiliary surface, we can skip such transitions by
4898 * making the target layout one that is CCS-aware.
4899 */
4900 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
4901 } else {
4902 target_layout = subpass->attachments[i].layout;
4903 }
4904
4905 VkImageLayout target_stencil_layout =
4906 subpass->attachments[i].stencil_layout;
4907
4908 uint32_t base_layer, layer_count;
4909 if (image->type == VK_IMAGE_TYPE_3D) {
4910 base_layer = 0;
4911 layer_count = anv_minify(iview->image->extent.depth,
4912 iview->planes[0].isl.base_level);
4913 } else {
4914 base_layer = iview->planes[0].isl.base_array_layer;
4915 layer_count = fb->layers;
4916 }
4917
4918 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4919 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4920 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4921 iview->planes[0].isl.base_level, 1,
4922 base_layer, layer_count,
4923 att_state->current_layout, target_layout);
4924 }
4925
4926 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4927 transition_depth_buffer(cmd_buffer, image,
4928 att_state->current_layout, target_layout);
4929 att_state->aux_usage =
4930 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
4931 VK_IMAGE_ASPECT_DEPTH_BIT,
4932 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
4933 target_layout);
4934 }
4935
4936 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4937 transition_stencil_buffer(cmd_buffer, image,
4938 iview->planes[0].isl.base_level, 1,
4939 base_layer, layer_count,
4940 att_state->current_stencil_layout,
4941 target_stencil_layout);
4942 }
4943 att_state->current_layout = target_layout;
4944 att_state->current_stencil_layout = target_stencil_layout;
4945
4946 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
4947 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4948
4949 /* Multi-planar images are not supported as attachments */
4950 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4951 assert(image->n_planes == 1);
4952
4953 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
4954 uint32_t clear_layer_count = fb->layers;
4955
4956 if (att_state->fast_clear &&
4957 do_first_layer_clear(cmd_state, att_state)) {
4958 /* We only support fast-clears on the first layer */
4959 assert(iview->planes[0].isl.base_level == 0);
4960 assert(iview->planes[0].isl.base_array_layer == 0);
4961
4962 union isl_color_value clear_color = {};
4963 anv_clear_color_from_att_state(&clear_color, att_state, iview);
4964 if (iview->image->samples == 1) {
4965 anv_image_ccs_op(cmd_buffer, image,
4966 iview->planes[0].isl.format,
4967 VK_IMAGE_ASPECT_COLOR_BIT,
4968 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
4969 &clear_color,
4970 false);
4971 } else {
4972 anv_image_mcs_op(cmd_buffer, image,
4973 iview->planes[0].isl.format,
4974 VK_IMAGE_ASPECT_COLOR_BIT,
4975 0, 1, ISL_AUX_OP_FAST_CLEAR,
4976 &clear_color,
4977 false);
4978 }
4979 base_clear_layer++;
4980 clear_layer_count--;
4981 if (is_multiview)
4982 att_state->pending_clear_views &= ~1;
4983
4984 if (att_state->clear_color_is_zero) {
4985 /* This image has the auxiliary buffer enabled. We can mark the
4986 * subresource as not needing a resolve because the clear color
4987 * will match what's in every RENDER_SURFACE_STATE object when
4988 * it's being used for sampling.
4989 */
4990 set_image_fast_clear_state(cmd_buffer, iview->image,
4991 VK_IMAGE_ASPECT_COLOR_BIT,
4992 ANV_FAST_CLEAR_DEFAULT_VALUE);
4993 } else {
4994 set_image_fast_clear_state(cmd_buffer, iview->image,
4995 VK_IMAGE_ASPECT_COLOR_BIT,
4996 ANV_FAST_CLEAR_ANY);
4997 }
4998 }
4999
5000 /* From the VkFramebufferCreateInfo spec:
5001 *
5002 * "If the render pass uses multiview, then layers must be one and each
5003 * attachment requires a number of layers that is greater than the
5004 * maximum bit index set in the view mask in the subpasses in which it
5005 * is used."
5006 *
5007 * So if multiview is active we ignore the number of layers in the
5008 * framebuffer and instead we honor the view mask from the subpass.
5009 */
5010 if (is_multiview) {
5011 assert(image->n_planes == 1);
5012 uint32_t pending_clear_mask =
5013 get_multiview_subpass_clear_mask(cmd_state, att_state);
5014
5015 uint32_t layer_idx;
5016 for_each_bit(layer_idx, pending_clear_mask) {
5017 uint32_t layer =
5018 iview->planes[0].isl.base_array_layer + layer_idx;
5019
5020 anv_image_clear_color(cmd_buffer, image,
5021 VK_IMAGE_ASPECT_COLOR_BIT,
5022 att_state->aux_usage,
5023 iview->planes[0].isl.format,
5024 iview->planes[0].isl.swizzle,
5025 iview->planes[0].isl.base_level,
5026 layer, 1,
5027 render_area,
5028 vk_to_isl_color(att_state->clear_value.color));
5029 }
5030
5031 att_state->pending_clear_views &= ~pending_clear_mask;
5032 } else if (clear_layer_count > 0) {
5033 assert(image->n_planes == 1);
5034 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5035 att_state->aux_usage,
5036 iview->planes[0].isl.format,
5037 iview->planes[0].isl.swizzle,
5038 iview->planes[0].isl.base_level,
5039 base_clear_layer, clear_layer_count,
5040 render_area,
5041 vk_to_isl_color(att_state->clear_value.color));
5042 }
5043 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
5044 VK_IMAGE_ASPECT_STENCIL_BIT)) {
5045 if (att_state->fast_clear && !is_multiview) {
5046 /* We currently only support HiZ for single-layer images */
5047 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5048 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
5049 assert(iview->planes[0].isl.base_level == 0);
5050 assert(iview->planes[0].isl.base_array_layer == 0);
5051 assert(fb->layers == 1);
5052 }
5053
5054 anv_image_hiz_clear(cmd_buffer, image,
5055 att_state->pending_clear_aspects,
5056 iview->planes[0].isl.base_level,
5057 iview->planes[0].isl.base_array_layer,
5058 fb->layers, render_area,
5059 att_state->clear_value.depthStencil.stencil);
5060 } else if (is_multiview) {
5061 uint32_t pending_clear_mask =
5062 get_multiview_subpass_clear_mask(cmd_state, att_state);
5063
5064 uint32_t layer_idx;
5065 for_each_bit(layer_idx, pending_clear_mask) {
5066 uint32_t layer =
5067 iview->planes[0].isl.base_array_layer + layer_idx;
5068
5069 anv_image_clear_depth_stencil(cmd_buffer, image,
5070 att_state->pending_clear_aspects,
5071 att_state->aux_usage,
5072 iview->planes[0].isl.base_level,
5073 layer, 1,
5074 render_area,
5075 att_state->clear_value.depthStencil.depth,
5076 att_state->clear_value.depthStencil.stencil);
5077 }
5078
5079 att_state->pending_clear_views &= ~pending_clear_mask;
5080 } else {
5081 anv_image_clear_depth_stencil(cmd_buffer, image,
5082 att_state->pending_clear_aspects,
5083 att_state->aux_usage,
5084 iview->planes[0].isl.base_level,
5085 iview->planes[0].isl.base_array_layer,
5086 fb->layers, render_area,
5087 att_state->clear_value.depthStencil.depth,
5088 att_state->clear_value.depthStencil.stencil);
5089 }
5090 } else {
5091 assert(att_state->pending_clear_aspects == 0);
5092 }
5093
5094 if (GEN_GEN < 10 &&
5095 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5096 image->planes[0].aux_usage != ISL_AUX_USAGE_NONE &&
5097 iview->planes[0].isl.base_level == 0 &&
5098 iview->planes[0].isl.base_array_layer == 0) {
5099 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
5100 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
5101 image, VK_IMAGE_ASPECT_COLOR_BIT,
5102 false /* copy to ss */);
5103 }
5104
5105 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
5106 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
5107 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
5108 image, VK_IMAGE_ASPECT_COLOR_BIT,
5109 false /* copy to ss */);
5110 }
5111 }
5112
5113 if (subpass->attachments[i].usage ==
5114 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
5115 /* We assume that if we're starting a subpass, we're going to do some
5116 * rendering so we may end up with compressed data.
5117 */
5118 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
5119 VK_IMAGE_ASPECT_COLOR_BIT,
5120 att_state->aux_usage,
5121 iview->planes[0].isl.base_level,
5122 iview->planes[0].isl.base_array_layer,
5123 fb->layers);
5124 } else if (subpass->attachments[i].usage ==
5125 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
5126 /* We may be writing depth or stencil so we need to mark the surface.
5127 * Unfortunately, there's no way to know at this point whether the
5128 * depth or stencil tests used will actually write to the surface.
5129 *
5130 * Even though stencil may be plane 1, it always shares a base_level
5131 * with depth.
5132 */
5133 const struct isl_view *ds_view = &iview->planes[0].isl;
5134 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
5135 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5136 VK_IMAGE_ASPECT_DEPTH_BIT,
5137 att_state->aux_usage,
5138 ds_view->base_level,
5139 ds_view->base_array_layer,
5140 fb->layers);
5141 }
5142 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
5143 /* Even though stencil may be plane 1, it always shares a
5144 * base_level with depth.
5145 */
5146 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5147 VK_IMAGE_ASPECT_STENCIL_BIT,
5148 ISL_AUX_USAGE_NONE,
5149 ds_view->base_level,
5150 ds_view->base_array_layer,
5151 fb->layers);
5152 }
5153 }
5154
5155 /* If multiview is enabled, then we are only done clearing when we no
5156 * longer have pending layers to clear, or when we have processed the
5157 * last subpass that uses this attachment.
5158 */
5159 if (!is_multiview ||
5160 att_state->pending_clear_views == 0 ||
5161 current_subpass_is_last_for_attachment(cmd_state, a)) {
5162 att_state->pending_clear_aspects = 0;
5163 }
5164
5165 att_state->pending_load_aspects = 0;
5166 }
5167
5168 #if GEN_GEN >= 11
5169 /* The PIPE_CONTROL command description says:
5170 *
5171 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
5172 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
5173 * Target Cache Flush by enabling this bit. When render target flush
5174 * is set due to new association of BTI, PS Scoreboard Stall bit must
5175 * be set in this packet."
5176 */
5177 cmd_buffer->state.pending_pipe_bits |=
5178 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
5179 ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
5180 #endif
5181
5182 #if GEN_GEN == 12
5183 /* GEN:BUG:14010455700
5184 *
5185 * ISL will change some CHICKEN registers depending on the depth surface
5186 * format, along with emitting the depth and stencil packets. In that case,
5187 * we want to do a depth flush and stall, so the pipeline is not using these
5188 * settings while we change the registers.
5189 */
5190 cmd_buffer->state.pending_pipe_bits |=
5191 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT |
5192 ANV_PIPE_DEPTH_STALL_BIT |
5193 ANV_PIPE_END_OF_PIPE_SYNC_BIT;
5194 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5195 #endif
5196
5197 cmd_buffer_emit_depth_stencil(cmd_buffer);
5198 }
5199
5200 static enum blorp_filter
5201 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
5202 {
5203 switch (vk_mode) {
5204 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
5205 return BLORP_FILTER_SAMPLE_0;
5206 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
5207 return BLORP_FILTER_AVERAGE;
5208 case VK_RESOLVE_MODE_MIN_BIT_KHR:
5209 return BLORP_FILTER_MIN_SAMPLE;
5210 case VK_RESOLVE_MODE_MAX_BIT_KHR:
5211 return BLORP_FILTER_MAX_SAMPLE;
5212 default:
5213 return BLORP_FILTER_NONE;
5214 }
5215 }
5216
5217 static void
5218 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
5219 {
5220 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5221 struct anv_subpass *subpass = cmd_state->subpass;
5222 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
5223 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
5224
5225 if (subpass->has_color_resolve) {
5226 /* We are about to do some MSAA resolves. We need to flush so that the
5227 * result of writes to the MSAA color attachments show up in the sampler
5228 * when we blit to the single-sampled resolve target.
5229 */
5230 cmd_buffer->state.pending_pipe_bits |=
5231 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5232 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
5233
5234 for (uint32_t i = 0; i < subpass->color_count; ++i) {
5235 uint32_t src_att = subpass->color_attachments[i].attachment;
5236 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
5237
5238 if (dst_att == VK_ATTACHMENT_UNUSED)
5239 continue;
5240
5241 assert(src_att < cmd_buffer->state.pass->attachment_count);
5242 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5243
5244 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5245 /* From the Vulkan 1.0 spec:
5246 *
5247 * If the first use of an attachment in a render pass is as a
5248 * resolve attachment, then the loadOp is effectively ignored
5249 * as the resolve is guaranteed to overwrite all pixels in the
5250 * render area.
5251 */
5252 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5253 }
5254
5255 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5256 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5257
5258 const VkRect2D render_area = cmd_buffer->state.render_area;
5259
5260 enum isl_aux_usage src_aux_usage =
5261 cmd_buffer->state.attachments[src_att].aux_usage;
5262 enum isl_aux_usage dst_aux_usage =
5263 cmd_buffer->state.attachments[dst_att].aux_usage;
5264
5265 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
5266 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
5267
5268 anv_image_msaa_resolve(cmd_buffer,
5269 src_iview->image, src_aux_usage,
5270 src_iview->planes[0].isl.base_level,
5271 src_iview->planes[0].isl.base_array_layer,
5272 dst_iview->image, dst_aux_usage,
5273 dst_iview->planes[0].isl.base_level,
5274 dst_iview->planes[0].isl.base_array_layer,
5275 VK_IMAGE_ASPECT_COLOR_BIT,
5276 render_area.offset.x, render_area.offset.y,
5277 render_area.offset.x, render_area.offset.y,
5278 render_area.extent.width,
5279 render_area.extent.height,
5280 fb->layers, BLORP_FILTER_NONE);
5281 }
5282 }
5283
5284 if (subpass->ds_resolve_attachment) {
5285 /* We are about to do some MSAA resolves. We need to flush so that the
5286 * result of writes to the MSAA depth attachments show up in the sampler
5287 * when we blit to the single-sampled resolve target.
5288 */
5289 cmd_buffer->state.pending_pipe_bits |=
5290 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5291 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
5292
5293 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
5294 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
5295
5296 assert(src_att < cmd_buffer->state.pass->attachment_count);
5297 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5298
5299 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5300 /* From the Vulkan 1.0 spec:
5301 *
5302 * If the first use of an attachment in a render pass is as a
5303 * resolve attachment, then the loadOp is effectively ignored
5304 * as the resolve is guaranteed to overwrite all pixels in the
5305 * render area.
5306 */
5307 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5308 }
5309
5310 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5311 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5312
5313 const VkRect2D render_area = cmd_buffer->state.render_area;
5314
5315 struct anv_attachment_state *src_state =
5316 &cmd_state->attachments[src_att];
5317 struct anv_attachment_state *dst_state =
5318 &cmd_state->attachments[dst_att];
5319
5320 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
5321 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5322
5323 /* MSAA resolves sample from the source attachment. Transition the
5324 * depth attachment first to get rid of any HiZ that we may not be
5325 * able to handle.
5326 */
5327 transition_depth_buffer(cmd_buffer, src_iview->image,
5328 src_state->current_layout,
5329 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5330 src_state->aux_usage =
5331 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
5332 VK_IMAGE_ASPECT_DEPTH_BIT,
5333 VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
5334 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5335 src_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5336
5337 /* MSAA resolves write to the resolve attachment as if it were any
5338 * other transfer op. Transition the resolve attachment accordingly.
5339 */
5340 VkImageLayout dst_initial_layout = dst_state->current_layout;
5341
5342 /* If our render area is the entire size of the image, we're going to
5343 * blow it all away so we can claim the initial layout is UNDEFINED
5344 * and we'll get a HiZ ambiguate instead of a resolve.
5345 */
5346 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
5347 render_area.offset.x == 0 && render_area.offset.y == 0 &&
5348 render_area.extent.width == dst_iview->extent.width &&
5349 render_area.extent.height == dst_iview->extent.height)
5350 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5351
5352 transition_depth_buffer(cmd_buffer, dst_iview->image,
5353 dst_initial_layout,
5354 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5355 dst_state->aux_usage =
5356 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
5357 VK_IMAGE_ASPECT_DEPTH_BIT,
5358 VK_IMAGE_USAGE_TRANSFER_DST_BIT,
5359 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5360 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5361
5362 enum blorp_filter filter =
5363 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
5364
5365 anv_image_msaa_resolve(cmd_buffer,
5366 src_iview->image, src_state->aux_usage,
5367 src_iview->planes[0].isl.base_level,
5368 src_iview->planes[0].isl.base_array_layer,
5369 dst_iview->image, dst_state->aux_usage,
5370 dst_iview->planes[0].isl.base_level,
5371 dst_iview->planes[0].isl.base_array_layer,
5372 VK_IMAGE_ASPECT_DEPTH_BIT,
5373 render_area.offset.x, render_area.offset.y,
5374 render_area.offset.x, render_area.offset.y,
5375 render_area.extent.width,
5376 render_area.extent.height,
5377 fb->layers, filter);
5378 }
5379
5380 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
5381 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5382
5383 src_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5384 dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5385
5386 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
5387 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
5388
5389 enum blorp_filter filter =
5390 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
5391
5392 anv_image_msaa_resolve(cmd_buffer,
5393 src_iview->image, src_aux_usage,
5394 src_iview->planes[0].isl.base_level,
5395 src_iview->planes[0].isl.base_array_layer,
5396 dst_iview->image, dst_aux_usage,
5397 dst_iview->planes[0].isl.base_level,
5398 dst_iview->planes[0].isl.base_array_layer,
5399 VK_IMAGE_ASPECT_STENCIL_BIT,
5400 render_area.offset.x, render_area.offset.y,
5401 render_area.offset.x, render_area.offset.y,
5402 render_area.extent.width,
5403 render_area.extent.height,
5404 fb->layers, filter);
5405 }
5406 }
5407
5408 #if GEN_GEN == 7
5409 /* On gen7, we have to store a texturable version of the stencil buffer in
5410 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
5411 * forth at strategic points. Stencil writes are only allowed in following
5412 * layouts:
5413 *
5414 * - VK_IMAGE_LAYOUT_GENERAL
5415 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
5416 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
5417 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
5418 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
5419 *
5420 * For general, we have no nice opportunity to transition so we do the copy
5421 * to the shadow unconditionally at the end of the subpass. For transfer
5422 * destinations, we can update it as part of the transfer op. For the other
5423 * layouts, we delay the copy until a transition into some other layout.
5424 */
5425 if (subpass->depth_stencil_attachment) {
5426 uint32_t a = subpass->depth_stencil_attachment->attachment;
5427 assert(a != VK_ATTACHMENT_UNUSED);
5428
5429 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5430 struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
5431 const struct anv_image *image = iview->image;
5432
5433 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5434 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
5435 VK_IMAGE_ASPECT_STENCIL_BIT);
5436
5437 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
5438 att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
5439 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
5440 anv_image_copy_to_shadow(cmd_buffer, image,
5441 VK_IMAGE_ASPECT_STENCIL_BIT,
5442 iview->planes[plane].isl.base_level, 1,
5443 iview->planes[plane].isl.base_array_layer,
5444 fb->layers);
5445 }
5446 }
5447 }
5448 #endif /* GEN_GEN == 7 */
5449
5450 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
5451 const uint32_t a = subpass->attachments[i].attachment;
5452 if (a == VK_ATTACHMENT_UNUSED)
5453 continue;
5454
5455 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
5456 continue;
5457
5458 assert(a < cmd_state->pass->attachment_count);
5459 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5460 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
5461 const struct anv_image *image = iview->image;
5462
5463 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5464 image->vk_format != iview->vk_format) {
5465 enum anv_fast_clear_type fast_clear_type =
5466 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
5467 image, VK_IMAGE_ASPECT_COLOR_BIT,
5468 att_state->current_layout);
5469
5470 /* If any clear color was used, flush it down the aux surfaces. If we
5471 * don't do it now using the view's format we might use the clear
5472 * color incorrectly in the following resolves (for example with an
5473 * SRGB view & a UNORM image).
5474 */
5475 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
5476 anv_perf_warn(cmd_buffer->device, iview,
5477 "Doing a partial resolve to get rid of clear color at the "
5478 "end of a renderpass due to an image/view format mismatch");
5479
5480 uint32_t base_layer, layer_count;
5481 if (image->type == VK_IMAGE_TYPE_3D) {
5482 base_layer = 0;
5483 layer_count = anv_minify(iview->image->extent.depth,
5484 iview->planes[0].isl.base_level);
5485 } else {
5486 base_layer = iview->planes[0].isl.base_array_layer;
5487 layer_count = fb->layers;
5488 }
5489
5490 for (uint32_t a = 0; a < layer_count; a++) {
5491 uint32_t array_layer = base_layer + a;
5492 if (image->samples == 1) {
5493 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
5494 iview->planes[0].isl.format,
5495 VK_IMAGE_ASPECT_COLOR_BIT,
5496 iview->planes[0].isl.base_level,
5497 array_layer,
5498 ISL_AUX_OP_PARTIAL_RESOLVE,
5499 ANV_FAST_CLEAR_NONE);
5500 } else {
5501 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
5502 iview->planes[0].isl.format,
5503 VK_IMAGE_ASPECT_COLOR_BIT,
5504 base_layer,
5505 ISL_AUX_OP_PARTIAL_RESOLVE,
5506 ANV_FAST_CLEAR_NONE);
5507 }
5508 }
5509 }
5510 }
5511
5512 /* Transition the image into the final layout for this render pass */
5513 VkImageLayout target_layout =
5514 cmd_state->pass->attachments[a].final_layout;
5515 VkImageLayout target_stencil_layout =
5516 cmd_state->pass->attachments[a].stencil_final_layout;
5517
5518 uint32_t base_layer, layer_count;
5519 if (image->type == VK_IMAGE_TYPE_3D) {
5520 base_layer = 0;
5521 layer_count = anv_minify(iview->image->extent.depth,
5522 iview->planes[0].isl.base_level);
5523 } else {
5524 base_layer = iview->planes[0].isl.base_array_layer;
5525 layer_count = fb->layers;
5526 }
5527
5528 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
5529 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5530 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5531 iview->planes[0].isl.base_level, 1,
5532 base_layer, layer_count,
5533 att_state->current_layout, target_layout);
5534 }
5535
5536 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5537 transition_depth_buffer(cmd_buffer, image,
5538 att_state->current_layout, target_layout);
5539 }
5540
5541 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5542 transition_stencil_buffer(cmd_buffer, image,
5543 iview->planes[0].isl.base_level, 1,
5544 base_layer, layer_count,
5545 att_state->current_stencil_layout,
5546 target_stencil_layout);
5547 }
5548 }
5549
5550 /* Accumulate any subpass flushes that need to happen after the subpass.
5551 * Yes, they do get accumulated twice in the NextSubpass case but since
5552 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
5553 * ORing the bits in twice so it's harmless.
5554 */
5555 cmd_buffer->state.pending_pipe_bits |=
5556 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
5557 }
5558
5559 void genX(CmdBeginRenderPass)(
5560 VkCommandBuffer commandBuffer,
5561 const VkRenderPassBeginInfo* pRenderPassBegin,
5562 VkSubpassContents contents)
5563 {
5564 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5565 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
5566 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
5567
5568 cmd_buffer->state.framebuffer = framebuffer;
5569 cmd_buffer->state.pass = pass;
5570 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
5571 VkResult result =
5572 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
5573
5574 /* If we failed to setup the attachments we should not try to go further */
5575 if (result != VK_SUCCESS) {
5576 assert(anv_batch_has_error(&cmd_buffer->batch));
5577 return;
5578 }
5579
5580 genX(flush_pipeline_select_3d)(cmd_buffer);
5581
5582 cmd_buffer_begin_subpass(cmd_buffer, 0);
5583 }
5584
5585 void genX(CmdBeginRenderPass2)(
5586 VkCommandBuffer commandBuffer,
5587 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
5588 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
5589 {
5590 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
5591 pSubpassBeginInfo->contents);
5592 }
5593
5594 void genX(CmdNextSubpass)(
5595 VkCommandBuffer commandBuffer,
5596 VkSubpassContents contents)
5597 {
5598 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5599
5600 if (anv_batch_has_error(&cmd_buffer->batch))
5601 return;
5602
5603 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
5604
5605 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
5606 cmd_buffer_end_subpass(cmd_buffer);
5607 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
5608 }
5609
5610 void genX(CmdNextSubpass2)(
5611 VkCommandBuffer commandBuffer,
5612 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
5613 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5614 {
5615 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
5616 }
5617
5618 void genX(CmdEndRenderPass)(
5619 VkCommandBuffer commandBuffer)
5620 {
5621 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5622
5623 if (anv_batch_has_error(&cmd_buffer->batch))
5624 return;
5625
5626 cmd_buffer_end_subpass(cmd_buffer);
5627
5628 cmd_buffer->state.hiz_enabled = false;
5629
5630 #ifndef NDEBUG
5631 anv_dump_add_attachments(cmd_buffer);
5632 #endif
5633
5634 /* Remove references to render pass specific state. This enables us to
5635 * detect whether or not we're in a renderpass.
5636 */
5637 cmd_buffer->state.framebuffer = NULL;
5638 cmd_buffer->state.pass = NULL;
5639 cmd_buffer->state.subpass = NULL;
5640 }
5641
5642 void genX(CmdEndRenderPass2)(
5643 VkCommandBuffer commandBuffer,
5644 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5645 {
5646 genX(CmdEndRenderPass)(commandBuffer);
5647 }
5648
5649 void
5650 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
5651 {
5652 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5653 struct gen_mi_builder b;
5654 gen_mi_builder_init(&b, &cmd_buffer->batch);
5655
5656 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
5657 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
5658 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
5659
5660 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
5661 mip.LoadOperation = LOAD_LOADINV;
5662 mip.CombineOperation = COMBINE_SET;
5663 mip.CompareOperation = COMPARE_SRCS_EQUAL;
5664 }
5665 #endif
5666 }
5667
5668 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5669 void genX(CmdBeginConditionalRenderingEXT)(
5670 VkCommandBuffer commandBuffer,
5671 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
5672 {
5673 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5674 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
5675 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5676 struct anv_address value_address =
5677 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
5678
5679 const bool isInverted = pConditionalRenderingBegin->flags &
5680 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
5681
5682 cmd_state->conditional_render_enabled = true;
5683
5684 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5685
5686 struct gen_mi_builder b;
5687 gen_mi_builder_init(&b, &cmd_buffer->batch);
5688
5689 /* Section 19.4 of the Vulkan 1.1.85 spec says:
5690 *
5691 * If the value of the predicate in buffer memory changes
5692 * while conditional rendering is active, the rendering commands
5693 * may be discarded in an implementation-dependent way.
5694 * Some implementations may latch the value of the predicate
5695 * upon beginning conditional rendering while others
5696 * may read it before every rendering command.
5697 *
5698 * So it's perfectly fine to read a value from the buffer once.
5699 */
5700 struct gen_mi_value value = gen_mi_mem32(value_address);
5701
5702 /* Precompute predicate result, it is necessary to support secondary
5703 * command buffers since it is unknown if conditional rendering is
5704 * inverted when populating them.
5705 */
5706 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
5707 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
5708 gen_mi_ult(&b, gen_mi_imm(0), value));
5709 }
5710
5711 void genX(CmdEndConditionalRenderingEXT)(
5712 VkCommandBuffer commandBuffer)
5713 {
5714 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5715 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5716
5717 cmd_state->conditional_render_enabled = false;
5718 }
5719 #endif
5720
5721 /* Set of stage bits for which are pipelined, i.e. they get queued by the
5722 * command streamer for later execution.
5723 */
5724 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5725 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
5726 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
5727 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
5728 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
5729 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
5730 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
5731 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
5732 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
5733 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
5734 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
5735 VK_PIPELINE_STAGE_TRANSFER_BIT | \
5736 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
5737 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
5738 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
5739
5740 void genX(CmdSetEvent)(
5741 VkCommandBuffer commandBuffer,
5742 VkEvent _event,
5743 VkPipelineStageFlags stageMask)
5744 {
5745 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5746 ANV_FROM_HANDLE(anv_event, event, _event);
5747
5748 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5749 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5750
5751 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5752 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5753 pc.StallAtPixelScoreboard = true;
5754 pc.CommandStreamerStallEnable = true;
5755 }
5756
5757 pc.DestinationAddressType = DAT_PPGTT,
5758 pc.PostSyncOperation = WriteImmediateData,
5759 pc.Address = (struct anv_address) {
5760 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5761 event->state.offset
5762 };
5763 pc.ImmediateData = VK_EVENT_SET;
5764 }
5765 }
5766
5767 void genX(CmdResetEvent)(
5768 VkCommandBuffer commandBuffer,
5769 VkEvent _event,
5770 VkPipelineStageFlags stageMask)
5771 {
5772 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5773 ANV_FROM_HANDLE(anv_event, event, _event);
5774
5775 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5776 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5777
5778 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5779 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5780 pc.StallAtPixelScoreboard = true;
5781 pc.CommandStreamerStallEnable = true;
5782 }
5783
5784 pc.DestinationAddressType = DAT_PPGTT;
5785 pc.PostSyncOperation = WriteImmediateData;
5786 pc.Address = (struct anv_address) {
5787 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5788 event->state.offset
5789 };
5790 pc.ImmediateData = VK_EVENT_RESET;
5791 }
5792 }
5793
5794 void genX(CmdWaitEvents)(
5795 VkCommandBuffer commandBuffer,
5796 uint32_t eventCount,
5797 const VkEvent* pEvents,
5798 VkPipelineStageFlags srcStageMask,
5799 VkPipelineStageFlags destStageMask,
5800 uint32_t memoryBarrierCount,
5801 const VkMemoryBarrier* pMemoryBarriers,
5802 uint32_t bufferMemoryBarrierCount,
5803 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
5804 uint32_t imageMemoryBarrierCount,
5805 const VkImageMemoryBarrier* pImageMemoryBarriers)
5806 {
5807 #if GEN_GEN >= 8
5808 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5809
5810 for (uint32_t i = 0; i < eventCount; i++) {
5811 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
5812
5813 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
5814 sem.WaitMode = PollingMode,
5815 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
5816 sem.SemaphoreDataDword = VK_EVENT_SET,
5817 sem.SemaphoreAddress = (struct anv_address) {
5818 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5819 event->state.offset
5820 };
5821 }
5822 }
5823 #else
5824 anv_finishme("Implement events on gen7");
5825 #endif
5826
5827 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
5828 false, /* byRegion */
5829 memoryBarrierCount, pMemoryBarriers,
5830 bufferMemoryBarrierCount, pBufferMemoryBarriers,
5831 imageMemoryBarrierCount, pImageMemoryBarriers);
5832 }
5833
5834 VkResult genX(CmdSetPerformanceOverrideINTEL)(
5835 VkCommandBuffer commandBuffer,
5836 const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
5837 {
5838 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5839
5840 switch (pOverrideInfo->type) {
5841 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
5842 uint32_t dw;
5843
5844 #if GEN_GEN >= 9
5845 anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2),
5846 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5847 .MediaInstructionDisable = pOverrideInfo->enable,
5848 ._3DRenderingInstructionDisableMask = true,
5849 .MediaInstructionDisableMask = true);
5850 emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw);
5851 #else
5852 anv_pack_struct(&dw, GENX(INSTPM),
5853 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5854 .MediaInstructionDisable = pOverrideInfo->enable,
5855 ._3DRenderingInstructionDisableMask = true,
5856 .MediaInstructionDisableMask = true);
5857 emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw);
5858 #endif
5859 break;
5860 }
5861
5862 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
5863 if (pOverrideInfo->enable) {
5864 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5865 cmd_buffer->state.pending_pipe_bits |=
5866 ANV_PIPE_FLUSH_BITS |
5867 ANV_PIPE_INVALIDATE_BITS;
5868 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5869 }
5870 break;
5871
5872 default:
5873 unreachable("Invalid override");
5874 }
5875
5876 return VK_SUCCESS;
5877 }
5878
5879 VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
5880 VkCommandBuffer commandBuffer,
5881 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
5882 {
5883 /* TODO: Waiting on the register to write, might depend on generation. */
5884
5885 return VK_SUCCESS;
5886 }