41d5f6058e29f7b666995c6271ca49d9694c8bea
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 #include "util/fast_idiv_by_const.h"
31
32 #include "common/gen_aux_map.h"
33 #include "common/gen_l3_config.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
36
37 /* We reserve GPR 14 and 15 for conditional rendering */
38 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
39 #define __gen_get_batch_dwords anv_batch_emit_dwords
40 #define __gen_address_offset anv_address_add
41 #include "common/gen_mi_builder.h"
42
43 static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
44 uint32_t pipeline);
45
46 static void
47 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
48 {
49 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
50 lri.RegisterOffset = reg;
51 lri.DataDWord = imm;
52 }
53 }
54
55 void
56 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
57 {
58 struct anv_device *device = cmd_buffer->device;
59 UNUSED const struct gen_device_info *devinfo = &device->info;
60 uint32_t mocs = device->isl_dev.mocs.internal;
61
62 /* If we are emitting a new state base address we probably need to re-emit
63 * binding tables.
64 */
65 cmd_buffer->state.descriptors_dirty |= ~0;
66
67 /* Emit a render target cache flush.
68 *
69 * This isn't documented anywhere in the PRM. However, it seems to be
70 * necessary prior to changing the surface state base adress. Without
71 * this, we get GPU hangs when using multi-level command buffers which
72 * clear depth, reset state base address, and then go render stuff.
73 */
74 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
75 pc.DCFlushEnable = true;
76 pc.RenderTargetCacheFlushEnable = true;
77 pc.CommandStreamerStallEnable = true;
78 #if GEN_GEN >= 12
79 pc.TileCacheFlushEnable = true;
80 #endif
81 #if GEN_GEN == 12
82 /* GEN:BUG:1606662791:
83 *
84 * Software must program PIPE_CONTROL command with "HDC Pipeline
85 * Flush" prior to programming of the below two non-pipeline state :
86 * * STATE_BASE_ADDRESS
87 * * 3DSTATE_BINDING_TABLE_POOL_ALLOC
88 */
89 if (devinfo->revision == 0 /* A0 */)
90 pc.HDCPipelineFlushEnable = true;
91 #endif
92 }
93
94 #if GEN_GEN == 12
95 /* GEN:BUG:1607854226:
96 *
97 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
98 * mode by putting the pipeline temporarily in 3D mode.
99 */
100 uint32_t gen12_wa_pipeline = cmd_buffer->state.current_pipeline;
101 genX(flush_pipeline_select_3d)(cmd_buffer);
102 #endif
103
104 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
105 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
106 sba.GeneralStateMOCS = mocs;
107 sba.GeneralStateBaseAddressModifyEnable = true;
108
109 sba.StatelessDataPortAccessMOCS = mocs;
110
111 sba.SurfaceStateBaseAddress =
112 anv_cmd_buffer_surface_base_address(cmd_buffer);
113 sba.SurfaceStateMOCS = mocs;
114 sba.SurfaceStateBaseAddressModifyEnable = true;
115
116 sba.DynamicStateBaseAddress =
117 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
118 sba.DynamicStateMOCS = mocs;
119 sba.DynamicStateBaseAddressModifyEnable = true;
120
121 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
122 sba.IndirectObjectMOCS = mocs;
123 sba.IndirectObjectBaseAddressModifyEnable = true;
124
125 sba.InstructionBaseAddress =
126 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
127 sba.InstructionMOCS = mocs;
128 sba.InstructionBaseAddressModifyEnable = true;
129
130 # if (GEN_GEN >= 8)
131 /* Broadwell requires that we specify a buffer size for a bunch of
132 * these fields. However, since we will be growing the BO's live, we
133 * just set them all to the maximum.
134 */
135 sba.GeneralStateBufferSize = 0xfffff;
136 sba.IndirectObjectBufferSize = 0xfffff;
137 if (device->physical->use_softpin) {
138 /* With softpin, we use fixed addresses so we actually know how big
139 * our base addresses are.
140 */
141 sba.DynamicStateBufferSize = DYNAMIC_STATE_POOL_SIZE / 4096;
142 sba.InstructionBufferSize = INSTRUCTION_STATE_POOL_SIZE / 4096;
143 } else {
144 sba.DynamicStateBufferSize = 0xfffff;
145 sba.InstructionBufferSize = 0xfffff;
146 }
147 sba.GeneralStateBufferSizeModifyEnable = true;
148 sba.IndirectObjectBufferSizeModifyEnable = true;
149 sba.DynamicStateBufferSizeModifyEnable = true;
150 sba.InstructionBuffersizeModifyEnable = true;
151 # else
152 /* On gen7, we have upper bounds instead. According to the docs,
153 * setting an upper bound of zero means that no bounds checking is
154 * performed so, in theory, we should be able to leave them zero.
155 * However, border color is broken and the GPU bounds-checks anyway.
156 * To avoid this and other potential problems, we may as well set it
157 * for everything.
158 */
159 sba.GeneralStateAccessUpperBound =
160 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
161 sba.GeneralStateAccessUpperBoundModifyEnable = true;
162 sba.DynamicStateAccessUpperBound =
163 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
164 sba.DynamicStateAccessUpperBoundModifyEnable = true;
165 sba.InstructionAccessUpperBound =
166 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
167 sba.InstructionAccessUpperBoundModifyEnable = true;
168 # endif
169 # if (GEN_GEN >= 9)
170 if (cmd_buffer->device->physical->use_softpin) {
171 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
172 .bo = device->surface_state_pool.block_pool.bo,
173 .offset = 0,
174 };
175 sba.BindlessSurfaceStateSize = (1 << 20) - 1;
176 } else {
177 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
178 sba.BindlessSurfaceStateSize = 0;
179 }
180 sba.BindlessSurfaceStateMOCS = mocs;
181 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
182 # endif
183 # if (GEN_GEN >= 10)
184 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
185 sba.BindlessSamplerStateMOCS = mocs;
186 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
187 sba.BindlessSamplerStateBufferSize = 0;
188 # endif
189 }
190
191 #if GEN_GEN == 12
192 /* GEN:BUG:1607854226:
193 *
194 * Put the pipeline back into its current mode.
195 */
196 if (gen12_wa_pipeline != UINT32_MAX)
197 genX(flush_pipeline_select)(cmd_buffer, gen12_wa_pipeline);
198 #endif
199
200 /* After re-setting the surface state base address, we have to do some
201 * cache flusing so that the sampler engine will pick up the new
202 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
203 * Shared Function > 3D Sampler > State > State Caching (page 96):
204 *
205 * Coherency with system memory in the state cache, like the texture
206 * cache is handled partially by software. It is expected that the
207 * command stream or shader will issue Cache Flush operation or
208 * Cache_Flush sampler message to ensure that the L1 cache remains
209 * coherent with system memory.
210 *
211 * [...]
212 *
213 * Whenever the value of the Dynamic_State_Base_Addr,
214 * Surface_State_Base_Addr are altered, the L1 state cache must be
215 * invalidated to ensure the new surface or sampler state is fetched
216 * from system memory.
217 *
218 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
219 * which, according the PIPE_CONTROL instruction documentation in the
220 * Broadwell PRM:
221 *
222 * Setting this bit is independent of any other bit in this packet.
223 * This bit controls the invalidation of the L1 and L2 state caches
224 * at the top of the pipe i.e. at the parsing time.
225 *
226 * Unfortunately, experimentation seems to indicate that state cache
227 * invalidation through a PIPE_CONTROL does nothing whatsoever in
228 * regards to surface state and binding tables. In stead, it seems that
229 * invalidating the texture cache is what is actually needed.
230 *
231 * XXX: As far as we have been able to determine through
232 * experimentation, shows that flush the texture cache appears to be
233 * sufficient. The theory here is that all of the sampling/rendering
234 * units cache the binding table in the texture cache. However, we have
235 * yet to be able to actually confirm this.
236 */
237 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
238 pc.TextureCacheInvalidationEnable = true;
239 pc.ConstantCacheInvalidationEnable = true;
240 pc.StateCacheInvalidationEnable = true;
241 }
242 }
243
244 static void
245 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
246 struct anv_state state, struct anv_address addr)
247 {
248 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
249
250 VkResult result =
251 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
252 state.offset + isl_dev->ss.addr_offset,
253 addr.bo, addr.offset, NULL);
254 if (result != VK_SUCCESS)
255 anv_batch_set_error(&cmd_buffer->batch, result);
256 }
257
258 static void
259 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
260 struct anv_surface_state state)
261 {
262 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
263
264 assert(!anv_address_is_null(state.address));
265 add_surface_reloc(cmd_buffer, state.state, state.address);
266
267 if (!anv_address_is_null(state.aux_address)) {
268 VkResult result =
269 anv_reloc_list_add(&cmd_buffer->surface_relocs,
270 &cmd_buffer->pool->alloc,
271 state.state.offset + isl_dev->ss.aux_addr_offset,
272 state.aux_address.bo,
273 state.aux_address.offset,
274 NULL);
275 if (result != VK_SUCCESS)
276 anv_batch_set_error(&cmd_buffer->batch, result);
277 }
278
279 if (!anv_address_is_null(state.clear_address)) {
280 VkResult result =
281 anv_reloc_list_add(&cmd_buffer->surface_relocs,
282 &cmd_buffer->pool->alloc,
283 state.state.offset +
284 isl_dev->ss.clear_color_state_offset,
285 state.clear_address.bo,
286 state.clear_address.offset,
287 NULL);
288 if (result != VK_SUCCESS)
289 anv_batch_set_error(&cmd_buffer->batch, result);
290 }
291 }
292
293 static void
294 color_attachment_compute_aux_usage(struct anv_device * device,
295 struct anv_cmd_state * cmd_state,
296 uint32_t att, VkRect2D render_area,
297 union isl_color_value *fast_clear_color)
298 {
299 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
300 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
301
302 assert(iview->n_planes == 1);
303
304 if (iview->planes[0].isl.base_array_layer >=
305 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
306 iview->planes[0].isl.base_level)) {
307 /* There is no aux buffer which corresponds to the level and layer(s)
308 * being accessed.
309 */
310 att_state->aux_usage = ISL_AUX_USAGE_NONE;
311 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
312 att_state->fast_clear = false;
313 return;
314 }
315
316 att_state->aux_usage =
317 anv_layout_to_aux_usage(&device->info, iview->image,
318 VK_IMAGE_ASPECT_COLOR_BIT,
319 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
320 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
321
322 /* If we don't have aux, then we should have returned early in the layer
323 * check above. If we got here, we must have something.
324 */
325 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
326
327 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
328 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
329 att_state->input_aux_usage = att_state->aux_usage;
330 } else {
331 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
332 *
333 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
334 * setting is only allowed if Surface Format supported for Fast
335 * Clear. In addition, if the surface is bound to the sampling
336 * engine, Surface Format must be supported for Render Target
337 * Compression for surfaces bound to the sampling engine."
338 *
339 * In other words, we can only sample from a fast-cleared image if it
340 * also supports color compression.
341 */
342 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format) &&
343 isl_format_supports_ccs_d(&device->info, iview->planes[0].isl.format)) {
344 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
345
346 /* While fast-clear resolves and partial resolves are fairly cheap in the
347 * case where you render to most of the pixels, full resolves are not
348 * because they potentially involve reading and writing the entire
349 * framebuffer. If we can't texture with CCS_E, we should leave it off and
350 * limit ourselves to fast clears.
351 */
352 if (cmd_state->pass->attachments[att].first_subpass_layout ==
353 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
354 anv_perf_warn(device, iview->image,
355 "Not temporarily enabling CCS_E.");
356 }
357 } else {
358 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
359 }
360 }
361
362 assert(iview->image->planes[0].aux_surface.isl.usage &
363 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
364
365 union isl_color_value clear_color = {};
366 anv_clear_color_from_att_state(&clear_color, att_state, iview);
367
368 att_state->clear_color_is_zero_one =
369 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
370 att_state->clear_color_is_zero =
371 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
372
373 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
374 /* Start by getting the fast clear type. We use the first subpass
375 * layout here because we don't want to fast-clear if the first subpass
376 * to use the attachment can't handle fast-clears.
377 */
378 enum anv_fast_clear_type fast_clear_type =
379 anv_layout_to_fast_clear_type(&device->info, iview->image,
380 VK_IMAGE_ASPECT_COLOR_BIT,
381 cmd_state->pass->attachments[att].first_subpass_layout);
382 switch (fast_clear_type) {
383 case ANV_FAST_CLEAR_NONE:
384 att_state->fast_clear = false;
385 break;
386 case ANV_FAST_CLEAR_DEFAULT_VALUE:
387 att_state->fast_clear = att_state->clear_color_is_zero;
388 break;
389 case ANV_FAST_CLEAR_ANY:
390 att_state->fast_clear = true;
391 break;
392 }
393
394 /* Potentially, we could do partial fast-clears but doing so has crazy
395 * alignment restrictions. It's easier to just restrict to full size
396 * fast clears for now.
397 */
398 if (render_area.offset.x != 0 ||
399 render_area.offset.y != 0 ||
400 render_area.extent.width != iview->extent.width ||
401 render_area.extent.height != iview->extent.height)
402 att_state->fast_clear = false;
403
404 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
405 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
406 att_state->fast_clear = false;
407
408 /* We only allow fast clears to the first slice of an image (level 0,
409 * layer 0) and only for the entire slice. This guarantees us that, at
410 * any given time, there is only one clear color on any given image at
411 * any given time. At the time of our testing (Jan 17, 2018), there
412 * were no known applications which would benefit from fast-clearing
413 * more than just the first slice.
414 */
415 if (att_state->fast_clear &&
416 (iview->planes[0].isl.base_level > 0 ||
417 iview->planes[0].isl.base_array_layer > 0)) {
418 anv_perf_warn(device, iview->image,
419 "Rendering with multi-lod or multi-layer framebuffer "
420 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
421 "baseArrayLayer > 0. Not fast clearing.");
422 att_state->fast_clear = false;
423 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
424 anv_perf_warn(device, iview->image,
425 "Rendering to a multi-layer framebuffer with "
426 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
427 }
428
429 if (att_state->fast_clear)
430 *fast_clear_color = clear_color;
431 } else {
432 att_state->fast_clear = false;
433 }
434 }
435
436 static void
437 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
438 struct anv_cmd_state *cmd_state,
439 uint32_t att, VkRect2D render_area)
440 {
441 struct anv_render_pass_attachment *pass_att =
442 &cmd_state->pass->attachments[att];
443 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
444 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
445
446 /* These will be initialized after the first subpass transition. */
447 att_state->aux_usage = ISL_AUX_USAGE_NONE;
448 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
449
450 /* This is unused for depth/stencil but valgrind complains if it
451 * isn't initialized
452 */
453 att_state->clear_color_is_zero_one = false;
454
455 if (GEN_GEN == 7) {
456 /* We don't do any HiZ or depth fast-clears on gen7 yet */
457 att_state->fast_clear = false;
458 return;
459 }
460
461 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
462 /* If we're just clearing stencil, we can always HiZ clear */
463 att_state->fast_clear = true;
464 return;
465 }
466
467 /* Default to false for now */
468 att_state->fast_clear = false;
469
470 /* We must have depth in order to have HiZ */
471 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
472 return;
473
474 const enum isl_aux_usage first_subpass_aux_usage =
475 anv_layout_to_aux_usage(&device->info, iview->image,
476 VK_IMAGE_ASPECT_DEPTH_BIT,
477 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
478 pass_att->first_subpass_layout);
479 if (!blorp_can_hiz_clear_depth(&device->info,
480 &iview->image->planes[0].surface.isl,
481 first_subpass_aux_usage,
482 iview->planes[0].isl.base_level,
483 iview->planes[0].isl.base_array_layer,
484 render_area.offset.x,
485 render_area.offset.y,
486 render_area.offset.x +
487 render_area.extent.width,
488 render_area.offset.y +
489 render_area.extent.height))
490 return;
491
492 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
493 return;
494
495 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
496 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
497 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
498 * only supports returning 0.0f. Gens prior to gen8 do not support this
499 * feature at all.
500 */
501 return;
502 }
503
504 /* If we got here, then we can fast clear */
505 att_state->fast_clear = true;
506 }
507
508 static bool
509 need_input_attachment_state(const struct anv_render_pass_attachment *att)
510 {
511 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
512 return false;
513
514 /* We only allocate input attachment states for color surfaces. Compression
515 * is not yet enabled for depth textures and stencil doesn't allow
516 * compression so we can just use the texture surface state from the view.
517 */
518 return vk_format_is_color(att->format);
519 }
520
521 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
522 * the initial layout is undefined, the HiZ buffer and depth buffer will
523 * represent the same data at the end of this operation.
524 */
525 static void
526 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
527 const struct anv_image *image,
528 VkImageLayout initial_layout,
529 VkImageLayout final_layout)
530 {
531 uint32_t depth_plane =
532 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
533 if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE)
534 return;
535
536 const enum isl_aux_state initial_state =
537 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
538 VK_IMAGE_ASPECT_DEPTH_BIT,
539 initial_layout);
540 const enum isl_aux_state final_state =
541 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
542 VK_IMAGE_ASPECT_DEPTH_BIT,
543 final_layout);
544
545 const bool initial_depth_valid =
546 isl_aux_state_has_valid_primary(initial_state);
547 const bool initial_hiz_valid =
548 isl_aux_state_has_valid_aux(initial_state);
549 const bool final_needs_depth =
550 isl_aux_state_has_valid_primary(final_state);
551 const bool final_needs_hiz =
552 isl_aux_state_has_valid_aux(final_state);
553
554 /* Getting into the pass-through state for Depth is tricky and involves
555 * both a resolve and an ambiguate. We don't handle that state right now
556 * as anv_layout_to_aux_state never returns it.
557 */
558 assert(final_state != ISL_AUX_STATE_PASS_THROUGH);
559
560 if (final_needs_depth && !initial_depth_valid) {
561 assert(initial_hiz_valid);
562 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
563 0, 0, 1, ISL_AUX_OP_FULL_RESOLVE);
564 } else if (final_needs_hiz && !initial_hiz_valid) {
565 assert(initial_depth_valid);
566 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
567 0, 0, 1, ISL_AUX_OP_AMBIGUATE);
568 }
569 }
570
571 static inline bool
572 vk_image_layout_stencil_write_optimal(VkImageLayout layout)
573 {
574 return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
575 layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
576 layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
577 }
578
579 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
580 * the initial layout is undefined, the HiZ buffer and depth buffer will
581 * represent the same data at the end of this operation.
582 */
583 static void
584 transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
585 const struct anv_image *image,
586 uint32_t base_level, uint32_t level_count,
587 uint32_t base_layer, uint32_t layer_count,
588 VkImageLayout initial_layout,
589 VkImageLayout final_layout)
590 {
591 #if GEN_GEN == 7
592 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
593 VK_IMAGE_ASPECT_STENCIL_BIT);
594
595 /* On gen7, we have to store a texturable version of the stencil buffer in
596 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
597 * forth at strategic points. Stencil writes are only allowed in following
598 * layouts:
599 *
600 * - VK_IMAGE_LAYOUT_GENERAL
601 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
602 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
603 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
604 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
605 *
606 * For general, we have no nice opportunity to transition so we do the copy
607 * to the shadow unconditionally at the end of the subpass. For transfer
608 * destinations, we can update it as part of the transfer op. For the other
609 * layouts, we delay the copy until a transition into some other layout.
610 */
611 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
612 vk_image_layout_stencil_write_optimal(initial_layout) &&
613 !vk_image_layout_stencil_write_optimal(final_layout)) {
614 anv_image_copy_to_shadow(cmd_buffer, image,
615 VK_IMAGE_ASPECT_STENCIL_BIT,
616 base_level, level_count,
617 base_layer, layer_count);
618 }
619 #endif /* GEN_GEN == 7 */
620 }
621
622 #define MI_PREDICATE_SRC0 0x2400
623 #define MI_PREDICATE_SRC1 0x2408
624 #define MI_PREDICATE_RESULT 0x2418
625
626 static void
627 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
628 const struct anv_image *image,
629 VkImageAspectFlagBits aspect,
630 uint32_t level,
631 uint32_t base_layer, uint32_t layer_count,
632 bool compressed)
633 {
634 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
635
636 /* We only have compression tracking for CCS_E */
637 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
638 return;
639
640 for (uint32_t a = 0; a < layer_count; a++) {
641 uint32_t layer = base_layer + a;
642 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
643 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
644 image, aspect,
645 level, layer);
646 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
647 }
648 }
649 }
650
651 static void
652 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
653 const struct anv_image *image,
654 VkImageAspectFlagBits aspect,
655 enum anv_fast_clear_type fast_clear)
656 {
657 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
658 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
659 image, aspect);
660 sdi.ImmediateData = fast_clear;
661 }
662
663 /* Whenever we have fast-clear, we consider that slice to be compressed.
664 * This makes building predicates much easier.
665 */
666 if (fast_clear != ANV_FAST_CLEAR_NONE)
667 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
668 }
669
670 /* This is only really practical on haswell and above because it requires
671 * MI math in order to get it correct.
672 */
673 #if GEN_GEN >= 8 || GEN_IS_HASWELL
674 static void
675 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
676 const struct anv_image *image,
677 VkImageAspectFlagBits aspect,
678 uint32_t level, uint32_t array_layer,
679 enum isl_aux_op resolve_op,
680 enum anv_fast_clear_type fast_clear_supported)
681 {
682 struct gen_mi_builder b;
683 gen_mi_builder_init(&b, &cmd_buffer->batch);
684
685 const struct gen_mi_value fast_clear_type =
686 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
687 image, aspect));
688
689 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
690 /* In this case, we're doing a full resolve which means we want the
691 * resolve to happen if any compression (including fast-clears) is
692 * present.
693 *
694 * In order to simplify the logic a bit, we make the assumption that,
695 * if the first slice has been fast-cleared, it is also marked as
696 * compressed. See also set_image_fast_clear_state.
697 */
698 const struct gen_mi_value compression_state =
699 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
700 image, aspect,
701 level, array_layer));
702 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
703 compression_state);
704 gen_mi_store(&b, compression_state, gen_mi_imm(0));
705
706 if (level == 0 && array_layer == 0) {
707 /* If the predicate is true, we want to write 0 to the fast clear type
708 * and, if it's false, leave it alone. We can do this by writing
709 *
710 * clear_type = clear_type & ~predicate;
711 */
712 struct gen_mi_value new_fast_clear_type =
713 gen_mi_iand(&b, fast_clear_type,
714 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
715 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
716 }
717 } else if (level == 0 && array_layer == 0) {
718 /* In this case, we are doing a partial resolve to get rid of fast-clear
719 * colors. We don't care about the compression state but we do care
720 * about how much fast clear is allowed by the final layout.
721 */
722 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
723 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
724
725 /* We need to compute (fast_clear_supported < image->fast_clear) */
726 struct gen_mi_value pred =
727 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
728 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
729 gen_mi_value_ref(&b, pred));
730
731 /* If the predicate is true, we want to write 0 to the fast clear type
732 * and, if it's false, leave it alone. We can do this by writing
733 *
734 * clear_type = clear_type & ~predicate;
735 */
736 struct gen_mi_value new_fast_clear_type =
737 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
738 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
739 } else {
740 /* In this case, we're trying to do a partial resolve on a slice that
741 * doesn't have clear color. There's nothing to do.
742 */
743 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
744 return;
745 }
746
747 /* Set src1 to 0 and use a != condition */
748 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
749
750 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
751 mip.LoadOperation = LOAD_LOADINV;
752 mip.CombineOperation = COMBINE_SET;
753 mip.CompareOperation = COMPARE_SRCS_EQUAL;
754 }
755 }
756 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
757
758 #if GEN_GEN <= 8
759 static void
760 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
761 const struct anv_image *image,
762 VkImageAspectFlagBits aspect,
763 uint32_t level, uint32_t array_layer,
764 enum isl_aux_op resolve_op,
765 enum anv_fast_clear_type fast_clear_supported)
766 {
767 struct gen_mi_builder b;
768 gen_mi_builder_init(&b, &cmd_buffer->batch);
769
770 struct gen_mi_value fast_clear_type_mem =
771 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
772 image, aspect));
773
774 /* This only works for partial resolves and only when the clear color is
775 * all or nothing. On the upside, this emits less command streamer code
776 * and works on Ivybridge and Bay Trail.
777 */
778 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
779 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
780
781 /* We don't support fast clears on anything other than the first slice. */
782 if (level > 0 || array_layer > 0)
783 return;
784
785 /* On gen8, we don't have a concept of default clear colors because we
786 * can't sample from CCS surfaces. It's enough to just load the fast clear
787 * state into the predicate register.
788 */
789 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
790 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
791 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
792
793 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
794 mip.LoadOperation = LOAD_LOADINV;
795 mip.CombineOperation = COMBINE_SET;
796 mip.CompareOperation = COMPARE_SRCS_EQUAL;
797 }
798 }
799 #endif /* GEN_GEN <= 8 */
800
801 static void
802 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
803 const struct anv_image *image,
804 enum isl_format format,
805 VkImageAspectFlagBits aspect,
806 uint32_t level, uint32_t array_layer,
807 enum isl_aux_op resolve_op,
808 enum anv_fast_clear_type fast_clear_supported)
809 {
810 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
811
812 #if GEN_GEN >= 9
813 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
814 aspect, level, array_layer,
815 resolve_op, fast_clear_supported);
816 #else /* GEN_GEN <= 8 */
817 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
818 aspect, level, array_layer,
819 resolve_op, fast_clear_supported);
820 #endif
821
822 /* CCS_D only supports full resolves and BLORP will assert on us if we try
823 * to do a partial resolve on a CCS_D surface.
824 */
825 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
826 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D)
827 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
828
829 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
830 array_layer, 1, resolve_op, NULL, true);
831 }
832
833 static void
834 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
835 const struct anv_image *image,
836 enum isl_format format,
837 VkImageAspectFlagBits aspect,
838 uint32_t array_layer,
839 enum isl_aux_op resolve_op,
840 enum anv_fast_clear_type fast_clear_supported)
841 {
842 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
843 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
844
845 #if GEN_GEN >= 8 || GEN_IS_HASWELL
846 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
847 aspect, 0, array_layer,
848 resolve_op, fast_clear_supported);
849
850 anv_image_mcs_op(cmd_buffer, image, format, aspect,
851 array_layer, 1, resolve_op, NULL, true);
852 #else
853 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
854 #endif
855 }
856
857 void
858 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
859 const struct anv_image *image,
860 VkImageAspectFlagBits aspect,
861 enum isl_aux_usage aux_usage,
862 uint32_t level,
863 uint32_t base_layer,
864 uint32_t layer_count)
865 {
866 /* The aspect must be exactly one of the image aspects. */
867 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
868
869 /* The only compression types with more than just fast-clears are MCS,
870 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
871 * track the current fast-clear and compression state. This leaves us
872 * with just MCS and CCS_E.
873 */
874 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
875 aux_usage != ISL_AUX_USAGE_MCS)
876 return;
877
878 set_image_compressed_bit(cmd_buffer, image, aspect,
879 level, base_layer, layer_count, true);
880 }
881
882 static void
883 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
884 const struct anv_image *image,
885 VkImageAspectFlagBits aspect)
886 {
887 assert(cmd_buffer && image);
888 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
889
890 set_image_fast_clear_state(cmd_buffer, image, aspect,
891 ANV_FAST_CLEAR_NONE);
892
893 /* Initialize the struct fields that are accessed for fast-clears so that
894 * the HW restrictions on the field values are satisfied.
895 */
896 struct anv_address addr =
897 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
898
899 if (GEN_GEN >= 9) {
900 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
901 const unsigned num_dwords = GEN_GEN >= 10 ?
902 isl_dev->ss.clear_color_state_size / 4 :
903 isl_dev->ss.clear_value_size / 4;
904 for (unsigned i = 0; i < num_dwords; i++) {
905 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
906 sdi.Address = addr;
907 sdi.Address.offset += i * 4;
908 sdi.ImmediateData = 0;
909 }
910 }
911 } else {
912 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
913 sdi.Address = addr;
914 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
915 /* Pre-SKL, the dword containing the clear values also contains
916 * other fields, so we need to initialize those fields to match the
917 * values that would be in a color attachment.
918 */
919 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
920 ISL_CHANNEL_SELECT_GREEN << 22 |
921 ISL_CHANNEL_SELECT_BLUE << 19 |
922 ISL_CHANNEL_SELECT_ALPHA << 16;
923 } else if (GEN_GEN == 7) {
924 /* On IVB, the dword containing the clear values also contains
925 * other fields that must be zero or can be zero.
926 */
927 sdi.ImmediateData = 0;
928 }
929 }
930 }
931 }
932
933 /* Copy the fast-clear value dword(s) between a surface state object and an
934 * image's fast clear state buffer.
935 */
936 static void
937 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
938 struct anv_state surface_state,
939 const struct anv_image *image,
940 VkImageAspectFlagBits aspect,
941 bool copy_from_surface_state)
942 {
943 assert(cmd_buffer && image);
944 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
945
946 struct anv_address ss_clear_addr = {
947 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
948 .offset = surface_state.offset +
949 cmd_buffer->device->isl_dev.ss.clear_value_offset,
950 };
951 const struct anv_address entry_addr =
952 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
953 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
954
955 #if GEN_GEN == 7
956 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
957 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
958 * in-flight when they are issued even if the memory touched is not
959 * currently active for rendering. The weird bit is that it is not the
960 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
961 * rendering hangs such that the next stalling command after the
962 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
963 *
964 * It is unclear exactly why this hang occurs. Both MI commands come with
965 * warnings about the 3D pipeline but that doesn't seem to fully explain
966 * it. My (Jason's) best theory is that it has something to do with the
967 * fact that we're using a GPU state register as our temporary and that
968 * something with reading/writing it is causing problems.
969 *
970 * In order to work around this issue, we emit a PIPE_CONTROL with the
971 * command streamer stall bit set.
972 */
973 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
974 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
975 #endif
976
977 struct gen_mi_builder b;
978 gen_mi_builder_init(&b, &cmd_buffer->batch);
979
980 if (copy_from_surface_state) {
981 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
982 } else {
983 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
984
985 /* Updating a surface state object may require that the state cache be
986 * invalidated. From the SKL PRM, Shared Functions -> State -> State
987 * Caching:
988 *
989 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
990 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
991 * modified [...], the L1 state cache must be invalidated to ensure
992 * the new surface or sampler state is fetched from system memory.
993 *
994 * In testing, SKL doesn't actually seem to need this, but HSW does.
995 */
996 cmd_buffer->state.pending_pipe_bits |=
997 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
998 }
999 }
1000
1001 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
1002
1003 #if GEN_GEN == 12
1004 static void
1005 anv_image_init_aux_tt(struct anv_cmd_buffer *cmd_buffer,
1006 const struct anv_image *image,
1007 VkImageAspectFlagBits aspect,
1008 uint32_t base_level, uint32_t level_count,
1009 uint32_t base_layer, uint32_t layer_count)
1010 {
1011 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1012
1013 uint64_t base_address =
1014 anv_address_physical(image->planes[plane].address);
1015
1016 const struct isl_surf *isl_surf = &image->planes[plane].surface.isl;
1017 uint64_t format_bits = gen_aux_map_format_bits_for_isl_surf(isl_surf);
1018
1019 /* We're about to live-update the AUX-TT. We really don't want anyone else
1020 * trying to read it while we're doing this. We could probably get away
1021 * with not having this stall in some cases if we were really careful but
1022 * it's better to play it safe. Full stall the GPU.
1023 */
1024 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1025 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1026
1027 struct gen_mi_builder b;
1028 gen_mi_builder_init(&b, &cmd_buffer->batch);
1029
1030 for (uint32_t a = 0; a < layer_count; a++) {
1031 const uint32_t layer = base_layer + a;
1032
1033 uint64_t start_offset_B = UINT64_MAX, end_offset_B = 0;
1034 for (uint32_t l = 0; l < level_count; l++) {
1035 const uint32_t level = base_level + l;
1036
1037 uint32_t logical_array_layer, logical_z_offset_px;
1038 if (image->type == VK_IMAGE_TYPE_3D) {
1039 logical_array_layer = 0;
1040
1041 /* If the given miplevel does not have this layer, then any higher
1042 * miplevels won't either because miplevels only get smaller the
1043 * higher the LOD.
1044 */
1045 assert(layer < image->extent.depth);
1046 if (layer >= anv_minify(image->extent.depth, level))
1047 break;
1048 logical_z_offset_px = layer;
1049 } else {
1050 assert(layer < image->array_size);
1051 logical_array_layer = layer;
1052 logical_z_offset_px = 0;
1053 }
1054
1055 uint32_t slice_start_offset_B, slice_end_offset_B;
1056 isl_surf_get_image_range_B_tile(isl_surf, level,
1057 logical_array_layer,
1058 logical_z_offset_px,
1059 &slice_start_offset_B,
1060 &slice_end_offset_B);
1061
1062 start_offset_B = MIN2(start_offset_B, slice_start_offset_B);
1063 end_offset_B = MAX2(end_offset_B, slice_end_offset_B);
1064 }
1065
1066 /* Aux operates 64K at a time */
1067 start_offset_B = align_down_u64(start_offset_B, 64 * 1024);
1068 end_offset_B = align_u64(end_offset_B, 64 * 1024);
1069
1070 for (uint64_t offset = start_offset_B;
1071 offset < end_offset_B; offset += 64 * 1024) {
1072 uint64_t address = base_address + offset;
1073
1074 uint64_t aux_entry_addr64, *aux_entry_map;
1075 aux_entry_map = gen_aux_map_get_entry(cmd_buffer->device->aux_map_ctx,
1076 address, &aux_entry_addr64);
1077
1078 assert(cmd_buffer->device->physical->use_softpin);
1079 struct anv_address aux_entry_address = {
1080 .bo = NULL,
1081 .offset = aux_entry_addr64,
1082 };
1083
1084 const uint64_t old_aux_entry = READ_ONCE(*aux_entry_map);
1085 uint64_t new_aux_entry =
1086 (old_aux_entry & GEN_AUX_MAP_ADDRESS_MASK) | format_bits;
1087
1088 if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage))
1089 new_aux_entry |= GEN_AUX_MAP_ENTRY_VALID_BIT;
1090
1091 gen_mi_store(&b, gen_mi_mem64(aux_entry_address),
1092 gen_mi_imm(new_aux_entry));
1093 }
1094 }
1095
1096 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1097 }
1098 #endif /* GEN_GEN == 12 */
1099
1100 /**
1101 * @brief Transitions a color buffer from one layout to another.
1102 *
1103 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
1104 * more information.
1105 *
1106 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
1107 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
1108 * this represents the maximum layers to transition at each
1109 * specified miplevel.
1110 */
1111 static void
1112 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
1113 const struct anv_image *image,
1114 VkImageAspectFlagBits aspect,
1115 const uint32_t base_level, uint32_t level_count,
1116 uint32_t base_layer, uint32_t layer_count,
1117 VkImageLayout initial_layout,
1118 VkImageLayout final_layout)
1119 {
1120 struct anv_device *device = cmd_buffer->device;
1121 const struct gen_device_info *devinfo = &device->info;
1122 /* Validate the inputs. */
1123 assert(cmd_buffer);
1124 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1125 /* These values aren't supported for simplicity's sake. */
1126 assert(level_count != VK_REMAINING_MIP_LEVELS &&
1127 layer_count != VK_REMAINING_ARRAY_LAYERS);
1128 /* Ensure the subresource range is valid. */
1129 UNUSED uint64_t last_level_num = base_level + level_count;
1130 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
1131 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
1132 assert((uint64_t)base_layer + layer_count <= image_layers);
1133 assert(last_level_num <= image->levels);
1134 /* The spec disallows these final layouts. */
1135 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
1136 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
1137
1138 /* No work is necessary if the layout stays the same or if this subresource
1139 * range lacks auxiliary data.
1140 */
1141 if (initial_layout == final_layout)
1142 return;
1143
1144 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1145
1146 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1147 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
1148 /* This surface is a linear compressed image with a tiled shadow surface
1149 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
1150 * we need to ensure the shadow copy is up-to-date.
1151 */
1152 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1153 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
1154 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1155 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
1156 assert(plane == 0);
1157 anv_image_copy_to_shadow(cmd_buffer, image,
1158 VK_IMAGE_ASPECT_COLOR_BIT,
1159 base_level, level_count,
1160 base_layer, layer_count);
1161 }
1162
1163 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
1164 return;
1165
1166 assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR);
1167
1168 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
1169 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
1170 #if GEN_GEN == 12
1171 if (device->physical->has_implicit_ccs && devinfo->has_aux_map) {
1172 anv_image_init_aux_tt(cmd_buffer, image, aspect,
1173 base_level, level_count,
1174 base_layer, layer_count);
1175 }
1176 #else
1177 assert(!(device->physical->has_implicit_ccs && devinfo->has_aux_map));
1178 #endif
1179
1180 /* A subresource in the undefined layout may have been aliased and
1181 * populated with any arrangement of bits. Therefore, we must initialize
1182 * the related aux buffer and clear buffer entry with desirable values.
1183 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
1184 * images with VK_IMAGE_TILING_OPTIMAL.
1185 *
1186 * Initialize the relevant clear buffer entries.
1187 */
1188 if (base_level == 0 && base_layer == 0)
1189 init_fast_clear_color(cmd_buffer, image, aspect);
1190
1191 /* Initialize the aux buffers to enable correct rendering. In order to
1192 * ensure that things such as storage images work correctly, aux buffers
1193 * need to be initialized to valid data.
1194 *
1195 * Having an aux buffer with invalid data is a problem for two reasons:
1196 *
1197 * 1) Having an invalid value in the buffer can confuse the hardware.
1198 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1199 * invalid and leads to the hardware doing strange things. It
1200 * doesn't hang as far as we can tell but rendering corruption can
1201 * occur.
1202 *
1203 * 2) If this transition is into the GENERAL layout and we then use the
1204 * image as a storage image, then we must have the aux buffer in the
1205 * pass-through state so that, if we then go to texture from the
1206 * image, we get the results of our storage image writes and not the
1207 * fast clear color or other random data.
1208 *
1209 * For CCS both of the problems above are real demonstrable issues. In
1210 * that case, the only thing we can do is to perform an ambiguate to
1211 * transition the aux surface into the pass-through state.
1212 *
1213 * For MCS, (2) is never an issue because we don't support multisampled
1214 * storage images. In theory, issue (1) is a problem with MCS but we've
1215 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1216 * theory, be interpreted as something but we don't know that all bit
1217 * patterns are actually valid. For 2x and 8x, you could easily end up
1218 * with the MCS referring to an invalid plane because not all bits of
1219 * the MCS value are actually used. Even though we've never seen issues
1220 * in the wild, it's best to play it safe and initialize the MCS. We
1221 * can use a fast-clear for MCS because we only ever touch from render
1222 * and texture (no image load store).
1223 */
1224 if (image->samples == 1) {
1225 for (uint32_t l = 0; l < level_count; l++) {
1226 const uint32_t level = base_level + l;
1227
1228 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1229 if (base_layer >= aux_layers)
1230 break; /* We will only get fewer layers as level increases */
1231 uint32_t level_layer_count =
1232 MIN2(layer_count, aux_layers - base_layer);
1233
1234 anv_image_ccs_op(cmd_buffer, image,
1235 image->planes[plane].surface.isl.format,
1236 aspect, level, base_layer, level_layer_count,
1237 ISL_AUX_OP_AMBIGUATE, NULL, false);
1238
1239 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1240 set_image_compressed_bit(cmd_buffer, image, aspect,
1241 level, base_layer, level_layer_count,
1242 false);
1243 }
1244 }
1245 } else {
1246 if (image->samples == 4 || image->samples == 16) {
1247 anv_perf_warn(cmd_buffer->device, image,
1248 "Doing a potentially unnecessary fast-clear to "
1249 "define an MCS buffer.");
1250 }
1251
1252 assert(base_level == 0 && level_count == 1);
1253 anv_image_mcs_op(cmd_buffer, image,
1254 image->planes[plane].surface.isl.format,
1255 aspect, base_layer, layer_count,
1256 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1257 }
1258 return;
1259 }
1260
1261 const enum isl_aux_usage initial_aux_usage =
1262 anv_layout_to_aux_usage(devinfo, image, aspect, 0, initial_layout);
1263 const enum isl_aux_usage final_aux_usage =
1264 anv_layout_to_aux_usage(devinfo, image, aspect, 0, final_layout);
1265
1266 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1267 * We can handle transitions between CCS_D/E to and from NONE. What we
1268 * don't yet handle is switching between CCS_E and CCS_D within a given
1269 * image. Doing so in a performant way requires more detailed aux state
1270 * tracking such as what is done in i965. For now, just assume that we
1271 * only have one type of compression.
1272 */
1273 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1274 final_aux_usage == ISL_AUX_USAGE_NONE ||
1275 initial_aux_usage == final_aux_usage);
1276
1277 /* If initial aux usage is NONE, there is nothing to resolve */
1278 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1279 return;
1280
1281 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1282
1283 /* If the initial layout supports more fast clear than the final layout
1284 * then we need at least a partial resolve.
1285 */
1286 const enum anv_fast_clear_type initial_fast_clear =
1287 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1288 const enum anv_fast_clear_type final_fast_clear =
1289 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1290 if (final_fast_clear < initial_fast_clear)
1291 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1292
1293 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1294 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1295 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1296
1297 if (resolve_op == ISL_AUX_OP_NONE)
1298 return;
1299
1300 /* Perform a resolve to synchronize data between the main and aux buffer.
1301 * Before we begin, we must satisfy the cache flushing requirement specified
1302 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1303 *
1304 * Any transition from any value in {Clear, Render, Resolve} to a
1305 * different value in {Clear, Render, Resolve} requires end of pipe
1306 * synchronization.
1307 *
1308 * We perform a flush of the write cache before and after the clear and
1309 * resolve operations to meet this requirement.
1310 *
1311 * Unlike other drawing, fast clear operations are not properly
1312 * synchronized. The first PIPE_CONTROL here likely ensures that the
1313 * contents of the previous render or clear hit the render target before we
1314 * resolve and the second likely ensures that the resolve is complete before
1315 * we do any more rendering or clearing.
1316 */
1317 cmd_buffer->state.pending_pipe_bits |=
1318 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT;
1319
1320 for (uint32_t l = 0; l < level_count; l++) {
1321 uint32_t level = base_level + l;
1322
1323 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1324 if (base_layer >= aux_layers)
1325 break; /* We will only get fewer layers as level increases */
1326 uint32_t level_layer_count =
1327 MIN2(layer_count, aux_layers - base_layer);
1328
1329 for (uint32_t a = 0; a < level_layer_count; a++) {
1330 uint32_t array_layer = base_layer + a;
1331 if (image->samples == 1) {
1332 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1333 image->planes[plane].surface.isl.format,
1334 aspect, level, array_layer, resolve_op,
1335 final_fast_clear);
1336 } else {
1337 /* We only support fast-clear on the first layer so partial
1338 * resolves should not be used on other layers as they will use
1339 * the clear color stored in memory that is only valid for layer0.
1340 */
1341 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1342 array_layer != 0)
1343 continue;
1344
1345 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1346 image->planes[plane].surface.isl.format,
1347 aspect, array_layer, resolve_op,
1348 final_fast_clear);
1349 }
1350 }
1351 }
1352
1353 cmd_buffer->state.pending_pipe_bits |=
1354 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT;
1355 }
1356
1357 /**
1358 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1359 */
1360 static VkResult
1361 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1362 struct anv_render_pass *pass,
1363 const VkRenderPassBeginInfo *begin)
1364 {
1365 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1366 struct anv_cmd_state *state = &cmd_buffer->state;
1367 struct anv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
1368
1369 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1370
1371 if (pass->attachment_count > 0) {
1372 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1373 pass->attachment_count *
1374 sizeof(state->attachments[0]),
1375 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1376 if (state->attachments == NULL) {
1377 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1378 return anv_batch_set_error(&cmd_buffer->batch,
1379 VK_ERROR_OUT_OF_HOST_MEMORY);
1380 }
1381 } else {
1382 state->attachments = NULL;
1383 }
1384
1385 /* Reserve one for the NULL state. */
1386 unsigned num_states = 1;
1387 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1388 if (vk_format_is_color(pass->attachments[i].format))
1389 num_states++;
1390
1391 if (need_input_attachment_state(&pass->attachments[i]))
1392 num_states++;
1393 }
1394
1395 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1396 state->render_pass_states =
1397 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1398 num_states * ss_stride, isl_dev->ss.align);
1399
1400 struct anv_state next_state = state->render_pass_states;
1401 next_state.alloc_size = isl_dev->ss.size;
1402
1403 state->null_surface_state = next_state;
1404 next_state.offset += ss_stride;
1405 next_state.map += ss_stride;
1406
1407 const VkRenderPassAttachmentBeginInfoKHR *begin_attachment =
1408 vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
1409
1410 if (begin && !begin_attachment)
1411 assert(pass->attachment_count == framebuffer->attachment_count);
1412
1413 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1414 if (vk_format_is_color(pass->attachments[i].format)) {
1415 state->attachments[i].color.state = next_state;
1416 next_state.offset += ss_stride;
1417 next_state.map += ss_stride;
1418 }
1419
1420 if (need_input_attachment_state(&pass->attachments[i])) {
1421 state->attachments[i].input.state = next_state;
1422 next_state.offset += ss_stride;
1423 next_state.map += ss_stride;
1424 }
1425
1426 if (begin_attachment && begin_attachment->attachmentCount != 0) {
1427 assert(begin_attachment->attachmentCount == pass->attachment_count);
1428 ANV_FROM_HANDLE(anv_image_view, iview, begin_attachment->pAttachments[i]);
1429 cmd_buffer->state.attachments[i].image_view = iview;
1430 } else if (framebuffer && i < framebuffer->attachment_count) {
1431 cmd_buffer->state.attachments[i].image_view = framebuffer->attachments[i];
1432 }
1433 }
1434 assert(next_state.offset == state->render_pass_states.offset +
1435 state->render_pass_states.alloc_size);
1436
1437 if (begin) {
1438 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1439 isl_extent3d(framebuffer->width,
1440 framebuffer->height,
1441 framebuffer->layers));
1442
1443 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1444 struct anv_render_pass_attachment *att = &pass->attachments[i];
1445 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1446 VkImageAspectFlags clear_aspects = 0;
1447 VkImageAspectFlags load_aspects = 0;
1448
1449 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1450 /* color attachment */
1451 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1452 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1453 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1454 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1455 }
1456 } else {
1457 /* depthstencil attachment */
1458 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1459 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1460 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1461 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1462 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1463 }
1464 }
1465 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1466 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1467 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1468 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1469 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1470 }
1471 }
1472 }
1473
1474 state->attachments[i].current_layout = att->initial_layout;
1475 state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
1476 state->attachments[i].pending_clear_aspects = clear_aspects;
1477 state->attachments[i].pending_load_aspects = load_aspects;
1478 if (clear_aspects)
1479 state->attachments[i].clear_value = begin->pClearValues[i];
1480
1481 struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
1482 anv_assert(iview->vk_format == att->format);
1483
1484 const uint32_t num_layers = iview->planes[0].isl.array_len;
1485 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1486
1487 union isl_color_value clear_color = { .u32 = { 0, } };
1488 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1489 anv_assert(iview->n_planes == 1);
1490 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1491 color_attachment_compute_aux_usage(cmd_buffer->device,
1492 state, i, begin->renderArea,
1493 &clear_color);
1494
1495 anv_image_fill_surface_state(cmd_buffer->device,
1496 iview->image,
1497 VK_IMAGE_ASPECT_COLOR_BIT,
1498 &iview->planes[0].isl,
1499 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1500 state->attachments[i].aux_usage,
1501 &clear_color,
1502 0,
1503 &state->attachments[i].color,
1504 NULL);
1505
1506 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1507 } else {
1508 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1509 state, i,
1510 begin->renderArea);
1511 }
1512
1513 if (need_input_attachment_state(&pass->attachments[i])) {
1514 anv_image_fill_surface_state(cmd_buffer->device,
1515 iview->image,
1516 VK_IMAGE_ASPECT_COLOR_BIT,
1517 &iview->planes[0].isl,
1518 ISL_SURF_USAGE_TEXTURE_BIT,
1519 state->attachments[i].input_aux_usage,
1520 &clear_color,
1521 0,
1522 &state->attachments[i].input,
1523 NULL);
1524
1525 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1526 }
1527 }
1528 }
1529
1530 return VK_SUCCESS;
1531 }
1532
1533 VkResult
1534 genX(BeginCommandBuffer)(
1535 VkCommandBuffer commandBuffer,
1536 const VkCommandBufferBeginInfo* pBeginInfo)
1537 {
1538 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1539
1540 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1541 * command buffer's state. Otherwise, we must *reset* its state. In both
1542 * cases we reset it.
1543 *
1544 * From the Vulkan 1.0 spec:
1545 *
1546 * If a command buffer is in the executable state and the command buffer
1547 * was allocated from a command pool with the
1548 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1549 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1550 * as if vkResetCommandBuffer had been called with
1551 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1552 * the command buffer in the recording state.
1553 */
1554 anv_cmd_buffer_reset(cmd_buffer);
1555
1556 cmd_buffer->usage_flags = pBeginInfo->flags;
1557
1558 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1559 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1560
1561 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1562
1563 /* We sometimes store vertex data in the dynamic state buffer for blorp
1564 * operations and our dynamic state stream may re-use data from previous
1565 * command buffers. In order to prevent stale cache data, we flush the VF
1566 * cache. We could do this on every blorp call but that's not really
1567 * needed as all of the data will get written by the CPU prior to the GPU
1568 * executing anything. The chances are fairly high that they will use
1569 * blorp at least once per primary command buffer so it shouldn't be
1570 * wasted.
1571 *
1572 * There is also a workaround on gen8 which requires us to invalidate the
1573 * VF cache occasionally. It's easier if we can assume we start with a
1574 * fresh cache (See also genX(cmd_buffer_set_binding_for_gen8_vb_flush).)
1575 */
1576 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1577
1578 /* Re-emit the aux table register in every command buffer. This way we're
1579 * ensured that we have the table even if this command buffer doesn't
1580 * initialize any images.
1581 */
1582 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1583
1584 /* We send an "Indirect State Pointers Disable" packet at
1585 * EndCommandBuffer, so all push contant packets are ignored during a
1586 * context restore. Documentation says after that command, we need to
1587 * emit push constants again before any rendering operation. So we
1588 * flag them dirty here to make sure they get emitted.
1589 */
1590 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1591
1592 VkResult result = VK_SUCCESS;
1593 if (cmd_buffer->usage_flags &
1594 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1595 assert(pBeginInfo->pInheritanceInfo);
1596 cmd_buffer->state.pass =
1597 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1598 cmd_buffer->state.subpass =
1599 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1600
1601 /* This is optional in the inheritance info. */
1602 cmd_buffer->state.framebuffer =
1603 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1604
1605 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1606 cmd_buffer->state.pass, NULL);
1607
1608 /* Record that HiZ is enabled if we can. */
1609 if (cmd_buffer->state.framebuffer) {
1610 const struct anv_image_view * const iview =
1611 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1612
1613 if (iview) {
1614 VkImageLayout layout =
1615 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1616
1617 enum isl_aux_usage aux_usage =
1618 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1619 VK_IMAGE_ASPECT_DEPTH_BIT,
1620 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
1621 layout);
1622
1623 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1624 }
1625 }
1626
1627 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1628 }
1629
1630 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1631 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1632 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1633 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1634
1635 /* If secondary buffer supports conditional rendering
1636 * we should emit commands as if conditional rendering is enabled.
1637 */
1638 cmd_buffer->state.conditional_render_enabled =
1639 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1640 }
1641 #endif
1642
1643 return result;
1644 }
1645
1646 /* From the PRM, Volume 2a:
1647 *
1648 * "Indirect State Pointers Disable
1649 *
1650 * At the completion of the post-sync operation associated with this pipe
1651 * control packet, the indirect state pointers in the hardware are
1652 * considered invalid; the indirect pointers are not saved in the context.
1653 * If any new indirect state commands are executed in the command stream
1654 * while the pipe control is pending, the new indirect state commands are
1655 * preserved.
1656 *
1657 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1658 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1659 * commands are only considered as Indirect State Pointers. Once ISP is
1660 * issued in a context, SW must initialize by programming push constant
1661 * commands for all the shaders (at least to zero length) before attempting
1662 * any rendering operation for the same context."
1663 *
1664 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1665 * even though they point to a BO that has been already unreferenced at
1666 * the end of the previous batch buffer. This has been fine so far since
1667 * we are protected by these scratch page (every address not covered by
1668 * a BO should be pointing to the scratch page). But on CNL, it is
1669 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1670 * instruction.
1671 *
1672 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1673 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1674 * context restore, so the mentioned hang doesn't happen. However,
1675 * software must program push constant commands for all stages prior to
1676 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1677 *
1678 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1679 * constants have been loaded into the EUs prior to disable the push constants
1680 * so that it doesn't hang a previous 3DPRIMITIVE.
1681 */
1682 static void
1683 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1684 {
1685 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1686 pc.StallAtPixelScoreboard = true;
1687 pc.CommandStreamerStallEnable = true;
1688 }
1689 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1690 pc.IndirectStatePointersDisable = true;
1691 pc.CommandStreamerStallEnable = true;
1692 }
1693 }
1694
1695 VkResult
1696 genX(EndCommandBuffer)(
1697 VkCommandBuffer commandBuffer)
1698 {
1699 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1700
1701 if (anv_batch_has_error(&cmd_buffer->batch))
1702 return cmd_buffer->batch.status;
1703
1704 /* We want every command buffer to start with the PMA fix in a known state,
1705 * so we disable it at the end of the command buffer.
1706 */
1707 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1708
1709 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1710
1711 emit_isp_disable(cmd_buffer);
1712
1713 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1714
1715 return VK_SUCCESS;
1716 }
1717
1718 void
1719 genX(CmdExecuteCommands)(
1720 VkCommandBuffer commandBuffer,
1721 uint32_t commandBufferCount,
1722 const VkCommandBuffer* pCmdBuffers)
1723 {
1724 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1725
1726 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1727
1728 if (anv_batch_has_error(&primary->batch))
1729 return;
1730
1731 /* The secondary command buffers will assume that the PMA fix is disabled
1732 * when they begin executing. Make sure this is true.
1733 */
1734 genX(cmd_buffer_enable_pma_fix)(primary, false);
1735
1736 /* The secondary command buffer doesn't know which textures etc. have been
1737 * flushed prior to their execution. Apply those flushes now.
1738 */
1739 genX(cmd_buffer_apply_pipe_flushes)(primary);
1740
1741 for (uint32_t i = 0; i < commandBufferCount; i++) {
1742 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1743
1744 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1745 assert(!anv_batch_has_error(&secondary->batch));
1746
1747 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1748 if (secondary->state.conditional_render_enabled) {
1749 if (!primary->state.conditional_render_enabled) {
1750 /* Secondary buffer is constructed as if it will be executed
1751 * with conditional rendering, we should satisfy this dependency
1752 * regardless of conditional rendering being enabled in primary.
1753 */
1754 struct gen_mi_builder b;
1755 gen_mi_builder_init(&b, &primary->batch);
1756 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
1757 gen_mi_imm(UINT64_MAX));
1758 }
1759 }
1760 #endif
1761
1762 if (secondary->usage_flags &
1763 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1764 /* If we're continuing a render pass from the primary, we need to
1765 * copy the surface states for the current subpass into the storage
1766 * we allocated for them in BeginCommandBuffer.
1767 */
1768 struct anv_bo *ss_bo =
1769 primary->device->surface_state_pool.block_pool.bo;
1770 struct anv_state src_state = primary->state.render_pass_states;
1771 struct anv_state dst_state = secondary->state.render_pass_states;
1772 assert(src_state.alloc_size == dst_state.alloc_size);
1773
1774 genX(cmd_buffer_so_memcpy)(primary,
1775 (struct anv_address) {
1776 .bo = ss_bo,
1777 .offset = dst_state.offset,
1778 },
1779 (struct anv_address) {
1780 .bo = ss_bo,
1781 .offset = src_state.offset,
1782 },
1783 src_state.alloc_size);
1784 }
1785
1786 anv_cmd_buffer_add_secondary(primary, secondary);
1787 }
1788
1789 /* The secondary isn't counted in our VF cache tracking so we need to
1790 * invalidate the whole thing.
1791 */
1792 if (GEN_GEN >= 8 && GEN_GEN <= 9) {
1793 primary->state.pending_pipe_bits |=
1794 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1795 }
1796
1797 /* The secondary may have selected a different pipeline (3D or compute) and
1798 * may have changed the current L3$ configuration. Reset our tracking
1799 * variables to invalid values to ensure that we re-emit these in the case
1800 * where we do any draws or compute dispatches from the primary after the
1801 * secondary has returned.
1802 */
1803 primary->state.current_pipeline = UINT32_MAX;
1804 primary->state.current_l3_config = NULL;
1805 primary->state.current_hash_scale = 0;
1806
1807 /* Each of the secondary command buffers will use its own state base
1808 * address. We need to re-emit state base address for the primary after
1809 * all of the secondaries are done.
1810 *
1811 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1812 * address calls?
1813 */
1814 genX(cmd_buffer_emit_state_base_address)(primary);
1815 }
1816
1817 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1818 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1819 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1820
1821 /**
1822 * Program the hardware to use the specified L3 configuration.
1823 */
1824 void
1825 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1826 const struct gen_l3_config *cfg)
1827 {
1828 assert(cfg);
1829 if (cfg == cmd_buffer->state.current_l3_config)
1830 return;
1831
1832 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1833 intel_logd("L3 config transition: ");
1834 gen_dump_l3_config(cfg, stderr);
1835 }
1836
1837 UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM];
1838
1839 /* According to the hardware docs, the L3 partitioning can only be changed
1840 * while the pipeline is completely drained and the caches are flushed,
1841 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1842 */
1843 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1844 pc.DCFlushEnable = true;
1845 pc.PostSyncOperation = NoWrite;
1846 pc.CommandStreamerStallEnable = true;
1847 }
1848
1849 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1850 * invalidation of the relevant caches. Note that because RO invalidation
1851 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1852 * command is processed by the CS) we cannot combine it with the previous
1853 * stalling flush as the hardware documentation suggests, because that
1854 * would cause the CS to stall on previous rendering *after* RO
1855 * invalidation and wouldn't prevent the RO caches from being polluted by
1856 * concurrent rendering before the stall completes. This intentionally
1857 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1858 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1859 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1860 * already guarantee that there is no concurrent GPGPU kernel execution
1861 * (see SKL HSD 2132585).
1862 */
1863 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1864 pc.TextureCacheInvalidationEnable = true;
1865 pc.ConstantCacheInvalidationEnable = true;
1866 pc.InstructionCacheInvalidateEnable = true;
1867 pc.StateCacheInvalidationEnable = true;
1868 pc.PostSyncOperation = NoWrite;
1869 }
1870
1871 /* Now send a third stalling flush to make sure that invalidation is
1872 * complete when the L3 configuration registers are modified.
1873 */
1874 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1875 pc.DCFlushEnable = true;
1876 pc.PostSyncOperation = NoWrite;
1877 pc.CommandStreamerStallEnable = true;
1878 }
1879
1880 #if GEN_GEN >= 8
1881
1882 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1883
1884 #if GEN_GEN >= 12
1885 #define L3_ALLOCATION_REG GENX(L3ALLOC)
1886 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
1887 #else
1888 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
1889 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
1890 #endif
1891
1892 uint32_t l3cr;
1893 anv_pack_struct(&l3cr, L3_ALLOCATION_REG,
1894 #if GEN_GEN < 11
1895 .SLMEnable = has_slm,
1896 #endif
1897 #if GEN_GEN == 11
1898 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1899 * in L3CNTLREG register. The default setting of the bit is not the
1900 * desirable behavior.
1901 */
1902 .ErrorDetectionBehaviorControl = true,
1903 .UseFullWays = true,
1904 #endif
1905 .URBAllocation = cfg->n[GEN_L3P_URB],
1906 .ROAllocation = cfg->n[GEN_L3P_RO],
1907 .DCAllocation = cfg->n[GEN_L3P_DC],
1908 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1909
1910 /* Set up the L3 partitioning. */
1911 emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr);
1912
1913 #else
1914
1915 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1916 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1917 cfg->n[GEN_L3P_ALL];
1918 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1919 cfg->n[GEN_L3P_ALL];
1920 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1921 cfg->n[GEN_L3P_ALL];
1922
1923 assert(!cfg->n[GEN_L3P_ALL]);
1924
1925 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1926 * the matching space on the remaining banks has to be allocated to a
1927 * client (URB for all validated configurations) set to the
1928 * lower-bandwidth 2-bank address hashing mode.
1929 */
1930 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1931 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1932 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1933
1934 /* Minimum number of ways that can be allocated to the URB. */
1935 const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1936 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1937
1938 uint32_t l3sqcr1, l3cr2, l3cr3;
1939 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1940 .ConvertDC_UC = !has_dc,
1941 .ConvertIS_UC = !has_is,
1942 .ConvertC_UC = !has_c,
1943 .ConvertT_UC = !has_t);
1944 l3sqcr1 |=
1945 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1946 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1947 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1948
1949 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1950 .SLMEnable = has_slm,
1951 .URBLowBandwidth = urb_low_bw,
1952 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1953 #if !GEN_IS_HASWELL
1954 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1955 #endif
1956 .ROAllocation = cfg->n[GEN_L3P_RO],
1957 .DCAllocation = cfg->n[GEN_L3P_DC]);
1958
1959 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1960 .ISAllocation = cfg->n[GEN_L3P_IS],
1961 .ISLowBandwidth = 0,
1962 .CAllocation = cfg->n[GEN_L3P_C],
1963 .CLowBandwidth = 0,
1964 .TAllocation = cfg->n[GEN_L3P_T],
1965 .TLowBandwidth = 0);
1966
1967 /* Set up the L3 partitioning. */
1968 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1969 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1970 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1971
1972 #if GEN_IS_HASWELL
1973 if (cmd_buffer->device->physical->cmd_parser_version >= 4) {
1974 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1975 * them disabled to avoid crashing the system hard.
1976 */
1977 uint32_t scratch1, chicken3;
1978 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1979 .L3AtomicDisable = !has_dc);
1980 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1981 .L3AtomicDisableMask = true,
1982 .L3AtomicDisable = !has_dc);
1983 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1984 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1985 }
1986 #endif
1987
1988 #endif
1989
1990 cmd_buffer->state.current_l3_config = cfg;
1991 }
1992
1993 void
1994 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1995 {
1996 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1997 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1998
1999 if (cmd_buffer->device->physical->always_flush_cache)
2000 bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
2001
2002 /*
2003 * From Sandybridge PRM, volume 2, "1.7.2 End-of-Pipe Synchronization":
2004 *
2005 * Write synchronization is a special case of end-of-pipe
2006 * synchronization that requires that the render cache and/or depth
2007 * related caches are flushed to memory, where the data will become
2008 * globally visible. This type of synchronization is required prior to
2009 * SW (CPU) actually reading the result data from memory, or initiating
2010 * an operation that will use as a read surface (such as a texture
2011 * surface) a previous render target and/or depth/stencil buffer
2012 *
2013 *
2014 * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
2015 *
2016 * Exercising the write cache flush bits (Render Target Cache Flush
2017 * Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only
2018 * ensures the write caches are flushed and doesn't guarantee the data
2019 * is globally visible.
2020 *
2021 * SW can track the completion of the end-of-pipe-synchronization by
2022 * using "Notify Enable" and "PostSync Operation - Write Immediate
2023 * Data" in the PIPE_CONTROL command.
2024 *
2025 * In other words, flushes are pipelined while invalidations are handled
2026 * immediately. Therefore, if we're flushing anything then we need to
2027 * schedule an end-of-pipe sync before any invalidations can happen.
2028 */
2029 if (bits & ANV_PIPE_FLUSH_BITS)
2030 bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2031
2032
2033 /* HSD 1209978178: docs say that before programming the aux table:
2034 *
2035 * "Driver must ensure that the engine is IDLE but ensure it doesn't
2036 * add extra flushes in the case it knows that the engine is already
2037 * IDLE."
2038 */
2039 if (GEN_GEN == 12 && ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2040 bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2041
2042 /* If we're going to do an invalidate and we have a pending end-of-pipe
2043 * sync that has yet to be resolved, we do the end-of-pipe sync now.
2044 */
2045 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
2046 (bits & ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT)) {
2047 bits |= ANV_PIPE_END_OF_PIPE_SYNC_BIT;
2048 bits &= ~ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2049 }
2050
2051 if (GEN_GEN >= 12 &&
2052 ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) ||
2053 (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) {
2054 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
2055 * Enable):
2056 *
2057 * Unified Cache (Tile Cache Disabled):
2058 *
2059 * When the Color and Depth (Z) streams are enabled to be cached in
2060 * the DC space of L2, Software must use "Render Target Cache Flush
2061 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
2062 * Flush" for getting the color and depth (Z) write data to be
2063 * globally observable. In this mode of operation it is not required
2064 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
2065 */
2066 bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2067 }
2068
2069 /* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which
2070 * invalidates the instruction cache
2071 */
2072 if (GEN_GEN == 12 && (bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT))
2073 bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2074
2075 if ((GEN_GEN >= 8 && GEN_GEN <= 9) &&
2076 (bits & ANV_PIPE_CS_STALL_BIT) &&
2077 (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
2078 /* If we are doing a VF cache invalidate AND a CS stall (it must be
2079 * both) then we can reset our vertex cache tracking.
2080 */
2081 memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
2082 sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
2083 memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
2084 sizeof(cmd_buffer->state.gfx.ib_dirty_range));
2085 }
2086
2087 /* Project: SKL / Argument: LRI Post Sync Operation [23]
2088 *
2089 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
2090 * programmed prior to programming a PIPECONTROL command with "LRI
2091 * Post Sync Operation" in GPGPU mode of operation (i.e when
2092 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
2093 *
2094 * The same text exists a few rows below for Post Sync Op.
2095 *
2096 * On Gen12 this is GEN:BUG:1607156449.
2097 */
2098 if (bits & ANV_PIPE_POST_SYNC_BIT) {
2099 if ((GEN_GEN == 9 || (GEN_GEN == 12 && devinfo->revision == 0 /* A0 */)) &&
2100 cmd_buffer->state.current_pipeline == GPGPU)
2101 bits |= ANV_PIPE_CS_STALL_BIT;
2102 bits &= ~ANV_PIPE_POST_SYNC_BIT;
2103 }
2104
2105 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT |
2106 ANV_PIPE_END_OF_PIPE_SYNC_BIT)) {
2107 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2108 #if GEN_GEN >= 12
2109 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2110 #endif
2111 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2112 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2113 pipe.RenderTargetCacheFlushEnable =
2114 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2115
2116 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
2117 * be set with any PIPE_CONTROL with Depth Flush Enable bit set.
2118 */
2119 #if GEN_GEN >= 12
2120 pipe.DepthStallEnable =
2121 pipe.DepthCacheFlushEnable || (bits & ANV_PIPE_DEPTH_STALL_BIT);
2122 #else
2123 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
2124 #endif
2125
2126 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
2127 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2128
2129 /* From Sandybridge PRM, volume 2, "1.7.3.1 Writing a Value to Memory":
2130 *
2131 * "The most common action to perform upon reaching a
2132 * synchronization point is to write a value out to memory. An
2133 * immediate value (included with the synchronization command) may
2134 * be written."
2135 *
2136 *
2137 * From Broadwell PRM, volume 7, "End-of-Pipe Synchronization":
2138 *
2139 * "In case the data flushed out by the render engine is to be
2140 * read back in to the render engine in coherent manner, then the
2141 * render engine has to wait for the fence completion before
2142 * accessing the flushed data. This can be achieved by following
2143 * means on various products: PIPE_CONTROL command with CS Stall
2144 * and the required write caches flushed with Post-Sync-Operation
2145 * as Write Immediate Data.
2146 *
2147 * Example:
2148 * - Workload-1 (3D/GPGPU/MEDIA)
2149 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
2150 * Immediate Data, Required Write Cache Flush bits set)
2151 * - Workload-2 (Can use the data produce or output by
2152 * Workload-1)
2153 */
2154 if (bits & ANV_PIPE_END_OF_PIPE_SYNC_BIT) {
2155 pipe.CommandStreamerStallEnable = true;
2156 pipe.PostSyncOperation = WriteImmediateData;
2157 pipe.Address = (struct anv_address) {
2158 .bo = cmd_buffer->device->workaround_bo,
2159 .offset = 0
2160 };
2161 }
2162
2163 /*
2164 * According to the Broadwell documentation, any PIPE_CONTROL with the
2165 * "Command Streamer Stall" bit set must also have another bit set,
2166 * with five different options:
2167 *
2168 * - Render Target Cache Flush
2169 * - Depth Cache Flush
2170 * - Stall at Pixel Scoreboard
2171 * - Post-Sync Operation
2172 * - Depth Stall
2173 * - DC Flush Enable
2174 *
2175 * I chose "Stall at Pixel Scoreboard" since that's what we use in
2176 * mesa and it seems to work fine. The choice is fairly arbitrary.
2177 */
2178 if (pipe.CommandStreamerStallEnable &&
2179 !pipe.RenderTargetCacheFlushEnable &&
2180 !pipe.DepthCacheFlushEnable &&
2181 !pipe.StallAtPixelScoreboard &&
2182 !pipe.PostSyncOperation &&
2183 !pipe.DepthStallEnable &&
2184 !pipe.DCFlushEnable)
2185 pipe.StallAtPixelScoreboard = true;
2186 }
2187
2188 /* If a render target flush was emitted, then we can toggle off the bit
2189 * saying that render target writes are ongoing.
2190 */
2191 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
2192 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
2193
2194 if (GEN_IS_HASWELL) {
2195 /* Haswell needs addition work-arounds:
2196 *
2197 * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
2198 *
2199 * Option 1:
2200 * PIPE_CONTROL command with the CS Stall and the required write
2201 * caches flushed with Post-SyncOperation as Write Immediate Data
2202 * followed by eight dummy MI_STORE_DATA_IMM (write to scratch
2203 * spce) commands.
2204 *
2205 * Example:
2206 * - Workload-1
2207 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
2208 * Immediate Data, Required Write Cache Flush bits set)
2209 * - MI_STORE_DATA_IMM (8 times) (Dummy data, Scratch Address)
2210 * - Workload-2 (Can use the data produce or output by
2211 * Workload-1)
2212 *
2213 * Unfortunately, both the PRMs and the internal docs are a bit
2214 * out-of-date in this regard. What the windows driver does (and
2215 * this appears to actually work) is to emit a register read from the
2216 * memory address written by the pipe control above.
2217 *
2218 * What register we load into doesn't matter. We choose an indirect
2219 * rendering register because we know it always exists and it's one
2220 * of the first registers the command parser allows us to write. If
2221 * you don't have command parser support in your kernel (pre-4.2),
2222 * this will get turned into MI_NOOP and you won't get the
2223 * workaround. Unfortunately, there's just not much we can do in
2224 * that case. This register is perfectly safe to write since we
2225 * always re-load all of the indirect draw registers right before
2226 * 3DPRIMITIVE when needed anyway.
2227 */
2228 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
2229 lrm.RegisterAddress = 0x243C; /* GEN7_3DPRIM_START_INSTANCE */
2230 lrm.MemoryAddress = (struct anv_address) {
2231 .bo = cmd_buffer->device->workaround_bo,
2232 .offset = 0
2233 };
2234 }
2235 }
2236
2237 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT |
2238 ANV_PIPE_END_OF_PIPE_SYNC_BIT);
2239 }
2240
2241 if (bits & ANV_PIPE_INVALIDATE_BITS) {
2242 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2243 *
2244 * "If the VF Cache Invalidation Enable is set to a 1 in a
2245 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
2246 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
2247 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
2248 * a 1."
2249 *
2250 * This appears to hang Broadwell, so we restrict it to just gen9.
2251 */
2252 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
2253 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
2254
2255 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2256 pipe.StateCacheInvalidationEnable =
2257 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
2258 pipe.ConstantCacheInvalidationEnable =
2259 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2260 pipe.VFCacheInvalidationEnable =
2261 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2262 pipe.TextureCacheInvalidationEnable =
2263 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2264 pipe.InstructionCacheInvalidateEnable =
2265 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
2266
2267 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2268 *
2269 * "When VF Cache Invalidate is set “Post Sync Operation” must be
2270 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
2271 * “Write Timestamp”.
2272 */
2273 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
2274 pipe.PostSyncOperation = WriteImmediateData;
2275 pipe.Address =
2276 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
2277 }
2278 }
2279
2280 #if GEN_GEN == 12
2281 if ((bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT) &&
2282 cmd_buffer->device->info.has_aux_map) {
2283 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2284 lri.RegisterOffset = GENX(GFX_CCS_AUX_INV_num);
2285 lri.DataDWord = 1;
2286 }
2287 }
2288 #endif
2289
2290 bits &= ~ANV_PIPE_INVALIDATE_BITS;
2291 }
2292
2293 cmd_buffer->state.pending_pipe_bits = bits;
2294 }
2295
2296 void genX(CmdPipelineBarrier)(
2297 VkCommandBuffer commandBuffer,
2298 VkPipelineStageFlags srcStageMask,
2299 VkPipelineStageFlags destStageMask,
2300 VkBool32 byRegion,
2301 uint32_t memoryBarrierCount,
2302 const VkMemoryBarrier* pMemoryBarriers,
2303 uint32_t bufferMemoryBarrierCount,
2304 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
2305 uint32_t imageMemoryBarrierCount,
2306 const VkImageMemoryBarrier* pImageMemoryBarriers)
2307 {
2308 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2309
2310 /* XXX: Right now, we're really dumb and just flush whatever categories
2311 * the app asks for. One of these days we may make this a bit better
2312 * but right now that's all the hardware allows for in most areas.
2313 */
2314 VkAccessFlags src_flags = 0;
2315 VkAccessFlags dst_flags = 0;
2316
2317 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
2318 src_flags |= pMemoryBarriers[i].srcAccessMask;
2319 dst_flags |= pMemoryBarriers[i].dstAccessMask;
2320 }
2321
2322 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
2323 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
2324 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
2325 }
2326
2327 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
2328 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
2329 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
2330 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
2331 const VkImageSubresourceRange *range =
2332 &pImageMemoryBarriers[i].subresourceRange;
2333
2334 uint32_t base_layer, layer_count;
2335 if (image->type == VK_IMAGE_TYPE_3D) {
2336 base_layer = 0;
2337 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
2338 } else {
2339 base_layer = range->baseArrayLayer;
2340 layer_count = anv_get_layerCount(image, range);
2341 }
2342
2343 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
2344 transition_depth_buffer(cmd_buffer, image,
2345 pImageMemoryBarriers[i].oldLayout,
2346 pImageMemoryBarriers[i].newLayout);
2347 }
2348
2349 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
2350 transition_stencil_buffer(cmd_buffer, image,
2351 range->baseMipLevel,
2352 anv_get_levelCount(image, range),
2353 base_layer, layer_count,
2354 pImageMemoryBarriers[i].oldLayout,
2355 pImageMemoryBarriers[i].newLayout);
2356 }
2357
2358 if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2359 VkImageAspectFlags color_aspects =
2360 anv_image_expand_aspects(image, range->aspectMask);
2361 uint32_t aspect_bit;
2362 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
2363 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
2364 range->baseMipLevel,
2365 anv_get_levelCount(image, range),
2366 base_layer, layer_count,
2367 pImageMemoryBarriers[i].oldLayout,
2368 pImageMemoryBarriers[i].newLayout);
2369 }
2370 }
2371 }
2372
2373 cmd_buffer->state.pending_pipe_bits |=
2374 anv_pipe_flush_bits_for_access_flags(src_flags) |
2375 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
2376 }
2377
2378 static void
2379 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2380 {
2381 VkShaderStageFlags stages =
2382 cmd_buffer->state.gfx.base.pipeline->active_stages;
2383
2384 /* In order to avoid thrash, we assume that vertex and fragment stages
2385 * always exist. In the rare case where one is missing *and* the other
2386 * uses push concstants, this may be suboptimal. However, avoiding stalls
2387 * seems more important.
2388 */
2389 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
2390
2391 if (stages == cmd_buffer->state.push_constant_stages)
2392 return;
2393
2394 #if GEN_GEN >= 8
2395 const unsigned push_constant_kb = 32;
2396 #elif GEN_IS_HASWELL
2397 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
2398 #else
2399 const unsigned push_constant_kb = 16;
2400 #endif
2401
2402 const unsigned num_stages =
2403 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2404 unsigned size_per_stage = push_constant_kb / num_stages;
2405
2406 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2407 * units of 2KB. Incidentally, these are the same platforms that have
2408 * 32KB worth of push constant space.
2409 */
2410 if (push_constant_kb == 32)
2411 size_per_stage &= ~1u;
2412
2413 uint32_t kb_used = 0;
2414 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2415 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2416 anv_batch_emit(&cmd_buffer->batch,
2417 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2418 alloc._3DCommandSubOpcode = 18 + i;
2419 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2420 alloc.ConstantBufferSize = push_size;
2421 }
2422 kb_used += push_size;
2423 }
2424
2425 anv_batch_emit(&cmd_buffer->batch,
2426 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2427 alloc.ConstantBufferOffset = kb_used;
2428 alloc.ConstantBufferSize = push_constant_kb - kb_used;
2429 }
2430
2431 cmd_buffer->state.push_constant_stages = stages;
2432
2433 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2434 *
2435 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2436 * the next 3DPRIMITIVE command after programming the
2437 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2438 *
2439 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2440 * pipeline setup, we need to dirty push constants.
2441 */
2442 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2443 }
2444
2445 static struct anv_address
2446 anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
2447 struct anv_descriptor_set *set)
2448 {
2449 if (set->pool) {
2450 /* This is a normal descriptor set */
2451 return (struct anv_address) {
2452 .bo = set->pool->bo,
2453 .offset = set->desc_mem.offset,
2454 };
2455 } else {
2456 /* This is a push descriptor set. We have to flag it as used on the GPU
2457 * so that the next time we push descriptors, we grab a new memory.
2458 */
2459 struct anv_push_descriptor_set *push_set =
2460 (struct anv_push_descriptor_set *)set;
2461 push_set->set_used_on_gpu = true;
2462
2463 return (struct anv_address) {
2464 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
2465 .offset = set->desc_mem.offset,
2466 };
2467 }
2468 }
2469
2470 static struct anv_cmd_pipeline_state *
2471 pipe_state_for_stage(struct anv_cmd_buffer *cmd_buffer,
2472 gl_shader_stage stage)
2473 {
2474 switch (stage) {
2475 case MESA_SHADER_COMPUTE:
2476 return &cmd_buffer->state.compute.base;
2477
2478 case MESA_SHADER_VERTEX:
2479 case MESA_SHADER_TESS_CTRL:
2480 case MESA_SHADER_TESS_EVAL:
2481 case MESA_SHADER_GEOMETRY:
2482 case MESA_SHADER_FRAGMENT:
2483 return &cmd_buffer->state.gfx.base;
2484
2485 default:
2486 unreachable("invalid stage");
2487 }
2488 }
2489
2490 static VkResult
2491 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2492 gl_shader_stage stage,
2493 struct anv_state *bt_state)
2494 {
2495 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2496 uint32_t state_offset;
2497
2498 struct anv_cmd_pipeline_state *pipe_state =
2499 pipe_state_for_stage(cmd_buffer, stage);
2500 struct anv_pipeline *pipeline = pipe_state->pipeline;
2501
2502 if (!anv_pipeline_has_stage(pipeline, stage)) {
2503 *bt_state = (struct anv_state) { 0, };
2504 return VK_SUCCESS;
2505 }
2506
2507 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2508 if (map->surface_count == 0) {
2509 *bt_state = (struct anv_state) { 0, };
2510 return VK_SUCCESS;
2511 }
2512
2513 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2514 map->surface_count,
2515 &state_offset);
2516 uint32_t *bt_map = bt_state->map;
2517
2518 if (bt_state->map == NULL)
2519 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2520
2521 /* We only need to emit relocs if we're not using softpin. If we are using
2522 * softpin then we always keep all user-allocated memory objects resident.
2523 */
2524 const bool need_client_mem_relocs =
2525 !cmd_buffer->device->physical->use_softpin;
2526
2527 for (uint32_t s = 0; s < map->surface_count; s++) {
2528 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2529
2530 struct anv_state surface_state;
2531
2532 switch (binding->set) {
2533 case ANV_DESCRIPTOR_SET_NULL:
2534 bt_map[s] = 0;
2535 break;
2536
2537 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
2538 /* Color attachment binding */
2539 assert(stage == MESA_SHADER_FRAGMENT);
2540 if (binding->index < subpass->color_count) {
2541 const unsigned att =
2542 subpass->color_attachments[binding->index].attachment;
2543
2544 /* From the Vulkan 1.0.46 spec:
2545 *
2546 * "If any color or depth/stencil attachments are
2547 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2548 * attachments."
2549 */
2550 if (att == VK_ATTACHMENT_UNUSED) {
2551 surface_state = cmd_buffer->state.null_surface_state;
2552 } else {
2553 surface_state = cmd_buffer->state.attachments[att].color.state;
2554 }
2555 } else {
2556 surface_state = cmd_buffer->state.null_surface_state;
2557 }
2558
2559 bt_map[s] = surface_state.offset + state_offset;
2560 break;
2561
2562 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
2563 struct anv_state surface_state =
2564 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2565
2566 struct anv_address constant_data = {
2567 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2568 .offset = pipeline->shaders[stage]->constant_data.offset,
2569 };
2570 unsigned constant_data_size =
2571 pipeline->shaders[stage]->constant_data_size;
2572
2573 const enum isl_format format =
2574 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2575 anv_fill_buffer_surface_state(cmd_buffer->device,
2576 surface_state, format,
2577 constant_data, constant_data_size, 1);
2578
2579 bt_map[s] = surface_state.offset + state_offset;
2580 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2581 break;
2582 }
2583
2584 case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
2585 /* This is always the first binding for compute shaders */
2586 assert(stage == MESA_SHADER_COMPUTE && s == 0);
2587
2588 struct anv_state surface_state =
2589 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2590
2591 const enum isl_format format =
2592 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2593 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2594 format,
2595 cmd_buffer->state.compute.num_workgroups,
2596 12, 1);
2597 bt_map[s] = surface_state.offset + state_offset;
2598 if (need_client_mem_relocs) {
2599 add_surface_reloc(cmd_buffer, surface_state,
2600 cmd_buffer->state.compute.num_workgroups);
2601 }
2602 break;
2603 }
2604
2605 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2606 /* This is a descriptor set buffer so the set index is actually
2607 * given by binding->binding. (Yes, that's confusing.)
2608 */
2609 struct anv_descriptor_set *set =
2610 pipe_state->descriptors[binding->index];
2611 assert(set->desc_mem.alloc_size);
2612 assert(set->desc_surface_state.alloc_size);
2613 bt_map[s] = set->desc_surface_state.offset + state_offset;
2614 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2615 anv_descriptor_set_address(cmd_buffer, set));
2616 break;
2617 }
2618
2619 default: {
2620 assert(binding->set < MAX_SETS);
2621 const struct anv_descriptor *desc =
2622 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2623
2624 switch (desc->type) {
2625 case VK_DESCRIPTOR_TYPE_SAMPLER:
2626 /* Nothing for us to do here */
2627 continue;
2628
2629 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2630 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2631 struct anv_surface_state sstate =
2632 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2633 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2634 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2635 surface_state = sstate.state;
2636 assert(surface_state.alloc_size);
2637 if (need_client_mem_relocs)
2638 add_surface_state_relocs(cmd_buffer, sstate);
2639 break;
2640 }
2641 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2642 assert(stage == MESA_SHADER_FRAGMENT);
2643 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2644 /* For depth and stencil input attachments, we treat it like any
2645 * old texture that a user may have bound.
2646 */
2647 assert(desc->image_view->n_planes == 1);
2648 struct anv_surface_state sstate =
2649 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2650 desc->image_view->planes[0].general_sampler_surface_state :
2651 desc->image_view->planes[0].optimal_sampler_surface_state;
2652 surface_state = sstate.state;
2653 assert(surface_state.alloc_size);
2654 if (need_client_mem_relocs)
2655 add_surface_state_relocs(cmd_buffer, sstate);
2656 } else {
2657 /* For color input attachments, we create the surface state at
2658 * vkBeginRenderPass time so that we can include aux and clear
2659 * color information.
2660 */
2661 assert(binding->input_attachment_index < subpass->input_count);
2662 const unsigned subpass_att = binding->input_attachment_index;
2663 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2664 surface_state = cmd_buffer->state.attachments[att].input.state;
2665 }
2666 break;
2667
2668 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2669 struct anv_surface_state sstate = (binding->write_only)
2670 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2671 : desc->image_view->planes[binding->plane].storage_surface_state;
2672 surface_state = sstate.state;
2673 assert(surface_state.alloc_size);
2674 if (need_client_mem_relocs)
2675 add_surface_state_relocs(cmd_buffer, sstate);
2676 break;
2677 }
2678
2679 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2680 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2681 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2682 surface_state = desc->buffer_view->surface_state;
2683 assert(surface_state.alloc_size);
2684 if (need_client_mem_relocs) {
2685 add_surface_reloc(cmd_buffer, surface_state,
2686 desc->buffer_view->address);
2687 }
2688 break;
2689
2690 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2691 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2692 /* Compute the offset within the buffer */
2693 struct anv_push_constants *push =
2694 &cmd_buffer->state.push_constants[stage];
2695
2696 uint32_t dynamic_offset =
2697 push->dynamic_offsets[binding->dynamic_offset_index];
2698 uint64_t offset = desc->offset + dynamic_offset;
2699 /* Clamp to the buffer size */
2700 offset = MIN2(offset, desc->buffer->size);
2701 /* Clamp the range to the buffer size */
2702 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2703
2704 /* Align the range for consistency */
2705 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC)
2706 range = align_u32(range, ANV_UBO_BOUNDS_CHECK_ALIGNMENT);
2707
2708 struct anv_address address =
2709 anv_address_add(desc->buffer->address, offset);
2710
2711 surface_state =
2712 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2713 enum isl_format format =
2714 anv_isl_format_for_descriptor_type(desc->type);
2715
2716 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2717 format, address, range, 1);
2718 if (need_client_mem_relocs)
2719 add_surface_reloc(cmd_buffer, surface_state, address);
2720 break;
2721 }
2722
2723 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2724 surface_state = (binding->write_only)
2725 ? desc->buffer_view->writeonly_storage_surface_state
2726 : desc->buffer_view->storage_surface_state;
2727 assert(surface_state.alloc_size);
2728 if (need_client_mem_relocs) {
2729 add_surface_reloc(cmd_buffer, surface_state,
2730 desc->buffer_view->address);
2731 }
2732 break;
2733
2734 default:
2735 assert(!"Invalid descriptor type");
2736 continue;
2737 }
2738 bt_map[s] = surface_state.offset + state_offset;
2739 break;
2740 }
2741 }
2742 }
2743
2744 return VK_SUCCESS;
2745 }
2746
2747 static VkResult
2748 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2749 gl_shader_stage stage,
2750 struct anv_state *state)
2751 {
2752 struct anv_cmd_pipeline_state *pipe_state =
2753 pipe_state_for_stage(cmd_buffer, stage);
2754 struct anv_pipeline *pipeline = pipe_state->pipeline;
2755
2756 if (!anv_pipeline_has_stage(pipeline, stage)) {
2757 *state = (struct anv_state) { 0, };
2758 return VK_SUCCESS;
2759 }
2760
2761 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2762 if (map->sampler_count == 0) {
2763 *state = (struct anv_state) { 0, };
2764 return VK_SUCCESS;
2765 }
2766
2767 uint32_t size = map->sampler_count * 16;
2768 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2769
2770 if (state->map == NULL)
2771 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2772
2773 for (uint32_t s = 0; s < map->sampler_count; s++) {
2774 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2775 const struct anv_descriptor *desc =
2776 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2777
2778 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2779 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2780 continue;
2781
2782 struct anv_sampler *sampler = desc->sampler;
2783
2784 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2785 * happens to be zero.
2786 */
2787 if (sampler == NULL)
2788 continue;
2789
2790 memcpy(state->map + (s * 16),
2791 sampler->state[binding->plane], sizeof(sampler->state[0]));
2792 }
2793
2794 return VK_SUCCESS;
2795 }
2796
2797 static uint32_t
2798 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer,
2799 struct anv_pipeline *pipeline)
2800 {
2801 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2802 pipeline->active_stages;
2803
2804 VkResult result = VK_SUCCESS;
2805 anv_foreach_stage(s, dirty) {
2806 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2807 if (result != VK_SUCCESS)
2808 break;
2809 result = emit_binding_table(cmd_buffer, s,
2810 &cmd_buffer->state.binding_tables[s]);
2811 if (result != VK_SUCCESS)
2812 break;
2813 }
2814
2815 if (result != VK_SUCCESS) {
2816 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2817
2818 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2819 if (result != VK_SUCCESS)
2820 return 0;
2821
2822 /* Re-emit state base addresses so we get the new surface state base
2823 * address before we start emitting binding tables etc.
2824 */
2825 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2826
2827 /* Re-emit all active binding tables */
2828 dirty |= pipeline->active_stages;
2829 anv_foreach_stage(s, dirty) {
2830 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2831 if (result != VK_SUCCESS) {
2832 anv_batch_set_error(&cmd_buffer->batch, result);
2833 return 0;
2834 }
2835 result = emit_binding_table(cmd_buffer, s,
2836 &cmd_buffer->state.binding_tables[s]);
2837 if (result != VK_SUCCESS) {
2838 anv_batch_set_error(&cmd_buffer->batch, result);
2839 return 0;
2840 }
2841 }
2842 }
2843
2844 cmd_buffer->state.descriptors_dirty &= ~dirty;
2845
2846 return dirty;
2847 }
2848
2849 static void
2850 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2851 uint32_t stages)
2852 {
2853 static const uint32_t sampler_state_opcodes[] = {
2854 [MESA_SHADER_VERTEX] = 43,
2855 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2856 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2857 [MESA_SHADER_GEOMETRY] = 46,
2858 [MESA_SHADER_FRAGMENT] = 47,
2859 [MESA_SHADER_COMPUTE] = 0,
2860 };
2861
2862 static const uint32_t binding_table_opcodes[] = {
2863 [MESA_SHADER_VERTEX] = 38,
2864 [MESA_SHADER_TESS_CTRL] = 39,
2865 [MESA_SHADER_TESS_EVAL] = 40,
2866 [MESA_SHADER_GEOMETRY] = 41,
2867 [MESA_SHADER_FRAGMENT] = 42,
2868 [MESA_SHADER_COMPUTE] = 0,
2869 };
2870
2871 anv_foreach_stage(s, stages) {
2872 assert(s < ARRAY_SIZE(binding_table_opcodes));
2873 assert(binding_table_opcodes[s] > 0);
2874
2875 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2876 anv_batch_emit(&cmd_buffer->batch,
2877 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2878 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2879 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2880 }
2881 }
2882
2883 /* Always emit binding table pointers if we're asked to, since on SKL
2884 * this is what flushes push constants. */
2885 anv_batch_emit(&cmd_buffer->batch,
2886 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2887 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2888 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2889 }
2890 }
2891 }
2892
2893 static struct anv_address
2894 get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
2895 gl_shader_stage stage,
2896 const struct anv_push_range *range)
2897 {
2898 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2899 switch (range->set) {
2900 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2901 /* This is a descriptor set buffer so the set index is
2902 * actually given by binding->binding. (Yes, that's
2903 * confusing.)
2904 */
2905 struct anv_descriptor_set *set =
2906 gfx_state->base.descriptors[range->index];
2907 return anv_descriptor_set_address(cmd_buffer, set);
2908 }
2909
2910 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
2911 struct anv_state state =
2912 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2913 return (struct anv_address) {
2914 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2915 .offset = state.offset,
2916 };
2917 }
2918
2919 default: {
2920 assert(range->set < MAX_SETS);
2921 struct anv_descriptor_set *set =
2922 gfx_state->base.descriptors[range->set];
2923 const struct anv_descriptor *desc =
2924 &set->descriptors[range->index];
2925
2926 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2927 return desc->buffer_view->address;
2928 } else {
2929 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2930 struct anv_push_constants *push =
2931 &cmd_buffer->state.push_constants[stage];
2932 uint32_t dynamic_offset =
2933 push->dynamic_offsets[range->dynamic_offset_index];
2934 return anv_address_add(desc->buffer->address,
2935 desc->offset + dynamic_offset);
2936 }
2937 }
2938 }
2939 }
2940
2941
2942 /** Returns the size in bytes of the bound buffer relative to range->start
2943 *
2944 * This may be smaller than range->length * 32.
2945 */
2946 static uint32_t
2947 get_push_range_bound_size(struct anv_cmd_buffer *cmd_buffer,
2948 gl_shader_stage stage,
2949 const struct anv_push_range *range)
2950 {
2951 assert(stage != MESA_SHADER_COMPUTE);
2952 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2953 switch (range->set) {
2954 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2955 struct anv_descriptor_set *set =
2956 gfx_state->base.descriptors[range->index];
2957 assert(range->start * 32 < set->desc_mem.alloc_size);
2958 assert((range->start + range->length) * 32 < set->desc_mem.alloc_size);
2959 return set->desc_mem.alloc_size - range->start * 32;
2960 }
2961
2962 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
2963 return range->length * 32;
2964
2965 default: {
2966 assert(range->set < MAX_SETS);
2967 struct anv_descriptor_set *set =
2968 gfx_state->base.descriptors[range->set];
2969 const struct anv_descriptor *desc =
2970 &set->descriptors[range->index];
2971
2972 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2973 if (range->start * 32 > desc->buffer_view->range)
2974 return 0;
2975
2976 return desc->buffer_view->range - range->start * 32;
2977 } else {
2978 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2979 /* Compute the offset within the buffer */
2980 struct anv_push_constants *push =
2981 &cmd_buffer->state.push_constants[stage];
2982 uint32_t dynamic_offset =
2983 push->dynamic_offsets[range->dynamic_offset_index];
2984 uint64_t offset = desc->offset + dynamic_offset;
2985 /* Clamp to the buffer size */
2986 offset = MIN2(offset, desc->buffer->size);
2987 /* Clamp the range to the buffer size */
2988 uint32_t bound_range = MIN2(desc->range, desc->buffer->size - offset);
2989
2990 /* Align the range for consistency */
2991 bound_range = align_u32(bound_range, ANV_UBO_BOUNDS_CHECK_ALIGNMENT);
2992
2993 if (range->start * 32 > bound_range)
2994 return 0;
2995
2996 return bound_range - range->start * 32;
2997 }
2998 }
2999 }
3000 }
3001
3002 static void
3003 cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
3004 gl_shader_stage stage,
3005 struct anv_address *buffers,
3006 unsigned buffer_count)
3007 {
3008 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3009 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
3010
3011 static const uint32_t push_constant_opcodes[] = {
3012 [MESA_SHADER_VERTEX] = 21,
3013 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3014 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3015 [MESA_SHADER_GEOMETRY] = 22,
3016 [MESA_SHADER_FRAGMENT] = 23,
3017 [MESA_SHADER_COMPUTE] = 0,
3018 };
3019
3020 assert(stage < ARRAY_SIZE(push_constant_opcodes));
3021 assert(push_constant_opcodes[stage] > 0);
3022
3023 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
3024 c._3DCommandSubOpcode = push_constant_opcodes[stage];
3025
3026 if (anv_pipeline_has_stage(pipeline, stage)) {
3027 const struct anv_pipeline_bind_map *bind_map =
3028 &pipeline->shaders[stage]->bind_map;
3029
3030 #if GEN_GEN >= 12
3031 c.MOCS = cmd_buffer->device->isl_dev.mocs.internal;
3032 #endif
3033
3034 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3035 /* The Skylake PRM contains the following restriction:
3036 *
3037 * "The driver must ensure The following case does not occur
3038 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3039 * buffer 3 read length equal to zero committed followed by a
3040 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3041 * zero committed."
3042 *
3043 * To avoid this, we program the buffers in the highest slots.
3044 * This way, slot 0 is only used if slot 3 is also used.
3045 */
3046 assert(buffer_count <= 4);
3047 const unsigned shift = 4 - buffer_count;
3048 for (unsigned i = 0; i < buffer_count; i++) {
3049 const struct anv_push_range *range = &bind_map->push_ranges[i];
3050
3051 /* At this point we only have non-empty ranges */
3052 assert(range->length > 0);
3053
3054 /* For Ivy Bridge, make sure we only set the first range (actual
3055 * push constants)
3056 */
3057 assert((GEN_GEN >= 8 || GEN_IS_HASWELL) || i == 0);
3058
3059 c.ConstantBody.ReadLength[i + shift] = range->length;
3060 c.ConstantBody.Buffer[i + shift] =
3061 anv_address_add(buffers[i], range->start * 32);
3062 }
3063 #else
3064 /* For Ivy Bridge, push constants are relative to dynamic state
3065 * base address and we only ever push actual push constants.
3066 */
3067 if (bind_map->push_ranges[0].length > 0) {
3068 assert(buffer_count == 1);
3069 assert(bind_map->push_ranges[0].set ==
3070 ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
3071 assert(buffers[0].bo ==
3072 cmd_buffer->device->dynamic_state_pool.block_pool.bo);
3073 c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
3074 c.ConstantBody.Buffer[0].bo = NULL;
3075 c.ConstantBody.Buffer[0].offset = buffers[0].offset;
3076 }
3077 assert(bind_map->push_ranges[1].length == 0);
3078 assert(bind_map->push_ranges[2].length == 0);
3079 assert(bind_map->push_ranges[3].length == 0);
3080 #endif
3081 }
3082 }
3083 }
3084
3085 #if GEN_GEN >= 12
3086 static void
3087 cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
3088 uint32_t shader_mask,
3089 struct anv_address *buffers,
3090 uint32_t buffer_count)
3091 {
3092 if (buffer_count == 0) {
3093 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
3094 c.ShaderUpdateEnable = shader_mask;
3095 c.MOCS = cmd_buffer->device->isl_dev.mocs.internal;
3096 }
3097 return;
3098 }
3099
3100 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3101 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
3102
3103 static const uint32_t push_constant_opcodes[] = {
3104 [MESA_SHADER_VERTEX] = 21,
3105 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3106 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3107 [MESA_SHADER_GEOMETRY] = 22,
3108 [MESA_SHADER_FRAGMENT] = 23,
3109 [MESA_SHADER_COMPUTE] = 0,
3110 };
3111
3112 gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
3113 assert(stage < ARRAY_SIZE(push_constant_opcodes));
3114 assert(push_constant_opcodes[stage] > 0);
3115
3116 const struct anv_pipeline_bind_map *bind_map =
3117 &pipeline->shaders[stage]->bind_map;
3118
3119 uint32_t *dw;
3120 const uint32_t buffer_mask = (1 << buffer_count) - 1;
3121 const uint32_t num_dwords = 2 + 2 * buffer_count;
3122
3123 dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3124 GENX(3DSTATE_CONSTANT_ALL),
3125 .ShaderUpdateEnable = shader_mask,
3126 .PointerBufferMask = buffer_mask,
3127 .MOCS = cmd_buffer->device->isl_dev.mocs.internal);
3128
3129 for (int i = 0; i < buffer_count; i++) {
3130 const struct anv_push_range *range = &bind_map->push_ranges[i];
3131 GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
3132 &cmd_buffer->batch, dw + 2 + i * 2,
3133 &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
3134 .PointerToConstantBuffer =
3135 anv_address_add(buffers[i], range->start * 32),
3136 .ConstantBufferReadLength = range->length,
3137 });
3138 }
3139 }
3140 #endif
3141
3142 static void
3143 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
3144 VkShaderStageFlags dirty_stages)
3145 {
3146 VkShaderStageFlags flushed = 0;
3147 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3148 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
3149
3150 #if GEN_GEN >= 12
3151 uint32_t nobuffer_stages = 0;
3152 #endif
3153
3154 anv_foreach_stage(stage, dirty_stages) {
3155 unsigned buffer_count = 0;
3156 flushed |= mesa_to_vk_shader_stage(stage);
3157 UNUSED uint32_t max_push_range = 0;
3158
3159 struct anv_address buffers[4] = {};
3160 if (anv_pipeline_has_stage(pipeline, stage)) {
3161 const struct anv_pipeline_bind_map *bind_map =
3162 &pipeline->shaders[stage]->bind_map;
3163 struct anv_push_constants *push =
3164 &cmd_buffer->state.push_constants[stage];
3165
3166 if (cmd_buffer->device->robust_buffer_access) {
3167 for (unsigned i = 0; i < 4; i++) {
3168 const struct anv_push_range *range = &bind_map->push_ranges[i];
3169 if (range->length == 0) {
3170 push->push_ubo_sizes[i] = 0;
3171 } else {
3172 push->push_ubo_sizes[i] =
3173 get_push_range_bound_size(cmd_buffer, stage, range);
3174 }
3175 cmd_buffer->state.push_constants_dirty |=
3176 mesa_to_vk_shader_stage(stage);
3177 }
3178 }
3179
3180 /* We have to gather buffer addresses as a second step because the
3181 * loop above puts data into the push constant area and the call to
3182 * get_push_range_address is what locks our push constants and copies
3183 * them into the actual GPU buffer. If we did the two loops at the
3184 * same time, we'd risk only having some of the sizes in the push
3185 * constant buffer when we did the copy.
3186 */
3187 for (unsigned i = 0; i < 4; i++) {
3188 const struct anv_push_range *range = &bind_map->push_ranges[i];
3189 if (range->length == 0)
3190 break;
3191
3192 buffers[i] = get_push_range_address(cmd_buffer, stage, range);
3193 max_push_range = MAX2(max_push_range, range->length);
3194 buffer_count++;
3195 }
3196
3197 /* We have at most 4 buffers but they should be tightly packed */
3198 for (unsigned i = buffer_count; i < 4; i++)
3199 assert(bind_map->push_ranges[i].length == 0);
3200 }
3201
3202 #if GEN_GEN >= 12
3203 /* If this stage doesn't have any push constants, emit it later in a
3204 * single CONSTANT_ALL packet.
3205 */
3206 if (buffer_count == 0) {
3207 nobuffer_stages |= 1 << stage;
3208 continue;
3209 }
3210
3211 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
3212 * contains only 5 bits, so we can only use it for buffers smaller than
3213 * 32.
3214 */
3215 if (max_push_range < 32) {
3216 cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
3217 buffers, buffer_count);
3218 continue;
3219 }
3220 #endif
3221
3222 cmd_buffer_emit_push_constant(cmd_buffer, stage, buffers, buffer_count);
3223 }
3224
3225 #if GEN_GEN >= 12
3226 if (nobuffer_stages)
3227 cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, NULL, 0);
3228 #endif
3229
3230 cmd_buffer->state.push_constants_dirty &= ~flushed;
3231 }
3232
3233 void
3234 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
3235 {
3236 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3237 uint32_t *p;
3238
3239 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
3240 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
3241 vb_emit |= pipeline->vb_used;
3242
3243 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
3244
3245 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->l3_config);
3246
3247 genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
3248
3249 genX(flush_pipeline_select_3d)(cmd_buffer);
3250
3251 if (vb_emit) {
3252 const uint32_t num_buffers = __builtin_popcount(vb_emit);
3253 const uint32_t num_dwords = 1 + num_buffers * 4;
3254
3255 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3256 GENX(3DSTATE_VERTEX_BUFFERS));
3257 uint32_t vb, i = 0;
3258 for_each_bit(vb, vb_emit) {
3259 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
3260 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
3261
3262 struct GENX(VERTEX_BUFFER_STATE) state = {
3263 .VertexBufferIndex = vb,
3264
3265 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
3266 #if GEN_GEN <= 7
3267 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
3268 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
3269 #endif
3270
3271 .AddressModifyEnable = true,
3272 .BufferPitch = pipeline->vb[vb].stride,
3273 .BufferStartingAddress = anv_address_add(buffer->address, offset),
3274
3275 #if GEN_GEN >= 8
3276 .BufferSize = buffer->size - offset
3277 #else
3278 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
3279 #endif
3280 };
3281
3282 #if GEN_GEN >= 8 && GEN_GEN <= 9
3283 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, vb,
3284 state.BufferStartingAddress,
3285 state.BufferSize);
3286 #endif
3287
3288 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
3289 i++;
3290 }
3291 }
3292
3293 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
3294
3295 #if GEN_GEN >= 8
3296 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
3297 /* We don't need any per-buffer dirty tracking because you're not
3298 * allowed to bind different XFB buffers while XFB is enabled.
3299 */
3300 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3301 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
3302 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
3303 #if GEN_GEN < 12
3304 sob.SOBufferIndex = idx;
3305 #else
3306 sob._3DCommandOpcode = 0;
3307 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
3308 #endif
3309
3310 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
3311 sob.SOBufferEnable = true;
3312 sob.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
3313 sob.StreamOffsetWriteEnable = false;
3314 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
3315 xfb->offset);
3316 /* Size is in DWords - 1 */
3317 sob.SurfaceSize = xfb->size / 4 - 1;
3318 }
3319 }
3320 }
3321
3322 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
3323 if (GEN_GEN >= 10)
3324 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3325 }
3326 #endif
3327
3328 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
3329 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3330
3331 /* If the pipeline changed, we may need to re-allocate push constant
3332 * space in the URB.
3333 */
3334 cmd_buffer_alloc_push_constants(cmd_buffer);
3335 }
3336
3337 #if GEN_GEN <= 7
3338 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
3339 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
3340 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
3341 *
3342 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
3343 * stall needs to be sent just prior to any 3DSTATE_VS,
3344 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
3345 * 3DSTATE_BINDING_TABLE_POINTER_VS,
3346 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
3347 * PIPE_CONTROL needs to be sent before any combination of VS
3348 * associated 3DSTATE."
3349 */
3350 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3351 pc.DepthStallEnable = true;
3352 pc.PostSyncOperation = WriteImmediateData;
3353 pc.Address =
3354 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
3355 }
3356 }
3357 #endif
3358
3359 /* Render targets live in the same binding table as fragment descriptors */
3360 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
3361 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
3362
3363 /* We emit the binding tables and sampler tables first, then emit push
3364 * constants and then finally emit binding table and sampler table
3365 * pointers. It has to happen in this order, since emitting the binding
3366 * tables may change the push constants (in case of storage images). After
3367 * emitting push constants, on SKL+ we have to emit the corresponding
3368 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
3369 */
3370 uint32_t dirty = 0;
3371 if (cmd_buffer->state.descriptors_dirty)
3372 dirty = flush_descriptor_sets(cmd_buffer, pipeline);
3373
3374 if (dirty || cmd_buffer->state.push_constants_dirty) {
3375 /* Because we're pushing UBOs, we have to push whenever either
3376 * descriptors or push constants is dirty.
3377 */
3378 dirty |= cmd_buffer->state.push_constants_dirty;
3379 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
3380 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
3381 }
3382
3383 if (dirty)
3384 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
3385
3386 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
3387 gen8_cmd_buffer_emit_viewport(cmd_buffer);
3388
3389 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
3390 ANV_CMD_DIRTY_PIPELINE)) {
3391 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
3392 pipeline->depth_clamp_enable);
3393 }
3394
3395 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
3396 ANV_CMD_DIRTY_RENDER_TARGETS))
3397 gen7_cmd_buffer_emit_scissor(cmd_buffer);
3398
3399 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
3400 }
3401
3402 static void
3403 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
3404 struct anv_address addr,
3405 uint32_t size, uint32_t index)
3406 {
3407 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
3408 GENX(3DSTATE_VERTEX_BUFFERS));
3409
3410 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
3411 &(struct GENX(VERTEX_BUFFER_STATE)) {
3412 .VertexBufferIndex = index,
3413 .AddressModifyEnable = true,
3414 .BufferPitch = 0,
3415 .MOCS = addr.bo ? anv_mocs_for_bo(cmd_buffer->device, addr.bo) : 0,
3416 .NullVertexBuffer = size == 0,
3417 #if (GEN_GEN >= 8)
3418 .BufferStartingAddress = addr,
3419 .BufferSize = size
3420 #else
3421 .BufferStartingAddress = addr,
3422 .EndAddress = anv_address_add(addr, size),
3423 #endif
3424 });
3425
3426 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer,
3427 index, addr, size);
3428 }
3429
3430 static void
3431 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
3432 struct anv_address addr)
3433 {
3434 emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
3435 }
3436
3437 static void
3438 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
3439 uint32_t base_vertex, uint32_t base_instance)
3440 {
3441 if (base_vertex == 0 && base_instance == 0) {
3442 emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
3443 } else {
3444 struct anv_state id_state =
3445 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
3446
3447 ((uint32_t *)id_state.map)[0] = base_vertex;
3448 ((uint32_t *)id_state.map)[1] = base_instance;
3449
3450 struct anv_address addr = {
3451 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3452 .offset = id_state.offset,
3453 };
3454
3455 emit_base_vertex_instance_bo(cmd_buffer, addr);
3456 }
3457 }
3458
3459 static void
3460 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
3461 {
3462 struct anv_state state =
3463 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
3464
3465 ((uint32_t *)state.map)[0] = draw_index;
3466
3467 struct anv_address addr = {
3468 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3469 .offset = state.offset,
3470 };
3471
3472 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
3473 }
3474
3475 static void
3476 update_dirty_vbs_for_gen8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
3477 uint32_t access_type)
3478 {
3479 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3480 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3481
3482 uint64_t vb_used = pipeline->vb_used;
3483 if (vs_prog_data->uses_firstvertex ||
3484 vs_prog_data->uses_baseinstance)
3485 vb_used |= 1ull << ANV_SVGS_VB_INDEX;
3486 if (vs_prog_data->uses_drawid)
3487 vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
3488
3489 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(cmd_buffer,
3490 access_type == RANDOM,
3491 vb_used);
3492 }
3493
3494 void genX(CmdDraw)(
3495 VkCommandBuffer commandBuffer,
3496 uint32_t vertexCount,
3497 uint32_t instanceCount,
3498 uint32_t firstVertex,
3499 uint32_t firstInstance)
3500 {
3501 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3502 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3503 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3504
3505 if (anv_batch_has_error(&cmd_buffer->batch))
3506 return;
3507
3508 genX(cmd_buffer_flush_state)(cmd_buffer);
3509
3510 if (cmd_buffer->state.conditional_render_enabled)
3511 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3512
3513 if (vs_prog_data->uses_firstvertex ||
3514 vs_prog_data->uses_baseinstance)
3515 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3516 if (vs_prog_data->uses_drawid)
3517 emit_draw_index(cmd_buffer, 0);
3518
3519 /* Emitting draw index or vertex index BOs may result in needing
3520 * additional VF cache flushes.
3521 */
3522 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3523
3524 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3525 * different views. We need to multiply instanceCount by the view count.
3526 */
3527 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3528
3529 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3530 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3531 prim.VertexAccessType = SEQUENTIAL;
3532 prim.PrimitiveTopologyType = pipeline->topology;
3533 prim.VertexCountPerInstance = vertexCount;
3534 prim.StartVertexLocation = firstVertex;
3535 prim.InstanceCount = instanceCount;
3536 prim.StartInstanceLocation = firstInstance;
3537 prim.BaseVertexLocation = 0;
3538 }
3539
3540 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3541 }
3542
3543 void genX(CmdDrawIndexed)(
3544 VkCommandBuffer commandBuffer,
3545 uint32_t indexCount,
3546 uint32_t instanceCount,
3547 uint32_t firstIndex,
3548 int32_t vertexOffset,
3549 uint32_t firstInstance)
3550 {
3551 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3552 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3553 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3554
3555 if (anv_batch_has_error(&cmd_buffer->batch))
3556 return;
3557
3558 genX(cmd_buffer_flush_state)(cmd_buffer);
3559
3560 if (cmd_buffer->state.conditional_render_enabled)
3561 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3562
3563 if (vs_prog_data->uses_firstvertex ||
3564 vs_prog_data->uses_baseinstance)
3565 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
3566 if (vs_prog_data->uses_drawid)
3567 emit_draw_index(cmd_buffer, 0);
3568
3569 /* Emitting draw index or vertex index BOs may result in needing
3570 * additional VF cache flushes.
3571 */
3572 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3573
3574 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3575 * different views. We need to multiply instanceCount by the view count.
3576 */
3577 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3578
3579 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3580 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3581 prim.VertexAccessType = RANDOM;
3582 prim.PrimitiveTopologyType = pipeline->topology;
3583 prim.VertexCountPerInstance = indexCount;
3584 prim.StartVertexLocation = firstIndex;
3585 prim.InstanceCount = instanceCount;
3586 prim.StartInstanceLocation = firstInstance;
3587 prim.BaseVertexLocation = vertexOffset;
3588 }
3589
3590 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3591 }
3592
3593 /* Auto-Draw / Indirect Registers */
3594 #define GEN7_3DPRIM_END_OFFSET 0x2420
3595 #define GEN7_3DPRIM_START_VERTEX 0x2430
3596 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
3597 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
3598 #define GEN7_3DPRIM_START_INSTANCE 0x243C
3599 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
3600
3601 void genX(CmdDrawIndirectByteCountEXT)(
3602 VkCommandBuffer commandBuffer,
3603 uint32_t instanceCount,
3604 uint32_t firstInstance,
3605 VkBuffer counterBuffer,
3606 VkDeviceSize counterBufferOffset,
3607 uint32_t counterOffset,
3608 uint32_t vertexStride)
3609 {
3610 #if GEN_IS_HASWELL || GEN_GEN >= 8
3611 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3612 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
3613 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3614 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3615
3616 /* firstVertex is always zero for this draw function */
3617 const uint32_t firstVertex = 0;
3618
3619 if (anv_batch_has_error(&cmd_buffer->batch))
3620 return;
3621
3622 genX(cmd_buffer_flush_state)(cmd_buffer);
3623
3624 if (vs_prog_data->uses_firstvertex ||
3625 vs_prog_data->uses_baseinstance)
3626 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3627 if (vs_prog_data->uses_drawid)
3628 emit_draw_index(cmd_buffer, 0);
3629
3630 /* Emitting draw index or vertex index BOs may result in needing
3631 * additional VF cache flushes.
3632 */
3633 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3634
3635 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3636 * different views. We need to multiply instanceCount by the view count.
3637 */
3638 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3639
3640 struct gen_mi_builder b;
3641 gen_mi_builder_init(&b, &cmd_buffer->batch);
3642 struct gen_mi_value count =
3643 gen_mi_mem32(anv_address_add(counter_buffer->address,
3644 counterBufferOffset));
3645 if (counterOffset)
3646 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
3647 count = gen_mi_udiv32_imm(&b, count, vertexStride);
3648 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
3649
3650 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3651 gen_mi_imm(firstVertex));
3652 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
3653 gen_mi_imm(instanceCount));
3654 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3655 gen_mi_imm(firstInstance));
3656 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3657
3658 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3659 prim.IndirectParameterEnable = true;
3660 prim.VertexAccessType = SEQUENTIAL;
3661 prim.PrimitiveTopologyType = pipeline->topology;
3662 }
3663
3664 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3665 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
3666 }
3667
3668 static void
3669 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
3670 struct anv_address addr,
3671 bool indexed)
3672 {
3673 struct gen_mi_builder b;
3674 gen_mi_builder_init(&b, &cmd_buffer->batch);
3675
3676 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
3677 gen_mi_mem32(anv_address_add(addr, 0)));
3678
3679 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
3680 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
3681 if (view_count > 1) {
3682 #if GEN_IS_HASWELL || GEN_GEN >= 8
3683 instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
3684 #else
3685 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3686 "MI_MATH is not supported on Ivy Bridge");
3687 #endif
3688 }
3689 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
3690
3691 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3692 gen_mi_mem32(anv_address_add(addr, 8)));
3693
3694 if (indexed) {
3695 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
3696 gen_mi_mem32(anv_address_add(addr, 12)));
3697 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3698 gen_mi_mem32(anv_address_add(addr, 16)));
3699 } else {
3700 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3701 gen_mi_mem32(anv_address_add(addr, 12)));
3702 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3703 }
3704 }
3705
3706 void genX(CmdDrawIndirect)(
3707 VkCommandBuffer commandBuffer,
3708 VkBuffer _buffer,
3709 VkDeviceSize offset,
3710 uint32_t drawCount,
3711 uint32_t stride)
3712 {
3713 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3714 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3715 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3716 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3717
3718 if (anv_batch_has_error(&cmd_buffer->batch))
3719 return;
3720
3721 genX(cmd_buffer_flush_state)(cmd_buffer);
3722
3723 if (cmd_buffer->state.conditional_render_enabled)
3724 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3725
3726 for (uint32_t i = 0; i < drawCount; i++) {
3727 struct anv_address draw = anv_address_add(buffer->address, offset);
3728
3729 if (vs_prog_data->uses_firstvertex ||
3730 vs_prog_data->uses_baseinstance)
3731 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3732 if (vs_prog_data->uses_drawid)
3733 emit_draw_index(cmd_buffer, i);
3734
3735 /* Emitting draw index or vertex index BOs may result in needing
3736 * additional VF cache flushes.
3737 */
3738 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3739
3740 load_indirect_parameters(cmd_buffer, draw, false);
3741
3742 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3743 prim.IndirectParameterEnable = true;
3744 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3745 prim.VertexAccessType = SEQUENTIAL;
3746 prim.PrimitiveTopologyType = pipeline->topology;
3747 }
3748
3749 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3750
3751 offset += stride;
3752 }
3753 }
3754
3755 void genX(CmdDrawIndexedIndirect)(
3756 VkCommandBuffer commandBuffer,
3757 VkBuffer _buffer,
3758 VkDeviceSize offset,
3759 uint32_t drawCount,
3760 uint32_t stride)
3761 {
3762 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3763 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3764 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3765 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3766
3767 if (anv_batch_has_error(&cmd_buffer->batch))
3768 return;
3769
3770 genX(cmd_buffer_flush_state)(cmd_buffer);
3771
3772 if (cmd_buffer->state.conditional_render_enabled)
3773 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3774
3775 for (uint32_t i = 0; i < drawCount; i++) {
3776 struct anv_address draw = anv_address_add(buffer->address, offset);
3777
3778 /* TODO: We need to stomp base vertex to 0 somehow */
3779 if (vs_prog_data->uses_firstvertex ||
3780 vs_prog_data->uses_baseinstance)
3781 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3782 if (vs_prog_data->uses_drawid)
3783 emit_draw_index(cmd_buffer, i);
3784
3785 /* Emitting draw index or vertex index BOs may result in needing
3786 * additional VF cache flushes.
3787 */
3788 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3789
3790 load_indirect_parameters(cmd_buffer, draw, true);
3791
3792 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3793 prim.IndirectParameterEnable = true;
3794 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3795 prim.VertexAccessType = RANDOM;
3796 prim.PrimitiveTopologyType = pipeline->topology;
3797 }
3798
3799 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3800
3801 offset += stride;
3802 }
3803 }
3804
3805 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3806
3807 static void
3808 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3809 struct anv_address count_address,
3810 const bool conditional_render_enabled)
3811 {
3812 struct gen_mi_builder b;
3813 gen_mi_builder_init(&b, &cmd_buffer->batch);
3814
3815 if (conditional_render_enabled) {
3816 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3817 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
3818 gen_mi_mem32(count_address));
3819 #endif
3820 } else {
3821 /* Upload the current draw count from the draw parameters buffer to
3822 * MI_PREDICATE_SRC0.
3823 */
3824 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
3825 gen_mi_mem32(count_address));
3826
3827 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
3828 }
3829 }
3830
3831 static void
3832 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3833 uint32_t draw_index)
3834 {
3835 struct gen_mi_builder b;
3836 gen_mi_builder_init(&b, &cmd_buffer->batch);
3837
3838 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3839 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
3840
3841 if (draw_index == 0) {
3842 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3843 mip.LoadOperation = LOAD_LOADINV;
3844 mip.CombineOperation = COMBINE_SET;
3845 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3846 }
3847 } else {
3848 /* While draw_index < draw_count the predicate's result will be
3849 * (draw_index == draw_count) ^ TRUE = TRUE
3850 * When draw_index == draw_count the result is
3851 * (TRUE) ^ TRUE = FALSE
3852 * After this all results will be:
3853 * (FALSE) ^ FALSE = FALSE
3854 */
3855 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3856 mip.LoadOperation = LOAD_LOAD;
3857 mip.CombineOperation = COMBINE_XOR;
3858 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3859 }
3860 }
3861 }
3862
3863 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3864 static void
3865 emit_draw_count_predicate_with_conditional_render(
3866 struct anv_cmd_buffer *cmd_buffer,
3867 uint32_t draw_index)
3868 {
3869 struct gen_mi_builder b;
3870 gen_mi_builder_init(&b, &cmd_buffer->batch);
3871
3872 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
3873 gen_mi_reg64(TMP_DRAW_COUNT_REG));
3874 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
3875
3876 #if GEN_GEN >= 8
3877 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
3878 #else
3879 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3880 * so we emit MI_PREDICATE to set it.
3881 */
3882
3883 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
3884 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3885
3886 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3887 mip.LoadOperation = LOAD_LOADINV;
3888 mip.CombineOperation = COMBINE_SET;
3889 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3890 }
3891 #endif
3892 }
3893 #endif
3894
3895 void genX(CmdDrawIndirectCount)(
3896 VkCommandBuffer commandBuffer,
3897 VkBuffer _buffer,
3898 VkDeviceSize offset,
3899 VkBuffer _countBuffer,
3900 VkDeviceSize countBufferOffset,
3901 uint32_t maxDrawCount,
3902 uint32_t stride)
3903 {
3904 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3905 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3906 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3907 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3908 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3909 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3910
3911 if (anv_batch_has_error(&cmd_buffer->batch))
3912 return;
3913
3914 genX(cmd_buffer_flush_state)(cmd_buffer);
3915
3916 struct anv_address count_address =
3917 anv_address_add(count_buffer->address, countBufferOffset);
3918
3919 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3920 cmd_state->conditional_render_enabled);
3921
3922 for (uint32_t i = 0; i < maxDrawCount; i++) {
3923 struct anv_address draw = anv_address_add(buffer->address, offset);
3924
3925 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3926 if (cmd_state->conditional_render_enabled) {
3927 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3928 } else {
3929 emit_draw_count_predicate(cmd_buffer, i);
3930 }
3931 #else
3932 emit_draw_count_predicate(cmd_buffer, i);
3933 #endif
3934
3935 if (vs_prog_data->uses_firstvertex ||
3936 vs_prog_data->uses_baseinstance)
3937 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3938 if (vs_prog_data->uses_drawid)
3939 emit_draw_index(cmd_buffer, i);
3940
3941 /* Emitting draw index or vertex index BOs may result in needing
3942 * additional VF cache flushes.
3943 */
3944 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3945
3946 load_indirect_parameters(cmd_buffer, draw, false);
3947
3948 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3949 prim.IndirectParameterEnable = true;
3950 prim.PredicateEnable = true;
3951 prim.VertexAccessType = SEQUENTIAL;
3952 prim.PrimitiveTopologyType = pipeline->topology;
3953 }
3954
3955 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3956
3957 offset += stride;
3958 }
3959 }
3960
3961 void genX(CmdDrawIndexedIndirectCount)(
3962 VkCommandBuffer commandBuffer,
3963 VkBuffer _buffer,
3964 VkDeviceSize offset,
3965 VkBuffer _countBuffer,
3966 VkDeviceSize countBufferOffset,
3967 uint32_t maxDrawCount,
3968 uint32_t stride)
3969 {
3970 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3971 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3972 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3973 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3974 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3975 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3976
3977 if (anv_batch_has_error(&cmd_buffer->batch))
3978 return;
3979
3980 genX(cmd_buffer_flush_state)(cmd_buffer);
3981
3982 struct anv_address count_address =
3983 anv_address_add(count_buffer->address, countBufferOffset);
3984
3985 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3986 cmd_state->conditional_render_enabled);
3987
3988 for (uint32_t i = 0; i < maxDrawCount; i++) {
3989 struct anv_address draw = anv_address_add(buffer->address, offset);
3990
3991 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3992 if (cmd_state->conditional_render_enabled) {
3993 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3994 } else {
3995 emit_draw_count_predicate(cmd_buffer, i);
3996 }
3997 #else
3998 emit_draw_count_predicate(cmd_buffer, i);
3999 #endif
4000
4001 /* TODO: We need to stomp base vertex to 0 somehow */
4002 if (vs_prog_data->uses_firstvertex ||
4003 vs_prog_data->uses_baseinstance)
4004 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
4005 if (vs_prog_data->uses_drawid)
4006 emit_draw_index(cmd_buffer, i);
4007
4008 /* Emitting draw index or vertex index BOs may result in needing
4009 * additional VF cache flushes.
4010 */
4011 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4012
4013 load_indirect_parameters(cmd_buffer, draw, true);
4014
4015 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4016 prim.IndirectParameterEnable = true;
4017 prim.PredicateEnable = true;
4018 prim.VertexAccessType = RANDOM;
4019 prim.PrimitiveTopologyType = pipeline->topology;
4020 }
4021
4022 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
4023
4024 offset += stride;
4025 }
4026 }
4027
4028 void genX(CmdBeginTransformFeedbackEXT)(
4029 VkCommandBuffer commandBuffer,
4030 uint32_t firstCounterBuffer,
4031 uint32_t counterBufferCount,
4032 const VkBuffer* pCounterBuffers,
4033 const VkDeviceSize* pCounterBufferOffsets)
4034 {
4035 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4036
4037 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
4038 assert(counterBufferCount <= MAX_XFB_BUFFERS);
4039 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
4040
4041 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
4042 *
4043 * "Ssoftware must ensure that no HW stream output operations can be in
4044 * process or otherwise pending at the point that the MI_LOAD/STORE
4045 * commands are processed. This will likely require a pipeline flush."
4046 */
4047 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4048 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4049
4050 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
4051 /* If we have a counter buffer, this is a resume so we need to load the
4052 * value into the streamout offset register. Otherwise, this is a begin
4053 * and we need to reset it to zero.
4054 */
4055 if (pCounterBuffers &&
4056 idx >= firstCounterBuffer &&
4057 idx - firstCounterBuffer < counterBufferCount &&
4058 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
4059 uint32_t cb_idx = idx - firstCounterBuffer;
4060 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
4061 uint64_t offset = pCounterBufferOffsets ?
4062 pCounterBufferOffsets[cb_idx] : 0;
4063
4064 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4065 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4066 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
4067 offset);
4068 }
4069 } else {
4070 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4071 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4072 lri.DataDWord = 0;
4073 }
4074 }
4075 }
4076
4077 cmd_buffer->state.xfb_enabled = true;
4078 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
4079 }
4080
4081 void genX(CmdEndTransformFeedbackEXT)(
4082 VkCommandBuffer commandBuffer,
4083 uint32_t firstCounterBuffer,
4084 uint32_t counterBufferCount,
4085 const VkBuffer* pCounterBuffers,
4086 const VkDeviceSize* pCounterBufferOffsets)
4087 {
4088 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4089
4090 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
4091 assert(counterBufferCount <= MAX_XFB_BUFFERS);
4092 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
4093
4094 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
4095 *
4096 * "Ssoftware must ensure that no HW stream output operations can be in
4097 * process or otherwise pending at the point that the MI_LOAD/STORE
4098 * commands are processed. This will likely require a pipeline flush."
4099 */
4100 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4101 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4102
4103 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
4104 unsigned idx = firstCounterBuffer + cb_idx;
4105
4106 /* If we have a counter buffer, this is a resume so we need to load the
4107 * value into the streamout offset register. Otherwise, this is a begin
4108 * and we need to reset it to zero.
4109 */
4110 if (pCounterBuffers &&
4111 cb_idx < counterBufferCount &&
4112 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
4113 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
4114 uint64_t offset = pCounterBufferOffsets ?
4115 pCounterBufferOffsets[cb_idx] : 0;
4116
4117 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4118 srm.MemoryAddress = anv_address_add(counter_buffer->address,
4119 offset);
4120 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4121 }
4122 }
4123 }
4124
4125 cmd_buffer->state.xfb_enabled = false;
4126 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
4127 }
4128
4129 void
4130 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
4131 {
4132 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4133
4134 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
4135
4136 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->l3_config);
4137
4138 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
4139
4140 if (cmd_buffer->state.compute.pipeline_dirty) {
4141 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
4142 *
4143 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4144 * the only bits that are changed are scoreboard related: Scoreboard
4145 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4146 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4147 * sufficient."
4148 */
4149 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4150 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4151
4152 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
4153
4154 /* The workgroup size of the pipeline affects our push constant layout
4155 * so flag push constants as dirty if we change the pipeline.
4156 */
4157 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4158 }
4159
4160 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
4161 cmd_buffer->state.compute.pipeline_dirty) {
4162 flush_descriptor_sets(cmd_buffer, pipeline);
4163
4164 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4165 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
4166 .BindingTablePointer =
4167 cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
4168 .SamplerStatePointer =
4169 cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
4170 };
4171 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
4172
4173 struct anv_state state =
4174 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
4175 pipeline->interface_descriptor_data,
4176 GENX(INTERFACE_DESCRIPTOR_DATA_length),
4177 64);
4178
4179 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4180 anv_batch_emit(&cmd_buffer->batch,
4181 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
4182 mid.InterfaceDescriptorTotalLength = size;
4183 mid.InterfaceDescriptorDataStartAddress = state.offset;
4184 }
4185 }
4186
4187 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
4188 struct anv_state push_state =
4189 anv_cmd_buffer_cs_push_constants(cmd_buffer);
4190
4191 if (push_state.alloc_size) {
4192 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4193 curbe.CURBETotalDataLength = push_state.alloc_size;
4194 curbe.CURBEDataStartAddress = push_state.offset;
4195 }
4196 }
4197
4198 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
4199 }
4200
4201 cmd_buffer->state.compute.pipeline_dirty = false;
4202
4203 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4204 }
4205
4206 #if GEN_GEN == 7
4207
4208 static VkResult
4209 verify_cmd_parser(const struct anv_device *device,
4210 int required_version,
4211 const char *function)
4212 {
4213 if (device->physical->cmd_parser_version < required_version) {
4214 return vk_errorf(device, device->physical,
4215 VK_ERROR_FEATURE_NOT_PRESENT,
4216 "cmd parser version %d is required for %s",
4217 required_version, function);
4218 } else {
4219 return VK_SUCCESS;
4220 }
4221 }
4222
4223 #endif
4224
4225 static void
4226 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
4227 uint32_t baseGroupX,
4228 uint32_t baseGroupY,
4229 uint32_t baseGroupZ)
4230 {
4231 if (anv_batch_has_error(&cmd_buffer->batch))
4232 return;
4233
4234 struct anv_push_constants *push =
4235 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
4236 if (push->cs.base_work_group_id[0] != baseGroupX ||
4237 push->cs.base_work_group_id[1] != baseGroupY ||
4238 push->cs.base_work_group_id[2] != baseGroupZ) {
4239 push->cs.base_work_group_id[0] = baseGroupX;
4240 push->cs.base_work_group_id[1] = baseGroupY;
4241 push->cs.base_work_group_id[2] = baseGroupZ;
4242
4243 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4244 }
4245 }
4246
4247 void genX(CmdDispatch)(
4248 VkCommandBuffer commandBuffer,
4249 uint32_t x,
4250 uint32_t y,
4251 uint32_t z)
4252 {
4253 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
4254 }
4255
4256 void genX(CmdDispatchBase)(
4257 VkCommandBuffer commandBuffer,
4258 uint32_t baseGroupX,
4259 uint32_t baseGroupY,
4260 uint32_t baseGroupZ,
4261 uint32_t groupCountX,
4262 uint32_t groupCountY,
4263 uint32_t groupCountZ)
4264 {
4265 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4266 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4267 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4268
4269 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
4270 baseGroupY, baseGroupZ);
4271
4272 if (anv_batch_has_error(&cmd_buffer->batch))
4273 return;
4274
4275 if (prog_data->uses_num_work_groups) {
4276 struct anv_state state =
4277 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
4278 uint32_t *sizes = state.map;
4279 sizes[0] = groupCountX;
4280 sizes[1] = groupCountY;
4281 sizes[2] = groupCountZ;
4282 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
4283 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
4284 .offset = state.offset,
4285 };
4286
4287 /* The num_workgroups buffer goes in the binding table */
4288 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4289 }
4290
4291 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4292
4293 if (cmd_buffer->state.conditional_render_enabled)
4294 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4295
4296 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
4297 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
4298 ggw.SIMDSize = prog_data->simd_size / 16;
4299 ggw.ThreadDepthCounterMaximum = 0;
4300 ggw.ThreadHeightCounterMaximum = 0;
4301 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4302 ggw.ThreadGroupIDXDimension = groupCountX;
4303 ggw.ThreadGroupIDYDimension = groupCountY;
4304 ggw.ThreadGroupIDZDimension = groupCountZ;
4305 ggw.RightExecutionMask = pipeline->cs_right_mask;
4306 ggw.BottomExecutionMask = 0xffffffff;
4307 }
4308
4309 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
4310 }
4311
4312 #define GPGPU_DISPATCHDIMX 0x2500
4313 #define GPGPU_DISPATCHDIMY 0x2504
4314 #define GPGPU_DISPATCHDIMZ 0x2508
4315
4316 void genX(CmdDispatchIndirect)(
4317 VkCommandBuffer commandBuffer,
4318 VkBuffer _buffer,
4319 VkDeviceSize offset)
4320 {
4321 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4322 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4323 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4324 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4325 struct anv_address addr = anv_address_add(buffer->address, offset);
4326 struct anv_batch *batch = &cmd_buffer->batch;
4327
4328 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
4329
4330 #if GEN_GEN == 7
4331 /* Linux 4.4 added command parser version 5 which allows the GPGPU
4332 * indirect dispatch registers to be written.
4333 */
4334 if (verify_cmd_parser(cmd_buffer->device, 5,
4335 "vkCmdDispatchIndirect") != VK_SUCCESS)
4336 return;
4337 #endif
4338
4339 if (prog_data->uses_num_work_groups) {
4340 cmd_buffer->state.compute.num_workgroups = addr;
4341
4342 /* The num_workgroups buffer goes in the binding table */
4343 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4344 }
4345
4346 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4347
4348 struct gen_mi_builder b;
4349 gen_mi_builder_init(&b, &cmd_buffer->batch);
4350
4351 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
4352 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
4353 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
4354
4355 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
4356 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
4357 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
4358
4359 #if GEN_GEN <= 7
4360 /* predicate = (compute_dispatch_indirect_x_size == 0); */
4361 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
4362 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
4363 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4364 mip.LoadOperation = LOAD_LOAD;
4365 mip.CombineOperation = COMBINE_SET;
4366 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4367 }
4368
4369 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
4370 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
4371 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4372 mip.LoadOperation = LOAD_LOAD;
4373 mip.CombineOperation = COMBINE_OR;
4374 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4375 }
4376
4377 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
4378 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
4379 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4380 mip.LoadOperation = LOAD_LOAD;
4381 mip.CombineOperation = COMBINE_OR;
4382 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4383 }
4384
4385 /* predicate = !predicate; */
4386 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4387 mip.LoadOperation = LOAD_LOADINV;
4388 mip.CombineOperation = COMBINE_OR;
4389 mip.CompareOperation = COMPARE_FALSE;
4390 }
4391
4392 #if GEN_IS_HASWELL
4393 if (cmd_buffer->state.conditional_render_enabled) {
4394 /* predicate &= !(conditional_rendering_predicate == 0); */
4395 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
4396 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
4397 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4398 mip.LoadOperation = LOAD_LOADINV;
4399 mip.CombineOperation = COMBINE_AND;
4400 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4401 }
4402 }
4403 #endif
4404
4405 #else /* GEN_GEN > 7 */
4406 if (cmd_buffer->state.conditional_render_enabled)
4407 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4408 #endif
4409
4410 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
4411 ggw.IndirectParameterEnable = true;
4412 ggw.PredicateEnable = GEN_GEN <= 7 ||
4413 cmd_buffer->state.conditional_render_enabled;
4414 ggw.SIMDSize = prog_data->simd_size / 16;
4415 ggw.ThreadDepthCounterMaximum = 0;
4416 ggw.ThreadHeightCounterMaximum = 0;
4417 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4418 ggw.RightExecutionMask = pipeline->cs_right_mask;
4419 ggw.BottomExecutionMask = 0xffffffff;
4420 }
4421
4422 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
4423 }
4424
4425 static void
4426 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
4427 uint32_t pipeline)
4428 {
4429 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4430
4431 if (cmd_buffer->state.current_pipeline == pipeline)
4432 return;
4433
4434 #if GEN_GEN >= 8 && GEN_GEN < 10
4435 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
4436 *
4437 * Software must clear the COLOR_CALC_STATE Valid field in
4438 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
4439 * with Pipeline Select set to GPGPU.
4440 *
4441 * The internal hardware docs recommend the same workaround for Gen9
4442 * hardware too.
4443 */
4444 if (pipeline == GPGPU)
4445 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
4446 #endif
4447
4448 #if GEN_GEN == 9
4449 if (pipeline == _3D) {
4450 /* There is a mid-object preemption workaround which requires you to
4451 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
4452 * even without preemption, we have issues with geometry flickering when
4453 * GPGPU and 3D are back-to-back and this seems to fix it. We don't
4454 * really know why.
4455 */
4456 const uint32_t subslices =
4457 MAX2(cmd_buffer->device->physical->subslice_total, 1);
4458 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
4459 vfe.MaximumNumberofThreads =
4460 devinfo->max_cs_threads * subslices - 1;
4461 vfe.NumberofURBEntries = 2;
4462 vfe.URBEntryAllocationSize = 2;
4463 }
4464
4465 /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
4466 * invalid. Set the compute pipeline to dirty to force a re-emit of the
4467 * pipeline in case we get back-to-back dispatch calls with the same
4468 * pipeline and a PIPELINE_SELECT in between.
4469 */
4470 cmd_buffer->state.compute.pipeline_dirty = true;
4471 }
4472 #endif
4473
4474 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
4475 * PIPELINE_SELECT [DevBWR+]":
4476 *
4477 * Project: DEVSNB+
4478 *
4479 * Software must ensure all the write caches are flushed through a
4480 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
4481 * command to invalidate read only caches prior to programming
4482 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
4483 */
4484 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4485 pc.RenderTargetCacheFlushEnable = true;
4486 pc.DepthCacheFlushEnable = true;
4487 pc.DCFlushEnable = true;
4488 pc.PostSyncOperation = NoWrite;
4489 pc.CommandStreamerStallEnable = true;
4490 #if GEN_GEN >= 12
4491 pc.TileCacheFlushEnable = true;
4492
4493 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must be
4494 * set with any PIPE_CONTROL with Depth Flush Enable bit set.
4495 */
4496 pc.DepthStallEnable = true;
4497 #endif
4498 }
4499
4500 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4501 pc.TextureCacheInvalidationEnable = true;
4502 pc.ConstantCacheInvalidationEnable = true;
4503 pc.StateCacheInvalidationEnable = true;
4504 pc.InstructionCacheInvalidateEnable = true;
4505 pc.PostSyncOperation = NoWrite;
4506 #if GEN_GEN >= 12
4507 pc.TileCacheFlushEnable = true;
4508 #endif
4509 }
4510
4511 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
4512 #if GEN_GEN >= 9
4513 ps.MaskBits = 3;
4514 #endif
4515 ps.PipelineSelection = pipeline;
4516 }
4517
4518 #if GEN_GEN == 9
4519 if (devinfo->is_geminilake) {
4520 /* Project: DevGLK
4521 *
4522 * "This chicken bit works around a hardware issue with barrier logic
4523 * encountered when switching between GPGPU and 3D pipelines. To
4524 * workaround the issue, this mode bit should be set after a pipeline
4525 * is selected."
4526 */
4527 uint32_t scec;
4528 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
4529 .GLKBarrierMode =
4530 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
4531 : GLK_BARRIER_MODE_3D_HULL,
4532 .GLKBarrierModeMask = 1);
4533 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
4534 }
4535 #endif
4536
4537 cmd_buffer->state.current_pipeline = pipeline;
4538 }
4539
4540 void
4541 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
4542 {
4543 genX(flush_pipeline_select)(cmd_buffer, _3D);
4544 }
4545
4546 void
4547 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
4548 {
4549 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
4550 }
4551
4552 void
4553 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
4554 {
4555 if (GEN_GEN >= 8)
4556 return;
4557
4558 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
4559 *
4560 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
4561 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
4562 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
4563 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
4564 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
4565 * Depth Flush Bit set, followed by another pipelined depth stall
4566 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
4567 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
4568 * via a preceding MI_FLUSH)."
4569 */
4570 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4571 pipe.DepthStallEnable = true;
4572 }
4573 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4574 pipe.DepthCacheFlushEnable = true;
4575 #if GEN_GEN >= 12
4576 pipe.TileCacheFlushEnable = true;
4577 #endif
4578 }
4579 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4580 pipe.DepthStallEnable = true;
4581 }
4582 }
4583
4584 /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
4585 *
4586 * "The VF cache needs to be invalidated before binding and then using
4587 * Vertex Buffers that overlap with any previously bound Vertex Buffer
4588 * (at a 64B granularity) since the last invalidation. A VF cache
4589 * invalidate is performed by setting the "VF Cache Invalidation Enable"
4590 * bit in PIPE_CONTROL."
4591 *
4592 * This is implemented by carefully tracking all vertex and index buffer
4593 * bindings and flushing if the cache ever ends up with a range in the cache
4594 * that would exceed 4 GiB. This is implemented in three parts:
4595 *
4596 * 1. genX(cmd_buffer_set_binding_for_gen8_vb_flush)() which must be called
4597 * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
4598 * tracking code of the new binding. If this new binding would cause
4599 * the cache to have a too-large range on the next draw call, a pipeline
4600 * stall and VF cache invalidate are added to pending_pipeline_bits.
4601 *
4602 * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
4603 * empty whenever we emit a VF invalidate.
4604 *
4605 * 3. genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)() must be called
4606 * after every 3DPRIMITIVE and copies the bound range into the dirty
4607 * range for each used buffer. This has to be a separate step because
4608 * we don't always re-bind all buffers and so 1. can't know which
4609 * buffers are actually bound.
4610 */
4611 void
4612 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4613 int vb_index,
4614 struct anv_address vb_address,
4615 uint32_t vb_size)
4616 {
4617 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4618 !cmd_buffer->device->physical->use_softpin)
4619 return;
4620
4621 struct anv_vb_cache_range *bound, *dirty;
4622 if (vb_index == -1) {
4623 bound = &cmd_buffer->state.gfx.ib_bound_range;
4624 dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4625 } else {
4626 assert(vb_index >= 0);
4627 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4628 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4629 bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
4630 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
4631 }
4632
4633 if (vb_size == 0) {
4634 bound->start = 0;
4635 bound->end = 0;
4636 return;
4637 }
4638
4639 assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED));
4640 bound->start = gen_48b_address(anv_address_physical(vb_address));
4641 bound->end = bound->start + vb_size;
4642 assert(bound->end > bound->start); /* No overflow */
4643
4644 /* Align everything to a cache line */
4645 bound->start &= ~(64ull - 1ull);
4646 bound->end = align_u64(bound->end, 64);
4647
4648 /* Compute the dirty range */
4649 dirty->start = MIN2(dirty->start, bound->start);
4650 dirty->end = MAX2(dirty->end, bound->end);
4651
4652 /* If our range is larger than 32 bits, we have to flush */
4653 assert(bound->end - bound->start <= (1ull << 32));
4654 if (dirty->end - dirty->start > (1ull << 32)) {
4655 cmd_buffer->state.pending_pipe_bits |=
4656 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
4657 }
4658 }
4659
4660 void
4661 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4662 uint32_t access_type,
4663 uint64_t vb_used)
4664 {
4665 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4666 !cmd_buffer->device->physical->use_softpin)
4667 return;
4668
4669 if (access_type == RANDOM) {
4670 /* We have an index buffer */
4671 struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
4672 struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4673
4674 if (bound->end > bound->start) {
4675 dirty->start = MIN2(dirty->start, bound->start);
4676 dirty->end = MAX2(dirty->end, bound->end);
4677 }
4678 }
4679
4680 uint64_t mask = vb_used;
4681 while (mask) {
4682 int i = u_bit_scan64(&mask);
4683 assert(i >= 0);
4684 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4685 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4686
4687 struct anv_vb_cache_range *bound, *dirty;
4688 bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
4689 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
4690
4691 if (bound->end > bound->start) {
4692 dirty->start = MIN2(dirty->start, bound->start);
4693 dirty->end = MAX2(dirty->end, bound->end);
4694 }
4695 }
4696 }
4697
4698 /**
4699 * Update the pixel hashing modes that determine the balancing of PS threads
4700 * across subslices and slices.
4701 *
4702 * \param width Width bound of the rendering area (already scaled down if \p
4703 * scale is greater than 1).
4704 * \param height Height bound of the rendering area (already scaled down if \p
4705 * scale is greater than 1).
4706 * \param scale The number of framebuffer samples that could potentially be
4707 * affected by an individual channel of the PS thread. This is
4708 * typically one for single-sampled rendering, but for operations
4709 * like CCS resolves and fast clears a single PS invocation may
4710 * update a huge number of pixels, in which case a finer
4711 * balancing is desirable in order to maximally utilize the
4712 * bandwidth available. UINT_MAX can be used as shorthand for
4713 * "finest hashing mode available".
4714 */
4715 void
4716 genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
4717 unsigned width, unsigned height,
4718 unsigned scale)
4719 {
4720 #if GEN_GEN == 9
4721 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4722 const unsigned slice_hashing[] = {
4723 /* Because all Gen9 platforms with more than one slice require
4724 * three-way subslice hashing, a single "normal" 16x16 slice hashing
4725 * block is guaranteed to suffer from substantial imbalance, with one
4726 * subslice receiving twice as much work as the other two in the
4727 * slice.
4728 *
4729 * The performance impact of that would be particularly severe when
4730 * three-way hashing is also in use for slice balancing (which is the
4731 * case for all Gen9 GT4 platforms), because one of the slices
4732 * receives one every three 16x16 blocks in either direction, which
4733 * is roughly the periodicity of the underlying subslice imbalance
4734 * pattern ("roughly" because in reality the hardware's
4735 * implementation of three-way hashing doesn't do exact modulo 3
4736 * arithmetic, which somewhat decreases the magnitude of this effect
4737 * in practice). This leads to a systematic subslice imbalance
4738 * within that slice regardless of the size of the primitive. The
4739 * 32x32 hashing mode guarantees that the subslice imbalance within a
4740 * single slice hashing block is minimal, largely eliminating this
4741 * effect.
4742 */
4743 _32x32,
4744 /* Finest slice hashing mode available. */
4745 NORMAL
4746 };
4747 const unsigned subslice_hashing[] = {
4748 /* 16x16 would provide a slight cache locality benefit especially
4749 * visible in the sampler L1 cache efficiency of low-bandwidth
4750 * non-LLC platforms, but it comes at the cost of greater subslice
4751 * imbalance for primitives of dimensions approximately intermediate
4752 * between 16x4 and 16x16.
4753 */
4754 _16x4,
4755 /* Finest subslice hashing mode available. */
4756 _8x4
4757 };
4758 /* Dimensions of the smallest hashing block of a given hashing mode. If
4759 * the rendering area is smaller than this there can't possibly be any
4760 * benefit from switching to this mode, so we optimize out the
4761 * transition.
4762 */
4763 const unsigned min_size[][2] = {
4764 { 16, 4 },
4765 { 8, 4 }
4766 };
4767 const unsigned idx = scale > 1;
4768
4769 if (cmd_buffer->state.current_hash_scale != scale &&
4770 (width > min_size[idx][0] || height > min_size[idx][1])) {
4771 uint32_t gt_mode;
4772
4773 anv_pack_struct(&gt_mode, GENX(GT_MODE),
4774 .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0),
4775 .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0),
4776 .SubsliceHashing = subslice_hashing[idx],
4777 .SubsliceHashingMask = -1);
4778
4779 cmd_buffer->state.pending_pipe_bits |=
4780 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
4781 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4782
4783 emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode);
4784
4785 cmd_buffer->state.current_hash_scale = scale;
4786 }
4787 #endif
4788 }
4789
4790 static void
4791 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
4792 {
4793 struct anv_device *device = cmd_buffer->device;
4794 const struct anv_image_view *iview =
4795 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
4796 const struct anv_image *image = iview ? iview->image : NULL;
4797
4798 /* FIXME: Width and Height are wrong */
4799
4800 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
4801
4802 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
4803 device->isl_dev.ds.size / 4);
4804 if (dw == NULL)
4805 return;
4806
4807 struct isl_depth_stencil_hiz_emit_info info = { };
4808
4809 if (iview)
4810 info.view = &iview->planes[0].isl;
4811
4812 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4813 uint32_t depth_plane =
4814 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
4815 const struct anv_surface *surface = &image->planes[depth_plane].surface;
4816
4817 info.depth_surf = &surface->isl;
4818
4819 info.depth_address =
4820 anv_batch_emit_reloc(&cmd_buffer->batch,
4821 dw + device->isl_dev.ds.depth_offset / 4,
4822 image->planes[depth_plane].address.bo,
4823 image->planes[depth_plane].address.offset +
4824 surface->offset);
4825 info.mocs =
4826 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
4827
4828 const uint32_t ds =
4829 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
4830 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
4831 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
4832 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
4833
4834 info.hiz_address =
4835 anv_batch_emit_reloc(&cmd_buffer->batch,
4836 dw + device->isl_dev.ds.hiz_offset / 4,
4837 image->planes[depth_plane].address.bo,
4838 image->planes[depth_plane].address.offset +
4839 image->planes[depth_plane].aux_surface.offset);
4840
4841 info.depth_clear_value = ANV_HZ_FC_VAL;
4842 }
4843 }
4844
4845 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
4846 uint32_t stencil_plane =
4847 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
4848 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
4849
4850 info.stencil_surf = &surface->isl;
4851
4852 info.stencil_address =
4853 anv_batch_emit_reloc(&cmd_buffer->batch,
4854 dw + device->isl_dev.ds.stencil_offset / 4,
4855 image->planes[stencil_plane].address.bo,
4856 image->planes[stencil_plane].address.offset +
4857 surface->offset);
4858 info.mocs =
4859 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
4860 }
4861
4862 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
4863
4864 if (GEN_GEN >= 12) {
4865 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
4866 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4867
4868 /* GEN:BUG:1408224581
4869 *
4870 * Workaround: Gen12LP Astep only An additional pipe control with
4871 * post-sync = store dword operation would be required.( w/a is to
4872 * have an additional pipe control after the stencil state whenever
4873 * the surface state bits of this state is changing).
4874 */
4875 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4876 pc.PostSyncOperation = WriteImmediateData;
4877 pc.Address =
4878 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
4879 }
4880 }
4881 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
4882 }
4883
4884 /**
4885 * This ANDs the view mask of the current subpass with the pending clear
4886 * views in the attachment to get the mask of views active in the subpass
4887 * that still need to be cleared.
4888 */
4889 static inline uint32_t
4890 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
4891 const struct anv_attachment_state *att_state)
4892 {
4893 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
4894 }
4895
4896 static inline bool
4897 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
4898 const struct anv_attachment_state *att_state)
4899 {
4900 if (!cmd_state->subpass->view_mask)
4901 return true;
4902
4903 uint32_t pending_clear_mask =
4904 get_multiview_subpass_clear_mask(cmd_state, att_state);
4905
4906 return pending_clear_mask & 1;
4907 }
4908
4909 static inline bool
4910 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
4911 uint32_t att_idx)
4912 {
4913 const uint32_t last_subpass_idx =
4914 cmd_state->pass->attachments[att_idx].last_subpass_idx;
4915 const struct anv_subpass *last_subpass =
4916 &cmd_state->pass->subpasses[last_subpass_idx];
4917 return last_subpass == cmd_state->subpass;
4918 }
4919
4920 static void
4921 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
4922 uint32_t subpass_id)
4923 {
4924 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4925 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
4926 cmd_state->subpass = subpass;
4927
4928 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
4929
4930 /* Our implementation of VK_KHR_multiview uses instancing to draw the
4931 * different views. If the client asks for instancing, we need to use the
4932 * Instance Data Step Rate to ensure that we repeat the client's
4933 * per-instance data once for each view. Since this bit is in
4934 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
4935 * of each subpass.
4936 */
4937 if (GEN_GEN == 7)
4938 cmd_buffer->state.gfx.vb_dirty |= ~0;
4939
4940 /* It is possible to start a render pass with an old pipeline. Because the
4941 * render pass and subpass index are both baked into the pipeline, this is
4942 * highly unlikely. In order to do so, it requires that you have a render
4943 * pass with a single subpass and that you use that render pass twice
4944 * back-to-back and use the same pipeline at the start of the second render
4945 * pass as at the end of the first. In order to avoid unpredictable issues
4946 * with this edge case, we just dirty the pipeline at the start of every
4947 * subpass.
4948 */
4949 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
4950
4951 /* Accumulate any subpass flushes that need to happen before the subpass */
4952 cmd_buffer->state.pending_pipe_bits |=
4953 cmd_buffer->state.pass->subpass_flushes[subpass_id];
4954
4955 VkRect2D render_area = cmd_buffer->state.render_area;
4956 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4957
4958 bool is_multiview = subpass->view_mask != 0;
4959
4960 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4961 const uint32_t a = subpass->attachments[i].attachment;
4962 if (a == VK_ATTACHMENT_UNUSED)
4963 continue;
4964
4965 assert(a < cmd_state->pass->attachment_count);
4966 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4967
4968 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
4969 const struct anv_image *image = iview->image;
4970
4971 /* A resolve is necessary before use as an input attachment if the clear
4972 * color or auxiliary buffer usage isn't supported by the sampler.
4973 */
4974 const bool input_needs_resolve =
4975 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
4976 att_state->input_aux_usage != att_state->aux_usage;
4977
4978 VkImageLayout target_layout;
4979 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
4980 !input_needs_resolve) {
4981 /* Layout transitions before the final only help to enable sampling
4982 * as an input attachment. If the input attachment supports sampling
4983 * using the auxiliary surface, we can skip such transitions by
4984 * making the target layout one that is CCS-aware.
4985 */
4986 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
4987 } else {
4988 target_layout = subpass->attachments[i].layout;
4989 }
4990
4991 VkImageLayout target_stencil_layout =
4992 subpass->attachments[i].stencil_layout;
4993
4994 uint32_t base_layer, layer_count;
4995 if (image->type == VK_IMAGE_TYPE_3D) {
4996 base_layer = 0;
4997 layer_count = anv_minify(iview->image->extent.depth,
4998 iview->planes[0].isl.base_level);
4999 } else {
5000 base_layer = iview->planes[0].isl.base_array_layer;
5001 layer_count = fb->layers;
5002 }
5003
5004 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
5005 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5006 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5007 iview->planes[0].isl.base_level, 1,
5008 base_layer, layer_count,
5009 att_state->current_layout, target_layout);
5010 }
5011
5012 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5013 transition_depth_buffer(cmd_buffer, image,
5014 att_state->current_layout, target_layout);
5015 att_state->aux_usage =
5016 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
5017 VK_IMAGE_ASPECT_DEPTH_BIT,
5018 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
5019 target_layout);
5020 }
5021
5022 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5023 transition_stencil_buffer(cmd_buffer, image,
5024 iview->planes[0].isl.base_level, 1,
5025 base_layer, layer_count,
5026 att_state->current_stencil_layout,
5027 target_stencil_layout);
5028 }
5029 att_state->current_layout = target_layout;
5030 att_state->current_stencil_layout = target_stencil_layout;
5031
5032 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
5033 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5034
5035 /* Multi-planar images are not supported as attachments */
5036 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5037 assert(image->n_planes == 1);
5038
5039 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
5040 uint32_t clear_layer_count = fb->layers;
5041
5042 if (att_state->fast_clear &&
5043 do_first_layer_clear(cmd_state, att_state)) {
5044 /* We only support fast-clears on the first layer */
5045 assert(iview->planes[0].isl.base_level == 0);
5046 assert(iview->planes[0].isl.base_array_layer == 0);
5047
5048 union isl_color_value clear_color = {};
5049 anv_clear_color_from_att_state(&clear_color, att_state, iview);
5050 if (iview->image->samples == 1) {
5051 anv_image_ccs_op(cmd_buffer, image,
5052 iview->planes[0].isl.format,
5053 VK_IMAGE_ASPECT_COLOR_BIT,
5054 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
5055 &clear_color,
5056 false);
5057 } else {
5058 anv_image_mcs_op(cmd_buffer, image,
5059 iview->planes[0].isl.format,
5060 VK_IMAGE_ASPECT_COLOR_BIT,
5061 0, 1, ISL_AUX_OP_FAST_CLEAR,
5062 &clear_color,
5063 false);
5064 }
5065 base_clear_layer++;
5066 clear_layer_count--;
5067 if (is_multiview)
5068 att_state->pending_clear_views &= ~1;
5069
5070 if (att_state->clear_color_is_zero) {
5071 /* This image has the auxiliary buffer enabled. We can mark the
5072 * subresource as not needing a resolve because the clear color
5073 * will match what's in every RENDER_SURFACE_STATE object when
5074 * it's being used for sampling.
5075 */
5076 set_image_fast_clear_state(cmd_buffer, iview->image,
5077 VK_IMAGE_ASPECT_COLOR_BIT,
5078 ANV_FAST_CLEAR_DEFAULT_VALUE);
5079 } else {
5080 set_image_fast_clear_state(cmd_buffer, iview->image,
5081 VK_IMAGE_ASPECT_COLOR_BIT,
5082 ANV_FAST_CLEAR_ANY);
5083 }
5084 }
5085
5086 /* From the VkFramebufferCreateInfo spec:
5087 *
5088 * "If the render pass uses multiview, then layers must be one and each
5089 * attachment requires a number of layers that is greater than the
5090 * maximum bit index set in the view mask in the subpasses in which it
5091 * is used."
5092 *
5093 * So if multiview is active we ignore the number of layers in the
5094 * framebuffer and instead we honor the view mask from the subpass.
5095 */
5096 if (is_multiview) {
5097 assert(image->n_planes == 1);
5098 uint32_t pending_clear_mask =
5099 get_multiview_subpass_clear_mask(cmd_state, att_state);
5100
5101 uint32_t layer_idx;
5102 for_each_bit(layer_idx, pending_clear_mask) {
5103 uint32_t layer =
5104 iview->planes[0].isl.base_array_layer + layer_idx;
5105
5106 anv_image_clear_color(cmd_buffer, image,
5107 VK_IMAGE_ASPECT_COLOR_BIT,
5108 att_state->aux_usage,
5109 iview->planes[0].isl.format,
5110 iview->planes[0].isl.swizzle,
5111 iview->planes[0].isl.base_level,
5112 layer, 1,
5113 render_area,
5114 vk_to_isl_color(att_state->clear_value.color));
5115 }
5116
5117 att_state->pending_clear_views &= ~pending_clear_mask;
5118 } else if (clear_layer_count > 0) {
5119 assert(image->n_planes == 1);
5120 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5121 att_state->aux_usage,
5122 iview->planes[0].isl.format,
5123 iview->planes[0].isl.swizzle,
5124 iview->planes[0].isl.base_level,
5125 base_clear_layer, clear_layer_count,
5126 render_area,
5127 vk_to_isl_color(att_state->clear_value.color));
5128 }
5129 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
5130 VK_IMAGE_ASPECT_STENCIL_BIT)) {
5131 if (att_state->fast_clear && !is_multiview) {
5132 /* We currently only support HiZ for single-layer images */
5133 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5134 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
5135 assert(iview->planes[0].isl.base_level == 0);
5136 assert(iview->planes[0].isl.base_array_layer == 0);
5137 assert(fb->layers == 1);
5138 }
5139
5140 anv_image_hiz_clear(cmd_buffer, image,
5141 att_state->pending_clear_aspects,
5142 iview->planes[0].isl.base_level,
5143 iview->planes[0].isl.base_array_layer,
5144 fb->layers, render_area,
5145 att_state->clear_value.depthStencil.stencil);
5146 } else if (is_multiview) {
5147 uint32_t pending_clear_mask =
5148 get_multiview_subpass_clear_mask(cmd_state, att_state);
5149
5150 uint32_t layer_idx;
5151 for_each_bit(layer_idx, pending_clear_mask) {
5152 uint32_t layer =
5153 iview->planes[0].isl.base_array_layer + layer_idx;
5154
5155 anv_image_clear_depth_stencil(cmd_buffer, image,
5156 att_state->pending_clear_aspects,
5157 att_state->aux_usage,
5158 iview->planes[0].isl.base_level,
5159 layer, 1,
5160 render_area,
5161 att_state->clear_value.depthStencil.depth,
5162 att_state->clear_value.depthStencil.stencil);
5163 }
5164
5165 att_state->pending_clear_views &= ~pending_clear_mask;
5166 } else {
5167 anv_image_clear_depth_stencil(cmd_buffer, image,
5168 att_state->pending_clear_aspects,
5169 att_state->aux_usage,
5170 iview->planes[0].isl.base_level,
5171 iview->planes[0].isl.base_array_layer,
5172 fb->layers, render_area,
5173 att_state->clear_value.depthStencil.depth,
5174 att_state->clear_value.depthStencil.stencil);
5175 }
5176 } else {
5177 assert(att_state->pending_clear_aspects == 0);
5178 }
5179
5180 if (GEN_GEN < 10 &&
5181 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5182 image->planes[0].aux_usage != ISL_AUX_USAGE_NONE &&
5183 iview->planes[0].isl.base_level == 0 &&
5184 iview->planes[0].isl.base_array_layer == 0) {
5185 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
5186 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
5187 image, VK_IMAGE_ASPECT_COLOR_BIT,
5188 false /* copy to ss */);
5189 }
5190
5191 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
5192 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
5193 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
5194 image, VK_IMAGE_ASPECT_COLOR_BIT,
5195 false /* copy to ss */);
5196 }
5197 }
5198
5199 if (subpass->attachments[i].usage ==
5200 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
5201 /* We assume that if we're starting a subpass, we're going to do some
5202 * rendering so we may end up with compressed data.
5203 */
5204 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
5205 VK_IMAGE_ASPECT_COLOR_BIT,
5206 att_state->aux_usage,
5207 iview->planes[0].isl.base_level,
5208 iview->planes[0].isl.base_array_layer,
5209 fb->layers);
5210 } else if (subpass->attachments[i].usage ==
5211 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
5212 /* We may be writing depth or stencil so we need to mark the surface.
5213 * Unfortunately, there's no way to know at this point whether the
5214 * depth or stencil tests used will actually write to the surface.
5215 *
5216 * Even though stencil may be plane 1, it always shares a base_level
5217 * with depth.
5218 */
5219 const struct isl_view *ds_view = &iview->planes[0].isl;
5220 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
5221 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5222 VK_IMAGE_ASPECT_DEPTH_BIT,
5223 att_state->aux_usage,
5224 ds_view->base_level,
5225 ds_view->base_array_layer,
5226 fb->layers);
5227 }
5228 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
5229 /* Even though stencil may be plane 1, it always shares a
5230 * base_level with depth.
5231 */
5232 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5233 VK_IMAGE_ASPECT_STENCIL_BIT,
5234 ISL_AUX_USAGE_NONE,
5235 ds_view->base_level,
5236 ds_view->base_array_layer,
5237 fb->layers);
5238 }
5239 }
5240
5241 /* If multiview is enabled, then we are only done clearing when we no
5242 * longer have pending layers to clear, or when we have processed the
5243 * last subpass that uses this attachment.
5244 */
5245 if (!is_multiview ||
5246 att_state->pending_clear_views == 0 ||
5247 current_subpass_is_last_for_attachment(cmd_state, a)) {
5248 att_state->pending_clear_aspects = 0;
5249 }
5250
5251 att_state->pending_load_aspects = 0;
5252 }
5253
5254 #if GEN_GEN >= 11
5255 /* The PIPE_CONTROL command description says:
5256 *
5257 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
5258 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
5259 * Target Cache Flush by enabling this bit. When render target flush
5260 * is set due to new association of BTI, PS Scoreboard Stall bit must
5261 * be set in this packet."
5262 */
5263 cmd_buffer->state.pending_pipe_bits |=
5264 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
5265 ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
5266 #endif
5267
5268 #if GEN_GEN == 12
5269 /* GEN:BUG:14010455700
5270 *
5271 * ISL will change some CHICKEN registers depending on the depth surface
5272 * format, along with emitting the depth and stencil packets. In that case,
5273 * we want to do a depth flush and stall, so the pipeline is not using these
5274 * settings while we change the registers.
5275 */
5276 cmd_buffer->state.pending_pipe_bits |=
5277 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT |
5278 ANV_PIPE_DEPTH_STALL_BIT |
5279 ANV_PIPE_END_OF_PIPE_SYNC_BIT;
5280 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5281 #endif
5282
5283 cmd_buffer_emit_depth_stencil(cmd_buffer);
5284 }
5285
5286 static enum blorp_filter
5287 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
5288 {
5289 switch (vk_mode) {
5290 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
5291 return BLORP_FILTER_SAMPLE_0;
5292 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
5293 return BLORP_FILTER_AVERAGE;
5294 case VK_RESOLVE_MODE_MIN_BIT_KHR:
5295 return BLORP_FILTER_MIN_SAMPLE;
5296 case VK_RESOLVE_MODE_MAX_BIT_KHR:
5297 return BLORP_FILTER_MAX_SAMPLE;
5298 default:
5299 return BLORP_FILTER_NONE;
5300 }
5301 }
5302
5303 static void
5304 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
5305 {
5306 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5307 struct anv_subpass *subpass = cmd_state->subpass;
5308 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
5309 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
5310
5311 if (subpass->has_color_resolve) {
5312 /* We are about to do some MSAA resolves. We need to flush so that the
5313 * result of writes to the MSAA color attachments show up in the sampler
5314 * when we blit to the single-sampled resolve target.
5315 */
5316 cmd_buffer->state.pending_pipe_bits |=
5317 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5318 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
5319
5320 for (uint32_t i = 0; i < subpass->color_count; ++i) {
5321 uint32_t src_att = subpass->color_attachments[i].attachment;
5322 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
5323
5324 if (dst_att == VK_ATTACHMENT_UNUSED)
5325 continue;
5326
5327 assert(src_att < cmd_buffer->state.pass->attachment_count);
5328 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5329
5330 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5331 /* From the Vulkan 1.0 spec:
5332 *
5333 * If the first use of an attachment in a render pass is as a
5334 * resolve attachment, then the loadOp is effectively ignored
5335 * as the resolve is guaranteed to overwrite all pixels in the
5336 * render area.
5337 */
5338 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5339 }
5340
5341 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5342 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5343
5344 const VkRect2D render_area = cmd_buffer->state.render_area;
5345
5346 enum isl_aux_usage src_aux_usage =
5347 cmd_buffer->state.attachments[src_att].aux_usage;
5348 enum isl_aux_usage dst_aux_usage =
5349 cmd_buffer->state.attachments[dst_att].aux_usage;
5350
5351 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
5352 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
5353
5354 anv_image_msaa_resolve(cmd_buffer,
5355 src_iview->image, src_aux_usage,
5356 src_iview->planes[0].isl.base_level,
5357 src_iview->planes[0].isl.base_array_layer,
5358 dst_iview->image, dst_aux_usage,
5359 dst_iview->planes[0].isl.base_level,
5360 dst_iview->planes[0].isl.base_array_layer,
5361 VK_IMAGE_ASPECT_COLOR_BIT,
5362 render_area.offset.x, render_area.offset.y,
5363 render_area.offset.x, render_area.offset.y,
5364 render_area.extent.width,
5365 render_area.extent.height,
5366 fb->layers, BLORP_FILTER_NONE);
5367 }
5368 }
5369
5370 if (subpass->ds_resolve_attachment) {
5371 /* We are about to do some MSAA resolves. We need to flush so that the
5372 * result of writes to the MSAA depth attachments show up in the sampler
5373 * when we blit to the single-sampled resolve target.
5374 */
5375 cmd_buffer->state.pending_pipe_bits |=
5376 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5377 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
5378
5379 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
5380 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
5381
5382 assert(src_att < cmd_buffer->state.pass->attachment_count);
5383 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5384
5385 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5386 /* From the Vulkan 1.0 spec:
5387 *
5388 * If the first use of an attachment in a render pass is as a
5389 * resolve attachment, then the loadOp is effectively ignored
5390 * as the resolve is guaranteed to overwrite all pixels in the
5391 * render area.
5392 */
5393 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5394 }
5395
5396 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5397 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5398
5399 const VkRect2D render_area = cmd_buffer->state.render_area;
5400
5401 struct anv_attachment_state *src_state =
5402 &cmd_state->attachments[src_att];
5403 struct anv_attachment_state *dst_state =
5404 &cmd_state->attachments[dst_att];
5405
5406 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
5407 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5408
5409 /* MSAA resolves sample from the source attachment. Transition the
5410 * depth attachment first to get rid of any HiZ that we may not be
5411 * able to handle.
5412 */
5413 transition_depth_buffer(cmd_buffer, src_iview->image,
5414 src_state->current_layout,
5415 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5416 src_state->aux_usage =
5417 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
5418 VK_IMAGE_ASPECT_DEPTH_BIT,
5419 VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
5420 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5421 src_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5422
5423 /* MSAA resolves write to the resolve attachment as if it were any
5424 * other transfer op. Transition the resolve attachment accordingly.
5425 */
5426 VkImageLayout dst_initial_layout = dst_state->current_layout;
5427
5428 /* If our render area is the entire size of the image, we're going to
5429 * blow it all away so we can claim the initial layout is UNDEFINED
5430 * and we'll get a HiZ ambiguate instead of a resolve.
5431 */
5432 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
5433 render_area.offset.x == 0 && render_area.offset.y == 0 &&
5434 render_area.extent.width == dst_iview->extent.width &&
5435 render_area.extent.height == dst_iview->extent.height)
5436 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5437
5438 transition_depth_buffer(cmd_buffer, dst_iview->image,
5439 dst_initial_layout,
5440 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5441 dst_state->aux_usage =
5442 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
5443 VK_IMAGE_ASPECT_DEPTH_BIT,
5444 VK_IMAGE_USAGE_TRANSFER_DST_BIT,
5445 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5446 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5447
5448 enum blorp_filter filter =
5449 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
5450
5451 anv_image_msaa_resolve(cmd_buffer,
5452 src_iview->image, src_state->aux_usage,
5453 src_iview->planes[0].isl.base_level,
5454 src_iview->planes[0].isl.base_array_layer,
5455 dst_iview->image, dst_state->aux_usage,
5456 dst_iview->planes[0].isl.base_level,
5457 dst_iview->planes[0].isl.base_array_layer,
5458 VK_IMAGE_ASPECT_DEPTH_BIT,
5459 render_area.offset.x, render_area.offset.y,
5460 render_area.offset.x, render_area.offset.y,
5461 render_area.extent.width,
5462 render_area.extent.height,
5463 fb->layers, filter);
5464 }
5465
5466 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
5467 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5468
5469 src_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5470 dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5471
5472 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
5473 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
5474
5475 enum blorp_filter filter =
5476 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
5477
5478 anv_image_msaa_resolve(cmd_buffer,
5479 src_iview->image, src_aux_usage,
5480 src_iview->planes[0].isl.base_level,
5481 src_iview->planes[0].isl.base_array_layer,
5482 dst_iview->image, dst_aux_usage,
5483 dst_iview->planes[0].isl.base_level,
5484 dst_iview->planes[0].isl.base_array_layer,
5485 VK_IMAGE_ASPECT_STENCIL_BIT,
5486 render_area.offset.x, render_area.offset.y,
5487 render_area.offset.x, render_area.offset.y,
5488 render_area.extent.width,
5489 render_area.extent.height,
5490 fb->layers, filter);
5491 }
5492 }
5493
5494 #if GEN_GEN == 7
5495 /* On gen7, we have to store a texturable version of the stencil buffer in
5496 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
5497 * forth at strategic points. Stencil writes are only allowed in following
5498 * layouts:
5499 *
5500 * - VK_IMAGE_LAYOUT_GENERAL
5501 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
5502 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
5503 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
5504 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
5505 *
5506 * For general, we have no nice opportunity to transition so we do the copy
5507 * to the shadow unconditionally at the end of the subpass. For transfer
5508 * destinations, we can update it as part of the transfer op. For the other
5509 * layouts, we delay the copy until a transition into some other layout.
5510 */
5511 if (subpass->depth_stencil_attachment) {
5512 uint32_t a = subpass->depth_stencil_attachment->attachment;
5513 assert(a != VK_ATTACHMENT_UNUSED);
5514
5515 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5516 struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
5517 const struct anv_image *image = iview->image;
5518
5519 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5520 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
5521 VK_IMAGE_ASPECT_STENCIL_BIT);
5522
5523 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
5524 att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
5525 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
5526 anv_image_copy_to_shadow(cmd_buffer, image,
5527 VK_IMAGE_ASPECT_STENCIL_BIT,
5528 iview->planes[plane].isl.base_level, 1,
5529 iview->planes[plane].isl.base_array_layer,
5530 fb->layers);
5531 }
5532 }
5533 }
5534 #endif /* GEN_GEN == 7 */
5535
5536 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
5537 const uint32_t a = subpass->attachments[i].attachment;
5538 if (a == VK_ATTACHMENT_UNUSED)
5539 continue;
5540
5541 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
5542 continue;
5543
5544 assert(a < cmd_state->pass->attachment_count);
5545 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5546 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
5547 const struct anv_image *image = iview->image;
5548
5549 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5550 image->vk_format != iview->vk_format) {
5551 enum anv_fast_clear_type fast_clear_type =
5552 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
5553 image, VK_IMAGE_ASPECT_COLOR_BIT,
5554 att_state->current_layout);
5555
5556 /* If any clear color was used, flush it down the aux surfaces. If we
5557 * don't do it now using the view's format we might use the clear
5558 * color incorrectly in the following resolves (for example with an
5559 * SRGB view & a UNORM image).
5560 */
5561 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
5562 anv_perf_warn(cmd_buffer->device, iview,
5563 "Doing a partial resolve to get rid of clear color at the "
5564 "end of a renderpass due to an image/view format mismatch");
5565
5566 uint32_t base_layer, layer_count;
5567 if (image->type == VK_IMAGE_TYPE_3D) {
5568 base_layer = 0;
5569 layer_count = anv_minify(iview->image->extent.depth,
5570 iview->planes[0].isl.base_level);
5571 } else {
5572 base_layer = iview->planes[0].isl.base_array_layer;
5573 layer_count = fb->layers;
5574 }
5575
5576 for (uint32_t a = 0; a < layer_count; a++) {
5577 uint32_t array_layer = base_layer + a;
5578 if (image->samples == 1) {
5579 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
5580 iview->planes[0].isl.format,
5581 VK_IMAGE_ASPECT_COLOR_BIT,
5582 iview->planes[0].isl.base_level,
5583 array_layer,
5584 ISL_AUX_OP_PARTIAL_RESOLVE,
5585 ANV_FAST_CLEAR_NONE);
5586 } else {
5587 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
5588 iview->planes[0].isl.format,
5589 VK_IMAGE_ASPECT_COLOR_BIT,
5590 base_layer,
5591 ISL_AUX_OP_PARTIAL_RESOLVE,
5592 ANV_FAST_CLEAR_NONE);
5593 }
5594 }
5595 }
5596 }
5597
5598 /* Transition the image into the final layout for this render pass */
5599 VkImageLayout target_layout =
5600 cmd_state->pass->attachments[a].final_layout;
5601 VkImageLayout target_stencil_layout =
5602 cmd_state->pass->attachments[a].stencil_final_layout;
5603
5604 uint32_t base_layer, layer_count;
5605 if (image->type == VK_IMAGE_TYPE_3D) {
5606 base_layer = 0;
5607 layer_count = anv_minify(iview->image->extent.depth,
5608 iview->planes[0].isl.base_level);
5609 } else {
5610 base_layer = iview->planes[0].isl.base_array_layer;
5611 layer_count = fb->layers;
5612 }
5613
5614 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
5615 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5616 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5617 iview->planes[0].isl.base_level, 1,
5618 base_layer, layer_count,
5619 att_state->current_layout, target_layout);
5620 }
5621
5622 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5623 transition_depth_buffer(cmd_buffer, image,
5624 att_state->current_layout, target_layout);
5625 }
5626
5627 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5628 transition_stencil_buffer(cmd_buffer, image,
5629 iview->planes[0].isl.base_level, 1,
5630 base_layer, layer_count,
5631 att_state->current_stencil_layout,
5632 target_stencil_layout);
5633 }
5634 }
5635
5636 /* Accumulate any subpass flushes that need to happen after the subpass.
5637 * Yes, they do get accumulated twice in the NextSubpass case but since
5638 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
5639 * ORing the bits in twice so it's harmless.
5640 */
5641 cmd_buffer->state.pending_pipe_bits |=
5642 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
5643 }
5644
5645 void genX(CmdBeginRenderPass)(
5646 VkCommandBuffer commandBuffer,
5647 const VkRenderPassBeginInfo* pRenderPassBegin,
5648 VkSubpassContents contents)
5649 {
5650 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5651 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
5652 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
5653
5654 cmd_buffer->state.framebuffer = framebuffer;
5655 cmd_buffer->state.pass = pass;
5656 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
5657 VkResult result =
5658 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
5659
5660 /* If we failed to setup the attachments we should not try to go further */
5661 if (result != VK_SUCCESS) {
5662 assert(anv_batch_has_error(&cmd_buffer->batch));
5663 return;
5664 }
5665
5666 genX(flush_pipeline_select_3d)(cmd_buffer);
5667
5668 cmd_buffer_begin_subpass(cmd_buffer, 0);
5669 }
5670
5671 void genX(CmdBeginRenderPass2)(
5672 VkCommandBuffer commandBuffer,
5673 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
5674 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
5675 {
5676 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
5677 pSubpassBeginInfo->contents);
5678 }
5679
5680 void genX(CmdNextSubpass)(
5681 VkCommandBuffer commandBuffer,
5682 VkSubpassContents contents)
5683 {
5684 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5685
5686 if (anv_batch_has_error(&cmd_buffer->batch))
5687 return;
5688
5689 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
5690
5691 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
5692 cmd_buffer_end_subpass(cmd_buffer);
5693 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
5694 }
5695
5696 void genX(CmdNextSubpass2)(
5697 VkCommandBuffer commandBuffer,
5698 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
5699 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5700 {
5701 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
5702 }
5703
5704 void genX(CmdEndRenderPass)(
5705 VkCommandBuffer commandBuffer)
5706 {
5707 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5708
5709 if (anv_batch_has_error(&cmd_buffer->batch))
5710 return;
5711
5712 cmd_buffer_end_subpass(cmd_buffer);
5713
5714 cmd_buffer->state.hiz_enabled = false;
5715
5716 #ifndef NDEBUG
5717 anv_dump_add_attachments(cmd_buffer);
5718 #endif
5719
5720 /* Remove references to render pass specific state. This enables us to
5721 * detect whether or not we're in a renderpass.
5722 */
5723 cmd_buffer->state.framebuffer = NULL;
5724 cmd_buffer->state.pass = NULL;
5725 cmd_buffer->state.subpass = NULL;
5726 }
5727
5728 void genX(CmdEndRenderPass2)(
5729 VkCommandBuffer commandBuffer,
5730 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5731 {
5732 genX(CmdEndRenderPass)(commandBuffer);
5733 }
5734
5735 void
5736 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
5737 {
5738 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5739 struct gen_mi_builder b;
5740 gen_mi_builder_init(&b, &cmd_buffer->batch);
5741
5742 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
5743 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
5744 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
5745
5746 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
5747 mip.LoadOperation = LOAD_LOADINV;
5748 mip.CombineOperation = COMBINE_SET;
5749 mip.CompareOperation = COMPARE_SRCS_EQUAL;
5750 }
5751 #endif
5752 }
5753
5754 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5755 void genX(CmdBeginConditionalRenderingEXT)(
5756 VkCommandBuffer commandBuffer,
5757 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
5758 {
5759 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5760 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
5761 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5762 struct anv_address value_address =
5763 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
5764
5765 const bool isInverted = pConditionalRenderingBegin->flags &
5766 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
5767
5768 cmd_state->conditional_render_enabled = true;
5769
5770 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5771
5772 struct gen_mi_builder b;
5773 gen_mi_builder_init(&b, &cmd_buffer->batch);
5774
5775 /* Section 19.4 of the Vulkan 1.1.85 spec says:
5776 *
5777 * If the value of the predicate in buffer memory changes
5778 * while conditional rendering is active, the rendering commands
5779 * may be discarded in an implementation-dependent way.
5780 * Some implementations may latch the value of the predicate
5781 * upon beginning conditional rendering while others
5782 * may read it before every rendering command.
5783 *
5784 * So it's perfectly fine to read a value from the buffer once.
5785 */
5786 struct gen_mi_value value = gen_mi_mem32(value_address);
5787
5788 /* Precompute predicate result, it is necessary to support secondary
5789 * command buffers since it is unknown if conditional rendering is
5790 * inverted when populating them.
5791 */
5792 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
5793 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
5794 gen_mi_ult(&b, gen_mi_imm(0), value));
5795 }
5796
5797 void genX(CmdEndConditionalRenderingEXT)(
5798 VkCommandBuffer commandBuffer)
5799 {
5800 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5801 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5802
5803 cmd_state->conditional_render_enabled = false;
5804 }
5805 #endif
5806
5807 /* Set of stage bits for which are pipelined, i.e. they get queued by the
5808 * command streamer for later execution.
5809 */
5810 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5811 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
5812 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
5813 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
5814 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
5815 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
5816 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
5817 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
5818 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
5819 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
5820 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
5821 VK_PIPELINE_STAGE_TRANSFER_BIT | \
5822 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
5823 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
5824 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
5825
5826 void genX(CmdSetEvent)(
5827 VkCommandBuffer commandBuffer,
5828 VkEvent _event,
5829 VkPipelineStageFlags stageMask)
5830 {
5831 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5832 ANV_FROM_HANDLE(anv_event, event, _event);
5833
5834 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5835 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5836
5837 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5838 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5839 pc.StallAtPixelScoreboard = true;
5840 pc.CommandStreamerStallEnable = true;
5841 }
5842
5843 pc.DestinationAddressType = DAT_PPGTT,
5844 pc.PostSyncOperation = WriteImmediateData,
5845 pc.Address = (struct anv_address) {
5846 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5847 event->state.offset
5848 };
5849 pc.ImmediateData = VK_EVENT_SET;
5850 }
5851 }
5852
5853 void genX(CmdResetEvent)(
5854 VkCommandBuffer commandBuffer,
5855 VkEvent _event,
5856 VkPipelineStageFlags stageMask)
5857 {
5858 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5859 ANV_FROM_HANDLE(anv_event, event, _event);
5860
5861 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5862 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5863
5864 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5865 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5866 pc.StallAtPixelScoreboard = true;
5867 pc.CommandStreamerStallEnable = true;
5868 }
5869
5870 pc.DestinationAddressType = DAT_PPGTT;
5871 pc.PostSyncOperation = WriteImmediateData;
5872 pc.Address = (struct anv_address) {
5873 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5874 event->state.offset
5875 };
5876 pc.ImmediateData = VK_EVENT_RESET;
5877 }
5878 }
5879
5880 void genX(CmdWaitEvents)(
5881 VkCommandBuffer commandBuffer,
5882 uint32_t eventCount,
5883 const VkEvent* pEvents,
5884 VkPipelineStageFlags srcStageMask,
5885 VkPipelineStageFlags destStageMask,
5886 uint32_t memoryBarrierCount,
5887 const VkMemoryBarrier* pMemoryBarriers,
5888 uint32_t bufferMemoryBarrierCount,
5889 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
5890 uint32_t imageMemoryBarrierCount,
5891 const VkImageMemoryBarrier* pImageMemoryBarriers)
5892 {
5893 #if GEN_GEN >= 8
5894 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5895
5896 for (uint32_t i = 0; i < eventCount; i++) {
5897 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
5898
5899 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
5900 sem.WaitMode = PollingMode,
5901 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
5902 sem.SemaphoreDataDword = VK_EVENT_SET,
5903 sem.SemaphoreAddress = (struct anv_address) {
5904 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5905 event->state.offset
5906 };
5907 }
5908 }
5909 #else
5910 anv_finishme("Implement events on gen7");
5911 #endif
5912
5913 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
5914 false, /* byRegion */
5915 memoryBarrierCount, pMemoryBarriers,
5916 bufferMemoryBarrierCount, pBufferMemoryBarriers,
5917 imageMemoryBarrierCount, pImageMemoryBarriers);
5918 }
5919
5920 VkResult genX(CmdSetPerformanceOverrideINTEL)(
5921 VkCommandBuffer commandBuffer,
5922 const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
5923 {
5924 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5925
5926 switch (pOverrideInfo->type) {
5927 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
5928 uint32_t dw;
5929
5930 #if GEN_GEN >= 9
5931 anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2),
5932 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5933 .MediaInstructionDisable = pOverrideInfo->enable,
5934 ._3DRenderingInstructionDisableMask = true,
5935 .MediaInstructionDisableMask = true);
5936 emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw);
5937 #else
5938 anv_pack_struct(&dw, GENX(INSTPM),
5939 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5940 .MediaInstructionDisable = pOverrideInfo->enable,
5941 ._3DRenderingInstructionDisableMask = true,
5942 .MediaInstructionDisableMask = true);
5943 emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw);
5944 #endif
5945 break;
5946 }
5947
5948 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
5949 if (pOverrideInfo->enable) {
5950 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5951 cmd_buffer->state.pending_pipe_bits |=
5952 ANV_PIPE_FLUSH_BITS |
5953 ANV_PIPE_INVALIDATE_BITS;
5954 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5955 }
5956 break;
5957
5958 default:
5959 unreachable("Invalid override");
5960 }
5961
5962 return VK_SUCCESS;
5963 }
5964
5965 VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
5966 VkCommandBuffer commandBuffer,
5967 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
5968 {
5969 /* TODO: Waiting on the register to write, might depend on generation. */
5970
5971 return VK_SUCCESS;
5972 }