anv/cmd_buffer: Use the surface state alloc helper in null_surface_state
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28
29 #include "common/gen_l3_config.h"
30 #include "genxml/gen_macros.h"
31 #include "genxml/genX_pack.h"
32
33 static void
34 emit_lrm(struct anv_batch *batch,
35 uint32_t reg, struct anv_bo *bo, uint32_t offset)
36 {
37 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
38 lrm.RegisterAddress = reg;
39 lrm.MemoryAddress = (struct anv_address) { bo, offset };
40 }
41 }
42
43 static void
44 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
45 {
46 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
47 lri.RegisterOffset = reg;
48 lri.DataDWord = imm;
49 }
50 }
51
52 void
53 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
54 {
55 struct anv_device *device = cmd_buffer->device;
56
57 /* XXX: Do we need this on more than just BDW? */
58 #if (GEN_GEN >= 8)
59 /* Emit a render target cache flush.
60 *
61 * This isn't documented anywhere in the PRM. However, it seems to be
62 * necessary prior to changing the surface state base adress. Without
63 * this, we get GPU hangs when using multi-level command buffers which
64 * clear depth, reset state base address, and then go render stuff.
65 */
66 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
67 pc.RenderTargetCacheFlushEnable = true;
68 }
69 #endif
70
71 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
72 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
73 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
74 sba.GeneralStateBaseAddressModifyEnable = true;
75
76 sba.SurfaceStateBaseAddress =
77 anv_cmd_buffer_surface_base_address(cmd_buffer);
78 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
79 sba.SurfaceStateBaseAddressModifyEnable = true;
80
81 sba.DynamicStateBaseAddress =
82 (struct anv_address) { &device->dynamic_state_block_pool.bo, 0 };
83 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
84 sba.DynamicStateBaseAddressModifyEnable = true;
85
86 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
87 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
88 sba.IndirectObjectBaseAddressModifyEnable = true;
89
90 sba.InstructionBaseAddress =
91 (struct anv_address) { &device->instruction_block_pool.bo, 0 };
92 sba.InstructionMemoryObjectControlState = GENX(MOCS);
93 sba.InstructionBaseAddressModifyEnable = true;
94
95 # if (GEN_GEN >= 8)
96 /* Broadwell requires that we specify a buffer size for a bunch of
97 * these fields. However, since we will be growing the BO's live, we
98 * just set them all to the maximum.
99 */
100 sba.GeneralStateBufferSize = 0xfffff;
101 sba.GeneralStateBufferSizeModifyEnable = true;
102 sba.DynamicStateBufferSize = 0xfffff;
103 sba.DynamicStateBufferSizeModifyEnable = true;
104 sba.IndirectObjectBufferSize = 0xfffff;
105 sba.IndirectObjectBufferSizeModifyEnable = true;
106 sba.InstructionBufferSize = 0xfffff;
107 sba.InstructionBuffersizeModifyEnable = true;
108 # endif
109 }
110
111 /* After re-setting the surface state base address, we have to do some
112 * cache flusing so that the sampler engine will pick up the new
113 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
114 * Shared Function > 3D Sampler > State > State Caching (page 96):
115 *
116 * Coherency with system memory in the state cache, like the texture
117 * cache is handled partially by software. It is expected that the
118 * command stream or shader will issue Cache Flush operation or
119 * Cache_Flush sampler message to ensure that the L1 cache remains
120 * coherent with system memory.
121 *
122 * [...]
123 *
124 * Whenever the value of the Dynamic_State_Base_Addr,
125 * Surface_State_Base_Addr are altered, the L1 state cache must be
126 * invalidated to ensure the new surface or sampler state is fetched
127 * from system memory.
128 *
129 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
130 * which, according the PIPE_CONTROL instruction documentation in the
131 * Broadwell PRM:
132 *
133 * Setting this bit is independent of any other bit in this packet.
134 * This bit controls the invalidation of the L1 and L2 state caches
135 * at the top of the pipe i.e. at the parsing time.
136 *
137 * Unfortunately, experimentation seems to indicate that state cache
138 * invalidation through a PIPE_CONTROL does nothing whatsoever in
139 * regards to surface state and binding tables. In stead, it seems that
140 * invalidating the texture cache is what is actually needed.
141 *
142 * XXX: As far as we have been able to determine through
143 * experimentation, shows that flush the texture cache appears to be
144 * sufficient. The theory here is that all of the sampling/rendering
145 * units cache the binding table in the texture cache. However, we have
146 * yet to be able to actually confirm this.
147 */
148 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
149 pc.TextureCacheInvalidationEnable = true;
150 }
151 }
152
153 VkResult
154 genX(BeginCommandBuffer)(
155 VkCommandBuffer commandBuffer,
156 const VkCommandBufferBeginInfo* pBeginInfo)
157 {
158 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
159
160 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
161 * command buffer's state. Otherwise, we must *reset* its state. In both
162 * cases we reset it.
163 *
164 * From the Vulkan 1.0 spec:
165 *
166 * If a command buffer is in the executable state and the command buffer
167 * was allocated from a command pool with the
168 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
169 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
170 * as if vkResetCommandBuffer had been called with
171 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
172 * the command buffer in the recording state.
173 */
174 anv_cmd_buffer_reset(cmd_buffer);
175
176 cmd_buffer->usage_flags = pBeginInfo->flags;
177
178 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
179 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
180
181 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
182
183 if (cmd_buffer->usage_flags &
184 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
185 cmd_buffer->state.framebuffer =
186 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
187 cmd_buffer->state.pass =
188 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
189 cmd_buffer->state.subpass =
190 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
191
192 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
193 }
194
195 return VK_SUCCESS;
196 }
197
198 VkResult
199 genX(EndCommandBuffer)(
200 VkCommandBuffer commandBuffer)
201 {
202 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
203
204 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
205
206 return VK_SUCCESS;
207 }
208
209 void
210 genX(CmdExecuteCommands)(
211 VkCommandBuffer commandBuffer,
212 uint32_t commandBufferCount,
213 const VkCommandBuffer* pCmdBuffers)
214 {
215 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
216
217 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
218
219 for (uint32_t i = 0; i < commandBufferCount; i++) {
220 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
221
222 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
223
224 anv_cmd_buffer_add_secondary(primary, secondary);
225 }
226
227 /* Each of the secondary command buffers will use its own state base
228 * address. We need to re-emit state base address for the primary after
229 * all of the secondaries are done.
230 *
231 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
232 * address calls?
233 */
234 genX(cmd_buffer_emit_state_base_address)(primary);
235 }
236
237 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
238 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
239 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
240
241 /**
242 * Program the hardware to use the specified L3 configuration.
243 */
244 void
245 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
246 const struct gen_l3_config *cfg)
247 {
248 assert(cfg);
249 if (cfg == cmd_buffer->state.current_l3_config)
250 return;
251
252 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
253 fprintf(stderr, "L3 config transition: ");
254 gen_dump_l3_config(cfg, stderr);
255 }
256
257 const bool has_slm = cfg->n[GEN_L3P_SLM];
258
259 /* According to the hardware docs, the L3 partitioning can only be changed
260 * while the pipeline is completely drained and the caches are flushed,
261 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
262 */
263 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
264 pc.DCFlushEnable = true;
265 pc.PostSyncOperation = NoWrite;
266 pc.CommandStreamerStallEnable = true;
267 }
268
269 /* ...followed by a second pipelined PIPE_CONTROL that initiates
270 * invalidation of the relevant caches. Note that because RO invalidation
271 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
272 * command is processed by the CS) we cannot combine it with the previous
273 * stalling flush as the hardware documentation suggests, because that
274 * would cause the CS to stall on previous rendering *after* RO
275 * invalidation and wouldn't prevent the RO caches from being polluted by
276 * concurrent rendering before the stall completes. This intentionally
277 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
278 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
279 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
280 * already guarantee that there is no concurrent GPGPU kernel execution
281 * (see SKL HSD 2132585).
282 */
283 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
284 pc.TextureCacheInvalidationEnable = true;
285 pc.ConstantCacheInvalidationEnable = true;
286 pc.InstructionCacheInvalidateEnable = true;
287 pc.StateCacheInvalidationEnable = true;
288 pc.PostSyncOperation = NoWrite;
289 }
290
291 /* Now send a third stalling flush to make sure that invalidation is
292 * complete when the L3 configuration registers are modified.
293 */
294 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
295 pc.DCFlushEnable = true;
296 pc.PostSyncOperation = NoWrite;
297 pc.CommandStreamerStallEnable = true;
298 }
299
300 #if GEN_GEN >= 8
301
302 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
303
304 uint32_t l3cr;
305 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
306 .SLMEnable = has_slm,
307 .URBAllocation = cfg->n[GEN_L3P_URB],
308 .ROAllocation = cfg->n[GEN_L3P_RO],
309 .DCAllocation = cfg->n[GEN_L3P_DC],
310 .AllAllocation = cfg->n[GEN_L3P_ALL]);
311
312 /* Set up the L3 partitioning. */
313 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
314
315 #else
316
317 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
318 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
319 cfg->n[GEN_L3P_ALL];
320 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
321 cfg->n[GEN_L3P_ALL];
322 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
323 cfg->n[GEN_L3P_ALL];
324
325 assert(!cfg->n[GEN_L3P_ALL]);
326
327 /* When enabled SLM only uses a portion of the L3 on half of the banks,
328 * the matching space on the remaining banks has to be allocated to a
329 * client (URB for all validated configurations) set to the
330 * lower-bandwidth 2-bank address hashing mode.
331 */
332 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
333 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
334 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
335
336 /* Minimum number of ways that can be allocated to the URB. */
337 const unsigned n0_urb = (devinfo->is_baytrail ? 32 : 0);
338 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
339
340 uint32_t l3sqcr1, l3cr2, l3cr3;
341 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
342 .ConvertDC_UC = !has_dc,
343 .ConvertIS_UC = !has_is,
344 .ConvertC_UC = !has_c,
345 .ConvertT_UC = !has_t);
346 l3sqcr1 |=
347 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
348 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
349 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
350
351 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
352 .SLMEnable = has_slm,
353 .URBLowBandwidth = urb_low_bw,
354 .URBAllocation = cfg->n[GEN_L3P_URB],
355 #if !GEN_IS_HASWELL
356 .ALLAllocation = cfg->n[GEN_L3P_ALL],
357 #endif
358 .ROAllocation = cfg->n[GEN_L3P_RO],
359 .DCAllocation = cfg->n[GEN_L3P_DC]);
360
361 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
362 .ISAllocation = cfg->n[GEN_L3P_IS],
363 .ISLowBandwidth = 0,
364 .CAllocation = cfg->n[GEN_L3P_C],
365 .CLowBandwidth = 0,
366 .TAllocation = cfg->n[GEN_L3P_T],
367 .TLowBandwidth = 0);
368
369 /* Set up the L3 partitioning. */
370 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
371 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
372 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
373
374 #if GEN_IS_HASWELL
375 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
376 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
377 * them disabled to avoid crashing the system hard.
378 */
379 uint32_t scratch1, chicken3;
380 anv_pack_struct(&scratch1, GENX(SCRATCH1),
381 .L3AtomicDisable = !has_dc);
382 anv_pack_struct(&chicken3, GENX(CHICKEN3),
383 .L3AtomicDisableMask = true,
384 .L3AtomicDisable = !has_dc);
385 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
386 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
387 }
388 #endif
389
390 #endif
391
392 cmd_buffer->state.current_l3_config = cfg;
393 }
394
395 void
396 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
397 {
398 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
399
400 /* Flushes are pipelined while invalidations are handled immediately.
401 * Therefore, if we're flushing anything then we need to schedule a stall
402 * before any invalidations can happen.
403 */
404 if (bits & ANV_PIPE_FLUSH_BITS)
405 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
406
407 /* If we're going to do an invalidate and we have a pending CS stall that
408 * has yet to be resolved, we do the CS stall now.
409 */
410 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
411 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
412 bits |= ANV_PIPE_CS_STALL_BIT;
413 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
414 }
415
416 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
417 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
418 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
419 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
420 pipe.RenderTargetCacheFlushEnable =
421 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
422
423 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
424 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
425 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
426
427 /*
428 * According to the Broadwell documentation, any PIPE_CONTROL with the
429 * "Command Streamer Stall" bit set must also have another bit set,
430 * with five different options:
431 *
432 * - Render Target Cache Flush
433 * - Depth Cache Flush
434 * - Stall at Pixel Scoreboard
435 * - Post-Sync Operation
436 * - Depth Stall
437 * - DC Flush Enable
438 *
439 * I chose "Stall at Pixel Scoreboard" since that's what we use in
440 * mesa and it seems to work fine. The choice is fairly arbitrary.
441 */
442 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
443 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
444 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
445 pipe.StallAtPixelScoreboard = true;
446 }
447
448 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
449 }
450
451 if (bits & ANV_PIPE_INVALIDATE_BITS) {
452 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
453 pipe.StateCacheInvalidationEnable =
454 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
455 pipe.ConstantCacheInvalidationEnable =
456 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
457 pipe.VFCacheInvalidationEnable =
458 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
459 pipe.TextureCacheInvalidationEnable =
460 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
461 pipe.InstructionCacheInvalidateEnable =
462 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
463 }
464
465 bits &= ~ANV_PIPE_INVALIDATE_BITS;
466 }
467
468 cmd_buffer->state.pending_pipe_bits = bits;
469 }
470
471 void genX(CmdPipelineBarrier)(
472 VkCommandBuffer commandBuffer,
473 VkPipelineStageFlags srcStageMask,
474 VkPipelineStageFlags destStageMask,
475 VkBool32 byRegion,
476 uint32_t memoryBarrierCount,
477 const VkMemoryBarrier* pMemoryBarriers,
478 uint32_t bufferMemoryBarrierCount,
479 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
480 uint32_t imageMemoryBarrierCount,
481 const VkImageMemoryBarrier* pImageMemoryBarriers)
482 {
483 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
484 uint32_t b;
485
486 /* XXX: Right now, we're really dumb and just flush whatever categories
487 * the app asks for. One of these days we may make this a bit better
488 * but right now that's all the hardware allows for in most areas.
489 */
490 VkAccessFlags src_flags = 0;
491 VkAccessFlags dst_flags = 0;
492
493 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
494 src_flags |= pMemoryBarriers[i].srcAccessMask;
495 dst_flags |= pMemoryBarriers[i].dstAccessMask;
496 }
497
498 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
499 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
500 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
501 }
502
503 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
504 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
505 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
506 }
507
508 enum anv_pipe_bits pipe_bits = 0;
509
510 for_each_bit(b, src_flags) {
511 switch ((VkAccessFlagBits)(1 << b)) {
512 case VK_ACCESS_SHADER_WRITE_BIT:
513 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
514 break;
515 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
516 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
517 break;
518 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
519 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
520 break;
521 case VK_ACCESS_TRANSFER_WRITE_BIT:
522 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
523 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
524 break;
525 default:
526 break; /* Nothing to do */
527 }
528 }
529
530 for_each_bit(b, dst_flags) {
531 switch ((VkAccessFlagBits)(1 << b)) {
532 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
533 case VK_ACCESS_INDEX_READ_BIT:
534 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
535 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
536 break;
537 case VK_ACCESS_UNIFORM_READ_BIT:
538 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
539 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
540 break;
541 case VK_ACCESS_SHADER_READ_BIT:
542 case VK_ACCESS_COLOR_ATTACHMENT_READ_BIT:
543 case VK_ACCESS_TRANSFER_READ_BIT:
544 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
545 break;
546 default:
547 break; /* Nothing to do */
548 }
549 }
550
551 cmd_buffer->state.pending_pipe_bits |= pipe_bits;
552 }
553
554 static void
555 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
556 {
557 VkShaderStageFlags stages = cmd_buffer->state.pipeline->active_stages;
558
559 /* In order to avoid thrash, we assume that vertex and fragment stages
560 * always exist. In the rare case where one is missing *and* the other
561 * uses push concstants, this may be suboptimal. However, avoiding stalls
562 * seems more important.
563 */
564 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
565
566 if (stages == cmd_buffer->state.push_constant_stages)
567 return;
568
569 #if GEN_GEN >= 8
570 const unsigned push_constant_kb = 32;
571 #elif GEN_IS_HASWELL
572 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
573 #else
574 const unsigned push_constant_kb = 16;
575 #endif
576
577 const unsigned num_stages =
578 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
579 unsigned size_per_stage = push_constant_kb / num_stages;
580
581 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
582 * units of 2KB. Incidentally, these are the same platforms that have
583 * 32KB worth of push constant space.
584 */
585 if (push_constant_kb == 32)
586 size_per_stage &= ~1u;
587
588 uint32_t kb_used = 0;
589 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
590 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
591 anv_batch_emit(&cmd_buffer->batch,
592 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
593 alloc._3DCommandSubOpcode = 18 + i;
594 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
595 alloc.ConstantBufferSize = push_size;
596 }
597 kb_used += push_size;
598 }
599
600 anv_batch_emit(&cmd_buffer->batch,
601 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
602 alloc.ConstantBufferOffset = kb_used;
603 alloc.ConstantBufferSize = push_constant_kb - kb_used;
604 }
605
606 cmd_buffer->state.push_constant_stages = stages;
607
608 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
609 *
610 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
611 * the next 3DPRIMITIVE command after programming the
612 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
613 *
614 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
615 * pipeline setup, we need to dirty push constants.
616 */
617 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
618 }
619
620 static void
621 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
622 struct anv_state state, struct anv_bo *bo,
623 uint32_t offset)
624 {
625 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
626
627 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
628 state.offset + isl_dev->ss.addr_offset, bo, offset);
629 }
630
631 static struct anv_state
632 alloc_null_surface_state(struct anv_cmd_buffer *cmd_buffer,
633 struct anv_framebuffer *fb)
634 {
635 struct anv_state state =
636 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
637
638 struct GENX(RENDER_SURFACE_STATE) null_ss = {
639 .SurfaceType = SURFTYPE_NULL,
640 .SurfaceArray = fb->layers > 0,
641 .SurfaceFormat = ISL_FORMAT_R8G8B8A8_UNORM,
642 #if GEN_GEN >= 8
643 .TileMode = YMAJOR,
644 #else
645 .TiledSurface = true,
646 #endif
647 .Width = fb->width - 1,
648 .Height = fb->height - 1,
649 .Depth = fb->layers - 1,
650 .RenderTargetViewExtent = fb->layers - 1,
651 };
652
653 GENX(RENDER_SURFACE_STATE_pack)(NULL, state.map, &null_ss);
654
655 if (!cmd_buffer->device->info.has_llc)
656 anv_state_clflush(state);
657
658 return state;
659 }
660
661
662 static VkResult
663 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
664 gl_shader_stage stage,
665 struct anv_state *bt_state)
666 {
667 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
668 struct anv_subpass *subpass = cmd_buffer->state.subpass;
669 struct anv_pipeline *pipeline;
670 uint32_t bias, state_offset;
671
672 switch (stage) {
673 case MESA_SHADER_COMPUTE:
674 pipeline = cmd_buffer->state.compute_pipeline;
675 bias = 1;
676 break;
677 default:
678 pipeline = cmd_buffer->state.pipeline;
679 bias = 0;
680 break;
681 }
682
683 if (!anv_pipeline_has_stage(pipeline, stage)) {
684 *bt_state = (struct anv_state) { 0, };
685 return VK_SUCCESS;
686 }
687
688 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
689 if (bias + map->surface_count == 0) {
690 *bt_state = (struct anv_state) { 0, };
691 return VK_SUCCESS;
692 }
693
694 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
695 bias + map->surface_count,
696 &state_offset);
697 uint32_t *bt_map = bt_state->map;
698
699 if (bt_state->map == NULL)
700 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
701
702 if (stage == MESA_SHADER_COMPUTE &&
703 get_cs_prog_data(cmd_buffer->state.compute_pipeline)->uses_num_work_groups) {
704 struct anv_bo *bo = cmd_buffer->state.num_workgroups_bo;
705 uint32_t bo_offset = cmd_buffer->state.num_workgroups_offset;
706
707 struct anv_state surface_state;
708 surface_state =
709 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
710
711 const enum isl_format format =
712 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
713 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
714 format, bo_offset, 12, 1);
715
716 bt_map[0] = surface_state.offset + state_offset;
717 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
718 }
719
720 if (map->surface_count == 0)
721 goto out;
722
723 if (map->image_count > 0) {
724 VkResult result =
725 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
726 if (result != VK_SUCCESS)
727 return result;
728
729 cmd_buffer->state.push_constants_dirty |= 1 << stage;
730 }
731
732 uint32_t image = 0;
733 for (uint32_t s = 0; s < map->surface_count; s++) {
734 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
735
736 struct anv_state surface_state;
737 struct anv_bo *bo;
738 uint32_t bo_offset;
739
740 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
741 /* Color attachment binding */
742 assert(stage == MESA_SHADER_FRAGMENT);
743 assert(binding->binding == 0);
744 if (binding->index < subpass->color_count) {
745 const struct anv_image_view *iview =
746 fb->attachments[subpass->color_attachments[binding->index]];
747
748 assert(iview->color_rt_surface_state.alloc_size);
749 surface_state = iview->color_rt_surface_state;
750 add_surface_state_reloc(cmd_buffer, iview->color_rt_surface_state,
751 iview->bo, iview->offset);
752 } else {
753 /* Null render target */
754 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
755 surface_state = alloc_null_surface_state(cmd_buffer, fb);
756 }
757
758 bt_map[bias + s] = surface_state.offset + state_offset;
759 continue;
760 }
761
762 struct anv_descriptor_set *set =
763 cmd_buffer->state.descriptors[binding->set];
764 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
765 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
766
767 switch (desc->type) {
768 case VK_DESCRIPTOR_TYPE_SAMPLER:
769 /* Nothing for us to do here */
770 continue;
771
772 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
773 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
774 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
775 surface_state = desc->image_view->sampler_surface_state;
776 assert(surface_state.alloc_size);
777 bo = desc->image_view->bo;
778 bo_offset = desc->image_view->offset;
779 break;
780
781 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
782 surface_state = desc->image_view->storage_surface_state;
783 assert(surface_state.alloc_size);
784 bo = desc->image_view->bo;
785 bo_offset = desc->image_view->offset;
786
787 struct brw_image_param *image_param =
788 &cmd_buffer->state.push_constants[stage]->images[image++];
789
790 *image_param = desc->image_view->storage_image_param;
791 image_param->surface_idx = bias + s;
792 break;
793 }
794
795 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
796 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
797 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
798 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
799 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
800 surface_state = desc->buffer_view->surface_state;
801 assert(surface_state.alloc_size);
802 bo = desc->buffer_view->bo;
803 bo_offset = desc->buffer_view->offset;
804 break;
805
806 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
807 surface_state = desc->buffer_view->storage_surface_state;
808 assert(surface_state.alloc_size);
809 bo = desc->buffer_view->bo;
810 bo_offset = desc->buffer_view->offset;
811
812 struct brw_image_param *image_param =
813 &cmd_buffer->state.push_constants[stage]->images[image++];
814
815 *image_param = desc->buffer_view->storage_image_param;
816 image_param->surface_idx = bias + s;
817 break;
818
819 default:
820 assert(!"Invalid descriptor type");
821 continue;
822 }
823
824 bt_map[bias + s] = surface_state.offset + state_offset;
825 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
826 }
827 assert(image == map->image_count);
828
829 out:
830 if (!cmd_buffer->device->info.has_llc)
831 anv_state_clflush(*bt_state);
832
833 return VK_SUCCESS;
834 }
835
836 static VkResult
837 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
838 gl_shader_stage stage,
839 struct anv_state *state)
840 {
841 struct anv_pipeline *pipeline;
842
843 if (stage == MESA_SHADER_COMPUTE)
844 pipeline = cmd_buffer->state.compute_pipeline;
845 else
846 pipeline = cmd_buffer->state.pipeline;
847
848 if (!anv_pipeline_has_stage(pipeline, stage)) {
849 *state = (struct anv_state) { 0, };
850 return VK_SUCCESS;
851 }
852
853 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
854 if (map->sampler_count == 0) {
855 *state = (struct anv_state) { 0, };
856 return VK_SUCCESS;
857 }
858
859 uint32_t size = map->sampler_count * 16;
860 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
861
862 if (state->map == NULL)
863 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
864
865 for (uint32_t s = 0; s < map->sampler_count; s++) {
866 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
867 struct anv_descriptor_set *set =
868 cmd_buffer->state.descriptors[binding->set];
869 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
870 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
871
872 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
873 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
874 continue;
875
876 struct anv_sampler *sampler = desc->sampler;
877
878 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
879 * happens to be zero.
880 */
881 if (sampler == NULL)
882 continue;
883
884 memcpy(state->map + (s * 16),
885 sampler->state, sizeof(sampler->state));
886 }
887
888 if (!cmd_buffer->device->info.has_llc)
889 anv_state_clflush(*state);
890
891 return VK_SUCCESS;
892 }
893
894 static uint32_t
895 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
896 {
897 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
898 cmd_buffer->state.pipeline->active_stages;
899
900 VkResult result = VK_SUCCESS;
901 anv_foreach_stage(s, dirty) {
902 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
903 if (result != VK_SUCCESS)
904 break;
905 result = emit_binding_table(cmd_buffer, s,
906 &cmd_buffer->state.binding_tables[s]);
907 if (result != VK_SUCCESS)
908 break;
909 }
910
911 if (result != VK_SUCCESS) {
912 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
913
914 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
915 assert(result == VK_SUCCESS);
916
917 /* Re-emit state base addresses so we get the new surface state base
918 * address before we start emitting binding tables etc.
919 */
920 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
921
922 /* Re-emit all active binding tables */
923 dirty |= cmd_buffer->state.pipeline->active_stages;
924 anv_foreach_stage(s, dirty) {
925 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
926 if (result != VK_SUCCESS)
927 return result;
928 result = emit_binding_table(cmd_buffer, s,
929 &cmd_buffer->state.binding_tables[s]);
930 if (result != VK_SUCCESS)
931 return result;
932 }
933 }
934
935 cmd_buffer->state.descriptors_dirty &= ~dirty;
936
937 return dirty;
938 }
939
940 static void
941 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
942 uint32_t stages)
943 {
944 static const uint32_t sampler_state_opcodes[] = {
945 [MESA_SHADER_VERTEX] = 43,
946 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
947 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
948 [MESA_SHADER_GEOMETRY] = 46,
949 [MESA_SHADER_FRAGMENT] = 47,
950 [MESA_SHADER_COMPUTE] = 0,
951 };
952
953 static const uint32_t binding_table_opcodes[] = {
954 [MESA_SHADER_VERTEX] = 38,
955 [MESA_SHADER_TESS_CTRL] = 39,
956 [MESA_SHADER_TESS_EVAL] = 40,
957 [MESA_SHADER_GEOMETRY] = 41,
958 [MESA_SHADER_FRAGMENT] = 42,
959 [MESA_SHADER_COMPUTE] = 0,
960 };
961
962 anv_foreach_stage(s, stages) {
963 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
964 anv_batch_emit(&cmd_buffer->batch,
965 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
966 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
967 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
968 }
969 }
970
971 /* Always emit binding table pointers if we're asked to, since on SKL
972 * this is what flushes push constants. */
973 anv_batch_emit(&cmd_buffer->batch,
974 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
975 btp._3DCommandSubOpcode = binding_table_opcodes[s];
976 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
977 }
978 }
979 }
980
981 static uint32_t
982 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer)
983 {
984 static const uint32_t push_constant_opcodes[] = {
985 [MESA_SHADER_VERTEX] = 21,
986 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
987 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
988 [MESA_SHADER_GEOMETRY] = 22,
989 [MESA_SHADER_FRAGMENT] = 23,
990 [MESA_SHADER_COMPUTE] = 0,
991 };
992
993 VkShaderStageFlags flushed = 0;
994
995 anv_foreach_stage(stage, cmd_buffer->state.push_constants_dirty) {
996 if (stage == MESA_SHADER_COMPUTE)
997 continue;
998
999 struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage);
1000
1001 if (state.offset == 0) {
1002 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c)
1003 c._3DCommandSubOpcode = push_constant_opcodes[stage];
1004 } else {
1005 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
1006 c._3DCommandSubOpcode = push_constant_opcodes[stage],
1007 c.ConstantBody = (struct GENX(3DSTATE_CONSTANT_BODY)) {
1008 #if GEN_GEN >= 9
1009 .PointerToConstantBuffer2 = { &cmd_buffer->device->dynamic_state_block_pool.bo, state.offset },
1010 .ConstantBuffer2ReadLength = DIV_ROUND_UP(state.alloc_size, 32),
1011 #else
1012 .PointerToConstantBuffer0 = { .offset = state.offset },
1013 .ConstantBuffer0ReadLength = DIV_ROUND_UP(state.alloc_size, 32),
1014 #endif
1015 };
1016 }
1017 }
1018
1019 flushed |= mesa_to_vk_shader_stage(stage);
1020 }
1021
1022 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_ALL_GRAPHICS;
1023
1024 return flushed;
1025 }
1026
1027 void
1028 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
1029 {
1030 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1031 uint32_t *p;
1032
1033 uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used;
1034
1035 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
1036
1037 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
1038
1039 genX(flush_pipeline_select_3d)(cmd_buffer);
1040
1041 if (vb_emit) {
1042 const uint32_t num_buffers = __builtin_popcount(vb_emit);
1043 const uint32_t num_dwords = 1 + num_buffers * 4;
1044
1045 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
1046 GENX(3DSTATE_VERTEX_BUFFERS));
1047 uint32_t vb, i = 0;
1048 for_each_bit(vb, vb_emit) {
1049 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
1050 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
1051
1052 struct GENX(VERTEX_BUFFER_STATE) state = {
1053 .VertexBufferIndex = vb,
1054
1055 #if GEN_GEN >= 8
1056 .MemoryObjectControlState = GENX(MOCS),
1057 #else
1058 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
1059 .InstanceDataStepRate = 1,
1060 .VertexBufferMemoryObjectControlState = GENX(MOCS),
1061 #endif
1062
1063 .AddressModifyEnable = true,
1064 .BufferPitch = pipeline->binding_stride[vb],
1065 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
1066
1067 #if GEN_GEN >= 8
1068 .BufferSize = buffer->size - offset
1069 #else
1070 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
1071 #endif
1072 };
1073
1074 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
1075 i++;
1076 }
1077 }
1078
1079 cmd_buffer->state.vb_dirty &= ~vb_emit;
1080
1081 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_PIPELINE) {
1082 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
1083
1084 /* The exact descriptor layout is pulled from the pipeline, so we need
1085 * to re-emit binding tables on every pipeline change.
1086 */
1087 cmd_buffer->state.descriptors_dirty |=
1088 cmd_buffer->state.pipeline->active_stages;
1089
1090 /* If the pipeline changed, we may need to re-allocate push constant
1091 * space in the URB.
1092 */
1093 cmd_buffer_alloc_push_constants(cmd_buffer);
1094 }
1095
1096 #if GEN_GEN <= 7
1097 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
1098 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
1099 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
1100 *
1101 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
1102 * stall needs to be sent just prior to any 3DSTATE_VS,
1103 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
1104 * 3DSTATE_BINDING_TABLE_POINTER_VS,
1105 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
1106 * PIPE_CONTROL needs to be sent before any combination of VS
1107 * associated 3DSTATE."
1108 */
1109 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1110 pc.DepthStallEnable = true;
1111 pc.PostSyncOperation = WriteImmediateData;
1112 pc.Address =
1113 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
1114 }
1115 }
1116 #endif
1117
1118 /* Render targets live in the same binding table as fragment descriptors */
1119 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
1120 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
1121
1122 /* We emit the binding tables and sampler tables first, then emit push
1123 * constants and then finally emit binding table and sampler table
1124 * pointers. It has to happen in this order, since emitting the binding
1125 * tables may change the push constants (in case of storage images). After
1126 * emitting push constants, on SKL+ we have to emit the corresponding
1127 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
1128 */
1129 uint32_t dirty = 0;
1130 if (cmd_buffer->state.descriptors_dirty)
1131 dirty = flush_descriptor_sets(cmd_buffer);
1132
1133 if (cmd_buffer->state.push_constants_dirty) {
1134 #if GEN_GEN >= 9
1135 /* On Sky Lake and later, the binding table pointers commands are
1136 * what actually flush the changes to push constant state so we need
1137 * to dirty them so they get re-emitted below.
1138 */
1139 dirty |= cmd_buffer_flush_push_constants(cmd_buffer);
1140 #else
1141 cmd_buffer_flush_push_constants(cmd_buffer);
1142 #endif
1143 }
1144
1145 if (dirty)
1146 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
1147
1148 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
1149 gen8_cmd_buffer_emit_viewport(cmd_buffer);
1150
1151 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
1152 ANV_CMD_DIRTY_PIPELINE)) {
1153 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
1154 pipeline->depth_clamp_enable);
1155 }
1156
1157 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
1158 gen7_cmd_buffer_emit_scissor(cmd_buffer);
1159
1160 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
1161
1162 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1163 }
1164
1165 static void
1166 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
1167 struct anv_bo *bo, uint32_t offset)
1168 {
1169 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
1170 GENX(3DSTATE_VERTEX_BUFFERS));
1171
1172 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
1173 &(struct GENX(VERTEX_BUFFER_STATE)) {
1174 .VertexBufferIndex = 32, /* Reserved for this */
1175 .AddressModifyEnable = true,
1176 .BufferPitch = 0,
1177 #if (GEN_GEN >= 8)
1178 .MemoryObjectControlState = GENX(MOCS),
1179 .BufferStartingAddress = { bo, offset },
1180 .BufferSize = 8
1181 #else
1182 .VertexBufferMemoryObjectControlState = GENX(MOCS),
1183 .BufferStartingAddress = { bo, offset },
1184 .EndAddress = { bo, offset + 8 },
1185 #endif
1186 });
1187 }
1188
1189 static void
1190 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
1191 uint32_t base_vertex, uint32_t base_instance)
1192 {
1193 struct anv_state id_state =
1194 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
1195
1196 ((uint32_t *)id_state.map)[0] = base_vertex;
1197 ((uint32_t *)id_state.map)[1] = base_instance;
1198
1199 if (!cmd_buffer->device->info.has_llc)
1200 anv_state_clflush(id_state);
1201
1202 emit_base_vertex_instance_bo(cmd_buffer,
1203 &cmd_buffer->device->dynamic_state_block_pool.bo, id_state.offset);
1204 }
1205
1206 void genX(CmdDraw)(
1207 VkCommandBuffer commandBuffer,
1208 uint32_t vertexCount,
1209 uint32_t instanceCount,
1210 uint32_t firstVertex,
1211 uint32_t firstInstance)
1212 {
1213 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1214 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1215 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1216
1217 genX(cmd_buffer_flush_state)(cmd_buffer);
1218
1219 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1220 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
1221
1222 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1223 prim.VertexAccessType = SEQUENTIAL;
1224 prim.PrimitiveTopologyType = pipeline->topology;
1225 prim.VertexCountPerInstance = vertexCount;
1226 prim.StartVertexLocation = firstVertex;
1227 prim.InstanceCount = instanceCount;
1228 prim.StartInstanceLocation = firstInstance;
1229 prim.BaseVertexLocation = 0;
1230 }
1231 }
1232
1233 void genX(CmdDrawIndexed)(
1234 VkCommandBuffer commandBuffer,
1235 uint32_t indexCount,
1236 uint32_t instanceCount,
1237 uint32_t firstIndex,
1238 int32_t vertexOffset,
1239 uint32_t firstInstance)
1240 {
1241 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1242 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1243 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1244
1245 genX(cmd_buffer_flush_state)(cmd_buffer);
1246
1247 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1248 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
1249
1250 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1251 prim.VertexAccessType = RANDOM;
1252 prim.PrimitiveTopologyType = pipeline->topology;
1253 prim.VertexCountPerInstance = indexCount;
1254 prim.StartVertexLocation = firstIndex;
1255 prim.InstanceCount = instanceCount;
1256 prim.StartInstanceLocation = firstInstance;
1257 prim.BaseVertexLocation = vertexOffset;
1258 }
1259 }
1260
1261 /* Auto-Draw / Indirect Registers */
1262 #define GEN7_3DPRIM_END_OFFSET 0x2420
1263 #define GEN7_3DPRIM_START_VERTEX 0x2430
1264 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
1265 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
1266 #define GEN7_3DPRIM_START_INSTANCE 0x243C
1267 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
1268
1269 void genX(CmdDrawIndirect)(
1270 VkCommandBuffer commandBuffer,
1271 VkBuffer _buffer,
1272 VkDeviceSize offset,
1273 uint32_t drawCount,
1274 uint32_t stride)
1275 {
1276 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1277 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1278 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1279 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1280 struct anv_bo *bo = buffer->bo;
1281 uint32_t bo_offset = buffer->offset + offset;
1282
1283 genX(cmd_buffer_flush_state)(cmd_buffer);
1284
1285 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1286 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
1287
1288 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
1289 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
1290 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
1291 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
1292 emit_lri(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, 0);
1293
1294 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1295 prim.IndirectParameterEnable = true;
1296 prim.VertexAccessType = SEQUENTIAL;
1297 prim.PrimitiveTopologyType = pipeline->topology;
1298 }
1299 }
1300
1301 void genX(CmdDrawIndexedIndirect)(
1302 VkCommandBuffer commandBuffer,
1303 VkBuffer _buffer,
1304 VkDeviceSize offset,
1305 uint32_t drawCount,
1306 uint32_t stride)
1307 {
1308 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1309 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1310 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1311 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1312 struct anv_bo *bo = buffer->bo;
1313 uint32_t bo_offset = buffer->offset + offset;
1314
1315 genX(cmd_buffer_flush_state)(cmd_buffer);
1316
1317 /* TODO: We need to stomp base vertex to 0 somehow */
1318 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1319 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
1320
1321 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
1322 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
1323 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
1324 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
1325 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
1326
1327 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1328 prim.IndirectParameterEnable = true;
1329 prim.VertexAccessType = RANDOM;
1330 prim.PrimitiveTopologyType = pipeline->topology;
1331 }
1332 }
1333
1334 static VkResult
1335 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
1336 {
1337 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1338 struct anv_state surfaces = { 0, }, samplers = { 0, };
1339 VkResult result;
1340
1341 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
1342 if (result != VK_SUCCESS)
1343 return result;
1344 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
1345 if (result != VK_SUCCESS)
1346 return result;
1347
1348 struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer);
1349
1350 if (push_state.alloc_size) {
1351 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
1352 curbe.CURBETotalDataLength = push_state.alloc_size;
1353 curbe.CURBEDataStartAddress = push_state.offset;
1354 }
1355 }
1356
1357 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
1358 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
1359 .BindingTablePointer = surfaces.offset,
1360 .SamplerStatePointer = samplers.offset,
1361 };
1362 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
1363
1364 struct anv_state state =
1365 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
1366 pipeline->interface_descriptor_data,
1367 GENX(INTERFACE_DESCRIPTOR_DATA_length),
1368 64);
1369
1370 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
1371 anv_batch_emit(&cmd_buffer->batch,
1372 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
1373 mid.InterfaceDescriptorTotalLength = size;
1374 mid.InterfaceDescriptorDataStartAddress = state.offset;
1375 }
1376
1377 return VK_SUCCESS;
1378 }
1379
1380 void
1381 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
1382 {
1383 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1384 MAYBE_UNUSED VkResult result;
1385
1386 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
1387
1388 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
1389
1390 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
1391
1392 if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)
1393 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
1394
1395 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
1396 (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
1397 /* FIXME: figure out descriptors for gen7 */
1398 result = flush_compute_descriptor_set(cmd_buffer);
1399 assert(result == VK_SUCCESS);
1400 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
1401 }
1402
1403 cmd_buffer->state.compute_dirty = 0;
1404
1405 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1406 }
1407
1408 #if GEN_GEN == 7
1409
1410 static bool
1411 verify_cmd_parser(const struct anv_device *device,
1412 int required_version,
1413 const char *function)
1414 {
1415 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
1416 vk_errorf(VK_ERROR_FEATURE_NOT_PRESENT,
1417 "cmd parser version %d is required for %s",
1418 required_version, function);
1419 return false;
1420 } else {
1421 return true;
1422 }
1423 }
1424
1425 #endif
1426
1427 void genX(CmdDispatch)(
1428 VkCommandBuffer commandBuffer,
1429 uint32_t x,
1430 uint32_t y,
1431 uint32_t z)
1432 {
1433 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1434 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1435 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
1436
1437 if (prog_data->uses_num_work_groups) {
1438 struct anv_state state =
1439 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
1440 uint32_t *sizes = state.map;
1441 sizes[0] = x;
1442 sizes[1] = y;
1443 sizes[2] = z;
1444 if (!cmd_buffer->device->info.has_llc)
1445 anv_state_clflush(state);
1446 cmd_buffer->state.num_workgroups_offset = state.offset;
1447 cmd_buffer->state.num_workgroups_bo =
1448 &cmd_buffer->device->dynamic_state_block_pool.bo;
1449 }
1450
1451 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
1452
1453 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
1454 ggw.SIMDSize = prog_data->simd_size / 16;
1455 ggw.ThreadDepthCounterMaximum = 0;
1456 ggw.ThreadHeightCounterMaximum = 0;
1457 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
1458 ggw.ThreadGroupIDXDimension = x;
1459 ggw.ThreadGroupIDYDimension = y;
1460 ggw.ThreadGroupIDZDimension = z;
1461 ggw.RightExecutionMask = pipeline->cs_right_mask;
1462 ggw.BottomExecutionMask = 0xffffffff;
1463 }
1464
1465 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
1466 }
1467
1468 #define GPGPU_DISPATCHDIMX 0x2500
1469 #define GPGPU_DISPATCHDIMY 0x2504
1470 #define GPGPU_DISPATCHDIMZ 0x2508
1471
1472 #define MI_PREDICATE_SRC0 0x2400
1473 #define MI_PREDICATE_SRC1 0x2408
1474
1475 void genX(CmdDispatchIndirect)(
1476 VkCommandBuffer commandBuffer,
1477 VkBuffer _buffer,
1478 VkDeviceSize offset)
1479 {
1480 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1481 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1482 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1483 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
1484 struct anv_bo *bo = buffer->bo;
1485 uint32_t bo_offset = buffer->offset + offset;
1486 struct anv_batch *batch = &cmd_buffer->batch;
1487
1488 #if GEN_GEN == 7
1489 /* Linux 4.4 added command parser version 5 which allows the GPGPU
1490 * indirect dispatch registers to be written.
1491 */
1492 if (!verify_cmd_parser(cmd_buffer->device, 5, "vkCmdDispatchIndirect"))
1493 return;
1494 #endif
1495
1496 if (prog_data->uses_num_work_groups) {
1497 cmd_buffer->state.num_workgroups_offset = bo_offset;
1498 cmd_buffer->state.num_workgroups_bo = bo;
1499 }
1500
1501 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
1502
1503 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
1504 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
1505 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
1506
1507 #if GEN_GEN <= 7
1508 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
1509 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
1510 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
1511 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
1512
1513 /* Load compute_dispatch_indirect_x_size into SRC0 */
1514 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
1515
1516 /* predicate = (compute_dispatch_indirect_x_size == 0); */
1517 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
1518 mip.LoadOperation = LOAD_LOAD;
1519 mip.CombineOperation = COMBINE_SET;
1520 mip.CompareOperation = COMPARE_SRCS_EQUAL;
1521 }
1522
1523 /* Load compute_dispatch_indirect_y_size into SRC0 */
1524 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
1525
1526 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
1527 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
1528 mip.LoadOperation = LOAD_LOAD;
1529 mip.CombineOperation = COMBINE_OR;
1530 mip.CompareOperation = COMPARE_SRCS_EQUAL;
1531 }
1532
1533 /* Load compute_dispatch_indirect_z_size into SRC0 */
1534 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
1535
1536 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
1537 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
1538 mip.LoadOperation = LOAD_LOAD;
1539 mip.CombineOperation = COMBINE_OR;
1540 mip.CompareOperation = COMPARE_SRCS_EQUAL;
1541 }
1542
1543 /* predicate = !predicate; */
1544 #define COMPARE_FALSE 1
1545 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
1546 mip.LoadOperation = LOAD_LOADINV;
1547 mip.CombineOperation = COMBINE_OR;
1548 mip.CompareOperation = COMPARE_FALSE;
1549 }
1550 #endif
1551
1552 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
1553 ggw.IndirectParameterEnable = true;
1554 ggw.PredicateEnable = GEN_GEN <= 7;
1555 ggw.SIMDSize = prog_data->simd_size / 16;
1556 ggw.ThreadDepthCounterMaximum = 0;
1557 ggw.ThreadHeightCounterMaximum = 0;
1558 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
1559 ggw.RightExecutionMask = pipeline->cs_right_mask;
1560 ggw.BottomExecutionMask = 0xffffffff;
1561 }
1562
1563 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
1564 }
1565
1566 static void
1567 flush_pipeline_before_pipeline_select(struct anv_cmd_buffer *cmd_buffer,
1568 uint32_t pipeline)
1569 {
1570 #if GEN_GEN >= 8 && GEN_GEN < 10
1571 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
1572 *
1573 * Software must clear the COLOR_CALC_STATE Valid field in
1574 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
1575 * with Pipeline Select set to GPGPU.
1576 *
1577 * The internal hardware docs recommend the same workaround for Gen9
1578 * hardware too.
1579 */
1580 if (pipeline == GPGPU)
1581 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
1582 #elif GEN_GEN <= 7
1583 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
1584 * PIPELINE_SELECT [DevBWR+]":
1585 *
1586 * Project: DEVSNB+
1587 *
1588 * Software must ensure all the write caches are flushed through a
1589 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
1590 * command to invalidate read only caches prior to programming
1591 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
1592 */
1593 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1594 pc.RenderTargetCacheFlushEnable = true;
1595 pc.DepthCacheFlushEnable = true;
1596 pc.DCFlushEnable = true;
1597 pc.PostSyncOperation = NoWrite;
1598 pc.CommandStreamerStallEnable = true;
1599 }
1600
1601 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1602 pc.TextureCacheInvalidationEnable = true;
1603 pc.ConstantCacheInvalidationEnable = true;
1604 pc.StateCacheInvalidationEnable = true;
1605 pc.InstructionCacheInvalidateEnable = true;
1606 pc.PostSyncOperation = NoWrite;
1607 }
1608 #endif
1609 }
1610
1611 void
1612 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
1613 {
1614 if (cmd_buffer->state.current_pipeline != _3D) {
1615 flush_pipeline_before_pipeline_select(cmd_buffer, _3D);
1616
1617 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
1618 #if GEN_GEN >= 9
1619 ps.MaskBits = 3;
1620 #endif
1621 ps.PipelineSelection = _3D;
1622 }
1623
1624 cmd_buffer->state.current_pipeline = _3D;
1625 }
1626 }
1627
1628 void
1629 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
1630 {
1631 if (cmd_buffer->state.current_pipeline != GPGPU) {
1632 flush_pipeline_before_pipeline_select(cmd_buffer, GPGPU);
1633
1634 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
1635 #if GEN_GEN >= 9
1636 ps.MaskBits = 3;
1637 #endif
1638 ps.PipelineSelection = GPGPU;
1639 }
1640
1641 cmd_buffer->state.current_pipeline = GPGPU;
1642 }
1643 }
1644
1645 static void
1646 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
1647 {
1648 struct anv_device *device = cmd_buffer->device;
1649 const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
1650 const struct anv_image_view *iview =
1651 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1652 const struct anv_image *image = iview ? iview->image : NULL;
1653 const bool has_depth = image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
1654 const bool has_hiz = image != NULL && anv_image_has_hiz(image);
1655 const bool has_stencil =
1656 image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
1657
1658 /* FIXME: Implement the PMA stall W/A */
1659 /* FIXME: Width and Height are wrong */
1660
1661 /* Emit 3DSTATE_DEPTH_BUFFER */
1662 if (has_depth) {
1663 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER), db) {
1664 db.SurfaceType = SURFTYPE_2D;
1665 db.DepthWriteEnable = true;
1666 db.StencilWriteEnable = has_stencil;
1667
1668 if (cmd_buffer->state.pass->subpass_count == 1) {
1669 db.HierarchicalDepthBufferEnable = has_hiz;
1670 } else {
1671 anv_finishme("Multiple-subpass HiZ not implemented");
1672 }
1673
1674 db.SurfaceFormat = isl_surf_get_depth_format(&device->isl_dev,
1675 &image->depth_surface.isl);
1676
1677 db.SurfaceBaseAddress = (struct anv_address) {
1678 .bo = image->bo,
1679 .offset = image->offset + image->depth_surface.offset,
1680 };
1681 db.DepthBufferObjectControlState = GENX(MOCS);
1682
1683 db.SurfacePitch = image->depth_surface.isl.row_pitch - 1;
1684 db.Height = image->extent.height - 1;
1685 db.Width = image->extent.width - 1;
1686 db.LOD = iview->isl.base_level;
1687 db.Depth = image->array_size - 1; /* FIXME: 3-D */
1688 db.MinimumArrayElement = iview->isl.base_array_layer;
1689
1690 #if GEN_GEN >= 8
1691 db.SurfaceQPitch =
1692 isl_surf_get_array_pitch_el_rows(&image->depth_surface.isl) >> 2;
1693 #endif
1694 db.RenderTargetViewExtent = 1 - 1;
1695 }
1696 } else {
1697 /* Even when no depth buffer is present, the hardware requires that
1698 * 3DSTATE_DEPTH_BUFFER be programmed correctly. The Broadwell PRM says:
1699 *
1700 * If a null depth buffer is bound, the driver must instead bind depth as:
1701 * 3DSTATE_DEPTH.SurfaceType = SURFTYPE_2D
1702 * 3DSTATE_DEPTH.Width = 1
1703 * 3DSTATE_DEPTH.Height = 1
1704 * 3DSTATE_DEPTH.SuraceFormat = D16_UNORM
1705 * 3DSTATE_DEPTH.SurfaceBaseAddress = 0
1706 * 3DSTATE_DEPTH.HierarchicalDepthBufferEnable = 0
1707 * 3DSTATE_WM_DEPTH_STENCIL.DepthTestEnable = 0
1708 * 3DSTATE_WM_DEPTH_STENCIL.DepthBufferWriteEnable = 0
1709 *
1710 * The PRM is wrong, though. The width and height must be programmed to
1711 * actual framebuffer's width and height, even when neither depth buffer
1712 * nor stencil buffer is present. Also, D16_UNORM is not allowed to
1713 * be combined with a stencil buffer so we use D32_FLOAT instead.
1714 */
1715 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER), db) {
1716 db.SurfaceType = SURFTYPE_2D;
1717 db.SurfaceFormat = D32_FLOAT;
1718 db.Width = fb->width - 1;
1719 db.Height = fb->height - 1;
1720 db.StencilWriteEnable = has_stencil;
1721 }
1722 }
1723
1724 if (has_hiz) {
1725 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HIER_DEPTH_BUFFER), hdb) {
1726 hdb.HierarchicalDepthBufferObjectControlState = GENX(MOCS);
1727 hdb.SurfacePitch = image->hiz_surface.isl.row_pitch - 1;
1728 hdb.SurfaceBaseAddress = (struct anv_address) {
1729 .bo = image->bo,
1730 .offset = image->offset + image->hiz_surface.offset,
1731 };
1732 #if GEN_GEN >= 8
1733 /* From the SKL PRM Vol2a:
1734 *
1735 * The interpretation of this field is dependent on Surface Type
1736 * as follows:
1737 * - SURFTYPE_1D: distance in pixels between array slices
1738 * - SURFTYPE_2D/CUBE: distance in rows between array slices
1739 * - SURFTYPE_3D: distance in rows between R - slices
1740 */
1741 hdb.SurfaceQPitch =
1742 image->hiz_surface.isl.dim == ISL_SURF_DIM_1D ?
1743 isl_surf_get_array_pitch_el(&image->hiz_surface.isl) >> 2 :
1744 isl_surf_get_array_pitch_el_rows(&image->hiz_surface.isl) >> 2;
1745 #endif
1746 }
1747 } else {
1748 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HIER_DEPTH_BUFFER), hdb);
1749 }
1750
1751 /* Emit 3DSTATE_STENCIL_BUFFER */
1752 if (has_stencil) {
1753 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER), sb) {
1754 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1755 sb.StencilBufferEnable = true;
1756 #endif
1757 sb.StencilBufferObjectControlState = GENX(MOCS);
1758
1759 sb.SurfacePitch = image->stencil_surface.isl.row_pitch - 1;
1760
1761 #if GEN_GEN >= 8
1762 sb.SurfaceQPitch = isl_surf_get_array_pitch_el_rows(&image->stencil_surface.isl) >> 2;
1763 #endif
1764 sb.SurfaceBaseAddress = (struct anv_address) {
1765 .bo = image->bo,
1766 .offset = image->offset + image->stencil_surface.offset,
1767 };
1768 }
1769 } else {
1770 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER), sb);
1771 }
1772
1773 /* From the IVB PRM Vol2P1, 11.5.5.4 3DSTATE_CLEAR_PARAMS:
1774 *
1775 * 3DSTATE_CLEAR_PARAMS must always be programmed in the along with
1776 * the other Depth/Stencil state commands(i.e. 3DSTATE_DEPTH_BUFFER,
1777 * 3DSTATE_STENCIL_BUFFER, or 3DSTATE_HIER_DEPTH_BUFFER)
1778 *
1779 * Testing also shows that some variant of this restriction may exist HSW+.
1780 * On BDW+, it is not possible to emit 2 of these packets consecutively when
1781 * both have DepthClearValueValid set. An analysis of such state programming
1782 * on SKL showed that the GPU doesn't register the latter packet's clear
1783 * value.
1784 */
1785 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CLEAR_PARAMS), cp) {
1786 if (has_hiz) {
1787 cp.DepthClearValueValid = true;
1788 const uint32_t ds =
1789 cmd_buffer->state.subpass->depth_stencil_attachment;
1790 cp.DepthClearValue =
1791 cmd_buffer->state.attachments[ds].clear_value.depthStencil.depth;
1792 }
1793 }
1794 }
1795
1796 static void
1797 genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
1798 struct anv_subpass *subpass)
1799 {
1800 cmd_buffer->state.subpass = subpass;
1801
1802 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1803
1804 cmd_buffer_emit_depth_stencil(cmd_buffer);
1805 genX(cmd_buffer_emit_hz_op)(cmd_buffer, BLORP_HIZ_OP_HIZ_RESOLVE);
1806 genX(cmd_buffer_emit_hz_op)(cmd_buffer, BLORP_HIZ_OP_DEPTH_CLEAR);
1807
1808 anv_cmd_buffer_clear_subpass(cmd_buffer);
1809 }
1810
1811 void genX(CmdBeginRenderPass)(
1812 VkCommandBuffer commandBuffer,
1813 const VkRenderPassBeginInfo* pRenderPassBegin,
1814 VkSubpassContents contents)
1815 {
1816 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1817 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
1818 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
1819
1820 cmd_buffer->state.framebuffer = framebuffer;
1821 cmd_buffer->state.pass = pass;
1822 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
1823 anv_cmd_state_setup_attachments(cmd_buffer, pRenderPassBegin);
1824
1825 genX(flush_pipeline_select_3d)(cmd_buffer);
1826
1827 genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
1828 }
1829
1830 void genX(CmdNextSubpass)(
1831 VkCommandBuffer commandBuffer,
1832 VkSubpassContents contents)
1833 {
1834 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1835
1836 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1837
1838 anv_cmd_buffer_resolve_subpass(cmd_buffer);
1839 genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
1840 }
1841
1842 void genX(CmdEndRenderPass)(
1843 VkCommandBuffer commandBuffer)
1844 {
1845 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1846
1847 genX(cmd_buffer_emit_hz_op)(cmd_buffer, BLORP_HIZ_OP_DEPTH_RESOLVE);
1848 anv_cmd_buffer_resolve_subpass(cmd_buffer);
1849
1850 #ifndef NDEBUG
1851 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
1852 #endif
1853 }
1854
1855 static void
1856 emit_ps_depth_count(struct anv_cmd_buffer *cmd_buffer,
1857 struct anv_bo *bo, uint32_t offset)
1858 {
1859 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1860 pc.DestinationAddressType = DAT_PPGTT;
1861 pc.PostSyncOperation = WritePSDepthCount;
1862 pc.DepthStallEnable = true;
1863 pc.Address = (struct anv_address) { bo, offset };
1864
1865 if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
1866 pc.CommandStreamerStallEnable = true;
1867 }
1868 }
1869
1870 static void
1871 emit_query_availability(struct anv_cmd_buffer *cmd_buffer,
1872 struct anv_bo *bo, uint32_t offset)
1873 {
1874 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1875 pc.DestinationAddressType = DAT_PPGTT;
1876 pc.PostSyncOperation = WriteImmediateData;
1877 pc.Address = (struct anv_address) { bo, offset };
1878 pc.ImmediateData = 1;
1879 }
1880 }
1881
1882 void genX(CmdBeginQuery)(
1883 VkCommandBuffer commandBuffer,
1884 VkQueryPool queryPool,
1885 uint32_t query,
1886 VkQueryControlFlags flags)
1887 {
1888 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1889 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
1890
1891 /* Workaround: When meta uses the pipeline with the VS disabled, it seems
1892 * that the pipelining of the depth write breaks. What we see is that
1893 * samples from the render pass clear leaks into the first query
1894 * immediately after the clear. Doing a pipecontrol with a post-sync
1895 * operation and DepthStallEnable seems to work around the issue.
1896 */
1897 if (cmd_buffer->state.need_query_wa) {
1898 cmd_buffer->state.need_query_wa = false;
1899 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1900 pc.DepthCacheFlushEnable = true;
1901 pc.DepthStallEnable = true;
1902 }
1903 }
1904
1905 switch (pool->type) {
1906 case VK_QUERY_TYPE_OCCLUSION:
1907 emit_ps_depth_count(cmd_buffer, &pool->bo,
1908 query * sizeof(struct anv_query_pool_slot));
1909 break;
1910
1911 case VK_QUERY_TYPE_PIPELINE_STATISTICS:
1912 default:
1913 unreachable("");
1914 }
1915 }
1916
1917 void genX(CmdEndQuery)(
1918 VkCommandBuffer commandBuffer,
1919 VkQueryPool queryPool,
1920 uint32_t query)
1921 {
1922 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1923 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
1924
1925 switch (pool->type) {
1926 case VK_QUERY_TYPE_OCCLUSION:
1927 emit_ps_depth_count(cmd_buffer, &pool->bo,
1928 query * sizeof(struct anv_query_pool_slot) + 8);
1929
1930 emit_query_availability(cmd_buffer, &pool->bo,
1931 query * sizeof(struct anv_query_pool_slot) + 16);
1932 break;
1933
1934 case VK_QUERY_TYPE_PIPELINE_STATISTICS:
1935 default:
1936 unreachable("");
1937 }
1938 }
1939
1940 #define TIMESTAMP 0x2358
1941
1942 void genX(CmdWriteTimestamp)(
1943 VkCommandBuffer commandBuffer,
1944 VkPipelineStageFlagBits pipelineStage,
1945 VkQueryPool queryPool,
1946 uint32_t query)
1947 {
1948 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1949 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
1950 uint32_t offset = query * sizeof(struct anv_query_pool_slot);
1951
1952 assert(pool->type == VK_QUERY_TYPE_TIMESTAMP);
1953
1954 switch (pipelineStage) {
1955 case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
1956 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
1957 srm.RegisterAddress = TIMESTAMP;
1958 srm.MemoryAddress = (struct anv_address) { &pool->bo, offset };
1959 }
1960 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
1961 srm.RegisterAddress = TIMESTAMP + 4;
1962 srm.MemoryAddress = (struct anv_address) { &pool->bo, offset + 4 };
1963 }
1964 break;
1965
1966 default:
1967 /* Everything else is bottom-of-pipe */
1968 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1969 pc.DestinationAddressType = DAT_PPGTT;
1970 pc.PostSyncOperation = WriteTimestamp;
1971 pc.Address = (struct anv_address) { &pool->bo, offset };
1972
1973 if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
1974 pc.CommandStreamerStallEnable = true;
1975 }
1976 break;
1977 }
1978
1979 emit_query_availability(cmd_buffer, &pool->bo, query + 16);
1980 }
1981
1982 #if GEN_GEN > 7 || GEN_IS_HASWELL
1983
1984 #define alu_opcode(v) __gen_uint((v), 20, 31)
1985 #define alu_operand1(v) __gen_uint((v), 10, 19)
1986 #define alu_operand2(v) __gen_uint((v), 0, 9)
1987 #define alu(opcode, operand1, operand2) \
1988 alu_opcode(opcode) | alu_operand1(operand1) | alu_operand2(operand2)
1989
1990 #define OPCODE_NOOP 0x000
1991 #define OPCODE_LOAD 0x080
1992 #define OPCODE_LOADINV 0x480
1993 #define OPCODE_LOAD0 0x081
1994 #define OPCODE_LOAD1 0x481
1995 #define OPCODE_ADD 0x100
1996 #define OPCODE_SUB 0x101
1997 #define OPCODE_AND 0x102
1998 #define OPCODE_OR 0x103
1999 #define OPCODE_XOR 0x104
2000 #define OPCODE_STORE 0x180
2001 #define OPCODE_STOREINV 0x580
2002
2003 #define OPERAND_R0 0x00
2004 #define OPERAND_R1 0x01
2005 #define OPERAND_R2 0x02
2006 #define OPERAND_R3 0x03
2007 #define OPERAND_R4 0x04
2008 #define OPERAND_SRCA 0x20
2009 #define OPERAND_SRCB 0x21
2010 #define OPERAND_ACCU 0x31
2011 #define OPERAND_ZF 0x32
2012 #define OPERAND_CF 0x33
2013
2014 #define CS_GPR(n) (0x2600 + (n) * 8)
2015
2016 static void
2017 emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
2018 struct anv_bo *bo, uint32_t offset)
2019 {
2020 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
2021 lrm.RegisterAddress = reg,
2022 lrm.MemoryAddress = (struct anv_address) { bo, offset };
2023 }
2024 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
2025 lrm.RegisterAddress = reg + 4;
2026 lrm.MemoryAddress = (struct anv_address) { bo, offset + 4 };
2027 }
2028 }
2029
2030 static void
2031 store_query_result(struct anv_batch *batch, uint32_t reg,
2032 struct anv_bo *bo, uint32_t offset, VkQueryResultFlags flags)
2033 {
2034 anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
2035 srm.RegisterAddress = reg;
2036 srm.MemoryAddress = (struct anv_address) { bo, offset };
2037 }
2038
2039 if (flags & VK_QUERY_RESULT_64_BIT) {
2040 anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
2041 srm.RegisterAddress = reg + 4;
2042 srm.MemoryAddress = (struct anv_address) { bo, offset + 4 };
2043 }
2044 }
2045 }
2046
2047 void genX(CmdCopyQueryPoolResults)(
2048 VkCommandBuffer commandBuffer,
2049 VkQueryPool queryPool,
2050 uint32_t firstQuery,
2051 uint32_t queryCount,
2052 VkBuffer destBuffer,
2053 VkDeviceSize destOffset,
2054 VkDeviceSize destStride,
2055 VkQueryResultFlags flags)
2056 {
2057 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2058 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
2059 ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
2060 uint32_t slot_offset, dst_offset;
2061
2062 if (flags & VK_QUERY_RESULT_WAIT_BIT) {
2063 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2064 pc.CommandStreamerStallEnable = true;
2065 pc.StallAtPixelScoreboard = true;
2066 }
2067 }
2068
2069 dst_offset = buffer->offset + destOffset;
2070 for (uint32_t i = 0; i < queryCount; i++) {
2071
2072 slot_offset = (firstQuery + i) * sizeof(struct anv_query_pool_slot);
2073 switch (pool->type) {
2074 case VK_QUERY_TYPE_OCCLUSION:
2075 emit_load_alu_reg_u64(&cmd_buffer->batch,
2076 CS_GPR(0), &pool->bo, slot_offset);
2077 emit_load_alu_reg_u64(&cmd_buffer->batch,
2078 CS_GPR(1), &pool->bo, slot_offset + 8);
2079
2080 /* FIXME: We need to clamp the result for 32 bit. */
2081
2082 uint32_t *dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
2083 dw[1] = alu(OPCODE_LOAD, OPERAND_SRCA, OPERAND_R1);
2084 dw[2] = alu(OPCODE_LOAD, OPERAND_SRCB, OPERAND_R0);
2085 dw[3] = alu(OPCODE_SUB, 0, 0);
2086 dw[4] = alu(OPCODE_STORE, OPERAND_R2, OPERAND_ACCU);
2087 break;
2088
2089 case VK_QUERY_TYPE_TIMESTAMP:
2090 emit_load_alu_reg_u64(&cmd_buffer->batch,
2091 CS_GPR(2), &pool->bo, slot_offset);
2092 break;
2093
2094 default:
2095 unreachable("unhandled query type");
2096 }
2097
2098 store_query_result(&cmd_buffer->batch,
2099 CS_GPR(2), buffer->bo, dst_offset, flags);
2100
2101 if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
2102 emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0),
2103 &pool->bo, slot_offset + 16);
2104 if (flags & VK_QUERY_RESULT_64_BIT)
2105 store_query_result(&cmd_buffer->batch,
2106 CS_GPR(0), buffer->bo, dst_offset + 8, flags);
2107 else
2108 store_query_result(&cmd_buffer->batch,
2109 CS_GPR(0), buffer->bo, dst_offset + 4, flags);
2110 }
2111
2112 dst_offset += destStride;
2113 }
2114 }
2115
2116 #else
2117 void genX(CmdCopyQueryPoolResults)(
2118 VkCommandBuffer commandBuffer,
2119 VkQueryPool queryPool,
2120 uint32_t firstQuery,
2121 uint32_t queryCount,
2122 VkBuffer destBuffer,
2123 VkDeviceSize destOffset,
2124 VkDeviceSize destStride,
2125 VkQueryResultFlags flags)
2126 {
2127 anv_finishme("Queries not yet supported on Ivy Bridge");
2128 }
2129 #endif