anv: Rework fences to work more like BO semaphores
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
36 emit_lrm(struct anv_batch *batch,
37 uint32_t reg, struct anv_bo *bo, uint32_t offset)
38 {
39 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
40 lrm.RegisterAddress = reg;
41 lrm.MemoryAddress = (struct anv_address) { bo, offset };
42 }
43 }
44
45 static void
46 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
47 {
48 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
49 lri.RegisterOffset = reg;
50 lri.DataDWord = imm;
51 }
52 }
53
54 #if GEN_IS_HASWELL || GEN_GEN >= 8
55 static void
56 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
57 {
58 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
59 lrr.SourceRegisterAddress = src;
60 lrr.DestinationRegisterAddress = dst;
61 }
62 }
63 #endif
64
65 void
66 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
67 {
68 struct anv_device *device = cmd_buffer->device;
69
70 /* Emit a render target cache flush.
71 *
72 * This isn't documented anywhere in the PRM. However, it seems to be
73 * necessary prior to changing the surface state base adress. Without
74 * this, we get GPU hangs when using multi-level command buffers which
75 * clear depth, reset state base address, and then go render stuff.
76 */
77 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
78 pc.DCFlushEnable = true;
79 pc.RenderTargetCacheFlushEnable = true;
80 pc.CommandStreamerStallEnable = true;
81 }
82
83 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
84 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
85 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
86 sba.GeneralStateBaseAddressModifyEnable = true;
87
88 sba.SurfaceStateBaseAddress =
89 anv_cmd_buffer_surface_base_address(cmd_buffer);
90 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
91 sba.SurfaceStateBaseAddressModifyEnable = true;
92
93 sba.DynamicStateBaseAddress =
94 (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
95 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
96 sba.DynamicStateBaseAddressModifyEnable = true;
97
98 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
99 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
100 sba.IndirectObjectBaseAddressModifyEnable = true;
101
102 sba.InstructionBaseAddress =
103 (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
104 sba.InstructionMemoryObjectControlState = GENX(MOCS);
105 sba.InstructionBaseAddressModifyEnable = true;
106
107 # if (GEN_GEN >= 8)
108 /* Broadwell requires that we specify a buffer size for a bunch of
109 * these fields. However, since we will be growing the BO's live, we
110 * just set them all to the maximum.
111 */
112 sba.GeneralStateBufferSize = 0xfffff;
113 sba.GeneralStateBufferSizeModifyEnable = true;
114 sba.DynamicStateBufferSize = 0xfffff;
115 sba.DynamicStateBufferSizeModifyEnable = true;
116 sba.IndirectObjectBufferSize = 0xfffff;
117 sba.IndirectObjectBufferSizeModifyEnable = true;
118 sba.InstructionBufferSize = 0xfffff;
119 sba.InstructionBuffersizeModifyEnable = true;
120 # endif
121 }
122
123 /* After re-setting the surface state base address, we have to do some
124 * cache flusing so that the sampler engine will pick up the new
125 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
126 * Shared Function > 3D Sampler > State > State Caching (page 96):
127 *
128 * Coherency with system memory in the state cache, like the texture
129 * cache is handled partially by software. It is expected that the
130 * command stream or shader will issue Cache Flush operation or
131 * Cache_Flush sampler message to ensure that the L1 cache remains
132 * coherent with system memory.
133 *
134 * [...]
135 *
136 * Whenever the value of the Dynamic_State_Base_Addr,
137 * Surface_State_Base_Addr are altered, the L1 state cache must be
138 * invalidated to ensure the new surface or sampler state is fetched
139 * from system memory.
140 *
141 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
142 * which, according the PIPE_CONTROL instruction documentation in the
143 * Broadwell PRM:
144 *
145 * Setting this bit is independent of any other bit in this packet.
146 * This bit controls the invalidation of the L1 and L2 state caches
147 * at the top of the pipe i.e. at the parsing time.
148 *
149 * Unfortunately, experimentation seems to indicate that state cache
150 * invalidation through a PIPE_CONTROL does nothing whatsoever in
151 * regards to surface state and binding tables. In stead, it seems that
152 * invalidating the texture cache is what is actually needed.
153 *
154 * XXX: As far as we have been able to determine through
155 * experimentation, shows that flush the texture cache appears to be
156 * sufficient. The theory here is that all of the sampling/rendering
157 * units cache the binding table in the texture cache. However, we have
158 * yet to be able to actually confirm this.
159 */
160 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
161 pc.TextureCacheInvalidationEnable = true;
162 pc.ConstantCacheInvalidationEnable = true;
163 pc.StateCacheInvalidationEnable = true;
164 }
165 }
166
167 static void
168 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
169 struct anv_state state,
170 struct anv_bo *bo, uint32_t offset)
171 {
172 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
173
174 VkResult result =
175 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
176 state.offset + isl_dev->ss.addr_offset, bo, offset);
177 if (result != VK_SUCCESS)
178 anv_batch_set_error(&cmd_buffer->batch, result);
179 }
180
181 static void
182 add_image_relocs(struct anv_cmd_buffer * const cmd_buffer,
183 const struct anv_image * const image,
184 const VkImageAspectFlags aspect_mask,
185 const enum isl_aux_usage aux_usage,
186 const struct anv_state state)
187 {
188 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
189 const uint32_t surf_offset = image->offset +
190 anv_image_get_surface_for_aspect_mask(image, aspect_mask)->offset;
191
192 add_surface_state_reloc(cmd_buffer, state, image->bo, surf_offset);
193
194 if (aux_usage != ISL_AUX_USAGE_NONE) {
195 uint32_t aux_offset = image->offset + image->aux_surface.offset;
196
197 /* On gen7 and prior, the bottom 12 bits of the MCS base address are
198 * used to store other information. This should be ok, however, because
199 * surface buffer addresses are always 4K page alinged.
200 */
201 assert((aux_offset & 0xfff) == 0);
202 uint32_t *aux_addr_dw = state.map + isl_dev->ss.aux_addr_offset;
203 aux_offset += *aux_addr_dw & 0xfff;
204
205 VkResult result =
206 anv_reloc_list_add(&cmd_buffer->surface_relocs,
207 &cmd_buffer->pool->alloc,
208 state.offset + isl_dev->ss.aux_addr_offset,
209 image->bo, aux_offset);
210 if (result != VK_SUCCESS)
211 anv_batch_set_error(&cmd_buffer->batch, result);
212 }
213 }
214
215 static bool
216 color_is_zero_one(VkClearColorValue value, enum isl_format format)
217 {
218 if (isl_format_has_int_channel(format)) {
219 for (unsigned i = 0; i < 4; i++) {
220 if (value.int32[i] != 0 && value.int32[i] != 1)
221 return false;
222 }
223 } else {
224 for (unsigned i = 0; i < 4; i++) {
225 if (value.float32[i] != 0.0f && value.float32[i] != 1.0f)
226 return false;
227 }
228 }
229
230 return true;
231 }
232
233 static void
234 color_attachment_compute_aux_usage(struct anv_device * device,
235 struct anv_cmd_state * cmd_state,
236 uint32_t att, VkRect2D render_area,
237 union isl_color_value *fast_clear_color)
238 {
239 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
240 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
241
242 if (iview->isl.base_array_layer >=
243 anv_image_aux_layers(iview->image, iview->isl.base_level)) {
244 /* There is no aux buffer which corresponds to the level and layer(s)
245 * being accessed.
246 */
247 att_state->aux_usage = ISL_AUX_USAGE_NONE;
248 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
249 att_state->fast_clear = false;
250 return;
251 } else if (iview->image->aux_usage == ISL_AUX_USAGE_MCS) {
252 att_state->aux_usage = ISL_AUX_USAGE_MCS;
253 att_state->input_aux_usage = ISL_AUX_USAGE_MCS;
254 att_state->fast_clear = false;
255 return;
256 } else if (iview->image->aux_usage == ISL_AUX_USAGE_CCS_E) {
257 att_state->aux_usage = ISL_AUX_USAGE_CCS_E;
258 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_E;
259 } else {
260 att_state->aux_usage = ISL_AUX_USAGE_CCS_D;
261 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
262 *
263 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
264 * setting is only allowed if Surface Format supported for Fast
265 * Clear. In addition, if the surface is bound to the sampling
266 * engine, Surface Format must be supported for Render Target
267 * Compression for surfaces bound to the sampling engine."
268 *
269 * In other words, we can only sample from a fast-cleared image if it
270 * also supports color compression.
271 */
272 if (isl_format_supports_ccs_e(&device->info, iview->isl.format)) {
273 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
274
275 /* While fast-clear resolves and partial resolves are fairly cheap in the
276 * case where you render to most of the pixels, full resolves are not
277 * because they potentially involve reading and writing the entire
278 * framebuffer. If we can't texture with CCS_E, we should leave it off and
279 * limit ourselves to fast clears.
280 */
281 if (cmd_state->pass->attachments[att].first_subpass_layout ==
282 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
283 anv_perf_warn("Not temporarily enabling CCS_E.");
284 }
285 } else {
286 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
287 }
288 }
289
290 assert(iview->image->aux_surface.isl.usage & ISL_SURF_USAGE_CCS_BIT);
291
292 att_state->clear_color_is_zero_one =
293 color_is_zero_one(att_state->clear_value.color, iview->isl.format);
294 att_state->clear_color_is_zero =
295 att_state->clear_value.color.uint32[0] == 0 &&
296 att_state->clear_value.color.uint32[1] == 0 &&
297 att_state->clear_value.color.uint32[2] == 0 &&
298 att_state->clear_value.color.uint32[3] == 0;
299
300 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
301 /* Start off assuming fast clears are possible */
302 att_state->fast_clear = true;
303
304 /* Potentially, we could do partial fast-clears but doing so has crazy
305 * alignment restrictions. It's easier to just restrict to full size
306 * fast clears for now.
307 */
308 if (render_area.offset.x != 0 ||
309 render_area.offset.y != 0 ||
310 render_area.extent.width != iview->extent.width ||
311 render_area.extent.height != iview->extent.height)
312 att_state->fast_clear = false;
313
314 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
315 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
316 att_state->fast_clear = false;
317
318 /* We allow fast clears when all aux layers of the miplevel are targeted.
319 * See add_fast_clear_state_buffer() for more information. Also, because
320 * we only either do a fast clear or a normal clear and not both, this
321 * complies with the gen7 restriction of not fast-clearing multiple
322 * layers.
323 */
324 if (cmd_state->framebuffer->layers !=
325 anv_image_aux_layers(iview->image, iview->isl.base_level)) {
326 att_state->fast_clear = false;
327 if (GEN_GEN == 7) {
328 anv_perf_warn("Not fast-clearing the first layer in "
329 "a multi-layer fast clear.");
330 }
331 }
332
333 /* We only allow fast clears in the GENERAL layout if the auxiliary
334 * buffer is always enabled and the fast-clear value is all 0's. See
335 * add_fast_clear_state_buffer() for more information.
336 */
337 if (cmd_state->pass->attachments[att].first_subpass_layout ==
338 VK_IMAGE_LAYOUT_GENERAL &&
339 (!att_state->clear_color_is_zero ||
340 iview->image->aux_usage == ISL_AUX_USAGE_NONE)) {
341 att_state->fast_clear = false;
342 }
343
344 if (att_state->fast_clear) {
345 memcpy(fast_clear_color->u32, att_state->clear_value.color.uint32,
346 sizeof(fast_clear_color->u32));
347 }
348 } else {
349 att_state->fast_clear = false;
350 }
351 }
352
353 static bool
354 need_input_attachment_state(const struct anv_render_pass_attachment *att)
355 {
356 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
357 return false;
358
359 /* We only allocate input attachment states for color surfaces. Compression
360 * is not yet enabled for depth textures and stencil doesn't allow
361 * compression so we can just use the texture surface state from the view.
362 */
363 return vk_format_is_color(att->format);
364 }
365
366 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
367 * the initial layout is undefined, the HiZ buffer and depth buffer will
368 * represent the same data at the end of this operation.
369 */
370 static void
371 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
372 const struct anv_image *image,
373 VkImageLayout initial_layout,
374 VkImageLayout final_layout)
375 {
376 assert(image);
377
378 /* A transition is a no-op if HiZ is not enabled, or if the initial and
379 * final layouts are equal.
380 *
381 * The undefined layout indicates that the user doesn't care about the data
382 * that's currently in the buffer. Therefore, a data-preserving resolve
383 * operation is not needed.
384 */
385 if (image->aux_usage != ISL_AUX_USAGE_HIZ || initial_layout == final_layout)
386 return;
387
388 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
389 anv_layout_to_aux_usage(&cmd_buffer->device->info, image, image->aspects,
390 initial_layout);
391 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
392 anv_layout_to_aux_usage(&cmd_buffer->device->info, image, image->aspects,
393 final_layout);
394
395 enum blorp_hiz_op hiz_op;
396 if (hiz_enabled && !enable_hiz) {
397 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
398 } else if (!hiz_enabled && enable_hiz) {
399 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
400 } else {
401 assert(hiz_enabled == enable_hiz);
402 /* If the same buffer will be used, no resolves are necessary. */
403 hiz_op = BLORP_HIZ_OP_NONE;
404 }
405
406 if (hiz_op != BLORP_HIZ_OP_NONE)
407 anv_gen8_hiz_op_resolve(cmd_buffer, image, hiz_op);
408 }
409
410 enum fast_clear_state_field {
411 FAST_CLEAR_STATE_FIELD_CLEAR_COLOR,
412 FAST_CLEAR_STATE_FIELD_NEEDS_RESOLVE,
413 };
414
415 static inline uint32_t
416 get_fast_clear_state_offset(const struct anv_device *device,
417 const struct anv_image *image,
418 unsigned level, enum fast_clear_state_field field)
419 {
420 assert(device && image);
421 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
422 assert(level < anv_image_aux_levels(image));
423 uint32_t offset = image->offset + image->aux_surface.offset +
424 image->aux_surface.isl.size +
425 anv_fast_clear_state_entry_size(device) * level;
426
427 switch (field) {
428 case FAST_CLEAR_STATE_FIELD_NEEDS_RESOLVE:
429 offset += device->isl_dev.ss.clear_value_size;
430 /* Fall-through */
431 case FAST_CLEAR_STATE_FIELD_CLEAR_COLOR:
432 break;
433 }
434
435 assert(offset < image->offset + image->size);
436 return offset;
437 }
438
439 #define MI_PREDICATE_SRC0 0x2400
440 #define MI_PREDICATE_SRC1 0x2408
441
442 /* Manages the state of an color image subresource to ensure resolves are
443 * performed properly.
444 */
445 static void
446 genX(set_image_needs_resolve)(struct anv_cmd_buffer *cmd_buffer,
447 const struct anv_image *image,
448 unsigned level, bool needs_resolve)
449 {
450 assert(cmd_buffer && image);
451 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
452 assert(level < anv_image_aux_levels(image));
453
454 const uint32_t resolve_flag_offset =
455 get_fast_clear_state_offset(cmd_buffer->device, image, level,
456 FAST_CLEAR_STATE_FIELD_NEEDS_RESOLVE);
457
458 /* The HW docs say that there is no way to guarantee the completion of
459 * the following command. We use it nevertheless because it shows no
460 * issues in testing is currently being used in the GL driver.
461 */
462 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
463 sdi.Address = (struct anv_address) { image->bo, resolve_flag_offset };
464 sdi.ImmediateData = needs_resolve;
465 }
466 }
467
468 static void
469 genX(load_needs_resolve_predicate)(struct anv_cmd_buffer *cmd_buffer,
470 const struct anv_image *image,
471 unsigned level)
472 {
473 assert(cmd_buffer && image);
474 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
475 assert(level < anv_image_aux_levels(image));
476
477 const uint32_t resolve_flag_offset =
478 get_fast_clear_state_offset(cmd_buffer->device, image, level,
479 FAST_CLEAR_STATE_FIELD_NEEDS_RESOLVE);
480
481 /* Make the pending predicated resolve a no-op if one is not needed.
482 * predicate = do_resolve = resolve_flag != 0;
483 */
484 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
485 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
486 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 , 0);
487 emit_lrm(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4,
488 image->bo, resolve_flag_offset);
489 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
490 mip.LoadOperation = LOAD_LOADINV;
491 mip.CombineOperation = COMBINE_SET;
492 mip.CompareOperation = COMPARE_SRCS_EQUAL;
493 }
494 }
495
496 static void
497 init_fast_clear_state_entry(struct anv_cmd_buffer *cmd_buffer,
498 const struct anv_image *image,
499 unsigned level)
500 {
501 assert(cmd_buffer && image);
502 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
503 assert(level < anv_image_aux_levels(image));
504
505 /* The resolve flag should updated to signify that fast-clear/compression
506 * data needs to be removed when leaving the undefined layout. Such data
507 * may need to be removed if it would cause accesses to the color buffer
508 * to return incorrect data. The fast clear data in CCS_D buffers should
509 * be removed because CCS_D isn't enabled all the time.
510 */
511 genX(set_image_needs_resolve)(cmd_buffer, image, level,
512 image->aux_usage == ISL_AUX_USAGE_NONE);
513
514 /* The fast clear value dword(s) will be copied into a surface state object.
515 * Ensure that the restrictions of the fields in the dword(s) are followed.
516 *
517 * CCS buffers on SKL+ can have any value set for the clear colors.
518 */
519 if (image->samples == 1 && GEN_GEN >= 9)
520 return;
521
522 /* Other combinations of auxiliary buffers and platforms require specific
523 * values in the clear value dword(s).
524 */
525 unsigned i = 0;
526 for (; i < cmd_buffer->device->isl_dev.ss.clear_value_size; i += 4) {
527 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
528 const uint32_t entry_offset =
529 get_fast_clear_state_offset(cmd_buffer->device, image, level,
530 FAST_CLEAR_STATE_FIELD_CLEAR_COLOR);
531 sdi.Address = (struct anv_address) { image->bo, entry_offset + i };
532
533 if (GEN_GEN >= 9) {
534 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
535 assert(image->aux_usage == ISL_AUX_USAGE_MCS);
536 sdi.ImmediateData = 0;
537 } else if (GEN_VERSIONx10 >= 75) {
538 /* Pre-SKL, the dword containing the clear values also contains
539 * other fields, so we need to initialize those fields to match the
540 * values that would be in a color attachment.
541 */
542 assert(i == 0);
543 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
544 ISL_CHANNEL_SELECT_GREEN << 22 |
545 ISL_CHANNEL_SELECT_BLUE << 19 |
546 ISL_CHANNEL_SELECT_ALPHA << 16;
547 } else if (GEN_VERSIONx10 == 70) {
548 /* On IVB, the dword containing the clear values also contains
549 * other fields that must be zero or can be zero.
550 */
551 assert(i == 0);
552 sdi.ImmediateData = 0;
553 }
554 }
555 }
556 }
557
558 /* Copy the fast-clear value dword(s) between a surface state object and an
559 * image's fast clear state buffer.
560 */
561 static void
562 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
563 struct anv_state surface_state,
564 const struct anv_image *image,
565 unsigned level,
566 bool copy_from_surface_state)
567 {
568 assert(cmd_buffer && image);
569 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
570 assert(level < anv_image_aux_levels(image));
571
572 struct anv_bo *ss_bo =
573 &cmd_buffer->device->surface_state_pool.block_pool.bo;
574 uint32_t ss_clear_offset = surface_state.offset +
575 cmd_buffer->device->isl_dev.ss.clear_value_offset;
576 uint32_t entry_offset =
577 get_fast_clear_state_offset(cmd_buffer->device, image, level,
578 FAST_CLEAR_STATE_FIELD_CLEAR_COLOR);
579 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
580
581 if (copy_from_surface_state) {
582 genX(cmd_buffer_mi_memcpy)(cmd_buffer, image->bo, entry_offset,
583 ss_bo, ss_clear_offset, copy_size);
584 } else {
585 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_bo, ss_clear_offset,
586 image->bo, entry_offset, copy_size);
587
588 /* Updating a surface state object may require that the state cache be
589 * invalidated. From the SKL PRM, Shared Functions -> State -> State
590 * Caching:
591 *
592 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
593 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
594 * modified [...], the L1 state cache must be invalidated to ensure
595 * the new surface or sampler state is fetched from system memory.
596 *
597 * In testing, SKL doesn't actually seem to need this, but HSW does.
598 */
599 cmd_buffer->state.pending_pipe_bits |=
600 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
601 }
602 }
603
604 /**
605 * @brief Transitions a color buffer from one layout to another.
606 *
607 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
608 * more information.
609 *
610 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
611 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
612 * this represents the maximum layers to transition at each
613 * specified miplevel.
614 */
615 static void
616 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
617 const struct anv_image *image,
618 const uint32_t base_level, uint32_t level_count,
619 uint32_t base_layer, uint32_t layer_count,
620 VkImageLayout initial_layout,
621 VkImageLayout final_layout)
622 {
623 /* Validate the inputs. */
624 assert(cmd_buffer);
625 assert(image && image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
626 /* These values aren't supported for simplicity's sake. */
627 assert(level_count != VK_REMAINING_MIP_LEVELS &&
628 layer_count != VK_REMAINING_ARRAY_LAYERS);
629 /* Ensure the subresource range is valid. */
630 uint64_t last_level_num = base_level + level_count;
631 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
632 const uint32_t image_layers = MAX2(image->array_size, max_depth);
633 assert((uint64_t)base_layer + layer_count <= image_layers);
634 assert(last_level_num <= image->levels);
635 /* The spec disallows these final layouts. */
636 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
637 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
638
639 /* No work is necessary if the layout stays the same or if this subresource
640 * range lacks auxiliary data.
641 */
642 if (initial_layout == final_layout ||
643 base_layer >= anv_image_aux_layers(image, base_level))
644 return;
645
646 /* A transition of a 3D subresource works on all slices at a time. */
647 if (image->type == VK_IMAGE_TYPE_3D) {
648 base_layer = 0;
649 layer_count = anv_minify(image->extent.depth, base_level);
650 }
651
652 /* We're interested in the subresource range subset that has aux data. */
653 level_count = MIN2(level_count, anv_image_aux_levels(image) - base_level);
654 layer_count = MIN2(layer_count,
655 anv_image_aux_layers(image, base_level) - base_layer);
656 last_level_num = base_level + level_count;
657
658 /* Record whether or not the layout is undefined. Pre-initialized images
659 * with auxiliary buffers have a non-linear layout and are thus undefined.
660 */
661 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
662 const bool undef_layout = initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
663 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
664
665 /* Do preparatory work before the resolve operation or return early if no
666 * resolve is actually needed.
667 */
668 if (undef_layout) {
669 /* A subresource in the undefined layout may have been aliased and
670 * populated with any arrangement of bits. Therefore, we must initialize
671 * the related aux buffer and clear buffer entry with desirable values.
672 *
673 * Initialize the relevant clear buffer entries.
674 */
675 for (unsigned level = base_level; level < last_level_num; level++)
676 init_fast_clear_state_entry(cmd_buffer, image, level);
677
678 /* Initialize the aux buffers to enable correct rendering. This operation
679 * requires up to two steps: one to rid the aux buffer of data that may
680 * cause GPU hangs, and another to ensure that writes done without aux
681 * will be visible to reads done with aux.
682 *
683 * Having an aux buffer with invalid data is possible for CCS buffers
684 * SKL+ and for MCS buffers with certain sample counts (2x and 8x). One
685 * easy way to get to a valid state is to fast-clear the specified range.
686 *
687 * Even for MCS buffers that have sample counts that don't require
688 * certain bits to be reserved (4x and 8x), we're unsure if the hardware
689 * will be okay with the sample mappings given by the undefined buffer.
690 * We don't have any data to show that this is a problem, but we want to
691 * avoid causing difficult-to-debug problems.
692 */
693 if ((GEN_GEN >= 9 && image->samples == 1) || image->samples > 1) {
694 if (image->samples == 4 || image->samples == 16) {
695 anv_perf_warn("Doing a potentially unnecessary fast-clear to "
696 "define an MCS buffer.");
697 }
698
699 anv_image_fast_clear(cmd_buffer, image, base_level, level_count,
700 base_layer, layer_count);
701 }
702 /* At this point, some elements of the CCS buffer may have the fast-clear
703 * bit-arrangement. As the user writes to a subresource, we need to have
704 * the associated CCS elements enter the ambiguated state. This enables
705 * reads (implicit or explicit) to reflect the user-written data instead
706 * of the clear color. The only time such elements will not change their
707 * state as described above, is in a final layout that doesn't have CCS
708 * enabled. In this case, we must force the associated CCS buffers of the
709 * specified range to enter the ambiguated state in advance.
710 */
711 if (image->samples == 1 && image->aux_usage != ISL_AUX_USAGE_CCS_E &&
712 final_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
713 /* The CCS_D buffer may not be enabled in the final layout. Continue
714 * executing this function to perform a resolve.
715 */
716 anv_perf_warn("Performing an additional resolve for CCS_D layout "
717 "transition. Consider always leaving it on or "
718 "performing an ambiguation pass.");
719 } else {
720 /* Writes in the final layout will be aware of the auxiliary buffer.
721 * In addition, the clear buffer entries and the auxiliary buffers
722 * have been populated with values that will result in correct
723 * rendering.
724 */
725 return;
726 }
727 } else if (initial_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
728 /* Resolves are only necessary if the subresource may contain blocks
729 * fast-cleared to values unsupported in other layouts. This only occurs
730 * if the initial layout is COLOR_ATTACHMENT_OPTIMAL.
731 */
732 return;
733 } else if (image->samples > 1) {
734 /* MCS buffers don't need resolving. */
735 return;
736 }
737
738 /* Perform a resolve to synchronize data between the main and aux buffer.
739 * Before we begin, we must satisfy the cache flushing requirement specified
740 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
741 *
742 * Any transition from any value in {Clear, Render, Resolve} to a
743 * different value in {Clear, Render, Resolve} requires end of pipe
744 * synchronization.
745 *
746 * We perform a flush of the write cache before and after the clear and
747 * resolve operations to meet this requirement.
748 *
749 * Unlike other drawing, fast clear operations are not properly
750 * synchronized. The first PIPE_CONTROL here likely ensures that the
751 * contents of the previous render or clear hit the render target before we
752 * resolve and the second likely ensures that the resolve is complete before
753 * we do any more rendering or clearing.
754 */
755 cmd_buffer->state.pending_pipe_bits |=
756 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
757
758 for (uint32_t level = base_level; level < last_level_num; level++) {
759
760 /* The number of layers changes at each 3D miplevel. */
761 if (image->type == VK_IMAGE_TYPE_3D) {
762 layer_count = MIN2(layer_count, anv_image_aux_layers(image, level));
763 }
764
765 genX(load_needs_resolve_predicate)(cmd_buffer, image, level);
766
767 /* Create a surface state with the right clear color and perform the
768 * resolve.
769 */
770 struct anv_state surface_state =
771 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
772 isl_surf_fill_state(&cmd_buffer->device->isl_dev, surface_state.map,
773 .surf = &image->color_surface.isl,
774 .view = &(struct isl_view) {
775 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
776 .format = image->color_surface.isl.format,
777 .swizzle = ISL_SWIZZLE_IDENTITY,
778 .base_level = level,
779 .levels = 1,
780 .base_array_layer = base_layer,
781 .array_len = layer_count,
782 },
783 .aux_surf = &image->aux_surface.isl,
784 .aux_usage = image->aux_usage == ISL_AUX_USAGE_NONE ?
785 ISL_AUX_USAGE_CCS_D : image->aux_usage,
786 .mocs = cmd_buffer->device->default_mocs);
787 add_image_relocs(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
788 image->aux_usage == ISL_AUX_USAGE_CCS_E ?
789 ISL_AUX_USAGE_CCS_E : ISL_AUX_USAGE_CCS_D,
790 surface_state);
791 anv_state_flush(cmd_buffer->device, surface_state);
792 genX(copy_fast_clear_dwords)(cmd_buffer, surface_state, image, level,
793 false /* copy to ss */);
794 anv_ccs_resolve(cmd_buffer, surface_state, image, level, layer_count,
795 image->aux_usage == ISL_AUX_USAGE_CCS_E ?
796 BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL :
797 BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
798
799 genX(set_image_needs_resolve)(cmd_buffer, image, level, false);
800 }
801
802 cmd_buffer->state.pending_pipe_bits |=
803 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
804 }
805
806 /**
807 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
808 */
809 static VkResult
810 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
811 struct anv_render_pass *pass,
812 const VkRenderPassBeginInfo *begin)
813 {
814 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
815 struct anv_cmd_state *state = &cmd_buffer->state;
816
817 vk_free(&cmd_buffer->pool->alloc, state->attachments);
818
819 if (pass->attachment_count > 0) {
820 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
821 pass->attachment_count *
822 sizeof(state->attachments[0]),
823 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
824 if (state->attachments == NULL) {
825 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
826 return anv_batch_set_error(&cmd_buffer->batch,
827 VK_ERROR_OUT_OF_HOST_MEMORY);
828 }
829 } else {
830 state->attachments = NULL;
831 }
832
833 /* Reserve one for the NULL state. */
834 unsigned num_states = 1;
835 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
836 if (vk_format_is_color(pass->attachments[i].format))
837 num_states++;
838
839 if (need_input_attachment_state(&pass->attachments[i]))
840 num_states++;
841 }
842
843 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
844 state->render_pass_states =
845 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
846 num_states * ss_stride, isl_dev->ss.align);
847
848 struct anv_state next_state = state->render_pass_states;
849 next_state.alloc_size = isl_dev->ss.size;
850
851 state->null_surface_state = next_state;
852 next_state.offset += ss_stride;
853 next_state.map += ss_stride;
854
855 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
856 if (vk_format_is_color(pass->attachments[i].format)) {
857 state->attachments[i].color_rt_state = next_state;
858 next_state.offset += ss_stride;
859 next_state.map += ss_stride;
860 }
861
862 if (need_input_attachment_state(&pass->attachments[i])) {
863 state->attachments[i].input_att_state = next_state;
864 next_state.offset += ss_stride;
865 next_state.map += ss_stride;
866 }
867 }
868 assert(next_state.offset == state->render_pass_states.offset +
869 state->render_pass_states.alloc_size);
870
871 if (begin) {
872 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
873 assert(pass->attachment_count == framebuffer->attachment_count);
874
875 isl_null_fill_state(isl_dev, state->null_surface_state.map,
876 isl_extent3d(framebuffer->width,
877 framebuffer->height,
878 framebuffer->layers));
879
880 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
881 struct anv_render_pass_attachment *att = &pass->attachments[i];
882 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
883 VkImageAspectFlags clear_aspects = 0;
884
885 if (att_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
886 /* color attachment */
887 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
888 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
889 }
890 } else {
891 /* depthstencil attachment */
892 if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
893 att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
894 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
895 }
896 if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
897 att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
898 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
899 }
900 }
901
902 state->attachments[i].current_layout = att->initial_layout;
903 state->attachments[i].pending_clear_aspects = clear_aspects;
904 if (clear_aspects)
905 state->attachments[i].clear_value = begin->pClearValues[i];
906
907 struct anv_image_view *iview = framebuffer->attachments[i];
908 anv_assert(iview->vk_format == att->format);
909
910 union isl_color_value clear_color = { .u32 = { 0, } };
911 if (att_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
912 color_attachment_compute_aux_usage(cmd_buffer->device,
913 state, i, begin->renderArea,
914 &clear_color);
915
916 struct isl_view view = iview->isl;
917 view.usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
918 view.swizzle = anv_swizzle_for_render(view.swizzle);
919 isl_surf_fill_state(isl_dev,
920 state->attachments[i].color_rt_state.map,
921 .surf = &iview->image->color_surface.isl,
922 .view = &view,
923 .aux_surf = &iview->image->aux_surface.isl,
924 .aux_usage = state->attachments[i].aux_usage,
925 .clear_color = clear_color,
926 .mocs = cmd_buffer->device->default_mocs);
927
928 add_image_relocs(cmd_buffer, iview->image, iview->aspect_mask,
929 state->attachments[i].aux_usage,
930 state->attachments[i].color_rt_state);
931 } else {
932 /* This field will be initialized after the first subpass
933 * transition.
934 */
935 state->attachments[i].aux_usage = ISL_AUX_USAGE_NONE;
936
937 state->attachments[i].input_aux_usage = ISL_AUX_USAGE_NONE;
938 }
939
940 if (need_input_attachment_state(&pass->attachments[i])) {
941 struct isl_view view = iview->isl;
942 view.usage |= ISL_SURF_USAGE_TEXTURE_BIT;
943 isl_surf_fill_state(isl_dev,
944 state->attachments[i].input_att_state.map,
945 .surf = &iview->image->color_surface.isl,
946 .view = &view,
947 .aux_surf = &iview->image->aux_surface.isl,
948 .aux_usage = state->attachments[i].input_aux_usage,
949 .clear_color = clear_color,
950 .mocs = cmd_buffer->device->default_mocs);
951
952 add_image_relocs(cmd_buffer, iview->image, iview->aspect_mask,
953 state->attachments[i].input_aux_usage,
954 state->attachments[i].input_att_state);
955 }
956 }
957
958 anv_state_flush(cmd_buffer->device, state->render_pass_states);
959 }
960
961 return VK_SUCCESS;
962 }
963
964 VkResult
965 genX(BeginCommandBuffer)(
966 VkCommandBuffer commandBuffer,
967 const VkCommandBufferBeginInfo* pBeginInfo)
968 {
969 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
970
971 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
972 * command buffer's state. Otherwise, we must *reset* its state. In both
973 * cases we reset it.
974 *
975 * From the Vulkan 1.0 spec:
976 *
977 * If a command buffer is in the executable state and the command buffer
978 * was allocated from a command pool with the
979 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
980 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
981 * as if vkResetCommandBuffer had been called with
982 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
983 * the command buffer in the recording state.
984 */
985 anv_cmd_buffer_reset(cmd_buffer);
986
987 cmd_buffer->usage_flags = pBeginInfo->flags;
988
989 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
990 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
991
992 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
993
994 /* We sometimes store vertex data in the dynamic state buffer for blorp
995 * operations and our dynamic state stream may re-use data from previous
996 * command buffers. In order to prevent stale cache data, we flush the VF
997 * cache. We could do this on every blorp call but that's not really
998 * needed as all of the data will get written by the CPU prior to the GPU
999 * executing anything. The chances are fairly high that they will use
1000 * blorp at least once per primary command buffer so it shouldn't be
1001 * wasted.
1002 */
1003 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
1004 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1005
1006 VkResult result = VK_SUCCESS;
1007 if (cmd_buffer->usage_flags &
1008 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1009 cmd_buffer->state.pass =
1010 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1011 cmd_buffer->state.subpass =
1012 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1013 cmd_buffer->state.framebuffer = NULL;
1014
1015 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1016 cmd_buffer->state.pass, NULL);
1017
1018 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1019 }
1020
1021 return result;
1022 }
1023
1024 VkResult
1025 genX(EndCommandBuffer)(
1026 VkCommandBuffer commandBuffer)
1027 {
1028 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1029
1030 if (anv_batch_has_error(&cmd_buffer->batch))
1031 return cmd_buffer->batch.status;
1032
1033 /* We want every command buffer to start with the PMA fix in a known state,
1034 * so we disable it at the end of the command buffer.
1035 */
1036 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1037
1038 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1039
1040 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1041
1042 return VK_SUCCESS;
1043 }
1044
1045 void
1046 genX(CmdExecuteCommands)(
1047 VkCommandBuffer commandBuffer,
1048 uint32_t commandBufferCount,
1049 const VkCommandBuffer* pCmdBuffers)
1050 {
1051 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1052
1053 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1054
1055 if (anv_batch_has_error(&primary->batch))
1056 return;
1057
1058 /* The secondary command buffers will assume that the PMA fix is disabled
1059 * when they begin executing. Make sure this is true.
1060 */
1061 genX(cmd_buffer_enable_pma_fix)(primary, false);
1062
1063 /* The secondary command buffer doesn't know which textures etc. have been
1064 * flushed prior to their execution. Apply those flushes now.
1065 */
1066 genX(cmd_buffer_apply_pipe_flushes)(primary);
1067
1068 for (uint32_t i = 0; i < commandBufferCount; i++) {
1069 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1070
1071 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1072 assert(!anv_batch_has_error(&secondary->batch));
1073
1074 if (secondary->usage_flags &
1075 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1076 /* If we're continuing a render pass from the primary, we need to
1077 * copy the surface states for the current subpass into the storage
1078 * we allocated for them in BeginCommandBuffer.
1079 */
1080 struct anv_bo *ss_bo =
1081 &primary->device->surface_state_pool.block_pool.bo;
1082 struct anv_state src_state = primary->state.render_pass_states;
1083 struct anv_state dst_state = secondary->state.render_pass_states;
1084 assert(src_state.alloc_size == dst_state.alloc_size);
1085
1086 genX(cmd_buffer_so_memcpy)(primary, ss_bo, dst_state.offset,
1087 ss_bo, src_state.offset,
1088 src_state.alloc_size);
1089 }
1090
1091 anv_cmd_buffer_add_secondary(primary, secondary);
1092 }
1093
1094 /* Each of the secondary command buffers will use its own state base
1095 * address. We need to re-emit state base address for the primary after
1096 * all of the secondaries are done.
1097 *
1098 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1099 * address calls?
1100 */
1101 genX(cmd_buffer_emit_state_base_address)(primary);
1102 }
1103
1104 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1105 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1106 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1107
1108 /**
1109 * Program the hardware to use the specified L3 configuration.
1110 */
1111 void
1112 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1113 const struct gen_l3_config *cfg)
1114 {
1115 assert(cfg);
1116 if (cfg == cmd_buffer->state.current_l3_config)
1117 return;
1118
1119 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1120 fprintf(stderr, "L3 config transition: ");
1121 gen_dump_l3_config(cfg, stderr);
1122 }
1123
1124 const bool has_slm = cfg->n[GEN_L3P_SLM];
1125
1126 /* According to the hardware docs, the L3 partitioning can only be changed
1127 * while the pipeline is completely drained and the caches are flushed,
1128 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1129 */
1130 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1131 pc.DCFlushEnable = true;
1132 pc.PostSyncOperation = NoWrite;
1133 pc.CommandStreamerStallEnable = true;
1134 }
1135
1136 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1137 * invalidation of the relevant caches. Note that because RO invalidation
1138 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1139 * command is processed by the CS) we cannot combine it with the previous
1140 * stalling flush as the hardware documentation suggests, because that
1141 * would cause the CS to stall on previous rendering *after* RO
1142 * invalidation and wouldn't prevent the RO caches from being polluted by
1143 * concurrent rendering before the stall completes. This intentionally
1144 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1145 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1146 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1147 * already guarantee that there is no concurrent GPGPU kernel execution
1148 * (see SKL HSD 2132585).
1149 */
1150 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1151 pc.TextureCacheInvalidationEnable = true;
1152 pc.ConstantCacheInvalidationEnable = true;
1153 pc.InstructionCacheInvalidateEnable = true;
1154 pc.StateCacheInvalidationEnable = true;
1155 pc.PostSyncOperation = NoWrite;
1156 }
1157
1158 /* Now send a third stalling flush to make sure that invalidation is
1159 * complete when the L3 configuration registers are modified.
1160 */
1161 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1162 pc.DCFlushEnable = true;
1163 pc.PostSyncOperation = NoWrite;
1164 pc.CommandStreamerStallEnable = true;
1165 }
1166
1167 #if GEN_GEN >= 8
1168
1169 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1170
1171 uint32_t l3cr;
1172 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1173 .SLMEnable = has_slm,
1174 .URBAllocation = cfg->n[GEN_L3P_URB],
1175 .ROAllocation = cfg->n[GEN_L3P_RO],
1176 .DCAllocation = cfg->n[GEN_L3P_DC],
1177 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1178
1179 /* Set up the L3 partitioning. */
1180 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1181
1182 #else
1183
1184 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1185 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1186 cfg->n[GEN_L3P_ALL];
1187 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1188 cfg->n[GEN_L3P_ALL];
1189 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1190 cfg->n[GEN_L3P_ALL];
1191
1192 assert(!cfg->n[GEN_L3P_ALL]);
1193
1194 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1195 * the matching space on the remaining banks has to be allocated to a
1196 * client (URB for all validated configurations) set to the
1197 * lower-bandwidth 2-bank address hashing mode.
1198 */
1199 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1200 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1201 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1202
1203 /* Minimum number of ways that can be allocated to the URB. */
1204 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1205 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1206
1207 uint32_t l3sqcr1, l3cr2, l3cr3;
1208 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1209 .ConvertDC_UC = !has_dc,
1210 .ConvertIS_UC = !has_is,
1211 .ConvertC_UC = !has_c,
1212 .ConvertT_UC = !has_t);
1213 l3sqcr1 |=
1214 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1215 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1216 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1217
1218 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1219 .SLMEnable = has_slm,
1220 .URBLowBandwidth = urb_low_bw,
1221 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1222 #if !GEN_IS_HASWELL
1223 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1224 #endif
1225 .ROAllocation = cfg->n[GEN_L3P_RO],
1226 .DCAllocation = cfg->n[GEN_L3P_DC]);
1227
1228 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1229 .ISAllocation = cfg->n[GEN_L3P_IS],
1230 .ISLowBandwidth = 0,
1231 .CAllocation = cfg->n[GEN_L3P_C],
1232 .CLowBandwidth = 0,
1233 .TAllocation = cfg->n[GEN_L3P_T],
1234 .TLowBandwidth = 0);
1235
1236 /* Set up the L3 partitioning. */
1237 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1238 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1239 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1240
1241 #if GEN_IS_HASWELL
1242 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1243 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1244 * them disabled to avoid crashing the system hard.
1245 */
1246 uint32_t scratch1, chicken3;
1247 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1248 .L3AtomicDisable = !has_dc);
1249 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1250 .L3AtomicDisableMask = true,
1251 .L3AtomicDisable = !has_dc);
1252 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1253 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1254 }
1255 #endif
1256
1257 #endif
1258
1259 cmd_buffer->state.current_l3_config = cfg;
1260 }
1261
1262 void
1263 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1264 {
1265 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1266
1267 /* Flushes are pipelined while invalidations are handled immediately.
1268 * Therefore, if we're flushing anything then we need to schedule a stall
1269 * before any invalidations can happen.
1270 */
1271 if (bits & ANV_PIPE_FLUSH_BITS)
1272 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1273
1274 /* If we're going to do an invalidate and we have a pending CS stall that
1275 * has yet to be resolved, we do the CS stall now.
1276 */
1277 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1278 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1279 bits |= ANV_PIPE_CS_STALL_BIT;
1280 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1281 }
1282
1283 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1284 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1285 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1286 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1287 pipe.RenderTargetCacheFlushEnable =
1288 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1289
1290 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1291 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1292 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1293
1294 /*
1295 * According to the Broadwell documentation, any PIPE_CONTROL with the
1296 * "Command Streamer Stall" bit set must also have another bit set,
1297 * with five different options:
1298 *
1299 * - Render Target Cache Flush
1300 * - Depth Cache Flush
1301 * - Stall at Pixel Scoreboard
1302 * - Post-Sync Operation
1303 * - Depth Stall
1304 * - DC Flush Enable
1305 *
1306 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1307 * mesa and it seems to work fine. The choice is fairly arbitrary.
1308 */
1309 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1310 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1311 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1312 pipe.StallAtPixelScoreboard = true;
1313 }
1314
1315 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1316 }
1317
1318 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1319 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1320 pipe.StateCacheInvalidationEnable =
1321 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1322 pipe.ConstantCacheInvalidationEnable =
1323 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1324 pipe.VFCacheInvalidationEnable =
1325 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1326 pipe.TextureCacheInvalidationEnable =
1327 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1328 pipe.InstructionCacheInvalidateEnable =
1329 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1330 }
1331
1332 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1333 }
1334
1335 cmd_buffer->state.pending_pipe_bits = bits;
1336 }
1337
1338 void genX(CmdPipelineBarrier)(
1339 VkCommandBuffer commandBuffer,
1340 VkPipelineStageFlags srcStageMask,
1341 VkPipelineStageFlags destStageMask,
1342 VkBool32 byRegion,
1343 uint32_t memoryBarrierCount,
1344 const VkMemoryBarrier* pMemoryBarriers,
1345 uint32_t bufferMemoryBarrierCount,
1346 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1347 uint32_t imageMemoryBarrierCount,
1348 const VkImageMemoryBarrier* pImageMemoryBarriers)
1349 {
1350 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1351
1352 /* XXX: Right now, we're really dumb and just flush whatever categories
1353 * the app asks for. One of these days we may make this a bit better
1354 * but right now that's all the hardware allows for in most areas.
1355 */
1356 VkAccessFlags src_flags = 0;
1357 VkAccessFlags dst_flags = 0;
1358
1359 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1360 src_flags |= pMemoryBarriers[i].srcAccessMask;
1361 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1362 }
1363
1364 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1365 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1366 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1367 }
1368
1369 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1370 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1371 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1372 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1373 const VkImageSubresourceRange *range =
1374 &pImageMemoryBarriers[i].subresourceRange;
1375
1376 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1377 transition_depth_buffer(cmd_buffer, image,
1378 pImageMemoryBarriers[i].oldLayout,
1379 pImageMemoryBarriers[i].newLayout);
1380 } else if (range->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) {
1381 transition_color_buffer(cmd_buffer, image,
1382 range->baseMipLevel,
1383 anv_get_levelCount(image, range),
1384 range->baseArrayLayer,
1385 anv_get_layerCount(image, range),
1386 pImageMemoryBarriers[i].oldLayout,
1387 pImageMemoryBarriers[i].newLayout);
1388 }
1389 }
1390
1391 cmd_buffer->state.pending_pipe_bits |=
1392 anv_pipe_flush_bits_for_access_flags(src_flags) |
1393 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1394 }
1395
1396 static void
1397 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1398 {
1399 VkShaderStageFlags stages = cmd_buffer->state.pipeline->active_stages;
1400
1401 /* In order to avoid thrash, we assume that vertex and fragment stages
1402 * always exist. In the rare case where one is missing *and* the other
1403 * uses push concstants, this may be suboptimal. However, avoiding stalls
1404 * seems more important.
1405 */
1406 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1407
1408 if (stages == cmd_buffer->state.push_constant_stages)
1409 return;
1410
1411 #if GEN_GEN >= 8
1412 const unsigned push_constant_kb = 32;
1413 #elif GEN_IS_HASWELL
1414 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1415 #else
1416 const unsigned push_constant_kb = 16;
1417 #endif
1418
1419 const unsigned num_stages =
1420 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1421 unsigned size_per_stage = push_constant_kb / num_stages;
1422
1423 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1424 * units of 2KB. Incidentally, these are the same platforms that have
1425 * 32KB worth of push constant space.
1426 */
1427 if (push_constant_kb == 32)
1428 size_per_stage &= ~1u;
1429
1430 uint32_t kb_used = 0;
1431 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1432 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1433 anv_batch_emit(&cmd_buffer->batch,
1434 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1435 alloc._3DCommandSubOpcode = 18 + i;
1436 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1437 alloc.ConstantBufferSize = push_size;
1438 }
1439 kb_used += push_size;
1440 }
1441
1442 anv_batch_emit(&cmd_buffer->batch,
1443 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1444 alloc.ConstantBufferOffset = kb_used;
1445 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1446 }
1447
1448 cmd_buffer->state.push_constant_stages = stages;
1449
1450 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1451 *
1452 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1453 * the next 3DPRIMITIVE command after programming the
1454 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1455 *
1456 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1457 * pipeline setup, we need to dirty push constants.
1458 */
1459 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1460 }
1461
1462 static VkResult
1463 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1464 gl_shader_stage stage,
1465 struct anv_state *bt_state)
1466 {
1467 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1468 struct anv_pipeline *pipeline;
1469 uint32_t bias, state_offset;
1470
1471 switch (stage) {
1472 case MESA_SHADER_COMPUTE:
1473 pipeline = cmd_buffer->state.compute_pipeline;
1474 bias = 1;
1475 break;
1476 default:
1477 pipeline = cmd_buffer->state.pipeline;
1478 bias = 0;
1479 break;
1480 }
1481
1482 if (!anv_pipeline_has_stage(pipeline, stage)) {
1483 *bt_state = (struct anv_state) { 0, };
1484 return VK_SUCCESS;
1485 }
1486
1487 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1488 if (bias + map->surface_count == 0) {
1489 *bt_state = (struct anv_state) { 0, };
1490 return VK_SUCCESS;
1491 }
1492
1493 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1494 bias + map->surface_count,
1495 &state_offset);
1496 uint32_t *bt_map = bt_state->map;
1497
1498 if (bt_state->map == NULL)
1499 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1500
1501 if (stage == MESA_SHADER_COMPUTE &&
1502 get_cs_prog_data(cmd_buffer->state.compute_pipeline)->uses_num_work_groups) {
1503 struct anv_bo *bo = cmd_buffer->state.num_workgroups_bo;
1504 uint32_t bo_offset = cmd_buffer->state.num_workgroups_offset;
1505
1506 struct anv_state surface_state;
1507 surface_state =
1508 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1509
1510 const enum isl_format format =
1511 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1512 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1513 format, bo_offset, 12, 1);
1514
1515 bt_map[0] = surface_state.offset + state_offset;
1516 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
1517 }
1518
1519 if (map->surface_count == 0)
1520 goto out;
1521
1522 if (map->image_count > 0) {
1523 VkResult result =
1524 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1525 if (result != VK_SUCCESS)
1526 return result;
1527
1528 cmd_buffer->state.push_constants_dirty |= 1 << stage;
1529 }
1530
1531 uint32_t image = 0;
1532 for (uint32_t s = 0; s < map->surface_count; s++) {
1533 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
1534
1535 struct anv_state surface_state;
1536
1537 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
1538 /* Color attachment binding */
1539 assert(stage == MESA_SHADER_FRAGMENT);
1540 assert(binding->binding == 0);
1541 if (binding->index < subpass->color_count) {
1542 const unsigned att =
1543 subpass->color_attachments[binding->index].attachment;
1544
1545 /* From the Vulkan 1.0.46 spec:
1546 *
1547 * "If any color or depth/stencil attachments are
1548 * VK_ATTACHMENT_UNUSED, then no writes occur for those
1549 * attachments."
1550 */
1551 if (att == VK_ATTACHMENT_UNUSED) {
1552 surface_state = cmd_buffer->state.null_surface_state;
1553 } else {
1554 surface_state = cmd_buffer->state.attachments[att].color_rt_state;
1555 }
1556 } else {
1557 surface_state = cmd_buffer->state.null_surface_state;
1558 }
1559
1560 bt_map[bias + s] = surface_state.offset + state_offset;
1561 continue;
1562 }
1563
1564 struct anv_descriptor_set *set =
1565 cmd_buffer->state.descriptors[binding->set];
1566 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
1567 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
1568
1569 switch (desc->type) {
1570 case VK_DESCRIPTOR_TYPE_SAMPLER:
1571 /* Nothing for us to do here */
1572 continue;
1573
1574 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1575 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
1576 enum isl_aux_usage aux_usage;
1577 if (desc->layout == VK_IMAGE_LAYOUT_GENERAL) {
1578 surface_state = desc->image_view->general_sampler_surface_state;
1579 aux_usage = desc->image_view->general_sampler_aux_usage;
1580 } else {
1581 surface_state = desc->image_view->optimal_sampler_surface_state;
1582 aux_usage = desc->image_view->optimal_sampler_aux_usage;
1583 }
1584 assert(surface_state.alloc_size);
1585 add_image_relocs(cmd_buffer, desc->image_view->image,
1586 desc->image_view->aspect_mask,
1587 aux_usage, surface_state);
1588 break;
1589 }
1590 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1591 assert(stage == MESA_SHADER_FRAGMENT);
1592 if (desc->image_view->aspect_mask != VK_IMAGE_ASPECT_COLOR_BIT) {
1593 /* For depth and stencil input attachments, we treat it like any
1594 * old texture that a user may have bound.
1595 */
1596 enum isl_aux_usage aux_usage;
1597 if (desc->layout == VK_IMAGE_LAYOUT_GENERAL) {
1598 surface_state = desc->image_view->general_sampler_surface_state;
1599 aux_usage = desc->image_view->general_sampler_aux_usage;
1600 } else {
1601 surface_state = desc->image_view->optimal_sampler_surface_state;
1602 aux_usage = desc->image_view->optimal_sampler_aux_usage;
1603 }
1604 assert(surface_state.alloc_size);
1605 add_image_relocs(cmd_buffer, desc->image_view->image,
1606 desc->image_view->aspect_mask,
1607 aux_usage, surface_state);
1608 } else {
1609 /* For color input attachments, we create the surface state at
1610 * vkBeginRenderPass time so that we can include aux and clear
1611 * color information.
1612 */
1613 assert(binding->input_attachment_index < subpass->input_count);
1614 const unsigned subpass_att = binding->input_attachment_index;
1615 const unsigned att = subpass->input_attachments[subpass_att].attachment;
1616 surface_state = cmd_buffer->state.attachments[att].input_att_state;
1617 }
1618 break;
1619
1620 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1621 surface_state = (binding->write_only)
1622 ? desc->image_view->writeonly_storage_surface_state
1623 : desc->image_view->storage_surface_state;
1624 assert(surface_state.alloc_size);
1625 add_image_relocs(cmd_buffer, desc->image_view->image,
1626 desc->image_view->aspect_mask,
1627 desc->image_view->image->aux_usage, surface_state);
1628
1629 struct brw_image_param *image_param =
1630 &cmd_buffer->state.push_constants[stage]->images[image++];
1631
1632 *image_param = desc->image_view->storage_image_param;
1633 image_param->surface_idx = bias + s;
1634 break;
1635 }
1636
1637 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1638 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1639 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1640 surface_state = desc->buffer_view->surface_state;
1641 assert(surface_state.alloc_size);
1642 add_surface_state_reloc(cmd_buffer, surface_state,
1643 desc->buffer_view->bo,
1644 desc->buffer_view->offset);
1645 break;
1646
1647 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1648 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1649 uint32_t dynamic_offset_idx =
1650 pipeline->layout->set[binding->set].dynamic_offset_start +
1651 set->layout->binding[binding->binding].dynamic_offset_index +
1652 binding->index;
1653
1654 /* Compute the offset within the buffer */
1655 uint64_t offset = desc->offset +
1656 cmd_buffer->state.dynamic_offsets[dynamic_offset_idx];
1657 /* Clamp to the buffer size */
1658 offset = MIN2(offset, desc->buffer->size);
1659 /* Clamp the range to the buffer size */
1660 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
1661
1662 surface_state =
1663 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
1664 enum isl_format format =
1665 anv_isl_format_for_descriptor_type(desc->type);
1666
1667 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1668 format, offset, range, 1);
1669 add_surface_state_reloc(cmd_buffer, surface_state,
1670 desc->buffer->bo,
1671 desc->buffer->offset + offset);
1672 break;
1673 }
1674
1675 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1676 surface_state = (binding->write_only)
1677 ? desc->buffer_view->writeonly_storage_surface_state
1678 : desc->buffer_view->storage_surface_state;
1679 assert(surface_state.alloc_size);
1680 add_surface_state_reloc(cmd_buffer, surface_state,
1681 desc->buffer_view->bo,
1682 desc->buffer_view->offset);
1683
1684 struct brw_image_param *image_param =
1685 &cmd_buffer->state.push_constants[stage]->images[image++];
1686
1687 *image_param = desc->buffer_view->storage_image_param;
1688 image_param->surface_idx = bias + s;
1689 break;
1690
1691 default:
1692 assert(!"Invalid descriptor type");
1693 continue;
1694 }
1695
1696 bt_map[bias + s] = surface_state.offset + state_offset;
1697 }
1698 assert(image == map->image_count);
1699
1700 out:
1701 anv_state_flush(cmd_buffer->device, *bt_state);
1702
1703 return VK_SUCCESS;
1704 }
1705
1706 static VkResult
1707 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1708 gl_shader_stage stage,
1709 struct anv_state *state)
1710 {
1711 struct anv_pipeline *pipeline;
1712
1713 if (stage == MESA_SHADER_COMPUTE)
1714 pipeline = cmd_buffer->state.compute_pipeline;
1715 else
1716 pipeline = cmd_buffer->state.pipeline;
1717
1718 if (!anv_pipeline_has_stage(pipeline, stage)) {
1719 *state = (struct anv_state) { 0, };
1720 return VK_SUCCESS;
1721 }
1722
1723 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1724 if (map->sampler_count == 0) {
1725 *state = (struct anv_state) { 0, };
1726 return VK_SUCCESS;
1727 }
1728
1729 uint32_t size = map->sampler_count * 16;
1730 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
1731
1732 if (state->map == NULL)
1733 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1734
1735 for (uint32_t s = 0; s < map->sampler_count; s++) {
1736 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
1737 struct anv_descriptor_set *set =
1738 cmd_buffer->state.descriptors[binding->set];
1739 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
1740 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
1741
1742 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
1743 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
1744 continue;
1745
1746 struct anv_sampler *sampler = desc->sampler;
1747
1748 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
1749 * happens to be zero.
1750 */
1751 if (sampler == NULL)
1752 continue;
1753
1754 memcpy(state->map + (s * 16),
1755 sampler->state, sizeof(sampler->state));
1756 }
1757
1758 anv_state_flush(cmd_buffer->device, *state);
1759
1760 return VK_SUCCESS;
1761 }
1762
1763 static uint32_t
1764 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
1765 {
1766 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
1767 cmd_buffer->state.pipeline->active_stages;
1768
1769 VkResult result = VK_SUCCESS;
1770 anv_foreach_stage(s, dirty) {
1771 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1772 if (result != VK_SUCCESS)
1773 break;
1774 result = emit_binding_table(cmd_buffer, s,
1775 &cmd_buffer->state.binding_tables[s]);
1776 if (result != VK_SUCCESS)
1777 break;
1778 }
1779
1780 if (result != VK_SUCCESS) {
1781 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
1782
1783 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
1784 if (result != VK_SUCCESS)
1785 return 0;
1786
1787 /* Re-emit state base addresses so we get the new surface state base
1788 * address before we start emitting binding tables etc.
1789 */
1790 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1791
1792 /* Re-emit all active binding tables */
1793 dirty |= cmd_buffer->state.pipeline->active_stages;
1794 anv_foreach_stage(s, dirty) {
1795 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1796 if (result != VK_SUCCESS) {
1797 anv_batch_set_error(&cmd_buffer->batch, result);
1798 return 0;
1799 }
1800 result = emit_binding_table(cmd_buffer, s,
1801 &cmd_buffer->state.binding_tables[s]);
1802 if (result != VK_SUCCESS) {
1803 anv_batch_set_error(&cmd_buffer->batch, result);
1804 return 0;
1805 }
1806 }
1807 }
1808
1809 cmd_buffer->state.descriptors_dirty &= ~dirty;
1810
1811 return dirty;
1812 }
1813
1814 static void
1815 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
1816 uint32_t stages)
1817 {
1818 static const uint32_t sampler_state_opcodes[] = {
1819 [MESA_SHADER_VERTEX] = 43,
1820 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
1821 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
1822 [MESA_SHADER_GEOMETRY] = 46,
1823 [MESA_SHADER_FRAGMENT] = 47,
1824 [MESA_SHADER_COMPUTE] = 0,
1825 };
1826
1827 static const uint32_t binding_table_opcodes[] = {
1828 [MESA_SHADER_VERTEX] = 38,
1829 [MESA_SHADER_TESS_CTRL] = 39,
1830 [MESA_SHADER_TESS_EVAL] = 40,
1831 [MESA_SHADER_GEOMETRY] = 41,
1832 [MESA_SHADER_FRAGMENT] = 42,
1833 [MESA_SHADER_COMPUTE] = 0,
1834 };
1835
1836 anv_foreach_stage(s, stages) {
1837 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
1838 anv_batch_emit(&cmd_buffer->batch,
1839 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
1840 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
1841 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
1842 }
1843 }
1844
1845 /* Always emit binding table pointers if we're asked to, since on SKL
1846 * this is what flushes push constants. */
1847 anv_batch_emit(&cmd_buffer->batch,
1848 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
1849 btp._3DCommandSubOpcode = binding_table_opcodes[s];
1850 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
1851 }
1852 }
1853 }
1854
1855 static uint32_t
1856 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer)
1857 {
1858 static const uint32_t push_constant_opcodes[] = {
1859 [MESA_SHADER_VERTEX] = 21,
1860 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
1861 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
1862 [MESA_SHADER_GEOMETRY] = 22,
1863 [MESA_SHADER_FRAGMENT] = 23,
1864 [MESA_SHADER_COMPUTE] = 0,
1865 };
1866
1867 VkShaderStageFlags flushed = 0;
1868
1869 anv_foreach_stage(stage, cmd_buffer->state.push_constants_dirty) {
1870 if (stage == MESA_SHADER_COMPUTE)
1871 continue;
1872
1873 struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage);
1874
1875 if (state.offset == 0) {
1876 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c)
1877 c._3DCommandSubOpcode = push_constant_opcodes[stage];
1878 } else {
1879 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
1880 c._3DCommandSubOpcode = push_constant_opcodes[stage],
1881 c.ConstantBody = (struct GENX(3DSTATE_CONSTANT_BODY)) {
1882 #if GEN_GEN >= 9
1883 .Buffer[2] = { &cmd_buffer->device->dynamic_state_pool.block_pool.bo, state.offset },
1884 .ReadLength[2] = DIV_ROUND_UP(state.alloc_size, 32),
1885 #else
1886 .Buffer[0] = { .offset = state.offset },
1887 .ReadLength[0] = DIV_ROUND_UP(state.alloc_size, 32),
1888 #endif
1889 };
1890 }
1891 }
1892
1893 flushed |= mesa_to_vk_shader_stage(stage);
1894 }
1895
1896 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_ALL_GRAPHICS;
1897
1898 return flushed;
1899 }
1900
1901 void
1902 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
1903 {
1904 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1905 uint32_t *p;
1906
1907 uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used;
1908
1909 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
1910
1911 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
1912
1913 genX(flush_pipeline_select_3d)(cmd_buffer);
1914
1915 if (vb_emit) {
1916 const uint32_t num_buffers = __builtin_popcount(vb_emit);
1917 const uint32_t num_dwords = 1 + num_buffers * 4;
1918
1919 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
1920 GENX(3DSTATE_VERTEX_BUFFERS));
1921 uint32_t vb, i = 0;
1922 for_each_bit(vb, vb_emit) {
1923 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
1924 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
1925
1926 struct GENX(VERTEX_BUFFER_STATE) state = {
1927 .VertexBufferIndex = vb,
1928
1929 #if GEN_GEN >= 8
1930 .MemoryObjectControlState = GENX(MOCS),
1931 #else
1932 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
1933 /* Our implementation of VK_KHR_multiview uses instancing to draw
1934 * the different views. If the client asks for instancing, we
1935 * need to use the Instance Data Step Rate to ensure that we
1936 * repeat the client's per-instance data once for each view.
1937 */
1938 .InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass),
1939 .VertexBufferMemoryObjectControlState = GENX(MOCS),
1940 #endif
1941
1942 .AddressModifyEnable = true,
1943 .BufferPitch = pipeline->binding_stride[vb],
1944 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
1945
1946 #if GEN_GEN >= 8
1947 .BufferSize = buffer->size - offset
1948 #else
1949 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
1950 #endif
1951 };
1952
1953 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
1954 i++;
1955 }
1956 }
1957
1958 cmd_buffer->state.vb_dirty &= ~vb_emit;
1959
1960 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_PIPELINE) {
1961 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
1962
1963 /* The exact descriptor layout is pulled from the pipeline, so we need
1964 * to re-emit binding tables on every pipeline change.
1965 */
1966 cmd_buffer->state.descriptors_dirty |=
1967 cmd_buffer->state.pipeline->active_stages;
1968
1969 /* If the pipeline changed, we may need to re-allocate push constant
1970 * space in the URB.
1971 */
1972 cmd_buffer_alloc_push_constants(cmd_buffer);
1973 }
1974
1975 #if GEN_GEN <= 7
1976 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
1977 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
1978 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
1979 *
1980 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
1981 * stall needs to be sent just prior to any 3DSTATE_VS,
1982 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
1983 * 3DSTATE_BINDING_TABLE_POINTER_VS,
1984 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
1985 * PIPE_CONTROL needs to be sent before any combination of VS
1986 * associated 3DSTATE."
1987 */
1988 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1989 pc.DepthStallEnable = true;
1990 pc.PostSyncOperation = WriteImmediateData;
1991 pc.Address =
1992 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
1993 }
1994 }
1995 #endif
1996
1997 /* Render targets live in the same binding table as fragment descriptors */
1998 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
1999 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2000
2001 /* We emit the binding tables and sampler tables first, then emit push
2002 * constants and then finally emit binding table and sampler table
2003 * pointers. It has to happen in this order, since emitting the binding
2004 * tables may change the push constants (in case of storage images). After
2005 * emitting push constants, on SKL+ we have to emit the corresponding
2006 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2007 */
2008 uint32_t dirty = 0;
2009 if (cmd_buffer->state.descriptors_dirty)
2010 dirty = flush_descriptor_sets(cmd_buffer);
2011
2012 if (cmd_buffer->state.push_constants_dirty) {
2013 #if GEN_GEN >= 9
2014 /* On Sky Lake and later, the binding table pointers commands are
2015 * what actually flush the changes to push constant state so we need
2016 * to dirty them so they get re-emitted below.
2017 */
2018 dirty |= cmd_buffer_flush_push_constants(cmd_buffer);
2019 #else
2020 cmd_buffer_flush_push_constants(cmd_buffer);
2021 #endif
2022 }
2023
2024 if (dirty)
2025 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2026
2027 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2028 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2029
2030 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2031 ANV_CMD_DIRTY_PIPELINE)) {
2032 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2033 pipeline->depth_clamp_enable);
2034 }
2035
2036 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
2037 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2038
2039 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2040
2041 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2042 }
2043
2044 static void
2045 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2046 struct anv_bo *bo, uint32_t offset,
2047 uint32_t size, uint32_t index)
2048 {
2049 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2050 GENX(3DSTATE_VERTEX_BUFFERS));
2051
2052 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2053 &(struct GENX(VERTEX_BUFFER_STATE)) {
2054 .VertexBufferIndex = index,
2055 .AddressModifyEnable = true,
2056 .BufferPitch = 0,
2057 #if (GEN_GEN >= 8)
2058 .MemoryObjectControlState = GENX(MOCS),
2059 .BufferStartingAddress = { bo, offset },
2060 .BufferSize = size
2061 #else
2062 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2063 .BufferStartingAddress = { bo, offset },
2064 .EndAddress = { bo, offset + size },
2065 #endif
2066 });
2067 }
2068
2069 static void
2070 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2071 struct anv_bo *bo, uint32_t offset)
2072 {
2073 emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
2074 }
2075
2076 static void
2077 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2078 uint32_t base_vertex, uint32_t base_instance)
2079 {
2080 struct anv_state id_state =
2081 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2082
2083 ((uint32_t *)id_state.map)[0] = base_vertex;
2084 ((uint32_t *)id_state.map)[1] = base_instance;
2085
2086 anv_state_flush(cmd_buffer->device, id_state);
2087
2088 emit_base_vertex_instance_bo(cmd_buffer,
2089 &cmd_buffer->device->dynamic_state_pool.block_pool.bo, id_state.offset);
2090 }
2091
2092 static void
2093 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2094 {
2095 struct anv_state state =
2096 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2097
2098 ((uint32_t *)state.map)[0] = draw_index;
2099
2100 anv_state_flush(cmd_buffer->device, state);
2101
2102 emit_vertex_bo(cmd_buffer,
2103 &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2104 state.offset, 4, ANV_DRAWID_VB_INDEX);
2105 }
2106
2107 void genX(CmdDraw)(
2108 VkCommandBuffer commandBuffer,
2109 uint32_t vertexCount,
2110 uint32_t instanceCount,
2111 uint32_t firstVertex,
2112 uint32_t firstInstance)
2113 {
2114 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2115 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
2116 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2117
2118 if (anv_batch_has_error(&cmd_buffer->batch))
2119 return;
2120
2121 genX(cmd_buffer_flush_state)(cmd_buffer);
2122
2123 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2124 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2125 if (vs_prog_data->uses_drawid)
2126 emit_draw_index(cmd_buffer, 0);
2127
2128 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2129 * different views. We need to multiply instanceCount by the view count.
2130 */
2131 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2132
2133 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2134 prim.VertexAccessType = SEQUENTIAL;
2135 prim.PrimitiveTopologyType = pipeline->topology;
2136 prim.VertexCountPerInstance = vertexCount;
2137 prim.StartVertexLocation = firstVertex;
2138 prim.InstanceCount = instanceCount;
2139 prim.StartInstanceLocation = firstInstance;
2140 prim.BaseVertexLocation = 0;
2141 }
2142 }
2143
2144 void genX(CmdDrawIndexed)(
2145 VkCommandBuffer commandBuffer,
2146 uint32_t indexCount,
2147 uint32_t instanceCount,
2148 uint32_t firstIndex,
2149 int32_t vertexOffset,
2150 uint32_t firstInstance)
2151 {
2152 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2153 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
2154 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2155
2156 if (anv_batch_has_error(&cmd_buffer->batch))
2157 return;
2158
2159 genX(cmd_buffer_flush_state)(cmd_buffer);
2160
2161 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2162 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2163 if (vs_prog_data->uses_drawid)
2164 emit_draw_index(cmd_buffer, 0);
2165
2166 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2167 * different views. We need to multiply instanceCount by the view count.
2168 */
2169 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2170
2171 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2172 prim.VertexAccessType = RANDOM;
2173 prim.PrimitiveTopologyType = pipeline->topology;
2174 prim.VertexCountPerInstance = indexCount;
2175 prim.StartVertexLocation = firstIndex;
2176 prim.InstanceCount = instanceCount;
2177 prim.StartInstanceLocation = firstInstance;
2178 prim.BaseVertexLocation = vertexOffset;
2179 }
2180 }
2181
2182 /* Auto-Draw / Indirect Registers */
2183 #define GEN7_3DPRIM_END_OFFSET 0x2420
2184 #define GEN7_3DPRIM_START_VERTEX 0x2430
2185 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2186 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2187 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2188 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2189
2190 /* MI_MATH only exists on Haswell+ */
2191 #if GEN_IS_HASWELL || GEN_GEN >= 8
2192
2193 static uint32_t
2194 mi_alu(uint32_t opcode, uint32_t op1, uint32_t op2)
2195 {
2196 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
2197 .ALUOpcode = opcode,
2198 .Operand1 = op1,
2199 .Operand2 = op2,
2200 };
2201
2202 uint32_t dw;
2203 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
2204
2205 return dw;
2206 }
2207
2208 #define CS_GPR(n) (0x2600 + (n) * 8)
2209
2210 /* Emit dwords to multiply GPR0 by N */
2211 static void
2212 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2213 {
2214 VK_OUTARRAY_MAKE(out, dw, dw_count);
2215
2216 #define append_alu(opcode, operand1, operand2) \
2217 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2218
2219 assert(N > 0);
2220 unsigned top_bit = 31 - __builtin_clz(N);
2221 for (int i = top_bit - 1; i >= 0; i--) {
2222 /* We get our initial data in GPR0 and we write the final data out to
2223 * GPR0 but we use GPR1 as our scratch register.
2224 */
2225 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2226 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2227
2228 /* Shift the current value left by 1 */
2229 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2230 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2231 append_alu(MI_ALU_ADD, 0, 0);
2232
2233 if (N & (1 << i)) {
2234 /* Store ACCU to R1 and add R0 to R1 */
2235 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2236 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2237 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2238 append_alu(MI_ALU_ADD, 0, 0);
2239 }
2240
2241 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2242 }
2243
2244 #undef append_alu
2245 }
2246
2247 static void
2248 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2249 {
2250 uint32_t num_dwords;
2251 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2252
2253 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2254 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2255 }
2256
2257 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2258
2259 static void
2260 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2261 struct anv_buffer *buffer, uint64_t offset,
2262 bool indexed)
2263 {
2264 struct anv_batch *batch = &cmd_buffer->batch;
2265 struct anv_bo *bo = buffer->bo;
2266 uint32_t bo_offset = buffer->offset + offset;
2267
2268 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2269
2270 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2271 if (view_count > 1) {
2272 #if GEN_IS_HASWELL || GEN_GEN >= 8
2273 emit_lrm(batch, CS_GPR(0), bo, bo_offset + 4);
2274 emit_mul_gpr0(batch, view_count);
2275 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2276 #else
2277 anv_finishme("Multiview + indirect draw requires MI_MATH\n"
2278 "MI_MATH is not supported on Ivy Bridge");
2279 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2280 #endif
2281 } else {
2282 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2283 }
2284
2285 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2286
2287 if (indexed) {
2288 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
2289 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
2290 } else {
2291 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
2292 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2293 }
2294 }
2295
2296 void genX(CmdDrawIndirect)(
2297 VkCommandBuffer commandBuffer,
2298 VkBuffer _buffer,
2299 VkDeviceSize offset,
2300 uint32_t drawCount,
2301 uint32_t stride)
2302 {
2303 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2304 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2305 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
2306 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2307
2308 if (anv_batch_has_error(&cmd_buffer->batch))
2309 return;
2310
2311 genX(cmd_buffer_flush_state)(cmd_buffer);
2312
2313 for (uint32_t i = 0; i < drawCount; i++) {
2314 struct anv_bo *bo = buffer->bo;
2315 uint32_t bo_offset = buffer->offset + offset;
2316
2317 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2318 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
2319 if (vs_prog_data->uses_drawid)
2320 emit_draw_index(cmd_buffer, i);
2321
2322 load_indirect_parameters(cmd_buffer, buffer, offset, false);
2323
2324 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2325 prim.IndirectParameterEnable = true;
2326 prim.VertexAccessType = SEQUENTIAL;
2327 prim.PrimitiveTopologyType = pipeline->topology;
2328 }
2329
2330 offset += stride;
2331 }
2332 }
2333
2334 void genX(CmdDrawIndexedIndirect)(
2335 VkCommandBuffer commandBuffer,
2336 VkBuffer _buffer,
2337 VkDeviceSize offset,
2338 uint32_t drawCount,
2339 uint32_t stride)
2340 {
2341 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2342 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2343 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
2344 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2345
2346 if (anv_batch_has_error(&cmd_buffer->batch))
2347 return;
2348
2349 genX(cmd_buffer_flush_state)(cmd_buffer);
2350
2351 for (uint32_t i = 0; i < drawCount; i++) {
2352 struct anv_bo *bo = buffer->bo;
2353 uint32_t bo_offset = buffer->offset + offset;
2354
2355 /* TODO: We need to stomp base vertex to 0 somehow */
2356 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2357 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
2358 if (vs_prog_data->uses_drawid)
2359 emit_draw_index(cmd_buffer, i);
2360
2361 load_indirect_parameters(cmd_buffer, buffer, offset, true);
2362
2363 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2364 prim.IndirectParameterEnable = true;
2365 prim.VertexAccessType = RANDOM;
2366 prim.PrimitiveTopologyType = pipeline->topology;
2367 }
2368
2369 offset += stride;
2370 }
2371 }
2372
2373 static VkResult
2374 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
2375 {
2376 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
2377 struct anv_state surfaces = { 0, }, samplers = { 0, };
2378 VkResult result;
2379
2380 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2381 if (result != VK_SUCCESS) {
2382 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2383
2384 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2385 if (result != VK_SUCCESS)
2386 return result;
2387
2388 /* Re-emit state base addresses so we get the new surface state base
2389 * address before we start emitting binding tables etc.
2390 */
2391 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2392
2393 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2394 if (result != VK_SUCCESS) {
2395 anv_batch_set_error(&cmd_buffer->batch, result);
2396 return result;
2397 }
2398 }
2399
2400 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
2401 if (result != VK_SUCCESS) {
2402 anv_batch_set_error(&cmd_buffer->batch, result);
2403 return result;
2404 }
2405
2406 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
2407 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2408 .BindingTablePointer = surfaces.offset,
2409 .SamplerStatePointer = samplers.offset,
2410 };
2411 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
2412
2413 struct anv_state state =
2414 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
2415 pipeline->interface_descriptor_data,
2416 GENX(INTERFACE_DESCRIPTOR_DATA_length),
2417 64);
2418
2419 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
2420 anv_batch_emit(&cmd_buffer->batch,
2421 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
2422 mid.InterfaceDescriptorTotalLength = size;
2423 mid.InterfaceDescriptorDataStartAddress = state.offset;
2424 }
2425
2426 return VK_SUCCESS;
2427 }
2428
2429 void
2430 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
2431 {
2432 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
2433 MAYBE_UNUSED VkResult result;
2434
2435 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
2436
2437 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2438
2439 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
2440
2441 if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE) {
2442 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
2443 *
2444 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
2445 * the only bits that are changed are scoreboard related: Scoreboard
2446 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
2447 * these scoreboard related states, a MEDIA_STATE_FLUSH is
2448 * sufficient."
2449 */
2450 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2451 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2452
2453 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2454 }
2455
2456 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
2457 (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
2458 /* FIXME: figure out descriptors for gen7 */
2459 result = flush_compute_descriptor_set(cmd_buffer);
2460 if (result != VK_SUCCESS)
2461 return;
2462
2463 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
2464 }
2465
2466 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
2467 struct anv_state push_state =
2468 anv_cmd_buffer_cs_push_constants(cmd_buffer);
2469
2470 if (push_state.alloc_size) {
2471 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
2472 curbe.CURBETotalDataLength = push_state.alloc_size;
2473 curbe.CURBEDataStartAddress = push_state.offset;
2474 }
2475 }
2476 }
2477
2478 cmd_buffer->state.compute_dirty = 0;
2479
2480 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2481 }
2482
2483 #if GEN_GEN == 7
2484
2485 static VkResult
2486 verify_cmd_parser(const struct anv_device *device,
2487 int required_version,
2488 const char *function)
2489 {
2490 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
2491 return vk_errorf(VK_ERROR_FEATURE_NOT_PRESENT,
2492 "cmd parser version %d is required for %s",
2493 required_version, function);
2494 } else {
2495 return VK_SUCCESS;
2496 }
2497 }
2498
2499 #endif
2500
2501 void genX(CmdDispatch)(
2502 VkCommandBuffer commandBuffer,
2503 uint32_t x,
2504 uint32_t y,
2505 uint32_t z)
2506 {
2507 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2508 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
2509 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2510
2511 if (anv_batch_has_error(&cmd_buffer->batch))
2512 return;
2513
2514 if (prog_data->uses_num_work_groups) {
2515 struct anv_state state =
2516 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
2517 uint32_t *sizes = state.map;
2518 sizes[0] = x;
2519 sizes[1] = y;
2520 sizes[2] = z;
2521 anv_state_flush(cmd_buffer->device, state);
2522 cmd_buffer->state.num_workgroups_offset = state.offset;
2523 cmd_buffer->state.num_workgroups_bo =
2524 &cmd_buffer->device->dynamic_state_pool.block_pool.bo;
2525 }
2526
2527 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2528
2529 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
2530 ggw.SIMDSize = prog_data->simd_size / 16;
2531 ggw.ThreadDepthCounterMaximum = 0;
2532 ggw.ThreadHeightCounterMaximum = 0;
2533 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2534 ggw.ThreadGroupIDXDimension = x;
2535 ggw.ThreadGroupIDYDimension = y;
2536 ggw.ThreadGroupIDZDimension = z;
2537 ggw.RightExecutionMask = pipeline->cs_right_mask;
2538 ggw.BottomExecutionMask = 0xffffffff;
2539 }
2540
2541 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
2542 }
2543
2544 #define GPGPU_DISPATCHDIMX 0x2500
2545 #define GPGPU_DISPATCHDIMY 0x2504
2546 #define GPGPU_DISPATCHDIMZ 0x2508
2547
2548 void genX(CmdDispatchIndirect)(
2549 VkCommandBuffer commandBuffer,
2550 VkBuffer _buffer,
2551 VkDeviceSize offset)
2552 {
2553 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2554 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2555 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
2556 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2557 struct anv_bo *bo = buffer->bo;
2558 uint32_t bo_offset = buffer->offset + offset;
2559 struct anv_batch *batch = &cmd_buffer->batch;
2560
2561 #if GEN_GEN == 7
2562 /* Linux 4.4 added command parser version 5 which allows the GPGPU
2563 * indirect dispatch registers to be written.
2564 */
2565 if (verify_cmd_parser(cmd_buffer->device, 5,
2566 "vkCmdDispatchIndirect") != VK_SUCCESS)
2567 return;
2568 #endif
2569
2570 if (prog_data->uses_num_work_groups) {
2571 cmd_buffer->state.num_workgroups_offset = bo_offset;
2572 cmd_buffer->state.num_workgroups_bo = bo;
2573 }
2574
2575 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2576
2577 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
2578 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
2579 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
2580
2581 #if GEN_GEN <= 7
2582 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
2583 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
2584 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
2585 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
2586
2587 /* Load compute_dispatch_indirect_x_size into SRC0 */
2588 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
2589
2590 /* predicate = (compute_dispatch_indirect_x_size == 0); */
2591 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2592 mip.LoadOperation = LOAD_LOAD;
2593 mip.CombineOperation = COMBINE_SET;
2594 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2595 }
2596
2597 /* Load compute_dispatch_indirect_y_size into SRC0 */
2598 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
2599
2600 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
2601 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2602 mip.LoadOperation = LOAD_LOAD;
2603 mip.CombineOperation = COMBINE_OR;
2604 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2605 }
2606
2607 /* Load compute_dispatch_indirect_z_size into SRC0 */
2608 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
2609
2610 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
2611 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2612 mip.LoadOperation = LOAD_LOAD;
2613 mip.CombineOperation = COMBINE_OR;
2614 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2615 }
2616
2617 /* predicate = !predicate; */
2618 #define COMPARE_FALSE 1
2619 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2620 mip.LoadOperation = LOAD_LOADINV;
2621 mip.CombineOperation = COMBINE_OR;
2622 mip.CompareOperation = COMPARE_FALSE;
2623 }
2624 #endif
2625
2626 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
2627 ggw.IndirectParameterEnable = true;
2628 ggw.PredicateEnable = GEN_GEN <= 7;
2629 ggw.SIMDSize = prog_data->simd_size / 16;
2630 ggw.ThreadDepthCounterMaximum = 0;
2631 ggw.ThreadHeightCounterMaximum = 0;
2632 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2633 ggw.RightExecutionMask = pipeline->cs_right_mask;
2634 ggw.BottomExecutionMask = 0xffffffff;
2635 }
2636
2637 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
2638 }
2639
2640 static void
2641 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
2642 uint32_t pipeline)
2643 {
2644 if (cmd_buffer->state.current_pipeline == pipeline)
2645 return;
2646
2647 #if GEN_GEN >= 8 && GEN_GEN < 10
2648 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
2649 *
2650 * Software must clear the COLOR_CALC_STATE Valid field in
2651 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
2652 * with Pipeline Select set to GPGPU.
2653 *
2654 * The internal hardware docs recommend the same workaround for Gen9
2655 * hardware too.
2656 */
2657 if (pipeline == GPGPU)
2658 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
2659 #endif
2660
2661 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
2662 * PIPELINE_SELECT [DevBWR+]":
2663 *
2664 * Project: DEVSNB+
2665 *
2666 * Software must ensure all the write caches are flushed through a
2667 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
2668 * command to invalidate read only caches prior to programming
2669 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
2670 */
2671 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2672 pc.RenderTargetCacheFlushEnable = true;
2673 pc.DepthCacheFlushEnable = true;
2674 pc.DCFlushEnable = true;
2675 pc.PostSyncOperation = NoWrite;
2676 pc.CommandStreamerStallEnable = true;
2677 }
2678
2679 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2680 pc.TextureCacheInvalidationEnable = true;
2681 pc.ConstantCacheInvalidationEnable = true;
2682 pc.StateCacheInvalidationEnable = true;
2683 pc.InstructionCacheInvalidateEnable = true;
2684 pc.PostSyncOperation = NoWrite;
2685 }
2686
2687 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
2688 #if GEN_GEN >= 9
2689 ps.MaskBits = 3;
2690 #endif
2691 ps.PipelineSelection = pipeline;
2692 }
2693
2694 cmd_buffer->state.current_pipeline = pipeline;
2695 }
2696
2697 void
2698 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
2699 {
2700 genX(flush_pipeline_select)(cmd_buffer, _3D);
2701 }
2702
2703 void
2704 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
2705 {
2706 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
2707 }
2708
2709 void
2710 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
2711 {
2712 if (GEN_GEN >= 8)
2713 return;
2714
2715 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
2716 *
2717 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
2718 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
2719 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
2720 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
2721 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
2722 * Depth Flush Bit set, followed by another pipelined depth stall
2723 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
2724 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
2725 * via a preceding MI_FLUSH)."
2726 */
2727 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2728 pipe.DepthStallEnable = true;
2729 }
2730 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2731 pipe.DepthCacheFlushEnable = true;
2732 }
2733 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2734 pipe.DepthStallEnable = true;
2735 }
2736 }
2737
2738 static void
2739 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
2740 {
2741 struct anv_device *device = cmd_buffer->device;
2742 const struct anv_image_view *iview =
2743 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
2744 const struct anv_image *image = iview ? iview->image : NULL;
2745
2746 /* FIXME: Width and Height are wrong */
2747
2748 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
2749
2750 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
2751 device->isl_dev.ds.size / 4);
2752 if (dw == NULL)
2753 return;
2754
2755 struct isl_depth_stencil_hiz_emit_info info = {
2756 .mocs = device->default_mocs,
2757 };
2758
2759 if (iview)
2760 info.view = &iview->isl;
2761
2762 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
2763 info.depth_surf = &image->depth_surface.isl;
2764
2765 info.depth_address =
2766 anv_batch_emit_reloc(&cmd_buffer->batch,
2767 dw + device->isl_dev.ds.depth_offset / 4,
2768 image->bo,
2769 image->offset + image->depth_surface.offset);
2770
2771 const uint32_t ds =
2772 cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
2773 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
2774 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
2775 info.hiz_surf = &image->aux_surface.isl;
2776
2777 info.hiz_address =
2778 anv_batch_emit_reloc(&cmd_buffer->batch,
2779 dw + device->isl_dev.ds.hiz_offset / 4,
2780 image->bo,
2781 image->offset + image->aux_surface.offset);
2782
2783 info.depth_clear_value = ANV_HZ_FC_VAL;
2784 }
2785 }
2786
2787 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
2788 info.stencil_surf = &image->stencil_surface.isl;
2789
2790 info.stencil_address =
2791 anv_batch_emit_reloc(&cmd_buffer->batch,
2792 dw + device->isl_dev.ds.stencil_offset / 4,
2793 image->bo,
2794 image->offset + image->stencil_surface.offset);
2795 }
2796
2797 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
2798
2799 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
2800 }
2801
2802
2803 /**
2804 * @brief Perform any layout transitions required at the beginning and/or end
2805 * of the current subpass for depth buffers.
2806 *
2807 * TODO: Consider preprocessing the attachment reference array at render pass
2808 * create time to determine if no layout transition is needed at the
2809 * beginning and/or end of each subpass.
2810 *
2811 * @param cmd_buffer The command buffer the transition is happening within.
2812 * @param subpass_end If true, marks that the transition is happening at the
2813 * end of the subpass.
2814 */
2815 static void
2816 cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,
2817 const bool subpass_end)
2818 {
2819 /* We need a non-NULL command buffer. */
2820 assert(cmd_buffer);
2821
2822 const struct anv_cmd_state * const cmd_state = &cmd_buffer->state;
2823 const struct anv_subpass * const subpass = cmd_state->subpass;
2824
2825 /* This function must be called within a subpass. */
2826 assert(subpass);
2827
2828 /* If there are attachment references, the array shouldn't be NULL.
2829 */
2830 if (subpass->attachment_count > 0)
2831 assert(subpass->attachments);
2832
2833 /* Iterate over the array of attachment references. */
2834 for (const VkAttachmentReference *att_ref = subpass->attachments;
2835 att_ref < subpass->attachments + subpass->attachment_count; att_ref++) {
2836
2837 /* If the attachment is unused, we can't perform a layout transition. */
2838 if (att_ref->attachment == VK_ATTACHMENT_UNUSED)
2839 continue;
2840
2841 /* This attachment index shouldn't go out of bounds. */
2842 assert(att_ref->attachment < cmd_state->pass->attachment_count);
2843
2844 const struct anv_render_pass_attachment * const att_desc =
2845 &cmd_state->pass->attachments[att_ref->attachment];
2846 struct anv_attachment_state * const att_state =
2847 &cmd_buffer->state.attachments[att_ref->attachment];
2848
2849 /* The attachment should not be used in a subpass after its last. */
2850 assert(att_desc->last_subpass_idx >= anv_get_subpass_id(cmd_state));
2851
2852 if (subpass_end && anv_get_subpass_id(cmd_state) <
2853 att_desc->last_subpass_idx) {
2854 /* We're calling this function on a buffer twice in one subpass and
2855 * this is not the last use of the buffer. The layout should not have
2856 * changed from the first call and no transition is necessary.
2857 */
2858 assert(att_state->current_layout == att_ref->layout ||
2859 att_state->current_layout ==
2860 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
2861 continue;
2862 }
2863
2864 /* The attachment index must be less than the number of attachments
2865 * within the framebuffer.
2866 */
2867 assert(att_ref->attachment < cmd_state->framebuffer->attachment_count);
2868
2869 const struct anv_image_view * const iview =
2870 cmd_state->framebuffer->attachments[att_ref->attachment];
2871 const struct anv_image * const image = iview->image;
2872
2873 /* Get the appropriate target layout for this attachment. */
2874 VkImageLayout target_layout;
2875
2876 /* A resolve is necessary before use as an input attachment if the clear
2877 * color or auxiliary buffer usage isn't supported by the sampler.
2878 */
2879 const bool input_needs_resolve =
2880 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
2881 att_state->input_aux_usage != att_state->aux_usage;
2882 if (subpass_end) {
2883 target_layout = att_desc->final_layout;
2884 } else if (iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
2885 !input_needs_resolve) {
2886 /* Layout transitions before the final only help to enable sampling as
2887 * an input attachment. If the input attachment supports sampling
2888 * using the auxiliary surface, we can skip such transitions by making
2889 * the target layout one that is CCS-aware.
2890 */
2891 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
2892 } else {
2893 target_layout = att_ref->layout;
2894 }
2895
2896 /* Perform the layout transition. */
2897 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
2898 transition_depth_buffer(cmd_buffer, image,
2899 att_state->current_layout, target_layout);
2900 att_state->aux_usage =
2901 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
2902 image->aspects, target_layout);
2903 } else if (image->aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
2904 transition_color_buffer(cmd_buffer, image,
2905 iview->isl.base_level, 1,
2906 iview->isl.base_array_layer,
2907 iview->isl.array_len,
2908 att_state->current_layout, target_layout);
2909 }
2910
2911 att_state->current_layout = target_layout;
2912 }
2913 }
2914
2915 /* Update the clear value dword(s) in surface state objects or the fast clear
2916 * state buffer entry for the color attachments used in this subpass.
2917 */
2918 static void
2919 cmd_buffer_subpass_sync_fast_clear_values(struct anv_cmd_buffer *cmd_buffer)
2920 {
2921 assert(cmd_buffer && cmd_buffer->state.subpass);
2922
2923 const struct anv_cmd_state *state = &cmd_buffer->state;
2924
2925 /* Iterate through every color attachment used in this subpass. */
2926 for (uint32_t i = 0; i < state->subpass->color_count; ++i) {
2927
2928 /* The attachment should be one of the attachments described in the
2929 * render pass and used in the subpass.
2930 */
2931 const uint32_t a = state->subpass->color_attachments[i].attachment;
2932 assert(a < state->pass->attachment_count);
2933 if (a == VK_ATTACHMENT_UNUSED)
2934 continue;
2935
2936 /* Store some information regarding this attachment. */
2937 const struct anv_attachment_state *att_state = &state->attachments[a];
2938 const struct anv_image_view *iview = state->framebuffer->attachments[a];
2939 const struct anv_render_pass_attachment *rp_att =
2940 &state->pass->attachments[a];
2941
2942 if (att_state->aux_usage == ISL_AUX_USAGE_NONE)
2943 continue;
2944
2945 /* The fast clear state entry must be updated if a fast clear is going to
2946 * happen. The surface state must be updated if the clear value from a
2947 * prior fast clear may be needed.
2948 */
2949 if (att_state->pending_clear_aspects && att_state->fast_clear) {
2950 /* Update the fast clear state entry. */
2951 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color_rt_state,
2952 iview->image, iview->isl.base_level,
2953 true /* copy from ss */);
2954
2955 /* Fast-clears impact whether or not a resolve will be necessary. */
2956 if (iview->image->aux_usage == ISL_AUX_USAGE_CCS_E &&
2957 att_state->clear_color_is_zero) {
2958 /* This image always has the auxiliary buffer enabled. We can mark
2959 * the subresource as not needing a resolve because the clear color
2960 * will match what's in every RENDER_SURFACE_STATE object when it's
2961 * being used for sampling.
2962 */
2963 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
2964 iview->isl.base_level, false);
2965 } else {
2966 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
2967 iview->isl.base_level, true);
2968 }
2969 } else if (rp_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
2970 /* The attachment may have been fast-cleared in a previous render
2971 * pass and the value is needed now. Update the surface state(s).
2972 *
2973 * TODO: Do this only once per render pass instead of every subpass.
2974 */
2975 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color_rt_state,
2976 iview->image, iview->isl.base_level,
2977 false /* copy to ss */);
2978
2979 if (need_input_attachment_state(rp_att) &&
2980 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
2981 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input_att_state,
2982 iview->image, iview->isl.base_level,
2983 false /* copy to ss */);
2984 }
2985 }
2986 }
2987 }
2988
2989
2990 static void
2991 genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
2992 struct anv_subpass *subpass)
2993 {
2994 cmd_buffer->state.subpass = subpass;
2995
2996 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
2997
2998 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2999 * different views. If the client asks for instancing, we need to use the
3000 * Instance Data Step Rate to ensure that we repeat the client's
3001 * per-instance data once for each view. Since this bit is in
3002 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3003 * of each subpass.
3004 */
3005 if (GEN_GEN == 7)
3006 cmd_buffer->state.vb_dirty |= ~0;
3007
3008 /* Perform transitions to the subpass layout before any writes have
3009 * occurred.
3010 */
3011 cmd_buffer_subpass_transition_layouts(cmd_buffer, false);
3012
3013 /* Update clear values *after* performing automatic layout transitions.
3014 * This ensures that transitions from the UNDEFINED layout have had a chance
3015 * to populate the clear value buffer with the correct values for the
3016 * LOAD_OP_LOAD loadOp and that the fast-clears will update the buffer
3017 * without the aforementioned layout transition overwriting the fast-clear
3018 * value.
3019 */
3020 cmd_buffer_subpass_sync_fast_clear_values(cmd_buffer);
3021
3022 cmd_buffer_emit_depth_stencil(cmd_buffer);
3023
3024 anv_cmd_buffer_clear_subpass(cmd_buffer);
3025 }
3026
3027 void genX(CmdBeginRenderPass)(
3028 VkCommandBuffer commandBuffer,
3029 const VkRenderPassBeginInfo* pRenderPassBegin,
3030 VkSubpassContents contents)
3031 {
3032 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3033 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3034 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3035
3036 cmd_buffer->state.framebuffer = framebuffer;
3037 cmd_buffer->state.pass = pass;
3038 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3039 VkResult result =
3040 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3041
3042 /* If we failed to setup the attachments we should not try to go further */
3043 if (result != VK_SUCCESS) {
3044 assert(anv_batch_has_error(&cmd_buffer->batch));
3045 return;
3046 }
3047
3048 genX(flush_pipeline_select_3d)(cmd_buffer);
3049
3050 genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
3051
3052 cmd_buffer->state.pending_pipe_bits |=
3053 cmd_buffer->state.pass->subpass_flushes[0];
3054 }
3055
3056 void genX(CmdNextSubpass)(
3057 VkCommandBuffer commandBuffer,
3058 VkSubpassContents contents)
3059 {
3060 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3061
3062 if (anv_batch_has_error(&cmd_buffer->batch))
3063 return;
3064
3065 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3066
3067 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3068
3069 /* Perform transitions to the final layout after all writes have occurred.
3070 */
3071 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3072
3073 genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
3074
3075 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3076 cmd_buffer->state.pending_pipe_bits |=
3077 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3078 }
3079
3080 void genX(CmdEndRenderPass)(
3081 VkCommandBuffer commandBuffer)
3082 {
3083 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3084
3085 if (anv_batch_has_error(&cmd_buffer->batch))
3086 return;
3087
3088 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3089
3090 /* Perform transitions to the final layout after all writes have occurred.
3091 */
3092 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3093
3094 cmd_buffer->state.pending_pipe_bits |=
3095 cmd_buffer->state.pass->subpass_flushes[cmd_buffer->state.pass->subpass_count];
3096
3097 cmd_buffer->state.hiz_enabled = false;
3098
3099 #ifndef NDEBUG
3100 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
3101 #endif
3102
3103 /* Remove references to render pass specific state. This enables us to
3104 * detect whether or not we're in a renderpass.
3105 */
3106 cmd_buffer->state.framebuffer = NULL;
3107 cmd_buffer->state.pass = NULL;
3108 cmd_buffer->state.subpass = NULL;
3109 }