anv: implement another workaround for non pipelined states
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 #include "util/fast_idiv_by_const.h"
31
32 #include "common/gen_aux_map.h"
33 #include "common/gen_l3_config.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
36
37 /* We reserve GPR 14 and 15 for conditional rendering */
38 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
39 #define __gen_get_batch_dwords anv_batch_emit_dwords
40 #define __gen_address_offset anv_address_add
41 #include "common/gen_mi_builder.h"
42
43 static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
44 uint32_t pipeline);
45
46 static void
47 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
48 {
49 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
50 lri.RegisterOffset = reg;
51 lri.DataDWord = imm;
52 }
53 }
54
55 void
56 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
57 {
58 struct anv_device *device = cmd_buffer->device;
59 UNUSED const struct gen_device_info *devinfo = &device->info;
60 uint32_t mocs = device->isl_dev.mocs.internal;
61
62 /* If we are emitting a new state base address we probably need to re-emit
63 * binding tables.
64 */
65 cmd_buffer->state.descriptors_dirty |= ~0;
66
67 /* Emit a render target cache flush.
68 *
69 * This isn't documented anywhere in the PRM. However, it seems to be
70 * necessary prior to changing the surface state base adress. Without
71 * this, we get GPU hangs when using multi-level command buffers which
72 * clear depth, reset state base address, and then go render stuff.
73 */
74 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
75 pc.DCFlushEnable = true;
76 pc.RenderTargetCacheFlushEnable = true;
77 pc.CommandStreamerStallEnable = true;
78 #if GEN_GEN >= 12
79 pc.TileCacheFlushEnable = true;
80 #endif
81 #if GEN_GEN == 12
82 /* GEN:BUG:1606662791:
83 *
84 * Software must program PIPE_CONTROL command with "HDC Pipeline
85 * Flush" prior to programming of the below two non-pipeline state :
86 * * STATE_BASE_ADDRESS
87 * * 3DSTATE_BINDING_TABLE_POOL_ALLOC
88 */
89 if (devinfo->revision == 0 /* A0 */)
90 pc.HDCPipelineFlushEnable = true;
91 #endif
92 }
93
94 #if GEN_GEN == 12
95 /* GEN:BUG:1607854226:
96 *
97 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
98 * mode by putting the pipeline temporarily in 3D mode.
99 */
100 uint32_t gen12_wa_pipeline = cmd_buffer->state.current_pipeline;
101 genX(flush_pipeline_select_3d)(cmd_buffer);
102 #endif
103
104 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
105 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
106 sba.GeneralStateMOCS = mocs;
107 sba.GeneralStateBaseAddressModifyEnable = true;
108
109 sba.StatelessDataPortAccessMOCS = mocs;
110
111 sba.SurfaceStateBaseAddress =
112 anv_cmd_buffer_surface_base_address(cmd_buffer);
113 sba.SurfaceStateMOCS = mocs;
114 sba.SurfaceStateBaseAddressModifyEnable = true;
115
116 sba.DynamicStateBaseAddress =
117 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
118 sba.DynamicStateMOCS = mocs;
119 sba.DynamicStateBaseAddressModifyEnable = true;
120
121 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
122 sba.IndirectObjectMOCS = mocs;
123 sba.IndirectObjectBaseAddressModifyEnable = true;
124
125 sba.InstructionBaseAddress =
126 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
127 sba.InstructionMOCS = mocs;
128 sba.InstructionBaseAddressModifyEnable = true;
129
130 # if (GEN_GEN >= 8)
131 /* Broadwell requires that we specify a buffer size for a bunch of
132 * these fields. However, since we will be growing the BO's live, we
133 * just set them all to the maximum.
134 */
135 sba.GeneralStateBufferSize = 0xfffff;
136 sba.GeneralStateBufferSizeModifyEnable = true;
137 sba.DynamicStateBufferSize = 0xfffff;
138 sba.DynamicStateBufferSizeModifyEnable = true;
139 sba.IndirectObjectBufferSize = 0xfffff;
140 sba.IndirectObjectBufferSizeModifyEnable = true;
141 sba.InstructionBufferSize = 0xfffff;
142 sba.InstructionBuffersizeModifyEnable = true;
143 # else
144 /* On gen7, we have upper bounds instead. According to the docs,
145 * setting an upper bound of zero means that no bounds checking is
146 * performed so, in theory, we should be able to leave them zero.
147 * However, border color is broken and the GPU bounds-checks anyway.
148 * To avoid this and other potential problems, we may as well set it
149 * for everything.
150 */
151 sba.GeneralStateAccessUpperBound =
152 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
153 sba.GeneralStateAccessUpperBoundModifyEnable = true;
154 sba.DynamicStateAccessUpperBound =
155 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
156 sba.DynamicStateAccessUpperBoundModifyEnable = true;
157 sba.InstructionAccessUpperBound =
158 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
159 sba.InstructionAccessUpperBoundModifyEnable = true;
160 # endif
161 # if (GEN_GEN >= 9)
162 if (cmd_buffer->device->instance->physicalDevice.use_softpin) {
163 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
164 .bo = device->surface_state_pool.block_pool.bo,
165 .offset = 0,
166 };
167 sba.BindlessSurfaceStateSize = (1 << 20) - 1;
168 } else {
169 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
170 sba.BindlessSurfaceStateSize = 0;
171 }
172 sba.BindlessSurfaceStateMOCS = mocs;
173 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
174 # endif
175 # if (GEN_GEN >= 10)
176 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
177 sba.BindlessSamplerStateMOCS = mocs;
178 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
179 sba.BindlessSamplerStateBufferSize = 0;
180 # endif
181 }
182
183 #if GEN_GEN == 12
184 /* GEN:BUG:1607854226:
185 *
186 * Put the pipeline back into its current mode.
187 */
188 if (gen12_wa_pipeline != UINT32_MAX)
189 genX(flush_pipeline_select)(cmd_buffer, gen12_wa_pipeline);
190 #endif
191
192 /* After re-setting the surface state base address, we have to do some
193 * cache flusing so that the sampler engine will pick up the new
194 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
195 * Shared Function > 3D Sampler > State > State Caching (page 96):
196 *
197 * Coherency with system memory in the state cache, like the texture
198 * cache is handled partially by software. It is expected that the
199 * command stream or shader will issue Cache Flush operation or
200 * Cache_Flush sampler message to ensure that the L1 cache remains
201 * coherent with system memory.
202 *
203 * [...]
204 *
205 * Whenever the value of the Dynamic_State_Base_Addr,
206 * Surface_State_Base_Addr are altered, the L1 state cache must be
207 * invalidated to ensure the new surface or sampler state is fetched
208 * from system memory.
209 *
210 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
211 * which, according the PIPE_CONTROL instruction documentation in the
212 * Broadwell PRM:
213 *
214 * Setting this bit is independent of any other bit in this packet.
215 * This bit controls the invalidation of the L1 and L2 state caches
216 * at the top of the pipe i.e. at the parsing time.
217 *
218 * Unfortunately, experimentation seems to indicate that state cache
219 * invalidation through a PIPE_CONTROL does nothing whatsoever in
220 * regards to surface state and binding tables. In stead, it seems that
221 * invalidating the texture cache is what is actually needed.
222 *
223 * XXX: As far as we have been able to determine through
224 * experimentation, shows that flush the texture cache appears to be
225 * sufficient. The theory here is that all of the sampling/rendering
226 * units cache the binding table in the texture cache. However, we have
227 * yet to be able to actually confirm this.
228 */
229 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
230 pc.TextureCacheInvalidationEnable = true;
231 pc.ConstantCacheInvalidationEnable = true;
232 pc.StateCacheInvalidationEnable = true;
233 }
234 }
235
236 static void
237 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
238 struct anv_state state, struct anv_address addr)
239 {
240 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
241
242 VkResult result =
243 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
244 state.offset + isl_dev->ss.addr_offset,
245 addr.bo, addr.offset, NULL);
246 if (result != VK_SUCCESS)
247 anv_batch_set_error(&cmd_buffer->batch, result);
248 }
249
250 static void
251 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
252 struct anv_surface_state state)
253 {
254 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
255
256 assert(!anv_address_is_null(state.address));
257 add_surface_reloc(cmd_buffer, state.state, state.address);
258
259 if (!anv_address_is_null(state.aux_address)) {
260 VkResult result =
261 anv_reloc_list_add(&cmd_buffer->surface_relocs,
262 &cmd_buffer->pool->alloc,
263 state.state.offset + isl_dev->ss.aux_addr_offset,
264 state.aux_address.bo,
265 state.aux_address.offset,
266 NULL);
267 if (result != VK_SUCCESS)
268 anv_batch_set_error(&cmd_buffer->batch, result);
269 }
270
271 if (!anv_address_is_null(state.clear_address)) {
272 VkResult result =
273 anv_reloc_list_add(&cmd_buffer->surface_relocs,
274 &cmd_buffer->pool->alloc,
275 state.state.offset +
276 isl_dev->ss.clear_color_state_offset,
277 state.clear_address.bo,
278 state.clear_address.offset,
279 NULL);
280 if (result != VK_SUCCESS)
281 anv_batch_set_error(&cmd_buffer->batch, result);
282 }
283 }
284
285 static void
286 color_attachment_compute_aux_usage(struct anv_device * device,
287 struct anv_cmd_state * cmd_state,
288 uint32_t att, VkRect2D render_area,
289 union isl_color_value *fast_clear_color)
290 {
291 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
292 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
293
294 assert(iview->n_planes == 1);
295
296 if (iview->planes[0].isl.base_array_layer >=
297 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
298 iview->planes[0].isl.base_level)) {
299 /* There is no aux buffer which corresponds to the level and layer(s)
300 * being accessed.
301 */
302 att_state->aux_usage = ISL_AUX_USAGE_NONE;
303 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
304 att_state->fast_clear = false;
305 return;
306 }
307
308 att_state->aux_usage =
309 anv_layout_to_aux_usage(&device->info, iview->image,
310 VK_IMAGE_ASPECT_COLOR_BIT,
311 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
312
313 /* If we don't have aux, then we should have returned early in the layer
314 * check above. If we got here, we must have something.
315 */
316 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
317
318 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
319 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
320 att_state->input_aux_usage = att_state->aux_usage;
321 } else {
322 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
323 *
324 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
325 * setting is only allowed if Surface Format supported for Fast
326 * Clear. In addition, if the surface is bound to the sampling
327 * engine, Surface Format must be supported for Render Target
328 * Compression for surfaces bound to the sampling engine."
329 *
330 * In other words, we can only sample from a fast-cleared image if it
331 * also supports color compression.
332 */
333 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format) &&
334 isl_format_supports_ccs_d(&device->info, iview->planes[0].isl.format)) {
335 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
336
337 /* While fast-clear resolves and partial resolves are fairly cheap in the
338 * case where you render to most of the pixels, full resolves are not
339 * because they potentially involve reading and writing the entire
340 * framebuffer. If we can't texture with CCS_E, we should leave it off and
341 * limit ourselves to fast clears.
342 */
343 if (cmd_state->pass->attachments[att].first_subpass_layout ==
344 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
345 anv_perf_warn(device->instance, iview->image,
346 "Not temporarily enabling CCS_E.");
347 }
348 } else {
349 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
350 }
351 }
352
353 assert(iview->image->planes[0].aux_surface.isl.usage &
354 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
355
356 union isl_color_value clear_color = {};
357 anv_clear_color_from_att_state(&clear_color, att_state, iview);
358
359 att_state->clear_color_is_zero_one =
360 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
361 att_state->clear_color_is_zero =
362 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
363
364 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
365 /* Start by getting the fast clear type. We use the first subpass
366 * layout here because we don't want to fast-clear if the first subpass
367 * to use the attachment can't handle fast-clears.
368 */
369 enum anv_fast_clear_type fast_clear_type =
370 anv_layout_to_fast_clear_type(&device->info, iview->image,
371 VK_IMAGE_ASPECT_COLOR_BIT,
372 cmd_state->pass->attachments[att].first_subpass_layout);
373 switch (fast_clear_type) {
374 case ANV_FAST_CLEAR_NONE:
375 att_state->fast_clear = false;
376 break;
377 case ANV_FAST_CLEAR_DEFAULT_VALUE:
378 att_state->fast_clear = att_state->clear_color_is_zero;
379 break;
380 case ANV_FAST_CLEAR_ANY:
381 att_state->fast_clear = true;
382 break;
383 }
384
385 /* Potentially, we could do partial fast-clears but doing so has crazy
386 * alignment restrictions. It's easier to just restrict to full size
387 * fast clears for now.
388 */
389 if (render_area.offset.x != 0 ||
390 render_area.offset.y != 0 ||
391 render_area.extent.width != iview->extent.width ||
392 render_area.extent.height != iview->extent.height)
393 att_state->fast_clear = false;
394
395 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
396 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
397 att_state->fast_clear = false;
398
399 /* We only allow fast clears to the first slice of an image (level 0,
400 * layer 0) and only for the entire slice. This guarantees us that, at
401 * any given time, there is only one clear color on any given image at
402 * any given time. At the time of our testing (Jan 17, 2018), there
403 * were no known applications which would benefit from fast-clearing
404 * more than just the first slice.
405 */
406 if (att_state->fast_clear &&
407 (iview->planes[0].isl.base_level > 0 ||
408 iview->planes[0].isl.base_array_layer > 0)) {
409 anv_perf_warn(device->instance, iview->image,
410 "Rendering with multi-lod or multi-layer framebuffer "
411 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
412 "baseArrayLayer > 0. Not fast clearing.");
413 att_state->fast_clear = false;
414 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
415 anv_perf_warn(device->instance, iview->image,
416 "Rendering to a multi-layer framebuffer with "
417 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
418 }
419
420 if (att_state->fast_clear)
421 *fast_clear_color = clear_color;
422 } else {
423 att_state->fast_clear = false;
424 }
425 }
426
427 static void
428 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
429 struct anv_cmd_state *cmd_state,
430 uint32_t att, VkRect2D render_area)
431 {
432 struct anv_render_pass_attachment *pass_att =
433 &cmd_state->pass->attachments[att];
434 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
435 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
436
437 /* These will be initialized after the first subpass transition. */
438 att_state->aux_usage = ISL_AUX_USAGE_NONE;
439 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
440
441 if (GEN_GEN == 7) {
442 /* We don't do any HiZ or depth fast-clears on gen7 yet */
443 att_state->fast_clear = false;
444 return;
445 }
446
447 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
448 /* If we're just clearing stencil, we can always HiZ clear */
449 att_state->fast_clear = true;
450 return;
451 }
452
453 /* Default to false for now */
454 att_state->fast_clear = false;
455
456 /* We must have depth in order to have HiZ */
457 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
458 return;
459
460 const enum isl_aux_usage first_subpass_aux_usage =
461 anv_layout_to_aux_usage(&device->info, iview->image,
462 VK_IMAGE_ASPECT_DEPTH_BIT,
463 pass_att->first_subpass_layout);
464 if (!blorp_can_hiz_clear_depth(&device->info,
465 &iview->image->planes[0].surface.isl,
466 first_subpass_aux_usage,
467 iview->planes[0].isl.base_level,
468 iview->planes[0].isl.base_array_layer,
469 render_area.offset.x,
470 render_area.offset.y,
471 render_area.offset.x +
472 render_area.extent.width,
473 render_area.offset.y +
474 render_area.extent.height))
475 return;
476
477 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
478 return;
479
480 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
481 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
482 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
483 * only supports returning 0.0f. Gens prior to gen8 do not support this
484 * feature at all.
485 */
486 return;
487 }
488
489 /* If we got here, then we can fast clear */
490 att_state->fast_clear = true;
491 }
492
493 static bool
494 need_input_attachment_state(const struct anv_render_pass_attachment *att)
495 {
496 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
497 return false;
498
499 /* We only allocate input attachment states for color surfaces. Compression
500 * is not yet enabled for depth textures and stencil doesn't allow
501 * compression so we can just use the texture surface state from the view.
502 */
503 return vk_format_is_color(att->format);
504 }
505
506 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
507 * the initial layout is undefined, the HiZ buffer and depth buffer will
508 * represent the same data at the end of this operation.
509 */
510 static void
511 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
512 const struct anv_image *image,
513 VkImageLayout initial_layout,
514 VkImageLayout final_layout)
515 {
516 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
517 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
518 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
519 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
520 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
521 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
522
523 enum isl_aux_op hiz_op;
524 if (hiz_enabled && !enable_hiz) {
525 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
526 } else if (!hiz_enabled && enable_hiz) {
527 hiz_op = ISL_AUX_OP_AMBIGUATE;
528 } else {
529 assert(hiz_enabled == enable_hiz);
530 /* If the same buffer will be used, no resolves are necessary. */
531 hiz_op = ISL_AUX_OP_NONE;
532 }
533
534 if (hiz_op != ISL_AUX_OP_NONE)
535 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
536 0, 0, 1, hiz_op);
537 }
538
539 static inline bool
540 vk_image_layout_stencil_write_optimal(VkImageLayout layout)
541 {
542 return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
543 layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
544 layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
545 }
546
547 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
548 * the initial layout is undefined, the HiZ buffer and depth buffer will
549 * represent the same data at the end of this operation.
550 */
551 static void
552 transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
553 const struct anv_image *image,
554 uint32_t base_level, uint32_t level_count,
555 uint32_t base_layer, uint32_t layer_count,
556 VkImageLayout initial_layout,
557 VkImageLayout final_layout)
558 {
559 #if GEN_GEN == 7
560 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
561 VK_IMAGE_ASPECT_STENCIL_BIT);
562
563 /* On gen7, we have to store a texturable version of the stencil buffer in
564 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
565 * forth at strategic points. Stencil writes are only allowed in following
566 * layouts:
567 *
568 * - VK_IMAGE_LAYOUT_GENERAL
569 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
570 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
571 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
572 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
573 *
574 * For general, we have no nice opportunity to transition so we do the copy
575 * to the shadow unconditionally at the end of the subpass. For transfer
576 * destinations, we can update it as part of the transfer op. For the other
577 * layouts, we delay the copy until a transition into some other layout.
578 */
579 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
580 vk_image_layout_stencil_write_optimal(initial_layout) &&
581 !vk_image_layout_stencil_write_optimal(final_layout)) {
582 anv_image_copy_to_shadow(cmd_buffer, image,
583 VK_IMAGE_ASPECT_STENCIL_BIT,
584 base_level, level_count,
585 base_layer, layer_count);
586 }
587 #endif /* GEN_GEN == 7 */
588 }
589
590 #define MI_PREDICATE_SRC0 0x2400
591 #define MI_PREDICATE_SRC1 0x2408
592 #define MI_PREDICATE_RESULT 0x2418
593
594 static void
595 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
596 const struct anv_image *image,
597 VkImageAspectFlagBits aspect,
598 uint32_t level,
599 uint32_t base_layer, uint32_t layer_count,
600 bool compressed)
601 {
602 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
603
604 /* We only have compression tracking for CCS_E */
605 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
606 return;
607
608 for (uint32_t a = 0; a < layer_count; a++) {
609 uint32_t layer = base_layer + a;
610 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
611 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
612 image, aspect,
613 level, layer);
614 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
615 }
616 }
617 }
618
619 static void
620 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
621 const struct anv_image *image,
622 VkImageAspectFlagBits aspect,
623 enum anv_fast_clear_type fast_clear)
624 {
625 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
626 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
627 image, aspect);
628 sdi.ImmediateData = fast_clear;
629 }
630
631 /* Whenever we have fast-clear, we consider that slice to be compressed.
632 * This makes building predicates much easier.
633 */
634 if (fast_clear != ANV_FAST_CLEAR_NONE)
635 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
636 }
637
638 /* This is only really practical on haswell and above because it requires
639 * MI math in order to get it correct.
640 */
641 #if GEN_GEN >= 8 || GEN_IS_HASWELL
642 static void
643 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
644 const struct anv_image *image,
645 VkImageAspectFlagBits aspect,
646 uint32_t level, uint32_t array_layer,
647 enum isl_aux_op resolve_op,
648 enum anv_fast_clear_type fast_clear_supported)
649 {
650 struct gen_mi_builder b;
651 gen_mi_builder_init(&b, &cmd_buffer->batch);
652
653 const struct gen_mi_value fast_clear_type =
654 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
655 image, aspect));
656
657 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
658 /* In this case, we're doing a full resolve which means we want the
659 * resolve to happen if any compression (including fast-clears) is
660 * present.
661 *
662 * In order to simplify the logic a bit, we make the assumption that,
663 * if the first slice has been fast-cleared, it is also marked as
664 * compressed. See also set_image_fast_clear_state.
665 */
666 const struct gen_mi_value compression_state =
667 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
668 image, aspect,
669 level, array_layer));
670 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
671 compression_state);
672 gen_mi_store(&b, compression_state, gen_mi_imm(0));
673
674 if (level == 0 && array_layer == 0) {
675 /* If the predicate is true, we want to write 0 to the fast clear type
676 * and, if it's false, leave it alone. We can do this by writing
677 *
678 * clear_type = clear_type & ~predicate;
679 */
680 struct gen_mi_value new_fast_clear_type =
681 gen_mi_iand(&b, fast_clear_type,
682 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
683 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
684 }
685 } else if (level == 0 && array_layer == 0) {
686 /* In this case, we are doing a partial resolve to get rid of fast-clear
687 * colors. We don't care about the compression state but we do care
688 * about how much fast clear is allowed by the final layout.
689 */
690 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
691 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
692
693 /* We need to compute (fast_clear_supported < image->fast_clear) */
694 struct gen_mi_value pred =
695 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
696 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
697 gen_mi_value_ref(&b, pred));
698
699 /* If the predicate is true, we want to write 0 to the fast clear type
700 * and, if it's false, leave it alone. We can do this by writing
701 *
702 * clear_type = clear_type & ~predicate;
703 */
704 struct gen_mi_value new_fast_clear_type =
705 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
706 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
707 } else {
708 /* In this case, we're trying to do a partial resolve on a slice that
709 * doesn't have clear color. There's nothing to do.
710 */
711 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
712 return;
713 }
714
715 /* Set src1 to 0 and use a != condition */
716 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
717
718 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
719 mip.LoadOperation = LOAD_LOADINV;
720 mip.CombineOperation = COMBINE_SET;
721 mip.CompareOperation = COMPARE_SRCS_EQUAL;
722 }
723 }
724 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
725
726 #if GEN_GEN <= 8
727 static void
728 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
729 const struct anv_image *image,
730 VkImageAspectFlagBits aspect,
731 uint32_t level, uint32_t array_layer,
732 enum isl_aux_op resolve_op,
733 enum anv_fast_clear_type fast_clear_supported)
734 {
735 struct gen_mi_builder b;
736 gen_mi_builder_init(&b, &cmd_buffer->batch);
737
738 struct gen_mi_value fast_clear_type_mem =
739 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
740 image, aspect));
741
742 /* This only works for partial resolves and only when the clear color is
743 * all or nothing. On the upside, this emits less command streamer code
744 * and works on Ivybridge and Bay Trail.
745 */
746 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
747 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
748
749 /* We don't support fast clears on anything other than the first slice. */
750 if (level > 0 || array_layer > 0)
751 return;
752
753 /* On gen8, we don't have a concept of default clear colors because we
754 * can't sample from CCS surfaces. It's enough to just load the fast clear
755 * state into the predicate register.
756 */
757 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
758 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
759 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
760
761 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
762 mip.LoadOperation = LOAD_LOADINV;
763 mip.CombineOperation = COMBINE_SET;
764 mip.CompareOperation = COMPARE_SRCS_EQUAL;
765 }
766 }
767 #endif /* GEN_GEN <= 8 */
768
769 static void
770 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
771 const struct anv_image *image,
772 enum isl_format format,
773 VkImageAspectFlagBits aspect,
774 uint32_t level, uint32_t array_layer,
775 enum isl_aux_op resolve_op,
776 enum anv_fast_clear_type fast_clear_supported)
777 {
778 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
779
780 #if GEN_GEN >= 9
781 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
782 aspect, level, array_layer,
783 resolve_op, fast_clear_supported);
784 #else /* GEN_GEN <= 8 */
785 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
786 aspect, level, array_layer,
787 resolve_op, fast_clear_supported);
788 #endif
789
790 /* CCS_D only supports full resolves and BLORP will assert on us if we try
791 * to do a partial resolve on a CCS_D surface.
792 */
793 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
794 image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
795 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
796
797 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
798 array_layer, 1, resolve_op, NULL, true);
799 }
800
801 static void
802 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
803 const struct anv_image *image,
804 enum isl_format format,
805 VkImageAspectFlagBits aspect,
806 uint32_t array_layer,
807 enum isl_aux_op resolve_op,
808 enum anv_fast_clear_type fast_clear_supported)
809 {
810 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
811 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
812
813 #if GEN_GEN >= 8 || GEN_IS_HASWELL
814 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
815 aspect, 0, array_layer,
816 resolve_op, fast_clear_supported);
817
818 anv_image_mcs_op(cmd_buffer, image, format, aspect,
819 array_layer, 1, resolve_op, NULL, true);
820 #else
821 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
822 #endif
823 }
824
825 void
826 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
827 const struct anv_image *image,
828 VkImageAspectFlagBits aspect,
829 enum isl_aux_usage aux_usage,
830 uint32_t level,
831 uint32_t base_layer,
832 uint32_t layer_count)
833 {
834 /* The aspect must be exactly one of the image aspects. */
835 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
836
837 /* The only compression types with more than just fast-clears are MCS,
838 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
839 * track the current fast-clear and compression state. This leaves us
840 * with just MCS and CCS_E.
841 */
842 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
843 aux_usage != ISL_AUX_USAGE_MCS)
844 return;
845
846 set_image_compressed_bit(cmd_buffer, image, aspect,
847 level, base_layer, layer_count, true);
848 }
849
850 static void
851 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
852 const struct anv_image *image,
853 VkImageAspectFlagBits aspect)
854 {
855 assert(cmd_buffer && image);
856 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
857
858 set_image_fast_clear_state(cmd_buffer, image, aspect,
859 ANV_FAST_CLEAR_NONE);
860
861 /* Initialize the struct fields that are accessed for fast-clears so that
862 * the HW restrictions on the field values are satisfied.
863 */
864 struct anv_address addr =
865 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
866
867 if (GEN_GEN >= 9) {
868 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
869 const unsigned num_dwords = GEN_GEN >= 10 ?
870 isl_dev->ss.clear_color_state_size / 4 :
871 isl_dev->ss.clear_value_size / 4;
872 for (unsigned i = 0; i < num_dwords; i++) {
873 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
874 sdi.Address = addr;
875 sdi.Address.offset += i * 4;
876 sdi.ImmediateData = 0;
877 }
878 }
879 } else {
880 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
881 sdi.Address = addr;
882 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
883 /* Pre-SKL, the dword containing the clear values also contains
884 * other fields, so we need to initialize those fields to match the
885 * values that would be in a color attachment.
886 */
887 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
888 ISL_CHANNEL_SELECT_GREEN << 22 |
889 ISL_CHANNEL_SELECT_BLUE << 19 |
890 ISL_CHANNEL_SELECT_ALPHA << 16;
891 } else if (GEN_GEN == 7) {
892 /* On IVB, the dword containing the clear values also contains
893 * other fields that must be zero or can be zero.
894 */
895 sdi.ImmediateData = 0;
896 }
897 }
898 }
899 }
900
901 /* Copy the fast-clear value dword(s) between a surface state object and an
902 * image's fast clear state buffer.
903 */
904 static void
905 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
906 struct anv_state surface_state,
907 const struct anv_image *image,
908 VkImageAspectFlagBits aspect,
909 bool copy_from_surface_state)
910 {
911 assert(cmd_buffer && image);
912 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
913
914 struct anv_address ss_clear_addr = {
915 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
916 .offset = surface_state.offset +
917 cmd_buffer->device->isl_dev.ss.clear_value_offset,
918 };
919 const struct anv_address entry_addr =
920 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
921 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
922
923 #if GEN_GEN == 7
924 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
925 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
926 * in-flight when they are issued even if the memory touched is not
927 * currently active for rendering. The weird bit is that it is not the
928 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
929 * rendering hangs such that the next stalling command after the
930 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
931 *
932 * It is unclear exactly why this hang occurs. Both MI commands come with
933 * warnings about the 3D pipeline but that doesn't seem to fully explain
934 * it. My (Jason's) best theory is that it has something to do with the
935 * fact that we're using a GPU state register as our temporary and that
936 * something with reading/writing it is causing problems.
937 *
938 * In order to work around this issue, we emit a PIPE_CONTROL with the
939 * command streamer stall bit set.
940 */
941 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
942 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
943 #endif
944
945 struct gen_mi_builder b;
946 gen_mi_builder_init(&b, &cmd_buffer->batch);
947
948 if (copy_from_surface_state) {
949 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
950 } else {
951 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
952
953 /* Updating a surface state object may require that the state cache be
954 * invalidated. From the SKL PRM, Shared Functions -> State -> State
955 * Caching:
956 *
957 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
958 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
959 * modified [...], the L1 state cache must be invalidated to ensure
960 * the new surface or sampler state is fetched from system memory.
961 *
962 * In testing, SKL doesn't actually seem to need this, but HSW does.
963 */
964 cmd_buffer->state.pending_pipe_bits |=
965 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
966 }
967 }
968
969 /**
970 * @brief Transitions a color buffer from one layout to another.
971 *
972 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
973 * more information.
974 *
975 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
976 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
977 * this represents the maximum layers to transition at each
978 * specified miplevel.
979 */
980 static void
981 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
982 const struct anv_image *image,
983 VkImageAspectFlagBits aspect,
984 const uint32_t base_level, uint32_t level_count,
985 uint32_t base_layer, uint32_t layer_count,
986 VkImageLayout initial_layout,
987 VkImageLayout final_layout)
988 {
989 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
990 /* Validate the inputs. */
991 assert(cmd_buffer);
992 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
993 /* These values aren't supported for simplicity's sake. */
994 assert(level_count != VK_REMAINING_MIP_LEVELS &&
995 layer_count != VK_REMAINING_ARRAY_LAYERS);
996 /* Ensure the subresource range is valid. */
997 UNUSED uint64_t last_level_num = base_level + level_count;
998 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
999 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
1000 assert((uint64_t)base_layer + layer_count <= image_layers);
1001 assert(last_level_num <= image->levels);
1002 /* The spec disallows these final layouts. */
1003 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
1004 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
1005
1006 /* No work is necessary if the layout stays the same or if this subresource
1007 * range lacks auxiliary data.
1008 */
1009 if (initial_layout == final_layout)
1010 return;
1011
1012 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1013
1014 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1015 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
1016 /* This surface is a linear compressed image with a tiled shadow surface
1017 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
1018 * we need to ensure the shadow copy is up-to-date.
1019 */
1020 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1021 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
1022 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1023 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
1024 assert(plane == 0);
1025 anv_image_copy_to_shadow(cmd_buffer, image,
1026 VK_IMAGE_ASPECT_COLOR_BIT,
1027 base_level, level_count,
1028 base_layer, layer_count);
1029 }
1030
1031 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
1032 return;
1033
1034 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
1035
1036 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
1037 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
1038 /* A subresource in the undefined layout may have been aliased and
1039 * populated with any arrangement of bits. Therefore, we must initialize
1040 * the related aux buffer and clear buffer entry with desirable values.
1041 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
1042 * images with VK_IMAGE_TILING_OPTIMAL.
1043 *
1044 * Initialize the relevant clear buffer entries.
1045 */
1046 if (base_level == 0 && base_layer == 0)
1047 init_fast_clear_color(cmd_buffer, image, aspect);
1048
1049 /* Initialize the aux buffers to enable correct rendering. In order to
1050 * ensure that things such as storage images work correctly, aux buffers
1051 * need to be initialized to valid data.
1052 *
1053 * Having an aux buffer with invalid data is a problem for two reasons:
1054 *
1055 * 1) Having an invalid value in the buffer can confuse the hardware.
1056 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1057 * invalid and leads to the hardware doing strange things. It
1058 * doesn't hang as far as we can tell but rendering corruption can
1059 * occur.
1060 *
1061 * 2) If this transition is into the GENERAL layout and we then use the
1062 * image as a storage image, then we must have the aux buffer in the
1063 * pass-through state so that, if we then go to texture from the
1064 * image, we get the results of our storage image writes and not the
1065 * fast clear color or other random data.
1066 *
1067 * For CCS both of the problems above are real demonstrable issues. In
1068 * that case, the only thing we can do is to perform an ambiguate to
1069 * transition the aux surface into the pass-through state.
1070 *
1071 * For MCS, (2) is never an issue because we don't support multisampled
1072 * storage images. In theory, issue (1) is a problem with MCS but we've
1073 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1074 * theory, be interpreted as something but we don't know that all bit
1075 * patterns are actually valid. For 2x and 8x, you could easily end up
1076 * with the MCS referring to an invalid plane because not all bits of
1077 * the MCS value are actually used. Even though we've never seen issues
1078 * in the wild, it's best to play it safe and initialize the MCS. We
1079 * can use a fast-clear for MCS because we only ever touch from render
1080 * and texture (no image load store).
1081 */
1082 if (image->samples == 1) {
1083 for (uint32_t l = 0; l < level_count; l++) {
1084 const uint32_t level = base_level + l;
1085
1086 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1087 if (base_layer >= aux_layers)
1088 break; /* We will only get fewer layers as level increases */
1089 uint32_t level_layer_count =
1090 MIN2(layer_count, aux_layers - base_layer);
1091
1092 anv_image_ccs_op(cmd_buffer, image,
1093 image->planes[plane].surface.isl.format,
1094 aspect, level, base_layer, level_layer_count,
1095 ISL_AUX_OP_AMBIGUATE, NULL, false);
1096
1097 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1098 set_image_compressed_bit(cmd_buffer, image, aspect,
1099 level, base_layer, level_layer_count,
1100 false);
1101 }
1102 }
1103 } else {
1104 if (image->samples == 4 || image->samples == 16) {
1105 anv_perf_warn(cmd_buffer->device->instance, image,
1106 "Doing a potentially unnecessary fast-clear to "
1107 "define an MCS buffer.");
1108 }
1109
1110 assert(base_level == 0 && level_count == 1);
1111 anv_image_mcs_op(cmd_buffer, image,
1112 image->planes[plane].surface.isl.format,
1113 aspect, base_layer, layer_count,
1114 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1115 }
1116 return;
1117 }
1118
1119 const enum isl_aux_usage initial_aux_usage =
1120 anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout);
1121 const enum isl_aux_usage final_aux_usage =
1122 anv_layout_to_aux_usage(devinfo, image, aspect, final_layout);
1123
1124 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1125 * We can handle transitions between CCS_D/E to and from NONE. What we
1126 * don't yet handle is switching between CCS_E and CCS_D within a given
1127 * image. Doing so in a performant way requires more detailed aux state
1128 * tracking such as what is done in i965. For now, just assume that we
1129 * only have one type of compression.
1130 */
1131 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1132 final_aux_usage == ISL_AUX_USAGE_NONE ||
1133 initial_aux_usage == final_aux_usage);
1134
1135 /* If initial aux usage is NONE, there is nothing to resolve */
1136 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1137 return;
1138
1139 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1140
1141 /* If the initial layout supports more fast clear than the final layout
1142 * then we need at least a partial resolve.
1143 */
1144 const enum anv_fast_clear_type initial_fast_clear =
1145 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1146 const enum anv_fast_clear_type final_fast_clear =
1147 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1148 if (final_fast_clear < initial_fast_clear)
1149 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1150
1151 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1152 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1153 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1154
1155 if (resolve_op == ISL_AUX_OP_NONE)
1156 return;
1157
1158 /* Perform a resolve to synchronize data between the main and aux buffer.
1159 * Before we begin, we must satisfy the cache flushing requirement specified
1160 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1161 *
1162 * Any transition from any value in {Clear, Render, Resolve} to a
1163 * different value in {Clear, Render, Resolve} requires end of pipe
1164 * synchronization.
1165 *
1166 * We perform a flush of the write cache before and after the clear and
1167 * resolve operations to meet this requirement.
1168 *
1169 * Unlike other drawing, fast clear operations are not properly
1170 * synchronized. The first PIPE_CONTROL here likely ensures that the
1171 * contents of the previous render or clear hit the render target before we
1172 * resolve and the second likely ensures that the resolve is complete before
1173 * we do any more rendering or clearing.
1174 */
1175 cmd_buffer->state.pending_pipe_bits |=
1176 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1177
1178 for (uint32_t l = 0; l < level_count; l++) {
1179 uint32_t level = base_level + l;
1180
1181 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1182 if (base_layer >= aux_layers)
1183 break; /* We will only get fewer layers as level increases */
1184 uint32_t level_layer_count =
1185 MIN2(layer_count, aux_layers - base_layer);
1186
1187 for (uint32_t a = 0; a < level_layer_count; a++) {
1188 uint32_t array_layer = base_layer + a;
1189 if (image->samples == 1) {
1190 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1191 image->planes[plane].surface.isl.format,
1192 aspect, level, array_layer, resolve_op,
1193 final_fast_clear);
1194 } else {
1195 /* We only support fast-clear on the first layer so partial
1196 * resolves should not be used on other layers as they will use
1197 * the clear color stored in memory that is only valid for layer0.
1198 */
1199 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1200 array_layer != 0)
1201 continue;
1202
1203 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1204 image->planes[plane].surface.isl.format,
1205 aspect, array_layer, resolve_op,
1206 final_fast_clear);
1207 }
1208 }
1209 }
1210
1211 cmd_buffer->state.pending_pipe_bits |=
1212 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1213 }
1214
1215 /**
1216 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1217 */
1218 static VkResult
1219 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1220 struct anv_render_pass *pass,
1221 const VkRenderPassBeginInfo *begin)
1222 {
1223 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1224 struct anv_cmd_state *state = &cmd_buffer->state;
1225 struct anv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
1226
1227 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1228
1229 if (pass->attachment_count > 0) {
1230 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1231 pass->attachment_count *
1232 sizeof(state->attachments[0]),
1233 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1234 if (state->attachments == NULL) {
1235 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1236 return anv_batch_set_error(&cmd_buffer->batch,
1237 VK_ERROR_OUT_OF_HOST_MEMORY);
1238 }
1239 } else {
1240 state->attachments = NULL;
1241 }
1242
1243 /* Reserve one for the NULL state. */
1244 unsigned num_states = 1;
1245 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1246 if (vk_format_is_color(pass->attachments[i].format))
1247 num_states++;
1248
1249 if (need_input_attachment_state(&pass->attachments[i]))
1250 num_states++;
1251 }
1252
1253 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1254 state->render_pass_states =
1255 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1256 num_states * ss_stride, isl_dev->ss.align);
1257
1258 struct anv_state next_state = state->render_pass_states;
1259 next_state.alloc_size = isl_dev->ss.size;
1260
1261 state->null_surface_state = next_state;
1262 next_state.offset += ss_stride;
1263 next_state.map += ss_stride;
1264
1265 const VkRenderPassAttachmentBeginInfoKHR *begin_attachment =
1266 vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
1267
1268 if (begin && !begin_attachment)
1269 assert(pass->attachment_count == framebuffer->attachment_count);
1270
1271 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1272 if (vk_format_is_color(pass->attachments[i].format)) {
1273 state->attachments[i].color.state = next_state;
1274 next_state.offset += ss_stride;
1275 next_state.map += ss_stride;
1276 }
1277
1278 if (need_input_attachment_state(&pass->attachments[i])) {
1279 state->attachments[i].input.state = next_state;
1280 next_state.offset += ss_stride;
1281 next_state.map += ss_stride;
1282 }
1283
1284 if (begin_attachment && begin_attachment->attachmentCount != 0) {
1285 assert(begin_attachment->attachmentCount == pass->attachment_count);
1286 ANV_FROM_HANDLE(anv_image_view, iview, begin_attachment->pAttachments[i]);
1287 cmd_buffer->state.attachments[i].image_view = iview;
1288 } else if (framebuffer && i < framebuffer->attachment_count) {
1289 cmd_buffer->state.attachments[i].image_view = framebuffer->attachments[i];
1290 }
1291 }
1292 assert(next_state.offset == state->render_pass_states.offset +
1293 state->render_pass_states.alloc_size);
1294
1295 if (begin) {
1296 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1297 isl_extent3d(framebuffer->width,
1298 framebuffer->height,
1299 framebuffer->layers));
1300
1301 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1302 struct anv_render_pass_attachment *att = &pass->attachments[i];
1303 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1304 VkImageAspectFlags clear_aspects = 0;
1305 VkImageAspectFlags load_aspects = 0;
1306
1307 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1308 /* color attachment */
1309 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1310 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1311 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1312 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1313 }
1314 } else {
1315 /* depthstencil attachment */
1316 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1317 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1318 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1319 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1320 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1321 }
1322 }
1323 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1324 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1325 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1326 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1327 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1328 }
1329 }
1330 }
1331
1332 state->attachments[i].current_layout = att->initial_layout;
1333 state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
1334 state->attachments[i].pending_clear_aspects = clear_aspects;
1335 state->attachments[i].pending_load_aspects = load_aspects;
1336 if (clear_aspects)
1337 state->attachments[i].clear_value = begin->pClearValues[i];
1338
1339 struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
1340 anv_assert(iview->vk_format == att->format);
1341
1342 const uint32_t num_layers = iview->planes[0].isl.array_len;
1343 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1344
1345 union isl_color_value clear_color = { .u32 = { 0, } };
1346 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1347 anv_assert(iview->n_planes == 1);
1348 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1349 color_attachment_compute_aux_usage(cmd_buffer->device,
1350 state, i, begin->renderArea,
1351 &clear_color);
1352
1353 anv_image_fill_surface_state(cmd_buffer->device,
1354 iview->image,
1355 VK_IMAGE_ASPECT_COLOR_BIT,
1356 &iview->planes[0].isl,
1357 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1358 state->attachments[i].aux_usage,
1359 &clear_color,
1360 0,
1361 &state->attachments[i].color,
1362 NULL);
1363
1364 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1365 } else {
1366 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1367 state, i,
1368 begin->renderArea);
1369 }
1370
1371 if (need_input_attachment_state(&pass->attachments[i])) {
1372 anv_image_fill_surface_state(cmd_buffer->device,
1373 iview->image,
1374 VK_IMAGE_ASPECT_COLOR_BIT,
1375 &iview->planes[0].isl,
1376 ISL_SURF_USAGE_TEXTURE_BIT,
1377 state->attachments[i].input_aux_usage,
1378 &clear_color,
1379 0,
1380 &state->attachments[i].input,
1381 NULL);
1382
1383 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1384 }
1385 }
1386 }
1387
1388 return VK_SUCCESS;
1389 }
1390
1391 VkResult
1392 genX(BeginCommandBuffer)(
1393 VkCommandBuffer commandBuffer,
1394 const VkCommandBufferBeginInfo* pBeginInfo)
1395 {
1396 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1397
1398 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1399 * command buffer's state. Otherwise, we must *reset* its state. In both
1400 * cases we reset it.
1401 *
1402 * From the Vulkan 1.0 spec:
1403 *
1404 * If a command buffer is in the executable state and the command buffer
1405 * was allocated from a command pool with the
1406 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1407 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1408 * as if vkResetCommandBuffer had been called with
1409 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1410 * the command buffer in the recording state.
1411 */
1412 anv_cmd_buffer_reset(cmd_buffer);
1413
1414 cmd_buffer->usage_flags = pBeginInfo->flags;
1415
1416 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1417 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1418
1419 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1420
1421 /* We sometimes store vertex data in the dynamic state buffer for blorp
1422 * operations and our dynamic state stream may re-use data from previous
1423 * command buffers. In order to prevent stale cache data, we flush the VF
1424 * cache. We could do this on every blorp call but that's not really
1425 * needed as all of the data will get written by the CPU prior to the GPU
1426 * executing anything. The chances are fairly high that they will use
1427 * blorp at least once per primary command buffer so it shouldn't be
1428 * wasted.
1429 *
1430 * There is also a workaround on gen8 which requires us to invalidate the
1431 * VF cache occasionally. It's easier if we can assume we start with a
1432 * fresh cache (See also genX(cmd_buffer_set_binding_for_gen8_vb_flush).)
1433 */
1434 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1435
1436 /* We send an "Indirect State Pointers Disable" packet at
1437 * EndCommandBuffer, so all push contant packets are ignored during a
1438 * context restore. Documentation says after that command, we need to
1439 * emit push constants again before any rendering operation. So we
1440 * flag them dirty here to make sure they get emitted.
1441 */
1442 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1443
1444 VkResult result = VK_SUCCESS;
1445 if (cmd_buffer->usage_flags &
1446 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1447 assert(pBeginInfo->pInheritanceInfo);
1448 cmd_buffer->state.pass =
1449 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1450 cmd_buffer->state.subpass =
1451 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1452
1453 /* This is optional in the inheritance info. */
1454 cmd_buffer->state.framebuffer =
1455 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1456
1457 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1458 cmd_buffer->state.pass, NULL);
1459
1460 /* Record that HiZ is enabled if we can. */
1461 if (cmd_buffer->state.framebuffer) {
1462 const struct anv_image_view * const iview =
1463 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1464
1465 if (iview) {
1466 VkImageLayout layout =
1467 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1468
1469 enum isl_aux_usage aux_usage =
1470 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1471 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1472
1473 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1474 }
1475 }
1476
1477 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1478 }
1479
1480 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1481 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1482 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1483 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1484
1485 /* If secondary buffer supports conditional rendering
1486 * we should emit commands as if conditional rendering is enabled.
1487 */
1488 cmd_buffer->state.conditional_render_enabled =
1489 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1490 }
1491 #endif
1492
1493 return result;
1494 }
1495
1496 /* From the PRM, Volume 2a:
1497 *
1498 * "Indirect State Pointers Disable
1499 *
1500 * At the completion of the post-sync operation associated with this pipe
1501 * control packet, the indirect state pointers in the hardware are
1502 * considered invalid; the indirect pointers are not saved in the context.
1503 * If any new indirect state commands are executed in the command stream
1504 * while the pipe control is pending, the new indirect state commands are
1505 * preserved.
1506 *
1507 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1508 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1509 * commands are only considered as Indirect State Pointers. Once ISP is
1510 * issued in a context, SW must initialize by programming push constant
1511 * commands for all the shaders (at least to zero length) before attempting
1512 * any rendering operation for the same context."
1513 *
1514 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1515 * even though they point to a BO that has been already unreferenced at
1516 * the end of the previous batch buffer. This has been fine so far since
1517 * we are protected by these scratch page (every address not covered by
1518 * a BO should be pointing to the scratch page). But on CNL, it is
1519 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1520 * instruction.
1521 *
1522 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1523 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1524 * context restore, so the mentioned hang doesn't happen. However,
1525 * software must program push constant commands for all stages prior to
1526 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1527 *
1528 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1529 * constants have been loaded into the EUs prior to disable the push constants
1530 * so that it doesn't hang a previous 3DPRIMITIVE.
1531 */
1532 static void
1533 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1534 {
1535 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1536 pc.StallAtPixelScoreboard = true;
1537 pc.CommandStreamerStallEnable = true;
1538 }
1539 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1540 pc.IndirectStatePointersDisable = true;
1541 pc.CommandStreamerStallEnable = true;
1542 }
1543 }
1544
1545 VkResult
1546 genX(EndCommandBuffer)(
1547 VkCommandBuffer commandBuffer)
1548 {
1549 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1550
1551 if (anv_batch_has_error(&cmd_buffer->batch))
1552 return cmd_buffer->batch.status;
1553
1554 /* We want every command buffer to start with the PMA fix in a known state,
1555 * so we disable it at the end of the command buffer.
1556 */
1557 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1558
1559 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1560
1561 emit_isp_disable(cmd_buffer);
1562
1563 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1564
1565 return VK_SUCCESS;
1566 }
1567
1568 void
1569 genX(CmdExecuteCommands)(
1570 VkCommandBuffer commandBuffer,
1571 uint32_t commandBufferCount,
1572 const VkCommandBuffer* pCmdBuffers)
1573 {
1574 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1575
1576 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1577
1578 if (anv_batch_has_error(&primary->batch))
1579 return;
1580
1581 /* The secondary command buffers will assume that the PMA fix is disabled
1582 * when they begin executing. Make sure this is true.
1583 */
1584 genX(cmd_buffer_enable_pma_fix)(primary, false);
1585
1586 /* The secondary command buffer doesn't know which textures etc. have been
1587 * flushed prior to their execution. Apply those flushes now.
1588 */
1589 genX(cmd_buffer_apply_pipe_flushes)(primary);
1590
1591 for (uint32_t i = 0; i < commandBufferCount; i++) {
1592 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1593
1594 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1595 assert(!anv_batch_has_error(&secondary->batch));
1596
1597 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1598 if (secondary->state.conditional_render_enabled) {
1599 if (!primary->state.conditional_render_enabled) {
1600 /* Secondary buffer is constructed as if it will be executed
1601 * with conditional rendering, we should satisfy this dependency
1602 * regardless of conditional rendering being enabled in primary.
1603 */
1604 struct gen_mi_builder b;
1605 gen_mi_builder_init(&b, &primary->batch);
1606 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
1607 gen_mi_imm(UINT64_MAX));
1608 }
1609 }
1610 #endif
1611
1612 if (secondary->usage_flags &
1613 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1614 /* If we're continuing a render pass from the primary, we need to
1615 * copy the surface states for the current subpass into the storage
1616 * we allocated for them in BeginCommandBuffer.
1617 */
1618 struct anv_bo *ss_bo =
1619 primary->device->surface_state_pool.block_pool.bo;
1620 struct anv_state src_state = primary->state.render_pass_states;
1621 struct anv_state dst_state = secondary->state.render_pass_states;
1622 assert(src_state.alloc_size == dst_state.alloc_size);
1623
1624 genX(cmd_buffer_so_memcpy)(primary,
1625 (struct anv_address) {
1626 .bo = ss_bo,
1627 .offset = dst_state.offset,
1628 },
1629 (struct anv_address) {
1630 .bo = ss_bo,
1631 .offset = src_state.offset,
1632 },
1633 src_state.alloc_size);
1634 }
1635
1636 anv_cmd_buffer_add_secondary(primary, secondary);
1637 }
1638
1639 /* The secondary isn't counted in our VF cache tracking so we need to
1640 * invalidate the whole thing.
1641 */
1642 if (GEN_GEN >= 8 && GEN_GEN <= 9) {
1643 primary->state.pending_pipe_bits |=
1644 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1645 }
1646
1647 /* The secondary may have selected a different pipeline (3D or compute) and
1648 * may have changed the current L3$ configuration. Reset our tracking
1649 * variables to invalid values to ensure that we re-emit these in the case
1650 * where we do any draws or compute dispatches from the primary after the
1651 * secondary has returned.
1652 */
1653 primary->state.current_pipeline = UINT32_MAX;
1654 primary->state.current_l3_config = NULL;
1655 primary->state.current_hash_scale = 0;
1656
1657 /* Each of the secondary command buffers will use its own state base
1658 * address. We need to re-emit state base address for the primary after
1659 * all of the secondaries are done.
1660 *
1661 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1662 * address calls?
1663 */
1664 genX(cmd_buffer_emit_state_base_address)(primary);
1665 }
1666
1667 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1668 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1669 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1670
1671 /**
1672 * Program the hardware to use the specified L3 configuration.
1673 */
1674 void
1675 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1676 const struct gen_l3_config *cfg)
1677 {
1678 assert(cfg);
1679 if (cfg == cmd_buffer->state.current_l3_config)
1680 return;
1681
1682 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1683 intel_logd("L3 config transition: ");
1684 gen_dump_l3_config(cfg, stderr);
1685 }
1686
1687 UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM];
1688
1689 /* According to the hardware docs, the L3 partitioning can only be changed
1690 * while the pipeline is completely drained and the caches are flushed,
1691 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1692 */
1693 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1694 pc.DCFlushEnable = true;
1695 pc.PostSyncOperation = NoWrite;
1696 pc.CommandStreamerStallEnable = true;
1697 }
1698
1699 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1700 * invalidation of the relevant caches. Note that because RO invalidation
1701 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1702 * command is processed by the CS) we cannot combine it with the previous
1703 * stalling flush as the hardware documentation suggests, because that
1704 * would cause the CS to stall on previous rendering *after* RO
1705 * invalidation and wouldn't prevent the RO caches from being polluted by
1706 * concurrent rendering before the stall completes. This intentionally
1707 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1708 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1709 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1710 * already guarantee that there is no concurrent GPGPU kernel execution
1711 * (see SKL HSD 2132585).
1712 */
1713 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1714 pc.TextureCacheInvalidationEnable = true;
1715 pc.ConstantCacheInvalidationEnable = true;
1716 pc.InstructionCacheInvalidateEnable = true;
1717 pc.StateCacheInvalidationEnable = true;
1718 pc.PostSyncOperation = NoWrite;
1719 }
1720
1721 /* Now send a third stalling flush to make sure that invalidation is
1722 * complete when the L3 configuration registers are modified.
1723 */
1724 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1725 pc.DCFlushEnable = true;
1726 pc.PostSyncOperation = NoWrite;
1727 pc.CommandStreamerStallEnable = true;
1728 }
1729
1730 #if GEN_GEN >= 8
1731
1732 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1733
1734 #if GEN_GEN >= 12
1735 #define L3_ALLOCATION_REG GENX(L3ALLOC)
1736 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
1737 #else
1738 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
1739 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
1740 #endif
1741
1742 uint32_t l3cr;
1743 anv_pack_struct(&l3cr, L3_ALLOCATION_REG,
1744 #if GEN_GEN < 12
1745 .SLMEnable = has_slm,
1746 #endif
1747 #if GEN_GEN == 11
1748 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1749 * in L3CNTLREG register. The default setting of the bit is not the
1750 * desirable behavior.
1751 */
1752 .ErrorDetectionBehaviorControl = true,
1753 .UseFullWays = true,
1754 #endif
1755 .URBAllocation = cfg->n[GEN_L3P_URB],
1756 .ROAllocation = cfg->n[GEN_L3P_RO],
1757 .DCAllocation = cfg->n[GEN_L3P_DC],
1758 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1759
1760 /* Set up the L3 partitioning. */
1761 emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr);
1762
1763 #else
1764
1765 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1766 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1767 cfg->n[GEN_L3P_ALL];
1768 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1769 cfg->n[GEN_L3P_ALL];
1770 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1771 cfg->n[GEN_L3P_ALL];
1772
1773 assert(!cfg->n[GEN_L3P_ALL]);
1774
1775 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1776 * the matching space on the remaining banks has to be allocated to a
1777 * client (URB for all validated configurations) set to the
1778 * lower-bandwidth 2-bank address hashing mode.
1779 */
1780 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1781 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1782 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1783
1784 /* Minimum number of ways that can be allocated to the URB. */
1785 const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1786 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1787
1788 uint32_t l3sqcr1, l3cr2, l3cr3;
1789 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1790 .ConvertDC_UC = !has_dc,
1791 .ConvertIS_UC = !has_is,
1792 .ConvertC_UC = !has_c,
1793 .ConvertT_UC = !has_t);
1794 l3sqcr1 |=
1795 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1796 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1797 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1798
1799 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1800 .SLMEnable = has_slm,
1801 .URBLowBandwidth = urb_low_bw,
1802 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1803 #if !GEN_IS_HASWELL
1804 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1805 #endif
1806 .ROAllocation = cfg->n[GEN_L3P_RO],
1807 .DCAllocation = cfg->n[GEN_L3P_DC]);
1808
1809 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1810 .ISAllocation = cfg->n[GEN_L3P_IS],
1811 .ISLowBandwidth = 0,
1812 .CAllocation = cfg->n[GEN_L3P_C],
1813 .CLowBandwidth = 0,
1814 .TAllocation = cfg->n[GEN_L3P_T],
1815 .TLowBandwidth = 0);
1816
1817 /* Set up the L3 partitioning. */
1818 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1819 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1820 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1821
1822 #if GEN_IS_HASWELL
1823 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1824 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1825 * them disabled to avoid crashing the system hard.
1826 */
1827 uint32_t scratch1, chicken3;
1828 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1829 .L3AtomicDisable = !has_dc);
1830 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1831 .L3AtomicDisableMask = true,
1832 .L3AtomicDisable = !has_dc);
1833 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1834 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1835 }
1836 #endif
1837
1838 #endif
1839
1840 cmd_buffer->state.current_l3_config = cfg;
1841 }
1842
1843 void
1844 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1845 {
1846 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1847
1848 if (cmd_buffer->device->instance->physicalDevice.always_flush_cache)
1849 bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
1850
1851 /* Flushes are pipelined while invalidations are handled immediately.
1852 * Therefore, if we're flushing anything then we need to schedule a stall
1853 * before any invalidations can happen.
1854 */
1855 if (bits & ANV_PIPE_FLUSH_BITS)
1856 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1857
1858 /* If we're going to do an invalidate and we have a pending CS stall that
1859 * has yet to be resolved, we do the CS stall now.
1860 */
1861 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1862 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1863 bits |= ANV_PIPE_CS_STALL_BIT;
1864 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1865 }
1866
1867 if (GEN_GEN >= 12 &&
1868 ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) ||
1869 (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) {
1870 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
1871 * Enable):
1872 *
1873 * Unified Cache (Tile Cache Disabled):
1874 *
1875 * When the Color and Depth (Z) streams are enabled to be cached in
1876 * the DC space of L2, Software must use "Render Target Cache Flush
1877 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
1878 * Flush" for getting the color and depth (Z) write data to be
1879 * globally observable. In this mode of operation it is not required
1880 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
1881 */
1882 bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
1883 }
1884
1885 if ((GEN_GEN >= 8 && GEN_GEN <= 9) &&
1886 (bits & ANV_PIPE_CS_STALL_BIT) &&
1887 (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
1888 /* If we are doing a VF cache invalidate AND a CS stall (it must be
1889 * both) then we can reset our vertex cache tracking.
1890 */
1891 memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
1892 sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
1893 memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
1894 sizeof(cmd_buffer->state.gfx.ib_dirty_range));
1895 }
1896
1897 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1898 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1899 #if GEN_GEN >= 12
1900 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
1901 #endif
1902 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1903 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1904 pipe.RenderTargetCacheFlushEnable =
1905 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1906
1907 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1908 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1909 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1910
1911 /*
1912 * According to the Broadwell documentation, any PIPE_CONTROL with the
1913 * "Command Streamer Stall" bit set must also have another bit set,
1914 * with five different options:
1915 *
1916 * - Render Target Cache Flush
1917 * - Depth Cache Flush
1918 * - Stall at Pixel Scoreboard
1919 * - Post-Sync Operation
1920 * - Depth Stall
1921 * - DC Flush Enable
1922 *
1923 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1924 * mesa and it seems to work fine. The choice is fairly arbitrary.
1925 */
1926 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1927 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1928 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1929 pipe.StallAtPixelScoreboard = true;
1930 }
1931
1932 /* If a render target flush was emitted, then we can toggle off the bit
1933 * saying that render target writes are ongoing.
1934 */
1935 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1936 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
1937
1938 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1939 }
1940
1941 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1942 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1943 *
1944 * "If the VF Cache Invalidation Enable is set to a 1 in a
1945 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
1946 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
1947 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
1948 * a 1."
1949 *
1950 * This appears to hang Broadwell, so we restrict it to just gen9.
1951 */
1952 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
1953 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
1954
1955 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1956 pipe.StateCacheInvalidationEnable =
1957 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1958 pipe.ConstantCacheInvalidationEnable =
1959 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1960 pipe.VFCacheInvalidationEnable =
1961 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1962 pipe.TextureCacheInvalidationEnable =
1963 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1964 pipe.InstructionCacheInvalidateEnable =
1965 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1966
1967 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1968 *
1969 * "When VF Cache Invalidate is set “Post Sync Operation” must be
1970 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
1971 * “Write Timestamp”.
1972 */
1973 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
1974 pipe.PostSyncOperation = WriteImmediateData;
1975 pipe.Address =
1976 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
1977 }
1978 }
1979
1980 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1981 }
1982
1983 cmd_buffer->state.pending_pipe_bits = bits;
1984 }
1985
1986 void genX(CmdPipelineBarrier)(
1987 VkCommandBuffer commandBuffer,
1988 VkPipelineStageFlags srcStageMask,
1989 VkPipelineStageFlags destStageMask,
1990 VkBool32 byRegion,
1991 uint32_t memoryBarrierCount,
1992 const VkMemoryBarrier* pMemoryBarriers,
1993 uint32_t bufferMemoryBarrierCount,
1994 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1995 uint32_t imageMemoryBarrierCount,
1996 const VkImageMemoryBarrier* pImageMemoryBarriers)
1997 {
1998 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1999
2000 /* XXX: Right now, we're really dumb and just flush whatever categories
2001 * the app asks for. One of these days we may make this a bit better
2002 * but right now that's all the hardware allows for in most areas.
2003 */
2004 VkAccessFlags src_flags = 0;
2005 VkAccessFlags dst_flags = 0;
2006
2007 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
2008 src_flags |= pMemoryBarriers[i].srcAccessMask;
2009 dst_flags |= pMemoryBarriers[i].dstAccessMask;
2010 }
2011
2012 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
2013 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
2014 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
2015 }
2016
2017 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
2018 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
2019 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
2020 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
2021 const VkImageSubresourceRange *range =
2022 &pImageMemoryBarriers[i].subresourceRange;
2023
2024 uint32_t base_layer, layer_count;
2025 if (image->type == VK_IMAGE_TYPE_3D) {
2026 base_layer = 0;
2027 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
2028 } else {
2029 base_layer = range->baseArrayLayer;
2030 layer_count = anv_get_layerCount(image, range);
2031 }
2032
2033 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
2034 transition_depth_buffer(cmd_buffer, image,
2035 pImageMemoryBarriers[i].oldLayout,
2036 pImageMemoryBarriers[i].newLayout);
2037 }
2038
2039 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
2040 transition_stencil_buffer(cmd_buffer, image,
2041 range->baseMipLevel,
2042 anv_get_levelCount(image, range),
2043 base_layer, layer_count,
2044 pImageMemoryBarriers[i].oldLayout,
2045 pImageMemoryBarriers[i].newLayout);
2046 }
2047
2048 if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2049 VkImageAspectFlags color_aspects =
2050 anv_image_expand_aspects(image, range->aspectMask);
2051 uint32_t aspect_bit;
2052 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
2053 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
2054 range->baseMipLevel,
2055 anv_get_levelCount(image, range),
2056 base_layer, layer_count,
2057 pImageMemoryBarriers[i].oldLayout,
2058 pImageMemoryBarriers[i].newLayout);
2059 }
2060 }
2061 }
2062
2063 cmd_buffer->state.pending_pipe_bits |=
2064 anv_pipe_flush_bits_for_access_flags(src_flags) |
2065 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
2066 }
2067
2068 static void
2069 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2070 {
2071 VkShaderStageFlags stages =
2072 cmd_buffer->state.gfx.base.pipeline->active_stages;
2073
2074 /* In order to avoid thrash, we assume that vertex and fragment stages
2075 * always exist. In the rare case where one is missing *and* the other
2076 * uses push concstants, this may be suboptimal. However, avoiding stalls
2077 * seems more important.
2078 */
2079 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
2080
2081 if (stages == cmd_buffer->state.push_constant_stages)
2082 return;
2083
2084 #if GEN_GEN >= 8
2085 const unsigned push_constant_kb = 32;
2086 #elif GEN_IS_HASWELL
2087 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
2088 #else
2089 const unsigned push_constant_kb = 16;
2090 #endif
2091
2092 const unsigned num_stages =
2093 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2094 unsigned size_per_stage = push_constant_kb / num_stages;
2095
2096 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2097 * units of 2KB. Incidentally, these are the same platforms that have
2098 * 32KB worth of push constant space.
2099 */
2100 if (push_constant_kb == 32)
2101 size_per_stage &= ~1u;
2102
2103 uint32_t kb_used = 0;
2104 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2105 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2106 anv_batch_emit(&cmd_buffer->batch,
2107 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2108 alloc._3DCommandSubOpcode = 18 + i;
2109 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2110 alloc.ConstantBufferSize = push_size;
2111 }
2112 kb_used += push_size;
2113 }
2114
2115 anv_batch_emit(&cmd_buffer->batch,
2116 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2117 alloc.ConstantBufferOffset = kb_used;
2118 alloc.ConstantBufferSize = push_constant_kb - kb_used;
2119 }
2120
2121 cmd_buffer->state.push_constant_stages = stages;
2122
2123 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2124 *
2125 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2126 * the next 3DPRIMITIVE command after programming the
2127 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2128 *
2129 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2130 * pipeline setup, we need to dirty push constants.
2131 */
2132 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2133 }
2134
2135 static struct anv_address
2136 anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
2137 struct anv_descriptor_set *set)
2138 {
2139 if (set->pool) {
2140 /* This is a normal descriptor set */
2141 return (struct anv_address) {
2142 .bo = set->pool->bo,
2143 .offset = set->desc_mem.offset,
2144 };
2145 } else {
2146 /* This is a push descriptor set. We have to flag it as used on the GPU
2147 * so that the next time we push descriptors, we grab a new memory.
2148 */
2149 struct anv_push_descriptor_set *push_set =
2150 (struct anv_push_descriptor_set *)set;
2151 push_set->set_used_on_gpu = true;
2152
2153 return (struct anv_address) {
2154 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
2155 .offset = set->desc_mem.offset,
2156 };
2157 }
2158 }
2159
2160 static VkResult
2161 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2162 gl_shader_stage stage,
2163 struct anv_state *bt_state)
2164 {
2165 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2166 struct anv_cmd_pipeline_state *pipe_state;
2167 struct anv_pipeline *pipeline;
2168 uint32_t state_offset;
2169
2170 switch (stage) {
2171 case MESA_SHADER_COMPUTE:
2172 pipe_state = &cmd_buffer->state.compute.base;
2173 break;
2174 default:
2175 pipe_state = &cmd_buffer->state.gfx.base;
2176 break;
2177 }
2178 pipeline = pipe_state->pipeline;
2179
2180 if (!anv_pipeline_has_stage(pipeline, stage)) {
2181 *bt_state = (struct anv_state) { 0, };
2182 return VK_SUCCESS;
2183 }
2184
2185 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2186 if (map->surface_count == 0) {
2187 *bt_state = (struct anv_state) { 0, };
2188 return VK_SUCCESS;
2189 }
2190
2191 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2192 map->surface_count,
2193 &state_offset);
2194 uint32_t *bt_map = bt_state->map;
2195
2196 if (bt_state->map == NULL)
2197 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2198
2199 /* We only need to emit relocs if we're not using softpin. If we are using
2200 * softpin then we always keep all user-allocated memory objects resident.
2201 */
2202 const bool need_client_mem_relocs =
2203 !cmd_buffer->device->instance->physicalDevice.use_softpin;
2204
2205 for (uint32_t s = 0; s < map->surface_count; s++) {
2206 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2207
2208 struct anv_state surface_state;
2209
2210 switch (binding->set) {
2211 case ANV_DESCRIPTOR_SET_NULL:
2212 bt_map[s] = 0;
2213 break;
2214
2215 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
2216 /* Color attachment binding */
2217 assert(stage == MESA_SHADER_FRAGMENT);
2218 if (binding->index < subpass->color_count) {
2219 const unsigned att =
2220 subpass->color_attachments[binding->index].attachment;
2221
2222 /* From the Vulkan 1.0.46 spec:
2223 *
2224 * "If any color or depth/stencil attachments are
2225 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2226 * attachments."
2227 */
2228 if (att == VK_ATTACHMENT_UNUSED) {
2229 surface_state = cmd_buffer->state.null_surface_state;
2230 } else {
2231 surface_state = cmd_buffer->state.attachments[att].color.state;
2232 }
2233 } else {
2234 surface_state = cmd_buffer->state.null_surface_state;
2235 }
2236
2237 bt_map[s] = surface_state.offset + state_offset;
2238 break;
2239
2240 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
2241 struct anv_state surface_state =
2242 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2243
2244 struct anv_address constant_data = {
2245 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2246 .offset = pipeline->shaders[stage]->constant_data.offset,
2247 };
2248 unsigned constant_data_size =
2249 pipeline->shaders[stage]->constant_data_size;
2250
2251 const enum isl_format format =
2252 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2253 anv_fill_buffer_surface_state(cmd_buffer->device,
2254 surface_state, format,
2255 constant_data, constant_data_size, 1);
2256
2257 bt_map[s] = surface_state.offset + state_offset;
2258 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2259 break;
2260 }
2261
2262 case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
2263 /* This is always the first binding for compute shaders */
2264 assert(stage == MESA_SHADER_COMPUTE && s == 0);
2265
2266 struct anv_state surface_state =
2267 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2268
2269 const enum isl_format format =
2270 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2271 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2272 format,
2273 cmd_buffer->state.compute.num_workgroups,
2274 12, 1);
2275 bt_map[s] = surface_state.offset + state_offset;
2276 if (need_client_mem_relocs) {
2277 add_surface_reloc(cmd_buffer, surface_state,
2278 cmd_buffer->state.compute.num_workgroups);
2279 }
2280 break;
2281 }
2282
2283 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2284 /* This is a descriptor set buffer so the set index is actually
2285 * given by binding->binding. (Yes, that's confusing.)
2286 */
2287 struct anv_descriptor_set *set =
2288 pipe_state->descriptors[binding->index];
2289 assert(set->desc_mem.alloc_size);
2290 assert(set->desc_surface_state.alloc_size);
2291 bt_map[s] = set->desc_surface_state.offset + state_offset;
2292 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2293 anv_descriptor_set_address(cmd_buffer, set));
2294 break;
2295 }
2296
2297 default: {
2298 assert(binding->set < MAX_SETS);
2299 const struct anv_descriptor *desc =
2300 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2301
2302 switch (desc->type) {
2303 case VK_DESCRIPTOR_TYPE_SAMPLER:
2304 /* Nothing for us to do here */
2305 continue;
2306
2307 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2308 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2309 struct anv_surface_state sstate =
2310 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2311 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2312 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2313 surface_state = sstate.state;
2314 assert(surface_state.alloc_size);
2315 if (need_client_mem_relocs)
2316 add_surface_state_relocs(cmd_buffer, sstate);
2317 break;
2318 }
2319 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2320 assert(stage == MESA_SHADER_FRAGMENT);
2321 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2322 /* For depth and stencil input attachments, we treat it like any
2323 * old texture that a user may have bound.
2324 */
2325 assert(desc->image_view->n_planes == 1);
2326 struct anv_surface_state sstate =
2327 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2328 desc->image_view->planes[0].general_sampler_surface_state :
2329 desc->image_view->planes[0].optimal_sampler_surface_state;
2330 surface_state = sstate.state;
2331 assert(surface_state.alloc_size);
2332 if (need_client_mem_relocs)
2333 add_surface_state_relocs(cmd_buffer, sstate);
2334 } else {
2335 /* For color input attachments, we create the surface state at
2336 * vkBeginRenderPass time so that we can include aux and clear
2337 * color information.
2338 */
2339 assert(binding->input_attachment_index < subpass->input_count);
2340 const unsigned subpass_att = binding->input_attachment_index;
2341 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2342 surface_state = cmd_buffer->state.attachments[att].input.state;
2343 }
2344 break;
2345
2346 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2347 struct anv_surface_state sstate = (binding->write_only)
2348 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2349 : desc->image_view->planes[binding->plane].storage_surface_state;
2350 surface_state = sstate.state;
2351 assert(surface_state.alloc_size);
2352 if (need_client_mem_relocs)
2353 add_surface_state_relocs(cmd_buffer, sstate);
2354 break;
2355 }
2356
2357 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2358 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2359 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2360 surface_state = desc->buffer_view->surface_state;
2361 assert(surface_state.alloc_size);
2362 if (need_client_mem_relocs) {
2363 add_surface_reloc(cmd_buffer, surface_state,
2364 desc->buffer_view->address);
2365 }
2366 break;
2367
2368 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2369 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2370 /* Compute the offset within the buffer */
2371 struct anv_push_constants *push =
2372 &cmd_buffer->state.push_constants[stage];
2373
2374 uint32_t dynamic_offset =
2375 push->dynamic_offsets[binding->dynamic_offset_index];
2376 uint64_t offset = desc->offset + dynamic_offset;
2377 /* Clamp to the buffer size */
2378 offset = MIN2(offset, desc->buffer->size);
2379 /* Clamp the range to the buffer size */
2380 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2381
2382 struct anv_address address =
2383 anv_address_add(desc->buffer->address, offset);
2384
2385 surface_state =
2386 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2387 enum isl_format format =
2388 anv_isl_format_for_descriptor_type(desc->type);
2389
2390 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2391 format, address, range, 1);
2392 if (need_client_mem_relocs)
2393 add_surface_reloc(cmd_buffer, surface_state, address);
2394 break;
2395 }
2396
2397 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2398 surface_state = (binding->write_only)
2399 ? desc->buffer_view->writeonly_storage_surface_state
2400 : desc->buffer_view->storage_surface_state;
2401 assert(surface_state.alloc_size);
2402 if (need_client_mem_relocs) {
2403 add_surface_reloc(cmd_buffer, surface_state,
2404 desc->buffer_view->address);
2405 }
2406 break;
2407
2408 default:
2409 assert(!"Invalid descriptor type");
2410 continue;
2411 }
2412 bt_map[s] = surface_state.offset + state_offset;
2413 break;
2414 }
2415 }
2416 }
2417
2418 return VK_SUCCESS;
2419 }
2420
2421 static VkResult
2422 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2423 gl_shader_stage stage,
2424 struct anv_state *state)
2425 {
2426 struct anv_cmd_pipeline_state *pipe_state =
2427 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2428 &cmd_buffer->state.gfx.base;
2429 struct anv_pipeline *pipeline = pipe_state->pipeline;
2430
2431 if (!anv_pipeline_has_stage(pipeline, stage)) {
2432 *state = (struct anv_state) { 0, };
2433 return VK_SUCCESS;
2434 }
2435
2436 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2437 if (map->sampler_count == 0) {
2438 *state = (struct anv_state) { 0, };
2439 return VK_SUCCESS;
2440 }
2441
2442 uint32_t size = map->sampler_count * 16;
2443 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2444
2445 if (state->map == NULL)
2446 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2447
2448 for (uint32_t s = 0; s < map->sampler_count; s++) {
2449 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2450 const struct anv_descriptor *desc =
2451 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2452
2453 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2454 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2455 continue;
2456
2457 struct anv_sampler *sampler = desc->sampler;
2458
2459 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2460 * happens to be zero.
2461 */
2462 if (sampler == NULL)
2463 continue;
2464
2465 memcpy(state->map + (s * 16),
2466 sampler->state[binding->plane], sizeof(sampler->state[0]));
2467 }
2468
2469 return VK_SUCCESS;
2470 }
2471
2472 static uint32_t
2473 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer,
2474 struct anv_pipeline *pipeline)
2475 {
2476 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2477 pipeline->active_stages;
2478
2479 VkResult result = VK_SUCCESS;
2480 anv_foreach_stage(s, dirty) {
2481 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2482 if (result != VK_SUCCESS)
2483 break;
2484 result = emit_binding_table(cmd_buffer, s,
2485 &cmd_buffer->state.binding_tables[s]);
2486 if (result != VK_SUCCESS)
2487 break;
2488 }
2489
2490 if (result != VK_SUCCESS) {
2491 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2492
2493 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2494 if (result != VK_SUCCESS)
2495 return 0;
2496
2497 /* Re-emit state base addresses so we get the new surface state base
2498 * address before we start emitting binding tables etc.
2499 */
2500 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2501
2502 /* Re-emit all active binding tables */
2503 dirty |= pipeline->active_stages;
2504 anv_foreach_stage(s, dirty) {
2505 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2506 if (result != VK_SUCCESS) {
2507 anv_batch_set_error(&cmd_buffer->batch, result);
2508 return 0;
2509 }
2510 result = emit_binding_table(cmd_buffer, s,
2511 &cmd_buffer->state.binding_tables[s]);
2512 if (result != VK_SUCCESS) {
2513 anv_batch_set_error(&cmd_buffer->batch, result);
2514 return 0;
2515 }
2516 }
2517 }
2518
2519 cmd_buffer->state.descriptors_dirty &= ~dirty;
2520
2521 return dirty;
2522 }
2523
2524 static void
2525 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2526 uint32_t stages)
2527 {
2528 static const uint32_t sampler_state_opcodes[] = {
2529 [MESA_SHADER_VERTEX] = 43,
2530 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2531 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2532 [MESA_SHADER_GEOMETRY] = 46,
2533 [MESA_SHADER_FRAGMENT] = 47,
2534 [MESA_SHADER_COMPUTE] = 0,
2535 };
2536
2537 static const uint32_t binding_table_opcodes[] = {
2538 [MESA_SHADER_VERTEX] = 38,
2539 [MESA_SHADER_TESS_CTRL] = 39,
2540 [MESA_SHADER_TESS_EVAL] = 40,
2541 [MESA_SHADER_GEOMETRY] = 41,
2542 [MESA_SHADER_FRAGMENT] = 42,
2543 [MESA_SHADER_COMPUTE] = 0,
2544 };
2545
2546 anv_foreach_stage(s, stages) {
2547 assert(s < ARRAY_SIZE(binding_table_opcodes));
2548 assert(binding_table_opcodes[s] > 0);
2549
2550 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2551 anv_batch_emit(&cmd_buffer->batch,
2552 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2553 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2554 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2555 }
2556 }
2557
2558 /* Always emit binding table pointers if we're asked to, since on SKL
2559 * this is what flushes push constants. */
2560 anv_batch_emit(&cmd_buffer->batch,
2561 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2562 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2563 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2564 }
2565 }
2566 }
2567
2568 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2569 static struct anv_address
2570 get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
2571 gl_shader_stage stage,
2572 const struct anv_push_range *range)
2573 {
2574 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2575 switch (range->set) {
2576 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2577 /* This is a descriptor set buffer so the set index is
2578 * actually given by binding->binding. (Yes, that's
2579 * confusing.)
2580 */
2581 struct anv_descriptor_set *set =
2582 gfx_state->base.descriptors[range->index];
2583 return anv_descriptor_set_address(cmd_buffer, set);
2584 break;
2585 }
2586
2587 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
2588 struct anv_state state =
2589 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2590 return (struct anv_address) {
2591 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2592 .offset = state.offset,
2593 };
2594 break;
2595 }
2596
2597 default: {
2598 assert(range->set < MAX_SETS);
2599 struct anv_descriptor_set *set =
2600 gfx_state->base.descriptors[range->set];
2601 const struct anv_descriptor *desc =
2602 &set->descriptors[range->index];
2603
2604 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2605 return desc->buffer_view->address;
2606 } else {
2607 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2608 struct anv_push_constants *push =
2609 &cmd_buffer->state.push_constants[stage];
2610 uint32_t dynamic_offset =
2611 push->dynamic_offsets[range->dynamic_offset_index];
2612 return anv_address_add(desc->buffer->address,
2613 desc->offset + dynamic_offset);
2614 }
2615 }
2616 }
2617 }
2618 #endif
2619
2620 static void
2621 cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
2622 gl_shader_stage stage, unsigned buffer_count)
2623 {
2624 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2625 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2626
2627 static const uint32_t push_constant_opcodes[] = {
2628 [MESA_SHADER_VERTEX] = 21,
2629 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2630 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2631 [MESA_SHADER_GEOMETRY] = 22,
2632 [MESA_SHADER_FRAGMENT] = 23,
2633 [MESA_SHADER_COMPUTE] = 0,
2634 };
2635
2636 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2637 assert(push_constant_opcodes[stage] > 0);
2638
2639 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2640 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2641
2642 if (anv_pipeline_has_stage(pipeline, stage)) {
2643 const struct anv_pipeline_bind_map *bind_map =
2644 &pipeline->shaders[stage]->bind_map;
2645
2646 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2647 /* The Skylake PRM contains the following restriction:
2648 *
2649 * "The driver must ensure The following case does not occur
2650 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2651 * buffer 3 read length equal to zero committed followed by a
2652 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2653 * zero committed."
2654 *
2655 * To avoid this, we program the buffers in the highest slots.
2656 * This way, slot 0 is only used if slot 3 is also used.
2657 */
2658 assert(buffer_count <= 4);
2659 const unsigned shift = 4 - buffer_count;
2660 for (unsigned i = 0; i < buffer_count; i++) {
2661 const struct anv_push_range *range = &bind_map->push_ranges[i];
2662
2663 /* At this point we only have non-empty ranges */
2664 assert(range->length > 0);
2665
2666 /* For Ivy Bridge, make sure we only set the first range (actual
2667 * push constants)
2668 */
2669 assert((GEN_GEN >= 8 || GEN_IS_HASWELL) || i == 0);
2670
2671 const struct anv_address addr =
2672 get_push_range_address(cmd_buffer, stage, range);
2673 c.ConstantBody.ReadLength[i + shift] = range->length;
2674 c.ConstantBody.Buffer[i + shift] =
2675 anv_address_add(addr, range->start * 32);
2676 }
2677 #else
2678 /* For Ivy Bridge, push constants are relative to dynamic state
2679 * base address and we only ever push actual push constants.
2680 */
2681 if (bind_map->push_ranges[0].length > 0) {
2682 assert(bind_map->push_ranges[0].set ==
2683 ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
2684 struct anv_state state =
2685 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2686 c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
2687 c.ConstantBody.Buffer[0].bo = NULL;
2688 c.ConstantBody.Buffer[0].offset = state.offset;
2689 }
2690 assert(bind_map->push_ranges[1].length == 0);
2691 assert(bind_map->push_ranges[2].length == 0);
2692 assert(bind_map->push_ranges[3].length == 0);
2693 #endif
2694 }
2695 }
2696 }
2697
2698 #if GEN_GEN >= 12
2699 static void
2700 cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
2701 uint32_t shader_mask, uint32_t count)
2702 {
2703 if (count == 0) {
2704 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
2705 c.ShaderUpdateEnable = shader_mask;
2706 }
2707 return;
2708 }
2709
2710 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2711 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2712
2713 static const uint32_t push_constant_opcodes[] = {
2714 [MESA_SHADER_VERTEX] = 21,
2715 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2716 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2717 [MESA_SHADER_GEOMETRY] = 22,
2718 [MESA_SHADER_FRAGMENT] = 23,
2719 [MESA_SHADER_COMPUTE] = 0,
2720 };
2721
2722 gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
2723 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2724 assert(push_constant_opcodes[stage] > 0);
2725
2726 const struct anv_pipeline_bind_map *bind_map =
2727 &pipeline->shaders[stage]->bind_map;
2728
2729 uint32_t *dw;
2730 const uint32_t buffers = (1 << count) - 1;
2731 const uint32_t num_dwords = 2 + 2 * count;
2732
2733 dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2734 GENX(3DSTATE_CONSTANT_ALL),
2735 .ShaderUpdateEnable = shader_mask,
2736 .PointerBufferMask = buffers);
2737
2738 for (int i = 0; i < count; i++) {
2739 const struct anv_push_range *range = &bind_map->push_ranges[i];
2740 const struct anv_address addr =
2741 get_push_range_address(cmd_buffer, stage, range);
2742
2743 GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
2744 &cmd_buffer->batch, dw + 2 + i * 2,
2745 &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
2746 .PointerToConstantBuffer = anv_address_add(addr, range->start * 32),
2747 .ConstantBufferReadLength = range->length,
2748 });
2749 }
2750 }
2751 #endif
2752
2753 static void
2754 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2755 VkShaderStageFlags dirty_stages)
2756 {
2757 VkShaderStageFlags flushed = 0;
2758 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2759 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2760
2761 #if GEN_GEN >= 12
2762 uint32_t nobuffer_stages = 0;
2763 #endif
2764
2765 anv_foreach_stage(stage, dirty_stages) {
2766 unsigned buffer_count = 0;
2767 flushed |= mesa_to_vk_shader_stage(stage);
2768 uint32_t max_push_range = 0;
2769
2770 if (anv_pipeline_has_stage(pipeline, stage)) {
2771 const struct anv_pipeline_bind_map *bind_map =
2772 &pipeline->shaders[stage]->bind_map;
2773
2774 for (unsigned i = 0; i < 4; i++) {
2775 const struct anv_push_range *range = &bind_map->push_ranges[i];
2776 if (range->length > 0) {
2777 buffer_count++;
2778 if (GEN_GEN >= 12 && range->length > max_push_range)
2779 max_push_range = range->length;
2780 }
2781 }
2782 }
2783
2784 #if GEN_GEN >= 12
2785 /* If this stage doesn't have any push constants, emit it later in a
2786 * single CONSTANT_ALL packet.
2787 */
2788 if (buffer_count == 0) {
2789 nobuffer_stages |= 1 << stage;
2790 continue;
2791 }
2792
2793 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
2794 * contains only 5 bits, so we can only use it for buffers smaller than
2795 * 32.
2796 */
2797 if (max_push_range < 32) {
2798 cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
2799 buffer_count);
2800 continue;
2801 }
2802 #endif
2803
2804 cmd_buffer_emit_push_constant(cmd_buffer, stage, buffer_count);
2805 }
2806
2807 #if GEN_GEN >= 12
2808 if (nobuffer_stages)
2809 cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, 0);
2810 #endif
2811
2812 cmd_buffer->state.push_constants_dirty &= ~flushed;
2813 }
2814
2815 #if GEN_GEN >= 12
2816 void
2817 genX(cmd_buffer_aux_map_state)(struct anv_cmd_buffer *cmd_buffer)
2818 {
2819 void *aux_map_ctx = cmd_buffer->device->aux_map_ctx;
2820 if (!aux_map_ctx)
2821 return;
2822 uint32_t aux_map_state_num = gen_aux_map_get_state_num(aux_map_ctx);
2823 if (cmd_buffer->state.last_aux_map_state != aux_map_state_num) {
2824 /* If the aux-map state number increased, then we need to rewrite the
2825 * register. Rewriting the register is used to both set the aux-map
2826 * translation table address, and also to invalidate any previously
2827 * cached translations.
2828 */
2829 uint64_t base_addr = gen_aux_map_get_base(aux_map_ctx);
2830 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2831 lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num);
2832 lri.DataDWord = base_addr & 0xffffffff;
2833 }
2834 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2835 lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num) + 4;
2836 lri.DataDWord = base_addr >> 32;
2837 }
2838 cmd_buffer->state.last_aux_map_state = aux_map_state_num;
2839 }
2840 }
2841 #endif
2842
2843 void
2844 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2845 {
2846 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2847 uint32_t *p;
2848
2849 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2850 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
2851 vb_emit |= pipeline->vb_used;
2852
2853 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2854
2855 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2856
2857 genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
2858
2859 genX(flush_pipeline_select_3d)(cmd_buffer);
2860
2861 #if GEN_GEN >= 12
2862 genX(cmd_buffer_aux_map_state)(cmd_buffer);
2863 #endif
2864
2865 if (vb_emit) {
2866 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2867 const uint32_t num_dwords = 1 + num_buffers * 4;
2868
2869 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2870 GENX(3DSTATE_VERTEX_BUFFERS));
2871 uint32_t vb, i = 0;
2872 for_each_bit(vb, vb_emit) {
2873 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2874 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2875
2876 struct GENX(VERTEX_BUFFER_STATE) state = {
2877 .VertexBufferIndex = vb,
2878
2879 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
2880 #if GEN_GEN <= 7
2881 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
2882 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
2883 #endif
2884
2885 .AddressModifyEnable = true,
2886 .BufferPitch = pipeline->vb[vb].stride,
2887 .BufferStartingAddress = anv_address_add(buffer->address, offset),
2888
2889 #if GEN_GEN >= 8
2890 .BufferSize = buffer->size - offset
2891 #else
2892 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
2893 #endif
2894 };
2895
2896 #if GEN_GEN >= 8 && GEN_GEN <= 9
2897 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, vb,
2898 state.BufferStartingAddress,
2899 state.BufferSize);
2900 #endif
2901
2902 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2903 i++;
2904 }
2905 }
2906
2907 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2908
2909 #if GEN_GEN >= 8
2910 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
2911 /* We don't need any per-buffer dirty tracking because you're not
2912 * allowed to bind different XFB buffers while XFB is enabled.
2913 */
2914 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
2915 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
2916 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
2917 #if GEN_GEN < 12
2918 sob.SOBufferIndex = idx;
2919 #else
2920 sob._3DCommandOpcode = 0;
2921 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
2922 #endif
2923
2924 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
2925 sob.SOBufferEnable = true;
2926 sob.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
2927 sob.StreamOffsetWriteEnable = false;
2928 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
2929 xfb->offset);
2930 /* Size is in DWords - 1 */
2931 sob.SurfaceSize = xfb->size / 4 - 1;
2932 }
2933 }
2934 }
2935
2936 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
2937 if (GEN_GEN >= 10)
2938 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2939 }
2940 #endif
2941
2942 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2943 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2944
2945 /* If the pipeline changed, we may need to re-allocate push constant
2946 * space in the URB.
2947 */
2948 cmd_buffer_alloc_push_constants(cmd_buffer);
2949 }
2950
2951 #if GEN_GEN <= 7
2952 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2953 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2954 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2955 *
2956 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2957 * stall needs to be sent just prior to any 3DSTATE_VS,
2958 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2959 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2960 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2961 * PIPE_CONTROL needs to be sent before any combination of VS
2962 * associated 3DSTATE."
2963 */
2964 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2965 pc.DepthStallEnable = true;
2966 pc.PostSyncOperation = WriteImmediateData;
2967 pc.Address =
2968 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
2969 }
2970 }
2971 #endif
2972
2973 /* Render targets live in the same binding table as fragment descriptors */
2974 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2975 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2976
2977 /* We emit the binding tables and sampler tables first, then emit push
2978 * constants and then finally emit binding table and sampler table
2979 * pointers. It has to happen in this order, since emitting the binding
2980 * tables may change the push constants (in case of storage images). After
2981 * emitting push constants, on SKL+ we have to emit the corresponding
2982 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2983 */
2984 uint32_t dirty = 0;
2985 if (cmd_buffer->state.descriptors_dirty)
2986 dirty = flush_descriptor_sets(cmd_buffer, pipeline);
2987
2988 if (dirty || cmd_buffer->state.push_constants_dirty) {
2989 /* Because we're pushing UBOs, we have to push whenever either
2990 * descriptors or push constants is dirty.
2991 */
2992 dirty |= cmd_buffer->state.push_constants_dirty;
2993 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2994 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2995 }
2996
2997 if (dirty)
2998 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2999
3000 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
3001 gen8_cmd_buffer_emit_viewport(cmd_buffer);
3002
3003 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
3004 ANV_CMD_DIRTY_PIPELINE)) {
3005 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
3006 pipeline->depth_clamp_enable);
3007 }
3008
3009 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
3010 ANV_CMD_DIRTY_RENDER_TARGETS))
3011 gen7_cmd_buffer_emit_scissor(cmd_buffer);
3012
3013 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
3014 }
3015
3016 static void
3017 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
3018 struct anv_address addr,
3019 uint32_t size, uint32_t index)
3020 {
3021 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
3022 GENX(3DSTATE_VERTEX_BUFFERS));
3023
3024 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
3025 &(struct GENX(VERTEX_BUFFER_STATE)) {
3026 .VertexBufferIndex = index,
3027 .AddressModifyEnable = true,
3028 .BufferPitch = 0,
3029 .MOCS = addr.bo ? anv_mocs_for_bo(cmd_buffer->device, addr.bo) : 0,
3030 .NullVertexBuffer = size == 0,
3031 #if (GEN_GEN >= 8)
3032 .BufferStartingAddress = addr,
3033 .BufferSize = size
3034 #else
3035 .BufferStartingAddress = addr,
3036 .EndAddress = anv_address_add(addr, size),
3037 #endif
3038 });
3039
3040 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer,
3041 index, addr, size);
3042 }
3043
3044 static void
3045 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
3046 struct anv_address addr)
3047 {
3048 emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
3049 }
3050
3051 static void
3052 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
3053 uint32_t base_vertex, uint32_t base_instance)
3054 {
3055 if (base_vertex == 0 && base_instance == 0) {
3056 emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
3057 } else {
3058 struct anv_state id_state =
3059 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
3060
3061 ((uint32_t *)id_state.map)[0] = base_vertex;
3062 ((uint32_t *)id_state.map)[1] = base_instance;
3063
3064 struct anv_address addr = {
3065 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3066 .offset = id_state.offset,
3067 };
3068
3069 emit_base_vertex_instance_bo(cmd_buffer, addr);
3070 }
3071 }
3072
3073 static void
3074 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
3075 {
3076 struct anv_state state =
3077 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
3078
3079 ((uint32_t *)state.map)[0] = draw_index;
3080
3081 struct anv_address addr = {
3082 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3083 .offset = state.offset,
3084 };
3085
3086 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
3087 }
3088
3089 static void
3090 update_dirty_vbs_for_gen8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
3091 uint32_t access_type)
3092 {
3093 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3094 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3095
3096 uint64_t vb_used = pipeline->vb_used;
3097 if (vs_prog_data->uses_firstvertex ||
3098 vs_prog_data->uses_baseinstance)
3099 vb_used |= 1ull << ANV_SVGS_VB_INDEX;
3100 if (vs_prog_data->uses_drawid)
3101 vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
3102
3103 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(cmd_buffer,
3104 access_type == RANDOM,
3105 vb_used);
3106 }
3107
3108 void genX(CmdDraw)(
3109 VkCommandBuffer commandBuffer,
3110 uint32_t vertexCount,
3111 uint32_t instanceCount,
3112 uint32_t firstVertex,
3113 uint32_t firstInstance)
3114 {
3115 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3116 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3117 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3118
3119 if (anv_batch_has_error(&cmd_buffer->batch))
3120 return;
3121
3122 genX(cmd_buffer_flush_state)(cmd_buffer);
3123
3124 if (cmd_buffer->state.conditional_render_enabled)
3125 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3126
3127 if (vs_prog_data->uses_firstvertex ||
3128 vs_prog_data->uses_baseinstance)
3129 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3130 if (vs_prog_data->uses_drawid)
3131 emit_draw_index(cmd_buffer, 0);
3132
3133 /* Emitting draw index or vertex index BOs may result in needing
3134 * additional VF cache flushes.
3135 */
3136 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3137
3138 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3139 * different views. We need to multiply instanceCount by the view count.
3140 */
3141 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3142
3143 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3144 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3145 prim.VertexAccessType = SEQUENTIAL;
3146 prim.PrimitiveTopologyType = pipeline->topology;
3147 prim.VertexCountPerInstance = vertexCount;
3148 prim.StartVertexLocation = firstVertex;
3149 prim.InstanceCount = instanceCount;
3150 prim.StartInstanceLocation = firstInstance;
3151 prim.BaseVertexLocation = 0;
3152 }
3153
3154 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3155 }
3156
3157 void genX(CmdDrawIndexed)(
3158 VkCommandBuffer commandBuffer,
3159 uint32_t indexCount,
3160 uint32_t instanceCount,
3161 uint32_t firstIndex,
3162 int32_t vertexOffset,
3163 uint32_t firstInstance)
3164 {
3165 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3166 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3167 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3168
3169 if (anv_batch_has_error(&cmd_buffer->batch))
3170 return;
3171
3172 genX(cmd_buffer_flush_state)(cmd_buffer);
3173
3174 if (cmd_buffer->state.conditional_render_enabled)
3175 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3176
3177 if (vs_prog_data->uses_firstvertex ||
3178 vs_prog_data->uses_baseinstance)
3179 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
3180 if (vs_prog_data->uses_drawid)
3181 emit_draw_index(cmd_buffer, 0);
3182
3183 /* Emitting draw index or vertex index BOs may result in needing
3184 * additional VF cache flushes.
3185 */
3186 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3187
3188 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3189 * different views. We need to multiply instanceCount by the view count.
3190 */
3191 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3192
3193 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3194 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3195 prim.VertexAccessType = RANDOM;
3196 prim.PrimitiveTopologyType = pipeline->topology;
3197 prim.VertexCountPerInstance = indexCount;
3198 prim.StartVertexLocation = firstIndex;
3199 prim.InstanceCount = instanceCount;
3200 prim.StartInstanceLocation = firstInstance;
3201 prim.BaseVertexLocation = vertexOffset;
3202 }
3203
3204 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3205 }
3206
3207 /* Auto-Draw / Indirect Registers */
3208 #define GEN7_3DPRIM_END_OFFSET 0x2420
3209 #define GEN7_3DPRIM_START_VERTEX 0x2430
3210 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
3211 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
3212 #define GEN7_3DPRIM_START_INSTANCE 0x243C
3213 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
3214
3215 void genX(CmdDrawIndirectByteCountEXT)(
3216 VkCommandBuffer commandBuffer,
3217 uint32_t instanceCount,
3218 uint32_t firstInstance,
3219 VkBuffer counterBuffer,
3220 VkDeviceSize counterBufferOffset,
3221 uint32_t counterOffset,
3222 uint32_t vertexStride)
3223 {
3224 #if GEN_IS_HASWELL || GEN_GEN >= 8
3225 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3226 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
3227 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3228 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3229
3230 /* firstVertex is always zero for this draw function */
3231 const uint32_t firstVertex = 0;
3232
3233 if (anv_batch_has_error(&cmd_buffer->batch))
3234 return;
3235
3236 genX(cmd_buffer_flush_state)(cmd_buffer);
3237
3238 if (vs_prog_data->uses_firstvertex ||
3239 vs_prog_data->uses_baseinstance)
3240 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3241 if (vs_prog_data->uses_drawid)
3242 emit_draw_index(cmd_buffer, 0);
3243
3244 /* Emitting draw index or vertex index BOs may result in needing
3245 * additional VF cache flushes.
3246 */
3247 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3248
3249 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3250 * different views. We need to multiply instanceCount by the view count.
3251 */
3252 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3253
3254 struct gen_mi_builder b;
3255 gen_mi_builder_init(&b, &cmd_buffer->batch);
3256 struct gen_mi_value count =
3257 gen_mi_mem32(anv_address_add(counter_buffer->address,
3258 counterBufferOffset));
3259 if (counterOffset)
3260 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
3261 count = gen_mi_udiv32_imm(&b, count, vertexStride);
3262 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
3263
3264 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3265 gen_mi_imm(firstVertex));
3266 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
3267 gen_mi_imm(instanceCount));
3268 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3269 gen_mi_imm(firstInstance));
3270 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3271
3272 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3273 prim.IndirectParameterEnable = true;
3274 prim.VertexAccessType = SEQUENTIAL;
3275 prim.PrimitiveTopologyType = pipeline->topology;
3276 }
3277
3278 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3279 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
3280 }
3281
3282 static void
3283 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
3284 struct anv_address addr,
3285 bool indexed)
3286 {
3287 struct gen_mi_builder b;
3288 gen_mi_builder_init(&b, &cmd_buffer->batch);
3289
3290 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
3291 gen_mi_mem32(anv_address_add(addr, 0)));
3292
3293 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
3294 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
3295 if (view_count > 1) {
3296 #if GEN_IS_HASWELL || GEN_GEN >= 8
3297 instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
3298 #else
3299 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3300 "MI_MATH is not supported on Ivy Bridge");
3301 #endif
3302 }
3303 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
3304
3305 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3306 gen_mi_mem32(anv_address_add(addr, 8)));
3307
3308 if (indexed) {
3309 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
3310 gen_mi_mem32(anv_address_add(addr, 12)));
3311 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3312 gen_mi_mem32(anv_address_add(addr, 16)));
3313 } else {
3314 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3315 gen_mi_mem32(anv_address_add(addr, 12)));
3316 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3317 }
3318 }
3319
3320 void genX(CmdDrawIndirect)(
3321 VkCommandBuffer commandBuffer,
3322 VkBuffer _buffer,
3323 VkDeviceSize offset,
3324 uint32_t drawCount,
3325 uint32_t stride)
3326 {
3327 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3328 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3329 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3330 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3331
3332 if (anv_batch_has_error(&cmd_buffer->batch))
3333 return;
3334
3335 genX(cmd_buffer_flush_state)(cmd_buffer);
3336
3337 if (cmd_buffer->state.conditional_render_enabled)
3338 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3339
3340 for (uint32_t i = 0; i < drawCount; i++) {
3341 struct anv_address draw = anv_address_add(buffer->address, offset);
3342
3343 if (vs_prog_data->uses_firstvertex ||
3344 vs_prog_data->uses_baseinstance)
3345 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3346 if (vs_prog_data->uses_drawid)
3347 emit_draw_index(cmd_buffer, i);
3348
3349 /* Emitting draw index or vertex index BOs may result in needing
3350 * additional VF cache flushes.
3351 */
3352 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3353
3354 load_indirect_parameters(cmd_buffer, draw, false);
3355
3356 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3357 prim.IndirectParameterEnable = true;
3358 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3359 prim.VertexAccessType = SEQUENTIAL;
3360 prim.PrimitiveTopologyType = pipeline->topology;
3361 }
3362
3363 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3364
3365 offset += stride;
3366 }
3367 }
3368
3369 void genX(CmdDrawIndexedIndirect)(
3370 VkCommandBuffer commandBuffer,
3371 VkBuffer _buffer,
3372 VkDeviceSize offset,
3373 uint32_t drawCount,
3374 uint32_t stride)
3375 {
3376 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3377 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3378 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3379 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3380
3381 if (anv_batch_has_error(&cmd_buffer->batch))
3382 return;
3383
3384 genX(cmd_buffer_flush_state)(cmd_buffer);
3385
3386 if (cmd_buffer->state.conditional_render_enabled)
3387 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3388
3389 for (uint32_t i = 0; i < drawCount; i++) {
3390 struct anv_address draw = anv_address_add(buffer->address, offset);
3391
3392 /* TODO: We need to stomp base vertex to 0 somehow */
3393 if (vs_prog_data->uses_firstvertex ||
3394 vs_prog_data->uses_baseinstance)
3395 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3396 if (vs_prog_data->uses_drawid)
3397 emit_draw_index(cmd_buffer, i);
3398
3399 /* Emitting draw index or vertex index BOs may result in needing
3400 * additional VF cache flushes.
3401 */
3402 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3403
3404 load_indirect_parameters(cmd_buffer, draw, true);
3405
3406 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3407 prim.IndirectParameterEnable = true;
3408 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3409 prim.VertexAccessType = RANDOM;
3410 prim.PrimitiveTopologyType = pipeline->topology;
3411 }
3412
3413 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3414
3415 offset += stride;
3416 }
3417 }
3418
3419 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3420
3421 static void
3422 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3423 struct anv_address count_address,
3424 const bool conditional_render_enabled)
3425 {
3426 struct gen_mi_builder b;
3427 gen_mi_builder_init(&b, &cmd_buffer->batch);
3428
3429 if (conditional_render_enabled) {
3430 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3431 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
3432 gen_mi_mem32(count_address));
3433 #endif
3434 } else {
3435 /* Upload the current draw count from the draw parameters buffer to
3436 * MI_PREDICATE_SRC0.
3437 */
3438 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
3439 gen_mi_mem32(count_address));
3440
3441 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
3442 }
3443 }
3444
3445 static void
3446 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3447 uint32_t draw_index)
3448 {
3449 struct gen_mi_builder b;
3450 gen_mi_builder_init(&b, &cmd_buffer->batch);
3451
3452 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3453 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
3454
3455 if (draw_index == 0) {
3456 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3457 mip.LoadOperation = LOAD_LOADINV;
3458 mip.CombineOperation = COMBINE_SET;
3459 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3460 }
3461 } else {
3462 /* While draw_index < draw_count the predicate's result will be
3463 * (draw_index == draw_count) ^ TRUE = TRUE
3464 * When draw_index == draw_count the result is
3465 * (TRUE) ^ TRUE = FALSE
3466 * After this all results will be:
3467 * (FALSE) ^ FALSE = FALSE
3468 */
3469 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3470 mip.LoadOperation = LOAD_LOAD;
3471 mip.CombineOperation = COMBINE_XOR;
3472 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3473 }
3474 }
3475 }
3476
3477 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3478 static void
3479 emit_draw_count_predicate_with_conditional_render(
3480 struct anv_cmd_buffer *cmd_buffer,
3481 uint32_t draw_index)
3482 {
3483 struct gen_mi_builder b;
3484 gen_mi_builder_init(&b, &cmd_buffer->batch);
3485
3486 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
3487 gen_mi_reg64(TMP_DRAW_COUNT_REG));
3488 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
3489
3490 #if GEN_GEN >= 8
3491 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
3492 #else
3493 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3494 * so we emit MI_PREDICATE to set it.
3495 */
3496
3497 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
3498 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3499
3500 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3501 mip.LoadOperation = LOAD_LOADINV;
3502 mip.CombineOperation = COMBINE_SET;
3503 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3504 }
3505 #endif
3506 }
3507 #endif
3508
3509 void genX(CmdDrawIndirectCount)(
3510 VkCommandBuffer commandBuffer,
3511 VkBuffer _buffer,
3512 VkDeviceSize offset,
3513 VkBuffer _countBuffer,
3514 VkDeviceSize countBufferOffset,
3515 uint32_t maxDrawCount,
3516 uint32_t stride)
3517 {
3518 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3519 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3520 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3521 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3522 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3523 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3524
3525 if (anv_batch_has_error(&cmd_buffer->batch))
3526 return;
3527
3528 genX(cmd_buffer_flush_state)(cmd_buffer);
3529
3530 struct anv_address count_address =
3531 anv_address_add(count_buffer->address, countBufferOffset);
3532
3533 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3534 cmd_state->conditional_render_enabled);
3535
3536 for (uint32_t i = 0; i < maxDrawCount; i++) {
3537 struct anv_address draw = anv_address_add(buffer->address, offset);
3538
3539 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3540 if (cmd_state->conditional_render_enabled) {
3541 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3542 } else {
3543 emit_draw_count_predicate(cmd_buffer, i);
3544 }
3545 #else
3546 emit_draw_count_predicate(cmd_buffer, i);
3547 #endif
3548
3549 if (vs_prog_data->uses_firstvertex ||
3550 vs_prog_data->uses_baseinstance)
3551 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3552 if (vs_prog_data->uses_drawid)
3553 emit_draw_index(cmd_buffer, i);
3554
3555 /* Emitting draw index or vertex index BOs may result in needing
3556 * additional VF cache flushes.
3557 */
3558 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3559
3560 load_indirect_parameters(cmd_buffer, draw, false);
3561
3562 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3563 prim.IndirectParameterEnable = true;
3564 prim.PredicateEnable = true;
3565 prim.VertexAccessType = SEQUENTIAL;
3566 prim.PrimitiveTopologyType = pipeline->topology;
3567 }
3568
3569 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3570
3571 offset += stride;
3572 }
3573 }
3574
3575 void genX(CmdDrawIndexedIndirectCount)(
3576 VkCommandBuffer commandBuffer,
3577 VkBuffer _buffer,
3578 VkDeviceSize offset,
3579 VkBuffer _countBuffer,
3580 VkDeviceSize countBufferOffset,
3581 uint32_t maxDrawCount,
3582 uint32_t stride)
3583 {
3584 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3585 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3586 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3587 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3588 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3589 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3590
3591 if (anv_batch_has_error(&cmd_buffer->batch))
3592 return;
3593
3594 genX(cmd_buffer_flush_state)(cmd_buffer);
3595
3596 struct anv_address count_address =
3597 anv_address_add(count_buffer->address, countBufferOffset);
3598
3599 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3600 cmd_state->conditional_render_enabled);
3601
3602 for (uint32_t i = 0; i < maxDrawCount; i++) {
3603 struct anv_address draw = anv_address_add(buffer->address, offset);
3604
3605 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3606 if (cmd_state->conditional_render_enabled) {
3607 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3608 } else {
3609 emit_draw_count_predicate(cmd_buffer, i);
3610 }
3611 #else
3612 emit_draw_count_predicate(cmd_buffer, i);
3613 #endif
3614
3615 /* TODO: We need to stomp base vertex to 0 somehow */
3616 if (vs_prog_data->uses_firstvertex ||
3617 vs_prog_data->uses_baseinstance)
3618 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3619 if (vs_prog_data->uses_drawid)
3620 emit_draw_index(cmd_buffer, i);
3621
3622 /* Emitting draw index or vertex index BOs may result in needing
3623 * additional VF cache flushes.
3624 */
3625 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3626
3627 load_indirect_parameters(cmd_buffer, draw, true);
3628
3629 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3630 prim.IndirectParameterEnable = true;
3631 prim.PredicateEnable = true;
3632 prim.VertexAccessType = RANDOM;
3633 prim.PrimitiveTopologyType = pipeline->topology;
3634 }
3635
3636 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3637
3638 offset += stride;
3639 }
3640 }
3641
3642 void genX(CmdBeginTransformFeedbackEXT)(
3643 VkCommandBuffer commandBuffer,
3644 uint32_t firstCounterBuffer,
3645 uint32_t counterBufferCount,
3646 const VkBuffer* pCounterBuffers,
3647 const VkDeviceSize* pCounterBufferOffsets)
3648 {
3649 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3650
3651 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3652 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3653 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3654
3655 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3656 *
3657 * "Ssoftware must ensure that no HW stream output operations can be in
3658 * process or otherwise pending at the point that the MI_LOAD/STORE
3659 * commands are processed. This will likely require a pipeline flush."
3660 */
3661 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3662 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3663
3664 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3665 /* If we have a counter buffer, this is a resume so we need to load the
3666 * value into the streamout offset register. Otherwise, this is a begin
3667 * and we need to reset it to zero.
3668 */
3669 if (pCounterBuffers &&
3670 idx >= firstCounterBuffer &&
3671 idx - firstCounterBuffer < counterBufferCount &&
3672 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
3673 uint32_t cb_idx = idx - firstCounterBuffer;
3674 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3675 uint64_t offset = pCounterBufferOffsets ?
3676 pCounterBufferOffsets[cb_idx] : 0;
3677
3678 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3679 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3680 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
3681 offset);
3682 }
3683 } else {
3684 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
3685 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3686 lri.DataDWord = 0;
3687 }
3688 }
3689 }
3690
3691 cmd_buffer->state.xfb_enabled = true;
3692 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3693 }
3694
3695 void genX(CmdEndTransformFeedbackEXT)(
3696 VkCommandBuffer commandBuffer,
3697 uint32_t firstCounterBuffer,
3698 uint32_t counterBufferCount,
3699 const VkBuffer* pCounterBuffers,
3700 const VkDeviceSize* pCounterBufferOffsets)
3701 {
3702 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3703
3704 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3705 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3706 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3707
3708 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3709 *
3710 * "Ssoftware must ensure that no HW stream output operations can be in
3711 * process or otherwise pending at the point that the MI_LOAD/STORE
3712 * commands are processed. This will likely require a pipeline flush."
3713 */
3714 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3715 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3716
3717 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
3718 unsigned idx = firstCounterBuffer + cb_idx;
3719
3720 /* If we have a counter buffer, this is a resume so we need to load the
3721 * value into the streamout offset register. Otherwise, this is a begin
3722 * and we need to reset it to zero.
3723 */
3724 if (pCounterBuffers &&
3725 cb_idx < counterBufferCount &&
3726 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
3727 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3728 uint64_t offset = pCounterBufferOffsets ?
3729 pCounterBufferOffsets[cb_idx] : 0;
3730
3731 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
3732 srm.MemoryAddress = anv_address_add(counter_buffer->address,
3733 offset);
3734 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3735 }
3736 }
3737 }
3738
3739 cmd_buffer->state.xfb_enabled = false;
3740 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3741 }
3742
3743 void
3744 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
3745 {
3746 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3747
3748 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
3749
3750 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
3751
3752 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
3753
3754 #if GEN_GEN >= 12
3755 genX(cmd_buffer_aux_map_state)(cmd_buffer);
3756 #endif
3757
3758 if (cmd_buffer->state.compute.pipeline_dirty) {
3759 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
3760 *
3761 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
3762 * the only bits that are changed are scoreboard related: Scoreboard
3763 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
3764 * these scoreboard related states, a MEDIA_STATE_FLUSH is
3765 * sufficient."
3766 */
3767 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3768 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3769
3770 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3771
3772 /* The workgroup size of the pipeline affects our push constant layout
3773 * so flag push constants as dirty if we change the pipeline.
3774 */
3775 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3776 }
3777
3778 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
3779 cmd_buffer->state.compute.pipeline_dirty) {
3780 flush_descriptor_sets(cmd_buffer, pipeline);
3781
3782 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
3783 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
3784 .BindingTablePointer =
3785 cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
3786 .SamplerStatePointer =
3787 cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
3788 };
3789 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
3790
3791 struct anv_state state =
3792 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
3793 pipeline->interface_descriptor_data,
3794 GENX(INTERFACE_DESCRIPTOR_DATA_length),
3795 64);
3796
3797 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3798 anv_batch_emit(&cmd_buffer->batch,
3799 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
3800 mid.InterfaceDescriptorTotalLength = size;
3801 mid.InterfaceDescriptorDataStartAddress = state.offset;
3802 }
3803 }
3804
3805 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
3806 struct anv_state push_state =
3807 anv_cmd_buffer_cs_push_constants(cmd_buffer);
3808
3809 if (push_state.alloc_size) {
3810 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
3811 curbe.CURBETotalDataLength = push_state.alloc_size;
3812 curbe.CURBEDataStartAddress = push_state.offset;
3813 }
3814 }
3815
3816 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3817 }
3818
3819 cmd_buffer->state.compute.pipeline_dirty = false;
3820
3821 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3822 }
3823
3824 #if GEN_GEN == 7
3825
3826 static VkResult
3827 verify_cmd_parser(const struct anv_device *device,
3828 int required_version,
3829 const char *function)
3830 {
3831 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
3832 return vk_errorf(device->instance, device->instance,
3833 VK_ERROR_FEATURE_NOT_PRESENT,
3834 "cmd parser version %d is required for %s",
3835 required_version, function);
3836 } else {
3837 return VK_SUCCESS;
3838 }
3839 }
3840
3841 #endif
3842
3843 static void
3844 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
3845 uint32_t baseGroupX,
3846 uint32_t baseGroupY,
3847 uint32_t baseGroupZ)
3848 {
3849 if (anv_batch_has_error(&cmd_buffer->batch))
3850 return;
3851
3852 struct anv_push_constants *push =
3853 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
3854 if (push->cs.base_work_group_id[0] != baseGroupX ||
3855 push->cs.base_work_group_id[1] != baseGroupY ||
3856 push->cs.base_work_group_id[2] != baseGroupZ) {
3857 push->cs.base_work_group_id[0] = baseGroupX;
3858 push->cs.base_work_group_id[1] = baseGroupY;
3859 push->cs.base_work_group_id[2] = baseGroupZ;
3860
3861 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3862 }
3863 }
3864
3865 void genX(CmdDispatch)(
3866 VkCommandBuffer commandBuffer,
3867 uint32_t x,
3868 uint32_t y,
3869 uint32_t z)
3870 {
3871 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
3872 }
3873
3874 void genX(CmdDispatchBase)(
3875 VkCommandBuffer commandBuffer,
3876 uint32_t baseGroupX,
3877 uint32_t baseGroupY,
3878 uint32_t baseGroupZ,
3879 uint32_t groupCountX,
3880 uint32_t groupCountY,
3881 uint32_t groupCountZ)
3882 {
3883 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3884 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3885 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3886
3887 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
3888 baseGroupY, baseGroupZ);
3889
3890 if (anv_batch_has_error(&cmd_buffer->batch))
3891 return;
3892
3893 if (prog_data->uses_num_work_groups) {
3894 struct anv_state state =
3895 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
3896 uint32_t *sizes = state.map;
3897 sizes[0] = groupCountX;
3898 sizes[1] = groupCountY;
3899 sizes[2] = groupCountZ;
3900 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
3901 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3902 .offset = state.offset,
3903 };
3904
3905 /* The num_workgroups buffer goes in the binding table */
3906 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3907 }
3908
3909 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3910
3911 if (cmd_buffer->state.conditional_render_enabled)
3912 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3913
3914 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
3915 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3916 ggw.SIMDSize = prog_data->simd_size / 16;
3917 ggw.ThreadDepthCounterMaximum = 0;
3918 ggw.ThreadHeightCounterMaximum = 0;
3919 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3920 ggw.ThreadGroupIDXDimension = groupCountX;
3921 ggw.ThreadGroupIDYDimension = groupCountY;
3922 ggw.ThreadGroupIDZDimension = groupCountZ;
3923 ggw.RightExecutionMask = pipeline->cs_right_mask;
3924 ggw.BottomExecutionMask = 0xffffffff;
3925 }
3926
3927 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
3928 }
3929
3930 #define GPGPU_DISPATCHDIMX 0x2500
3931 #define GPGPU_DISPATCHDIMY 0x2504
3932 #define GPGPU_DISPATCHDIMZ 0x2508
3933
3934 void genX(CmdDispatchIndirect)(
3935 VkCommandBuffer commandBuffer,
3936 VkBuffer _buffer,
3937 VkDeviceSize offset)
3938 {
3939 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3940 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3941 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3942 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3943 struct anv_address addr = anv_address_add(buffer->address, offset);
3944 struct anv_batch *batch = &cmd_buffer->batch;
3945
3946 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
3947
3948 #if GEN_GEN == 7
3949 /* Linux 4.4 added command parser version 5 which allows the GPGPU
3950 * indirect dispatch registers to be written.
3951 */
3952 if (verify_cmd_parser(cmd_buffer->device, 5,
3953 "vkCmdDispatchIndirect") != VK_SUCCESS)
3954 return;
3955 #endif
3956
3957 if (prog_data->uses_num_work_groups) {
3958 cmd_buffer->state.compute.num_workgroups = addr;
3959
3960 /* The num_workgroups buffer goes in the binding table */
3961 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3962 }
3963
3964 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3965
3966 struct gen_mi_builder b;
3967 gen_mi_builder_init(&b, &cmd_buffer->batch);
3968
3969 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
3970 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
3971 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
3972
3973 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
3974 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
3975 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
3976
3977 #if GEN_GEN <= 7
3978 /* predicate = (compute_dispatch_indirect_x_size == 0); */
3979 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
3980 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3981 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3982 mip.LoadOperation = LOAD_LOAD;
3983 mip.CombineOperation = COMBINE_SET;
3984 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3985 }
3986
3987 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
3988 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
3989 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3990 mip.LoadOperation = LOAD_LOAD;
3991 mip.CombineOperation = COMBINE_OR;
3992 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3993 }
3994
3995 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
3996 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
3997 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3998 mip.LoadOperation = LOAD_LOAD;
3999 mip.CombineOperation = COMBINE_OR;
4000 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4001 }
4002
4003 /* predicate = !predicate; */
4004 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4005 mip.LoadOperation = LOAD_LOADINV;
4006 mip.CombineOperation = COMBINE_OR;
4007 mip.CompareOperation = COMPARE_FALSE;
4008 }
4009
4010 #if GEN_IS_HASWELL
4011 if (cmd_buffer->state.conditional_render_enabled) {
4012 /* predicate &= !(conditional_rendering_predicate == 0); */
4013 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
4014 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
4015 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4016 mip.LoadOperation = LOAD_LOADINV;
4017 mip.CombineOperation = COMBINE_AND;
4018 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4019 }
4020 }
4021 #endif
4022
4023 #else /* GEN_GEN > 7 */
4024 if (cmd_buffer->state.conditional_render_enabled)
4025 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4026 #endif
4027
4028 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
4029 ggw.IndirectParameterEnable = true;
4030 ggw.PredicateEnable = GEN_GEN <= 7 ||
4031 cmd_buffer->state.conditional_render_enabled;
4032 ggw.SIMDSize = prog_data->simd_size / 16;
4033 ggw.ThreadDepthCounterMaximum = 0;
4034 ggw.ThreadHeightCounterMaximum = 0;
4035 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4036 ggw.RightExecutionMask = pipeline->cs_right_mask;
4037 ggw.BottomExecutionMask = 0xffffffff;
4038 }
4039
4040 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
4041 }
4042
4043 static void
4044 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
4045 uint32_t pipeline)
4046 {
4047 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4048
4049 if (cmd_buffer->state.current_pipeline == pipeline)
4050 return;
4051
4052 #if GEN_GEN >= 8 && GEN_GEN < 10
4053 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
4054 *
4055 * Software must clear the COLOR_CALC_STATE Valid field in
4056 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
4057 * with Pipeline Select set to GPGPU.
4058 *
4059 * The internal hardware docs recommend the same workaround for Gen9
4060 * hardware too.
4061 */
4062 if (pipeline == GPGPU)
4063 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
4064 #endif
4065
4066 #if GEN_GEN == 9
4067 if (pipeline == _3D) {
4068 /* There is a mid-object preemption workaround which requires you to
4069 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
4070 * even without preemption, we have issues with geometry flickering when
4071 * GPGPU and 3D are back-to-back and this seems to fix it. We don't
4072 * really know why.
4073 */
4074 const uint32_t subslices =
4075 MAX2(cmd_buffer->device->instance->physicalDevice.subslice_total, 1);
4076 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
4077 vfe.MaximumNumberofThreads =
4078 devinfo->max_cs_threads * subslices - 1;
4079 vfe.NumberofURBEntries = 2;
4080 vfe.URBEntryAllocationSize = 2;
4081 }
4082
4083 /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
4084 * invalid. Set the compute pipeline to dirty to force a re-emit of the
4085 * pipeline in case we get back-to-back dispatch calls with the same
4086 * pipeline and a PIPELINE_SELECT in between.
4087 */
4088 cmd_buffer->state.compute.pipeline_dirty = true;
4089 }
4090 #endif
4091
4092 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
4093 * PIPELINE_SELECT [DevBWR+]":
4094 *
4095 * Project: DEVSNB+
4096 *
4097 * Software must ensure all the write caches are flushed through a
4098 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
4099 * command to invalidate read only caches prior to programming
4100 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
4101 */
4102 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4103 pc.RenderTargetCacheFlushEnable = true;
4104 pc.DepthCacheFlushEnable = true;
4105 pc.DCFlushEnable = true;
4106 pc.PostSyncOperation = NoWrite;
4107 pc.CommandStreamerStallEnable = true;
4108 #if GEN_GEN >= 12
4109 pc.TileCacheFlushEnable = true;
4110 #endif
4111 }
4112
4113 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4114 pc.TextureCacheInvalidationEnable = true;
4115 pc.ConstantCacheInvalidationEnable = true;
4116 pc.StateCacheInvalidationEnable = true;
4117 pc.InstructionCacheInvalidateEnable = true;
4118 pc.PostSyncOperation = NoWrite;
4119 #if GEN_GEN >= 12
4120 pc.TileCacheFlushEnable = true;
4121 #endif
4122 }
4123
4124 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
4125 #if GEN_GEN >= 9
4126 ps.MaskBits = 3;
4127 #endif
4128 ps.PipelineSelection = pipeline;
4129 }
4130
4131 #if GEN_GEN == 9
4132 if (devinfo->is_geminilake) {
4133 /* Project: DevGLK
4134 *
4135 * "This chicken bit works around a hardware issue with barrier logic
4136 * encountered when switching between GPGPU and 3D pipelines. To
4137 * workaround the issue, this mode bit should be set after a pipeline
4138 * is selected."
4139 */
4140 uint32_t scec;
4141 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
4142 .GLKBarrierMode =
4143 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
4144 : GLK_BARRIER_MODE_3D_HULL,
4145 .GLKBarrierModeMask = 1);
4146 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
4147 }
4148 #endif
4149
4150 cmd_buffer->state.current_pipeline = pipeline;
4151 }
4152
4153 void
4154 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
4155 {
4156 genX(flush_pipeline_select)(cmd_buffer, _3D);
4157 }
4158
4159 void
4160 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
4161 {
4162 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
4163 }
4164
4165 void
4166 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
4167 {
4168 if (GEN_GEN >= 8)
4169 return;
4170
4171 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
4172 *
4173 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
4174 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
4175 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
4176 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
4177 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
4178 * Depth Flush Bit set, followed by another pipelined depth stall
4179 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
4180 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
4181 * via a preceding MI_FLUSH)."
4182 */
4183 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4184 pipe.DepthStallEnable = true;
4185 }
4186 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4187 pipe.DepthCacheFlushEnable = true;
4188 #if GEN_GEN >= 12
4189 pipe.TileCacheFlushEnable = true;
4190 #endif
4191 }
4192 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4193 pipe.DepthStallEnable = true;
4194 }
4195 }
4196
4197 /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
4198 *
4199 * "The VF cache needs to be invalidated before binding and then using
4200 * Vertex Buffers that overlap with any previously bound Vertex Buffer
4201 * (at a 64B granularity) since the last invalidation. A VF cache
4202 * invalidate is performed by setting the "VF Cache Invalidation Enable"
4203 * bit in PIPE_CONTROL."
4204 *
4205 * This is implemented by carefully tracking all vertex and index buffer
4206 * bindings and flushing if the cache ever ends up with a range in the cache
4207 * that would exceed 4 GiB. This is implemented in three parts:
4208 *
4209 * 1. genX(cmd_buffer_set_binding_for_gen8_vb_flush)() which must be called
4210 * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
4211 * tracking code of the new binding. If this new binding would cause
4212 * the cache to have a too-large range on the next draw call, a pipeline
4213 * stall and VF cache invalidate are added to pending_pipeline_bits.
4214 *
4215 * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
4216 * empty whenever we emit a VF invalidate.
4217 *
4218 * 3. genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)() must be called
4219 * after every 3DPRIMITIVE and copies the bound range into the dirty
4220 * range for each used buffer. This has to be a separate step because
4221 * we don't always re-bind all buffers and so 1. can't know which
4222 * buffers are actually bound.
4223 */
4224 void
4225 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4226 int vb_index,
4227 struct anv_address vb_address,
4228 uint32_t vb_size)
4229 {
4230 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4231 !cmd_buffer->device->instance->physicalDevice.use_softpin)
4232 return;
4233
4234 struct anv_vb_cache_range *bound, *dirty;
4235 if (vb_index == -1) {
4236 bound = &cmd_buffer->state.gfx.ib_bound_range;
4237 dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4238 } else {
4239 assert(vb_index >= 0);
4240 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4241 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4242 bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
4243 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
4244 }
4245
4246 if (vb_size == 0) {
4247 bound->start = 0;
4248 bound->end = 0;
4249 return;
4250 }
4251
4252 assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED));
4253 bound->start = gen_48b_address(anv_address_physical(vb_address));
4254 bound->end = bound->start + vb_size;
4255 assert(bound->end > bound->start); /* No overflow */
4256
4257 /* Align everything to a cache line */
4258 bound->start &= ~(64ull - 1ull);
4259 bound->end = align_u64(bound->end, 64);
4260
4261 /* Compute the dirty range */
4262 dirty->start = MIN2(dirty->start, bound->start);
4263 dirty->end = MAX2(dirty->end, bound->end);
4264
4265 /* If our range is larger than 32 bits, we have to flush */
4266 assert(bound->end - bound->start <= (1ull << 32));
4267 if (dirty->end - dirty->start > (1ull << 32)) {
4268 cmd_buffer->state.pending_pipe_bits |=
4269 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
4270 }
4271 }
4272
4273 void
4274 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4275 uint32_t access_type,
4276 uint64_t vb_used)
4277 {
4278 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4279 !cmd_buffer->device->instance->physicalDevice.use_softpin)
4280 return;
4281
4282 if (access_type == RANDOM) {
4283 /* We have an index buffer */
4284 struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
4285 struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4286
4287 if (bound->end > bound->start) {
4288 dirty->start = MIN2(dirty->start, bound->start);
4289 dirty->end = MAX2(dirty->end, bound->end);
4290 }
4291 }
4292
4293 uint64_t mask = vb_used;
4294 while (mask) {
4295 int i = u_bit_scan64(&mask);
4296 assert(i >= 0);
4297 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4298 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4299
4300 struct anv_vb_cache_range *bound, *dirty;
4301 bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
4302 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
4303
4304 if (bound->end > bound->start) {
4305 dirty->start = MIN2(dirty->start, bound->start);
4306 dirty->end = MAX2(dirty->end, bound->end);
4307 }
4308 }
4309 }
4310
4311 /**
4312 * Update the pixel hashing modes that determine the balancing of PS threads
4313 * across subslices and slices.
4314 *
4315 * \param width Width bound of the rendering area (already scaled down if \p
4316 * scale is greater than 1).
4317 * \param height Height bound of the rendering area (already scaled down if \p
4318 * scale is greater than 1).
4319 * \param scale The number of framebuffer samples that could potentially be
4320 * affected by an individual channel of the PS thread. This is
4321 * typically one for single-sampled rendering, but for operations
4322 * like CCS resolves and fast clears a single PS invocation may
4323 * update a huge number of pixels, in which case a finer
4324 * balancing is desirable in order to maximally utilize the
4325 * bandwidth available. UINT_MAX can be used as shorthand for
4326 * "finest hashing mode available".
4327 */
4328 void
4329 genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
4330 unsigned width, unsigned height,
4331 unsigned scale)
4332 {
4333 #if GEN_GEN == 9
4334 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4335 const unsigned slice_hashing[] = {
4336 /* Because all Gen9 platforms with more than one slice require
4337 * three-way subslice hashing, a single "normal" 16x16 slice hashing
4338 * block is guaranteed to suffer from substantial imbalance, with one
4339 * subslice receiving twice as much work as the other two in the
4340 * slice.
4341 *
4342 * The performance impact of that would be particularly severe when
4343 * three-way hashing is also in use for slice balancing (which is the
4344 * case for all Gen9 GT4 platforms), because one of the slices
4345 * receives one every three 16x16 blocks in either direction, which
4346 * is roughly the periodicity of the underlying subslice imbalance
4347 * pattern ("roughly" because in reality the hardware's
4348 * implementation of three-way hashing doesn't do exact modulo 3
4349 * arithmetic, which somewhat decreases the magnitude of this effect
4350 * in practice). This leads to a systematic subslice imbalance
4351 * within that slice regardless of the size of the primitive. The
4352 * 32x32 hashing mode guarantees that the subslice imbalance within a
4353 * single slice hashing block is minimal, largely eliminating this
4354 * effect.
4355 */
4356 _32x32,
4357 /* Finest slice hashing mode available. */
4358 NORMAL
4359 };
4360 const unsigned subslice_hashing[] = {
4361 /* 16x16 would provide a slight cache locality benefit especially
4362 * visible in the sampler L1 cache efficiency of low-bandwidth
4363 * non-LLC platforms, but it comes at the cost of greater subslice
4364 * imbalance for primitives of dimensions approximately intermediate
4365 * between 16x4 and 16x16.
4366 */
4367 _16x4,
4368 /* Finest subslice hashing mode available. */
4369 _8x4
4370 };
4371 /* Dimensions of the smallest hashing block of a given hashing mode. If
4372 * the rendering area is smaller than this there can't possibly be any
4373 * benefit from switching to this mode, so we optimize out the
4374 * transition.
4375 */
4376 const unsigned min_size[][2] = {
4377 { 16, 4 },
4378 { 8, 4 }
4379 };
4380 const unsigned idx = scale > 1;
4381
4382 if (cmd_buffer->state.current_hash_scale != scale &&
4383 (width > min_size[idx][0] || height > min_size[idx][1])) {
4384 uint32_t gt_mode;
4385
4386 anv_pack_struct(&gt_mode, GENX(GT_MODE),
4387 .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0),
4388 .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0),
4389 .SubsliceHashing = subslice_hashing[idx],
4390 .SubsliceHashingMask = -1);
4391
4392 cmd_buffer->state.pending_pipe_bits |=
4393 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
4394 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4395
4396 emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode);
4397
4398 cmd_buffer->state.current_hash_scale = scale;
4399 }
4400 #endif
4401 }
4402
4403 static void
4404 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
4405 {
4406 struct anv_device *device = cmd_buffer->device;
4407 const struct anv_image_view *iview =
4408 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
4409 const struct anv_image *image = iview ? iview->image : NULL;
4410
4411 /* FIXME: Width and Height are wrong */
4412
4413 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
4414
4415 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
4416 device->isl_dev.ds.size / 4);
4417 if (dw == NULL)
4418 return;
4419
4420 struct isl_depth_stencil_hiz_emit_info info = { };
4421
4422 if (iview)
4423 info.view = &iview->planes[0].isl;
4424
4425 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4426 uint32_t depth_plane =
4427 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
4428 const struct anv_surface *surface = &image->planes[depth_plane].surface;
4429
4430 info.depth_surf = &surface->isl;
4431
4432 info.depth_address =
4433 anv_batch_emit_reloc(&cmd_buffer->batch,
4434 dw + device->isl_dev.ds.depth_offset / 4,
4435 image->planes[depth_plane].address.bo,
4436 image->planes[depth_plane].address.offset +
4437 surface->offset);
4438 info.mocs =
4439 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
4440
4441 const uint32_t ds =
4442 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
4443 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
4444 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
4445 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
4446
4447 info.hiz_address =
4448 anv_batch_emit_reloc(&cmd_buffer->batch,
4449 dw + device->isl_dev.ds.hiz_offset / 4,
4450 image->planes[depth_plane].address.bo,
4451 image->planes[depth_plane].address.offset +
4452 image->planes[depth_plane].aux_surface.offset);
4453
4454 info.depth_clear_value = ANV_HZ_FC_VAL;
4455 }
4456 }
4457
4458 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
4459 uint32_t stencil_plane =
4460 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
4461 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
4462
4463 info.stencil_surf = &surface->isl;
4464
4465 info.stencil_address =
4466 anv_batch_emit_reloc(&cmd_buffer->batch,
4467 dw + device->isl_dev.ds.stencil_offset / 4,
4468 image->planes[stencil_plane].address.bo,
4469 image->planes[stencil_plane].address.offset +
4470 surface->offset);
4471 info.mocs =
4472 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
4473 }
4474
4475 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
4476
4477 if (GEN_GEN >= 12) {
4478 /* GEN:BUG:1408224581
4479 *
4480 * Workaround: Gen12LP Astep only An additional pipe control with
4481 * post-sync = store dword operation would be required.( w/a is to
4482 * have an additional pipe control after the stencil state whenever
4483 * the surface state bits of this state is changing).
4484 */
4485 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4486 pc.PostSyncOperation = WriteImmediateData;
4487 pc.Address =
4488 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
4489 }
4490 }
4491 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
4492 }
4493
4494 /**
4495 * This ANDs the view mask of the current subpass with the pending clear
4496 * views in the attachment to get the mask of views active in the subpass
4497 * that still need to be cleared.
4498 */
4499 static inline uint32_t
4500 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
4501 const struct anv_attachment_state *att_state)
4502 {
4503 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
4504 }
4505
4506 static inline bool
4507 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
4508 const struct anv_attachment_state *att_state)
4509 {
4510 if (!cmd_state->subpass->view_mask)
4511 return true;
4512
4513 uint32_t pending_clear_mask =
4514 get_multiview_subpass_clear_mask(cmd_state, att_state);
4515
4516 return pending_clear_mask & 1;
4517 }
4518
4519 static inline bool
4520 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
4521 uint32_t att_idx)
4522 {
4523 const uint32_t last_subpass_idx =
4524 cmd_state->pass->attachments[att_idx].last_subpass_idx;
4525 const struct anv_subpass *last_subpass =
4526 &cmd_state->pass->subpasses[last_subpass_idx];
4527 return last_subpass == cmd_state->subpass;
4528 }
4529
4530 static void
4531 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
4532 uint32_t subpass_id)
4533 {
4534 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4535 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
4536 cmd_state->subpass = subpass;
4537
4538 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
4539
4540 /* Our implementation of VK_KHR_multiview uses instancing to draw the
4541 * different views. If the client asks for instancing, we need to use the
4542 * Instance Data Step Rate to ensure that we repeat the client's
4543 * per-instance data once for each view. Since this bit is in
4544 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
4545 * of each subpass.
4546 */
4547 if (GEN_GEN == 7)
4548 cmd_buffer->state.gfx.vb_dirty |= ~0;
4549
4550 /* It is possible to start a render pass with an old pipeline. Because the
4551 * render pass and subpass index are both baked into the pipeline, this is
4552 * highly unlikely. In order to do so, it requires that you have a render
4553 * pass with a single subpass and that you use that render pass twice
4554 * back-to-back and use the same pipeline at the start of the second render
4555 * pass as at the end of the first. In order to avoid unpredictable issues
4556 * with this edge case, we just dirty the pipeline at the start of every
4557 * subpass.
4558 */
4559 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
4560
4561 /* Accumulate any subpass flushes that need to happen before the subpass */
4562 cmd_buffer->state.pending_pipe_bits |=
4563 cmd_buffer->state.pass->subpass_flushes[subpass_id];
4564
4565 VkRect2D render_area = cmd_buffer->state.render_area;
4566 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4567
4568 bool is_multiview = subpass->view_mask != 0;
4569
4570 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4571 const uint32_t a = subpass->attachments[i].attachment;
4572 if (a == VK_ATTACHMENT_UNUSED)
4573 continue;
4574
4575 assert(a < cmd_state->pass->attachment_count);
4576 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4577
4578 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
4579 const struct anv_image *image = iview->image;
4580
4581 /* A resolve is necessary before use as an input attachment if the clear
4582 * color or auxiliary buffer usage isn't supported by the sampler.
4583 */
4584 const bool input_needs_resolve =
4585 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
4586 att_state->input_aux_usage != att_state->aux_usage;
4587
4588 VkImageLayout target_layout, target_stencil_layout;
4589 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
4590 !input_needs_resolve) {
4591 /* Layout transitions before the final only help to enable sampling
4592 * as an input attachment. If the input attachment supports sampling
4593 * using the auxiliary surface, we can skip such transitions by
4594 * making the target layout one that is CCS-aware.
4595 */
4596 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
4597 } else {
4598 target_layout = subpass->attachments[i].layout;
4599 target_stencil_layout = subpass->attachments[i].stencil_layout;
4600 }
4601
4602 uint32_t base_layer, layer_count;
4603 if (image->type == VK_IMAGE_TYPE_3D) {
4604 base_layer = 0;
4605 layer_count = anv_minify(iview->image->extent.depth,
4606 iview->planes[0].isl.base_level);
4607 } else {
4608 base_layer = iview->planes[0].isl.base_array_layer;
4609 layer_count = fb->layers;
4610 }
4611
4612 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4613 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4614 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4615 iview->planes[0].isl.base_level, 1,
4616 base_layer, layer_count,
4617 att_state->current_layout, target_layout);
4618 }
4619
4620 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4621 transition_depth_buffer(cmd_buffer, image,
4622 att_state->current_layout, target_layout);
4623 att_state->aux_usage =
4624 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
4625 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
4626 }
4627
4628 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4629 transition_stencil_buffer(cmd_buffer, image,
4630 iview->planes[0].isl.base_level, 1,
4631 base_layer, layer_count,
4632 att_state->current_stencil_layout,
4633 target_stencil_layout);
4634 }
4635 att_state->current_layout = target_layout;
4636 att_state->current_stencil_layout = target_stencil_layout;
4637
4638 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
4639 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4640
4641 /* Multi-planar images are not supported as attachments */
4642 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4643 assert(image->n_planes == 1);
4644
4645 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
4646 uint32_t clear_layer_count = fb->layers;
4647
4648 if (att_state->fast_clear &&
4649 do_first_layer_clear(cmd_state, att_state)) {
4650 /* We only support fast-clears on the first layer */
4651 assert(iview->planes[0].isl.base_level == 0);
4652 assert(iview->planes[0].isl.base_array_layer == 0);
4653
4654 union isl_color_value clear_color = {};
4655 anv_clear_color_from_att_state(&clear_color, att_state, iview);
4656 if (iview->image->samples == 1) {
4657 anv_image_ccs_op(cmd_buffer, image,
4658 iview->planes[0].isl.format,
4659 VK_IMAGE_ASPECT_COLOR_BIT,
4660 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
4661 &clear_color,
4662 false);
4663 } else {
4664 anv_image_mcs_op(cmd_buffer, image,
4665 iview->planes[0].isl.format,
4666 VK_IMAGE_ASPECT_COLOR_BIT,
4667 0, 1, ISL_AUX_OP_FAST_CLEAR,
4668 &clear_color,
4669 false);
4670 }
4671 base_clear_layer++;
4672 clear_layer_count--;
4673 if (is_multiview)
4674 att_state->pending_clear_views &= ~1;
4675
4676 if (att_state->clear_color_is_zero) {
4677 /* This image has the auxiliary buffer enabled. We can mark the
4678 * subresource as not needing a resolve because the clear color
4679 * will match what's in every RENDER_SURFACE_STATE object when
4680 * it's being used for sampling.
4681 */
4682 set_image_fast_clear_state(cmd_buffer, iview->image,
4683 VK_IMAGE_ASPECT_COLOR_BIT,
4684 ANV_FAST_CLEAR_DEFAULT_VALUE);
4685 } else {
4686 set_image_fast_clear_state(cmd_buffer, iview->image,
4687 VK_IMAGE_ASPECT_COLOR_BIT,
4688 ANV_FAST_CLEAR_ANY);
4689 }
4690 }
4691
4692 /* From the VkFramebufferCreateInfo spec:
4693 *
4694 * "If the render pass uses multiview, then layers must be one and each
4695 * attachment requires a number of layers that is greater than the
4696 * maximum bit index set in the view mask in the subpasses in which it
4697 * is used."
4698 *
4699 * So if multiview is active we ignore the number of layers in the
4700 * framebuffer and instead we honor the view mask from the subpass.
4701 */
4702 if (is_multiview) {
4703 assert(image->n_planes == 1);
4704 uint32_t pending_clear_mask =
4705 get_multiview_subpass_clear_mask(cmd_state, att_state);
4706
4707 uint32_t layer_idx;
4708 for_each_bit(layer_idx, pending_clear_mask) {
4709 uint32_t layer =
4710 iview->planes[0].isl.base_array_layer + layer_idx;
4711
4712 anv_image_clear_color(cmd_buffer, image,
4713 VK_IMAGE_ASPECT_COLOR_BIT,
4714 att_state->aux_usage,
4715 iview->planes[0].isl.format,
4716 iview->planes[0].isl.swizzle,
4717 iview->planes[0].isl.base_level,
4718 layer, 1,
4719 render_area,
4720 vk_to_isl_color(att_state->clear_value.color));
4721 }
4722
4723 att_state->pending_clear_views &= ~pending_clear_mask;
4724 } else if (clear_layer_count > 0) {
4725 assert(image->n_planes == 1);
4726 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4727 att_state->aux_usage,
4728 iview->planes[0].isl.format,
4729 iview->planes[0].isl.swizzle,
4730 iview->planes[0].isl.base_level,
4731 base_clear_layer, clear_layer_count,
4732 render_area,
4733 vk_to_isl_color(att_state->clear_value.color));
4734 }
4735 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
4736 VK_IMAGE_ASPECT_STENCIL_BIT)) {
4737 if (att_state->fast_clear && !is_multiview) {
4738 /* We currently only support HiZ for single-layer images */
4739 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4740 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
4741 assert(iview->planes[0].isl.base_level == 0);
4742 assert(iview->planes[0].isl.base_array_layer == 0);
4743 assert(fb->layers == 1);
4744 }
4745
4746 anv_image_hiz_clear(cmd_buffer, image,
4747 att_state->pending_clear_aspects,
4748 iview->planes[0].isl.base_level,
4749 iview->planes[0].isl.base_array_layer,
4750 fb->layers, render_area,
4751 att_state->clear_value.depthStencil.stencil);
4752 } else if (is_multiview) {
4753 uint32_t pending_clear_mask =
4754 get_multiview_subpass_clear_mask(cmd_state, att_state);
4755
4756 uint32_t layer_idx;
4757 for_each_bit(layer_idx, pending_clear_mask) {
4758 uint32_t layer =
4759 iview->planes[0].isl.base_array_layer + layer_idx;
4760
4761 anv_image_clear_depth_stencil(cmd_buffer, image,
4762 att_state->pending_clear_aspects,
4763 att_state->aux_usage,
4764 iview->planes[0].isl.base_level,
4765 layer, 1,
4766 render_area,
4767 att_state->clear_value.depthStencil.depth,
4768 att_state->clear_value.depthStencil.stencil);
4769 }
4770
4771 att_state->pending_clear_views &= ~pending_clear_mask;
4772 } else {
4773 anv_image_clear_depth_stencil(cmd_buffer, image,
4774 att_state->pending_clear_aspects,
4775 att_state->aux_usage,
4776 iview->planes[0].isl.base_level,
4777 iview->planes[0].isl.base_array_layer,
4778 fb->layers, render_area,
4779 att_state->clear_value.depthStencil.depth,
4780 att_state->clear_value.depthStencil.stencil);
4781 }
4782 } else {
4783 assert(att_state->pending_clear_aspects == 0);
4784 }
4785
4786 if (GEN_GEN < 10 &&
4787 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
4788 image->planes[0].aux_surface.isl.size_B > 0 &&
4789 iview->planes[0].isl.base_level == 0 &&
4790 iview->planes[0].isl.base_array_layer == 0) {
4791 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
4792 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
4793 image, VK_IMAGE_ASPECT_COLOR_BIT,
4794 false /* copy to ss */);
4795 }
4796
4797 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
4798 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
4799 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
4800 image, VK_IMAGE_ASPECT_COLOR_BIT,
4801 false /* copy to ss */);
4802 }
4803 }
4804
4805 if (subpass->attachments[i].usage ==
4806 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
4807 /* We assume that if we're starting a subpass, we're going to do some
4808 * rendering so we may end up with compressed data.
4809 */
4810 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
4811 VK_IMAGE_ASPECT_COLOR_BIT,
4812 att_state->aux_usage,
4813 iview->planes[0].isl.base_level,
4814 iview->planes[0].isl.base_array_layer,
4815 fb->layers);
4816 } else if (subpass->attachments[i].usage ==
4817 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
4818 /* We may be writing depth or stencil so we need to mark the surface.
4819 * Unfortunately, there's no way to know at this point whether the
4820 * depth or stencil tests used will actually write to the surface.
4821 *
4822 * Even though stencil may be plane 1, it always shares a base_level
4823 * with depth.
4824 */
4825 const struct isl_view *ds_view = &iview->planes[0].isl;
4826 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
4827 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
4828 VK_IMAGE_ASPECT_DEPTH_BIT,
4829 att_state->aux_usage,
4830 ds_view->base_level,
4831 ds_view->base_array_layer,
4832 fb->layers);
4833 }
4834 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
4835 /* Even though stencil may be plane 1, it always shares a
4836 * base_level with depth.
4837 */
4838 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
4839 VK_IMAGE_ASPECT_STENCIL_BIT,
4840 ISL_AUX_USAGE_NONE,
4841 ds_view->base_level,
4842 ds_view->base_array_layer,
4843 fb->layers);
4844 }
4845 }
4846
4847 /* If multiview is enabled, then we are only done clearing when we no
4848 * longer have pending layers to clear, or when we have processed the
4849 * last subpass that uses this attachment.
4850 */
4851 if (!is_multiview ||
4852 att_state->pending_clear_views == 0 ||
4853 current_subpass_is_last_for_attachment(cmd_state, a)) {
4854 att_state->pending_clear_aspects = 0;
4855 }
4856
4857 att_state->pending_load_aspects = 0;
4858 }
4859
4860 cmd_buffer_emit_depth_stencil(cmd_buffer);
4861
4862 #if GEN_GEN >= 11
4863 /* The PIPE_CONTROL command description says:
4864 *
4865 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
4866 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
4867 * Target Cache Flush by enabling this bit. When render target flush
4868 * is set due to new association of BTI, PS Scoreboard Stall bit must
4869 * be set in this packet."
4870 */
4871 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4872 pc.RenderTargetCacheFlushEnable = true;
4873 pc.StallAtPixelScoreboard = true;
4874 #if GEN_GEN >= 12
4875 pc.TileCacheFlushEnable = true;
4876 #endif
4877 }
4878 #endif
4879 }
4880
4881 static enum blorp_filter
4882 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
4883 {
4884 switch (vk_mode) {
4885 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
4886 return BLORP_FILTER_SAMPLE_0;
4887 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
4888 return BLORP_FILTER_AVERAGE;
4889 case VK_RESOLVE_MODE_MIN_BIT_KHR:
4890 return BLORP_FILTER_MIN_SAMPLE;
4891 case VK_RESOLVE_MODE_MAX_BIT_KHR:
4892 return BLORP_FILTER_MAX_SAMPLE;
4893 default:
4894 return BLORP_FILTER_NONE;
4895 }
4896 }
4897
4898 static void
4899 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
4900 {
4901 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4902 struct anv_subpass *subpass = cmd_state->subpass;
4903 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
4904 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4905
4906 if (subpass->has_color_resolve) {
4907 /* We are about to do some MSAA resolves. We need to flush so that the
4908 * result of writes to the MSAA color attachments show up in the sampler
4909 * when we blit to the single-sampled resolve target.
4910 */
4911 cmd_buffer->state.pending_pipe_bits |=
4912 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
4913 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
4914
4915 for (uint32_t i = 0; i < subpass->color_count; ++i) {
4916 uint32_t src_att = subpass->color_attachments[i].attachment;
4917 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
4918
4919 if (dst_att == VK_ATTACHMENT_UNUSED)
4920 continue;
4921
4922 assert(src_att < cmd_buffer->state.pass->attachment_count);
4923 assert(dst_att < cmd_buffer->state.pass->attachment_count);
4924
4925 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
4926 /* From the Vulkan 1.0 spec:
4927 *
4928 * If the first use of an attachment in a render pass is as a
4929 * resolve attachment, then the loadOp is effectively ignored
4930 * as the resolve is guaranteed to overwrite all pixels in the
4931 * render area.
4932 */
4933 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
4934 }
4935
4936 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
4937 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
4938
4939 const VkRect2D render_area = cmd_buffer->state.render_area;
4940
4941 enum isl_aux_usage src_aux_usage =
4942 cmd_buffer->state.attachments[src_att].aux_usage;
4943 enum isl_aux_usage dst_aux_usage =
4944 cmd_buffer->state.attachments[dst_att].aux_usage;
4945
4946 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
4947 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
4948
4949 anv_image_msaa_resolve(cmd_buffer,
4950 src_iview->image, src_aux_usage,
4951 src_iview->planes[0].isl.base_level,
4952 src_iview->planes[0].isl.base_array_layer,
4953 dst_iview->image, dst_aux_usage,
4954 dst_iview->planes[0].isl.base_level,
4955 dst_iview->planes[0].isl.base_array_layer,
4956 VK_IMAGE_ASPECT_COLOR_BIT,
4957 render_area.offset.x, render_area.offset.y,
4958 render_area.offset.x, render_area.offset.y,
4959 render_area.extent.width,
4960 render_area.extent.height,
4961 fb->layers, BLORP_FILTER_NONE);
4962 }
4963 }
4964
4965 if (subpass->ds_resolve_attachment) {
4966 /* We are about to do some MSAA resolves. We need to flush so that the
4967 * result of writes to the MSAA depth attachments show up in the sampler
4968 * when we blit to the single-sampled resolve target.
4969 */
4970 cmd_buffer->state.pending_pipe_bits |=
4971 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
4972 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
4973
4974 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
4975 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
4976
4977 assert(src_att < cmd_buffer->state.pass->attachment_count);
4978 assert(dst_att < cmd_buffer->state.pass->attachment_count);
4979
4980 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
4981 /* From the Vulkan 1.0 spec:
4982 *
4983 * If the first use of an attachment in a render pass is as a
4984 * resolve attachment, then the loadOp is effectively ignored
4985 * as the resolve is guaranteed to overwrite all pixels in the
4986 * render area.
4987 */
4988 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
4989 }
4990
4991 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
4992 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
4993
4994 const VkRect2D render_area = cmd_buffer->state.render_area;
4995
4996 struct anv_attachment_state *src_state =
4997 &cmd_state->attachments[src_att];
4998 struct anv_attachment_state *dst_state =
4999 &cmd_state->attachments[dst_att];
5000
5001 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
5002 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5003
5004 /* MSAA resolves sample from the source attachment. Transition the
5005 * depth attachment first to get rid of any HiZ that we may not be
5006 * able to handle.
5007 */
5008 transition_depth_buffer(cmd_buffer, src_iview->image,
5009 src_state->current_layout,
5010 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
5011 src_state->aux_usage =
5012 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
5013 VK_IMAGE_ASPECT_DEPTH_BIT,
5014 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
5015 src_state->current_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
5016
5017 /* MSAA resolves write to the resolve attachment as if it were any
5018 * other transfer op. Transition the resolve attachment accordingly.
5019 */
5020 VkImageLayout dst_initial_layout = dst_state->current_layout;
5021
5022 /* If our render area is the entire size of the image, we're going to
5023 * blow it all away so we can claim the initial layout is UNDEFINED
5024 * and we'll get a HiZ ambiguate instead of a resolve.
5025 */
5026 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
5027 render_area.offset.x == 0 && render_area.offset.y == 0 &&
5028 render_area.extent.width == dst_iview->extent.width &&
5029 render_area.extent.height == dst_iview->extent.height)
5030 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5031
5032 transition_depth_buffer(cmd_buffer, dst_iview->image,
5033 dst_initial_layout,
5034 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5035 dst_state->aux_usage =
5036 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
5037 VK_IMAGE_ASPECT_DEPTH_BIT,
5038 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5039 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5040
5041 enum blorp_filter filter =
5042 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
5043
5044 anv_image_msaa_resolve(cmd_buffer,
5045 src_iview->image, src_state->aux_usage,
5046 src_iview->planes[0].isl.base_level,
5047 src_iview->planes[0].isl.base_array_layer,
5048 dst_iview->image, dst_state->aux_usage,
5049 dst_iview->planes[0].isl.base_level,
5050 dst_iview->planes[0].isl.base_array_layer,
5051 VK_IMAGE_ASPECT_DEPTH_BIT,
5052 render_area.offset.x, render_area.offset.y,
5053 render_area.offset.x, render_area.offset.y,
5054 render_area.extent.width,
5055 render_area.extent.height,
5056 fb->layers, filter);
5057 }
5058
5059 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
5060 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5061
5062 src_state->current_stencil_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
5063 dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5064
5065 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
5066 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
5067
5068 enum blorp_filter filter =
5069 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
5070
5071 anv_image_msaa_resolve(cmd_buffer,
5072 src_iview->image, src_aux_usage,
5073 src_iview->planes[0].isl.base_level,
5074 src_iview->planes[0].isl.base_array_layer,
5075 dst_iview->image, dst_aux_usage,
5076 dst_iview->planes[0].isl.base_level,
5077 dst_iview->planes[0].isl.base_array_layer,
5078 VK_IMAGE_ASPECT_STENCIL_BIT,
5079 render_area.offset.x, render_area.offset.y,
5080 render_area.offset.x, render_area.offset.y,
5081 render_area.extent.width,
5082 render_area.extent.height,
5083 fb->layers, filter);
5084 }
5085 }
5086
5087 #if GEN_GEN == 7
5088 /* On gen7, we have to store a texturable version of the stencil buffer in
5089 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
5090 * forth at strategic points. Stencil writes are only allowed in following
5091 * layouts:
5092 *
5093 * - VK_IMAGE_LAYOUT_GENERAL
5094 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
5095 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
5096 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
5097 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
5098 *
5099 * For general, we have no nice opportunity to transition so we do the copy
5100 * to the shadow unconditionally at the end of the subpass. For transfer
5101 * destinations, we can update it as part of the transfer op. For the other
5102 * layouts, we delay the copy until a transition into some other layout.
5103 */
5104 if (subpass->depth_stencil_attachment) {
5105 uint32_t a = subpass->depth_stencil_attachment->attachment;
5106 assert(a != VK_ATTACHMENT_UNUSED);
5107
5108 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5109 struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
5110 const struct anv_image *image = iview->image;
5111
5112 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5113 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
5114 VK_IMAGE_ASPECT_STENCIL_BIT);
5115
5116 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
5117 att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
5118 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
5119 anv_image_copy_to_shadow(cmd_buffer, image,
5120 VK_IMAGE_ASPECT_STENCIL_BIT,
5121 iview->planes[plane].isl.base_level, 1,
5122 iview->planes[plane].isl.base_array_layer,
5123 fb->layers);
5124 }
5125 }
5126 }
5127 #endif /* GEN_GEN == 7 */
5128
5129 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
5130 const uint32_t a = subpass->attachments[i].attachment;
5131 if (a == VK_ATTACHMENT_UNUSED)
5132 continue;
5133
5134 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
5135 continue;
5136
5137 assert(a < cmd_state->pass->attachment_count);
5138 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5139 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
5140 const struct anv_image *image = iview->image;
5141
5142 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5143 image->vk_format != iview->vk_format) {
5144 enum anv_fast_clear_type fast_clear_type =
5145 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
5146 image, VK_IMAGE_ASPECT_COLOR_BIT,
5147 att_state->current_layout);
5148
5149 /* If any clear color was used, flush it down the aux surfaces. If we
5150 * don't do it now using the view's format we might use the clear
5151 * color incorrectly in the following resolves (for example with an
5152 * SRGB view & a UNORM image).
5153 */
5154 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
5155 anv_perf_warn(cmd_buffer->device->instance, iview,
5156 "Doing a partial resolve to get rid of clear color at the "
5157 "end of a renderpass due to an image/view format mismatch");
5158
5159 uint32_t base_layer, layer_count;
5160 if (image->type == VK_IMAGE_TYPE_3D) {
5161 base_layer = 0;
5162 layer_count = anv_minify(iview->image->extent.depth,
5163 iview->planes[0].isl.base_level);
5164 } else {
5165 base_layer = iview->planes[0].isl.base_array_layer;
5166 layer_count = fb->layers;
5167 }
5168
5169 for (uint32_t a = 0; a < layer_count; a++) {
5170 uint32_t array_layer = base_layer + a;
5171 if (image->samples == 1) {
5172 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
5173 iview->planes[0].isl.format,
5174 VK_IMAGE_ASPECT_COLOR_BIT,
5175 iview->planes[0].isl.base_level,
5176 array_layer,
5177 ISL_AUX_OP_PARTIAL_RESOLVE,
5178 ANV_FAST_CLEAR_NONE);
5179 } else {
5180 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
5181 iview->planes[0].isl.format,
5182 VK_IMAGE_ASPECT_COLOR_BIT,
5183 base_layer,
5184 ISL_AUX_OP_PARTIAL_RESOLVE,
5185 ANV_FAST_CLEAR_NONE);
5186 }
5187 }
5188 }
5189 }
5190
5191 /* Transition the image into the final layout for this render pass */
5192 VkImageLayout target_layout =
5193 cmd_state->pass->attachments[a].final_layout;
5194 VkImageLayout target_stencil_layout =
5195 cmd_state->pass->attachments[a].stencil_final_layout;
5196
5197 uint32_t base_layer, layer_count;
5198 if (image->type == VK_IMAGE_TYPE_3D) {
5199 base_layer = 0;
5200 layer_count = anv_minify(iview->image->extent.depth,
5201 iview->planes[0].isl.base_level);
5202 } else {
5203 base_layer = iview->planes[0].isl.base_array_layer;
5204 layer_count = fb->layers;
5205 }
5206
5207 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
5208 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5209 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5210 iview->planes[0].isl.base_level, 1,
5211 base_layer, layer_count,
5212 att_state->current_layout, target_layout);
5213 }
5214
5215 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5216 transition_depth_buffer(cmd_buffer, image,
5217 att_state->current_layout, target_layout);
5218 }
5219
5220 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5221 transition_stencil_buffer(cmd_buffer, image,
5222 iview->planes[0].isl.base_level, 1,
5223 base_layer, layer_count,
5224 att_state->current_stencil_layout,
5225 target_stencil_layout);
5226 }
5227 }
5228
5229 /* Accumulate any subpass flushes that need to happen after the subpass.
5230 * Yes, they do get accumulated twice in the NextSubpass case but since
5231 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
5232 * ORing the bits in twice so it's harmless.
5233 */
5234 cmd_buffer->state.pending_pipe_bits |=
5235 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
5236 }
5237
5238 void genX(CmdBeginRenderPass)(
5239 VkCommandBuffer commandBuffer,
5240 const VkRenderPassBeginInfo* pRenderPassBegin,
5241 VkSubpassContents contents)
5242 {
5243 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5244 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
5245 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
5246
5247 cmd_buffer->state.framebuffer = framebuffer;
5248 cmd_buffer->state.pass = pass;
5249 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
5250 VkResult result =
5251 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
5252
5253 /* If we failed to setup the attachments we should not try to go further */
5254 if (result != VK_SUCCESS) {
5255 assert(anv_batch_has_error(&cmd_buffer->batch));
5256 return;
5257 }
5258
5259 genX(flush_pipeline_select_3d)(cmd_buffer);
5260
5261 cmd_buffer_begin_subpass(cmd_buffer, 0);
5262 }
5263
5264 void genX(CmdBeginRenderPass2)(
5265 VkCommandBuffer commandBuffer,
5266 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
5267 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
5268 {
5269 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
5270 pSubpassBeginInfo->contents);
5271 }
5272
5273 void genX(CmdNextSubpass)(
5274 VkCommandBuffer commandBuffer,
5275 VkSubpassContents contents)
5276 {
5277 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5278
5279 if (anv_batch_has_error(&cmd_buffer->batch))
5280 return;
5281
5282 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
5283
5284 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
5285 cmd_buffer_end_subpass(cmd_buffer);
5286 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
5287 }
5288
5289 void genX(CmdNextSubpass2)(
5290 VkCommandBuffer commandBuffer,
5291 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
5292 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5293 {
5294 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
5295 }
5296
5297 void genX(CmdEndRenderPass)(
5298 VkCommandBuffer commandBuffer)
5299 {
5300 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5301
5302 if (anv_batch_has_error(&cmd_buffer->batch))
5303 return;
5304
5305 cmd_buffer_end_subpass(cmd_buffer);
5306
5307 cmd_buffer->state.hiz_enabled = false;
5308
5309 #ifndef NDEBUG
5310 anv_dump_add_attachments(cmd_buffer);
5311 #endif
5312
5313 /* Remove references to render pass specific state. This enables us to
5314 * detect whether or not we're in a renderpass.
5315 */
5316 cmd_buffer->state.framebuffer = NULL;
5317 cmd_buffer->state.pass = NULL;
5318 cmd_buffer->state.subpass = NULL;
5319 }
5320
5321 void genX(CmdEndRenderPass2)(
5322 VkCommandBuffer commandBuffer,
5323 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5324 {
5325 genX(CmdEndRenderPass)(commandBuffer);
5326 }
5327
5328 void
5329 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
5330 {
5331 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5332 struct gen_mi_builder b;
5333 gen_mi_builder_init(&b, &cmd_buffer->batch);
5334
5335 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
5336 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
5337 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
5338
5339 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
5340 mip.LoadOperation = LOAD_LOADINV;
5341 mip.CombineOperation = COMBINE_SET;
5342 mip.CompareOperation = COMPARE_SRCS_EQUAL;
5343 }
5344 #endif
5345 }
5346
5347 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5348 void genX(CmdBeginConditionalRenderingEXT)(
5349 VkCommandBuffer commandBuffer,
5350 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
5351 {
5352 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5353 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
5354 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5355 struct anv_address value_address =
5356 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
5357
5358 const bool isInverted = pConditionalRenderingBegin->flags &
5359 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
5360
5361 cmd_state->conditional_render_enabled = true;
5362
5363 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5364
5365 struct gen_mi_builder b;
5366 gen_mi_builder_init(&b, &cmd_buffer->batch);
5367
5368 /* Section 19.4 of the Vulkan 1.1.85 spec says:
5369 *
5370 * If the value of the predicate in buffer memory changes
5371 * while conditional rendering is active, the rendering commands
5372 * may be discarded in an implementation-dependent way.
5373 * Some implementations may latch the value of the predicate
5374 * upon beginning conditional rendering while others
5375 * may read it before every rendering command.
5376 *
5377 * So it's perfectly fine to read a value from the buffer once.
5378 */
5379 struct gen_mi_value value = gen_mi_mem32(value_address);
5380
5381 /* Precompute predicate result, it is necessary to support secondary
5382 * command buffers since it is unknown if conditional rendering is
5383 * inverted when populating them.
5384 */
5385 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
5386 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
5387 gen_mi_ult(&b, gen_mi_imm(0), value));
5388 }
5389
5390 void genX(CmdEndConditionalRenderingEXT)(
5391 VkCommandBuffer commandBuffer)
5392 {
5393 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5394 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5395
5396 cmd_state->conditional_render_enabled = false;
5397 }
5398 #endif
5399
5400 /* Set of stage bits for which are pipelined, i.e. they get queued by the
5401 * command streamer for later execution.
5402 */
5403 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5404 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
5405 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
5406 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
5407 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
5408 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
5409 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
5410 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
5411 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
5412 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
5413 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
5414 VK_PIPELINE_STAGE_TRANSFER_BIT | \
5415 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
5416 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
5417 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
5418
5419 void genX(CmdSetEvent)(
5420 VkCommandBuffer commandBuffer,
5421 VkEvent _event,
5422 VkPipelineStageFlags stageMask)
5423 {
5424 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5425 ANV_FROM_HANDLE(anv_event, event, _event);
5426
5427 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5428 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5429 pc.StallAtPixelScoreboard = true;
5430 pc.CommandStreamerStallEnable = true;
5431 }
5432
5433 pc.DestinationAddressType = DAT_PPGTT,
5434 pc.PostSyncOperation = WriteImmediateData,
5435 pc.Address = (struct anv_address) {
5436 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5437 event->state.offset
5438 };
5439 pc.ImmediateData = VK_EVENT_SET;
5440 }
5441 }
5442
5443 void genX(CmdResetEvent)(
5444 VkCommandBuffer commandBuffer,
5445 VkEvent _event,
5446 VkPipelineStageFlags stageMask)
5447 {
5448 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5449 ANV_FROM_HANDLE(anv_event, event, _event);
5450
5451 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5452 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5453 pc.StallAtPixelScoreboard = true;
5454 pc.CommandStreamerStallEnable = true;
5455 }
5456
5457 pc.DestinationAddressType = DAT_PPGTT;
5458 pc.PostSyncOperation = WriteImmediateData;
5459 pc.Address = (struct anv_address) {
5460 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5461 event->state.offset
5462 };
5463 pc.ImmediateData = VK_EVENT_RESET;
5464 }
5465 }
5466
5467 void genX(CmdWaitEvents)(
5468 VkCommandBuffer commandBuffer,
5469 uint32_t eventCount,
5470 const VkEvent* pEvents,
5471 VkPipelineStageFlags srcStageMask,
5472 VkPipelineStageFlags destStageMask,
5473 uint32_t memoryBarrierCount,
5474 const VkMemoryBarrier* pMemoryBarriers,
5475 uint32_t bufferMemoryBarrierCount,
5476 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
5477 uint32_t imageMemoryBarrierCount,
5478 const VkImageMemoryBarrier* pImageMemoryBarriers)
5479 {
5480 #if GEN_GEN >= 8
5481 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5482
5483 for (uint32_t i = 0; i < eventCount; i++) {
5484 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
5485
5486 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
5487 sem.WaitMode = PollingMode,
5488 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
5489 sem.SemaphoreDataDword = VK_EVENT_SET,
5490 sem.SemaphoreAddress = (struct anv_address) {
5491 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5492 event->state.offset
5493 };
5494 }
5495 }
5496 #else
5497 anv_finishme("Implement events on gen7");
5498 #endif
5499
5500 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
5501 false, /* byRegion */
5502 memoryBarrierCount, pMemoryBarriers,
5503 bufferMemoryBarrierCount, pBufferMemoryBarriers,
5504 imageMemoryBarrierCount, pImageMemoryBarriers);
5505 }
5506
5507 VkResult genX(CmdSetPerformanceOverrideINTEL)(
5508 VkCommandBuffer commandBuffer,
5509 const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
5510 {
5511 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5512
5513 switch (pOverrideInfo->type) {
5514 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
5515 uint32_t dw;
5516
5517 #if GEN_GEN >= 9
5518 anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2),
5519 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5520 .MediaInstructionDisable = pOverrideInfo->enable,
5521 ._3DRenderingInstructionDisableMask = true,
5522 .MediaInstructionDisableMask = true);
5523 emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw);
5524 #else
5525 anv_pack_struct(&dw, GENX(INSTPM),
5526 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5527 .MediaInstructionDisable = pOverrideInfo->enable,
5528 ._3DRenderingInstructionDisableMask = true,
5529 .MediaInstructionDisableMask = true);
5530 emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw);
5531 #endif
5532 break;
5533 }
5534
5535 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
5536 if (pOverrideInfo->enable) {
5537 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5538 cmd_buffer->state.pending_pipe_bits |=
5539 ANV_PIPE_FLUSH_BITS |
5540 ANV_PIPE_INVALIDATE_BITS;
5541 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5542 }
5543 break;
5544
5545 default:
5546 unreachable("Invalid override");
5547 }
5548
5549 return VK_SUCCESS;
5550 }
5551
5552 VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
5553 VkCommandBuffer commandBuffer,
5554 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
5555 {
5556 /* TODO: Waiting on the register to write, might depend on generation. */
5557
5558 return VK_SUCCESS;
5559 }