anv: Suffix anv-private 'VK' tokens with 'ANV'
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
36 emit_lrm(struct anv_batch *batch,
37 uint32_t reg, struct anv_bo *bo, uint32_t offset)
38 {
39 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
40 lrm.RegisterAddress = reg;
41 lrm.MemoryAddress = (struct anv_address) { bo, offset };
42 }
43 }
44
45 static void
46 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
47 {
48 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
49 lri.RegisterOffset = reg;
50 lri.DataDWord = imm;
51 }
52 }
53
54 #if GEN_IS_HASWELL || GEN_GEN >= 8
55 static void
56 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
57 {
58 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
59 lrr.SourceRegisterAddress = src;
60 lrr.DestinationRegisterAddress = dst;
61 }
62 }
63 #endif
64
65 void
66 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
67 {
68 struct anv_device *device = cmd_buffer->device;
69
70 /* Emit a render target cache flush.
71 *
72 * This isn't documented anywhere in the PRM. However, it seems to be
73 * necessary prior to changing the surface state base adress. Without
74 * this, we get GPU hangs when using multi-level command buffers which
75 * clear depth, reset state base address, and then go render stuff.
76 */
77 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
78 pc.DCFlushEnable = true;
79 pc.RenderTargetCacheFlushEnable = true;
80 pc.CommandStreamerStallEnable = true;
81 }
82
83 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
84 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
85 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
86 sba.GeneralStateBaseAddressModifyEnable = true;
87
88 sba.SurfaceStateBaseAddress =
89 anv_cmd_buffer_surface_base_address(cmd_buffer);
90 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
91 sba.SurfaceStateBaseAddressModifyEnable = true;
92
93 sba.DynamicStateBaseAddress =
94 (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
95 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
96 sba.DynamicStateBaseAddressModifyEnable = true;
97
98 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
99 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
100 sba.IndirectObjectBaseAddressModifyEnable = true;
101
102 sba.InstructionBaseAddress =
103 (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
104 sba.InstructionMemoryObjectControlState = GENX(MOCS);
105 sba.InstructionBaseAddressModifyEnable = true;
106
107 # if (GEN_GEN >= 8)
108 /* Broadwell requires that we specify a buffer size for a bunch of
109 * these fields. However, since we will be growing the BO's live, we
110 * just set them all to the maximum.
111 */
112 sba.GeneralStateBufferSize = 0xfffff;
113 sba.GeneralStateBufferSizeModifyEnable = true;
114 sba.DynamicStateBufferSize = 0xfffff;
115 sba.DynamicStateBufferSizeModifyEnable = true;
116 sba.IndirectObjectBufferSize = 0xfffff;
117 sba.IndirectObjectBufferSizeModifyEnable = true;
118 sba.InstructionBufferSize = 0xfffff;
119 sba.InstructionBuffersizeModifyEnable = true;
120 # endif
121 }
122
123 /* After re-setting the surface state base address, we have to do some
124 * cache flusing so that the sampler engine will pick up the new
125 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
126 * Shared Function > 3D Sampler > State > State Caching (page 96):
127 *
128 * Coherency with system memory in the state cache, like the texture
129 * cache is handled partially by software. It is expected that the
130 * command stream or shader will issue Cache Flush operation or
131 * Cache_Flush sampler message to ensure that the L1 cache remains
132 * coherent with system memory.
133 *
134 * [...]
135 *
136 * Whenever the value of the Dynamic_State_Base_Addr,
137 * Surface_State_Base_Addr are altered, the L1 state cache must be
138 * invalidated to ensure the new surface or sampler state is fetched
139 * from system memory.
140 *
141 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
142 * which, according the PIPE_CONTROL instruction documentation in the
143 * Broadwell PRM:
144 *
145 * Setting this bit is independent of any other bit in this packet.
146 * This bit controls the invalidation of the L1 and L2 state caches
147 * at the top of the pipe i.e. at the parsing time.
148 *
149 * Unfortunately, experimentation seems to indicate that state cache
150 * invalidation through a PIPE_CONTROL does nothing whatsoever in
151 * regards to surface state and binding tables. In stead, it seems that
152 * invalidating the texture cache is what is actually needed.
153 *
154 * XXX: As far as we have been able to determine through
155 * experimentation, shows that flush the texture cache appears to be
156 * sufficient. The theory here is that all of the sampling/rendering
157 * units cache the binding table in the texture cache. However, we have
158 * yet to be able to actually confirm this.
159 */
160 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
161 pc.TextureCacheInvalidationEnable = true;
162 pc.ConstantCacheInvalidationEnable = true;
163 pc.StateCacheInvalidationEnable = true;
164 }
165 }
166
167 static void
168 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
169 struct anv_state state,
170 struct anv_bo *bo, uint32_t offset)
171 {
172 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
173
174 VkResult result =
175 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
176 state.offset + isl_dev->ss.addr_offset, bo, offset);
177 if (result != VK_SUCCESS)
178 anv_batch_set_error(&cmd_buffer->batch, result);
179 }
180
181 static void
182 add_image_relocs(struct anv_cmd_buffer *cmd_buffer,
183 const struct anv_image *image,
184 const uint32_t plane,
185 struct anv_surface_state state)
186 {
187 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188
189 add_surface_state_reloc(cmd_buffer, state.state,
190 image->planes[plane].bo, state.address);
191
192 if (state.aux_address) {
193 VkResult result =
194 anv_reloc_list_add(&cmd_buffer->surface_relocs,
195 &cmd_buffer->pool->alloc,
196 state.state.offset + isl_dev->ss.aux_addr_offset,
197 image->planes[plane].bo,
198 state.aux_address);
199 if (result != VK_SUCCESS)
200 anv_batch_set_error(&cmd_buffer->batch, result);
201 }
202 }
203
204 static void
205 add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
206 const struct anv_image_view *image_view,
207 const uint32_t plane,
208 struct anv_surface_state state)
209 {
210 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
211 const struct anv_image *image = image_view->image;
212 uint32_t image_plane = image_view->planes[plane].image_plane;
213
214 add_surface_state_reloc(cmd_buffer, state.state,
215 image->planes[image_plane].bo, state.address);
216
217 if (state.aux_address) {
218 VkResult result =
219 anv_reloc_list_add(&cmd_buffer->surface_relocs,
220 &cmd_buffer->pool->alloc,
221 state.state.offset + isl_dev->ss.aux_addr_offset,
222 image->planes[image_plane].bo, state.aux_address);
223 if (result != VK_SUCCESS)
224 anv_batch_set_error(&cmd_buffer->batch, result);
225 }
226 }
227
228 static bool
229 color_is_zero_one(VkClearColorValue value, enum isl_format format)
230 {
231 if (isl_format_has_int_channel(format)) {
232 for (unsigned i = 0; i < 4; i++) {
233 if (value.int32[i] != 0 && value.int32[i] != 1)
234 return false;
235 }
236 } else {
237 for (unsigned i = 0; i < 4; i++) {
238 if (value.float32[i] != 0.0f && value.float32[i] != 1.0f)
239 return false;
240 }
241 }
242
243 return true;
244 }
245
246 static void
247 color_attachment_compute_aux_usage(struct anv_device * device,
248 struct anv_cmd_state * cmd_state,
249 uint32_t att, VkRect2D render_area,
250 union isl_color_value *fast_clear_color)
251 {
252 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
253 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
254
255 assert(iview->n_planes == 1);
256
257 if (iview->planes[0].isl.base_array_layer >=
258 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
259 iview->planes[0].isl.base_level)) {
260 /* There is no aux buffer which corresponds to the level and layer(s)
261 * being accessed.
262 */
263 att_state->aux_usage = ISL_AUX_USAGE_NONE;
264 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
265 att_state->fast_clear = false;
266 return;
267 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_MCS) {
268 att_state->aux_usage = ISL_AUX_USAGE_MCS;
269 att_state->input_aux_usage = ISL_AUX_USAGE_MCS;
270 att_state->fast_clear = false;
271 return;
272 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E) {
273 att_state->aux_usage = ISL_AUX_USAGE_CCS_E;
274 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_E;
275 } else {
276 att_state->aux_usage = ISL_AUX_USAGE_CCS_D;
277 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
278 *
279 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
280 * setting is only allowed if Surface Format supported for Fast
281 * Clear. In addition, if the surface is bound to the sampling
282 * engine, Surface Format must be supported for Render Target
283 * Compression for surfaces bound to the sampling engine."
284 *
285 * In other words, we can only sample from a fast-cleared image if it
286 * also supports color compression.
287 */
288 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
289 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
290
291 /* While fast-clear resolves and partial resolves are fairly cheap in the
292 * case where you render to most of the pixels, full resolves are not
293 * because they potentially involve reading and writing the entire
294 * framebuffer. If we can't texture with CCS_E, we should leave it off and
295 * limit ourselves to fast clears.
296 */
297 if (cmd_state->pass->attachments[att].first_subpass_layout ==
298 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
299 anv_perf_warn(device->instance, iview->image,
300 "Not temporarily enabling CCS_E.");
301 }
302 } else {
303 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
304 }
305 }
306
307 assert(iview->image->planes[0].aux_surface.isl.usage & ISL_SURF_USAGE_CCS_BIT);
308
309 att_state->clear_color_is_zero_one =
310 color_is_zero_one(att_state->clear_value.color, iview->planes[0].isl.format);
311 att_state->clear_color_is_zero =
312 att_state->clear_value.color.uint32[0] == 0 &&
313 att_state->clear_value.color.uint32[1] == 0 &&
314 att_state->clear_value.color.uint32[2] == 0 &&
315 att_state->clear_value.color.uint32[3] == 0;
316
317 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
318 /* Start off assuming fast clears are possible */
319 att_state->fast_clear = true;
320
321 /* Potentially, we could do partial fast-clears but doing so has crazy
322 * alignment restrictions. It's easier to just restrict to full size
323 * fast clears for now.
324 */
325 if (render_area.offset.x != 0 ||
326 render_area.offset.y != 0 ||
327 render_area.extent.width != iview->extent.width ||
328 render_area.extent.height != iview->extent.height)
329 att_state->fast_clear = false;
330
331 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
332 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
333 att_state->fast_clear = false;
334
335 /* We allow fast clears when all aux layers of the miplevel are targeted.
336 * See add_fast_clear_state_buffer() for more information. Also, because
337 * we only either do a fast clear or a normal clear and not both, this
338 * complies with the gen7 restriction of not fast-clearing multiple
339 * layers.
340 */
341 if (cmd_state->framebuffer->layers !=
342 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
343 iview->planes[0].isl.base_level)) {
344 att_state->fast_clear = false;
345 if (GEN_GEN == 7) {
346 anv_perf_warn(device->instance, iview->image,
347 "Not fast-clearing the first layer in "
348 "a multi-layer fast clear.");
349 }
350 }
351
352 /* We only allow fast clears in the GENERAL layout if the auxiliary
353 * buffer is always enabled and the fast-clear value is all 0's. See
354 * add_fast_clear_state_buffer() for more information.
355 */
356 if (cmd_state->pass->attachments[att].first_subpass_layout ==
357 VK_IMAGE_LAYOUT_GENERAL &&
358 (!att_state->clear_color_is_zero ||
359 iview->image->planes[0].aux_usage == ISL_AUX_USAGE_NONE)) {
360 att_state->fast_clear = false;
361 }
362
363 if (att_state->fast_clear) {
364 memcpy(fast_clear_color->u32, att_state->clear_value.color.uint32,
365 sizeof(fast_clear_color->u32));
366 }
367 } else {
368 att_state->fast_clear = false;
369 }
370 }
371
372 static bool
373 need_input_attachment_state(const struct anv_render_pass_attachment *att)
374 {
375 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
376 return false;
377
378 /* We only allocate input attachment states for color surfaces. Compression
379 * is not yet enabled for depth textures and stencil doesn't allow
380 * compression so we can just use the texture surface state from the view.
381 */
382 return vk_format_is_color(att->format);
383 }
384
385 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
386 * the initial layout is undefined, the HiZ buffer and depth buffer will
387 * represent the same data at the end of this operation.
388 */
389 static void
390 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
391 const struct anv_image *image,
392 VkImageLayout initial_layout,
393 VkImageLayout final_layout)
394 {
395 assert(image);
396
397 /* A transition is a no-op if HiZ is not enabled, or if the initial and
398 * final layouts are equal.
399 *
400 * The undefined layout indicates that the user doesn't care about the data
401 * that's currently in the buffer. Therefore, a data-preserving resolve
402 * operation is not needed.
403 */
404 if (image->planes[0].aux_usage != ISL_AUX_USAGE_HIZ || initial_layout == final_layout)
405 return;
406
407 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
408 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
409 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
410 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
411 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
412 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
413
414 enum blorp_hiz_op hiz_op;
415 if (hiz_enabled && !enable_hiz) {
416 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
417 } else if (!hiz_enabled && enable_hiz) {
418 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
419 } else {
420 assert(hiz_enabled == enable_hiz);
421 /* If the same buffer will be used, no resolves are necessary. */
422 hiz_op = BLORP_HIZ_OP_NONE;
423 }
424
425 if (hiz_op != BLORP_HIZ_OP_NONE)
426 anv_gen8_hiz_op_resolve(cmd_buffer, image, hiz_op);
427 }
428
429 enum fast_clear_state_field {
430 FAST_CLEAR_STATE_FIELD_CLEAR_COLOR,
431 FAST_CLEAR_STATE_FIELD_NEEDS_RESOLVE,
432 };
433
434 static inline struct anv_address
435 get_fast_clear_state_address(const struct anv_device *device,
436 const struct anv_image *image,
437 VkImageAspectFlagBits aspect,
438 unsigned level,
439 enum fast_clear_state_field field)
440 {
441 assert(device && image);
442 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
443 assert(level < anv_image_aux_levels(image, aspect));
444
445 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
446
447 /* Refer to the definition of anv_image for the memory layout. */
448 uint32_t offset = image->planes[plane].fast_clear_state_offset;
449
450 offset += anv_fast_clear_state_entry_size(device) * level;
451
452 switch (field) {
453 case FAST_CLEAR_STATE_FIELD_NEEDS_RESOLVE:
454 offset += device->isl_dev.ss.clear_value_size;
455 /* Fall-through */
456 case FAST_CLEAR_STATE_FIELD_CLEAR_COLOR:
457 break;
458 }
459
460 assert(offset < image->planes[plane].surface.offset + image->planes[plane].size);
461
462 return (struct anv_address) {
463 .bo = image->planes[plane].bo,
464 .offset = offset,
465 };
466 }
467
468 #define MI_PREDICATE_SRC0 0x2400
469 #define MI_PREDICATE_SRC1 0x2408
470
471 /* Manages the state of an color image subresource to ensure resolves are
472 * performed properly.
473 */
474 static void
475 genX(set_image_needs_resolve)(struct anv_cmd_buffer *cmd_buffer,
476 const struct anv_image *image,
477 VkImageAspectFlagBits aspect,
478 unsigned level, bool needs_resolve)
479 {
480 assert(cmd_buffer && image);
481 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
482 assert(level < anv_image_aux_levels(image, aspect));
483
484 const struct anv_address resolve_flag_addr =
485 get_fast_clear_state_address(cmd_buffer->device, image, aspect, level,
486 FAST_CLEAR_STATE_FIELD_NEEDS_RESOLVE);
487
488 /* The HW docs say that there is no way to guarantee the completion of
489 * the following command. We use it nevertheless because it shows no
490 * issues in testing is currently being used in the GL driver.
491 */
492 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
493 sdi.Address = resolve_flag_addr;
494 sdi.ImmediateData = needs_resolve;
495 }
496 }
497
498 static void
499 genX(load_needs_resolve_predicate)(struct anv_cmd_buffer *cmd_buffer,
500 const struct anv_image *image,
501 VkImageAspectFlagBits aspect,
502 unsigned level)
503 {
504 assert(cmd_buffer && image);
505 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
506 assert(level < anv_image_aux_levels(image, aspect));
507
508 const struct anv_address resolve_flag_addr =
509 get_fast_clear_state_address(cmd_buffer->device, image, aspect, level,
510 FAST_CLEAR_STATE_FIELD_NEEDS_RESOLVE);
511
512 /* Make the pending predicated resolve a no-op if one is not needed.
513 * predicate = do_resolve = resolve_flag != 0;
514 */
515 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
516 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
517 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 , 0);
518 emit_lrm(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4,
519 resolve_flag_addr.bo, resolve_flag_addr.offset);
520 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
521 mip.LoadOperation = LOAD_LOADINV;
522 mip.CombineOperation = COMBINE_SET;
523 mip.CompareOperation = COMPARE_SRCS_EQUAL;
524 }
525 }
526
527 static void
528 init_fast_clear_state_entry(struct anv_cmd_buffer *cmd_buffer,
529 const struct anv_image *image,
530 VkImageAspectFlagBits aspect,
531 unsigned level)
532 {
533 assert(cmd_buffer && image);
534 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
535 assert(level < anv_image_aux_levels(image, aspect));
536
537 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
538 enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
539
540 /* The resolve flag should updated to signify that fast-clear/compression
541 * data needs to be removed when leaving the undefined layout. Such data
542 * may need to be removed if it would cause accesses to the color buffer
543 * to return incorrect data. The fast clear data in CCS_D buffers should
544 * be removed because CCS_D isn't enabled all the time.
545 */
546 genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level,
547 aux_usage == ISL_AUX_USAGE_NONE);
548
549 /* The fast clear value dword(s) will be copied into a surface state object.
550 * Ensure that the restrictions of the fields in the dword(s) are followed.
551 *
552 * CCS buffers on SKL+ can have any value set for the clear colors.
553 */
554 if (image->samples == 1 && GEN_GEN >= 9)
555 return;
556
557 /* Other combinations of auxiliary buffers and platforms require specific
558 * values in the clear value dword(s).
559 */
560 unsigned i = 0;
561 for (; i < cmd_buffer->device->isl_dev.ss.clear_value_size; i += 4) {
562 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
563 sdi.Address =
564 get_fast_clear_state_address(cmd_buffer->device, image, aspect, level,
565 FAST_CLEAR_STATE_FIELD_CLEAR_COLOR);
566
567 if (GEN_GEN >= 9) {
568 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
569 assert(aux_usage == ISL_AUX_USAGE_MCS);
570 sdi.ImmediateData = 0;
571 } else if (GEN_VERSIONx10 >= 75) {
572 /* Pre-SKL, the dword containing the clear values also contains
573 * other fields, so we need to initialize those fields to match the
574 * values that would be in a color attachment.
575 */
576 assert(i == 0);
577 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
578 ISL_CHANNEL_SELECT_GREEN << 22 |
579 ISL_CHANNEL_SELECT_BLUE << 19 |
580 ISL_CHANNEL_SELECT_ALPHA << 16;
581 } else if (GEN_VERSIONx10 == 70) {
582 /* On IVB, the dword containing the clear values also contains
583 * other fields that must be zero or can be zero.
584 */
585 assert(i == 0);
586 sdi.ImmediateData = 0;
587 }
588 }
589 }
590 }
591
592 /* Copy the fast-clear value dword(s) between a surface state object and an
593 * image's fast clear state buffer.
594 */
595 static void
596 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
597 struct anv_state surface_state,
598 const struct anv_image *image,
599 VkImageAspectFlagBits aspect,
600 unsigned level,
601 bool copy_from_surface_state)
602 {
603 assert(cmd_buffer && image);
604 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
605 assert(level < anv_image_aux_levels(image, aspect));
606
607 struct anv_bo *ss_bo =
608 &cmd_buffer->device->surface_state_pool.block_pool.bo;
609 uint32_t ss_clear_offset = surface_state.offset +
610 cmd_buffer->device->isl_dev.ss.clear_value_offset;
611 const struct anv_address entry_addr =
612 get_fast_clear_state_address(cmd_buffer->device, image, aspect, level,
613 FAST_CLEAR_STATE_FIELD_CLEAR_COLOR);
614 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
615
616 if (copy_from_surface_state) {
617 genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr.bo, entry_addr.offset,
618 ss_bo, ss_clear_offset, copy_size);
619 } else {
620 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_bo, ss_clear_offset,
621 entry_addr.bo, entry_addr.offset, copy_size);
622
623 /* Updating a surface state object may require that the state cache be
624 * invalidated. From the SKL PRM, Shared Functions -> State -> State
625 * Caching:
626 *
627 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
628 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
629 * modified [...], the L1 state cache must be invalidated to ensure
630 * the new surface or sampler state is fetched from system memory.
631 *
632 * In testing, SKL doesn't actually seem to need this, but HSW does.
633 */
634 cmd_buffer->state.pending_pipe_bits |=
635 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
636 }
637 }
638
639 /**
640 * @brief Transitions a color buffer from one layout to another.
641 *
642 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
643 * more information.
644 *
645 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
646 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
647 * this represents the maximum layers to transition at each
648 * specified miplevel.
649 */
650 static void
651 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
652 const struct anv_image *image,
653 VkImageAspectFlagBits aspect,
654 const uint32_t base_level, uint32_t level_count,
655 uint32_t base_layer, uint32_t layer_count,
656 VkImageLayout initial_layout,
657 VkImageLayout final_layout)
658 {
659 /* Validate the inputs. */
660 assert(cmd_buffer);
661 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
662 /* These values aren't supported for simplicity's sake. */
663 assert(level_count != VK_REMAINING_MIP_LEVELS &&
664 layer_count != VK_REMAINING_ARRAY_LAYERS);
665 /* Ensure the subresource range is valid. */
666 uint64_t last_level_num = base_level + level_count;
667 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
668 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
669 assert((uint64_t)base_layer + layer_count <= image_layers);
670 assert(last_level_num <= image->levels);
671 /* The spec disallows these final layouts. */
672 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
673 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
674
675 /* No work is necessary if the layout stays the same or if this subresource
676 * range lacks auxiliary data.
677 */
678 if (initial_layout == final_layout)
679 return;
680
681 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
682
683 if (image->planes[plane].shadow_surface.isl.size > 0 &&
684 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
685 /* This surface is a linear compressed image with a tiled shadow surface
686 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
687 * we need to ensure the shadow copy is up-to-date.
688 */
689 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
690 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
691 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
692 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
693 assert(plane == 0);
694 anv_image_copy_to_shadow(cmd_buffer, image,
695 base_level, level_count,
696 base_layer, layer_count);
697 }
698
699 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
700 return;
701
702 /* A transition of a 3D subresource works on all slices at a time. */
703 if (image->type == VK_IMAGE_TYPE_3D) {
704 base_layer = 0;
705 layer_count = anv_minify(image->extent.depth, base_level);
706 }
707
708 /* We're interested in the subresource range subset that has aux data. */
709 level_count = MIN2(level_count, anv_image_aux_levels(image, aspect) - base_level);
710 layer_count = MIN2(layer_count,
711 anv_image_aux_layers(image, aspect, base_level) - base_layer);
712 last_level_num = base_level + level_count;
713
714 /* Record whether or not the layout is undefined. Pre-initialized images
715 * with auxiliary buffers have a non-linear layout and are thus undefined.
716 */
717 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
718 const bool undef_layout = initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
719 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
720
721 /* Do preparatory work before the resolve operation or return early if no
722 * resolve is actually needed.
723 */
724 if (undef_layout) {
725 /* A subresource in the undefined layout may have been aliased and
726 * populated with any arrangement of bits. Therefore, we must initialize
727 * the related aux buffer and clear buffer entry with desirable values.
728 *
729 * Initialize the relevant clear buffer entries.
730 */
731 for (unsigned level = base_level; level < last_level_num; level++)
732 init_fast_clear_state_entry(cmd_buffer, image, aspect, level);
733
734 /* Initialize the aux buffers to enable correct rendering. This operation
735 * requires up to two steps: one to rid the aux buffer of data that may
736 * cause GPU hangs, and another to ensure that writes done without aux
737 * will be visible to reads done with aux.
738 *
739 * Having an aux buffer with invalid data is possible for CCS buffers
740 * SKL+ and for MCS buffers with certain sample counts (2x and 8x). One
741 * easy way to get to a valid state is to fast-clear the specified range.
742 *
743 * Even for MCS buffers that have sample counts that don't require
744 * certain bits to be reserved (4x and 8x), we're unsure if the hardware
745 * will be okay with the sample mappings given by the undefined buffer.
746 * We don't have any data to show that this is a problem, but we want to
747 * avoid causing difficult-to-debug problems.
748 */
749 if ((GEN_GEN >= 9 && image->samples == 1) || image->samples > 1) {
750 if (image->samples == 4 || image->samples == 16) {
751 anv_perf_warn(cmd_buffer->device->instance, image,
752 "Doing a potentially unnecessary fast-clear to "
753 "define an MCS buffer.");
754 }
755
756 anv_image_fast_clear(cmd_buffer, image, aspect,
757 base_level, level_count,
758 base_layer, layer_count);
759 }
760 /* At this point, some elements of the CCS buffer may have the fast-clear
761 * bit-arrangement. As the user writes to a subresource, we need to have
762 * the associated CCS elements enter the ambiguated state. This enables
763 * reads (implicit or explicit) to reflect the user-written data instead
764 * of the clear color. The only time such elements will not change their
765 * state as described above, is in a final layout that doesn't have CCS
766 * enabled. In this case, we must force the associated CCS buffers of the
767 * specified range to enter the ambiguated state in advance.
768 */
769 if (image->samples == 1 &&
770 image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E &&
771 final_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
772 /* The CCS_D buffer may not be enabled in the final layout. Continue
773 * executing this function to perform a resolve.
774 */
775 anv_perf_warn(cmd_buffer->device->instance, image,
776 "Performing an additional resolve for CCS_D layout "
777 "transition. Consider always leaving it on or "
778 "performing an ambiguation pass.");
779 } else {
780 /* Writes in the final layout will be aware of the auxiliary buffer.
781 * In addition, the clear buffer entries and the auxiliary buffers
782 * have been populated with values that will result in correct
783 * rendering.
784 */
785 return;
786 }
787 } else if (initial_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
788 /* Resolves are only necessary if the subresource may contain blocks
789 * fast-cleared to values unsupported in other layouts. This only occurs
790 * if the initial layout is COLOR_ATTACHMENT_OPTIMAL.
791 */
792 return;
793 } else if (image->samples > 1) {
794 /* MCS buffers don't need resolving. */
795 return;
796 }
797
798 /* Perform a resolve to synchronize data between the main and aux buffer.
799 * Before we begin, we must satisfy the cache flushing requirement specified
800 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
801 *
802 * Any transition from any value in {Clear, Render, Resolve} to a
803 * different value in {Clear, Render, Resolve} requires end of pipe
804 * synchronization.
805 *
806 * We perform a flush of the write cache before and after the clear and
807 * resolve operations to meet this requirement.
808 *
809 * Unlike other drawing, fast clear operations are not properly
810 * synchronized. The first PIPE_CONTROL here likely ensures that the
811 * contents of the previous render or clear hit the render target before we
812 * resolve and the second likely ensures that the resolve is complete before
813 * we do any more rendering or clearing.
814 */
815 cmd_buffer->state.pending_pipe_bits |=
816 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
817
818 for (uint32_t level = base_level; level < last_level_num; level++) {
819
820 /* The number of layers changes at each 3D miplevel. */
821 if (image->type == VK_IMAGE_TYPE_3D) {
822 layer_count = MIN2(layer_count, anv_image_aux_layers(image, aspect, level));
823 }
824
825 genX(load_needs_resolve_predicate)(cmd_buffer, image, aspect, level);
826
827 enum isl_aux_usage aux_usage =
828 image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE ?
829 ISL_AUX_USAGE_CCS_D : image->planes[plane].aux_usage;
830
831 /* Create a surface state with the right clear color and perform the
832 * resolve.
833 */
834 struct anv_surface_state surface_state;
835 surface_state.state = anv_cmd_buffer_alloc_surface_state(cmd_buffer);
836 anv_image_fill_surface_state(cmd_buffer->device,
837 image, VK_IMAGE_ASPECT_COLOR_BIT,
838 &(struct isl_view) {
839 .format = image->planes[plane].surface.isl.format,
840 .swizzle = ISL_SWIZZLE_IDENTITY,
841 .base_level = level,
842 .levels = 1,
843 .base_array_layer = base_layer,
844 .array_len = layer_count,
845 },
846 ISL_SURF_USAGE_RENDER_TARGET_BIT,
847 aux_usage, NULL, 0,
848 &surface_state, NULL);
849 add_image_relocs(cmd_buffer, image, 0, surface_state);
850 genX(copy_fast_clear_dwords)(cmd_buffer, surface_state.state, image,
851 aspect, level, false /* copy to ss */);
852 anv_ccs_resolve(cmd_buffer, surface_state.state, image,
853 aspect, level, layer_count,
854 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E ?
855 BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL :
856 BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
857
858 genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level, false);
859 }
860
861 cmd_buffer->state.pending_pipe_bits |=
862 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
863 }
864
865 /**
866 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
867 */
868 static VkResult
869 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
870 struct anv_render_pass *pass,
871 const VkRenderPassBeginInfo *begin)
872 {
873 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
874 struct anv_cmd_state *state = &cmd_buffer->state;
875
876 vk_free(&cmd_buffer->pool->alloc, state->attachments);
877
878 if (pass->attachment_count > 0) {
879 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
880 pass->attachment_count *
881 sizeof(state->attachments[0]),
882 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
883 if (state->attachments == NULL) {
884 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
885 return anv_batch_set_error(&cmd_buffer->batch,
886 VK_ERROR_OUT_OF_HOST_MEMORY);
887 }
888 } else {
889 state->attachments = NULL;
890 }
891
892 /* Reserve one for the NULL state. */
893 unsigned num_states = 1;
894 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
895 if (vk_format_is_color(pass->attachments[i].format))
896 num_states++;
897
898 if (need_input_attachment_state(&pass->attachments[i]))
899 num_states++;
900 }
901
902 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
903 state->render_pass_states =
904 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
905 num_states * ss_stride, isl_dev->ss.align);
906
907 struct anv_state next_state = state->render_pass_states;
908 next_state.alloc_size = isl_dev->ss.size;
909
910 state->null_surface_state = next_state;
911 next_state.offset += ss_stride;
912 next_state.map += ss_stride;
913
914 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
915 if (vk_format_is_color(pass->attachments[i].format)) {
916 state->attachments[i].color.state = next_state;
917 next_state.offset += ss_stride;
918 next_state.map += ss_stride;
919 }
920
921 if (need_input_attachment_state(&pass->attachments[i])) {
922 state->attachments[i].input.state = next_state;
923 next_state.offset += ss_stride;
924 next_state.map += ss_stride;
925 }
926 }
927 assert(next_state.offset == state->render_pass_states.offset +
928 state->render_pass_states.alloc_size);
929
930 if (begin) {
931 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
932 assert(pass->attachment_count == framebuffer->attachment_count);
933
934 isl_null_fill_state(isl_dev, state->null_surface_state.map,
935 isl_extent3d(framebuffer->width,
936 framebuffer->height,
937 framebuffer->layers));
938
939 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
940 struct anv_render_pass_attachment *att = &pass->attachments[i];
941 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
942 VkImageAspectFlags clear_aspects = 0;
943
944 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
945 /* color attachment */
946 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
947 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
948 }
949 } else {
950 /* depthstencil attachment */
951 if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
952 att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
953 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
954 }
955 if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
956 att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
957 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
958 }
959 }
960
961 state->attachments[i].current_layout = att->initial_layout;
962 state->attachments[i].pending_clear_aspects = clear_aspects;
963 if (clear_aspects)
964 state->attachments[i].clear_value = begin->pClearValues[i];
965
966 struct anv_image_view *iview = framebuffer->attachments[i];
967 anv_assert(iview->vk_format == att->format);
968 anv_assert(iview->n_planes == 1);
969
970 union isl_color_value clear_color = { .u32 = { 0, } };
971 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
972 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
973 color_attachment_compute_aux_usage(cmd_buffer->device,
974 state, i, begin->renderArea,
975 &clear_color);
976
977 anv_image_fill_surface_state(cmd_buffer->device,
978 iview->image,
979 VK_IMAGE_ASPECT_COLOR_BIT,
980 &iview->planes[0].isl,
981 ISL_SURF_USAGE_RENDER_TARGET_BIT,
982 state->attachments[i].aux_usage,
983 &clear_color,
984 0,
985 &state->attachments[i].color,
986 NULL);
987
988 add_image_view_relocs(cmd_buffer, iview, 0,
989 state->attachments[i].color);
990 } else {
991 /* This field will be initialized after the first subpass
992 * transition.
993 */
994 state->attachments[i].aux_usage = ISL_AUX_USAGE_NONE;
995
996 state->attachments[i].input_aux_usage = ISL_AUX_USAGE_NONE;
997 }
998
999 if (need_input_attachment_state(&pass->attachments[i])) {
1000 anv_image_fill_surface_state(cmd_buffer->device,
1001 iview->image,
1002 VK_IMAGE_ASPECT_COLOR_BIT,
1003 &iview->planes[0].isl,
1004 ISL_SURF_USAGE_TEXTURE_BIT,
1005 state->attachments[i].input_aux_usage,
1006 &clear_color,
1007 0,
1008 &state->attachments[i].input,
1009 NULL);
1010
1011 add_image_view_relocs(cmd_buffer, iview, 0,
1012 state->attachments[i].input);
1013 }
1014 }
1015 }
1016
1017 return VK_SUCCESS;
1018 }
1019
1020 VkResult
1021 genX(BeginCommandBuffer)(
1022 VkCommandBuffer commandBuffer,
1023 const VkCommandBufferBeginInfo* pBeginInfo)
1024 {
1025 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1026
1027 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1028 * command buffer's state. Otherwise, we must *reset* its state. In both
1029 * cases we reset it.
1030 *
1031 * From the Vulkan 1.0 spec:
1032 *
1033 * If a command buffer is in the executable state and the command buffer
1034 * was allocated from a command pool with the
1035 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1036 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1037 * as if vkResetCommandBuffer had been called with
1038 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1039 * the command buffer in the recording state.
1040 */
1041 anv_cmd_buffer_reset(cmd_buffer);
1042
1043 cmd_buffer->usage_flags = pBeginInfo->flags;
1044
1045 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1046 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1047
1048 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1049
1050 /* We sometimes store vertex data in the dynamic state buffer for blorp
1051 * operations and our dynamic state stream may re-use data from previous
1052 * command buffers. In order to prevent stale cache data, we flush the VF
1053 * cache. We could do this on every blorp call but that's not really
1054 * needed as all of the data will get written by the CPU prior to the GPU
1055 * executing anything. The chances are fairly high that they will use
1056 * blorp at least once per primary command buffer so it shouldn't be
1057 * wasted.
1058 */
1059 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
1060 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1061
1062 VkResult result = VK_SUCCESS;
1063 if (cmd_buffer->usage_flags &
1064 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1065 assert(pBeginInfo->pInheritanceInfo);
1066 cmd_buffer->state.pass =
1067 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1068 cmd_buffer->state.subpass =
1069 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1070 cmd_buffer->state.framebuffer = NULL;
1071
1072 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1073 cmd_buffer->state.pass, NULL);
1074
1075 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1076 }
1077
1078 return result;
1079 }
1080
1081 VkResult
1082 genX(EndCommandBuffer)(
1083 VkCommandBuffer commandBuffer)
1084 {
1085 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1086
1087 if (anv_batch_has_error(&cmd_buffer->batch))
1088 return cmd_buffer->batch.status;
1089
1090 /* We want every command buffer to start with the PMA fix in a known state,
1091 * so we disable it at the end of the command buffer.
1092 */
1093 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1094
1095 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1096
1097 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1098
1099 return VK_SUCCESS;
1100 }
1101
1102 void
1103 genX(CmdExecuteCommands)(
1104 VkCommandBuffer commandBuffer,
1105 uint32_t commandBufferCount,
1106 const VkCommandBuffer* pCmdBuffers)
1107 {
1108 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1109
1110 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1111
1112 if (anv_batch_has_error(&primary->batch))
1113 return;
1114
1115 /* The secondary command buffers will assume that the PMA fix is disabled
1116 * when they begin executing. Make sure this is true.
1117 */
1118 genX(cmd_buffer_enable_pma_fix)(primary, false);
1119
1120 /* The secondary command buffer doesn't know which textures etc. have been
1121 * flushed prior to their execution. Apply those flushes now.
1122 */
1123 genX(cmd_buffer_apply_pipe_flushes)(primary);
1124
1125 for (uint32_t i = 0; i < commandBufferCount; i++) {
1126 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1127
1128 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1129 assert(!anv_batch_has_error(&secondary->batch));
1130
1131 if (secondary->usage_flags &
1132 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1133 /* If we're continuing a render pass from the primary, we need to
1134 * copy the surface states for the current subpass into the storage
1135 * we allocated for them in BeginCommandBuffer.
1136 */
1137 struct anv_bo *ss_bo =
1138 &primary->device->surface_state_pool.block_pool.bo;
1139 struct anv_state src_state = primary->state.render_pass_states;
1140 struct anv_state dst_state = secondary->state.render_pass_states;
1141 assert(src_state.alloc_size == dst_state.alloc_size);
1142
1143 genX(cmd_buffer_so_memcpy)(primary, ss_bo, dst_state.offset,
1144 ss_bo, src_state.offset,
1145 src_state.alloc_size);
1146 }
1147
1148 anv_cmd_buffer_add_secondary(primary, secondary);
1149 }
1150
1151 /* Each of the secondary command buffers will use its own state base
1152 * address. We need to re-emit state base address for the primary after
1153 * all of the secondaries are done.
1154 *
1155 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1156 * address calls?
1157 */
1158 genX(cmd_buffer_emit_state_base_address)(primary);
1159 }
1160
1161 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1162 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1163 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1164
1165 /**
1166 * Program the hardware to use the specified L3 configuration.
1167 */
1168 void
1169 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1170 const struct gen_l3_config *cfg)
1171 {
1172 assert(cfg);
1173 if (cfg == cmd_buffer->state.current_l3_config)
1174 return;
1175
1176 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1177 intel_logd("L3 config transition: ");
1178 gen_dump_l3_config(cfg, stderr);
1179 }
1180
1181 const bool has_slm = cfg->n[GEN_L3P_SLM];
1182
1183 /* According to the hardware docs, the L3 partitioning can only be changed
1184 * while the pipeline is completely drained and the caches are flushed,
1185 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1186 */
1187 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1188 pc.DCFlushEnable = true;
1189 pc.PostSyncOperation = NoWrite;
1190 pc.CommandStreamerStallEnable = true;
1191 }
1192
1193 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1194 * invalidation of the relevant caches. Note that because RO invalidation
1195 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1196 * command is processed by the CS) we cannot combine it with the previous
1197 * stalling flush as the hardware documentation suggests, because that
1198 * would cause the CS to stall on previous rendering *after* RO
1199 * invalidation and wouldn't prevent the RO caches from being polluted by
1200 * concurrent rendering before the stall completes. This intentionally
1201 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1202 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1203 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1204 * already guarantee that there is no concurrent GPGPU kernel execution
1205 * (see SKL HSD 2132585).
1206 */
1207 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1208 pc.TextureCacheInvalidationEnable = true;
1209 pc.ConstantCacheInvalidationEnable = true;
1210 pc.InstructionCacheInvalidateEnable = true;
1211 pc.StateCacheInvalidationEnable = true;
1212 pc.PostSyncOperation = NoWrite;
1213 }
1214
1215 /* Now send a third stalling flush to make sure that invalidation is
1216 * complete when the L3 configuration registers are modified.
1217 */
1218 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1219 pc.DCFlushEnable = true;
1220 pc.PostSyncOperation = NoWrite;
1221 pc.CommandStreamerStallEnable = true;
1222 }
1223
1224 #if GEN_GEN >= 8
1225
1226 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1227
1228 uint32_t l3cr;
1229 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1230 .SLMEnable = has_slm,
1231 .URBAllocation = cfg->n[GEN_L3P_URB],
1232 .ROAllocation = cfg->n[GEN_L3P_RO],
1233 .DCAllocation = cfg->n[GEN_L3P_DC],
1234 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1235
1236 /* Set up the L3 partitioning. */
1237 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1238
1239 #else
1240
1241 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1242 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1243 cfg->n[GEN_L3P_ALL];
1244 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1245 cfg->n[GEN_L3P_ALL];
1246 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1247 cfg->n[GEN_L3P_ALL];
1248
1249 assert(!cfg->n[GEN_L3P_ALL]);
1250
1251 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1252 * the matching space on the remaining banks has to be allocated to a
1253 * client (URB for all validated configurations) set to the
1254 * lower-bandwidth 2-bank address hashing mode.
1255 */
1256 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1257 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1258 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1259
1260 /* Minimum number of ways that can be allocated to the URB. */
1261 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1262 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1263
1264 uint32_t l3sqcr1, l3cr2, l3cr3;
1265 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1266 .ConvertDC_UC = !has_dc,
1267 .ConvertIS_UC = !has_is,
1268 .ConvertC_UC = !has_c,
1269 .ConvertT_UC = !has_t);
1270 l3sqcr1 |=
1271 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1272 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1273 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1274
1275 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1276 .SLMEnable = has_slm,
1277 .URBLowBandwidth = urb_low_bw,
1278 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1279 #if !GEN_IS_HASWELL
1280 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1281 #endif
1282 .ROAllocation = cfg->n[GEN_L3P_RO],
1283 .DCAllocation = cfg->n[GEN_L3P_DC]);
1284
1285 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1286 .ISAllocation = cfg->n[GEN_L3P_IS],
1287 .ISLowBandwidth = 0,
1288 .CAllocation = cfg->n[GEN_L3P_C],
1289 .CLowBandwidth = 0,
1290 .TAllocation = cfg->n[GEN_L3P_T],
1291 .TLowBandwidth = 0);
1292
1293 /* Set up the L3 partitioning. */
1294 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1295 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1296 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1297
1298 #if GEN_IS_HASWELL
1299 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1300 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1301 * them disabled to avoid crashing the system hard.
1302 */
1303 uint32_t scratch1, chicken3;
1304 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1305 .L3AtomicDisable = !has_dc);
1306 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1307 .L3AtomicDisableMask = true,
1308 .L3AtomicDisable = !has_dc);
1309 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1310 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1311 }
1312 #endif
1313
1314 #endif
1315
1316 cmd_buffer->state.current_l3_config = cfg;
1317 }
1318
1319 void
1320 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1321 {
1322 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1323
1324 /* Flushes are pipelined while invalidations are handled immediately.
1325 * Therefore, if we're flushing anything then we need to schedule a stall
1326 * before any invalidations can happen.
1327 */
1328 if (bits & ANV_PIPE_FLUSH_BITS)
1329 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1330
1331 /* If we're going to do an invalidate and we have a pending CS stall that
1332 * has yet to be resolved, we do the CS stall now.
1333 */
1334 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1335 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1336 bits |= ANV_PIPE_CS_STALL_BIT;
1337 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1338 }
1339
1340 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1341 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1342 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1343 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1344 pipe.RenderTargetCacheFlushEnable =
1345 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1346
1347 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1348 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1349 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1350
1351 /*
1352 * According to the Broadwell documentation, any PIPE_CONTROL with the
1353 * "Command Streamer Stall" bit set must also have another bit set,
1354 * with five different options:
1355 *
1356 * - Render Target Cache Flush
1357 * - Depth Cache Flush
1358 * - Stall at Pixel Scoreboard
1359 * - Post-Sync Operation
1360 * - Depth Stall
1361 * - DC Flush Enable
1362 *
1363 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1364 * mesa and it seems to work fine. The choice is fairly arbitrary.
1365 */
1366 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1367 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1368 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1369 pipe.StallAtPixelScoreboard = true;
1370 }
1371
1372 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1373 }
1374
1375 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1376 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1377 pipe.StateCacheInvalidationEnable =
1378 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1379 pipe.ConstantCacheInvalidationEnable =
1380 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1381 pipe.VFCacheInvalidationEnable =
1382 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1383 pipe.TextureCacheInvalidationEnable =
1384 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1385 pipe.InstructionCacheInvalidateEnable =
1386 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1387 }
1388
1389 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1390 }
1391
1392 cmd_buffer->state.pending_pipe_bits = bits;
1393 }
1394
1395 void genX(CmdPipelineBarrier)(
1396 VkCommandBuffer commandBuffer,
1397 VkPipelineStageFlags srcStageMask,
1398 VkPipelineStageFlags destStageMask,
1399 VkBool32 byRegion,
1400 uint32_t memoryBarrierCount,
1401 const VkMemoryBarrier* pMemoryBarriers,
1402 uint32_t bufferMemoryBarrierCount,
1403 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1404 uint32_t imageMemoryBarrierCount,
1405 const VkImageMemoryBarrier* pImageMemoryBarriers)
1406 {
1407 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1408
1409 /* XXX: Right now, we're really dumb and just flush whatever categories
1410 * the app asks for. One of these days we may make this a bit better
1411 * but right now that's all the hardware allows for in most areas.
1412 */
1413 VkAccessFlags src_flags = 0;
1414 VkAccessFlags dst_flags = 0;
1415
1416 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1417 src_flags |= pMemoryBarriers[i].srcAccessMask;
1418 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1419 }
1420
1421 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1422 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1423 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1424 }
1425
1426 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1427 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1428 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1429 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1430 const VkImageSubresourceRange *range =
1431 &pImageMemoryBarriers[i].subresourceRange;
1432
1433 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1434 transition_depth_buffer(cmd_buffer, image,
1435 pImageMemoryBarriers[i].oldLayout,
1436 pImageMemoryBarriers[i].newLayout);
1437 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1438 VkImageAspectFlags color_aspects =
1439 anv_image_expand_aspects(image, range->aspectMask);
1440 uint32_t aspect_bit;
1441
1442 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1443 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1444 range->baseMipLevel,
1445 anv_get_levelCount(image, range),
1446 range->baseArrayLayer,
1447 anv_get_layerCount(image, range),
1448 pImageMemoryBarriers[i].oldLayout,
1449 pImageMemoryBarriers[i].newLayout);
1450 }
1451 }
1452 }
1453
1454 cmd_buffer->state.pending_pipe_bits |=
1455 anv_pipe_flush_bits_for_access_flags(src_flags) |
1456 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1457 }
1458
1459 static void
1460 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1461 {
1462 VkShaderStageFlags stages = cmd_buffer->state.pipeline->active_stages;
1463
1464 /* In order to avoid thrash, we assume that vertex and fragment stages
1465 * always exist. In the rare case where one is missing *and* the other
1466 * uses push concstants, this may be suboptimal. However, avoiding stalls
1467 * seems more important.
1468 */
1469 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1470
1471 if (stages == cmd_buffer->state.push_constant_stages)
1472 return;
1473
1474 #if GEN_GEN >= 8
1475 const unsigned push_constant_kb = 32;
1476 #elif GEN_IS_HASWELL
1477 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1478 #else
1479 const unsigned push_constant_kb = 16;
1480 #endif
1481
1482 const unsigned num_stages =
1483 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1484 unsigned size_per_stage = push_constant_kb / num_stages;
1485
1486 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1487 * units of 2KB. Incidentally, these are the same platforms that have
1488 * 32KB worth of push constant space.
1489 */
1490 if (push_constant_kb == 32)
1491 size_per_stage &= ~1u;
1492
1493 uint32_t kb_used = 0;
1494 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1495 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1496 anv_batch_emit(&cmd_buffer->batch,
1497 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1498 alloc._3DCommandSubOpcode = 18 + i;
1499 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1500 alloc.ConstantBufferSize = push_size;
1501 }
1502 kb_used += push_size;
1503 }
1504
1505 anv_batch_emit(&cmd_buffer->batch,
1506 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1507 alloc.ConstantBufferOffset = kb_used;
1508 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1509 }
1510
1511 cmd_buffer->state.push_constant_stages = stages;
1512
1513 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1514 *
1515 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1516 * the next 3DPRIMITIVE command after programming the
1517 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1518 *
1519 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1520 * pipeline setup, we need to dirty push constants.
1521 */
1522 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1523 }
1524
1525 static VkResult
1526 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1527 gl_shader_stage stage,
1528 struct anv_state *bt_state)
1529 {
1530 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1531 struct anv_pipeline *pipeline;
1532 uint32_t bias, state_offset;
1533
1534 switch (stage) {
1535 case MESA_SHADER_COMPUTE:
1536 pipeline = cmd_buffer->state.compute_pipeline;
1537 bias = 1;
1538 break;
1539 default:
1540 pipeline = cmd_buffer->state.pipeline;
1541 bias = 0;
1542 break;
1543 }
1544
1545 if (!anv_pipeline_has_stage(pipeline, stage)) {
1546 *bt_state = (struct anv_state) { 0, };
1547 return VK_SUCCESS;
1548 }
1549
1550 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1551 if (bias + map->surface_count == 0) {
1552 *bt_state = (struct anv_state) { 0, };
1553 return VK_SUCCESS;
1554 }
1555
1556 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1557 bias + map->surface_count,
1558 &state_offset);
1559 uint32_t *bt_map = bt_state->map;
1560
1561 if (bt_state->map == NULL)
1562 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1563
1564 if (stage == MESA_SHADER_COMPUTE &&
1565 get_cs_prog_data(cmd_buffer->state.compute_pipeline)->uses_num_work_groups) {
1566 struct anv_bo *bo = cmd_buffer->state.num_workgroups_bo;
1567 uint32_t bo_offset = cmd_buffer->state.num_workgroups_offset;
1568
1569 struct anv_state surface_state;
1570 surface_state =
1571 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1572
1573 const enum isl_format format =
1574 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1575 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1576 format, bo_offset, 12, 1);
1577
1578 bt_map[0] = surface_state.offset + state_offset;
1579 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
1580 }
1581
1582 if (map->surface_count == 0)
1583 goto out;
1584
1585 if (map->image_count > 0) {
1586 VkResult result =
1587 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1588 if (result != VK_SUCCESS)
1589 return result;
1590
1591 cmd_buffer->state.push_constants_dirty |= 1 << stage;
1592 }
1593
1594 uint32_t image = 0;
1595 for (uint32_t s = 0; s < map->surface_count; s++) {
1596 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
1597
1598 struct anv_state surface_state;
1599
1600 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
1601 /* Color attachment binding */
1602 assert(stage == MESA_SHADER_FRAGMENT);
1603 assert(binding->binding == 0);
1604 if (binding->index < subpass->color_count) {
1605 const unsigned att =
1606 subpass->color_attachments[binding->index].attachment;
1607
1608 /* From the Vulkan 1.0.46 spec:
1609 *
1610 * "If any color or depth/stencil attachments are
1611 * VK_ATTACHMENT_UNUSED, then no writes occur for those
1612 * attachments."
1613 */
1614 if (att == VK_ATTACHMENT_UNUSED) {
1615 surface_state = cmd_buffer->state.null_surface_state;
1616 } else {
1617 surface_state = cmd_buffer->state.attachments[att].color.state;
1618 }
1619 } else {
1620 surface_state = cmd_buffer->state.null_surface_state;
1621 }
1622
1623 bt_map[bias + s] = surface_state.offset + state_offset;
1624 continue;
1625 }
1626
1627 struct anv_descriptor_set *set =
1628 cmd_buffer->state.descriptors[binding->set];
1629 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
1630 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
1631
1632 switch (desc->type) {
1633 case VK_DESCRIPTOR_TYPE_SAMPLER:
1634 /* Nothing for us to do here */
1635 continue;
1636
1637 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1638 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
1639 struct anv_surface_state sstate =
1640 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1641 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1642 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1643 surface_state = sstate.state;
1644 assert(surface_state.alloc_size);
1645 add_image_view_relocs(cmd_buffer, desc->image_view,
1646 binding->plane, sstate);
1647 break;
1648 }
1649 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1650 assert(stage == MESA_SHADER_FRAGMENT);
1651 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
1652 /* For depth and stencil input attachments, we treat it like any
1653 * old texture that a user may have bound.
1654 */
1655 struct anv_surface_state sstate =
1656 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1657 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1658 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1659 surface_state = sstate.state;
1660 assert(surface_state.alloc_size);
1661 add_image_view_relocs(cmd_buffer, desc->image_view,
1662 binding->plane, sstate);
1663 } else {
1664 /* For color input attachments, we create the surface state at
1665 * vkBeginRenderPass time so that we can include aux and clear
1666 * color information.
1667 */
1668 assert(binding->input_attachment_index < subpass->input_count);
1669 const unsigned subpass_att = binding->input_attachment_index;
1670 const unsigned att = subpass->input_attachments[subpass_att].attachment;
1671 surface_state = cmd_buffer->state.attachments[att].input.state;
1672 }
1673 break;
1674
1675 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1676 struct anv_surface_state sstate = (binding->write_only)
1677 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
1678 : desc->image_view->planes[binding->plane].storage_surface_state;
1679 surface_state = sstate.state;
1680 assert(surface_state.alloc_size);
1681 add_image_view_relocs(cmd_buffer, desc->image_view,
1682 binding->plane, sstate);
1683
1684 struct brw_image_param *image_param =
1685 &cmd_buffer->state.push_constants[stage]->images[image++];
1686
1687 *image_param = desc->image_view->planes[binding->plane].storage_image_param;
1688 image_param->surface_idx = bias + s;
1689 break;
1690 }
1691
1692 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1693 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1694 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1695 surface_state = desc->buffer_view->surface_state;
1696 assert(surface_state.alloc_size);
1697 add_surface_state_reloc(cmd_buffer, surface_state,
1698 desc->buffer_view->bo,
1699 desc->buffer_view->offset);
1700 break;
1701
1702 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1703 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1704 uint32_t dynamic_offset_idx =
1705 pipeline->layout->set[binding->set].dynamic_offset_start +
1706 set->layout->binding[binding->binding].dynamic_offset_index +
1707 binding->index;
1708
1709 /* Compute the offset within the buffer */
1710 uint64_t offset = desc->offset +
1711 cmd_buffer->state.dynamic_offsets[dynamic_offset_idx];
1712 /* Clamp to the buffer size */
1713 offset = MIN2(offset, desc->buffer->size);
1714 /* Clamp the range to the buffer size */
1715 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
1716
1717 surface_state =
1718 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
1719 enum isl_format format =
1720 anv_isl_format_for_descriptor_type(desc->type);
1721
1722 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1723 format, offset, range, 1);
1724 add_surface_state_reloc(cmd_buffer, surface_state,
1725 desc->buffer->bo,
1726 desc->buffer->offset + offset);
1727 break;
1728 }
1729
1730 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1731 surface_state = (binding->write_only)
1732 ? desc->buffer_view->writeonly_storage_surface_state
1733 : desc->buffer_view->storage_surface_state;
1734 assert(surface_state.alloc_size);
1735 add_surface_state_reloc(cmd_buffer, surface_state,
1736 desc->buffer_view->bo,
1737 desc->buffer_view->offset);
1738
1739 struct brw_image_param *image_param =
1740 &cmd_buffer->state.push_constants[stage]->images[image++];
1741
1742 *image_param = desc->buffer_view->storage_image_param;
1743 image_param->surface_idx = bias + s;
1744 break;
1745
1746 default:
1747 assert(!"Invalid descriptor type");
1748 continue;
1749 }
1750
1751 bt_map[bias + s] = surface_state.offset + state_offset;
1752 }
1753 assert(image == map->image_count);
1754
1755 out:
1756 anv_state_flush(cmd_buffer->device, *bt_state);
1757
1758 return VK_SUCCESS;
1759 }
1760
1761 static VkResult
1762 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1763 gl_shader_stage stage,
1764 struct anv_state *state)
1765 {
1766 struct anv_pipeline *pipeline;
1767
1768 if (stage == MESA_SHADER_COMPUTE)
1769 pipeline = cmd_buffer->state.compute_pipeline;
1770 else
1771 pipeline = cmd_buffer->state.pipeline;
1772
1773 if (!anv_pipeline_has_stage(pipeline, stage)) {
1774 *state = (struct anv_state) { 0, };
1775 return VK_SUCCESS;
1776 }
1777
1778 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1779 if (map->sampler_count == 0) {
1780 *state = (struct anv_state) { 0, };
1781 return VK_SUCCESS;
1782 }
1783
1784 uint32_t size = map->sampler_count * 16;
1785 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
1786
1787 if (state->map == NULL)
1788 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1789
1790 for (uint32_t s = 0; s < map->sampler_count; s++) {
1791 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
1792 struct anv_descriptor_set *set =
1793 cmd_buffer->state.descriptors[binding->set];
1794 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
1795 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
1796
1797 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
1798 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
1799 continue;
1800
1801 struct anv_sampler *sampler = desc->sampler;
1802
1803 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
1804 * happens to be zero.
1805 */
1806 if (sampler == NULL)
1807 continue;
1808
1809 memcpy(state->map + (s * 16),
1810 sampler->state[binding->plane], sizeof(sampler->state[0]));
1811 }
1812
1813 anv_state_flush(cmd_buffer->device, *state);
1814
1815 return VK_SUCCESS;
1816 }
1817
1818 static uint32_t
1819 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
1820 {
1821 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
1822 cmd_buffer->state.pipeline->active_stages;
1823
1824 VkResult result = VK_SUCCESS;
1825 anv_foreach_stage(s, dirty) {
1826 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1827 if (result != VK_SUCCESS)
1828 break;
1829 result = emit_binding_table(cmd_buffer, s,
1830 &cmd_buffer->state.binding_tables[s]);
1831 if (result != VK_SUCCESS)
1832 break;
1833 }
1834
1835 if (result != VK_SUCCESS) {
1836 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
1837
1838 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
1839 if (result != VK_SUCCESS)
1840 return 0;
1841
1842 /* Re-emit state base addresses so we get the new surface state base
1843 * address before we start emitting binding tables etc.
1844 */
1845 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1846
1847 /* Re-emit all active binding tables */
1848 dirty |= cmd_buffer->state.pipeline->active_stages;
1849 anv_foreach_stage(s, dirty) {
1850 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1851 if (result != VK_SUCCESS) {
1852 anv_batch_set_error(&cmd_buffer->batch, result);
1853 return 0;
1854 }
1855 result = emit_binding_table(cmd_buffer, s,
1856 &cmd_buffer->state.binding_tables[s]);
1857 if (result != VK_SUCCESS) {
1858 anv_batch_set_error(&cmd_buffer->batch, result);
1859 return 0;
1860 }
1861 }
1862 }
1863
1864 cmd_buffer->state.descriptors_dirty &= ~dirty;
1865
1866 return dirty;
1867 }
1868
1869 static void
1870 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
1871 uint32_t stages)
1872 {
1873 static const uint32_t sampler_state_opcodes[] = {
1874 [MESA_SHADER_VERTEX] = 43,
1875 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
1876 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
1877 [MESA_SHADER_GEOMETRY] = 46,
1878 [MESA_SHADER_FRAGMENT] = 47,
1879 [MESA_SHADER_COMPUTE] = 0,
1880 };
1881
1882 static const uint32_t binding_table_opcodes[] = {
1883 [MESA_SHADER_VERTEX] = 38,
1884 [MESA_SHADER_TESS_CTRL] = 39,
1885 [MESA_SHADER_TESS_EVAL] = 40,
1886 [MESA_SHADER_GEOMETRY] = 41,
1887 [MESA_SHADER_FRAGMENT] = 42,
1888 [MESA_SHADER_COMPUTE] = 0,
1889 };
1890
1891 anv_foreach_stage(s, stages) {
1892 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
1893 anv_batch_emit(&cmd_buffer->batch,
1894 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
1895 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
1896 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
1897 }
1898 }
1899
1900 /* Always emit binding table pointers if we're asked to, since on SKL
1901 * this is what flushes push constants. */
1902 anv_batch_emit(&cmd_buffer->batch,
1903 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
1904 btp._3DCommandSubOpcode = binding_table_opcodes[s];
1905 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
1906 }
1907 }
1908 }
1909
1910 static uint32_t
1911 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer)
1912 {
1913 static const uint32_t push_constant_opcodes[] = {
1914 [MESA_SHADER_VERTEX] = 21,
1915 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
1916 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
1917 [MESA_SHADER_GEOMETRY] = 22,
1918 [MESA_SHADER_FRAGMENT] = 23,
1919 [MESA_SHADER_COMPUTE] = 0,
1920 };
1921
1922 VkShaderStageFlags flushed = 0;
1923
1924 anv_foreach_stage(stage, cmd_buffer->state.push_constants_dirty) {
1925 if (stage == MESA_SHADER_COMPUTE)
1926 continue;
1927
1928 struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage);
1929
1930 if (state.offset == 0) {
1931 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c)
1932 c._3DCommandSubOpcode = push_constant_opcodes[stage];
1933 } else {
1934 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
1935 c._3DCommandSubOpcode = push_constant_opcodes[stage],
1936 c.ConstantBody = (struct GENX(3DSTATE_CONSTANT_BODY)) {
1937 #if GEN_GEN >= 9
1938 .Buffer[2] = { &cmd_buffer->device->dynamic_state_pool.block_pool.bo, state.offset },
1939 .ReadLength[2] = DIV_ROUND_UP(state.alloc_size, 32),
1940 #else
1941 .Buffer[0] = { .offset = state.offset },
1942 .ReadLength[0] = DIV_ROUND_UP(state.alloc_size, 32),
1943 #endif
1944 };
1945 }
1946 }
1947
1948 flushed |= mesa_to_vk_shader_stage(stage);
1949 }
1950
1951 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_ALL_GRAPHICS;
1952
1953 return flushed;
1954 }
1955
1956 void
1957 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
1958 {
1959 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1960 uint32_t *p;
1961
1962 uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used;
1963
1964 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
1965
1966 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
1967
1968 genX(flush_pipeline_select_3d)(cmd_buffer);
1969
1970 if (vb_emit) {
1971 const uint32_t num_buffers = __builtin_popcount(vb_emit);
1972 const uint32_t num_dwords = 1 + num_buffers * 4;
1973
1974 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
1975 GENX(3DSTATE_VERTEX_BUFFERS));
1976 uint32_t vb, i = 0;
1977 for_each_bit(vb, vb_emit) {
1978 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
1979 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
1980
1981 struct GENX(VERTEX_BUFFER_STATE) state = {
1982 .VertexBufferIndex = vb,
1983
1984 #if GEN_GEN >= 8
1985 .MemoryObjectControlState = GENX(MOCS),
1986 #else
1987 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
1988 /* Our implementation of VK_KHR_multiview uses instancing to draw
1989 * the different views. If the client asks for instancing, we
1990 * need to use the Instance Data Step Rate to ensure that we
1991 * repeat the client's per-instance data once for each view.
1992 */
1993 .InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass),
1994 .VertexBufferMemoryObjectControlState = GENX(MOCS),
1995 #endif
1996
1997 .AddressModifyEnable = true,
1998 .BufferPitch = pipeline->binding_stride[vb],
1999 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
2000
2001 #if GEN_GEN >= 8
2002 .BufferSize = buffer->size - offset
2003 #else
2004 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
2005 #endif
2006 };
2007
2008 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2009 i++;
2010 }
2011 }
2012
2013 cmd_buffer->state.vb_dirty &= ~vb_emit;
2014
2015 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_PIPELINE) {
2016 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2017
2018 /* The exact descriptor layout is pulled from the pipeline, so we need
2019 * to re-emit binding tables on every pipeline change.
2020 */
2021 cmd_buffer->state.descriptors_dirty |=
2022 cmd_buffer->state.pipeline->active_stages;
2023
2024 /* If the pipeline changed, we may need to re-allocate push constant
2025 * space in the URB.
2026 */
2027 cmd_buffer_alloc_push_constants(cmd_buffer);
2028 }
2029
2030 #if GEN_GEN <= 7
2031 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2032 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2033 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2034 *
2035 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2036 * stall needs to be sent just prior to any 3DSTATE_VS,
2037 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2038 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2039 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2040 * PIPE_CONTROL needs to be sent before any combination of VS
2041 * associated 3DSTATE."
2042 */
2043 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2044 pc.DepthStallEnable = true;
2045 pc.PostSyncOperation = WriteImmediateData;
2046 pc.Address =
2047 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2048 }
2049 }
2050 #endif
2051
2052 /* Render targets live in the same binding table as fragment descriptors */
2053 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2054 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2055
2056 /* We emit the binding tables and sampler tables first, then emit push
2057 * constants and then finally emit binding table and sampler table
2058 * pointers. It has to happen in this order, since emitting the binding
2059 * tables may change the push constants (in case of storage images). After
2060 * emitting push constants, on SKL+ we have to emit the corresponding
2061 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2062 */
2063 uint32_t dirty = 0;
2064 if (cmd_buffer->state.descriptors_dirty)
2065 dirty = flush_descriptor_sets(cmd_buffer);
2066
2067 if (cmd_buffer->state.push_constants_dirty) {
2068 #if GEN_GEN >= 9
2069 /* On Sky Lake and later, the binding table pointers commands are
2070 * what actually flush the changes to push constant state so we need
2071 * to dirty them so they get re-emitted below.
2072 */
2073 dirty |= cmd_buffer_flush_push_constants(cmd_buffer);
2074 #else
2075 cmd_buffer_flush_push_constants(cmd_buffer);
2076 #endif
2077 }
2078
2079 if (dirty)
2080 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2081
2082 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2083 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2084
2085 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2086 ANV_CMD_DIRTY_PIPELINE)) {
2087 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2088 pipeline->depth_clamp_enable);
2089 }
2090
2091 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
2092 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2093
2094 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2095
2096 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2097 }
2098
2099 static void
2100 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2101 struct anv_bo *bo, uint32_t offset,
2102 uint32_t size, uint32_t index)
2103 {
2104 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2105 GENX(3DSTATE_VERTEX_BUFFERS));
2106
2107 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2108 &(struct GENX(VERTEX_BUFFER_STATE)) {
2109 .VertexBufferIndex = index,
2110 .AddressModifyEnable = true,
2111 .BufferPitch = 0,
2112 #if (GEN_GEN >= 8)
2113 .MemoryObjectControlState = GENX(MOCS),
2114 .BufferStartingAddress = { bo, offset },
2115 .BufferSize = size
2116 #else
2117 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2118 .BufferStartingAddress = { bo, offset },
2119 .EndAddress = { bo, offset + size },
2120 #endif
2121 });
2122 }
2123
2124 static void
2125 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2126 struct anv_bo *bo, uint32_t offset)
2127 {
2128 emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
2129 }
2130
2131 static void
2132 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2133 uint32_t base_vertex, uint32_t base_instance)
2134 {
2135 struct anv_state id_state =
2136 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2137
2138 ((uint32_t *)id_state.map)[0] = base_vertex;
2139 ((uint32_t *)id_state.map)[1] = base_instance;
2140
2141 anv_state_flush(cmd_buffer->device, id_state);
2142
2143 emit_base_vertex_instance_bo(cmd_buffer,
2144 &cmd_buffer->device->dynamic_state_pool.block_pool.bo, id_state.offset);
2145 }
2146
2147 static void
2148 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2149 {
2150 struct anv_state state =
2151 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2152
2153 ((uint32_t *)state.map)[0] = draw_index;
2154
2155 anv_state_flush(cmd_buffer->device, state);
2156
2157 emit_vertex_bo(cmd_buffer,
2158 &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2159 state.offset, 4, ANV_DRAWID_VB_INDEX);
2160 }
2161
2162 void genX(CmdDraw)(
2163 VkCommandBuffer commandBuffer,
2164 uint32_t vertexCount,
2165 uint32_t instanceCount,
2166 uint32_t firstVertex,
2167 uint32_t firstInstance)
2168 {
2169 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2170 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
2171 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2172
2173 if (anv_batch_has_error(&cmd_buffer->batch))
2174 return;
2175
2176 genX(cmd_buffer_flush_state)(cmd_buffer);
2177
2178 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2179 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2180 if (vs_prog_data->uses_drawid)
2181 emit_draw_index(cmd_buffer, 0);
2182
2183 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2184 * different views. We need to multiply instanceCount by the view count.
2185 */
2186 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2187
2188 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2189 prim.VertexAccessType = SEQUENTIAL;
2190 prim.PrimitiveTopologyType = pipeline->topology;
2191 prim.VertexCountPerInstance = vertexCount;
2192 prim.StartVertexLocation = firstVertex;
2193 prim.InstanceCount = instanceCount;
2194 prim.StartInstanceLocation = firstInstance;
2195 prim.BaseVertexLocation = 0;
2196 }
2197 }
2198
2199 void genX(CmdDrawIndexed)(
2200 VkCommandBuffer commandBuffer,
2201 uint32_t indexCount,
2202 uint32_t instanceCount,
2203 uint32_t firstIndex,
2204 int32_t vertexOffset,
2205 uint32_t firstInstance)
2206 {
2207 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2208 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
2209 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2210
2211 if (anv_batch_has_error(&cmd_buffer->batch))
2212 return;
2213
2214 genX(cmd_buffer_flush_state)(cmd_buffer);
2215
2216 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2217 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2218 if (vs_prog_data->uses_drawid)
2219 emit_draw_index(cmd_buffer, 0);
2220
2221 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2222 * different views. We need to multiply instanceCount by the view count.
2223 */
2224 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2225
2226 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2227 prim.VertexAccessType = RANDOM;
2228 prim.PrimitiveTopologyType = pipeline->topology;
2229 prim.VertexCountPerInstance = indexCount;
2230 prim.StartVertexLocation = firstIndex;
2231 prim.InstanceCount = instanceCount;
2232 prim.StartInstanceLocation = firstInstance;
2233 prim.BaseVertexLocation = vertexOffset;
2234 }
2235 }
2236
2237 /* Auto-Draw / Indirect Registers */
2238 #define GEN7_3DPRIM_END_OFFSET 0x2420
2239 #define GEN7_3DPRIM_START_VERTEX 0x2430
2240 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2241 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2242 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2243 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2244
2245 /* MI_MATH only exists on Haswell+ */
2246 #if GEN_IS_HASWELL || GEN_GEN >= 8
2247
2248 static uint32_t
2249 mi_alu(uint32_t opcode, uint32_t op1, uint32_t op2)
2250 {
2251 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
2252 .ALUOpcode = opcode,
2253 .Operand1 = op1,
2254 .Operand2 = op2,
2255 };
2256
2257 uint32_t dw;
2258 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
2259
2260 return dw;
2261 }
2262
2263 #define CS_GPR(n) (0x2600 + (n) * 8)
2264
2265 /* Emit dwords to multiply GPR0 by N */
2266 static void
2267 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2268 {
2269 VK_OUTARRAY_MAKE(out, dw, dw_count);
2270
2271 #define append_alu(opcode, operand1, operand2) \
2272 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2273
2274 assert(N > 0);
2275 unsigned top_bit = 31 - __builtin_clz(N);
2276 for (int i = top_bit - 1; i >= 0; i--) {
2277 /* We get our initial data in GPR0 and we write the final data out to
2278 * GPR0 but we use GPR1 as our scratch register.
2279 */
2280 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2281 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2282
2283 /* Shift the current value left by 1 */
2284 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2285 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2286 append_alu(MI_ALU_ADD, 0, 0);
2287
2288 if (N & (1 << i)) {
2289 /* Store ACCU to R1 and add R0 to R1 */
2290 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2291 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2292 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2293 append_alu(MI_ALU_ADD, 0, 0);
2294 }
2295
2296 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2297 }
2298
2299 #undef append_alu
2300 }
2301
2302 static void
2303 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2304 {
2305 uint32_t num_dwords;
2306 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2307
2308 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2309 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2310 }
2311
2312 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2313
2314 static void
2315 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2316 struct anv_buffer *buffer, uint64_t offset,
2317 bool indexed)
2318 {
2319 struct anv_batch *batch = &cmd_buffer->batch;
2320 struct anv_bo *bo = buffer->bo;
2321 uint32_t bo_offset = buffer->offset + offset;
2322
2323 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2324
2325 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2326 if (view_count > 1) {
2327 #if GEN_IS_HASWELL || GEN_GEN >= 8
2328 emit_lrm(batch, CS_GPR(0), bo, bo_offset + 4);
2329 emit_mul_gpr0(batch, view_count);
2330 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2331 #else
2332 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2333 "MI_MATH is not supported on Ivy Bridge");
2334 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2335 #endif
2336 } else {
2337 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2338 }
2339
2340 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2341
2342 if (indexed) {
2343 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
2344 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
2345 } else {
2346 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
2347 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2348 }
2349 }
2350
2351 void genX(CmdDrawIndirect)(
2352 VkCommandBuffer commandBuffer,
2353 VkBuffer _buffer,
2354 VkDeviceSize offset,
2355 uint32_t drawCount,
2356 uint32_t stride)
2357 {
2358 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2359 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2360 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
2361 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2362
2363 if (anv_batch_has_error(&cmd_buffer->batch))
2364 return;
2365
2366 genX(cmd_buffer_flush_state)(cmd_buffer);
2367
2368 for (uint32_t i = 0; i < drawCount; i++) {
2369 struct anv_bo *bo = buffer->bo;
2370 uint32_t bo_offset = buffer->offset + offset;
2371
2372 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2373 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
2374 if (vs_prog_data->uses_drawid)
2375 emit_draw_index(cmd_buffer, i);
2376
2377 load_indirect_parameters(cmd_buffer, buffer, offset, false);
2378
2379 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2380 prim.IndirectParameterEnable = true;
2381 prim.VertexAccessType = SEQUENTIAL;
2382 prim.PrimitiveTopologyType = pipeline->topology;
2383 }
2384
2385 offset += stride;
2386 }
2387 }
2388
2389 void genX(CmdDrawIndexedIndirect)(
2390 VkCommandBuffer commandBuffer,
2391 VkBuffer _buffer,
2392 VkDeviceSize offset,
2393 uint32_t drawCount,
2394 uint32_t stride)
2395 {
2396 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2397 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2398 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
2399 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2400
2401 if (anv_batch_has_error(&cmd_buffer->batch))
2402 return;
2403
2404 genX(cmd_buffer_flush_state)(cmd_buffer);
2405
2406 for (uint32_t i = 0; i < drawCount; i++) {
2407 struct anv_bo *bo = buffer->bo;
2408 uint32_t bo_offset = buffer->offset + offset;
2409
2410 /* TODO: We need to stomp base vertex to 0 somehow */
2411 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2412 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
2413 if (vs_prog_data->uses_drawid)
2414 emit_draw_index(cmd_buffer, i);
2415
2416 load_indirect_parameters(cmd_buffer, buffer, offset, true);
2417
2418 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2419 prim.IndirectParameterEnable = true;
2420 prim.VertexAccessType = RANDOM;
2421 prim.PrimitiveTopologyType = pipeline->topology;
2422 }
2423
2424 offset += stride;
2425 }
2426 }
2427
2428 static VkResult
2429 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
2430 {
2431 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
2432 struct anv_state surfaces = { 0, }, samplers = { 0, };
2433 VkResult result;
2434
2435 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2436 if (result != VK_SUCCESS) {
2437 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2438
2439 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2440 if (result != VK_SUCCESS)
2441 return result;
2442
2443 /* Re-emit state base addresses so we get the new surface state base
2444 * address before we start emitting binding tables etc.
2445 */
2446 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2447
2448 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2449 if (result != VK_SUCCESS) {
2450 anv_batch_set_error(&cmd_buffer->batch, result);
2451 return result;
2452 }
2453 }
2454
2455 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
2456 if (result != VK_SUCCESS) {
2457 anv_batch_set_error(&cmd_buffer->batch, result);
2458 return result;
2459 }
2460
2461 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
2462 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2463 .BindingTablePointer = surfaces.offset,
2464 .SamplerStatePointer = samplers.offset,
2465 };
2466 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
2467
2468 struct anv_state state =
2469 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
2470 pipeline->interface_descriptor_data,
2471 GENX(INTERFACE_DESCRIPTOR_DATA_length),
2472 64);
2473
2474 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
2475 anv_batch_emit(&cmd_buffer->batch,
2476 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
2477 mid.InterfaceDescriptorTotalLength = size;
2478 mid.InterfaceDescriptorDataStartAddress = state.offset;
2479 }
2480
2481 return VK_SUCCESS;
2482 }
2483
2484 void
2485 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
2486 {
2487 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
2488 MAYBE_UNUSED VkResult result;
2489
2490 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
2491
2492 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2493
2494 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
2495
2496 if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE) {
2497 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
2498 *
2499 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
2500 * the only bits that are changed are scoreboard related: Scoreboard
2501 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
2502 * these scoreboard related states, a MEDIA_STATE_FLUSH is
2503 * sufficient."
2504 */
2505 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2506 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2507
2508 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2509 }
2510
2511 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
2512 (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
2513 /* FIXME: figure out descriptors for gen7 */
2514 result = flush_compute_descriptor_set(cmd_buffer);
2515 if (result != VK_SUCCESS)
2516 return;
2517
2518 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
2519 }
2520
2521 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
2522 struct anv_state push_state =
2523 anv_cmd_buffer_cs_push_constants(cmd_buffer);
2524
2525 if (push_state.alloc_size) {
2526 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
2527 curbe.CURBETotalDataLength = push_state.alloc_size;
2528 curbe.CURBEDataStartAddress = push_state.offset;
2529 }
2530 }
2531 }
2532
2533 cmd_buffer->state.compute_dirty = 0;
2534
2535 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2536 }
2537
2538 #if GEN_GEN == 7
2539
2540 static VkResult
2541 verify_cmd_parser(const struct anv_device *device,
2542 int required_version,
2543 const char *function)
2544 {
2545 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
2546 return vk_errorf(device->instance, device->instance,
2547 VK_ERROR_FEATURE_NOT_PRESENT,
2548 "cmd parser version %d is required for %s",
2549 required_version, function);
2550 } else {
2551 return VK_SUCCESS;
2552 }
2553 }
2554
2555 #endif
2556
2557 void genX(CmdDispatch)(
2558 VkCommandBuffer commandBuffer,
2559 uint32_t x,
2560 uint32_t y,
2561 uint32_t z)
2562 {
2563 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2564 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
2565 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2566
2567 if (anv_batch_has_error(&cmd_buffer->batch))
2568 return;
2569
2570 if (prog_data->uses_num_work_groups) {
2571 struct anv_state state =
2572 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
2573 uint32_t *sizes = state.map;
2574 sizes[0] = x;
2575 sizes[1] = y;
2576 sizes[2] = z;
2577 anv_state_flush(cmd_buffer->device, state);
2578 cmd_buffer->state.num_workgroups_offset = state.offset;
2579 cmd_buffer->state.num_workgroups_bo =
2580 &cmd_buffer->device->dynamic_state_pool.block_pool.bo;
2581 }
2582
2583 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2584
2585 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
2586 ggw.SIMDSize = prog_data->simd_size / 16;
2587 ggw.ThreadDepthCounterMaximum = 0;
2588 ggw.ThreadHeightCounterMaximum = 0;
2589 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2590 ggw.ThreadGroupIDXDimension = x;
2591 ggw.ThreadGroupIDYDimension = y;
2592 ggw.ThreadGroupIDZDimension = z;
2593 ggw.RightExecutionMask = pipeline->cs_right_mask;
2594 ggw.BottomExecutionMask = 0xffffffff;
2595 }
2596
2597 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
2598 }
2599
2600 #define GPGPU_DISPATCHDIMX 0x2500
2601 #define GPGPU_DISPATCHDIMY 0x2504
2602 #define GPGPU_DISPATCHDIMZ 0x2508
2603
2604 void genX(CmdDispatchIndirect)(
2605 VkCommandBuffer commandBuffer,
2606 VkBuffer _buffer,
2607 VkDeviceSize offset)
2608 {
2609 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2610 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2611 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
2612 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2613 struct anv_bo *bo = buffer->bo;
2614 uint32_t bo_offset = buffer->offset + offset;
2615 struct anv_batch *batch = &cmd_buffer->batch;
2616
2617 #if GEN_GEN == 7
2618 /* Linux 4.4 added command parser version 5 which allows the GPGPU
2619 * indirect dispatch registers to be written.
2620 */
2621 if (verify_cmd_parser(cmd_buffer->device, 5,
2622 "vkCmdDispatchIndirect") != VK_SUCCESS)
2623 return;
2624 #endif
2625
2626 if (prog_data->uses_num_work_groups) {
2627 cmd_buffer->state.num_workgroups_offset = bo_offset;
2628 cmd_buffer->state.num_workgroups_bo = bo;
2629 }
2630
2631 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2632
2633 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
2634 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
2635 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
2636
2637 #if GEN_GEN <= 7
2638 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
2639 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
2640 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
2641 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
2642
2643 /* Load compute_dispatch_indirect_x_size into SRC0 */
2644 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
2645
2646 /* predicate = (compute_dispatch_indirect_x_size == 0); */
2647 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2648 mip.LoadOperation = LOAD_LOAD;
2649 mip.CombineOperation = COMBINE_SET;
2650 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2651 }
2652
2653 /* Load compute_dispatch_indirect_y_size into SRC0 */
2654 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
2655
2656 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
2657 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2658 mip.LoadOperation = LOAD_LOAD;
2659 mip.CombineOperation = COMBINE_OR;
2660 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2661 }
2662
2663 /* Load compute_dispatch_indirect_z_size into SRC0 */
2664 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
2665
2666 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
2667 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2668 mip.LoadOperation = LOAD_LOAD;
2669 mip.CombineOperation = COMBINE_OR;
2670 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2671 }
2672
2673 /* predicate = !predicate; */
2674 #define COMPARE_FALSE 1
2675 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2676 mip.LoadOperation = LOAD_LOADINV;
2677 mip.CombineOperation = COMBINE_OR;
2678 mip.CompareOperation = COMPARE_FALSE;
2679 }
2680 #endif
2681
2682 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
2683 ggw.IndirectParameterEnable = true;
2684 ggw.PredicateEnable = GEN_GEN <= 7;
2685 ggw.SIMDSize = prog_data->simd_size / 16;
2686 ggw.ThreadDepthCounterMaximum = 0;
2687 ggw.ThreadHeightCounterMaximum = 0;
2688 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2689 ggw.RightExecutionMask = pipeline->cs_right_mask;
2690 ggw.BottomExecutionMask = 0xffffffff;
2691 }
2692
2693 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
2694 }
2695
2696 static void
2697 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
2698 uint32_t pipeline)
2699 {
2700 if (cmd_buffer->state.current_pipeline == pipeline)
2701 return;
2702
2703 #if GEN_GEN >= 8 && GEN_GEN < 10
2704 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
2705 *
2706 * Software must clear the COLOR_CALC_STATE Valid field in
2707 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
2708 * with Pipeline Select set to GPGPU.
2709 *
2710 * The internal hardware docs recommend the same workaround for Gen9
2711 * hardware too.
2712 */
2713 if (pipeline == GPGPU)
2714 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
2715 #endif
2716
2717 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
2718 * PIPELINE_SELECT [DevBWR+]":
2719 *
2720 * Project: DEVSNB+
2721 *
2722 * Software must ensure all the write caches are flushed through a
2723 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
2724 * command to invalidate read only caches prior to programming
2725 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
2726 */
2727 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2728 pc.RenderTargetCacheFlushEnable = true;
2729 pc.DepthCacheFlushEnable = true;
2730 pc.DCFlushEnable = true;
2731 pc.PostSyncOperation = NoWrite;
2732 pc.CommandStreamerStallEnable = true;
2733 }
2734
2735 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2736 pc.TextureCacheInvalidationEnable = true;
2737 pc.ConstantCacheInvalidationEnable = true;
2738 pc.StateCacheInvalidationEnable = true;
2739 pc.InstructionCacheInvalidateEnable = true;
2740 pc.PostSyncOperation = NoWrite;
2741 }
2742
2743 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
2744 #if GEN_GEN >= 9
2745 ps.MaskBits = 3;
2746 #endif
2747 ps.PipelineSelection = pipeline;
2748 }
2749
2750 cmd_buffer->state.current_pipeline = pipeline;
2751 }
2752
2753 void
2754 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
2755 {
2756 genX(flush_pipeline_select)(cmd_buffer, _3D);
2757 }
2758
2759 void
2760 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
2761 {
2762 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
2763 }
2764
2765 void
2766 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
2767 {
2768 if (GEN_GEN >= 8)
2769 return;
2770
2771 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
2772 *
2773 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
2774 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
2775 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
2776 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
2777 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
2778 * Depth Flush Bit set, followed by another pipelined depth stall
2779 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
2780 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
2781 * via a preceding MI_FLUSH)."
2782 */
2783 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2784 pipe.DepthStallEnable = true;
2785 }
2786 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2787 pipe.DepthCacheFlushEnable = true;
2788 }
2789 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2790 pipe.DepthStallEnable = true;
2791 }
2792 }
2793
2794 static void
2795 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
2796 {
2797 struct anv_device *device = cmd_buffer->device;
2798 const struct anv_image_view *iview =
2799 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
2800 const struct anv_image *image = iview ? iview->image : NULL;
2801
2802 /* FIXME: Width and Height are wrong */
2803
2804 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
2805
2806 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
2807 device->isl_dev.ds.size / 4);
2808 if (dw == NULL)
2809 return;
2810
2811 struct isl_depth_stencil_hiz_emit_info info = {
2812 .mocs = device->default_mocs,
2813 };
2814
2815 if (iview)
2816 info.view = &iview->planes[0].isl;
2817
2818 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
2819 uint32_t depth_plane =
2820 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
2821 const struct anv_surface *surface = &image->planes[depth_plane].surface;
2822
2823 info.depth_surf = &surface->isl;
2824
2825 info.depth_address =
2826 anv_batch_emit_reloc(&cmd_buffer->batch,
2827 dw + device->isl_dev.ds.depth_offset / 4,
2828 image->planes[depth_plane].bo,
2829 image->planes[depth_plane].bo_offset +
2830 surface->offset);
2831
2832 const uint32_t ds =
2833 cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
2834 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
2835 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
2836 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
2837
2838 info.hiz_address =
2839 anv_batch_emit_reloc(&cmd_buffer->batch,
2840 dw + device->isl_dev.ds.hiz_offset / 4,
2841 image->planes[depth_plane].bo,
2842 image->planes[depth_plane].bo_offset +
2843 image->planes[depth_plane].aux_surface.offset);
2844
2845 info.depth_clear_value = ANV_HZ_FC_VAL;
2846 }
2847 }
2848
2849 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
2850 uint32_t stencil_plane =
2851 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
2852 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
2853
2854 info.stencil_surf = &surface->isl;
2855
2856 info.stencil_address =
2857 anv_batch_emit_reloc(&cmd_buffer->batch,
2858 dw + device->isl_dev.ds.stencil_offset / 4,
2859 image->planes[stencil_plane].bo,
2860 image->planes[stencil_plane].bo_offset + surface->offset);
2861 }
2862
2863 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
2864
2865 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
2866 }
2867
2868
2869 /**
2870 * @brief Perform any layout transitions required at the beginning and/or end
2871 * of the current subpass for depth buffers.
2872 *
2873 * TODO: Consider preprocessing the attachment reference array at render pass
2874 * create time to determine if no layout transition is needed at the
2875 * beginning and/or end of each subpass.
2876 *
2877 * @param cmd_buffer The command buffer the transition is happening within.
2878 * @param subpass_end If true, marks that the transition is happening at the
2879 * end of the subpass.
2880 */
2881 static void
2882 cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,
2883 const bool subpass_end)
2884 {
2885 /* We need a non-NULL command buffer. */
2886 assert(cmd_buffer);
2887
2888 const struct anv_cmd_state * const cmd_state = &cmd_buffer->state;
2889 const struct anv_subpass * const subpass = cmd_state->subpass;
2890
2891 /* This function must be called within a subpass. */
2892 assert(subpass);
2893
2894 /* If there are attachment references, the array shouldn't be NULL.
2895 */
2896 if (subpass->attachment_count > 0)
2897 assert(subpass->attachments);
2898
2899 /* Iterate over the array of attachment references. */
2900 for (const VkAttachmentReference *att_ref = subpass->attachments;
2901 att_ref < subpass->attachments + subpass->attachment_count; att_ref++) {
2902
2903 /* If the attachment is unused, we can't perform a layout transition. */
2904 if (att_ref->attachment == VK_ATTACHMENT_UNUSED)
2905 continue;
2906
2907 /* This attachment index shouldn't go out of bounds. */
2908 assert(att_ref->attachment < cmd_state->pass->attachment_count);
2909
2910 const struct anv_render_pass_attachment * const att_desc =
2911 &cmd_state->pass->attachments[att_ref->attachment];
2912 struct anv_attachment_state * const att_state =
2913 &cmd_buffer->state.attachments[att_ref->attachment];
2914
2915 /* The attachment should not be used in a subpass after its last. */
2916 assert(att_desc->last_subpass_idx >= anv_get_subpass_id(cmd_state));
2917
2918 if (subpass_end && anv_get_subpass_id(cmd_state) <
2919 att_desc->last_subpass_idx) {
2920 /* We're calling this function on a buffer twice in one subpass and
2921 * this is not the last use of the buffer. The layout should not have
2922 * changed from the first call and no transition is necessary.
2923 */
2924 assert(att_state->current_layout == att_ref->layout ||
2925 att_state->current_layout ==
2926 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
2927 continue;
2928 }
2929
2930 /* The attachment index must be less than the number of attachments
2931 * within the framebuffer.
2932 */
2933 assert(att_ref->attachment < cmd_state->framebuffer->attachment_count);
2934
2935 const struct anv_image_view * const iview =
2936 cmd_state->framebuffer->attachments[att_ref->attachment];
2937 const struct anv_image * const image = iview->image;
2938
2939 /* Get the appropriate target layout for this attachment. */
2940 VkImageLayout target_layout;
2941
2942 /* A resolve is necessary before use as an input attachment if the clear
2943 * color or auxiliary buffer usage isn't supported by the sampler.
2944 */
2945 const bool input_needs_resolve =
2946 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
2947 att_state->input_aux_usage != att_state->aux_usage;
2948 if (subpass_end) {
2949 target_layout = att_desc->final_layout;
2950 } else if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
2951 !input_needs_resolve) {
2952 /* Layout transitions before the final only help to enable sampling as
2953 * an input attachment. If the input attachment supports sampling
2954 * using the auxiliary surface, we can skip such transitions by making
2955 * the target layout one that is CCS-aware.
2956 */
2957 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
2958 } else {
2959 target_layout = att_ref->layout;
2960 }
2961
2962 /* Perform the layout transition. */
2963 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
2964 transition_depth_buffer(cmd_buffer, image,
2965 att_state->current_layout, target_layout);
2966 att_state->aux_usage =
2967 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
2968 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
2969 } else if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2970 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
2971 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
2972 iview->planes[0].isl.base_level, 1,
2973 iview->planes[0].isl.base_array_layer,
2974 iview->planes[0].isl.array_len,
2975 att_state->current_layout, target_layout);
2976 }
2977
2978 att_state->current_layout = target_layout;
2979 }
2980 }
2981
2982 /* Update the clear value dword(s) in surface state objects or the fast clear
2983 * state buffer entry for the color attachments used in this subpass.
2984 */
2985 static void
2986 cmd_buffer_subpass_sync_fast_clear_values(struct anv_cmd_buffer *cmd_buffer)
2987 {
2988 assert(cmd_buffer && cmd_buffer->state.subpass);
2989
2990 const struct anv_cmd_state *state = &cmd_buffer->state;
2991
2992 /* Iterate through every color attachment used in this subpass. */
2993 for (uint32_t i = 0; i < state->subpass->color_count; ++i) {
2994
2995 /* The attachment should be one of the attachments described in the
2996 * render pass and used in the subpass.
2997 */
2998 const uint32_t a = state->subpass->color_attachments[i].attachment;
2999 if (a == VK_ATTACHMENT_UNUSED)
3000 continue;
3001
3002 assert(a < state->pass->attachment_count);
3003
3004 /* Store some information regarding this attachment. */
3005 const struct anv_attachment_state *att_state = &state->attachments[a];
3006 const struct anv_image_view *iview = state->framebuffer->attachments[a];
3007 const struct anv_render_pass_attachment *rp_att =
3008 &state->pass->attachments[a];
3009
3010 if (att_state->aux_usage == ISL_AUX_USAGE_NONE)
3011 continue;
3012
3013 /* The fast clear state entry must be updated if a fast clear is going to
3014 * happen. The surface state must be updated if the clear value from a
3015 * prior fast clear may be needed.
3016 */
3017 if (att_state->pending_clear_aspects && att_state->fast_clear) {
3018 /* Update the fast clear state entry. */
3019 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3020 iview->image,
3021 VK_IMAGE_ASPECT_COLOR_BIT,
3022 iview->planes[0].isl.base_level,
3023 true /* copy from ss */);
3024
3025 /* Fast-clears impact whether or not a resolve will be necessary. */
3026 if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E &&
3027 att_state->clear_color_is_zero) {
3028 /* This image always has the auxiliary buffer enabled. We can mark
3029 * the subresource as not needing a resolve because the clear color
3030 * will match what's in every RENDER_SURFACE_STATE object when it's
3031 * being used for sampling.
3032 */
3033 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
3034 VK_IMAGE_ASPECT_COLOR_BIT,
3035 iview->planes[0].isl.base_level,
3036 false);
3037 } else {
3038 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
3039 VK_IMAGE_ASPECT_COLOR_BIT,
3040 iview->planes[0].isl.base_level,
3041 true);
3042 }
3043 } else if (rp_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
3044 /* The attachment may have been fast-cleared in a previous render
3045 * pass and the value is needed now. Update the surface state(s).
3046 *
3047 * TODO: Do this only once per render pass instead of every subpass.
3048 */
3049 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3050 iview->image,
3051 VK_IMAGE_ASPECT_COLOR_BIT,
3052 iview->planes[0].isl.base_level,
3053 false /* copy to ss */);
3054
3055 if (need_input_attachment_state(rp_att) &&
3056 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3057 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3058 iview->image,
3059 VK_IMAGE_ASPECT_COLOR_BIT,
3060 iview->planes[0].isl.base_level,
3061 false /* copy to ss */);
3062 }
3063 }
3064 }
3065 }
3066
3067
3068 static void
3069 genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
3070 struct anv_subpass *subpass)
3071 {
3072 cmd_buffer->state.subpass = subpass;
3073
3074 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3075
3076 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3077 * different views. If the client asks for instancing, we need to use the
3078 * Instance Data Step Rate to ensure that we repeat the client's
3079 * per-instance data once for each view. Since this bit is in
3080 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3081 * of each subpass.
3082 */
3083 if (GEN_GEN == 7)
3084 cmd_buffer->state.vb_dirty |= ~0;
3085
3086 /* Perform transitions to the subpass layout before any writes have
3087 * occurred.
3088 */
3089 cmd_buffer_subpass_transition_layouts(cmd_buffer, false);
3090
3091 /* Update clear values *after* performing automatic layout transitions.
3092 * This ensures that transitions from the UNDEFINED layout have had a chance
3093 * to populate the clear value buffer with the correct values for the
3094 * LOAD_OP_LOAD loadOp and that the fast-clears will update the buffer
3095 * without the aforementioned layout transition overwriting the fast-clear
3096 * value.
3097 */
3098 cmd_buffer_subpass_sync_fast_clear_values(cmd_buffer);
3099
3100 cmd_buffer_emit_depth_stencil(cmd_buffer);
3101
3102 anv_cmd_buffer_clear_subpass(cmd_buffer);
3103 }
3104
3105 void genX(CmdBeginRenderPass)(
3106 VkCommandBuffer commandBuffer,
3107 const VkRenderPassBeginInfo* pRenderPassBegin,
3108 VkSubpassContents contents)
3109 {
3110 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3111 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3112 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3113
3114 cmd_buffer->state.framebuffer = framebuffer;
3115 cmd_buffer->state.pass = pass;
3116 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3117 VkResult result =
3118 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3119
3120 /* If we failed to setup the attachments we should not try to go further */
3121 if (result != VK_SUCCESS) {
3122 assert(anv_batch_has_error(&cmd_buffer->batch));
3123 return;
3124 }
3125
3126 genX(flush_pipeline_select_3d)(cmd_buffer);
3127
3128 genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
3129
3130 cmd_buffer->state.pending_pipe_bits |=
3131 cmd_buffer->state.pass->subpass_flushes[0];
3132 }
3133
3134 void genX(CmdNextSubpass)(
3135 VkCommandBuffer commandBuffer,
3136 VkSubpassContents contents)
3137 {
3138 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3139
3140 if (anv_batch_has_error(&cmd_buffer->batch))
3141 return;
3142
3143 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3144
3145 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3146
3147 /* Perform transitions to the final layout after all writes have occurred.
3148 */
3149 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3150
3151 genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
3152
3153 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3154 cmd_buffer->state.pending_pipe_bits |=
3155 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3156 }
3157
3158 void genX(CmdEndRenderPass)(
3159 VkCommandBuffer commandBuffer)
3160 {
3161 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3162
3163 if (anv_batch_has_error(&cmd_buffer->batch))
3164 return;
3165
3166 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3167
3168 /* Perform transitions to the final layout after all writes have occurred.
3169 */
3170 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3171
3172 cmd_buffer->state.pending_pipe_bits |=
3173 cmd_buffer->state.pass->subpass_flushes[cmd_buffer->state.pass->subpass_count];
3174
3175 cmd_buffer->state.hiz_enabled = false;
3176
3177 #ifndef NDEBUG
3178 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
3179 #endif
3180
3181 /* Remove references to render pass specific state. This enables us to
3182 * detect whether or not we're in a renderpass.
3183 */
3184 cmd_buffer->state.framebuffer = NULL;
3185 cmd_buffer->state.pass = NULL;
3186 cmd_buffer->state.subpass = NULL;
3187 }