anv: Let blorp handle indirect clear colors for CCS resolves
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
36 emit_lrm(struct anv_batch *batch,
37 uint32_t reg, struct anv_bo *bo, uint32_t offset)
38 {
39 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
40 lrm.RegisterAddress = reg;
41 lrm.MemoryAddress = (struct anv_address) { bo, offset };
42 }
43 }
44
45 static void
46 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
47 {
48 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
49 lri.RegisterOffset = reg;
50 lri.DataDWord = imm;
51 }
52 }
53
54 #if GEN_IS_HASWELL || GEN_GEN >= 8
55 static void
56 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
57 {
58 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
59 lrr.SourceRegisterAddress = src;
60 lrr.DestinationRegisterAddress = dst;
61 }
62 }
63 #endif
64
65 void
66 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
67 {
68 struct anv_device *device = cmd_buffer->device;
69
70 /* Emit a render target cache flush.
71 *
72 * This isn't documented anywhere in the PRM. However, it seems to be
73 * necessary prior to changing the surface state base adress. Without
74 * this, we get GPU hangs when using multi-level command buffers which
75 * clear depth, reset state base address, and then go render stuff.
76 */
77 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
78 pc.DCFlushEnable = true;
79 pc.RenderTargetCacheFlushEnable = true;
80 pc.CommandStreamerStallEnable = true;
81 }
82
83 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
84 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
85 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
86 sba.GeneralStateBaseAddressModifyEnable = true;
87
88 sba.SurfaceStateBaseAddress =
89 anv_cmd_buffer_surface_base_address(cmd_buffer);
90 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
91 sba.SurfaceStateBaseAddressModifyEnable = true;
92
93 sba.DynamicStateBaseAddress =
94 (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
95 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
96 sba.DynamicStateBaseAddressModifyEnable = true;
97
98 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
99 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
100 sba.IndirectObjectBaseAddressModifyEnable = true;
101
102 sba.InstructionBaseAddress =
103 (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
104 sba.InstructionMemoryObjectControlState = GENX(MOCS);
105 sba.InstructionBaseAddressModifyEnable = true;
106
107 # if (GEN_GEN >= 8)
108 /* Broadwell requires that we specify a buffer size for a bunch of
109 * these fields. However, since we will be growing the BO's live, we
110 * just set them all to the maximum.
111 */
112 sba.GeneralStateBufferSize = 0xfffff;
113 sba.GeneralStateBufferSizeModifyEnable = true;
114 sba.DynamicStateBufferSize = 0xfffff;
115 sba.DynamicStateBufferSizeModifyEnable = true;
116 sba.IndirectObjectBufferSize = 0xfffff;
117 sba.IndirectObjectBufferSizeModifyEnable = true;
118 sba.InstructionBufferSize = 0xfffff;
119 sba.InstructionBuffersizeModifyEnable = true;
120 # endif
121 }
122
123 /* After re-setting the surface state base address, we have to do some
124 * cache flusing so that the sampler engine will pick up the new
125 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
126 * Shared Function > 3D Sampler > State > State Caching (page 96):
127 *
128 * Coherency with system memory in the state cache, like the texture
129 * cache is handled partially by software. It is expected that the
130 * command stream or shader will issue Cache Flush operation or
131 * Cache_Flush sampler message to ensure that the L1 cache remains
132 * coherent with system memory.
133 *
134 * [...]
135 *
136 * Whenever the value of the Dynamic_State_Base_Addr,
137 * Surface_State_Base_Addr are altered, the L1 state cache must be
138 * invalidated to ensure the new surface or sampler state is fetched
139 * from system memory.
140 *
141 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
142 * which, according the PIPE_CONTROL instruction documentation in the
143 * Broadwell PRM:
144 *
145 * Setting this bit is independent of any other bit in this packet.
146 * This bit controls the invalidation of the L1 and L2 state caches
147 * at the top of the pipe i.e. at the parsing time.
148 *
149 * Unfortunately, experimentation seems to indicate that state cache
150 * invalidation through a PIPE_CONTROL does nothing whatsoever in
151 * regards to surface state and binding tables. In stead, it seems that
152 * invalidating the texture cache is what is actually needed.
153 *
154 * XXX: As far as we have been able to determine through
155 * experimentation, shows that flush the texture cache appears to be
156 * sufficient. The theory here is that all of the sampling/rendering
157 * units cache the binding table in the texture cache. However, we have
158 * yet to be able to actually confirm this.
159 */
160 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
161 pc.TextureCacheInvalidationEnable = true;
162 pc.ConstantCacheInvalidationEnable = true;
163 pc.StateCacheInvalidationEnable = true;
164 }
165 }
166
167 static void
168 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
169 struct anv_state state,
170 struct anv_bo *bo, uint32_t offset)
171 {
172 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
173
174 VkResult result =
175 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
176 state.offset + isl_dev->ss.addr_offset, bo, offset);
177 if (result != VK_SUCCESS)
178 anv_batch_set_error(&cmd_buffer->batch, result);
179 }
180
181 static void
182 add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
183 const struct anv_image_view *image_view,
184 const uint32_t plane,
185 struct anv_surface_state state)
186 {
187 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188 const struct anv_image *image = image_view->image;
189 uint32_t image_plane = image_view->planes[plane].image_plane;
190
191 add_surface_state_reloc(cmd_buffer, state.state,
192 image->planes[image_plane].bo, state.address);
193
194 if (state.aux_address) {
195 VkResult result =
196 anv_reloc_list_add(&cmd_buffer->surface_relocs,
197 &cmd_buffer->pool->alloc,
198 state.state.offset + isl_dev->ss.aux_addr_offset,
199 image->planes[image_plane].bo, state.aux_address);
200 if (result != VK_SUCCESS)
201 anv_batch_set_error(&cmd_buffer->batch, result);
202 }
203 }
204
205 static bool
206 color_is_zero_one(VkClearColorValue value, enum isl_format format)
207 {
208 if (isl_format_has_int_channel(format)) {
209 for (unsigned i = 0; i < 4; i++) {
210 if (value.int32[i] != 0 && value.int32[i] != 1)
211 return false;
212 }
213 } else {
214 for (unsigned i = 0; i < 4; i++) {
215 if (value.float32[i] != 0.0f && value.float32[i] != 1.0f)
216 return false;
217 }
218 }
219
220 return true;
221 }
222
223 static void
224 color_attachment_compute_aux_usage(struct anv_device * device,
225 struct anv_cmd_state * cmd_state,
226 uint32_t att, VkRect2D render_area,
227 union isl_color_value *fast_clear_color)
228 {
229 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
230 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
231
232 assert(iview->n_planes == 1);
233
234 if (iview->planes[0].isl.base_array_layer >=
235 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
236 iview->planes[0].isl.base_level)) {
237 /* There is no aux buffer which corresponds to the level and layer(s)
238 * being accessed.
239 */
240 att_state->aux_usage = ISL_AUX_USAGE_NONE;
241 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
242 att_state->fast_clear = false;
243 return;
244 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_MCS) {
245 att_state->aux_usage = ISL_AUX_USAGE_MCS;
246 att_state->input_aux_usage = ISL_AUX_USAGE_MCS;
247 att_state->fast_clear = false;
248 return;
249 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E) {
250 att_state->aux_usage = ISL_AUX_USAGE_CCS_E;
251 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_E;
252 } else {
253 att_state->aux_usage = ISL_AUX_USAGE_CCS_D;
254 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
255 *
256 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
257 * setting is only allowed if Surface Format supported for Fast
258 * Clear. In addition, if the surface is bound to the sampling
259 * engine, Surface Format must be supported for Render Target
260 * Compression for surfaces bound to the sampling engine."
261 *
262 * In other words, we can only sample from a fast-cleared image if it
263 * also supports color compression.
264 */
265 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
266 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
267
268 /* While fast-clear resolves and partial resolves are fairly cheap in the
269 * case where you render to most of the pixels, full resolves are not
270 * because they potentially involve reading and writing the entire
271 * framebuffer. If we can't texture with CCS_E, we should leave it off and
272 * limit ourselves to fast clears.
273 */
274 if (cmd_state->pass->attachments[att].first_subpass_layout ==
275 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
276 anv_perf_warn(device->instance, iview->image,
277 "Not temporarily enabling CCS_E.");
278 }
279 } else {
280 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
281 }
282 }
283
284 assert(iview->image->planes[0].aux_surface.isl.usage & ISL_SURF_USAGE_CCS_BIT);
285
286 att_state->clear_color_is_zero_one =
287 color_is_zero_one(att_state->clear_value.color, iview->planes[0].isl.format);
288 att_state->clear_color_is_zero =
289 att_state->clear_value.color.uint32[0] == 0 &&
290 att_state->clear_value.color.uint32[1] == 0 &&
291 att_state->clear_value.color.uint32[2] == 0 &&
292 att_state->clear_value.color.uint32[3] == 0;
293
294 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
295 /* Start off assuming fast clears are possible */
296 att_state->fast_clear = true;
297
298 /* Potentially, we could do partial fast-clears but doing so has crazy
299 * alignment restrictions. It's easier to just restrict to full size
300 * fast clears for now.
301 */
302 if (render_area.offset.x != 0 ||
303 render_area.offset.y != 0 ||
304 render_area.extent.width != iview->extent.width ||
305 render_area.extent.height != iview->extent.height)
306 att_state->fast_clear = false;
307
308 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
309 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
310 att_state->fast_clear = false;
311
312 /* We allow fast clears when all aux layers of the miplevel are targeted.
313 * See add_fast_clear_state_buffer() for more information. Also, because
314 * we only either do a fast clear or a normal clear and not both, this
315 * complies with the gen7 restriction of not fast-clearing multiple
316 * layers.
317 */
318 if (cmd_state->framebuffer->layers !=
319 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
320 iview->planes[0].isl.base_level)) {
321 att_state->fast_clear = false;
322 if (GEN_GEN == 7) {
323 anv_perf_warn(device->instance, iview->image,
324 "Not fast-clearing the first layer in "
325 "a multi-layer fast clear.");
326 }
327 }
328
329 /* We only allow fast clears in the GENERAL layout if the auxiliary
330 * buffer is always enabled and the fast-clear value is all 0's. See
331 * add_fast_clear_state_buffer() for more information.
332 */
333 if (cmd_state->pass->attachments[att].first_subpass_layout ==
334 VK_IMAGE_LAYOUT_GENERAL &&
335 (!att_state->clear_color_is_zero ||
336 iview->image->planes[0].aux_usage == ISL_AUX_USAGE_NONE)) {
337 att_state->fast_clear = false;
338 }
339
340 if (att_state->fast_clear) {
341 memcpy(fast_clear_color->u32, att_state->clear_value.color.uint32,
342 sizeof(fast_clear_color->u32));
343 }
344 } else {
345 att_state->fast_clear = false;
346 }
347 }
348
349 static bool
350 need_input_attachment_state(const struct anv_render_pass_attachment *att)
351 {
352 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
353 return false;
354
355 /* We only allocate input attachment states for color surfaces. Compression
356 * is not yet enabled for depth textures and stencil doesn't allow
357 * compression so we can just use the texture surface state from the view.
358 */
359 return vk_format_is_color(att->format);
360 }
361
362 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
363 * the initial layout is undefined, the HiZ buffer and depth buffer will
364 * represent the same data at the end of this operation.
365 */
366 static void
367 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
368 const struct anv_image *image,
369 VkImageLayout initial_layout,
370 VkImageLayout final_layout)
371 {
372 assert(image);
373
374 /* A transition is a no-op if HiZ is not enabled, or if the initial and
375 * final layouts are equal.
376 *
377 * The undefined layout indicates that the user doesn't care about the data
378 * that's currently in the buffer. Therefore, a data-preserving resolve
379 * operation is not needed.
380 */
381 if (image->planes[0].aux_usage != ISL_AUX_USAGE_HIZ || initial_layout == final_layout)
382 return;
383
384 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
385 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
386 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
387 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
388 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
389 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
390
391 enum blorp_hiz_op hiz_op;
392 if (hiz_enabled && !enable_hiz) {
393 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
394 } else if (!hiz_enabled && enable_hiz) {
395 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
396 } else {
397 assert(hiz_enabled == enable_hiz);
398 /* If the same buffer will be used, no resolves are necessary. */
399 hiz_op = BLORP_HIZ_OP_NONE;
400 }
401
402 if (hiz_op != BLORP_HIZ_OP_NONE)
403 anv_gen8_hiz_op_resolve(cmd_buffer, image, hiz_op);
404 }
405
406 #define MI_PREDICATE_SRC0 0x2400
407 #define MI_PREDICATE_SRC1 0x2408
408
409 /* Manages the state of an color image subresource to ensure resolves are
410 * performed properly.
411 */
412 static void
413 genX(set_image_needs_resolve)(struct anv_cmd_buffer *cmd_buffer,
414 const struct anv_image *image,
415 VkImageAspectFlagBits aspect,
416 unsigned level, bool needs_resolve)
417 {
418 assert(cmd_buffer && image);
419 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
420 assert(level < anv_image_aux_levels(image, aspect));
421
422 /* The HW docs say that there is no way to guarantee the completion of
423 * the following command. We use it nevertheless because it shows no
424 * issues in testing is currently being used in the GL driver.
425 */
426 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
427 sdi.Address = anv_image_get_needs_resolve_addr(cmd_buffer->device,
428 image, aspect, level);
429 sdi.ImmediateData = needs_resolve;
430 }
431 }
432
433 static void
434 genX(load_needs_resolve_predicate)(struct anv_cmd_buffer *cmd_buffer,
435 const struct anv_image *image,
436 VkImageAspectFlagBits aspect,
437 unsigned level)
438 {
439 assert(cmd_buffer && image);
440 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
441 assert(level < anv_image_aux_levels(image, aspect));
442
443 const struct anv_address resolve_flag_addr =
444 anv_image_get_needs_resolve_addr(cmd_buffer->device,
445 image, aspect, level);
446
447 /* Make the pending predicated resolve a no-op if one is not needed.
448 * predicate = do_resolve = resolve_flag != 0;
449 */
450 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
451 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
452 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 , 0);
453 emit_lrm(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4,
454 resolve_flag_addr.bo, resolve_flag_addr.offset);
455 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
456 mip.LoadOperation = LOAD_LOADINV;
457 mip.CombineOperation = COMBINE_SET;
458 mip.CompareOperation = COMPARE_SRCS_EQUAL;
459 }
460 }
461
462 static void
463 init_fast_clear_state_entry(struct anv_cmd_buffer *cmd_buffer,
464 const struct anv_image *image,
465 VkImageAspectFlagBits aspect,
466 unsigned level)
467 {
468 assert(cmd_buffer && image);
469 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
470 assert(level < anv_image_aux_levels(image, aspect));
471
472 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
473 enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
474
475 /* The resolve flag should updated to signify that fast-clear/compression
476 * data needs to be removed when leaving the undefined layout. Such data
477 * may need to be removed if it would cause accesses to the color buffer
478 * to return incorrect data. The fast clear data in CCS_D buffers should
479 * be removed because CCS_D isn't enabled all the time.
480 */
481 genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level,
482 aux_usage == ISL_AUX_USAGE_NONE);
483
484 /* The fast clear value dword(s) will be copied into a surface state object.
485 * Ensure that the restrictions of the fields in the dword(s) are followed.
486 *
487 * CCS buffers on SKL+ can have any value set for the clear colors.
488 */
489 if (image->samples == 1 && GEN_GEN >= 9)
490 return;
491
492 /* Other combinations of auxiliary buffers and platforms require specific
493 * values in the clear value dword(s).
494 */
495 struct anv_address addr =
496 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
497 unsigned i = 0;
498 for (; i < cmd_buffer->device->isl_dev.ss.clear_value_size; i += 4) {
499 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
500 sdi.Address = addr;
501
502 if (GEN_GEN >= 9) {
503 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
504 assert(aux_usage == ISL_AUX_USAGE_MCS);
505 sdi.ImmediateData = 0;
506 } else if (GEN_VERSIONx10 >= 75) {
507 /* Pre-SKL, the dword containing the clear values also contains
508 * other fields, so we need to initialize those fields to match the
509 * values that would be in a color attachment.
510 */
511 assert(i == 0);
512 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
513 ISL_CHANNEL_SELECT_GREEN << 22 |
514 ISL_CHANNEL_SELECT_BLUE << 19 |
515 ISL_CHANNEL_SELECT_ALPHA << 16;
516 } else if (GEN_VERSIONx10 == 70) {
517 /* On IVB, the dword containing the clear values also contains
518 * other fields that must be zero or can be zero.
519 */
520 assert(i == 0);
521 sdi.ImmediateData = 0;
522 }
523 }
524
525 addr.offset += 4;
526 }
527 }
528
529 /* Copy the fast-clear value dword(s) between a surface state object and an
530 * image's fast clear state buffer.
531 */
532 static void
533 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
534 struct anv_state surface_state,
535 const struct anv_image *image,
536 VkImageAspectFlagBits aspect,
537 unsigned level,
538 bool copy_from_surface_state)
539 {
540 assert(cmd_buffer && image);
541 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
542 assert(level < anv_image_aux_levels(image, aspect));
543
544 struct anv_bo *ss_bo =
545 &cmd_buffer->device->surface_state_pool.block_pool.bo;
546 uint32_t ss_clear_offset = surface_state.offset +
547 cmd_buffer->device->isl_dev.ss.clear_value_offset;
548 const struct anv_address entry_addr =
549 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
550 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
551
552 if (copy_from_surface_state) {
553 genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr.bo, entry_addr.offset,
554 ss_bo, ss_clear_offset, copy_size);
555 } else {
556 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_bo, ss_clear_offset,
557 entry_addr.bo, entry_addr.offset, copy_size);
558
559 /* Updating a surface state object may require that the state cache be
560 * invalidated. From the SKL PRM, Shared Functions -> State -> State
561 * Caching:
562 *
563 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
564 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
565 * modified [...], the L1 state cache must be invalidated to ensure
566 * the new surface or sampler state is fetched from system memory.
567 *
568 * In testing, SKL doesn't actually seem to need this, but HSW does.
569 */
570 cmd_buffer->state.pending_pipe_bits |=
571 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
572 }
573 }
574
575 /**
576 * @brief Transitions a color buffer from one layout to another.
577 *
578 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
579 * more information.
580 *
581 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
582 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
583 * this represents the maximum layers to transition at each
584 * specified miplevel.
585 */
586 static void
587 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
588 const struct anv_image *image,
589 VkImageAspectFlagBits aspect,
590 const uint32_t base_level, uint32_t level_count,
591 uint32_t base_layer, uint32_t layer_count,
592 VkImageLayout initial_layout,
593 VkImageLayout final_layout)
594 {
595 /* Validate the inputs. */
596 assert(cmd_buffer);
597 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
598 /* These values aren't supported for simplicity's sake. */
599 assert(level_count != VK_REMAINING_MIP_LEVELS &&
600 layer_count != VK_REMAINING_ARRAY_LAYERS);
601 /* Ensure the subresource range is valid. */
602 uint64_t last_level_num = base_level + level_count;
603 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
604 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
605 assert((uint64_t)base_layer + layer_count <= image_layers);
606 assert(last_level_num <= image->levels);
607 /* The spec disallows these final layouts. */
608 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
609 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
610
611 /* No work is necessary if the layout stays the same or if this subresource
612 * range lacks auxiliary data.
613 */
614 if (initial_layout == final_layout)
615 return;
616
617 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
618
619 if (image->planes[plane].shadow_surface.isl.size > 0 &&
620 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
621 /* This surface is a linear compressed image with a tiled shadow surface
622 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
623 * we need to ensure the shadow copy is up-to-date.
624 */
625 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
626 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
627 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
628 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
629 assert(plane == 0);
630 anv_image_copy_to_shadow(cmd_buffer, image,
631 base_level, level_count,
632 base_layer, layer_count);
633 }
634
635 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
636 return;
637
638 /* A transition of a 3D subresource works on all slices at a time. */
639 if (image->type == VK_IMAGE_TYPE_3D) {
640 base_layer = 0;
641 layer_count = anv_minify(image->extent.depth, base_level);
642 }
643
644 /* We're interested in the subresource range subset that has aux data. */
645 level_count = MIN2(level_count, anv_image_aux_levels(image, aspect) - base_level);
646 layer_count = MIN2(layer_count,
647 anv_image_aux_layers(image, aspect, base_level) - base_layer);
648 last_level_num = base_level + level_count;
649
650 /* Record whether or not the layout is undefined. Pre-initialized images
651 * with auxiliary buffers have a non-linear layout and are thus undefined.
652 */
653 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
654 const bool undef_layout = initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
655 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
656
657 /* Do preparatory work before the resolve operation or return early if no
658 * resolve is actually needed.
659 */
660 if (undef_layout) {
661 /* A subresource in the undefined layout may have been aliased and
662 * populated with any arrangement of bits. Therefore, we must initialize
663 * the related aux buffer and clear buffer entry with desirable values.
664 *
665 * Initialize the relevant clear buffer entries.
666 */
667 for (unsigned level = base_level; level < last_level_num; level++)
668 init_fast_clear_state_entry(cmd_buffer, image, aspect, level);
669
670 /* Initialize the aux buffers to enable correct rendering. This operation
671 * requires up to two steps: one to rid the aux buffer of data that may
672 * cause GPU hangs, and another to ensure that writes done without aux
673 * will be visible to reads done with aux.
674 *
675 * Having an aux buffer with invalid data is possible for CCS buffers
676 * SKL+ and for MCS buffers with certain sample counts (2x and 8x). One
677 * easy way to get to a valid state is to fast-clear the specified range.
678 *
679 * Even for MCS buffers that have sample counts that don't require
680 * certain bits to be reserved (4x and 8x), we're unsure if the hardware
681 * will be okay with the sample mappings given by the undefined buffer.
682 * We don't have any data to show that this is a problem, but we want to
683 * avoid causing difficult-to-debug problems.
684 */
685 if ((GEN_GEN >= 9 && image->samples == 1) || image->samples > 1) {
686 if (image->samples == 4 || image->samples == 16) {
687 anv_perf_warn(cmd_buffer->device->instance, image,
688 "Doing a potentially unnecessary fast-clear to "
689 "define an MCS buffer.");
690 }
691
692 anv_image_fast_clear(cmd_buffer, image, aspect,
693 base_level, level_count,
694 base_layer, layer_count);
695 }
696 /* At this point, some elements of the CCS buffer may have the fast-clear
697 * bit-arrangement. As the user writes to a subresource, we need to have
698 * the associated CCS elements enter the ambiguated state. This enables
699 * reads (implicit or explicit) to reflect the user-written data instead
700 * of the clear color. The only time such elements will not change their
701 * state as described above, is in a final layout that doesn't have CCS
702 * enabled. In this case, we must force the associated CCS buffers of the
703 * specified range to enter the ambiguated state in advance.
704 */
705 if (image->samples == 1 &&
706 image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E &&
707 final_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
708 /* The CCS_D buffer may not be enabled in the final layout. Continue
709 * executing this function to perform a resolve.
710 */
711 anv_perf_warn(cmd_buffer->device->instance, image,
712 "Performing an additional resolve for CCS_D layout "
713 "transition. Consider always leaving it on or "
714 "performing an ambiguation pass.");
715 } else {
716 /* Writes in the final layout will be aware of the auxiliary buffer.
717 * In addition, the clear buffer entries and the auxiliary buffers
718 * have been populated with values that will result in correct
719 * rendering.
720 */
721 return;
722 }
723 } else if (initial_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
724 /* Resolves are only necessary if the subresource may contain blocks
725 * fast-cleared to values unsupported in other layouts. This only occurs
726 * if the initial layout is COLOR_ATTACHMENT_OPTIMAL.
727 */
728 return;
729 } else if (image->samples > 1) {
730 /* MCS buffers don't need resolving. */
731 return;
732 }
733
734 /* Perform a resolve to synchronize data between the main and aux buffer.
735 * Before we begin, we must satisfy the cache flushing requirement specified
736 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
737 *
738 * Any transition from any value in {Clear, Render, Resolve} to a
739 * different value in {Clear, Render, Resolve} requires end of pipe
740 * synchronization.
741 *
742 * We perform a flush of the write cache before and after the clear and
743 * resolve operations to meet this requirement.
744 *
745 * Unlike other drawing, fast clear operations are not properly
746 * synchronized. The first PIPE_CONTROL here likely ensures that the
747 * contents of the previous render or clear hit the render target before we
748 * resolve and the second likely ensures that the resolve is complete before
749 * we do any more rendering or clearing.
750 */
751 cmd_buffer->state.pending_pipe_bits |=
752 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
753
754 for (uint32_t level = base_level; level < last_level_num; level++) {
755
756 /* The number of layers changes at each 3D miplevel. */
757 if (image->type == VK_IMAGE_TYPE_3D) {
758 layer_count = MIN2(layer_count, anv_image_aux_layers(image, aspect, level));
759 }
760
761 genX(load_needs_resolve_predicate)(cmd_buffer, image, aspect, level);
762
763 anv_ccs_resolve(cmd_buffer, image, aspect, level, base_layer, layer_count,
764 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E ?
765 BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL :
766 BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
767
768 genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level, false);
769 }
770
771 cmd_buffer->state.pending_pipe_bits |=
772 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
773 }
774
775 /**
776 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
777 */
778 static VkResult
779 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
780 struct anv_render_pass *pass,
781 const VkRenderPassBeginInfo *begin)
782 {
783 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
784 struct anv_cmd_state *state = &cmd_buffer->state;
785
786 vk_free(&cmd_buffer->pool->alloc, state->attachments);
787
788 if (pass->attachment_count > 0) {
789 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
790 pass->attachment_count *
791 sizeof(state->attachments[0]),
792 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
793 if (state->attachments == NULL) {
794 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
795 return anv_batch_set_error(&cmd_buffer->batch,
796 VK_ERROR_OUT_OF_HOST_MEMORY);
797 }
798 } else {
799 state->attachments = NULL;
800 }
801
802 /* Reserve one for the NULL state. */
803 unsigned num_states = 1;
804 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
805 if (vk_format_is_color(pass->attachments[i].format))
806 num_states++;
807
808 if (need_input_attachment_state(&pass->attachments[i]))
809 num_states++;
810 }
811
812 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
813 state->render_pass_states =
814 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
815 num_states * ss_stride, isl_dev->ss.align);
816
817 struct anv_state next_state = state->render_pass_states;
818 next_state.alloc_size = isl_dev->ss.size;
819
820 state->null_surface_state = next_state;
821 next_state.offset += ss_stride;
822 next_state.map += ss_stride;
823
824 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
825 if (vk_format_is_color(pass->attachments[i].format)) {
826 state->attachments[i].color.state = next_state;
827 next_state.offset += ss_stride;
828 next_state.map += ss_stride;
829 }
830
831 if (need_input_attachment_state(&pass->attachments[i])) {
832 state->attachments[i].input.state = next_state;
833 next_state.offset += ss_stride;
834 next_state.map += ss_stride;
835 }
836 }
837 assert(next_state.offset == state->render_pass_states.offset +
838 state->render_pass_states.alloc_size);
839
840 if (begin) {
841 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
842 assert(pass->attachment_count == framebuffer->attachment_count);
843
844 isl_null_fill_state(isl_dev, state->null_surface_state.map,
845 isl_extent3d(framebuffer->width,
846 framebuffer->height,
847 framebuffer->layers));
848
849 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
850 struct anv_render_pass_attachment *att = &pass->attachments[i];
851 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
852 VkImageAspectFlags clear_aspects = 0;
853
854 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
855 /* color attachment */
856 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
857 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
858 }
859 } else {
860 /* depthstencil attachment */
861 if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
862 att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
863 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
864 }
865 if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
866 att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
867 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
868 }
869 }
870
871 state->attachments[i].current_layout = att->initial_layout;
872 state->attachments[i].pending_clear_aspects = clear_aspects;
873 if (clear_aspects)
874 state->attachments[i].clear_value = begin->pClearValues[i];
875
876 struct anv_image_view *iview = framebuffer->attachments[i];
877 anv_assert(iview->vk_format == att->format);
878 anv_assert(iview->n_planes == 1);
879
880 union isl_color_value clear_color = { .u32 = { 0, } };
881 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
882 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
883 color_attachment_compute_aux_usage(cmd_buffer->device,
884 state, i, begin->renderArea,
885 &clear_color);
886
887 anv_image_fill_surface_state(cmd_buffer->device,
888 iview->image,
889 VK_IMAGE_ASPECT_COLOR_BIT,
890 &iview->planes[0].isl,
891 ISL_SURF_USAGE_RENDER_TARGET_BIT,
892 state->attachments[i].aux_usage,
893 &clear_color,
894 0,
895 &state->attachments[i].color,
896 NULL);
897
898 add_image_view_relocs(cmd_buffer, iview, 0,
899 state->attachments[i].color);
900 } else {
901 /* This field will be initialized after the first subpass
902 * transition.
903 */
904 state->attachments[i].aux_usage = ISL_AUX_USAGE_NONE;
905
906 state->attachments[i].input_aux_usage = ISL_AUX_USAGE_NONE;
907 }
908
909 if (need_input_attachment_state(&pass->attachments[i])) {
910 anv_image_fill_surface_state(cmd_buffer->device,
911 iview->image,
912 VK_IMAGE_ASPECT_COLOR_BIT,
913 &iview->planes[0].isl,
914 ISL_SURF_USAGE_TEXTURE_BIT,
915 state->attachments[i].input_aux_usage,
916 &clear_color,
917 0,
918 &state->attachments[i].input,
919 NULL);
920
921 add_image_view_relocs(cmd_buffer, iview, 0,
922 state->attachments[i].input);
923 }
924 }
925 }
926
927 return VK_SUCCESS;
928 }
929
930 VkResult
931 genX(BeginCommandBuffer)(
932 VkCommandBuffer commandBuffer,
933 const VkCommandBufferBeginInfo* pBeginInfo)
934 {
935 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
936
937 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
938 * command buffer's state. Otherwise, we must *reset* its state. In both
939 * cases we reset it.
940 *
941 * From the Vulkan 1.0 spec:
942 *
943 * If a command buffer is in the executable state and the command buffer
944 * was allocated from a command pool with the
945 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
946 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
947 * as if vkResetCommandBuffer had been called with
948 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
949 * the command buffer in the recording state.
950 */
951 anv_cmd_buffer_reset(cmd_buffer);
952
953 cmd_buffer->usage_flags = pBeginInfo->flags;
954
955 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
956 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
957
958 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
959
960 /* We sometimes store vertex data in the dynamic state buffer for blorp
961 * operations and our dynamic state stream may re-use data from previous
962 * command buffers. In order to prevent stale cache data, we flush the VF
963 * cache. We could do this on every blorp call but that's not really
964 * needed as all of the data will get written by the CPU prior to the GPU
965 * executing anything. The chances are fairly high that they will use
966 * blorp at least once per primary command buffer so it shouldn't be
967 * wasted.
968 */
969 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
970 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
971
972 VkResult result = VK_SUCCESS;
973 if (cmd_buffer->usage_flags &
974 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
975 assert(pBeginInfo->pInheritanceInfo);
976 cmd_buffer->state.pass =
977 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
978 cmd_buffer->state.subpass =
979 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
980 cmd_buffer->state.framebuffer = NULL;
981
982 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
983 cmd_buffer->state.pass, NULL);
984
985 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
986 }
987
988 return result;
989 }
990
991 VkResult
992 genX(EndCommandBuffer)(
993 VkCommandBuffer commandBuffer)
994 {
995 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
996
997 if (anv_batch_has_error(&cmd_buffer->batch))
998 return cmd_buffer->batch.status;
999
1000 /* We want every command buffer to start with the PMA fix in a known state,
1001 * so we disable it at the end of the command buffer.
1002 */
1003 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1004
1005 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1006
1007 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1008
1009 return VK_SUCCESS;
1010 }
1011
1012 void
1013 genX(CmdExecuteCommands)(
1014 VkCommandBuffer commandBuffer,
1015 uint32_t commandBufferCount,
1016 const VkCommandBuffer* pCmdBuffers)
1017 {
1018 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1019
1020 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1021
1022 if (anv_batch_has_error(&primary->batch))
1023 return;
1024
1025 /* The secondary command buffers will assume that the PMA fix is disabled
1026 * when they begin executing. Make sure this is true.
1027 */
1028 genX(cmd_buffer_enable_pma_fix)(primary, false);
1029
1030 /* The secondary command buffer doesn't know which textures etc. have been
1031 * flushed prior to their execution. Apply those flushes now.
1032 */
1033 genX(cmd_buffer_apply_pipe_flushes)(primary);
1034
1035 for (uint32_t i = 0; i < commandBufferCount; i++) {
1036 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1037
1038 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1039 assert(!anv_batch_has_error(&secondary->batch));
1040
1041 if (secondary->usage_flags &
1042 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1043 /* If we're continuing a render pass from the primary, we need to
1044 * copy the surface states for the current subpass into the storage
1045 * we allocated for them in BeginCommandBuffer.
1046 */
1047 struct anv_bo *ss_bo =
1048 &primary->device->surface_state_pool.block_pool.bo;
1049 struct anv_state src_state = primary->state.render_pass_states;
1050 struct anv_state dst_state = secondary->state.render_pass_states;
1051 assert(src_state.alloc_size == dst_state.alloc_size);
1052
1053 genX(cmd_buffer_so_memcpy)(primary, ss_bo, dst_state.offset,
1054 ss_bo, src_state.offset,
1055 src_state.alloc_size);
1056 }
1057
1058 anv_cmd_buffer_add_secondary(primary, secondary);
1059 }
1060
1061 /* Each of the secondary command buffers will use its own state base
1062 * address. We need to re-emit state base address for the primary after
1063 * all of the secondaries are done.
1064 *
1065 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1066 * address calls?
1067 */
1068 genX(cmd_buffer_emit_state_base_address)(primary);
1069 }
1070
1071 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1072 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1073 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1074
1075 /**
1076 * Program the hardware to use the specified L3 configuration.
1077 */
1078 void
1079 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1080 const struct gen_l3_config *cfg)
1081 {
1082 assert(cfg);
1083 if (cfg == cmd_buffer->state.current_l3_config)
1084 return;
1085
1086 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1087 intel_logd("L3 config transition: ");
1088 gen_dump_l3_config(cfg, stderr);
1089 }
1090
1091 const bool has_slm = cfg->n[GEN_L3P_SLM];
1092
1093 /* According to the hardware docs, the L3 partitioning can only be changed
1094 * while the pipeline is completely drained and the caches are flushed,
1095 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1096 */
1097 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1098 pc.DCFlushEnable = true;
1099 pc.PostSyncOperation = NoWrite;
1100 pc.CommandStreamerStallEnable = true;
1101 }
1102
1103 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1104 * invalidation of the relevant caches. Note that because RO invalidation
1105 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1106 * command is processed by the CS) we cannot combine it with the previous
1107 * stalling flush as the hardware documentation suggests, because that
1108 * would cause the CS to stall on previous rendering *after* RO
1109 * invalidation and wouldn't prevent the RO caches from being polluted by
1110 * concurrent rendering before the stall completes. This intentionally
1111 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1112 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1113 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1114 * already guarantee that there is no concurrent GPGPU kernel execution
1115 * (see SKL HSD 2132585).
1116 */
1117 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1118 pc.TextureCacheInvalidationEnable = true;
1119 pc.ConstantCacheInvalidationEnable = true;
1120 pc.InstructionCacheInvalidateEnable = true;
1121 pc.StateCacheInvalidationEnable = true;
1122 pc.PostSyncOperation = NoWrite;
1123 }
1124
1125 /* Now send a third stalling flush to make sure that invalidation is
1126 * complete when the L3 configuration registers are modified.
1127 */
1128 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1129 pc.DCFlushEnable = true;
1130 pc.PostSyncOperation = NoWrite;
1131 pc.CommandStreamerStallEnable = true;
1132 }
1133
1134 #if GEN_GEN >= 8
1135
1136 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1137
1138 uint32_t l3cr;
1139 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1140 .SLMEnable = has_slm,
1141 .URBAllocation = cfg->n[GEN_L3P_URB],
1142 .ROAllocation = cfg->n[GEN_L3P_RO],
1143 .DCAllocation = cfg->n[GEN_L3P_DC],
1144 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1145
1146 /* Set up the L3 partitioning. */
1147 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1148
1149 #else
1150
1151 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1152 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1153 cfg->n[GEN_L3P_ALL];
1154 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1155 cfg->n[GEN_L3P_ALL];
1156 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1157 cfg->n[GEN_L3P_ALL];
1158
1159 assert(!cfg->n[GEN_L3P_ALL]);
1160
1161 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1162 * the matching space on the remaining banks has to be allocated to a
1163 * client (URB for all validated configurations) set to the
1164 * lower-bandwidth 2-bank address hashing mode.
1165 */
1166 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1167 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1168 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1169
1170 /* Minimum number of ways that can be allocated to the URB. */
1171 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1172 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1173
1174 uint32_t l3sqcr1, l3cr2, l3cr3;
1175 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1176 .ConvertDC_UC = !has_dc,
1177 .ConvertIS_UC = !has_is,
1178 .ConvertC_UC = !has_c,
1179 .ConvertT_UC = !has_t);
1180 l3sqcr1 |=
1181 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1182 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1183 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1184
1185 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1186 .SLMEnable = has_slm,
1187 .URBLowBandwidth = urb_low_bw,
1188 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1189 #if !GEN_IS_HASWELL
1190 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1191 #endif
1192 .ROAllocation = cfg->n[GEN_L3P_RO],
1193 .DCAllocation = cfg->n[GEN_L3P_DC]);
1194
1195 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1196 .ISAllocation = cfg->n[GEN_L3P_IS],
1197 .ISLowBandwidth = 0,
1198 .CAllocation = cfg->n[GEN_L3P_C],
1199 .CLowBandwidth = 0,
1200 .TAllocation = cfg->n[GEN_L3P_T],
1201 .TLowBandwidth = 0);
1202
1203 /* Set up the L3 partitioning. */
1204 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1205 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1206 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1207
1208 #if GEN_IS_HASWELL
1209 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1210 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1211 * them disabled to avoid crashing the system hard.
1212 */
1213 uint32_t scratch1, chicken3;
1214 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1215 .L3AtomicDisable = !has_dc);
1216 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1217 .L3AtomicDisableMask = true,
1218 .L3AtomicDisable = !has_dc);
1219 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1220 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1221 }
1222 #endif
1223
1224 #endif
1225
1226 cmd_buffer->state.current_l3_config = cfg;
1227 }
1228
1229 void
1230 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1231 {
1232 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1233
1234 /* Flushes are pipelined while invalidations are handled immediately.
1235 * Therefore, if we're flushing anything then we need to schedule a stall
1236 * before any invalidations can happen.
1237 */
1238 if (bits & ANV_PIPE_FLUSH_BITS)
1239 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1240
1241 /* If we're going to do an invalidate and we have a pending CS stall that
1242 * has yet to be resolved, we do the CS stall now.
1243 */
1244 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1245 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1246 bits |= ANV_PIPE_CS_STALL_BIT;
1247 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1248 }
1249
1250 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1251 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1252 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1253 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1254 pipe.RenderTargetCacheFlushEnable =
1255 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1256
1257 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1258 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1259 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1260
1261 /*
1262 * According to the Broadwell documentation, any PIPE_CONTROL with the
1263 * "Command Streamer Stall" bit set must also have another bit set,
1264 * with five different options:
1265 *
1266 * - Render Target Cache Flush
1267 * - Depth Cache Flush
1268 * - Stall at Pixel Scoreboard
1269 * - Post-Sync Operation
1270 * - Depth Stall
1271 * - DC Flush Enable
1272 *
1273 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1274 * mesa and it seems to work fine. The choice is fairly arbitrary.
1275 */
1276 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1277 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1278 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1279 pipe.StallAtPixelScoreboard = true;
1280 }
1281
1282 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1283 }
1284
1285 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1286 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1287 pipe.StateCacheInvalidationEnable =
1288 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1289 pipe.ConstantCacheInvalidationEnable =
1290 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1291 pipe.VFCacheInvalidationEnable =
1292 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1293 pipe.TextureCacheInvalidationEnable =
1294 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1295 pipe.InstructionCacheInvalidateEnable =
1296 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1297 }
1298
1299 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1300 }
1301
1302 cmd_buffer->state.pending_pipe_bits = bits;
1303 }
1304
1305 void genX(CmdPipelineBarrier)(
1306 VkCommandBuffer commandBuffer,
1307 VkPipelineStageFlags srcStageMask,
1308 VkPipelineStageFlags destStageMask,
1309 VkBool32 byRegion,
1310 uint32_t memoryBarrierCount,
1311 const VkMemoryBarrier* pMemoryBarriers,
1312 uint32_t bufferMemoryBarrierCount,
1313 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1314 uint32_t imageMemoryBarrierCount,
1315 const VkImageMemoryBarrier* pImageMemoryBarriers)
1316 {
1317 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1318
1319 /* XXX: Right now, we're really dumb and just flush whatever categories
1320 * the app asks for. One of these days we may make this a bit better
1321 * but right now that's all the hardware allows for in most areas.
1322 */
1323 VkAccessFlags src_flags = 0;
1324 VkAccessFlags dst_flags = 0;
1325
1326 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1327 src_flags |= pMemoryBarriers[i].srcAccessMask;
1328 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1329 }
1330
1331 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1332 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1333 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1334 }
1335
1336 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1337 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1338 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1339 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1340 const VkImageSubresourceRange *range =
1341 &pImageMemoryBarriers[i].subresourceRange;
1342
1343 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1344 transition_depth_buffer(cmd_buffer, image,
1345 pImageMemoryBarriers[i].oldLayout,
1346 pImageMemoryBarriers[i].newLayout);
1347 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1348 VkImageAspectFlags color_aspects =
1349 anv_image_expand_aspects(image, range->aspectMask);
1350 uint32_t aspect_bit;
1351
1352 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1353 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1354 range->baseMipLevel,
1355 anv_get_levelCount(image, range),
1356 range->baseArrayLayer,
1357 anv_get_layerCount(image, range),
1358 pImageMemoryBarriers[i].oldLayout,
1359 pImageMemoryBarriers[i].newLayout);
1360 }
1361 }
1362 }
1363
1364 cmd_buffer->state.pending_pipe_bits |=
1365 anv_pipe_flush_bits_for_access_flags(src_flags) |
1366 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1367 }
1368
1369 static void
1370 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1371 {
1372 VkShaderStageFlags stages = cmd_buffer->state.pipeline->active_stages;
1373
1374 /* In order to avoid thrash, we assume that vertex and fragment stages
1375 * always exist. In the rare case where one is missing *and* the other
1376 * uses push concstants, this may be suboptimal. However, avoiding stalls
1377 * seems more important.
1378 */
1379 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1380
1381 if (stages == cmd_buffer->state.push_constant_stages)
1382 return;
1383
1384 #if GEN_GEN >= 8
1385 const unsigned push_constant_kb = 32;
1386 #elif GEN_IS_HASWELL
1387 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1388 #else
1389 const unsigned push_constant_kb = 16;
1390 #endif
1391
1392 const unsigned num_stages =
1393 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1394 unsigned size_per_stage = push_constant_kb / num_stages;
1395
1396 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1397 * units of 2KB. Incidentally, these are the same platforms that have
1398 * 32KB worth of push constant space.
1399 */
1400 if (push_constant_kb == 32)
1401 size_per_stage &= ~1u;
1402
1403 uint32_t kb_used = 0;
1404 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1405 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1406 anv_batch_emit(&cmd_buffer->batch,
1407 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1408 alloc._3DCommandSubOpcode = 18 + i;
1409 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1410 alloc.ConstantBufferSize = push_size;
1411 }
1412 kb_used += push_size;
1413 }
1414
1415 anv_batch_emit(&cmd_buffer->batch,
1416 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1417 alloc.ConstantBufferOffset = kb_used;
1418 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1419 }
1420
1421 cmd_buffer->state.push_constant_stages = stages;
1422
1423 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1424 *
1425 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1426 * the next 3DPRIMITIVE command after programming the
1427 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1428 *
1429 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1430 * pipeline setup, we need to dirty push constants.
1431 */
1432 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1433 }
1434
1435 static VkResult
1436 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1437 gl_shader_stage stage,
1438 struct anv_state *bt_state)
1439 {
1440 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1441 struct anv_pipeline *pipeline;
1442 uint32_t bias, state_offset;
1443
1444 switch (stage) {
1445 case MESA_SHADER_COMPUTE:
1446 pipeline = cmd_buffer->state.compute_pipeline;
1447 bias = 1;
1448 break;
1449 default:
1450 pipeline = cmd_buffer->state.pipeline;
1451 bias = 0;
1452 break;
1453 }
1454
1455 if (!anv_pipeline_has_stage(pipeline, stage)) {
1456 *bt_state = (struct anv_state) { 0, };
1457 return VK_SUCCESS;
1458 }
1459
1460 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1461 if (bias + map->surface_count == 0) {
1462 *bt_state = (struct anv_state) { 0, };
1463 return VK_SUCCESS;
1464 }
1465
1466 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1467 bias + map->surface_count,
1468 &state_offset);
1469 uint32_t *bt_map = bt_state->map;
1470
1471 if (bt_state->map == NULL)
1472 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1473
1474 if (stage == MESA_SHADER_COMPUTE &&
1475 get_cs_prog_data(cmd_buffer->state.compute_pipeline)->uses_num_work_groups) {
1476 struct anv_bo *bo = cmd_buffer->state.num_workgroups_bo;
1477 uint32_t bo_offset = cmd_buffer->state.num_workgroups_offset;
1478
1479 struct anv_state surface_state;
1480 surface_state =
1481 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1482
1483 const enum isl_format format =
1484 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1485 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1486 format, bo_offset, 12, 1);
1487
1488 bt_map[0] = surface_state.offset + state_offset;
1489 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
1490 }
1491
1492 if (map->surface_count == 0)
1493 goto out;
1494
1495 if (map->image_count > 0) {
1496 VkResult result =
1497 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1498 if (result != VK_SUCCESS)
1499 return result;
1500
1501 cmd_buffer->state.push_constants_dirty |= 1 << stage;
1502 }
1503
1504 uint32_t image = 0;
1505 for (uint32_t s = 0; s < map->surface_count; s++) {
1506 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
1507
1508 struct anv_state surface_state;
1509
1510 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
1511 /* Color attachment binding */
1512 assert(stage == MESA_SHADER_FRAGMENT);
1513 assert(binding->binding == 0);
1514 if (binding->index < subpass->color_count) {
1515 const unsigned att =
1516 subpass->color_attachments[binding->index].attachment;
1517
1518 /* From the Vulkan 1.0.46 spec:
1519 *
1520 * "If any color or depth/stencil attachments are
1521 * VK_ATTACHMENT_UNUSED, then no writes occur for those
1522 * attachments."
1523 */
1524 if (att == VK_ATTACHMENT_UNUSED) {
1525 surface_state = cmd_buffer->state.null_surface_state;
1526 } else {
1527 surface_state = cmd_buffer->state.attachments[att].color.state;
1528 }
1529 } else {
1530 surface_state = cmd_buffer->state.null_surface_state;
1531 }
1532
1533 bt_map[bias + s] = surface_state.offset + state_offset;
1534 continue;
1535 }
1536
1537 struct anv_descriptor_set *set =
1538 cmd_buffer->state.descriptors[binding->set];
1539 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
1540 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
1541
1542 switch (desc->type) {
1543 case VK_DESCRIPTOR_TYPE_SAMPLER:
1544 /* Nothing for us to do here */
1545 continue;
1546
1547 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1548 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
1549 struct anv_surface_state sstate =
1550 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1551 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1552 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1553 surface_state = sstate.state;
1554 assert(surface_state.alloc_size);
1555 add_image_view_relocs(cmd_buffer, desc->image_view,
1556 binding->plane, sstate);
1557 break;
1558 }
1559 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1560 assert(stage == MESA_SHADER_FRAGMENT);
1561 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
1562 /* For depth and stencil input attachments, we treat it like any
1563 * old texture that a user may have bound.
1564 */
1565 struct anv_surface_state sstate =
1566 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1567 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1568 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1569 surface_state = sstate.state;
1570 assert(surface_state.alloc_size);
1571 add_image_view_relocs(cmd_buffer, desc->image_view,
1572 binding->plane, sstate);
1573 } else {
1574 /* For color input attachments, we create the surface state at
1575 * vkBeginRenderPass time so that we can include aux and clear
1576 * color information.
1577 */
1578 assert(binding->input_attachment_index < subpass->input_count);
1579 const unsigned subpass_att = binding->input_attachment_index;
1580 const unsigned att = subpass->input_attachments[subpass_att].attachment;
1581 surface_state = cmd_buffer->state.attachments[att].input.state;
1582 }
1583 break;
1584
1585 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1586 struct anv_surface_state sstate = (binding->write_only)
1587 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
1588 : desc->image_view->planes[binding->plane].storage_surface_state;
1589 surface_state = sstate.state;
1590 assert(surface_state.alloc_size);
1591 add_image_view_relocs(cmd_buffer, desc->image_view,
1592 binding->plane, sstate);
1593
1594 struct brw_image_param *image_param =
1595 &cmd_buffer->state.push_constants[stage]->images[image++];
1596
1597 *image_param = desc->image_view->planes[binding->plane].storage_image_param;
1598 image_param->surface_idx = bias + s;
1599 break;
1600 }
1601
1602 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1603 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1604 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1605 surface_state = desc->buffer_view->surface_state;
1606 assert(surface_state.alloc_size);
1607 add_surface_state_reloc(cmd_buffer, surface_state,
1608 desc->buffer_view->bo,
1609 desc->buffer_view->offset);
1610 break;
1611
1612 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1613 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1614 uint32_t dynamic_offset_idx =
1615 pipeline->layout->set[binding->set].dynamic_offset_start +
1616 set->layout->binding[binding->binding].dynamic_offset_index +
1617 binding->index;
1618
1619 /* Compute the offset within the buffer */
1620 uint64_t offset = desc->offset +
1621 cmd_buffer->state.dynamic_offsets[dynamic_offset_idx];
1622 /* Clamp to the buffer size */
1623 offset = MIN2(offset, desc->buffer->size);
1624 /* Clamp the range to the buffer size */
1625 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
1626
1627 surface_state =
1628 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
1629 enum isl_format format =
1630 anv_isl_format_for_descriptor_type(desc->type);
1631
1632 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1633 format, offset, range, 1);
1634 add_surface_state_reloc(cmd_buffer, surface_state,
1635 desc->buffer->bo,
1636 desc->buffer->offset + offset);
1637 break;
1638 }
1639
1640 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1641 surface_state = (binding->write_only)
1642 ? desc->buffer_view->writeonly_storage_surface_state
1643 : desc->buffer_view->storage_surface_state;
1644 assert(surface_state.alloc_size);
1645 add_surface_state_reloc(cmd_buffer, surface_state,
1646 desc->buffer_view->bo,
1647 desc->buffer_view->offset);
1648
1649 struct brw_image_param *image_param =
1650 &cmd_buffer->state.push_constants[stage]->images[image++];
1651
1652 *image_param = desc->buffer_view->storage_image_param;
1653 image_param->surface_idx = bias + s;
1654 break;
1655
1656 default:
1657 assert(!"Invalid descriptor type");
1658 continue;
1659 }
1660
1661 bt_map[bias + s] = surface_state.offset + state_offset;
1662 }
1663 assert(image == map->image_count);
1664
1665 out:
1666 anv_state_flush(cmd_buffer->device, *bt_state);
1667
1668 return VK_SUCCESS;
1669 }
1670
1671 static VkResult
1672 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1673 gl_shader_stage stage,
1674 struct anv_state *state)
1675 {
1676 struct anv_pipeline *pipeline;
1677
1678 if (stage == MESA_SHADER_COMPUTE)
1679 pipeline = cmd_buffer->state.compute_pipeline;
1680 else
1681 pipeline = cmd_buffer->state.pipeline;
1682
1683 if (!anv_pipeline_has_stage(pipeline, stage)) {
1684 *state = (struct anv_state) { 0, };
1685 return VK_SUCCESS;
1686 }
1687
1688 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1689 if (map->sampler_count == 0) {
1690 *state = (struct anv_state) { 0, };
1691 return VK_SUCCESS;
1692 }
1693
1694 uint32_t size = map->sampler_count * 16;
1695 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
1696
1697 if (state->map == NULL)
1698 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1699
1700 for (uint32_t s = 0; s < map->sampler_count; s++) {
1701 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
1702 struct anv_descriptor_set *set =
1703 cmd_buffer->state.descriptors[binding->set];
1704 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
1705 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
1706
1707 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
1708 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
1709 continue;
1710
1711 struct anv_sampler *sampler = desc->sampler;
1712
1713 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
1714 * happens to be zero.
1715 */
1716 if (sampler == NULL)
1717 continue;
1718
1719 memcpy(state->map + (s * 16),
1720 sampler->state[binding->plane], sizeof(sampler->state[0]));
1721 }
1722
1723 anv_state_flush(cmd_buffer->device, *state);
1724
1725 return VK_SUCCESS;
1726 }
1727
1728 static uint32_t
1729 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
1730 {
1731 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
1732 cmd_buffer->state.pipeline->active_stages;
1733
1734 VkResult result = VK_SUCCESS;
1735 anv_foreach_stage(s, dirty) {
1736 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1737 if (result != VK_SUCCESS)
1738 break;
1739 result = emit_binding_table(cmd_buffer, s,
1740 &cmd_buffer->state.binding_tables[s]);
1741 if (result != VK_SUCCESS)
1742 break;
1743 }
1744
1745 if (result != VK_SUCCESS) {
1746 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
1747
1748 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
1749 if (result != VK_SUCCESS)
1750 return 0;
1751
1752 /* Re-emit state base addresses so we get the new surface state base
1753 * address before we start emitting binding tables etc.
1754 */
1755 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1756
1757 /* Re-emit all active binding tables */
1758 dirty |= cmd_buffer->state.pipeline->active_stages;
1759 anv_foreach_stage(s, dirty) {
1760 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1761 if (result != VK_SUCCESS) {
1762 anv_batch_set_error(&cmd_buffer->batch, result);
1763 return 0;
1764 }
1765 result = emit_binding_table(cmd_buffer, s,
1766 &cmd_buffer->state.binding_tables[s]);
1767 if (result != VK_SUCCESS) {
1768 anv_batch_set_error(&cmd_buffer->batch, result);
1769 return 0;
1770 }
1771 }
1772 }
1773
1774 cmd_buffer->state.descriptors_dirty &= ~dirty;
1775
1776 return dirty;
1777 }
1778
1779 static void
1780 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
1781 uint32_t stages)
1782 {
1783 static const uint32_t sampler_state_opcodes[] = {
1784 [MESA_SHADER_VERTEX] = 43,
1785 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
1786 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
1787 [MESA_SHADER_GEOMETRY] = 46,
1788 [MESA_SHADER_FRAGMENT] = 47,
1789 [MESA_SHADER_COMPUTE] = 0,
1790 };
1791
1792 static const uint32_t binding_table_opcodes[] = {
1793 [MESA_SHADER_VERTEX] = 38,
1794 [MESA_SHADER_TESS_CTRL] = 39,
1795 [MESA_SHADER_TESS_EVAL] = 40,
1796 [MESA_SHADER_GEOMETRY] = 41,
1797 [MESA_SHADER_FRAGMENT] = 42,
1798 [MESA_SHADER_COMPUTE] = 0,
1799 };
1800
1801 anv_foreach_stage(s, stages) {
1802 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
1803 anv_batch_emit(&cmd_buffer->batch,
1804 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
1805 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
1806 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
1807 }
1808 }
1809
1810 /* Always emit binding table pointers if we're asked to, since on SKL
1811 * this is what flushes push constants. */
1812 anv_batch_emit(&cmd_buffer->batch,
1813 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
1814 btp._3DCommandSubOpcode = binding_table_opcodes[s];
1815 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
1816 }
1817 }
1818 }
1819
1820 static uint32_t
1821 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer)
1822 {
1823 static const uint32_t push_constant_opcodes[] = {
1824 [MESA_SHADER_VERTEX] = 21,
1825 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
1826 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
1827 [MESA_SHADER_GEOMETRY] = 22,
1828 [MESA_SHADER_FRAGMENT] = 23,
1829 [MESA_SHADER_COMPUTE] = 0,
1830 };
1831
1832 VkShaderStageFlags flushed = 0;
1833
1834 anv_foreach_stage(stage, cmd_buffer->state.push_constants_dirty) {
1835 if (stage == MESA_SHADER_COMPUTE)
1836 continue;
1837
1838 struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage);
1839
1840 if (state.offset == 0) {
1841 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c)
1842 c._3DCommandSubOpcode = push_constant_opcodes[stage];
1843 } else {
1844 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
1845 c._3DCommandSubOpcode = push_constant_opcodes[stage],
1846 c.ConstantBody = (struct GENX(3DSTATE_CONSTANT_BODY)) {
1847 #if GEN_GEN >= 9
1848 .Buffer[2] = { &cmd_buffer->device->dynamic_state_pool.block_pool.bo, state.offset },
1849 .ReadLength[2] = DIV_ROUND_UP(state.alloc_size, 32),
1850 #else
1851 .Buffer[0] = { .offset = state.offset },
1852 .ReadLength[0] = DIV_ROUND_UP(state.alloc_size, 32),
1853 #endif
1854 };
1855 }
1856 }
1857
1858 flushed |= mesa_to_vk_shader_stage(stage);
1859 }
1860
1861 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_ALL_GRAPHICS;
1862
1863 return flushed;
1864 }
1865
1866 void
1867 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
1868 {
1869 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1870 uint32_t *p;
1871
1872 uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used;
1873
1874 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
1875
1876 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
1877
1878 genX(flush_pipeline_select_3d)(cmd_buffer);
1879
1880 if (vb_emit) {
1881 const uint32_t num_buffers = __builtin_popcount(vb_emit);
1882 const uint32_t num_dwords = 1 + num_buffers * 4;
1883
1884 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
1885 GENX(3DSTATE_VERTEX_BUFFERS));
1886 uint32_t vb, i = 0;
1887 for_each_bit(vb, vb_emit) {
1888 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
1889 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
1890
1891 struct GENX(VERTEX_BUFFER_STATE) state = {
1892 .VertexBufferIndex = vb,
1893
1894 #if GEN_GEN >= 8
1895 .MemoryObjectControlState = GENX(MOCS),
1896 #else
1897 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
1898 /* Our implementation of VK_KHR_multiview uses instancing to draw
1899 * the different views. If the client asks for instancing, we
1900 * need to use the Instance Data Step Rate to ensure that we
1901 * repeat the client's per-instance data once for each view.
1902 */
1903 .InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass),
1904 .VertexBufferMemoryObjectControlState = GENX(MOCS),
1905 #endif
1906
1907 .AddressModifyEnable = true,
1908 .BufferPitch = pipeline->binding_stride[vb],
1909 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
1910
1911 #if GEN_GEN >= 8
1912 .BufferSize = buffer->size - offset
1913 #else
1914 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
1915 #endif
1916 };
1917
1918 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
1919 i++;
1920 }
1921 }
1922
1923 cmd_buffer->state.vb_dirty &= ~vb_emit;
1924
1925 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_PIPELINE) {
1926 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
1927
1928 /* The exact descriptor layout is pulled from the pipeline, so we need
1929 * to re-emit binding tables on every pipeline change.
1930 */
1931 cmd_buffer->state.descriptors_dirty |=
1932 cmd_buffer->state.pipeline->active_stages;
1933
1934 /* If the pipeline changed, we may need to re-allocate push constant
1935 * space in the URB.
1936 */
1937 cmd_buffer_alloc_push_constants(cmd_buffer);
1938 }
1939
1940 #if GEN_GEN <= 7
1941 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
1942 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
1943 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
1944 *
1945 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
1946 * stall needs to be sent just prior to any 3DSTATE_VS,
1947 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
1948 * 3DSTATE_BINDING_TABLE_POINTER_VS,
1949 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
1950 * PIPE_CONTROL needs to be sent before any combination of VS
1951 * associated 3DSTATE."
1952 */
1953 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1954 pc.DepthStallEnable = true;
1955 pc.PostSyncOperation = WriteImmediateData;
1956 pc.Address =
1957 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
1958 }
1959 }
1960 #endif
1961
1962 /* Render targets live in the same binding table as fragment descriptors */
1963 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
1964 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
1965
1966 /* We emit the binding tables and sampler tables first, then emit push
1967 * constants and then finally emit binding table and sampler table
1968 * pointers. It has to happen in this order, since emitting the binding
1969 * tables may change the push constants (in case of storage images). After
1970 * emitting push constants, on SKL+ we have to emit the corresponding
1971 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
1972 */
1973 uint32_t dirty = 0;
1974 if (cmd_buffer->state.descriptors_dirty)
1975 dirty = flush_descriptor_sets(cmd_buffer);
1976
1977 if (cmd_buffer->state.push_constants_dirty) {
1978 #if GEN_GEN >= 9
1979 /* On Sky Lake and later, the binding table pointers commands are
1980 * what actually flush the changes to push constant state so we need
1981 * to dirty them so they get re-emitted below.
1982 */
1983 dirty |= cmd_buffer_flush_push_constants(cmd_buffer);
1984 #else
1985 cmd_buffer_flush_push_constants(cmd_buffer);
1986 #endif
1987 }
1988
1989 if (dirty)
1990 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
1991
1992 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
1993 gen8_cmd_buffer_emit_viewport(cmd_buffer);
1994
1995 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
1996 ANV_CMD_DIRTY_PIPELINE)) {
1997 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
1998 pipeline->depth_clamp_enable);
1999 }
2000
2001 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
2002 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2003
2004 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2005
2006 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2007 }
2008
2009 static void
2010 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2011 struct anv_bo *bo, uint32_t offset,
2012 uint32_t size, uint32_t index)
2013 {
2014 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2015 GENX(3DSTATE_VERTEX_BUFFERS));
2016
2017 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2018 &(struct GENX(VERTEX_BUFFER_STATE)) {
2019 .VertexBufferIndex = index,
2020 .AddressModifyEnable = true,
2021 .BufferPitch = 0,
2022 #if (GEN_GEN >= 8)
2023 .MemoryObjectControlState = GENX(MOCS),
2024 .BufferStartingAddress = { bo, offset },
2025 .BufferSize = size
2026 #else
2027 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2028 .BufferStartingAddress = { bo, offset },
2029 .EndAddress = { bo, offset + size },
2030 #endif
2031 });
2032 }
2033
2034 static void
2035 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2036 struct anv_bo *bo, uint32_t offset)
2037 {
2038 emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
2039 }
2040
2041 static void
2042 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2043 uint32_t base_vertex, uint32_t base_instance)
2044 {
2045 struct anv_state id_state =
2046 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2047
2048 ((uint32_t *)id_state.map)[0] = base_vertex;
2049 ((uint32_t *)id_state.map)[1] = base_instance;
2050
2051 anv_state_flush(cmd_buffer->device, id_state);
2052
2053 emit_base_vertex_instance_bo(cmd_buffer,
2054 &cmd_buffer->device->dynamic_state_pool.block_pool.bo, id_state.offset);
2055 }
2056
2057 static void
2058 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2059 {
2060 struct anv_state state =
2061 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2062
2063 ((uint32_t *)state.map)[0] = draw_index;
2064
2065 anv_state_flush(cmd_buffer->device, state);
2066
2067 emit_vertex_bo(cmd_buffer,
2068 &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2069 state.offset, 4, ANV_DRAWID_VB_INDEX);
2070 }
2071
2072 void genX(CmdDraw)(
2073 VkCommandBuffer commandBuffer,
2074 uint32_t vertexCount,
2075 uint32_t instanceCount,
2076 uint32_t firstVertex,
2077 uint32_t firstInstance)
2078 {
2079 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2080 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
2081 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2082
2083 if (anv_batch_has_error(&cmd_buffer->batch))
2084 return;
2085
2086 genX(cmd_buffer_flush_state)(cmd_buffer);
2087
2088 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2089 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2090 if (vs_prog_data->uses_drawid)
2091 emit_draw_index(cmd_buffer, 0);
2092
2093 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2094 * different views. We need to multiply instanceCount by the view count.
2095 */
2096 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2097
2098 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2099 prim.VertexAccessType = SEQUENTIAL;
2100 prim.PrimitiveTopologyType = pipeline->topology;
2101 prim.VertexCountPerInstance = vertexCount;
2102 prim.StartVertexLocation = firstVertex;
2103 prim.InstanceCount = instanceCount;
2104 prim.StartInstanceLocation = firstInstance;
2105 prim.BaseVertexLocation = 0;
2106 }
2107 }
2108
2109 void genX(CmdDrawIndexed)(
2110 VkCommandBuffer commandBuffer,
2111 uint32_t indexCount,
2112 uint32_t instanceCount,
2113 uint32_t firstIndex,
2114 int32_t vertexOffset,
2115 uint32_t firstInstance)
2116 {
2117 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2118 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
2119 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2120
2121 if (anv_batch_has_error(&cmd_buffer->batch))
2122 return;
2123
2124 genX(cmd_buffer_flush_state)(cmd_buffer);
2125
2126 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2127 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2128 if (vs_prog_data->uses_drawid)
2129 emit_draw_index(cmd_buffer, 0);
2130
2131 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2132 * different views. We need to multiply instanceCount by the view count.
2133 */
2134 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2135
2136 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2137 prim.VertexAccessType = RANDOM;
2138 prim.PrimitiveTopologyType = pipeline->topology;
2139 prim.VertexCountPerInstance = indexCount;
2140 prim.StartVertexLocation = firstIndex;
2141 prim.InstanceCount = instanceCount;
2142 prim.StartInstanceLocation = firstInstance;
2143 prim.BaseVertexLocation = vertexOffset;
2144 }
2145 }
2146
2147 /* Auto-Draw / Indirect Registers */
2148 #define GEN7_3DPRIM_END_OFFSET 0x2420
2149 #define GEN7_3DPRIM_START_VERTEX 0x2430
2150 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2151 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2152 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2153 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2154
2155 /* MI_MATH only exists on Haswell+ */
2156 #if GEN_IS_HASWELL || GEN_GEN >= 8
2157
2158 static uint32_t
2159 mi_alu(uint32_t opcode, uint32_t op1, uint32_t op2)
2160 {
2161 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
2162 .ALUOpcode = opcode,
2163 .Operand1 = op1,
2164 .Operand2 = op2,
2165 };
2166
2167 uint32_t dw;
2168 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
2169
2170 return dw;
2171 }
2172
2173 #define CS_GPR(n) (0x2600 + (n) * 8)
2174
2175 /* Emit dwords to multiply GPR0 by N */
2176 static void
2177 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2178 {
2179 VK_OUTARRAY_MAKE(out, dw, dw_count);
2180
2181 #define append_alu(opcode, operand1, operand2) \
2182 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2183
2184 assert(N > 0);
2185 unsigned top_bit = 31 - __builtin_clz(N);
2186 for (int i = top_bit - 1; i >= 0; i--) {
2187 /* We get our initial data in GPR0 and we write the final data out to
2188 * GPR0 but we use GPR1 as our scratch register.
2189 */
2190 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2191 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2192
2193 /* Shift the current value left by 1 */
2194 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2195 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2196 append_alu(MI_ALU_ADD, 0, 0);
2197
2198 if (N & (1 << i)) {
2199 /* Store ACCU to R1 and add R0 to R1 */
2200 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2201 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2202 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2203 append_alu(MI_ALU_ADD, 0, 0);
2204 }
2205
2206 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2207 }
2208
2209 #undef append_alu
2210 }
2211
2212 static void
2213 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2214 {
2215 uint32_t num_dwords;
2216 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2217
2218 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2219 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2220 }
2221
2222 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2223
2224 static void
2225 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2226 struct anv_buffer *buffer, uint64_t offset,
2227 bool indexed)
2228 {
2229 struct anv_batch *batch = &cmd_buffer->batch;
2230 struct anv_bo *bo = buffer->bo;
2231 uint32_t bo_offset = buffer->offset + offset;
2232
2233 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2234
2235 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2236 if (view_count > 1) {
2237 #if GEN_IS_HASWELL || GEN_GEN >= 8
2238 emit_lrm(batch, CS_GPR(0), bo, bo_offset + 4);
2239 emit_mul_gpr0(batch, view_count);
2240 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2241 #else
2242 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2243 "MI_MATH is not supported on Ivy Bridge");
2244 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2245 #endif
2246 } else {
2247 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2248 }
2249
2250 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2251
2252 if (indexed) {
2253 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
2254 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
2255 } else {
2256 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
2257 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2258 }
2259 }
2260
2261 void genX(CmdDrawIndirect)(
2262 VkCommandBuffer commandBuffer,
2263 VkBuffer _buffer,
2264 VkDeviceSize offset,
2265 uint32_t drawCount,
2266 uint32_t stride)
2267 {
2268 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2269 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2270 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
2271 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2272
2273 if (anv_batch_has_error(&cmd_buffer->batch))
2274 return;
2275
2276 genX(cmd_buffer_flush_state)(cmd_buffer);
2277
2278 for (uint32_t i = 0; i < drawCount; i++) {
2279 struct anv_bo *bo = buffer->bo;
2280 uint32_t bo_offset = buffer->offset + offset;
2281
2282 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2283 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
2284 if (vs_prog_data->uses_drawid)
2285 emit_draw_index(cmd_buffer, i);
2286
2287 load_indirect_parameters(cmd_buffer, buffer, offset, false);
2288
2289 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2290 prim.IndirectParameterEnable = true;
2291 prim.VertexAccessType = SEQUENTIAL;
2292 prim.PrimitiveTopologyType = pipeline->topology;
2293 }
2294
2295 offset += stride;
2296 }
2297 }
2298
2299 void genX(CmdDrawIndexedIndirect)(
2300 VkCommandBuffer commandBuffer,
2301 VkBuffer _buffer,
2302 VkDeviceSize offset,
2303 uint32_t drawCount,
2304 uint32_t stride)
2305 {
2306 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2307 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2308 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
2309 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2310
2311 if (anv_batch_has_error(&cmd_buffer->batch))
2312 return;
2313
2314 genX(cmd_buffer_flush_state)(cmd_buffer);
2315
2316 for (uint32_t i = 0; i < drawCount; i++) {
2317 struct anv_bo *bo = buffer->bo;
2318 uint32_t bo_offset = buffer->offset + offset;
2319
2320 /* TODO: We need to stomp base vertex to 0 somehow */
2321 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2322 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
2323 if (vs_prog_data->uses_drawid)
2324 emit_draw_index(cmd_buffer, i);
2325
2326 load_indirect_parameters(cmd_buffer, buffer, offset, true);
2327
2328 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2329 prim.IndirectParameterEnable = true;
2330 prim.VertexAccessType = RANDOM;
2331 prim.PrimitiveTopologyType = pipeline->topology;
2332 }
2333
2334 offset += stride;
2335 }
2336 }
2337
2338 static VkResult
2339 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
2340 {
2341 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
2342 struct anv_state surfaces = { 0, }, samplers = { 0, };
2343 VkResult result;
2344
2345 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2346 if (result != VK_SUCCESS) {
2347 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2348
2349 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2350 if (result != VK_SUCCESS)
2351 return result;
2352
2353 /* Re-emit state base addresses so we get the new surface state base
2354 * address before we start emitting binding tables etc.
2355 */
2356 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2357
2358 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2359 if (result != VK_SUCCESS) {
2360 anv_batch_set_error(&cmd_buffer->batch, result);
2361 return result;
2362 }
2363 }
2364
2365 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
2366 if (result != VK_SUCCESS) {
2367 anv_batch_set_error(&cmd_buffer->batch, result);
2368 return result;
2369 }
2370
2371 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
2372 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2373 .BindingTablePointer = surfaces.offset,
2374 .SamplerStatePointer = samplers.offset,
2375 };
2376 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
2377
2378 struct anv_state state =
2379 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
2380 pipeline->interface_descriptor_data,
2381 GENX(INTERFACE_DESCRIPTOR_DATA_length),
2382 64);
2383
2384 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
2385 anv_batch_emit(&cmd_buffer->batch,
2386 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
2387 mid.InterfaceDescriptorTotalLength = size;
2388 mid.InterfaceDescriptorDataStartAddress = state.offset;
2389 }
2390
2391 return VK_SUCCESS;
2392 }
2393
2394 void
2395 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
2396 {
2397 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
2398 MAYBE_UNUSED VkResult result;
2399
2400 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
2401
2402 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2403
2404 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
2405
2406 if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE) {
2407 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
2408 *
2409 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
2410 * the only bits that are changed are scoreboard related: Scoreboard
2411 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
2412 * these scoreboard related states, a MEDIA_STATE_FLUSH is
2413 * sufficient."
2414 */
2415 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2416 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2417
2418 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2419 }
2420
2421 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
2422 (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
2423 /* FIXME: figure out descriptors for gen7 */
2424 result = flush_compute_descriptor_set(cmd_buffer);
2425 if (result != VK_SUCCESS)
2426 return;
2427
2428 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
2429 }
2430
2431 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
2432 struct anv_state push_state =
2433 anv_cmd_buffer_cs_push_constants(cmd_buffer);
2434
2435 if (push_state.alloc_size) {
2436 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
2437 curbe.CURBETotalDataLength = push_state.alloc_size;
2438 curbe.CURBEDataStartAddress = push_state.offset;
2439 }
2440 }
2441 }
2442
2443 cmd_buffer->state.compute_dirty = 0;
2444
2445 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2446 }
2447
2448 #if GEN_GEN == 7
2449
2450 static VkResult
2451 verify_cmd_parser(const struct anv_device *device,
2452 int required_version,
2453 const char *function)
2454 {
2455 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
2456 return vk_errorf(device->instance, device->instance,
2457 VK_ERROR_FEATURE_NOT_PRESENT,
2458 "cmd parser version %d is required for %s",
2459 required_version, function);
2460 } else {
2461 return VK_SUCCESS;
2462 }
2463 }
2464
2465 #endif
2466
2467 void genX(CmdDispatch)(
2468 VkCommandBuffer commandBuffer,
2469 uint32_t x,
2470 uint32_t y,
2471 uint32_t z)
2472 {
2473 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2474 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
2475 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2476
2477 if (anv_batch_has_error(&cmd_buffer->batch))
2478 return;
2479
2480 if (prog_data->uses_num_work_groups) {
2481 struct anv_state state =
2482 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
2483 uint32_t *sizes = state.map;
2484 sizes[0] = x;
2485 sizes[1] = y;
2486 sizes[2] = z;
2487 anv_state_flush(cmd_buffer->device, state);
2488 cmd_buffer->state.num_workgroups_offset = state.offset;
2489 cmd_buffer->state.num_workgroups_bo =
2490 &cmd_buffer->device->dynamic_state_pool.block_pool.bo;
2491 }
2492
2493 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2494
2495 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
2496 ggw.SIMDSize = prog_data->simd_size / 16;
2497 ggw.ThreadDepthCounterMaximum = 0;
2498 ggw.ThreadHeightCounterMaximum = 0;
2499 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2500 ggw.ThreadGroupIDXDimension = x;
2501 ggw.ThreadGroupIDYDimension = y;
2502 ggw.ThreadGroupIDZDimension = z;
2503 ggw.RightExecutionMask = pipeline->cs_right_mask;
2504 ggw.BottomExecutionMask = 0xffffffff;
2505 }
2506
2507 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
2508 }
2509
2510 #define GPGPU_DISPATCHDIMX 0x2500
2511 #define GPGPU_DISPATCHDIMY 0x2504
2512 #define GPGPU_DISPATCHDIMZ 0x2508
2513
2514 void genX(CmdDispatchIndirect)(
2515 VkCommandBuffer commandBuffer,
2516 VkBuffer _buffer,
2517 VkDeviceSize offset)
2518 {
2519 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2520 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2521 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
2522 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2523 struct anv_bo *bo = buffer->bo;
2524 uint32_t bo_offset = buffer->offset + offset;
2525 struct anv_batch *batch = &cmd_buffer->batch;
2526
2527 #if GEN_GEN == 7
2528 /* Linux 4.4 added command parser version 5 which allows the GPGPU
2529 * indirect dispatch registers to be written.
2530 */
2531 if (verify_cmd_parser(cmd_buffer->device, 5,
2532 "vkCmdDispatchIndirect") != VK_SUCCESS)
2533 return;
2534 #endif
2535
2536 if (prog_data->uses_num_work_groups) {
2537 cmd_buffer->state.num_workgroups_offset = bo_offset;
2538 cmd_buffer->state.num_workgroups_bo = bo;
2539 }
2540
2541 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2542
2543 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
2544 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
2545 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
2546
2547 #if GEN_GEN <= 7
2548 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
2549 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
2550 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
2551 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
2552
2553 /* Load compute_dispatch_indirect_x_size into SRC0 */
2554 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
2555
2556 /* predicate = (compute_dispatch_indirect_x_size == 0); */
2557 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2558 mip.LoadOperation = LOAD_LOAD;
2559 mip.CombineOperation = COMBINE_SET;
2560 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2561 }
2562
2563 /* Load compute_dispatch_indirect_y_size into SRC0 */
2564 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
2565
2566 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
2567 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2568 mip.LoadOperation = LOAD_LOAD;
2569 mip.CombineOperation = COMBINE_OR;
2570 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2571 }
2572
2573 /* Load compute_dispatch_indirect_z_size into SRC0 */
2574 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
2575
2576 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
2577 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2578 mip.LoadOperation = LOAD_LOAD;
2579 mip.CombineOperation = COMBINE_OR;
2580 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2581 }
2582
2583 /* predicate = !predicate; */
2584 #define COMPARE_FALSE 1
2585 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2586 mip.LoadOperation = LOAD_LOADINV;
2587 mip.CombineOperation = COMBINE_OR;
2588 mip.CompareOperation = COMPARE_FALSE;
2589 }
2590 #endif
2591
2592 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
2593 ggw.IndirectParameterEnable = true;
2594 ggw.PredicateEnable = GEN_GEN <= 7;
2595 ggw.SIMDSize = prog_data->simd_size / 16;
2596 ggw.ThreadDepthCounterMaximum = 0;
2597 ggw.ThreadHeightCounterMaximum = 0;
2598 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2599 ggw.RightExecutionMask = pipeline->cs_right_mask;
2600 ggw.BottomExecutionMask = 0xffffffff;
2601 }
2602
2603 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
2604 }
2605
2606 static void
2607 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
2608 uint32_t pipeline)
2609 {
2610 if (cmd_buffer->state.current_pipeline == pipeline)
2611 return;
2612
2613 #if GEN_GEN >= 8 && GEN_GEN < 10
2614 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
2615 *
2616 * Software must clear the COLOR_CALC_STATE Valid field in
2617 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
2618 * with Pipeline Select set to GPGPU.
2619 *
2620 * The internal hardware docs recommend the same workaround for Gen9
2621 * hardware too.
2622 */
2623 if (pipeline == GPGPU)
2624 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
2625 #endif
2626
2627 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
2628 * PIPELINE_SELECT [DevBWR+]":
2629 *
2630 * Project: DEVSNB+
2631 *
2632 * Software must ensure all the write caches are flushed through a
2633 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
2634 * command to invalidate read only caches prior to programming
2635 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
2636 */
2637 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2638 pc.RenderTargetCacheFlushEnable = true;
2639 pc.DepthCacheFlushEnable = true;
2640 pc.DCFlushEnable = true;
2641 pc.PostSyncOperation = NoWrite;
2642 pc.CommandStreamerStallEnable = true;
2643 }
2644
2645 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2646 pc.TextureCacheInvalidationEnable = true;
2647 pc.ConstantCacheInvalidationEnable = true;
2648 pc.StateCacheInvalidationEnable = true;
2649 pc.InstructionCacheInvalidateEnable = true;
2650 pc.PostSyncOperation = NoWrite;
2651 }
2652
2653 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
2654 #if GEN_GEN >= 9
2655 ps.MaskBits = 3;
2656 #endif
2657 ps.PipelineSelection = pipeline;
2658 }
2659
2660 cmd_buffer->state.current_pipeline = pipeline;
2661 }
2662
2663 void
2664 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
2665 {
2666 genX(flush_pipeline_select)(cmd_buffer, _3D);
2667 }
2668
2669 void
2670 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
2671 {
2672 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
2673 }
2674
2675 void
2676 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
2677 {
2678 if (GEN_GEN >= 8)
2679 return;
2680
2681 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
2682 *
2683 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
2684 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
2685 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
2686 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
2687 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
2688 * Depth Flush Bit set, followed by another pipelined depth stall
2689 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
2690 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
2691 * via a preceding MI_FLUSH)."
2692 */
2693 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2694 pipe.DepthStallEnable = true;
2695 }
2696 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2697 pipe.DepthCacheFlushEnable = true;
2698 }
2699 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2700 pipe.DepthStallEnable = true;
2701 }
2702 }
2703
2704 static void
2705 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
2706 {
2707 struct anv_device *device = cmd_buffer->device;
2708 const struct anv_image_view *iview =
2709 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
2710 const struct anv_image *image = iview ? iview->image : NULL;
2711
2712 /* FIXME: Width and Height are wrong */
2713
2714 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
2715
2716 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
2717 device->isl_dev.ds.size / 4);
2718 if (dw == NULL)
2719 return;
2720
2721 struct isl_depth_stencil_hiz_emit_info info = {
2722 .mocs = device->default_mocs,
2723 };
2724
2725 if (iview)
2726 info.view = &iview->planes[0].isl;
2727
2728 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
2729 uint32_t depth_plane =
2730 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
2731 const struct anv_surface *surface = &image->planes[depth_plane].surface;
2732
2733 info.depth_surf = &surface->isl;
2734
2735 info.depth_address =
2736 anv_batch_emit_reloc(&cmd_buffer->batch,
2737 dw + device->isl_dev.ds.depth_offset / 4,
2738 image->planes[depth_plane].bo,
2739 image->planes[depth_plane].bo_offset +
2740 surface->offset);
2741
2742 const uint32_t ds =
2743 cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
2744 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
2745 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
2746 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
2747
2748 info.hiz_address =
2749 anv_batch_emit_reloc(&cmd_buffer->batch,
2750 dw + device->isl_dev.ds.hiz_offset / 4,
2751 image->planes[depth_plane].bo,
2752 image->planes[depth_plane].bo_offset +
2753 image->planes[depth_plane].aux_surface.offset);
2754
2755 info.depth_clear_value = ANV_HZ_FC_VAL;
2756 }
2757 }
2758
2759 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
2760 uint32_t stencil_plane =
2761 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
2762 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
2763
2764 info.stencil_surf = &surface->isl;
2765
2766 info.stencil_address =
2767 anv_batch_emit_reloc(&cmd_buffer->batch,
2768 dw + device->isl_dev.ds.stencil_offset / 4,
2769 image->planes[stencil_plane].bo,
2770 image->planes[stencil_plane].bo_offset + surface->offset);
2771 }
2772
2773 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
2774
2775 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
2776 }
2777
2778
2779 /**
2780 * @brief Perform any layout transitions required at the beginning and/or end
2781 * of the current subpass for depth buffers.
2782 *
2783 * TODO: Consider preprocessing the attachment reference array at render pass
2784 * create time to determine if no layout transition is needed at the
2785 * beginning and/or end of each subpass.
2786 *
2787 * @param cmd_buffer The command buffer the transition is happening within.
2788 * @param subpass_end If true, marks that the transition is happening at the
2789 * end of the subpass.
2790 */
2791 static void
2792 cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,
2793 const bool subpass_end)
2794 {
2795 /* We need a non-NULL command buffer. */
2796 assert(cmd_buffer);
2797
2798 const struct anv_cmd_state * const cmd_state = &cmd_buffer->state;
2799 const struct anv_subpass * const subpass = cmd_state->subpass;
2800
2801 /* This function must be called within a subpass. */
2802 assert(subpass);
2803
2804 /* If there are attachment references, the array shouldn't be NULL.
2805 */
2806 if (subpass->attachment_count > 0)
2807 assert(subpass->attachments);
2808
2809 /* Iterate over the array of attachment references. */
2810 for (const VkAttachmentReference *att_ref = subpass->attachments;
2811 att_ref < subpass->attachments + subpass->attachment_count; att_ref++) {
2812
2813 /* If the attachment is unused, we can't perform a layout transition. */
2814 if (att_ref->attachment == VK_ATTACHMENT_UNUSED)
2815 continue;
2816
2817 /* This attachment index shouldn't go out of bounds. */
2818 assert(att_ref->attachment < cmd_state->pass->attachment_count);
2819
2820 const struct anv_render_pass_attachment * const att_desc =
2821 &cmd_state->pass->attachments[att_ref->attachment];
2822 struct anv_attachment_state * const att_state =
2823 &cmd_buffer->state.attachments[att_ref->attachment];
2824
2825 /* The attachment should not be used in a subpass after its last. */
2826 assert(att_desc->last_subpass_idx >= anv_get_subpass_id(cmd_state));
2827
2828 if (subpass_end && anv_get_subpass_id(cmd_state) <
2829 att_desc->last_subpass_idx) {
2830 /* We're calling this function on a buffer twice in one subpass and
2831 * this is not the last use of the buffer. The layout should not have
2832 * changed from the first call and no transition is necessary.
2833 */
2834 assert(att_state->current_layout == att_ref->layout ||
2835 att_state->current_layout ==
2836 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
2837 continue;
2838 }
2839
2840 /* The attachment index must be less than the number of attachments
2841 * within the framebuffer.
2842 */
2843 assert(att_ref->attachment < cmd_state->framebuffer->attachment_count);
2844
2845 const struct anv_image_view * const iview =
2846 cmd_state->framebuffer->attachments[att_ref->attachment];
2847 const struct anv_image * const image = iview->image;
2848
2849 /* Get the appropriate target layout for this attachment. */
2850 VkImageLayout target_layout;
2851
2852 /* A resolve is necessary before use as an input attachment if the clear
2853 * color or auxiliary buffer usage isn't supported by the sampler.
2854 */
2855 const bool input_needs_resolve =
2856 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
2857 att_state->input_aux_usage != att_state->aux_usage;
2858 if (subpass_end) {
2859 target_layout = att_desc->final_layout;
2860 } else if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
2861 !input_needs_resolve) {
2862 /* Layout transitions before the final only help to enable sampling as
2863 * an input attachment. If the input attachment supports sampling
2864 * using the auxiliary surface, we can skip such transitions by making
2865 * the target layout one that is CCS-aware.
2866 */
2867 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
2868 } else {
2869 target_layout = att_ref->layout;
2870 }
2871
2872 /* Perform the layout transition. */
2873 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
2874 transition_depth_buffer(cmd_buffer, image,
2875 att_state->current_layout, target_layout);
2876 att_state->aux_usage =
2877 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
2878 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
2879 } else if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2880 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
2881 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
2882 iview->planes[0].isl.base_level, 1,
2883 iview->planes[0].isl.base_array_layer,
2884 iview->planes[0].isl.array_len,
2885 att_state->current_layout, target_layout);
2886 }
2887
2888 att_state->current_layout = target_layout;
2889 }
2890 }
2891
2892 /* Update the clear value dword(s) in surface state objects or the fast clear
2893 * state buffer entry for the color attachments used in this subpass.
2894 */
2895 static void
2896 cmd_buffer_subpass_sync_fast_clear_values(struct anv_cmd_buffer *cmd_buffer)
2897 {
2898 assert(cmd_buffer && cmd_buffer->state.subpass);
2899
2900 const struct anv_cmd_state *state = &cmd_buffer->state;
2901
2902 /* Iterate through every color attachment used in this subpass. */
2903 for (uint32_t i = 0; i < state->subpass->color_count; ++i) {
2904
2905 /* The attachment should be one of the attachments described in the
2906 * render pass and used in the subpass.
2907 */
2908 const uint32_t a = state->subpass->color_attachments[i].attachment;
2909 if (a == VK_ATTACHMENT_UNUSED)
2910 continue;
2911
2912 assert(a < state->pass->attachment_count);
2913
2914 /* Store some information regarding this attachment. */
2915 const struct anv_attachment_state *att_state = &state->attachments[a];
2916 const struct anv_image_view *iview = state->framebuffer->attachments[a];
2917 const struct anv_render_pass_attachment *rp_att =
2918 &state->pass->attachments[a];
2919
2920 if (att_state->aux_usage == ISL_AUX_USAGE_NONE)
2921 continue;
2922
2923 /* The fast clear state entry must be updated if a fast clear is going to
2924 * happen. The surface state must be updated if the clear value from a
2925 * prior fast clear may be needed.
2926 */
2927 if (att_state->pending_clear_aspects && att_state->fast_clear) {
2928 /* Update the fast clear state entry. */
2929 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
2930 iview->image,
2931 VK_IMAGE_ASPECT_COLOR_BIT,
2932 iview->planes[0].isl.base_level,
2933 true /* copy from ss */);
2934
2935 /* Fast-clears impact whether or not a resolve will be necessary. */
2936 if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E &&
2937 att_state->clear_color_is_zero) {
2938 /* This image always has the auxiliary buffer enabled. We can mark
2939 * the subresource as not needing a resolve because the clear color
2940 * will match what's in every RENDER_SURFACE_STATE object when it's
2941 * being used for sampling.
2942 */
2943 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
2944 VK_IMAGE_ASPECT_COLOR_BIT,
2945 iview->planes[0].isl.base_level,
2946 false);
2947 } else {
2948 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
2949 VK_IMAGE_ASPECT_COLOR_BIT,
2950 iview->planes[0].isl.base_level,
2951 true);
2952 }
2953 } else if (rp_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
2954 /* The attachment may have been fast-cleared in a previous render
2955 * pass and the value is needed now. Update the surface state(s).
2956 *
2957 * TODO: Do this only once per render pass instead of every subpass.
2958 */
2959 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
2960 iview->image,
2961 VK_IMAGE_ASPECT_COLOR_BIT,
2962 iview->planes[0].isl.base_level,
2963 false /* copy to ss */);
2964
2965 if (need_input_attachment_state(rp_att) &&
2966 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
2967 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
2968 iview->image,
2969 VK_IMAGE_ASPECT_COLOR_BIT,
2970 iview->planes[0].isl.base_level,
2971 false /* copy to ss */);
2972 }
2973 }
2974 }
2975 }
2976
2977
2978 static void
2979 genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
2980 struct anv_subpass *subpass)
2981 {
2982 cmd_buffer->state.subpass = subpass;
2983
2984 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
2985
2986 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2987 * different views. If the client asks for instancing, we need to use the
2988 * Instance Data Step Rate to ensure that we repeat the client's
2989 * per-instance data once for each view. Since this bit is in
2990 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
2991 * of each subpass.
2992 */
2993 if (GEN_GEN == 7)
2994 cmd_buffer->state.vb_dirty |= ~0;
2995
2996 /* Perform transitions to the subpass layout before any writes have
2997 * occurred.
2998 */
2999 cmd_buffer_subpass_transition_layouts(cmd_buffer, false);
3000
3001 /* Update clear values *after* performing automatic layout transitions.
3002 * This ensures that transitions from the UNDEFINED layout have had a chance
3003 * to populate the clear value buffer with the correct values for the
3004 * LOAD_OP_LOAD loadOp and that the fast-clears will update the buffer
3005 * without the aforementioned layout transition overwriting the fast-clear
3006 * value.
3007 */
3008 cmd_buffer_subpass_sync_fast_clear_values(cmd_buffer);
3009
3010 cmd_buffer_emit_depth_stencil(cmd_buffer);
3011
3012 anv_cmd_buffer_clear_subpass(cmd_buffer);
3013 }
3014
3015 void genX(CmdBeginRenderPass)(
3016 VkCommandBuffer commandBuffer,
3017 const VkRenderPassBeginInfo* pRenderPassBegin,
3018 VkSubpassContents contents)
3019 {
3020 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3021 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3022 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3023
3024 cmd_buffer->state.framebuffer = framebuffer;
3025 cmd_buffer->state.pass = pass;
3026 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3027 VkResult result =
3028 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3029
3030 /* If we failed to setup the attachments we should not try to go further */
3031 if (result != VK_SUCCESS) {
3032 assert(anv_batch_has_error(&cmd_buffer->batch));
3033 return;
3034 }
3035
3036 genX(flush_pipeline_select_3d)(cmd_buffer);
3037
3038 genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
3039
3040 cmd_buffer->state.pending_pipe_bits |=
3041 cmd_buffer->state.pass->subpass_flushes[0];
3042 }
3043
3044 void genX(CmdNextSubpass)(
3045 VkCommandBuffer commandBuffer,
3046 VkSubpassContents contents)
3047 {
3048 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3049
3050 if (anv_batch_has_error(&cmd_buffer->batch))
3051 return;
3052
3053 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3054
3055 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3056
3057 /* Perform transitions to the final layout after all writes have occurred.
3058 */
3059 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3060
3061 genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
3062
3063 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3064 cmd_buffer->state.pending_pipe_bits |=
3065 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3066 }
3067
3068 void genX(CmdEndRenderPass)(
3069 VkCommandBuffer commandBuffer)
3070 {
3071 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3072
3073 if (anv_batch_has_error(&cmd_buffer->batch))
3074 return;
3075
3076 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3077
3078 /* Perform transitions to the final layout after all writes have occurred.
3079 */
3080 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3081
3082 cmd_buffer->state.pending_pipe_bits |=
3083 cmd_buffer->state.pass->subpass_flushes[cmd_buffer->state.pass->subpass_count];
3084
3085 cmd_buffer->state.hiz_enabled = false;
3086
3087 #ifndef NDEBUG
3088 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
3089 #endif
3090
3091 /* Remove references to render pass specific state. This enables us to
3092 * detect whether or not we're in a renderpass.
3093 */
3094 cmd_buffer->state.framebuffer = NULL;
3095 cmd_buffer->state.pass = NULL;
3096 cmd_buffer->state.subpass = NULL;
3097 }