anv: Remove state flush.
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
36 emit_lrm(struct anv_batch *batch, uint32_t reg, struct anv_address addr)
37 {
38 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
39 lrm.RegisterAddress = reg;
40 lrm.MemoryAddress = addr;
41 }
42 }
43
44 static void
45 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
46 {
47 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
48 lri.RegisterOffset = reg;
49 lri.DataDWord = imm;
50 }
51 }
52
53 #if GEN_IS_HASWELL || GEN_GEN >= 8
54 static void
55 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
56 {
57 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
58 lrr.SourceRegisterAddress = src;
59 lrr.DestinationRegisterAddress = dst;
60 }
61 }
62 #endif
63
64 void
65 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
66 {
67 struct anv_device *device = cmd_buffer->device;
68
69 /* If we are emitting a new state base address we probably need to re-emit
70 * binding tables.
71 */
72 cmd_buffer->state.descriptors_dirty |= ~0;
73
74 /* Emit a render target cache flush.
75 *
76 * This isn't documented anywhere in the PRM. However, it seems to be
77 * necessary prior to changing the surface state base adress. Without
78 * this, we get GPU hangs when using multi-level command buffers which
79 * clear depth, reset state base address, and then go render stuff.
80 */
81 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
82 pc.DCFlushEnable = true;
83 pc.RenderTargetCacheFlushEnable = true;
84 pc.CommandStreamerStallEnable = true;
85 }
86
87 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
88 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
89 sba.GeneralStateMOCS = GENX(MOCS);
90 sba.GeneralStateBaseAddressModifyEnable = true;
91
92 sba.SurfaceStateBaseAddress =
93 anv_cmd_buffer_surface_base_address(cmd_buffer);
94 sba.SurfaceStateMOCS = GENX(MOCS);
95 sba.SurfaceStateBaseAddressModifyEnable = true;
96
97 sba.DynamicStateBaseAddress =
98 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
99 sba.DynamicStateMOCS = GENX(MOCS);
100 sba.DynamicStateBaseAddressModifyEnable = true;
101
102 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
103 sba.IndirectObjectMOCS = GENX(MOCS);
104 sba.IndirectObjectBaseAddressModifyEnable = true;
105
106 sba.InstructionBaseAddress =
107 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
108 sba.InstructionMOCS = GENX(MOCS);
109 sba.InstructionBaseAddressModifyEnable = true;
110
111 # if (GEN_GEN >= 8)
112 /* Broadwell requires that we specify a buffer size for a bunch of
113 * these fields. However, since we will be growing the BO's live, we
114 * just set them all to the maximum.
115 */
116 sba.GeneralStateBufferSize = 0xfffff;
117 sba.GeneralStateBufferSizeModifyEnable = true;
118 sba.DynamicStateBufferSize = 0xfffff;
119 sba.DynamicStateBufferSizeModifyEnable = true;
120 sba.IndirectObjectBufferSize = 0xfffff;
121 sba.IndirectObjectBufferSizeModifyEnable = true;
122 sba.InstructionBufferSize = 0xfffff;
123 sba.InstructionBuffersizeModifyEnable = true;
124 # endif
125 # if (GEN_GEN >= 9)
126 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) { NULL, 0 };
127 sba.BindlessSurfaceStateMOCS = GENX(MOCS);
128 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
129 sba.BindlessSurfaceStateSize = 0;
130 # endif
131 # if (GEN_GEN >= 10)
132 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
133 sba.BindlessSamplerStateMOCS = GENX(MOCS);
134 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
135 sba.BindlessSamplerStateBufferSize = 0;
136 # endif
137 }
138
139 /* After re-setting the surface state base address, we have to do some
140 * cache flusing so that the sampler engine will pick up the new
141 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
142 * Shared Function > 3D Sampler > State > State Caching (page 96):
143 *
144 * Coherency with system memory in the state cache, like the texture
145 * cache is handled partially by software. It is expected that the
146 * command stream or shader will issue Cache Flush operation or
147 * Cache_Flush sampler message to ensure that the L1 cache remains
148 * coherent with system memory.
149 *
150 * [...]
151 *
152 * Whenever the value of the Dynamic_State_Base_Addr,
153 * Surface_State_Base_Addr are altered, the L1 state cache must be
154 * invalidated to ensure the new surface or sampler state is fetched
155 * from system memory.
156 *
157 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
158 * which, according the PIPE_CONTROL instruction documentation in the
159 * Broadwell PRM:
160 *
161 * Setting this bit is independent of any other bit in this packet.
162 * This bit controls the invalidation of the L1 and L2 state caches
163 * at the top of the pipe i.e. at the parsing time.
164 *
165 * Unfortunately, experimentation seems to indicate that state cache
166 * invalidation through a PIPE_CONTROL does nothing whatsoever in
167 * regards to surface state and binding tables. In stead, it seems that
168 * invalidating the texture cache is what is actually needed.
169 *
170 * XXX: As far as we have been able to determine through
171 * experimentation, shows that flush the texture cache appears to be
172 * sufficient. The theory here is that all of the sampling/rendering
173 * units cache the binding table in the texture cache. However, we have
174 * yet to be able to actually confirm this.
175 */
176 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
177 pc.TextureCacheInvalidationEnable = true;
178 pc.ConstantCacheInvalidationEnable = true;
179 pc.StateCacheInvalidationEnable = true;
180 }
181 }
182
183 static void
184 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
185 struct anv_state state, struct anv_address addr)
186 {
187 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188
189 VkResult result =
190 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
191 state.offset + isl_dev->ss.addr_offset,
192 addr.bo, addr.offset);
193 if (result != VK_SUCCESS)
194 anv_batch_set_error(&cmd_buffer->batch, result);
195 }
196
197 static void
198 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
199 struct anv_surface_state state)
200 {
201 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
202
203 assert(!anv_address_is_null(state.address));
204 add_surface_reloc(cmd_buffer, state.state, state.address);
205
206 if (!anv_address_is_null(state.aux_address)) {
207 VkResult result =
208 anv_reloc_list_add(&cmd_buffer->surface_relocs,
209 &cmd_buffer->pool->alloc,
210 state.state.offset + isl_dev->ss.aux_addr_offset,
211 state.aux_address.bo, state.aux_address.offset);
212 if (result != VK_SUCCESS)
213 anv_batch_set_error(&cmd_buffer->batch, result);
214 }
215
216 if (!anv_address_is_null(state.clear_address)) {
217 VkResult result =
218 anv_reloc_list_add(&cmd_buffer->surface_relocs,
219 &cmd_buffer->pool->alloc,
220 state.state.offset +
221 isl_dev->ss.clear_color_state_offset,
222 state.clear_address.bo, state.clear_address.offset);
223 if (result != VK_SUCCESS)
224 anv_batch_set_error(&cmd_buffer->batch, result);
225 }
226 }
227
228 static void
229 color_attachment_compute_aux_usage(struct anv_device * device,
230 struct anv_cmd_state * cmd_state,
231 uint32_t att, VkRect2D render_area,
232 union isl_color_value *fast_clear_color)
233 {
234 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
235 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
236
237 assert(iview->n_planes == 1);
238
239 if (iview->planes[0].isl.base_array_layer >=
240 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
241 iview->planes[0].isl.base_level)) {
242 /* There is no aux buffer which corresponds to the level and layer(s)
243 * being accessed.
244 */
245 att_state->aux_usage = ISL_AUX_USAGE_NONE;
246 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
247 att_state->fast_clear = false;
248 return;
249 }
250
251 att_state->aux_usage =
252 anv_layout_to_aux_usage(&device->info, iview->image,
253 VK_IMAGE_ASPECT_COLOR_BIT,
254 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
255
256 /* If we don't have aux, then we should have returned early in the layer
257 * check above. If we got here, we must have something.
258 */
259 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
260
261 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
262 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
263 att_state->input_aux_usage = att_state->aux_usage;
264 } else {
265 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
266 *
267 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
268 * setting is only allowed if Surface Format supported for Fast
269 * Clear. In addition, if the surface is bound to the sampling
270 * engine, Surface Format must be supported for Render Target
271 * Compression for surfaces bound to the sampling engine."
272 *
273 * In other words, we can only sample from a fast-cleared image if it
274 * also supports color compression.
275 */
276 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
277 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
278
279 /* While fast-clear resolves and partial resolves are fairly cheap in the
280 * case where you render to most of the pixels, full resolves are not
281 * because they potentially involve reading and writing the entire
282 * framebuffer. If we can't texture with CCS_E, we should leave it off and
283 * limit ourselves to fast clears.
284 */
285 if (cmd_state->pass->attachments[att].first_subpass_layout ==
286 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
287 anv_perf_warn(device->instance, iview->image,
288 "Not temporarily enabling CCS_E.");
289 }
290 } else {
291 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
292 }
293 }
294
295 assert(iview->image->planes[0].aux_surface.isl.usage &
296 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
297
298 union isl_color_value clear_color = {};
299 anv_clear_color_from_att_state(&clear_color, att_state, iview);
300
301 att_state->clear_color_is_zero_one =
302 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
303 att_state->clear_color_is_zero =
304 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
305
306 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
307 /* Start by getting the fast clear type. We use the first subpass
308 * layout here because we don't want to fast-clear if the first subpass
309 * to use the attachment can't handle fast-clears.
310 */
311 enum anv_fast_clear_type fast_clear_type =
312 anv_layout_to_fast_clear_type(&device->info, iview->image,
313 VK_IMAGE_ASPECT_COLOR_BIT,
314 cmd_state->pass->attachments[att].first_subpass_layout);
315 switch (fast_clear_type) {
316 case ANV_FAST_CLEAR_NONE:
317 att_state->fast_clear = false;
318 break;
319 case ANV_FAST_CLEAR_DEFAULT_VALUE:
320 att_state->fast_clear = att_state->clear_color_is_zero;
321 break;
322 case ANV_FAST_CLEAR_ANY:
323 att_state->fast_clear = true;
324 break;
325 }
326
327 /* Potentially, we could do partial fast-clears but doing so has crazy
328 * alignment restrictions. It's easier to just restrict to full size
329 * fast clears for now.
330 */
331 if (render_area.offset.x != 0 ||
332 render_area.offset.y != 0 ||
333 render_area.extent.width != iview->extent.width ||
334 render_area.extent.height != iview->extent.height)
335 att_state->fast_clear = false;
336
337 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
338 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
339 att_state->fast_clear = false;
340
341 /* We only allow fast clears to the first slice of an image (level 0,
342 * layer 0) and only for the entire slice. This guarantees us that, at
343 * any given time, there is only one clear color on any given image at
344 * any given time. At the time of our testing (Jan 17, 2018), there
345 * were no known applications which would benefit from fast-clearing
346 * more than just the first slice.
347 */
348 if (att_state->fast_clear &&
349 (iview->planes[0].isl.base_level > 0 ||
350 iview->planes[0].isl.base_array_layer > 0)) {
351 anv_perf_warn(device->instance, iview->image,
352 "Rendering with multi-lod or multi-layer framebuffer "
353 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
354 "baseArrayLayer > 0. Not fast clearing.");
355 att_state->fast_clear = false;
356 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
357 anv_perf_warn(device->instance, iview->image,
358 "Rendering to a multi-layer framebuffer with "
359 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
360 }
361
362 if (att_state->fast_clear)
363 *fast_clear_color = clear_color;
364 } else {
365 att_state->fast_clear = false;
366 }
367 }
368
369 static void
370 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
371 struct anv_cmd_state *cmd_state,
372 uint32_t att, VkRect2D render_area)
373 {
374 struct anv_render_pass_attachment *pass_att =
375 &cmd_state->pass->attachments[att];
376 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
377 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
378
379 /* These will be initialized after the first subpass transition. */
380 att_state->aux_usage = ISL_AUX_USAGE_NONE;
381 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
382
383 if (GEN_GEN == 7) {
384 /* We don't do any HiZ or depth fast-clears on gen7 yet */
385 att_state->fast_clear = false;
386 return;
387 }
388
389 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
390 /* If we're just clearing stencil, we can always HiZ clear */
391 att_state->fast_clear = true;
392 return;
393 }
394
395 /* Default to false for now */
396 att_state->fast_clear = false;
397
398 /* We must have depth in order to have HiZ */
399 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
400 return;
401
402 const enum isl_aux_usage first_subpass_aux_usage =
403 anv_layout_to_aux_usage(&device->info, iview->image,
404 VK_IMAGE_ASPECT_DEPTH_BIT,
405 pass_att->first_subpass_layout);
406 if (first_subpass_aux_usage != ISL_AUX_USAGE_HIZ)
407 return;
408
409 if (!blorp_can_hiz_clear_depth(GEN_GEN,
410 iview->planes[0].isl.format,
411 iview->image->samples,
412 render_area.offset.x,
413 render_area.offset.y,
414 render_area.offset.x +
415 render_area.extent.width,
416 render_area.offset.y +
417 render_area.extent.height))
418 return;
419
420 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
421 return;
422
423 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
424 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
425 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
426 * only supports returning 0.0f. Gens prior to gen8 do not support this
427 * feature at all.
428 */
429 return;
430 }
431
432 /* If we got here, then we can fast clear */
433 att_state->fast_clear = true;
434 }
435
436 static bool
437 need_input_attachment_state(const struct anv_render_pass_attachment *att)
438 {
439 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
440 return false;
441
442 /* We only allocate input attachment states for color surfaces. Compression
443 * is not yet enabled for depth textures and stencil doesn't allow
444 * compression so we can just use the texture surface state from the view.
445 */
446 return vk_format_is_color(att->format);
447 }
448
449 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
450 * the initial layout is undefined, the HiZ buffer and depth buffer will
451 * represent the same data at the end of this operation.
452 */
453 static void
454 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
455 const struct anv_image *image,
456 VkImageLayout initial_layout,
457 VkImageLayout final_layout)
458 {
459 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
460 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
461 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
462 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
463 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
464 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
465
466 enum isl_aux_op hiz_op;
467 if (hiz_enabled && !enable_hiz) {
468 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
469 } else if (!hiz_enabled && enable_hiz) {
470 hiz_op = ISL_AUX_OP_AMBIGUATE;
471 } else {
472 assert(hiz_enabled == enable_hiz);
473 /* If the same buffer will be used, no resolves are necessary. */
474 hiz_op = ISL_AUX_OP_NONE;
475 }
476
477 if (hiz_op != ISL_AUX_OP_NONE)
478 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
479 0, 0, 1, hiz_op);
480 }
481
482 #define MI_PREDICATE_SRC0 0x2400
483 #define MI_PREDICATE_SRC1 0x2408
484
485 static void
486 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
487 const struct anv_image *image,
488 VkImageAspectFlagBits aspect,
489 uint32_t level,
490 uint32_t base_layer, uint32_t layer_count,
491 bool compressed)
492 {
493 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
494
495 /* We only have compression tracking for CCS_E */
496 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
497 return;
498
499 for (uint32_t a = 0; a < layer_count; a++) {
500 uint32_t layer = base_layer + a;
501 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
502 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
503 image, aspect,
504 level, layer);
505 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
506 }
507 }
508 }
509
510 static void
511 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
512 const struct anv_image *image,
513 VkImageAspectFlagBits aspect,
514 enum anv_fast_clear_type fast_clear)
515 {
516 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
517 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
518 image, aspect);
519 sdi.ImmediateData = fast_clear;
520 }
521
522 /* Whenever we have fast-clear, we consider that slice to be compressed.
523 * This makes building predicates much easier.
524 */
525 if (fast_clear != ANV_FAST_CLEAR_NONE)
526 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
527 }
528
529 #if GEN_IS_HASWELL || GEN_GEN >= 8
530 static inline uint32_t
531 mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
532 {
533 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
534 .ALUOpcode = opcode,
535 .Operand1 = operand1,
536 .Operand2 = operand2,
537 };
538
539 uint32_t dw;
540 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
541
542 return dw;
543 }
544 #endif
545
546 #define CS_GPR(n) (0x2600 + (n) * 8)
547
548 /* This is only really practical on haswell and above because it requires
549 * MI math in order to get it correct.
550 */
551 #if GEN_GEN >= 8 || GEN_IS_HASWELL
552 static void
553 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
554 const struct anv_image *image,
555 VkImageAspectFlagBits aspect,
556 uint32_t level, uint32_t array_layer,
557 enum isl_aux_op resolve_op,
558 enum anv_fast_clear_type fast_clear_supported)
559 {
560 struct anv_address fast_clear_type_addr =
561 anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
562
563 /* Name some registers */
564 const int image_fc_reg = MI_ALU_REG0;
565 const int fc_imm_reg = MI_ALU_REG1;
566 const int pred_reg = MI_ALU_REG2;
567
568 uint32_t *dw;
569
570 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
571 /* In this case, we're doing a full resolve which means we want the
572 * resolve to happen if any compression (including fast-clears) is
573 * present.
574 *
575 * In order to simplify the logic a bit, we make the assumption that,
576 * if the first slice has been fast-cleared, it is also marked as
577 * compressed. See also set_image_fast_clear_state.
578 */
579 struct anv_address compression_state_addr =
580 anv_image_get_compression_state_addr(cmd_buffer->device, image,
581 aspect, level, array_layer);
582 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
583 lrm.RegisterAddress = MI_PREDICATE_SRC0;
584 lrm.MemoryAddress = compression_state_addr;
585 }
586 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
587 sdi.Address = compression_state_addr;
588 sdi.ImmediateData = 0;
589 }
590
591 if (level == 0 && array_layer == 0) {
592 /* If the predicate is true, we want to write 0 to the fast clear type
593 * and, if it's false, leave it alone. We can do this by writing
594 *
595 * clear_type = clear_type & ~predicate;
596 */
597 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
598 lrm.RegisterAddress = CS_GPR(image_fc_reg);
599 lrm.MemoryAddress = fast_clear_type_addr;
600 }
601 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
602 lrr.DestinationRegisterAddress = CS_GPR(pred_reg);
603 lrr.SourceRegisterAddress = MI_PREDICATE_SRC0;
604 }
605
606 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
607 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
608 dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
609 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
610 dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
611
612 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
613 srm.MemoryAddress = fast_clear_type_addr;
614 srm.RegisterAddress = CS_GPR(image_fc_reg);
615 }
616 }
617 } else if (level == 0 && array_layer == 0) {
618 /* In this case, we are doing a partial resolve to get rid of fast-clear
619 * colors. We don't care about the compression state but we do care
620 * about how much fast clear is allowed by the final layout.
621 */
622 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
623 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
624
625 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
626 lrm.RegisterAddress = CS_GPR(image_fc_reg);
627 lrm.MemoryAddress = fast_clear_type_addr;
628 }
629 emit_lri(&cmd_buffer->batch, CS_GPR(image_fc_reg) + 4, 0);
630
631 emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg), fast_clear_supported);
632 emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg) + 4, 0);
633
634 /* We need to compute (fast_clear_supported < image->fast_clear).
635 * We do this by subtracting and storing the carry bit.
636 */
637 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
638 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, fc_imm_reg);
639 dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, image_fc_reg);
640 dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
641 dw[4] = mi_alu(MI_ALU_STORE, pred_reg, MI_ALU_CF);
642
643 /* Store the predicate */
644 emit_lrr(&cmd_buffer->batch, MI_PREDICATE_SRC0, CS_GPR(pred_reg));
645
646 /* If the predicate is true, we want to write 0 to the fast clear type
647 * and, if it's false, leave it alone. We can do this by writing
648 *
649 * clear_type = clear_type & ~predicate;
650 */
651 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
652 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
653 dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
654 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
655 dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
656
657 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
658 srm.RegisterAddress = CS_GPR(image_fc_reg);
659 srm.MemoryAddress = fast_clear_type_addr;
660 }
661 } else {
662 /* In this case, we're trying to do a partial resolve on a slice that
663 * doesn't have clear color. There's nothing to do.
664 */
665 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
666 return;
667 }
668
669 /* We use the first half of src0 for the actual predicate. Set the second
670 * half of src0 and all of src1 to 0 as the predicate operation will be
671 * doing an implicit src0 != src1.
672 */
673 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
674 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
675 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
676
677 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
678 mip.LoadOperation = LOAD_LOADINV;
679 mip.CombineOperation = COMBINE_SET;
680 mip.CompareOperation = COMPARE_SRCS_EQUAL;
681 }
682 }
683 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
684
685 #if GEN_GEN <= 8
686 static void
687 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
688 const struct anv_image *image,
689 VkImageAspectFlagBits aspect,
690 uint32_t level, uint32_t array_layer,
691 enum isl_aux_op resolve_op,
692 enum anv_fast_clear_type fast_clear_supported)
693 {
694 struct anv_address fast_clear_type_addr =
695 anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
696
697 /* This only works for partial resolves and only when the clear color is
698 * all or nothing. On the upside, this emits less command streamer code
699 * and works on Ivybridge and Bay Trail.
700 */
701 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
702 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
703
704 /* We don't support fast clears on anything other than the first slice. */
705 if (level > 0 || array_layer > 0)
706 return;
707
708 /* On gen8, we don't have a concept of default clear colors because we
709 * can't sample from CCS surfaces. It's enough to just load the fast clear
710 * state into the predicate register.
711 */
712 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
713 lrm.RegisterAddress = MI_PREDICATE_SRC0;
714 lrm.MemoryAddress = fast_clear_type_addr;
715 }
716 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
717 sdi.Address = fast_clear_type_addr;
718 sdi.ImmediateData = 0;
719 }
720
721 /* We use the first half of src0 for the actual predicate. Set the second
722 * half of src0 and all of src1 to 0 as the predicate operation will be
723 * doing an implicit src0 != src1.
724 */
725 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
726 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
727 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
728
729 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
730 mip.LoadOperation = LOAD_LOADINV;
731 mip.CombineOperation = COMBINE_SET;
732 mip.CompareOperation = COMPARE_SRCS_EQUAL;
733 }
734 }
735 #endif /* GEN_GEN <= 8 */
736
737 static void
738 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
739 const struct anv_image *image,
740 enum isl_format format,
741 VkImageAspectFlagBits aspect,
742 uint32_t level, uint32_t array_layer,
743 enum isl_aux_op resolve_op,
744 enum anv_fast_clear_type fast_clear_supported)
745 {
746 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
747
748 #if GEN_GEN >= 9
749 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
750 aspect, level, array_layer,
751 resolve_op, fast_clear_supported);
752 #else /* GEN_GEN <= 8 */
753 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
754 aspect, level, array_layer,
755 resolve_op, fast_clear_supported);
756 #endif
757
758 /* CCS_D only supports full resolves and BLORP will assert on us if we try
759 * to do a partial resolve on a CCS_D surface.
760 */
761 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
762 image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
763 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
764
765 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
766 array_layer, 1, resolve_op, NULL, true);
767 }
768
769 static void
770 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
771 const struct anv_image *image,
772 enum isl_format format,
773 VkImageAspectFlagBits aspect,
774 uint32_t array_layer,
775 enum isl_aux_op resolve_op,
776 enum anv_fast_clear_type fast_clear_supported)
777 {
778 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
779 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
780
781 #if GEN_GEN >= 8 || GEN_IS_HASWELL
782 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
783 aspect, 0, array_layer,
784 resolve_op, fast_clear_supported);
785
786 anv_image_mcs_op(cmd_buffer, image, format, aspect,
787 array_layer, 1, resolve_op, NULL, true);
788 #else
789 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
790 #endif
791 }
792
793 void
794 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
795 const struct anv_image *image,
796 VkImageAspectFlagBits aspect,
797 enum isl_aux_usage aux_usage,
798 uint32_t level,
799 uint32_t base_layer,
800 uint32_t layer_count)
801 {
802 /* The aspect must be exactly one of the image aspects. */
803 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
804
805 /* The only compression types with more than just fast-clears are MCS,
806 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
807 * track the current fast-clear and compression state. This leaves us
808 * with just MCS and CCS_E.
809 */
810 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
811 aux_usage != ISL_AUX_USAGE_MCS)
812 return;
813
814 set_image_compressed_bit(cmd_buffer, image, aspect,
815 level, base_layer, layer_count, true);
816 }
817
818 static void
819 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
820 const struct anv_image *image,
821 VkImageAspectFlagBits aspect)
822 {
823 assert(cmd_buffer && image);
824 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
825
826 set_image_fast_clear_state(cmd_buffer, image, aspect,
827 ANV_FAST_CLEAR_NONE);
828
829 /* The fast clear value dword(s) will be copied into a surface state object.
830 * Ensure that the restrictions of the fields in the dword(s) are followed.
831 *
832 * CCS buffers on SKL+ can have any value set for the clear colors.
833 */
834 if (image->samples == 1 && GEN_GEN >= 9)
835 return;
836
837 /* Other combinations of auxiliary buffers and platforms require specific
838 * values in the clear value dword(s).
839 */
840 struct anv_address addr =
841 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
842
843 if (GEN_GEN >= 9) {
844 for (unsigned i = 0; i < 4; i++) {
845 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
846 sdi.Address = addr;
847 sdi.Address.offset += i * 4;
848 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
849 assert(image->samples > 1);
850 sdi.ImmediateData = 0;
851 }
852 }
853 } else {
854 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
855 sdi.Address = addr;
856 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
857 /* Pre-SKL, the dword containing the clear values also contains
858 * other fields, so we need to initialize those fields to match the
859 * values that would be in a color attachment.
860 */
861 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
862 ISL_CHANNEL_SELECT_GREEN << 22 |
863 ISL_CHANNEL_SELECT_BLUE << 19 |
864 ISL_CHANNEL_SELECT_ALPHA << 16;
865 } else if (GEN_GEN == 7) {
866 /* On IVB, the dword containing the clear values also contains
867 * other fields that must be zero or can be zero.
868 */
869 sdi.ImmediateData = 0;
870 }
871 }
872 }
873 }
874
875 /* Copy the fast-clear value dword(s) between a surface state object and an
876 * image's fast clear state buffer.
877 */
878 static void
879 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
880 struct anv_state surface_state,
881 const struct anv_image *image,
882 VkImageAspectFlagBits aspect,
883 bool copy_from_surface_state)
884 {
885 assert(cmd_buffer && image);
886 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
887
888 struct anv_address ss_clear_addr = {
889 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
890 .offset = surface_state.offset +
891 cmd_buffer->device->isl_dev.ss.clear_value_offset,
892 };
893 const struct anv_address entry_addr =
894 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
895 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
896
897 if (copy_from_surface_state) {
898 genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr,
899 ss_clear_addr, copy_size);
900 } else {
901 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_clear_addr,
902 entry_addr, copy_size);
903
904 /* Updating a surface state object may require that the state cache be
905 * invalidated. From the SKL PRM, Shared Functions -> State -> State
906 * Caching:
907 *
908 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
909 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
910 * modified [...], the L1 state cache must be invalidated to ensure
911 * the new surface or sampler state is fetched from system memory.
912 *
913 * In testing, SKL doesn't actually seem to need this, but HSW does.
914 */
915 cmd_buffer->state.pending_pipe_bits |=
916 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
917 }
918 }
919
920 /**
921 * @brief Transitions a color buffer from one layout to another.
922 *
923 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
924 * more information.
925 *
926 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
927 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
928 * this represents the maximum layers to transition at each
929 * specified miplevel.
930 */
931 static void
932 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
933 const struct anv_image *image,
934 VkImageAspectFlagBits aspect,
935 const uint32_t base_level, uint32_t level_count,
936 uint32_t base_layer, uint32_t layer_count,
937 VkImageLayout initial_layout,
938 VkImageLayout final_layout)
939 {
940 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
941 /* Validate the inputs. */
942 assert(cmd_buffer);
943 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
944 /* These values aren't supported for simplicity's sake. */
945 assert(level_count != VK_REMAINING_MIP_LEVELS &&
946 layer_count != VK_REMAINING_ARRAY_LAYERS);
947 /* Ensure the subresource range is valid. */
948 uint64_t last_level_num = base_level + level_count;
949 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
950 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
951 assert((uint64_t)base_layer + layer_count <= image_layers);
952 assert(last_level_num <= image->levels);
953 /* The spec disallows these final layouts. */
954 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
955 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
956
957 /* No work is necessary if the layout stays the same or if this subresource
958 * range lacks auxiliary data.
959 */
960 if (initial_layout == final_layout)
961 return;
962
963 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
964
965 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
966 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
967 /* This surface is a linear compressed image with a tiled shadow surface
968 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
969 * we need to ensure the shadow copy is up-to-date.
970 */
971 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
972 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
973 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
974 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
975 assert(plane == 0);
976 anv_image_copy_to_shadow(cmd_buffer, image,
977 base_level, level_count,
978 base_layer, layer_count);
979 }
980
981 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
982 return;
983
984 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
985
986 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
987 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
988 /* A subresource in the undefined layout may have been aliased and
989 * populated with any arrangement of bits. Therefore, we must initialize
990 * the related aux buffer and clear buffer entry with desirable values.
991 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
992 * images with VK_IMAGE_TILING_OPTIMAL.
993 *
994 * Initialize the relevant clear buffer entries.
995 */
996 if (base_level == 0 && base_layer == 0)
997 init_fast_clear_color(cmd_buffer, image, aspect);
998
999 /* Initialize the aux buffers to enable correct rendering. In order to
1000 * ensure that things such as storage images work correctly, aux buffers
1001 * need to be initialized to valid data.
1002 *
1003 * Having an aux buffer with invalid data is a problem for two reasons:
1004 *
1005 * 1) Having an invalid value in the buffer can confuse the hardware.
1006 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1007 * invalid and leads to the hardware doing strange things. It
1008 * doesn't hang as far as we can tell but rendering corruption can
1009 * occur.
1010 *
1011 * 2) If this transition is into the GENERAL layout and we then use the
1012 * image as a storage image, then we must have the aux buffer in the
1013 * pass-through state so that, if we then go to texture from the
1014 * image, we get the results of our storage image writes and not the
1015 * fast clear color or other random data.
1016 *
1017 * For CCS both of the problems above are real demonstrable issues. In
1018 * that case, the only thing we can do is to perform an ambiguate to
1019 * transition the aux surface into the pass-through state.
1020 *
1021 * For MCS, (2) is never an issue because we don't support multisampled
1022 * storage images. In theory, issue (1) is a problem with MCS but we've
1023 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1024 * theory, be interpreted as something but we don't know that all bit
1025 * patterns are actually valid. For 2x and 8x, you could easily end up
1026 * with the MCS referring to an invalid plane because not all bits of
1027 * the MCS value are actually used. Even though we've never seen issues
1028 * in the wild, it's best to play it safe and initialize the MCS. We
1029 * can use a fast-clear for MCS because we only ever touch from render
1030 * and texture (no image load store).
1031 */
1032 if (image->samples == 1) {
1033 for (uint32_t l = 0; l < level_count; l++) {
1034 const uint32_t level = base_level + l;
1035
1036 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1037 if (base_layer >= aux_layers)
1038 break; /* We will only get fewer layers as level increases */
1039 uint32_t level_layer_count =
1040 MIN2(layer_count, aux_layers - base_layer);
1041
1042 anv_image_ccs_op(cmd_buffer, image,
1043 image->planes[plane].surface.isl.format,
1044 aspect, level, base_layer, level_layer_count,
1045 ISL_AUX_OP_AMBIGUATE, NULL, false);
1046
1047 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1048 set_image_compressed_bit(cmd_buffer, image, aspect,
1049 level, base_layer, level_layer_count,
1050 false);
1051 }
1052 }
1053 } else {
1054 if (image->samples == 4 || image->samples == 16) {
1055 anv_perf_warn(cmd_buffer->device->instance, image,
1056 "Doing a potentially unnecessary fast-clear to "
1057 "define an MCS buffer.");
1058 }
1059
1060 assert(base_level == 0 && level_count == 1);
1061 anv_image_mcs_op(cmd_buffer, image,
1062 image->planes[plane].surface.isl.format,
1063 aspect, base_layer, layer_count,
1064 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1065 }
1066 return;
1067 }
1068
1069 const enum isl_aux_usage initial_aux_usage =
1070 anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout);
1071 const enum isl_aux_usage final_aux_usage =
1072 anv_layout_to_aux_usage(devinfo, image, aspect, final_layout);
1073
1074 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1075 * We can handle transitions between CCS_D/E to and from NONE. What we
1076 * don't yet handle is switching between CCS_E and CCS_D within a given
1077 * image. Doing so in a performant way requires more detailed aux state
1078 * tracking such as what is done in i965. For now, just assume that we
1079 * only have one type of compression.
1080 */
1081 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1082 final_aux_usage == ISL_AUX_USAGE_NONE ||
1083 initial_aux_usage == final_aux_usage);
1084
1085 /* If initial aux usage is NONE, there is nothing to resolve */
1086 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1087 return;
1088
1089 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1090
1091 /* If the initial layout supports more fast clear than the final layout
1092 * then we need at least a partial resolve.
1093 */
1094 const enum anv_fast_clear_type initial_fast_clear =
1095 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1096 const enum anv_fast_clear_type final_fast_clear =
1097 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1098 if (final_fast_clear < initial_fast_clear)
1099 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1100
1101 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1102 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1103 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1104
1105 if (resolve_op == ISL_AUX_OP_NONE)
1106 return;
1107
1108 /* Perform a resolve to synchronize data between the main and aux buffer.
1109 * Before we begin, we must satisfy the cache flushing requirement specified
1110 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1111 *
1112 * Any transition from any value in {Clear, Render, Resolve} to a
1113 * different value in {Clear, Render, Resolve} requires end of pipe
1114 * synchronization.
1115 *
1116 * We perform a flush of the write cache before and after the clear and
1117 * resolve operations to meet this requirement.
1118 *
1119 * Unlike other drawing, fast clear operations are not properly
1120 * synchronized. The first PIPE_CONTROL here likely ensures that the
1121 * contents of the previous render or clear hit the render target before we
1122 * resolve and the second likely ensures that the resolve is complete before
1123 * we do any more rendering or clearing.
1124 */
1125 cmd_buffer->state.pending_pipe_bits |=
1126 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1127
1128 for (uint32_t l = 0; l < level_count; l++) {
1129 uint32_t level = base_level + l;
1130
1131 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1132 if (base_layer >= aux_layers)
1133 break; /* We will only get fewer layers as level increases */
1134 uint32_t level_layer_count =
1135 MIN2(layer_count, aux_layers - base_layer);
1136
1137 for (uint32_t a = 0; a < level_layer_count; a++) {
1138 uint32_t array_layer = base_layer + a;
1139 if (image->samples == 1) {
1140 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1141 image->planes[plane].surface.isl.format,
1142 aspect, level, array_layer, resolve_op,
1143 final_fast_clear);
1144 } else {
1145 /* We only support fast-clear on the first layer so partial
1146 * resolves should not be used on other layers as they will use
1147 * the clear color stored in memory that is only valid for layer0.
1148 */
1149 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1150 array_layer != 0)
1151 continue;
1152
1153 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1154 image->planes[plane].surface.isl.format,
1155 aspect, array_layer, resolve_op,
1156 final_fast_clear);
1157 }
1158 }
1159 }
1160
1161 cmd_buffer->state.pending_pipe_bits |=
1162 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1163 }
1164
1165 /**
1166 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1167 */
1168 static VkResult
1169 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1170 struct anv_render_pass *pass,
1171 const VkRenderPassBeginInfo *begin)
1172 {
1173 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1174 struct anv_cmd_state *state = &cmd_buffer->state;
1175
1176 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1177
1178 if (pass->attachment_count > 0) {
1179 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1180 pass->attachment_count *
1181 sizeof(state->attachments[0]),
1182 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1183 if (state->attachments == NULL) {
1184 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1185 return anv_batch_set_error(&cmd_buffer->batch,
1186 VK_ERROR_OUT_OF_HOST_MEMORY);
1187 }
1188 } else {
1189 state->attachments = NULL;
1190 }
1191
1192 /* Reserve one for the NULL state. */
1193 unsigned num_states = 1;
1194 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1195 if (vk_format_is_color(pass->attachments[i].format))
1196 num_states++;
1197
1198 if (need_input_attachment_state(&pass->attachments[i]))
1199 num_states++;
1200 }
1201
1202 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1203 state->render_pass_states =
1204 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1205 num_states * ss_stride, isl_dev->ss.align);
1206
1207 struct anv_state next_state = state->render_pass_states;
1208 next_state.alloc_size = isl_dev->ss.size;
1209
1210 state->null_surface_state = next_state;
1211 next_state.offset += ss_stride;
1212 next_state.map += ss_stride;
1213
1214 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1215 if (vk_format_is_color(pass->attachments[i].format)) {
1216 state->attachments[i].color.state = next_state;
1217 next_state.offset += ss_stride;
1218 next_state.map += ss_stride;
1219 }
1220
1221 if (need_input_attachment_state(&pass->attachments[i])) {
1222 state->attachments[i].input.state = next_state;
1223 next_state.offset += ss_stride;
1224 next_state.map += ss_stride;
1225 }
1226 }
1227 assert(next_state.offset == state->render_pass_states.offset +
1228 state->render_pass_states.alloc_size);
1229
1230 if (begin) {
1231 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
1232 assert(pass->attachment_count == framebuffer->attachment_count);
1233
1234 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1235 isl_extent3d(framebuffer->width,
1236 framebuffer->height,
1237 framebuffer->layers));
1238
1239 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1240 struct anv_render_pass_attachment *att = &pass->attachments[i];
1241 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1242 VkImageAspectFlags clear_aspects = 0;
1243 VkImageAspectFlags load_aspects = 0;
1244
1245 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1246 /* color attachment */
1247 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1248 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1249 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1250 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1251 }
1252 } else {
1253 /* depthstencil attachment */
1254 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1255 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1256 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1257 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1258 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1259 }
1260 }
1261 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1262 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1263 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1264 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1265 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1266 }
1267 }
1268 }
1269
1270 state->attachments[i].current_layout = att->initial_layout;
1271 state->attachments[i].pending_clear_aspects = clear_aspects;
1272 state->attachments[i].pending_load_aspects = load_aspects;
1273 if (clear_aspects)
1274 state->attachments[i].clear_value = begin->pClearValues[i];
1275
1276 struct anv_image_view *iview = framebuffer->attachments[i];
1277 anv_assert(iview->vk_format == att->format);
1278
1279 const uint32_t num_layers = iview->planes[0].isl.array_len;
1280 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1281
1282 union isl_color_value clear_color = { .u32 = { 0, } };
1283 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1284 anv_assert(iview->n_planes == 1);
1285 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1286 color_attachment_compute_aux_usage(cmd_buffer->device,
1287 state, i, begin->renderArea,
1288 &clear_color);
1289
1290 anv_image_fill_surface_state(cmd_buffer->device,
1291 iview->image,
1292 VK_IMAGE_ASPECT_COLOR_BIT,
1293 &iview->planes[0].isl,
1294 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1295 state->attachments[i].aux_usage,
1296 &clear_color,
1297 0,
1298 &state->attachments[i].color,
1299 NULL);
1300
1301 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1302 } else {
1303 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1304 state, i,
1305 begin->renderArea);
1306 }
1307
1308 if (need_input_attachment_state(&pass->attachments[i])) {
1309 anv_image_fill_surface_state(cmd_buffer->device,
1310 iview->image,
1311 VK_IMAGE_ASPECT_COLOR_BIT,
1312 &iview->planes[0].isl,
1313 ISL_SURF_USAGE_TEXTURE_BIT,
1314 state->attachments[i].input_aux_usage,
1315 &clear_color,
1316 0,
1317 &state->attachments[i].input,
1318 NULL);
1319
1320 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1321 }
1322 }
1323 }
1324
1325 return VK_SUCCESS;
1326 }
1327
1328 VkResult
1329 genX(BeginCommandBuffer)(
1330 VkCommandBuffer commandBuffer,
1331 const VkCommandBufferBeginInfo* pBeginInfo)
1332 {
1333 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1334
1335 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1336 * command buffer's state. Otherwise, we must *reset* its state. In both
1337 * cases we reset it.
1338 *
1339 * From the Vulkan 1.0 spec:
1340 *
1341 * If a command buffer is in the executable state and the command buffer
1342 * was allocated from a command pool with the
1343 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1344 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1345 * as if vkResetCommandBuffer had been called with
1346 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1347 * the command buffer in the recording state.
1348 */
1349 anv_cmd_buffer_reset(cmd_buffer);
1350
1351 cmd_buffer->usage_flags = pBeginInfo->flags;
1352
1353 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1354 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1355
1356 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1357
1358 /* We sometimes store vertex data in the dynamic state buffer for blorp
1359 * operations and our dynamic state stream may re-use data from previous
1360 * command buffers. In order to prevent stale cache data, we flush the VF
1361 * cache. We could do this on every blorp call but that's not really
1362 * needed as all of the data will get written by the CPU prior to the GPU
1363 * executing anything. The chances are fairly high that they will use
1364 * blorp at least once per primary command buffer so it shouldn't be
1365 * wasted.
1366 */
1367 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
1368 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1369
1370 /* We send an "Indirect State Pointers Disable" packet at
1371 * EndCommandBuffer, so all push contant packets are ignored during a
1372 * context restore. Documentation says after that command, we need to
1373 * emit push constants again before any rendering operation. So we
1374 * flag them dirty here to make sure they get emitted.
1375 */
1376 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1377
1378 VkResult result = VK_SUCCESS;
1379 if (cmd_buffer->usage_flags &
1380 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1381 assert(pBeginInfo->pInheritanceInfo);
1382 cmd_buffer->state.pass =
1383 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1384 cmd_buffer->state.subpass =
1385 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1386
1387 /* This is optional in the inheritance info. */
1388 cmd_buffer->state.framebuffer =
1389 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1390
1391 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1392 cmd_buffer->state.pass, NULL);
1393
1394 /* Record that HiZ is enabled if we can. */
1395 if (cmd_buffer->state.framebuffer) {
1396 const struct anv_image_view * const iview =
1397 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1398
1399 if (iview) {
1400 VkImageLayout layout =
1401 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1402
1403 enum isl_aux_usage aux_usage =
1404 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1405 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1406
1407 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1408 }
1409 }
1410
1411 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1412 }
1413
1414 return result;
1415 }
1416
1417 /* From the PRM, Volume 2a:
1418 *
1419 * "Indirect State Pointers Disable
1420 *
1421 * At the completion of the post-sync operation associated with this pipe
1422 * control packet, the indirect state pointers in the hardware are
1423 * considered invalid; the indirect pointers are not saved in the context.
1424 * If any new indirect state commands are executed in the command stream
1425 * while the pipe control is pending, the new indirect state commands are
1426 * preserved.
1427 *
1428 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1429 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1430 * commands are only considered as Indirect State Pointers. Once ISP is
1431 * issued in a context, SW must initialize by programming push constant
1432 * commands for all the shaders (at least to zero length) before attempting
1433 * any rendering operation for the same context."
1434 *
1435 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1436 * even though they point to a BO that has been already unreferenced at
1437 * the end of the previous batch buffer. This has been fine so far since
1438 * we are protected by these scratch page (every address not covered by
1439 * a BO should be pointing to the scratch page). But on CNL, it is
1440 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1441 * instruction.
1442 *
1443 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1444 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1445 * context restore, so the mentioned hang doesn't happen. However,
1446 * software must program push constant commands for all stages prior to
1447 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1448 *
1449 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1450 * constants have been loaded into the EUs prior to disable the push constants
1451 * so that it doesn't hang a previous 3DPRIMITIVE.
1452 */
1453 static void
1454 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1455 {
1456 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1457 pc.StallAtPixelScoreboard = true;
1458 pc.CommandStreamerStallEnable = true;
1459 }
1460 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1461 pc.IndirectStatePointersDisable = true;
1462 pc.CommandStreamerStallEnable = true;
1463 }
1464 }
1465
1466 VkResult
1467 genX(EndCommandBuffer)(
1468 VkCommandBuffer commandBuffer)
1469 {
1470 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1471
1472 if (anv_batch_has_error(&cmd_buffer->batch))
1473 return cmd_buffer->batch.status;
1474
1475 /* We want every command buffer to start with the PMA fix in a known state,
1476 * so we disable it at the end of the command buffer.
1477 */
1478 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1479
1480 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1481
1482 emit_isp_disable(cmd_buffer);
1483
1484 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1485
1486 return VK_SUCCESS;
1487 }
1488
1489 void
1490 genX(CmdExecuteCommands)(
1491 VkCommandBuffer commandBuffer,
1492 uint32_t commandBufferCount,
1493 const VkCommandBuffer* pCmdBuffers)
1494 {
1495 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1496
1497 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1498
1499 if (anv_batch_has_error(&primary->batch))
1500 return;
1501
1502 /* The secondary command buffers will assume that the PMA fix is disabled
1503 * when they begin executing. Make sure this is true.
1504 */
1505 genX(cmd_buffer_enable_pma_fix)(primary, false);
1506
1507 /* The secondary command buffer doesn't know which textures etc. have been
1508 * flushed prior to their execution. Apply those flushes now.
1509 */
1510 genX(cmd_buffer_apply_pipe_flushes)(primary);
1511
1512 for (uint32_t i = 0; i < commandBufferCount; i++) {
1513 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1514
1515 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1516 assert(!anv_batch_has_error(&secondary->batch));
1517
1518 if (secondary->usage_flags &
1519 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1520 /* If we're continuing a render pass from the primary, we need to
1521 * copy the surface states for the current subpass into the storage
1522 * we allocated for them in BeginCommandBuffer.
1523 */
1524 struct anv_bo *ss_bo =
1525 primary->device->surface_state_pool.block_pool.bo;
1526 struct anv_state src_state = primary->state.render_pass_states;
1527 struct anv_state dst_state = secondary->state.render_pass_states;
1528 assert(src_state.alloc_size == dst_state.alloc_size);
1529
1530 genX(cmd_buffer_so_memcpy)(primary,
1531 (struct anv_address) {
1532 .bo = ss_bo,
1533 .offset = dst_state.offset,
1534 },
1535 (struct anv_address) {
1536 .bo = ss_bo,
1537 .offset = src_state.offset,
1538 },
1539 src_state.alloc_size);
1540 }
1541
1542 anv_cmd_buffer_add_secondary(primary, secondary);
1543 }
1544
1545 /* The secondary may have selected a different pipeline (3D or compute) and
1546 * may have changed the current L3$ configuration. Reset our tracking
1547 * variables to invalid values to ensure that we re-emit these in the case
1548 * where we do any draws or compute dispatches from the primary after the
1549 * secondary has returned.
1550 */
1551 primary->state.current_pipeline = UINT32_MAX;
1552 primary->state.current_l3_config = NULL;
1553
1554 /* Each of the secondary command buffers will use its own state base
1555 * address. We need to re-emit state base address for the primary after
1556 * all of the secondaries are done.
1557 *
1558 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1559 * address calls?
1560 */
1561 genX(cmd_buffer_emit_state_base_address)(primary);
1562 }
1563
1564 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1565 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1566 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1567
1568 /**
1569 * Program the hardware to use the specified L3 configuration.
1570 */
1571 void
1572 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1573 const struct gen_l3_config *cfg)
1574 {
1575 assert(cfg);
1576 if (cfg == cmd_buffer->state.current_l3_config)
1577 return;
1578
1579 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1580 intel_logd("L3 config transition: ");
1581 gen_dump_l3_config(cfg, stderr);
1582 }
1583
1584 const bool has_slm = cfg->n[GEN_L3P_SLM];
1585
1586 /* According to the hardware docs, the L3 partitioning can only be changed
1587 * while the pipeline is completely drained and the caches are flushed,
1588 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1589 */
1590 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1591 pc.DCFlushEnable = true;
1592 pc.PostSyncOperation = NoWrite;
1593 pc.CommandStreamerStallEnable = true;
1594 }
1595
1596 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1597 * invalidation of the relevant caches. Note that because RO invalidation
1598 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1599 * command is processed by the CS) we cannot combine it with the previous
1600 * stalling flush as the hardware documentation suggests, because that
1601 * would cause the CS to stall on previous rendering *after* RO
1602 * invalidation and wouldn't prevent the RO caches from being polluted by
1603 * concurrent rendering before the stall completes. This intentionally
1604 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1605 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1606 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1607 * already guarantee that there is no concurrent GPGPU kernel execution
1608 * (see SKL HSD 2132585).
1609 */
1610 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1611 pc.TextureCacheInvalidationEnable = true;
1612 pc.ConstantCacheInvalidationEnable = true;
1613 pc.InstructionCacheInvalidateEnable = true;
1614 pc.StateCacheInvalidationEnable = true;
1615 pc.PostSyncOperation = NoWrite;
1616 }
1617
1618 /* Now send a third stalling flush to make sure that invalidation is
1619 * complete when the L3 configuration registers are modified.
1620 */
1621 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1622 pc.DCFlushEnable = true;
1623 pc.PostSyncOperation = NoWrite;
1624 pc.CommandStreamerStallEnable = true;
1625 }
1626
1627 #if GEN_GEN >= 8
1628
1629 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1630
1631 uint32_t l3cr;
1632 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1633 .SLMEnable = has_slm,
1634 #if GEN_GEN == 11
1635 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1636 * in L3CNTLREG register. The default setting of the bit is not the
1637 * desirable behavior.
1638 */
1639 .ErrorDetectionBehaviorControl = true,
1640 .UseFullWays = true,
1641 #endif
1642 .URBAllocation = cfg->n[GEN_L3P_URB],
1643 .ROAllocation = cfg->n[GEN_L3P_RO],
1644 .DCAllocation = cfg->n[GEN_L3P_DC],
1645 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1646
1647 /* Set up the L3 partitioning. */
1648 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1649
1650 #else
1651
1652 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1653 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1654 cfg->n[GEN_L3P_ALL];
1655 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1656 cfg->n[GEN_L3P_ALL];
1657 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1658 cfg->n[GEN_L3P_ALL];
1659
1660 assert(!cfg->n[GEN_L3P_ALL]);
1661
1662 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1663 * the matching space on the remaining banks has to be allocated to a
1664 * client (URB for all validated configurations) set to the
1665 * lower-bandwidth 2-bank address hashing mode.
1666 */
1667 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1668 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1669 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1670
1671 /* Minimum number of ways that can be allocated to the URB. */
1672 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1673 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1674
1675 uint32_t l3sqcr1, l3cr2, l3cr3;
1676 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1677 .ConvertDC_UC = !has_dc,
1678 .ConvertIS_UC = !has_is,
1679 .ConvertC_UC = !has_c,
1680 .ConvertT_UC = !has_t);
1681 l3sqcr1 |=
1682 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1683 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1684 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1685
1686 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1687 .SLMEnable = has_slm,
1688 .URBLowBandwidth = urb_low_bw,
1689 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1690 #if !GEN_IS_HASWELL
1691 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1692 #endif
1693 .ROAllocation = cfg->n[GEN_L3P_RO],
1694 .DCAllocation = cfg->n[GEN_L3P_DC]);
1695
1696 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1697 .ISAllocation = cfg->n[GEN_L3P_IS],
1698 .ISLowBandwidth = 0,
1699 .CAllocation = cfg->n[GEN_L3P_C],
1700 .CLowBandwidth = 0,
1701 .TAllocation = cfg->n[GEN_L3P_T],
1702 .TLowBandwidth = 0);
1703
1704 /* Set up the L3 partitioning. */
1705 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1706 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1707 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1708
1709 #if GEN_IS_HASWELL
1710 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1711 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1712 * them disabled to avoid crashing the system hard.
1713 */
1714 uint32_t scratch1, chicken3;
1715 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1716 .L3AtomicDisable = !has_dc);
1717 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1718 .L3AtomicDisableMask = true,
1719 .L3AtomicDisable = !has_dc);
1720 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1721 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1722 }
1723 #endif
1724
1725 #endif
1726
1727 cmd_buffer->state.current_l3_config = cfg;
1728 }
1729
1730 void
1731 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1732 {
1733 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1734
1735 /* Flushes are pipelined while invalidations are handled immediately.
1736 * Therefore, if we're flushing anything then we need to schedule a stall
1737 * before any invalidations can happen.
1738 */
1739 if (bits & ANV_PIPE_FLUSH_BITS)
1740 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1741
1742 /* If we're going to do an invalidate and we have a pending CS stall that
1743 * has yet to be resolved, we do the CS stall now.
1744 */
1745 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1746 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1747 bits |= ANV_PIPE_CS_STALL_BIT;
1748 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1749 }
1750
1751 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1752 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1753 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1754 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1755 pipe.RenderTargetCacheFlushEnable =
1756 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1757
1758 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1759 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1760 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1761
1762 /*
1763 * According to the Broadwell documentation, any PIPE_CONTROL with the
1764 * "Command Streamer Stall" bit set must also have another bit set,
1765 * with five different options:
1766 *
1767 * - Render Target Cache Flush
1768 * - Depth Cache Flush
1769 * - Stall at Pixel Scoreboard
1770 * - Post-Sync Operation
1771 * - Depth Stall
1772 * - DC Flush Enable
1773 *
1774 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1775 * mesa and it seems to work fine. The choice is fairly arbitrary.
1776 */
1777 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1778 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1779 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1780 pipe.StallAtPixelScoreboard = true;
1781 }
1782
1783 /* If a render target flush was emitted, then we can toggle off the bit
1784 * saying that render target writes are ongoing.
1785 */
1786 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1787 bits &= ~(ANV_PIPE_RENDER_TARGET_WRITES);
1788
1789 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1790 }
1791
1792 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1793 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1794 *
1795 * "If the VF Cache Invalidation Enable is set to a 1 in a
1796 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
1797 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
1798 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
1799 * a 1."
1800 *
1801 * This appears to hang Broadwell, so we restrict it to just gen9.
1802 */
1803 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
1804 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
1805
1806 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1807 pipe.StateCacheInvalidationEnable =
1808 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1809 pipe.ConstantCacheInvalidationEnable =
1810 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1811 pipe.VFCacheInvalidationEnable =
1812 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1813 pipe.TextureCacheInvalidationEnable =
1814 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1815 pipe.InstructionCacheInvalidateEnable =
1816 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1817
1818 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1819 *
1820 * "When VF Cache Invalidate is set “Post Sync Operation” must be
1821 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
1822 * “Write Timestamp”.
1823 */
1824 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
1825 pipe.PostSyncOperation = WriteImmediateData;
1826 pipe.Address =
1827 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
1828 }
1829 }
1830
1831 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1832 }
1833
1834 cmd_buffer->state.pending_pipe_bits = bits;
1835 }
1836
1837 void genX(CmdPipelineBarrier)(
1838 VkCommandBuffer commandBuffer,
1839 VkPipelineStageFlags srcStageMask,
1840 VkPipelineStageFlags destStageMask,
1841 VkBool32 byRegion,
1842 uint32_t memoryBarrierCount,
1843 const VkMemoryBarrier* pMemoryBarriers,
1844 uint32_t bufferMemoryBarrierCount,
1845 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1846 uint32_t imageMemoryBarrierCount,
1847 const VkImageMemoryBarrier* pImageMemoryBarriers)
1848 {
1849 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1850
1851 /* XXX: Right now, we're really dumb and just flush whatever categories
1852 * the app asks for. One of these days we may make this a bit better
1853 * but right now that's all the hardware allows for in most areas.
1854 */
1855 VkAccessFlags src_flags = 0;
1856 VkAccessFlags dst_flags = 0;
1857
1858 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1859 src_flags |= pMemoryBarriers[i].srcAccessMask;
1860 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1861 }
1862
1863 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1864 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1865 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1866 }
1867
1868 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1869 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1870 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1871 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1872 const VkImageSubresourceRange *range =
1873 &pImageMemoryBarriers[i].subresourceRange;
1874
1875 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1876 transition_depth_buffer(cmd_buffer, image,
1877 pImageMemoryBarriers[i].oldLayout,
1878 pImageMemoryBarriers[i].newLayout);
1879 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1880 VkImageAspectFlags color_aspects =
1881 anv_image_expand_aspects(image, range->aspectMask);
1882 uint32_t aspect_bit;
1883
1884 uint32_t base_layer, layer_count;
1885 if (image->type == VK_IMAGE_TYPE_3D) {
1886 base_layer = 0;
1887 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
1888 } else {
1889 base_layer = range->baseArrayLayer;
1890 layer_count = anv_get_layerCount(image, range);
1891 }
1892
1893 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1894 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1895 range->baseMipLevel,
1896 anv_get_levelCount(image, range),
1897 base_layer, layer_count,
1898 pImageMemoryBarriers[i].oldLayout,
1899 pImageMemoryBarriers[i].newLayout);
1900 }
1901 }
1902 }
1903
1904 cmd_buffer->state.pending_pipe_bits |=
1905 anv_pipe_flush_bits_for_access_flags(src_flags) |
1906 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1907 }
1908
1909 static void
1910 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1911 {
1912 VkShaderStageFlags stages =
1913 cmd_buffer->state.gfx.base.pipeline->active_stages;
1914
1915 /* In order to avoid thrash, we assume that vertex and fragment stages
1916 * always exist. In the rare case where one is missing *and* the other
1917 * uses push concstants, this may be suboptimal. However, avoiding stalls
1918 * seems more important.
1919 */
1920 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1921
1922 if (stages == cmd_buffer->state.push_constant_stages)
1923 return;
1924
1925 #if GEN_GEN >= 8
1926 const unsigned push_constant_kb = 32;
1927 #elif GEN_IS_HASWELL
1928 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1929 #else
1930 const unsigned push_constant_kb = 16;
1931 #endif
1932
1933 const unsigned num_stages =
1934 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1935 unsigned size_per_stage = push_constant_kb / num_stages;
1936
1937 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1938 * units of 2KB. Incidentally, these are the same platforms that have
1939 * 32KB worth of push constant space.
1940 */
1941 if (push_constant_kb == 32)
1942 size_per_stage &= ~1u;
1943
1944 uint32_t kb_used = 0;
1945 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1946 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1947 anv_batch_emit(&cmd_buffer->batch,
1948 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1949 alloc._3DCommandSubOpcode = 18 + i;
1950 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1951 alloc.ConstantBufferSize = push_size;
1952 }
1953 kb_used += push_size;
1954 }
1955
1956 anv_batch_emit(&cmd_buffer->batch,
1957 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1958 alloc.ConstantBufferOffset = kb_used;
1959 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1960 }
1961
1962 cmd_buffer->state.push_constant_stages = stages;
1963
1964 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1965 *
1966 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1967 * the next 3DPRIMITIVE command after programming the
1968 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1969 *
1970 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1971 * pipeline setup, we need to dirty push constants.
1972 */
1973 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1974 }
1975
1976 static const struct anv_descriptor *
1977 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1978 const struct anv_pipeline_binding *binding)
1979 {
1980 assert(binding->set < MAX_SETS);
1981 const struct anv_descriptor_set *set =
1982 pipe_state->descriptors[binding->set];
1983 const uint32_t offset =
1984 set->layout->binding[binding->binding].descriptor_index;
1985 return &set->descriptors[offset + binding->index];
1986 }
1987
1988 static uint32_t
1989 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1990 const struct anv_pipeline_binding *binding)
1991 {
1992 assert(binding->set < MAX_SETS);
1993 const struct anv_descriptor_set *set =
1994 pipe_state->descriptors[binding->set];
1995
1996 uint32_t dynamic_offset_idx =
1997 pipe_state->layout->set[binding->set].dynamic_offset_start +
1998 set->layout->binding[binding->binding].dynamic_offset_index +
1999 binding->index;
2000
2001 return pipe_state->dynamic_offsets[dynamic_offset_idx];
2002 }
2003
2004 static VkResult
2005 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2006 gl_shader_stage stage,
2007 struct anv_state *bt_state)
2008 {
2009 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
2010 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2011 struct anv_cmd_pipeline_state *pipe_state;
2012 struct anv_pipeline *pipeline;
2013 uint32_t bias, state_offset;
2014
2015 switch (stage) {
2016 case MESA_SHADER_COMPUTE:
2017 pipe_state = &cmd_buffer->state.compute.base;
2018 bias = 1;
2019 break;
2020 default:
2021 pipe_state = &cmd_buffer->state.gfx.base;
2022 bias = 0;
2023 break;
2024 }
2025 pipeline = pipe_state->pipeline;
2026
2027 if (!anv_pipeline_has_stage(pipeline, stage)) {
2028 *bt_state = (struct anv_state) { 0, };
2029 return VK_SUCCESS;
2030 }
2031
2032 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2033 if (bias + map->surface_count == 0) {
2034 *bt_state = (struct anv_state) { 0, };
2035 return VK_SUCCESS;
2036 }
2037
2038 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2039 bias + map->surface_count,
2040 &state_offset);
2041 uint32_t *bt_map = bt_state->map;
2042
2043 if (bt_state->map == NULL)
2044 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2045
2046 if (stage == MESA_SHADER_COMPUTE &&
2047 get_cs_prog_data(pipeline)->uses_num_work_groups) {
2048 struct anv_state surface_state;
2049 surface_state =
2050 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2051
2052 const enum isl_format format =
2053 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2054 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2055 format,
2056 cmd_buffer->state.compute.num_workgroups,
2057 12, 1);
2058
2059 bt_map[0] = surface_state.offset + state_offset;
2060 add_surface_reloc(cmd_buffer, surface_state,
2061 cmd_buffer->state.compute.num_workgroups);
2062 }
2063
2064 if (map->surface_count == 0)
2065 goto out;
2066
2067 /* We only use push constant space for images before gen9 */
2068 if (map->image_count > 0 && devinfo->gen < 9) {
2069 VkResult result =
2070 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
2071 if (result != VK_SUCCESS)
2072 return result;
2073
2074 cmd_buffer->state.push_constants_dirty |= 1 << stage;
2075 }
2076
2077 uint32_t image = 0;
2078 for (uint32_t s = 0; s < map->surface_count; s++) {
2079 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2080
2081 struct anv_state surface_state;
2082
2083 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
2084 /* Color attachment binding */
2085 assert(stage == MESA_SHADER_FRAGMENT);
2086 assert(binding->binding == 0);
2087 if (binding->index < subpass->color_count) {
2088 const unsigned att =
2089 subpass->color_attachments[binding->index].attachment;
2090
2091 /* From the Vulkan 1.0.46 spec:
2092 *
2093 * "If any color or depth/stencil attachments are
2094 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2095 * attachments."
2096 */
2097 if (att == VK_ATTACHMENT_UNUSED) {
2098 surface_state = cmd_buffer->state.null_surface_state;
2099 } else {
2100 surface_state = cmd_buffer->state.attachments[att].color.state;
2101 }
2102 } else {
2103 surface_state = cmd_buffer->state.null_surface_state;
2104 }
2105
2106 bt_map[bias + s] = surface_state.offset + state_offset;
2107 continue;
2108 } else if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
2109 struct anv_state surface_state =
2110 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2111
2112 struct anv_address constant_data = {
2113 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2114 .offset = pipeline->shaders[stage]->constant_data.offset,
2115 };
2116 unsigned constant_data_size =
2117 pipeline->shaders[stage]->constant_data_size;
2118
2119 const enum isl_format format =
2120 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2121 anv_fill_buffer_surface_state(cmd_buffer->device,
2122 surface_state, format,
2123 constant_data, constant_data_size, 1);
2124
2125 bt_map[bias + s] = surface_state.offset + state_offset;
2126 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2127 continue;
2128 }
2129
2130 const struct anv_descriptor *desc =
2131 anv_descriptor_for_binding(pipe_state, binding);
2132
2133 switch (desc->type) {
2134 case VK_DESCRIPTOR_TYPE_SAMPLER:
2135 /* Nothing for us to do here */
2136 continue;
2137
2138 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2139 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2140 struct anv_surface_state sstate =
2141 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2142 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2143 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2144 surface_state = sstate.state;
2145 assert(surface_state.alloc_size);
2146 add_surface_state_relocs(cmd_buffer, sstate);
2147 break;
2148 }
2149 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2150 assert(stage == MESA_SHADER_FRAGMENT);
2151 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2152 /* For depth and stencil input attachments, we treat it like any
2153 * old texture that a user may have bound.
2154 */
2155 struct anv_surface_state sstate =
2156 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2157 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2158 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2159 surface_state = sstate.state;
2160 assert(surface_state.alloc_size);
2161 add_surface_state_relocs(cmd_buffer, sstate);
2162 } else {
2163 /* For color input attachments, we create the surface state at
2164 * vkBeginRenderPass time so that we can include aux and clear
2165 * color information.
2166 */
2167 assert(binding->input_attachment_index < subpass->input_count);
2168 const unsigned subpass_att = binding->input_attachment_index;
2169 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2170 surface_state = cmd_buffer->state.attachments[att].input.state;
2171 }
2172 break;
2173
2174 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2175 struct anv_surface_state sstate = (binding->write_only)
2176 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2177 : desc->image_view->planes[binding->plane].storage_surface_state;
2178 surface_state = sstate.state;
2179 assert(surface_state.alloc_size);
2180 add_surface_state_relocs(cmd_buffer, sstate);
2181 if (devinfo->gen < 9) {
2182 assert(image < MAX_GEN8_IMAGES);
2183 struct brw_image_param *image_param =
2184 &cmd_buffer->state.push_constants[stage]->images[image];
2185
2186 *image_param =
2187 desc->image_view->planes[binding->plane].storage_image_param;
2188 }
2189 image++;
2190 break;
2191 }
2192
2193 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2194 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2195 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2196 surface_state = desc->buffer_view->surface_state;
2197 assert(surface_state.alloc_size);
2198 add_surface_reloc(cmd_buffer, surface_state,
2199 desc->buffer_view->address);
2200 break;
2201
2202 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2203 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2204 /* Compute the offset within the buffer */
2205 uint32_t dynamic_offset =
2206 dynamic_offset_for_binding(pipe_state, binding);
2207 uint64_t offset = desc->offset + dynamic_offset;
2208 /* Clamp to the buffer size */
2209 offset = MIN2(offset, desc->buffer->size);
2210 /* Clamp the range to the buffer size */
2211 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2212
2213 struct anv_address address =
2214 anv_address_add(desc->buffer->address, offset);
2215
2216 surface_state =
2217 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2218 enum isl_format format =
2219 anv_isl_format_for_descriptor_type(desc->type);
2220
2221 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2222 format, address, range, 1);
2223 add_surface_reloc(cmd_buffer, surface_state, address);
2224 break;
2225 }
2226
2227 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2228 surface_state = (binding->write_only)
2229 ? desc->buffer_view->writeonly_storage_surface_state
2230 : desc->buffer_view->storage_surface_state;
2231 assert(surface_state.alloc_size);
2232 add_surface_reloc(cmd_buffer, surface_state,
2233 desc->buffer_view->address);
2234 if (devinfo->gen < 9) {
2235 assert(image < MAX_GEN8_IMAGES);
2236 struct brw_image_param *image_param =
2237 &cmd_buffer->state.push_constants[stage]->images[image];
2238
2239 *image_param = desc->buffer_view->storage_image_param;
2240 }
2241 image++;
2242 break;
2243
2244 default:
2245 assert(!"Invalid descriptor type");
2246 continue;
2247 }
2248
2249 bt_map[bias + s] = surface_state.offset + state_offset;
2250 }
2251 assert(image == map->image_count);
2252
2253 out:
2254 #if GEN_GEN >= 11
2255 /* The PIPE_CONTROL command description says:
2256 *
2257 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
2258 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2259 * Target Cache Flush by enabling this bit. When render target flush
2260 * is set due to new association of BTI, PS Scoreboard Stall bit must
2261 * be set in this packet."
2262 *
2263 * FINISHME: Currently we shuffle around the surface states in the binding
2264 * table based on if they are getting used or not. So, we've to do below
2265 * pipe control flush for every binding table upload. Make changes so
2266 * that we do it only when we modify render target surface states.
2267 */
2268 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2269 pc.RenderTargetCacheFlushEnable = true;
2270 pc.StallAtPixelScoreboard = true;
2271 }
2272 #endif
2273
2274 return VK_SUCCESS;
2275 }
2276
2277 static VkResult
2278 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2279 gl_shader_stage stage,
2280 struct anv_state *state)
2281 {
2282 struct anv_cmd_pipeline_state *pipe_state =
2283 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2284 &cmd_buffer->state.gfx.base;
2285 struct anv_pipeline *pipeline = pipe_state->pipeline;
2286
2287 if (!anv_pipeline_has_stage(pipeline, stage)) {
2288 *state = (struct anv_state) { 0, };
2289 return VK_SUCCESS;
2290 }
2291
2292 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2293 if (map->sampler_count == 0) {
2294 *state = (struct anv_state) { 0, };
2295 return VK_SUCCESS;
2296 }
2297
2298 uint32_t size = map->sampler_count * 16;
2299 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2300
2301 if (state->map == NULL)
2302 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2303
2304 for (uint32_t s = 0; s < map->sampler_count; s++) {
2305 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2306 const struct anv_descriptor *desc =
2307 anv_descriptor_for_binding(pipe_state, binding);
2308
2309 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2310 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2311 continue;
2312
2313 struct anv_sampler *sampler = desc->sampler;
2314
2315 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2316 * happens to be zero.
2317 */
2318 if (sampler == NULL)
2319 continue;
2320
2321 memcpy(state->map + (s * 16),
2322 sampler->state[binding->plane], sizeof(sampler->state[0]));
2323 }
2324
2325 return VK_SUCCESS;
2326 }
2327
2328 static uint32_t
2329 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
2330 {
2331 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2332
2333 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2334 pipeline->active_stages;
2335
2336 VkResult result = VK_SUCCESS;
2337 anv_foreach_stage(s, dirty) {
2338 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2339 if (result != VK_SUCCESS)
2340 break;
2341 result = emit_binding_table(cmd_buffer, s,
2342 &cmd_buffer->state.binding_tables[s]);
2343 if (result != VK_SUCCESS)
2344 break;
2345 }
2346
2347 if (result != VK_SUCCESS) {
2348 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2349
2350 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2351 if (result != VK_SUCCESS)
2352 return 0;
2353
2354 /* Re-emit state base addresses so we get the new surface state base
2355 * address before we start emitting binding tables etc.
2356 */
2357 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2358
2359 /* Re-emit all active binding tables */
2360 dirty |= pipeline->active_stages;
2361 anv_foreach_stage(s, dirty) {
2362 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2363 if (result != VK_SUCCESS) {
2364 anv_batch_set_error(&cmd_buffer->batch, result);
2365 return 0;
2366 }
2367 result = emit_binding_table(cmd_buffer, s,
2368 &cmd_buffer->state.binding_tables[s]);
2369 if (result != VK_SUCCESS) {
2370 anv_batch_set_error(&cmd_buffer->batch, result);
2371 return 0;
2372 }
2373 }
2374 }
2375
2376 cmd_buffer->state.descriptors_dirty &= ~dirty;
2377
2378 return dirty;
2379 }
2380
2381 static void
2382 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2383 uint32_t stages)
2384 {
2385 static const uint32_t sampler_state_opcodes[] = {
2386 [MESA_SHADER_VERTEX] = 43,
2387 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2388 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2389 [MESA_SHADER_GEOMETRY] = 46,
2390 [MESA_SHADER_FRAGMENT] = 47,
2391 [MESA_SHADER_COMPUTE] = 0,
2392 };
2393
2394 static const uint32_t binding_table_opcodes[] = {
2395 [MESA_SHADER_VERTEX] = 38,
2396 [MESA_SHADER_TESS_CTRL] = 39,
2397 [MESA_SHADER_TESS_EVAL] = 40,
2398 [MESA_SHADER_GEOMETRY] = 41,
2399 [MESA_SHADER_FRAGMENT] = 42,
2400 [MESA_SHADER_COMPUTE] = 0,
2401 };
2402
2403 anv_foreach_stage(s, stages) {
2404 assert(s < ARRAY_SIZE(binding_table_opcodes));
2405 assert(binding_table_opcodes[s] > 0);
2406
2407 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2408 anv_batch_emit(&cmd_buffer->batch,
2409 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2410 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2411 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2412 }
2413 }
2414
2415 /* Always emit binding table pointers if we're asked to, since on SKL
2416 * this is what flushes push constants. */
2417 anv_batch_emit(&cmd_buffer->batch,
2418 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2419 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2420 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2421 }
2422 }
2423 }
2424
2425 static void
2426 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2427 VkShaderStageFlags dirty_stages)
2428 {
2429 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2430 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2431
2432 static const uint32_t push_constant_opcodes[] = {
2433 [MESA_SHADER_VERTEX] = 21,
2434 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2435 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2436 [MESA_SHADER_GEOMETRY] = 22,
2437 [MESA_SHADER_FRAGMENT] = 23,
2438 [MESA_SHADER_COMPUTE] = 0,
2439 };
2440
2441 VkShaderStageFlags flushed = 0;
2442
2443 anv_foreach_stage(stage, dirty_stages) {
2444 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2445 assert(push_constant_opcodes[stage] > 0);
2446
2447 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2448 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2449
2450 if (anv_pipeline_has_stage(pipeline, stage)) {
2451 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2452 const struct brw_stage_prog_data *prog_data =
2453 pipeline->shaders[stage]->prog_data;
2454 const struct anv_pipeline_bind_map *bind_map =
2455 &pipeline->shaders[stage]->bind_map;
2456
2457 /* The Skylake PRM contains the following restriction:
2458 *
2459 * "The driver must ensure The following case does not occur
2460 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2461 * buffer 3 read length equal to zero committed followed by a
2462 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2463 * zero committed."
2464 *
2465 * To avoid this, we program the buffers in the highest slots.
2466 * This way, slot 0 is only used if slot 3 is also used.
2467 */
2468 int n = 3;
2469
2470 for (int i = 3; i >= 0; i--) {
2471 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2472 if (range->length == 0)
2473 continue;
2474
2475 const unsigned surface =
2476 prog_data->binding_table.ubo_start + range->block;
2477
2478 assert(surface <= bind_map->surface_count);
2479 const struct anv_pipeline_binding *binding =
2480 &bind_map->surface_to_descriptor[surface];
2481
2482 struct anv_address read_addr;
2483 uint32_t read_len;
2484 if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
2485 struct anv_address constant_data = {
2486 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2487 .offset = pipeline->shaders[stage]->constant_data.offset,
2488 };
2489 unsigned constant_data_size =
2490 pipeline->shaders[stage]->constant_data_size;
2491
2492 read_len = MIN2(range->length,
2493 DIV_ROUND_UP(constant_data_size, 32) - range->start);
2494 read_addr = anv_address_add(constant_data,
2495 range->start * 32);
2496 } else {
2497 const struct anv_descriptor *desc =
2498 anv_descriptor_for_binding(&gfx_state->base, binding);
2499
2500 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2501 read_len = MIN2(range->length,
2502 DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
2503 read_addr = anv_address_add(desc->buffer_view->address,
2504 range->start * 32);
2505 } else {
2506 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2507
2508 uint32_t dynamic_offset =
2509 dynamic_offset_for_binding(&gfx_state->base, binding);
2510 uint32_t buf_offset =
2511 MIN2(desc->offset + dynamic_offset, desc->buffer->size);
2512 uint32_t buf_range =
2513 MIN2(desc->range, desc->buffer->size - buf_offset);
2514
2515 read_len = MIN2(range->length,
2516 DIV_ROUND_UP(buf_range, 32) - range->start);
2517 read_addr = anv_address_add(desc->buffer->address,
2518 buf_offset + range->start * 32);
2519 }
2520 }
2521
2522 if (read_len > 0) {
2523 c.ConstantBody.Buffer[n] = read_addr;
2524 c.ConstantBody.ReadLength[n] = read_len;
2525 n--;
2526 }
2527 }
2528
2529 struct anv_state state =
2530 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2531
2532 if (state.alloc_size > 0) {
2533 c.ConstantBody.Buffer[n] = (struct anv_address) {
2534 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2535 .offset = state.offset,
2536 };
2537 c.ConstantBody.ReadLength[n] =
2538 DIV_ROUND_UP(state.alloc_size, 32);
2539 }
2540 #else
2541 /* For Ivy Bridge, the push constants packets have a different
2542 * rule that would require us to iterate in the other direction
2543 * and possibly mess around with dynamic state base address.
2544 * Don't bother; just emit regular push constants at n = 0.
2545 */
2546 struct anv_state state =
2547 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2548
2549 if (state.alloc_size > 0) {
2550 c.ConstantBody.Buffer[0].offset = state.offset,
2551 c.ConstantBody.ReadLength[0] =
2552 DIV_ROUND_UP(state.alloc_size, 32);
2553 }
2554 #endif
2555 }
2556 }
2557
2558 flushed |= mesa_to_vk_shader_stage(stage);
2559 }
2560
2561 cmd_buffer->state.push_constants_dirty &= ~flushed;
2562 }
2563
2564 void
2565 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2566 {
2567 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2568 uint32_t *p;
2569
2570 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2571 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
2572 vb_emit |= pipeline->vb_used;
2573
2574 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2575
2576 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2577
2578 genX(flush_pipeline_select_3d)(cmd_buffer);
2579
2580 if (vb_emit) {
2581 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2582 const uint32_t num_dwords = 1 + num_buffers * 4;
2583
2584 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2585 GENX(3DSTATE_VERTEX_BUFFERS));
2586 uint32_t vb, i = 0;
2587 for_each_bit(vb, vb_emit) {
2588 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2589 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2590
2591 struct GENX(VERTEX_BUFFER_STATE) state = {
2592 .VertexBufferIndex = vb,
2593
2594 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
2595 #if GEN_GEN <= 7
2596 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
2597 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
2598 #endif
2599
2600 .AddressModifyEnable = true,
2601 .BufferPitch = pipeline->vb[vb].stride,
2602 .BufferStartingAddress = anv_address_add(buffer->address, offset),
2603
2604 #if GEN_GEN >= 8
2605 .BufferSize = buffer->size - offset
2606 #else
2607 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
2608 #endif
2609 };
2610
2611 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2612 i++;
2613 }
2614 }
2615
2616 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2617
2618 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2619 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2620
2621 /* The exact descriptor layout is pulled from the pipeline, so we need
2622 * to re-emit binding tables on every pipeline change.
2623 */
2624 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2625
2626 /* If the pipeline changed, we may need to re-allocate push constant
2627 * space in the URB.
2628 */
2629 cmd_buffer_alloc_push_constants(cmd_buffer);
2630 }
2631
2632 #if GEN_GEN <= 7
2633 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2634 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2635 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2636 *
2637 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2638 * stall needs to be sent just prior to any 3DSTATE_VS,
2639 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2640 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2641 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2642 * PIPE_CONTROL needs to be sent before any combination of VS
2643 * associated 3DSTATE."
2644 */
2645 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2646 pc.DepthStallEnable = true;
2647 pc.PostSyncOperation = WriteImmediateData;
2648 pc.Address =
2649 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2650 }
2651 }
2652 #endif
2653
2654 /* Render targets live in the same binding table as fragment descriptors */
2655 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2656 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2657
2658 /* We emit the binding tables and sampler tables first, then emit push
2659 * constants and then finally emit binding table and sampler table
2660 * pointers. It has to happen in this order, since emitting the binding
2661 * tables may change the push constants (in case of storage images). After
2662 * emitting push constants, on SKL+ we have to emit the corresponding
2663 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2664 */
2665 uint32_t dirty = 0;
2666 if (cmd_buffer->state.descriptors_dirty)
2667 dirty = flush_descriptor_sets(cmd_buffer);
2668
2669 if (dirty || cmd_buffer->state.push_constants_dirty) {
2670 /* Because we're pushing UBOs, we have to push whenever either
2671 * descriptors or push constants is dirty.
2672 */
2673 dirty |= cmd_buffer->state.push_constants_dirty;
2674 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2675 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2676 }
2677
2678 if (dirty)
2679 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2680
2681 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2682 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2683
2684 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2685 ANV_CMD_DIRTY_PIPELINE)) {
2686 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2687 pipeline->depth_clamp_enable);
2688 }
2689
2690 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
2691 ANV_CMD_DIRTY_RENDER_TARGETS))
2692 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2693
2694 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2695
2696 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2697 }
2698
2699 static void
2700 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2701 struct anv_address addr,
2702 uint32_t size, uint32_t index)
2703 {
2704 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2705 GENX(3DSTATE_VERTEX_BUFFERS));
2706
2707 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2708 &(struct GENX(VERTEX_BUFFER_STATE)) {
2709 .VertexBufferIndex = index,
2710 .AddressModifyEnable = true,
2711 .BufferPitch = 0,
2712 .MOCS = anv_mocs_for_bo(cmd_buffer->device, addr.bo),
2713 #if (GEN_GEN >= 8)
2714 .BufferStartingAddress = addr,
2715 .BufferSize = size
2716 #else
2717 .BufferStartingAddress = addr,
2718 .EndAddress = anv_address_add(addr, size),
2719 #endif
2720 });
2721 }
2722
2723 static void
2724 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2725 struct anv_address addr)
2726 {
2727 emit_vertex_bo(cmd_buffer, addr, 8, ANV_SVGS_VB_INDEX);
2728 }
2729
2730 static void
2731 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2732 uint32_t base_vertex, uint32_t base_instance)
2733 {
2734 struct anv_state id_state =
2735 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2736
2737 ((uint32_t *)id_state.map)[0] = base_vertex;
2738 ((uint32_t *)id_state.map)[1] = base_instance;
2739
2740 struct anv_address addr = {
2741 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2742 .offset = id_state.offset,
2743 };
2744
2745 emit_base_vertex_instance_bo(cmd_buffer, addr);
2746 }
2747
2748 static void
2749 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2750 {
2751 struct anv_state state =
2752 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2753
2754 ((uint32_t *)state.map)[0] = draw_index;
2755
2756 struct anv_address addr = {
2757 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2758 .offset = state.offset,
2759 };
2760
2761 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
2762 }
2763
2764 void genX(CmdDraw)(
2765 VkCommandBuffer commandBuffer,
2766 uint32_t vertexCount,
2767 uint32_t instanceCount,
2768 uint32_t firstVertex,
2769 uint32_t firstInstance)
2770 {
2771 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2772 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2773 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2774
2775 if (anv_batch_has_error(&cmd_buffer->batch))
2776 return;
2777
2778 genX(cmd_buffer_flush_state)(cmd_buffer);
2779
2780 if (vs_prog_data->uses_firstvertex ||
2781 vs_prog_data->uses_baseinstance)
2782 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2783 if (vs_prog_data->uses_drawid)
2784 emit_draw_index(cmd_buffer, 0);
2785
2786 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2787 * different views. We need to multiply instanceCount by the view count.
2788 */
2789 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2790
2791 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2792 prim.VertexAccessType = SEQUENTIAL;
2793 prim.PrimitiveTopologyType = pipeline->topology;
2794 prim.VertexCountPerInstance = vertexCount;
2795 prim.StartVertexLocation = firstVertex;
2796 prim.InstanceCount = instanceCount;
2797 prim.StartInstanceLocation = firstInstance;
2798 prim.BaseVertexLocation = 0;
2799 }
2800
2801 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
2802 }
2803
2804 void genX(CmdDrawIndexed)(
2805 VkCommandBuffer commandBuffer,
2806 uint32_t indexCount,
2807 uint32_t instanceCount,
2808 uint32_t firstIndex,
2809 int32_t vertexOffset,
2810 uint32_t firstInstance)
2811 {
2812 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2813 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2814 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2815
2816 if (anv_batch_has_error(&cmd_buffer->batch))
2817 return;
2818
2819 genX(cmd_buffer_flush_state)(cmd_buffer);
2820
2821 if (vs_prog_data->uses_firstvertex ||
2822 vs_prog_data->uses_baseinstance)
2823 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2824 if (vs_prog_data->uses_drawid)
2825 emit_draw_index(cmd_buffer, 0);
2826
2827 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2828 * different views. We need to multiply instanceCount by the view count.
2829 */
2830 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2831
2832 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2833 prim.VertexAccessType = RANDOM;
2834 prim.PrimitiveTopologyType = pipeline->topology;
2835 prim.VertexCountPerInstance = indexCount;
2836 prim.StartVertexLocation = firstIndex;
2837 prim.InstanceCount = instanceCount;
2838 prim.StartInstanceLocation = firstInstance;
2839 prim.BaseVertexLocation = vertexOffset;
2840 }
2841
2842 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
2843 }
2844
2845 /* Auto-Draw / Indirect Registers */
2846 #define GEN7_3DPRIM_END_OFFSET 0x2420
2847 #define GEN7_3DPRIM_START_VERTEX 0x2430
2848 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2849 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2850 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2851 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2852
2853 /* MI_MATH only exists on Haswell+ */
2854 #if GEN_IS_HASWELL || GEN_GEN >= 8
2855
2856 /* Emit dwords to multiply GPR0 by N */
2857 static void
2858 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2859 {
2860 VK_OUTARRAY_MAKE(out, dw, dw_count);
2861
2862 #define append_alu(opcode, operand1, operand2) \
2863 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2864
2865 assert(N > 0);
2866 unsigned top_bit = 31 - __builtin_clz(N);
2867 for (int i = top_bit - 1; i >= 0; i--) {
2868 /* We get our initial data in GPR0 and we write the final data out to
2869 * GPR0 but we use GPR1 as our scratch register.
2870 */
2871 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2872 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2873
2874 /* Shift the current value left by 1 */
2875 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2876 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2877 append_alu(MI_ALU_ADD, 0, 0);
2878
2879 if (N & (1 << i)) {
2880 /* Store ACCU to R1 and add R0 to R1 */
2881 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2882 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2883 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2884 append_alu(MI_ALU_ADD, 0, 0);
2885 }
2886
2887 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2888 }
2889
2890 #undef append_alu
2891 }
2892
2893 static void
2894 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2895 {
2896 uint32_t num_dwords;
2897 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2898
2899 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2900 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2901 }
2902
2903 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2904
2905 static void
2906 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2907 struct anv_address addr,
2908 bool indexed)
2909 {
2910 struct anv_batch *batch = &cmd_buffer->batch;
2911
2912 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, anv_address_add(addr, 0));
2913
2914 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2915 if (view_count > 1) {
2916 #if GEN_IS_HASWELL || GEN_GEN >= 8
2917 emit_lrm(batch, CS_GPR(0), anv_address_add(addr, 4));
2918 emit_mul_gpr0(batch, view_count);
2919 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2920 #else
2921 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2922 "MI_MATH is not supported on Ivy Bridge");
2923 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, anv_address_add(addr, 4));
2924 #endif
2925 } else {
2926 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, anv_address_add(addr, 4));
2927 }
2928
2929 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, anv_address_add(addr, 8));
2930
2931 if (indexed) {
2932 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, anv_address_add(addr, 12));
2933 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, anv_address_add(addr, 16));
2934 } else {
2935 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, anv_address_add(addr, 12));
2936 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2937 }
2938 }
2939
2940 void genX(CmdDrawIndirect)(
2941 VkCommandBuffer commandBuffer,
2942 VkBuffer _buffer,
2943 VkDeviceSize offset,
2944 uint32_t drawCount,
2945 uint32_t stride)
2946 {
2947 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2948 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2949 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2950 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2951
2952 if (anv_batch_has_error(&cmd_buffer->batch))
2953 return;
2954
2955 genX(cmd_buffer_flush_state)(cmd_buffer);
2956
2957 for (uint32_t i = 0; i < drawCount; i++) {
2958 struct anv_address draw = anv_address_add(buffer->address, offset);
2959
2960 if (vs_prog_data->uses_firstvertex ||
2961 vs_prog_data->uses_baseinstance)
2962 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
2963 if (vs_prog_data->uses_drawid)
2964 emit_draw_index(cmd_buffer, i);
2965
2966 load_indirect_parameters(cmd_buffer, draw, false);
2967
2968 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2969 prim.IndirectParameterEnable = true;
2970 prim.VertexAccessType = SEQUENTIAL;
2971 prim.PrimitiveTopologyType = pipeline->topology;
2972 }
2973
2974 offset += stride;
2975 }
2976
2977 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
2978 }
2979
2980 void genX(CmdDrawIndexedIndirect)(
2981 VkCommandBuffer commandBuffer,
2982 VkBuffer _buffer,
2983 VkDeviceSize offset,
2984 uint32_t drawCount,
2985 uint32_t stride)
2986 {
2987 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2988 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2989 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2990 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2991
2992 if (anv_batch_has_error(&cmd_buffer->batch))
2993 return;
2994
2995 genX(cmd_buffer_flush_state)(cmd_buffer);
2996
2997 for (uint32_t i = 0; i < drawCount; i++) {
2998 struct anv_address draw = anv_address_add(buffer->address, offset);
2999
3000 /* TODO: We need to stomp base vertex to 0 somehow */
3001 if (vs_prog_data->uses_firstvertex ||
3002 vs_prog_data->uses_baseinstance)
3003 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3004 if (vs_prog_data->uses_drawid)
3005 emit_draw_index(cmd_buffer, i);
3006
3007 load_indirect_parameters(cmd_buffer, draw, true);
3008
3009 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3010 prim.IndirectParameterEnable = true;
3011 prim.VertexAccessType = RANDOM;
3012 prim.PrimitiveTopologyType = pipeline->topology;
3013 }
3014
3015 offset += stride;
3016 }
3017
3018 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
3019 }
3020
3021 static VkResult
3022 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
3023 {
3024 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3025 struct anv_state surfaces = { 0, }, samplers = { 0, };
3026 VkResult result;
3027
3028 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3029 if (result != VK_SUCCESS) {
3030 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
3031
3032 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
3033 if (result != VK_SUCCESS)
3034 return result;
3035
3036 /* Re-emit state base addresses so we get the new surface state base
3037 * address before we start emitting binding tables etc.
3038 */
3039 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
3040
3041 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3042 if (result != VK_SUCCESS) {
3043 anv_batch_set_error(&cmd_buffer->batch, result);
3044 return result;
3045 }
3046 }
3047
3048 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
3049 if (result != VK_SUCCESS) {
3050 anv_batch_set_error(&cmd_buffer->batch, result);
3051 return result;
3052 }
3053
3054 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
3055 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
3056 .BindingTablePointer = surfaces.offset,
3057 .SamplerStatePointer = samplers.offset,
3058 };
3059 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
3060
3061 struct anv_state state =
3062 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
3063 pipeline->interface_descriptor_data,
3064 GENX(INTERFACE_DESCRIPTOR_DATA_length),
3065 64);
3066
3067 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3068 anv_batch_emit(&cmd_buffer->batch,
3069 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
3070 mid.InterfaceDescriptorTotalLength = size;
3071 mid.InterfaceDescriptorDataStartAddress = state.offset;
3072 }
3073
3074 return VK_SUCCESS;
3075 }
3076
3077 void
3078 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
3079 {
3080 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3081 MAYBE_UNUSED VkResult result;
3082
3083 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
3084
3085 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
3086
3087 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
3088
3089 if (cmd_buffer->state.compute.pipeline_dirty) {
3090 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
3091 *
3092 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
3093 * the only bits that are changed are scoreboard related: Scoreboard
3094 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
3095 * these scoreboard related states, a MEDIA_STATE_FLUSH is
3096 * sufficient."
3097 */
3098 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3099 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3100
3101 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3102 }
3103
3104 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
3105 cmd_buffer->state.compute.pipeline_dirty) {
3106 /* FIXME: figure out descriptors for gen7 */
3107 result = flush_compute_descriptor_set(cmd_buffer);
3108 if (result != VK_SUCCESS)
3109 return;
3110
3111 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3112 }
3113
3114 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
3115 struct anv_state push_state =
3116 anv_cmd_buffer_cs_push_constants(cmd_buffer);
3117
3118 if (push_state.alloc_size) {
3119 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
3120 curbe.CURBETotalDataLength = push_state.alloc_size;
3121 curbe.CURBEDataStartAddress = push_state.offset;
3122 }
3123 }
3124
3125 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3126 }
3127
3128 cmd_buffer->state.compute.pipeline_dirty = false;
3129
3130 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3131 }
3132
3133 #if GEN_GEN == 7
3134
3135 static VkResult
3136 verify_cmd_parser(const struct anv_device *device,
3137 int required_version,
3138 const char *function)
3139 {
3140 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
3141 return vk_errorf(device->instance, device->instance,
3142 VK_ERROR_FEATURE_NOT_PRESENT,
3143 "cmd parser version %d is required for %s",
3144 required_version, function);
3145 } else {
3146 return VK_SUCCESS;
3147 }
3148 }
3149
3150 #endif
3151
3152 static void
3153 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
3154 uint32_t baseGroupX,
3155 uint32_t baseGroupY,
3156 uint32_t baseGroupZ)
3157 {
3158 if (anv_batch_has_error(&cmd_buffer->batch))
3159 return;
3160
3161 VkResult result =
3162 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, MESA_SHADER_COMPUTE,
3163 base_work_group_id);
3164 if (result != VK_SUCCESS) {
3165 cmd_buffer->batch.status = result;
3166 return;
3167 }
3168
3169 struct anv_push_constants *push =
3170 cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
3171 if (push->base_work_group_id[0] != baseGroupX ||
3172 push->base_work_group_id[1] != baseGroupY ||
3173 push->base_work_group_id[2] != baseGroupZ) {
3174 push->base_work_group_id[0] = baseGroupX;
3175 push->base_work_group_id[1] = baseGroupY;
3176 push->base_work_group_id[2] = baseGroupZ;
3177
3178 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3179 }
3180 }
3181
3182 void genX(CmdDispatch)(
3183 VkCommandBuffer commandBuffer,
3184 uint32_t x,
3185 uint32_t y,
3186 uint32_t z)
3187 {
3188 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
3189 }
3190
3191 void genX(CmdDispatchBase)(
3192 VkCommandBuffer commandBuffer,
3193 uint32_t baseGroupX,
3194 uint32_t baseGroupY,
3195 uint32_t baseGroupZ,
3196 uint32_t groupCountX,
3197 uint32_t groupCountY,
3198 uint32_t groupCountZ)
3199 {
3200 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3201 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3202 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3203
3204 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
3205 baseGroupY, baseGroupZ);
3206
3207 if (anv_batch_has_error(&cmd_buffer->batch))
3208 return;
3209
3210 if (prog_data->uses_num_work_groups) {
3211 struct anv_state state =
3212 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
3213 uint32_t *sizes = state.map;
3214 sizes[0] = groupCountX;
3215 sizes[1] = groupCountY;
3216 sizes[2] = groupCountZ;
3217 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
3218 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3219 .offset = state.offset,
3220 };
3221 }
3222
3223 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3224
3225 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
3226 ggw.SIMDSize = prog_data->simd_size / 16;
3227 ggw.ThreadDepthCounterMaximum = 0;
3228 ggw.ThreadHeightCounterMaximum = 0;
3229 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3230 ggw.ThreadGroupIDXDimension = groupCountX;
3231 ggw.ThreadGroupIDYDimension = groupCountY;
3232 ggw.ThreadGroupIDZDimension = groupCountZ;
3233 ggw.RightExecutionMask = pipeline->cs_right_mask;
3234 ggw.BottomExecutionMask = 0xffffffff;
3235 }
3236
3237 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
3238 }
3239
3240 #define GPGPU_DISPATCHDIMX 0x2500
3241 #define GPGPU_DISPATCHDIMY 0x2504
3242 #define GPGPU_DISPATCHDIMZ 0x2508
3243
3244 void genX(CmdDispatchIndirect)(
3245 VkCommandBuffer commandBuffer,
3246 VkBuffer _buffer,
3247 VkDeviceSize offset)
3248 {
3249 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3250 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3251 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3252 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3253 struct anv_address addr = anv_address_add(buffer->address, offset);
3254 struct anv_batch *batch = &cmd_buffer->batch;
3255
3256 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
3257
3258 #if GEN_GEN == 7
3259 /* Linux 4.4 added command parser version 5 which allows the GPGPU
3260 * indirect dispatch registers to be written.
3261 */
3262 if (verify_cmd_parser(cmd_buffer->device, 5,
3263 "vkCmdDispatchIndirect") != VK_SUCCESS)
3264 return;
3265 #endif
3266
3267 if (prog_data->uses_num_work_groups)
3268 cmd_buffer->state.compute.num_workgroups = addr;
3269
3270 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3271
3272 emit_lrm(batch, GPGPU_DISPATCHDIMX, anv_address_add(addr, 0));
3273 emit_lrm(batch, GPGPU_DISPATCHDIMY, anv_address_add(addr, 4));
3274 emit_lrm(batch, GPGPU_DISPATCHDIMZ, anv_address_add(addr, 8));
3275
3276 #if GEN_GEN <= 7
3277 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
3278 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
3279 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
3280 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
3281
3282 /* Load compute_dispatch_indirect_x_size into SRC0 */
3283 emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 0));
3284
3285 /* predicate = (compute_dispatch_indirect_x_size == 0); */
3286 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3287 mip.LoadOperation = LOAD_LOAD;
3288 mip.CombineOperation = COMBINE_SET;
3289 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3290 }
3291
3292 /* Load compute_dispatch_indirect_y_size into SRC0 */
3293 emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 4));
3294
3295 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
3296 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3297 mip.LoadOperation = LOAD_LOAD;
3298 mip.CombineOperation = COMBINE_OR;
3299 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3300 }
3301
3302 /* Load compute_dispatch_indirect_z_size into SRC0 */
3303 emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 8));
3304
3305 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
3306 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3307 mip.LoadOperation = LOAD_LOAD;
3308 mip.CombineOperation = COMBINE_OR;
3309 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3310 }
3311
3312 /* predicate = !predicate; */
3313 #define COMPARE_FALSE 1
3314 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3315 mip.LoadOperation = LOAD_LOADINV;
3316 mip.CombineOperation = COMBINE_OR;
3317 mip.CompareOperation = COMPARE_FALSE;
3318 }
3319 #endif
3320
3321 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
3322 ggw.IndirectParameterEnable = true;
3323 ggw.PredicateEnable = GEN_GEN <= 7;
3324 ggw.SIMDSize = prog_data->simd_size / 16;
3325 ggw.ThreadDepthCounterMaximum = 0;
3326 ggw.ThreadHeightCounterMaximum = 0;
3327 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3328 ggw.RightExecutionMask = pipeline->cs_right_mask;
3329 ggw.BottomExecutionMask = 0xffffffff;
3330 }
3331
3332 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
3333 }
3334
3335 static void
3336 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
3337 uint32_t pipeline)
3338 {
3339 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
3340
3341 if (cmd_buffer->state.current_pipeline == pipeline)
3342 return;
3343
3344 #if GEN_GEN >= 8 && GEN_GEN < 10
3345 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
3346 *
3347 * Software must clear the COLOR_CALC_STATE Valid field in
3348 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
3349 * with Pipeline Select set to GPGPU.
3350 *
3351 * The internal hardware docs recommend the same workaround for Gen9
3352 * hardware too.
3353 */
3354 if (pipeline == GPGPU)
3355 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
3356 #endif
3357
3358 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
3359 * PIPELINE_SELECT [DevBWR+]":
3360 *
3361 * Project: DEVSNB+
3362 *
3363 * Software must ensure all the write caches are flushed through a
3364 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
3365 * command to invalidate read only caches prior to programming
3366 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
3367 */
3368 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3369 pc.RenderTargetCacheFlushEnable = true;
3370 pc.DepthCacheFlushEnable = true;
3371 pc.DCFlushEnable = true;
3372 pc.PostSyncOperation = NoWrite;
3373 pc.CommandStreamerStallEnable = true;
3374 }
3375
3376 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3377 pc.TextureCacheInvalidationEnable = true;
3378 pc.ConstantCacheInvalidationEnable = true;
3379 pc.StateCacheInvalidationEnable = true;
3380 pc.InstructionCacheInvalidateEnable = true;
3381 pc.PostSyncOperation = NoWrite;
3382 }
3383
3384 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
3385 #if GEN_GEN >= 9
3386 ps.MaskBits = 3;
3387 #endif
3388 ps.PipelineSelection = pipeline;
3389 }
3390
3391 #if GEN_GEN == 9
3392 if (devinfo->is_geminilake) {
3393 /* Project: DevGLK
3394 *
3395 * "This chicken bit works around a hardware issue with barrier logic
3396 * encountered when switching between GPGPU and 3D pipelines. To
3397 * workaround the issue, this mode bit should be set after a pipeline
3398 * is selected."
3399 */
3400 uint32_t scec;
3401 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
3402 .GLKBarrierMode =
3403 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
3404 : GLK_BARRIER_MODE_3D_HULL,
3405 .GLKBarrierModeMask = 1);
3406 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
3407 }
3408 #endif
3409
3410 cmd_buffer->state.current_pipeline = pipeline;
3411 }
3412
3413 void
3414 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
3415 {
3416 genX(flush_pipeline_select)(cmd_buffer, _3D);
3417 }
3418
3419 void
3420 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
3421 {
3422 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
3423 }
3424
3425 void
3426 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
3427 {
3428 if (GEN_GEN >= 8)
3429 return;
3430
3431 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
3432 *
3433 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
3434 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
3435 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
3436 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
3437 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
3438 * Depth Flush Bit set, followed by another pipelined depth stall
3439 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
3440 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
3441 * via a preceding MI_FLUSH)."
3442 */
3443 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3444 pipe.DepthStallEnable = true;
3445 }
3446 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3447 pipe.DepthCacheFlushEnable = true;
3448 }
3449 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3450 pipe.DepthStallEnable = true;
3451 }
3452 }
3453
3454 static void
3455 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
3456 {
3457 struct anv_device *device = cmd_buffer->device;
3458 const struct anv_image_view *iview =
3459 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
3460 const struct anv_image *image = iview ? iview->image : NULL;
3461
3462 /* FIXME: Width and Height are wrong */
3463
3464 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
3465
3466 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
3467 device->isl_dev.ds.size / 4);
3468 if (dw == NULL)
3469 return;
3470
3471 struct isl_depth_stencil_hiz_emit_info info = { };
3472
3473 if (iview)
3474 info.view = &iview->planes[0].isl;
3475
3476 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
3477 uint32_t depth_plane =
3478 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
3479 const struct anv_surface *surface = &image->planes[depth_plane].surface;
3480
3481 info.depth_surf = &surface->isl;
3482
3483 info.depth_address =
3484 anv_batch_emit_reloc(&cmd_buffer->batch,
3485 dw + device->isl_dev.ds.depth_offset / 4,
3486 image->planes[depth_plane].address.bo,
3487 image->planes[depth_plane].address.offset +
3488 surface->offset);
3489 info.mocs =
3490 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
3491
3492 const uint32_t ds =
3493 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
3494 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
3495 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
3496 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
3497
3498 info.hiz_address =
3499 anv_batch_emit_reloc(&cmd_buffer->batch,
3500 dw + device->isl_dev.ds.hiz_offset / 4,
3501 image->planes[depth_plane].address.bo,
3502 image->planes[depth_plane].address.offset +
3503 image->planes[depth_plane].aux_surface.offset);
3504
3505 info.depth_clear_value = ANV_HZ_FC_VAL;
3506 }
3507 }
3508
3509 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
3510 uint32_t stencil_plane =
3511 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
3512 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
3513
3514 info.stencil_surf = &surface->isl;
3515
3516 info.stencil_address =
3517 anv_batch_emit_reloc(&cmd_buffer->batch,
3518 dw + device->isl_dev.ds.stencil_offset / 4,
3519 image->planes[stencil_plane].address.bo,
3520 image->planes[stencil_plane].address.offset +
3521 surface->offset);
3522 info.mocs =
3523 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
3524 }
3525
3526 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
3527
3528 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
3529 }
3530
3531 /**
3532 * This ANDs the view mask of the current subpass with the pending clear
3533 * views in the attachment to get the mask of views active in the subpass
3534 * that still need to be cleared.
3535 */
3536 static inline uint32_t
3537 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
3538 const struct anv_attachment_state *att_state)
3539 {
3540 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
3541 }
3542
3543 static inline bool
3544 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
3545 const struct anv_attachment_state *att_state)
3546 {
3547 if (!cmd_state->subpass->view_mask)
3548 return true;
3549
3550 uint32_t pending_clear_mask =
3551 get_multiview_subpass_clear_mask(cmd_state, att_state);
3552
3553 return pending_clear_mask & 1;
3554 }
3555
3556 static inline bool
3557 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
3558 uint32_t att_idx)
3559 {
3560 const uint32_t last_subpass_idx =
3561 cmd_state->pass->attachments[att_idx].last_subpass_idx;
3562 const struct anv_subpass *last_subpass =
3563 &cmd_state->pass->subpasses[last_subpass_idx];
3564 return last_subpass == cmd_state->subpass;
3565 }
3566
3567 static void
3568 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
3569 uint32_t subpass_id)
3570 {
3571 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3572 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
3573 cmd_state->subpass = subpass;
3574
3575 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3576
3577 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3578 * different views. If the client asks for instancing, we need to use the
3579 * Instance Data Step Rate to ensure that we repeat the client's
3580 * per-instance data once for each view. Since this bit is in
3581 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3582 * of each subpass.
3583 */
3584 if (GEN_GEN == 7)
3585 cmd_buffer->state.gfx.vb_dirty |= ~0;
3586
3587 /* It is possible to start a render pass with an old pipeline. Because the
3588 * render pass and subpass index are both baked into the pipeline, this is
3589 * highly unlikely. In order to do so, it requires that you have a render
3590 * pass with a single subpass and that you use that render pass twice
3591 * back-to-back and use the same pipeline at the start of the second render
3592 * pass as at the end of the first. In order to avoid unpredictable issues
3593 * with this edge case, we just dirty the pipeline at the start of every
3594 * subpass.
3595 */
3596 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
3597
3598 /* Accumulate any subpass flushes that need to happen before the subpass */
3599 cmd_buffer->state.pending_pipe_bits |=
3600 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3601
3602 VkRect2D render_area = cmd_buffer->state.render_area;
3603 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3604
3605 bool is_multiview = subpass->view_mask != 0;
3606
3607 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3608 const uint32_t a = subpass->attachments[i].attachment;
3609 if (a == VK_ATTACHMENT_UNUSED)
3610 continue;
3611
3612 assert(a < cmd_state->pass->attachment_count);
3613 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
3614
3615 struct anv_image_view *iview = fb->attachments[a];
3616 const struct anv_image *image = iview->image;
3617
3618 /* A resolve is necessary before use as an input attachment if the clear
3619 * color or auxiliary buffer usage isn't supported by the sampler.
3620 */
3621 const bool input_needs_resolve =
3622 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
3623 att_state->input_aux_usage != att_state->aux_usage;
3624
3625 VkImageLayout target_layout;
3626 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
3627 !input_needs_resolve) {
3628 /* Layout transitions before the final only help to enable sampling
3629 * as an input attachment. If the input attachment supports sampling
3630 * using the auxiliary surface, we can skip such transitions by
3631 * making the target layout one that is CCS-aware.
3632 */
3633 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
3634 } else {
3635 target_layout = subpass->attachments[i].layout;
3636 }
3637
3638 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3639 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3640
3641 uint32_t base_layer, layer_count;
3642 if (image->type == VK_IMAGE_TYPE_3D) {
3643 base_layer = 0;
3644 layer_count = anv_minify(iview->image->extent.depth,
3645 iview->planes[0].isl.base_level);
3646 } else {
3647 base_layer = iview->planes[0].isl.base_array_layer;
3648 layer_count = fb->layers;
3649 }
3650
3651 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3652 iview->planes[0].isl.base_level, 1,
3653 base_layer, layer_count,
3654 att_state->current_layout, target_layout);
3655 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3656 transition_depth_buffer(cmd_buffer, image,
3657 att_state->current_layout, target_layout);
3658 att_state->aux_usage =
3659 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
3660 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
3661 }
3662 att_state->current_layout = target_layout;
3663
3664 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
3665 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3666
3667 /* Multi-planar images are not supported as attachments */
3668 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3669 assert(image->n_planes == 1);
3670
3671 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
3672 uint32_t clear_layer_count = fb->layers;
3673
3674 if (att_state->fast_clear &&
3675 do_first_layer_clear(cmd_state, att_state)) {
3676 /* We only support fast-clears on the first layer */
3677 assert(iview->planes[0].isl.base_level == 0);
3678 assert(iview->planes[0].isl.base_array_layer == 0);
3679
3680 union isl_color_value clear_color = {};
3681 anv_clear_color_from_att_state(&clear_color, att_state, iview);
3682 if (iview->image->samples == 1) {
3683 anv_image_ccs_op(cmd_buffer, image,
3684 iview->planes[0].isl.format,
3685 VK_IMAGE_ASPECT_COLOR_BIT,
3686 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
3687 &clear_color,
3688 false);
3689 } else {
3690 anv_image_mcs_op(cmd_buffer, image,
3691 iview->planes[0].isl.format,
3692 VK_IMAGE_ASPECT_COLOR_BIT,
3693 0, 1, ISL_AUX_OP_FAST_CLEAR,
3694 &clear_color,
3695 false);
3696 }
3697 base_clear_layer++;
3698 clear_layer_count--;
3699 if (is_multiview)
3700 att_state->pending_clear_views &= ~1;
3701
3702 if (att_state->clear_color_is_zero) {
3703 /* This image has the auxiliary buffer enabled. We can mark the
3704 * subresource as not needing a resolve because the clear color
3705 * will match what's in every RENDER_SURFACE_STATE object when
3706 * it's being used for sampling.
3707 */
3708 set_image_fast_clear_state(cmd_buffer, iview->image,
3709 VK_IMAGE_ASPECT_COLOR_BIT,
3710 ANV_FAST_CLEAR_DEFAULT_VALUE);
3711 } else {
3712 set_image_fast_clear_state(cmd_buffer, iview->image,
3713 VK_IMAGE_ASPECT_COLOR_BIT,
3714 ANV_FAST_CLEAR_ANY);
3715 }
3716 }
3717
3718 /* From the VkFramebufferCreateInfo spec:
3719 *
3720 * "If the render pass uses multiview, then layers must be one and each
3721 * attachment requires a number of layers that is greater than the
3722 * maximum bit index set in the view mask in the subpasses in which it
3723 * is used."
3724 *
3725 * So if multiview is active we ignore the number of layers in the
3726 * framebuffer and instead we honor the view mask from the subpass.
3727 */
3728 if (is_multiview) {
3729 assert(image->n_planes == 1);
3730 uint32_t pending_clear_mask =
3731 get_multiview_subpass_clear_mask(cmd_state, att_state);
3732
3733 uint32_t layer_idx;
3734 for_each_bit(layer_idx, pending_clear_mask) {
3735 uint32_t layer =
3736 iview->planes[0].isl.base_array_layer + layer_idx;
3737
3738 anv_image_clear_color(cmd_buffer, image,
3739 VK_IMAGE_ASPECT_COLOR_BIT,
3740 att_state->aux_usage,
3741 iview->planes[0].isl.format,
3742 iview->planes[0].isl.swizzle,
3743 iview->planes[0].isl.base_level,
3744 layer, 1,
3745 render_area,
3746 vk_to_isl_color(att_state->clear_value.color));
3747 }
3748
3749 att_state->pending_clear_views &= ~pending_clear_mask;
3750 } else if (clear_layer_count > 0) {
3751 assert(image->n_planes == 1);
3752 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3753 att_state->aux_usage,
3754 iview->planes[0].isl.format,
3755 iview->planes[0].isl.swizzle,
3756 iview->planes[0].isl.base_level,
3757 base_clear_layer, clear_layer_count,
3758 render_area,
3759 vk_to_isl_color(att_state->clear_value.color));
3760 }
3761 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
3762 VK_IMAGE_ASPECT_STENCIL_BIT)) {
3763 if (att_state->fast_clear && !is_multiview) {
3764 /* We currently only support HiZ for single-layer images */
3765 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3766 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
3767 assert(iview->planes[0].isl.base_level == 0);
3768 assert(iview->planes[0].isl.base_array_layer == 0);
3769 assert(fb->layers == 1);
3770 }
3771
3772 anv_image_hiz_clear(cmd_buffer, image,
3773 att_state->pending_clear_aspects,
3774 iview->planes[0].isl.base_level,
3775 iview->planes[0].isl.base_array_layer,
3776 fb->layers, render_area,
3777 att_state->clear_value.depthStencil.stencil);
3778 } else if (is_multiview) {
3779 uint32_t pending_clear_mask =
3780 get_multiview_subpass_clear_mask(cmd_state, att_state);
3781
3782 uint32_t layer_idx;
3783 for_each_bit(layer_idx, pending_clear_mask) {
3784 uint32_t layer =
3785 iview->planes[0].isl.base_array_layer + layer_idx;
3786
3787 anv_image_clear_depth_stencil(cmd_buffer, image,
3788 att_state->pending_clear_aspects,
3789 att_state->aux_usage,
3790 iview->planes[0].isl.base_level,
3791 layer, 1,
3792 render_area,
3793 att_state->clear_value.depthStencil.depth,
3794 att_state->clear_value.depthStencil.stencil);
3795 }
3796
3797 att_state->pending_clear_views &= ~pending_clear_mask;
3798 } else {
3799 anv_image_clear_depth_stencil(cmd_buffer, image,
3800 att_state->pending_clear_aspects,
3801 att_state->aux_usage,
3802 iview->planes[0].isl.base_level,
3803 iview->planes[0].isl.base_array_layer,
3804 fb->layers, render_area,
3805 att_state->clear_value.depthStencil.depth,
3806 att_state->clear_value.depthStencil.stencil);
3807 }
3808 } else {
3809 assert(att_state->pending_clear_aspects == 0);
3810 }
3811
3812 if (GEN_GEN < 10 &&
3813 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
3814 image->planes[0].aux_surface.isl.size_B > 0 &&
3815 iview->planes[0].isl.base_level == 0 &&
3816 iview->planes[0].isl.base_array_layer == 0) {
3817 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
3818 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3819 image, VK_IMAGE_ASPECT_COLOR_BIT,
3820 false /* copy to ss */);
3821 }
3822
3823 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
3824 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3825 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3826 image, VK_IMAGE_ASPECT_COLOR_BIT,
3827 false /* copy to ss */);
3828 }
3829 }
3830
3831 if (subpass->attachments[i].usage ==
3832 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
3833 /* We assume that if we're starting a subpass, we're going to do some
3834 * rendering so we may end up with compressed data.
3835 */
3836 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
3837 VK_IMAGE_ASPECT_COLOR_BIT,
3838 att_state->aux_usage,
3839 iview->planes[0].isl.base_level,
3840 iview->planes[0].isl.base_array_layer,
3841 fb->layers);
3842 } else if (subpass->attachments[i].usage ==
3843 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
3844 /* We may be writing depth or stencil so we need to mark the surface.
3845 * Unfortunately, there's no way to know at this point whether the
3846 * depth or stencil tests used will actually write to the surface.
3847 *
3848 * Even though stencil may be plane 1, it always shares a base_level
3849 * with depth.
3850 */
3851 const struct isl_view *ds_view = &iview->planes[0].isl;
3852 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
3853 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3854 VK_IMAGE_ASPECT_DEPTH_BIT,
3855 att_state->aux_usage,
3856 ds_view->base_level,
3857 ds_view->base_array_layer,
3858 fb->layers);
3859 }
3860 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
3861 /* Even though stencil may be plane 1, it always shares a
3862 * base_level with depth.
3863 */
3864 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3865 VK_IMAGE_ASPECT_STENCIL_BIT,
3866 ISL_AUX_USAGE_NONE,
3867 ds_view->base_level,
3868 ds_view->base_array_layer,
3869 fb->layers);
3870 }
3871 }
3872
3873 /* If multiview is enabled, then we are only done clearing when we no
3874 * longer have pending layers to clear, or when we have processed the
3875 * last subpass that uses this attachment.
3876 */
3877 if (!is_multiview ||
3878 att_state->pending_clear_views == 0 ||
3879 current_subpass_is_last_for_attachment(cmd_state, a)) {
3880 att_state->pending_clear_aspects = 0;
3881 }
3882
3883 att_state->pending_load_aspects = 0;
3884 }
3885
3886 cmd_buffer_emit_depth_stencil(cmd_buffer);
3887 }
3888
3889 static enum blorp_filter
3890 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
3891 {
3892 switch (vk_mode) {
3893 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
3894 return BLORP_FILTER_SAMPLE_0;
3895 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
3896 return BLORP_FILTER_AVERAGE;
3897 case VK_RESOLVE_MODE_MIN_BIT_KHR:
3898 return BLORP_FILTER_MIN_SAMPLE;
3899 case VK_RESOLVE_MODE_MAX_BIT_KHR:
3900 return BLORP_FILTER_MAX_SAMPLE;
3901 default:
3902 return BLORP_FILTER_NONE;
3903 }
3904 }
3905
3906 static void
3907 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
3908 {
3909 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3910 struct anv_subpass *subpass = cmd_state->subpass;
3911 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3912 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3913
3914 if (subpass->has_color_resolve) {
3915 /* We are about to do some MSAA resolves. We need to flush so that the
3916 * result of writes to the MSAA color attachments show up in the sampler
3917 * when we blit to the single-sampled resolve target.
3918 */
3919 cmd_buffer->state.pending_pipe_bits |=
3920 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
3921 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
3922
3923 for (uint32_t i = 0; i < subpass->color_count; ++i) {
3924 uint32_t src_att = subpass->color_attachments[i].attachment;
3925 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
3926
3927 if (dst_att == VK_ATTACHMENT_UNUSED)
3928 continue;
3929
3930 assert(src_att < cmd_buffer->state.pass->attachment_count);
3931 assert(dst_att < cmd_buffer->state.pass->attachment_count);
3932
3933 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
3934 /* From the Vulkan 1.0 spec:
3935 *
3936 * If the first use of an attachment in a render pass is as a
3937 * resolve attachment, then the loadOp is effectively ignored
3938 * as the resolve is guaranteed to overwrite all pixels in the
3939 * render area.
3940 */
3941 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
3942 }
3943
3944 struct anv_image_view *src_iview = fb->attachments[src_att];
3945 struct anv_image_view *dst_iview = fb->attachments[dst_att];
3946
3947 const VkRect2D render_area = cmd_buffer->state.render_area;
3948
3949 enum isl_aux_usage src_aux_usage =
3950 cmd_buffer->state.attachments[src_att].aux_usage;
3951 enum isl_aux_usage dst_aux_usage =
3952 cmd_buffer->state.attachments[dst_att].aux_usage;
3953
3954 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
3955 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
3956
3957 anv_image_msaa_resolve(cmd_buffer,
3958 src_iview->image, src_aux_usage,
3959 src_iview->planes[0].isl.base_level,
3960 src_iview->planes[0].isl.base_array_layer,
3961 dst_iview->image, dst_aux_usage,
3962 dst_iview->planes[0].isl.base_level,
3963 dst_iview->planes[0].isl.base_array_layer,
3964 VK_IMAGE_ASPECT_COLOR_BIT,
3965 render_area.offset.x, render_area.offset.y,
3966 render_area.offset.x, render_area.offset.y,
3967 render_area.extent.width,
3968 render_area.extent.height,
3969 fb->layers, BLORP_FILTER_NONE);
3970 }
3971 }
3972
3973 if (subpass->ds_resolve_attachment) {
3974 /* We are about to do some MSAA resolves. We need to flush so that the
3975 * result of writes to the MSAA depth attachments show up in the sampler
3976 * when we blit to the single-sampled resolve target.
3977 */
3978 cmd_buffer->state.pending_pipe_bits |=
3979 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
3980 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
3981
3982 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
3983 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
3984
3985 assert(src_att < cmd_buffer->state.pass->attachment_count);
3986 assert(dst_att < cmd_buffer->state.pass->attachment_count);
3987
3988 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
3989 /* From the Vulkan 1.0 spec:
3990 *
3991 * If the first use of an attachment in a render pass is as a
3992 * resolve attachment, then the loadOp is effectively ignored
3993 * as the resolve is guaranteed to overwrite all pixels in the
3994 * render area.
3995 */
3996 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
3997 }
3998
3999 struct anv_image_view *src_iview = fb->attachments[src_att];
4000 struct anv_image_view *dst_iview = fb->attachments[dst_att];
4001
4002 const VkRect2D render_area = cmd_buffer->state.render_area;
4003
4004 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
4005 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
4006
4007 struct anv_attachment_state *src_state =
4008 &cmd_state->attachments[src_att];
4009 struct anv_attachment_state *dst_state =
4010 &cmd_state->attachments[dst_att];
4011
4012 /* MSAA resolves sample from the source attachment. Transition the
4013 * depth attachment first to get rid of any HiZ that we may not be
4014 * able to handle.
4015 */
4016 transition_depth_buffer(cmd_buffer, src_iview->image,
4017 src_state->current_layout,
4018 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
4019 src_state->aux_usage =
4020 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
4021 VK_IMAGE_ASPECT_DEPTH_BIT,
4022 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
4023 src_state->current_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
4024
4025 /* MSAA resolves write to the resolve attachment as if it were any
4026 * other transfer op. Transition the resolve attachment accordingly.
4027 */
4028 VkImageLayout dst_initial_layout = dst_state->current_layout;
4029
4030 /* If our render area is the entire size of the image, we're going to
4031 * blow it all away so we can claim the initial layout is UNDEFINED
4032 * and we'll get a HiZ ambiguate instead of a resolve.
4033 */
4034 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
4035 render_area.offset.x == 0 && render_area.offset.y == 0 &&
4036 render_area.extent.width == dst_iview->extent.width &&
4037 render_area.extent.height == dst_iview->extent.height)
4038 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
4039
4040 transition_depth_buffer(cmd_buffer, dst_iview->image,
4041 dst_initial_layout,
4042 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
4043 dst_state->aux_usage =
4044 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
4045 VK_IMAGE_ASPECT_DEPTH_BIT,
4046 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
4047 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
4048
4049 enum blorp_filter filter =
4050 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
4051
4052 anv_image_msaa_resolve(cmd_buffer,
4053 src_iview->image, src_state->aux_usage,
4054 src_iview->planes[0].isl.base_level,
4055 src_iview->planes[0].isl.base_array_layer,
4056 dst_iview->image, dst_state->aux_usage,
4057 dst_iview->planes[0].isl.base_level,
4058 dst_iview->planes[0].isl.base_array_layer,
4059 VK_IMAGE_ASPECT_DEPTH_BIT,
4060 render_area.offset.x, render_area.offset.y,
4061 render_area.offset.x, render_area.offset.y,
4062 render_area.extent.width,
4063 render_area.extent.height,
4064 fb->layers, filter);
4065 }
4066
4067 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
4068 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
4069
4070 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
4071 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
4072
4073 enum blorp_filter filter =
4074 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
4075
4076 anv_image_msaa_resolve(cmd_buffer,
4077 src_iview->image, src_aux_usage,
4078 src_iview->planes[0].isl.base_level,
4079 src_iview->planes[0].isl.base_array_layer,
4080 dst_iview->image, dst_aux_usage,
4081 dst_iview->planes[0].isl.base_level,
4082 dst_iview->planes[0].isl.base_array_layer,
4083 VK_IMAGE_ASPECT_STENCIL_BIT,
4084 render_area.offset.x, render_area.offset.y,
4085 render_area.offset.x, render_area.offset.y,
4086 render_area.extent.width,
4087 render_area.extent.height,
4088 fb->layers, filter);
4089 }
4090 }
4091
4092 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4093 const uint32_t a = subpass->attachments[i].attachment;
4094 if (a == VK_ATTACHMENT_UNUSED)
4095 continue;
4096
4097 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
4098 continue;
4099
4100 assert(a < cmd_state->pass->attachment_count);
4101 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4102 struct anv_image_view *iview = fb->attachments[a];
4103 const struct anv_image *image = iview->image;
4104
4105 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
4106 image->vk_format != iview->vk_format) {
4107 enum anv_fast_clear_type fast_clear_type =
4108 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
4109 image, VK_IMAGE_ASPECT_COLOR_BIT,
4110 att_state->current_layout);
4111
4112 /* If any clear color was used, flush it down the aux surfaces. If we
4113 * don't do it now using the view's format we might use the clear
4114 * color incorrectly in the following resolves (for example with an
4115 * SRGB view & a UNORM image).
4116 */
4117 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
4118 anv_perf_warn(cmd_buffer->device->instance, fb,
4119 "Doing a partial resolve to get rid of clear color at the "
4120 "end of a renderpass due to an image/view format mismatch");
4121
4122 uint32_t base_layer, layer_count;
4123 if (image->type == VK_IMAGE_TYPE_3D) {
4124 base_layer = 0;
4125 layer_count = anv_minify(iview->image->extent.depth,
4126 iview->planes[0].isl.base_level);
4127 } else {
4128 base_layer = iview->planes[0].isl.base_array_layer;
4129 layer_count = fb->layers;
4130 }
4131
4132 for (uint32_t a = 0; a < layer_count; a++) {
4133 uint32_t array_layer = base_layer + a;
4134 if (image->samples == 1) {
4135 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
4136 iview->planes[0].isl.format,
4137 VK_IMAGE_ASPECT_COLOR_BIT,
4138 iview->planes[0].isl.base_level,
4139 array_layer,
4140 ISL_AUX_OP_PARTIAL_RESOLVE,
4141 ANV_FAST_CLEAR_NONE);
4142 } else {
4143 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
4144 iview->planes[0].isl.format,
4145 VK_IMAGE_ASPECT_COLOR_BIT,
4146 base_layer,
4147 ISL_AUX_OP_PARTIAL_RESOLVE,
4148 ANV_FAST_CLEAR_NONE);
4149 }
4150 }
4151 }
4152 }
4153
4154 /* Transition the image into the final layout for this render pass */
4155 VkImageLayout target_layout =
4156 cmd_state->pass->attachments[a].final_layout;
4157
4158 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4159 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4160
4161 uint32_t base_layer, layer_count;
4162 if (image->type == VK_IMAGE_TYPE_3D) {
4163 base_layer = 0;
4164 layer_count = anv_minify(iview->image->extent.depth,
4165 iview->planes[0].isl.base_level);
4166 } else {
4167 base_layer = iview->planes[0].isl.base_array_layer;
4168 layer_count = fb->layers;
4169 }
4170
4171 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4172 iview->planes[0].isl.base_level, 1,
4173 base_layer, layer_count,
4174 att_state->current_layout, target_layout);
4175 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4176 transition_depth_buffer(cmd_buffer, image,
4177 att_state->current_layout, target_layout);
4178 }
4179 }
4180
4181 /* Accumulate any subpass flushes that need to happen after the subpass.
4182 * Yes, they do get accumulated twice in the NextSubpass case but since
4183 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
4184 * ORing the bits in twice so it's harmless.
4185 */
4186 cmd_buffer->state.pending_pipe_bits |=
4187 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
4188 }
4189
4190 void genX(CmdBeginRenderPass)(
4191 VkCommandBuffer commandBuffer,
4192 const VkRenderPassBeginInfo* pRenderPassBegin,
4193 VkSubpassContents contents)
4194 {
4195 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4196 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
4197 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
4198
4199 cmd_buffer->state.framebuffer = framebuffer;
4200 cmd_buffer->state.pass = pass;
4201 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
4202 VkResult result =
4203 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
4204
4205 /* If we failed to setup the attachments we should not try to go further */
4206 if (result != VK_SUCCESS) {
4207 assert(anv_batch_has_error(&cmd_buffer->batch));
4208 return;
4209 }
4210
4211 genX(flush_pipeline_select_3d)(cmd_buffer);
4212
4213 cmd_buffer_begin_subpass(cmd_buffer, 0);
4214 }
4215
4216 void genX(CmdBeginRenderPass2KHR)(
4217 VkCommandBuffer commandBuffer,
4218 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
4219 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
4220 {
4221 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
4222 pSubpassBeginInfo->contents);
4223 }
4224
4225 void genX(CmdNextSubpass)(
4226 VkCommandBuffer commandBuffer,
4227 VkSubpassContents contents)
4228 {
4229 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4230
4231 if (anv_batch_has_error(&cmd_buffer->batch))
4232 return;
4233
4234 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
4235
4236 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
4237 cmd_buffer_end_subpass(cmd_buffer);
4238 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
4239 }
4240
4241 void genX(CmdNextSubpass2KHR)(
4242 VkCommandBuffer commandBuffer,
4243 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
4244 const VkSubpassEndInfoKHR* pSubpassEndInfo)
4245 {
4246 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
4247 }
4248
4249 void genX(CmdEndRenderPass)(
4250 VkCommandBuffer commandBuffer)
4251 {
4252 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4253
4254 if (anv_batch_has_error(&cmd_buffer->batch))
4255 return;
4256
4257 cmd_buffer_end_subpass(cmd_buffer);
4258
4259 cmd_buffer->state.hiz_enabled = false;
4260
4261 #ifndef NDEBUG
4262 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
4263 #endif
4264
4265 /* Remove references to render pass specific state. This enables us to
4266 * detect whether or not we're in a renderpass.
4267 */
4268 cmd_buffer->state.framebuffer = NULL;
4269 cmd_buffer->state.pass = NULL;
4270 cmd_buffer->state.subpass = NULL;
4271 }
4272
4273 void genX(CmdEndRenderPass2KHR)(
4274 VkCommandBuffer commandBuffer,
4275 const VkSubpassEndInfoKHR* pSubpassEndInfo)
4276 {
4277 genX(CmdEndRenderPass)(commandBuffer);
4278 }