anv/gen10: Ignore push constant packets during context restore.
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
36 emit_lrm(struct anv_batch *batch,
37 uint32_t reg, struct anv_bo *bo, uint32_t offset)
38 {
39 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
40 lrm.RegisterAddress = reg;
41 lrm.MemoryAddress = (struct anv_address) { bo, offset };
42 }
43 }
44
45 static void
46 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
47 {
48 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
49 lri.RegisterOffset = reg;
50 lri.DataDWord = imm;
51 }
52 }
53
54 #if GEN_IS_HASWELL || GEN_GEN >= 8
55 static void
56 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
57 {
58 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
59 lrr.SourceRegisterAddress = src;
60 lrr.DestinationRegisterAddress = dst;
61 }
62 }
63 #endif
64
65 void
66 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
67 {
68 struct anv_device *device = cmd_buffer->device;
69
70 /* Emit a render target cache flush.
71 *
72 * This isn't documented anywhere in the PRM. However, it seems to be
73 * necessary prior to changing the surface state base adress. Without
74 * this, we get GPU hangs when using multi-level command buffers which
75 * clear depth, reset state base address, and then go render stuff.
76 */
77 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
78 pc.DCFlushEnable = true;
79 pc.RenderTargetCacheFlushEnable = true;
80 pc.CommandStreamerStallEnable = true;
81 }
82
83 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
84 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
85 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
86 sba.GeneralStateBaseAddressModifyEnable = true;
87
88 sba.SurfaceStateBaseAddress =
89 anv_cmd_buffer_surface_base_address(cmd_buffer);
90 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
91 sba.SurfaceStateBaseAddressModifyEnable = true;
92
93 sba.DynamicStateBaseAddress =
94 (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
95 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
96 sba.DynamicStateBaseAddressModifyEnable = true;
97
98 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
99 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
100 sba.IndirectObjectBaseAddressModifyEnable = true;
101
102 sba.InstructionBaseAddress =
103 (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
104 sba.InstructionMemoryObjectControlState = GENX(MOCS);
105 sba.InstructionBaseAddressModifyEnable = true;
106
107 # if (GEN_GEN >= 8)
108 /* Broadwell requires that we specify a buffer size for a bunch of
109 * these fields. However, since we will be growing the BO's live, we
110 * just set them all to the maximum.
111 */
112 sba.GeneralStateBufferSize = 0xfffff;
113 sba.GeneralStateBufferSizeModifyEnable = true;
114 sba.DynamicStateBufferSize = 0xfffff;
115 sba.DynamicStateBufferSizeModifyEnable = true;
116 sba.IndirectObjectBufferSize = 0xfffff;
117 sba.IndirectObjectBufferSizeModifyEnable = true;
118 sba.InstructionBufferSize = 0xfffff;
119 sba.InstructionBuffersizeModifyEnable = true;
120 # endif
121 }
122
123 /* After re-setting the surface state base address, we have to do some
124 * cache flusing so that the sampler engine will pick up the new
125 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
126 * Shared Function > 3D Sampler > State > State Caching (page 96):
127 *
128 * Coherency with system memory in the state cache, like the texture
129 * cache is handled partially by software. It is expected that the
130 * command stream or shader will issue Cache Flush operation or
131 * Cache_Flush sampler message to ensure that the L1 cache remains
132 * coherent with system memory.
133 *
134 * [...]
135 *
136 * Whenever the value of the Dynamic_State_Base_Addr,
137 * Surface_State_Base_Addr are altered, the L1 state cache must be
138 * invalidated to ensure the new surface or sampler state is fetched
139 * from system memory.
140 *
141 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
142 * which, according the PIPE_CONTROL instruction documentation in the
143 * Broadwell PRM:
144 *
145 * Setting this bit is independent of any other bit in this packet.
146 * This bit controls the invalidation of the L1 and L2 state caches
147 * at the top of the pipe i.e. at the parsing time.
148 *
149 * Unfortunately, experimentation seems to indicate that state cache
150 * invalidation through a PIPE_CONTROL does nothing whatsoever in
151 * regards to surface state and binding tables. In stead, it seems that
152 * invalidating the texture cache is what is actually needed.
153 *
154 * XXX: As far as we have been able to determine through
155 * experimentation, shows that flush the texture cache appears to be
156 * sufficient. The theory here is that all of the sampling/rendering
157 * units cache the binding table in the texture cache. However, we have
158 * yet to be able to actually confirm this.
159 */
160 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
161 pc.TextureCacheInvalidationEnable = true;
162 pc.ConstantCacheInvalidationEnable = true;
163 pc.StateCacheInvalidationEnable = true;
164 }
165 }
166
167 static void
168 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
169 struct anv_state state,
170 struct anv_bo *bo, uint32_t offset)
171 {
172 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
173
174 VkResult result =
175 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
176 state.offset + isl_dev->ss.addr_offset, bo, offset);
177 if (result != VK_SUCCESS)
178 anv_batch_set_error(&cmd_buffer->batch, result);
179 }
180
181 static void
182 add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
183 const struct anv_image_view *image_view,
184 const uint32_t plane,
185 struct anv_surface_state state)
186 {
187 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188 const struct anv_image *image = image_view->image;
189 uint32_t image_plane = image_view->planes[plane].image_plane;
190
191 add_surface_state_reloc(cmd_buffer, state.state,
192 image->planes[image_plane].bo, state.address);
193
194 if (state.aux_address) {
195 VkResult result =
196 anv_reloc_list_add(&cmd_buffer->surface_relocs,
197 &cmd_buffer->pool->alloc,
198 state.state.offset + isl_dev->ss.aux_addr_offset,
199 image->planes[image_plane].bo, state.aux_address);
200 if (result != VK_SUCCESS)
201 anv_batch_set_error(&cmd_buffer->batch, result);
202 }
203 }
204
205 static bool
206 color_is_zero_one(VkClearColorValue value, enum isl_format format)
207 {
208 if (isl_format_has_int_channel(format)) {
209 for (unsigned i = 0; i < 4; i++) {
210 if (value.int32[i] != 0 && value.int32[i] != 1)
211 return false;
212 }
213 } else {
214 for (unsigned i = 0; i < 4; i++) {
215 if (value.float32[i] != 0.0f && value.float32[i] != 1.0f)
216 return false;
217 }
218 }
219
220 return true;
221 }
222
223 static void
224 color_attachment_compute_aux_usage(struct anv_device * device,
225 struct anv_cmd_state * cmd_state,
226 uint32_t att, VkRect2D render_area,
227 union isl_color_value *fast_clear_color)
228 {
229 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
230 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
231
232 assert(iview->n_planes == 1);
233
234 if (iview->planes[0].isl.base_array_layer >=
235 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
236 iview->planes[0].isl.base_level)) {
237 /* There is no aux buffer which corresponds to the level and layer(s)
238 * being accessed.
239 */
240 att_state->aux_usage = ISL_AUX_USAGE_NONE;
241 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
242 att_state->fast_clear = false;
243 return;
244 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_MCS) {
245 att_state->aux_usage = ISL_AUX_USAGE_MCS;
246 att_state->input_aux_usage = ISL_AUX_USAGE_MCS;
247 att_state->fast_clear = false;
248 return;
249 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E) {
250 att_state->aux_usage = ISL_AUX_USAGE_CCS_E;
251 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_E;
252 } else {
253 att_state->aux_usage = ISL_AUX_USAGE_CCS_D;
254 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
255 *
256 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
257 * setting is only allowed if Surface Format supported for Fast
258 * Clear. In addition, if the surface is bound to the sampling
259 * engine, Surface Format must be supported for Render Target
260 * Compression for surfaces bound to the sampling engine."
261 *
262 * In other words, we can only sample from a fast-cleared image if it
263 * also supports color compression.
264 */
265 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
266 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
267
268 /* While fast-clear resolves and partial resolves are fairly cheap in the
269 * case where you render to most of the pixels, full resolves are not
270 * because they potentially involve reading and writing the entire
271 * framebuffer. If we can't texture with CCS_E, we should leave it off and
272 * limit ourselves to fast clears.
273 */
274 if (cmd_state->pass->attachments[att].first_subpass_layout ==
275 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
276 anv_perf_warn(device->instance, iview->image,
277 "Not temporarily enabling CCS_E.");
278 }
279 } else {
280 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
281 }
282 }
283
284 assert(iview->image->planes[0].aux_surface.isl.usage & ISL_SURF_USAGE_CCS_BIT);
285
286 att_state->clear_color_is_zero_one =
287 color_is_zero_one(att_state->clear_value.color, iview->planes[0].isl.format);
288 att_state->clear_color_is_zero =
289 att_state->clear_value.color.uint32[0] == 0 &&
290 att_state->clear_value.color.uint32[1] == 0 &&
291 att_state->clear_value.color.uint32[2] == 0 &&
292 att_state->clear_value.color.uint32[3] == 0;
293
294 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
295 /* Start off assuming fast clears are possible */
296 att_state->fast_clear = true;
297
298 /* Potentially, we could do partial fast-clears but doing so has crazy
299 * alignment restrictions. It's easier to just restrict to full size
300 * fast clears for now.
301 */
302 if (render_area.offset.x != 0 ||
303 render_area.offset.y != 0 ||
304 render_area.extent.width != iview->extent.width ||
305 render_area.extent.height != iview->extent.height)
306 att_state->fast_clear = false;
307
308 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
309 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
310 att_state->fast_clear = false;
311
312 /* We allow fast clears when all aux layers of the miplevel are targeted.
313 * See add_fast_clear_state_buffer() for more information. Also, because
314 * we only either do a fast clear or a normal clear and not both, this
315 * complies with the gen7 restriction of not fast-clearing multiple
316 * layers.
317 */
318 if (cmd_state->framebuffer->layers !=
319 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
320 iview->planes[0].isl.base_level)) {
321 att_state->fast_clear = false;
322 if (GEN_GEN == 7) {
323 anv_perf_warn(device->instance, iview->image,
324 "Not fast-clearing the first layer in "
325 "a multi-layer fast clear.");
326 }
327 }
328
329 /* We only allow fast clears in the GENERAL layout if the auxiliary
330 * buffer is always enabled and the fast-clear value is all 0's. See
331 * add_fast_clear_state_buffer() for more information.
332 */
333 if (cmd_state->pass->attachments[att].first_subpass_layout ==
334 VK_IMAGE_LAYOUT_GENERAL &&
335 (!att_state->clear_color_is_zero ||
336 iview->image->planes[0].aux_usage == ISL_AUX_USAGE_NONE)) {
337 att_state->fast_clear = false;
338 }
339
340 if (att_state->fast_clear) {
341 memcpy(fast_clear_color->u32, att_state->clear_value.color.uint32,
342 sizeof(fast_clear_color->u32));
343 }
344 } else {
345 att_state->fast_clear = false;
346 }
347 }
348
349 static bool
350 need_input_attachment_state(const struct anv_render_pass_attachment *att)
351 {
352 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
353 return false;
354
355 /* We only allocate input attachment states for color surfaces. Compression
356 * is not yet enabled for depth textures and stencil doesn't allow
357 * compression so we can just use the texture surface state from the view.
358 */
359 return vk_format_is_color(att->format);
360 }
361
362 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
363 * the initial layout is undefined, the HiZ buffer and depth buffer will
364 * represent the same data at the end of this operation.
365 */
366 static void
367 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
368 const struct anv_image *image,
369 VkImageLayout initial_layout,
370 VkImageLayout final_layout)
371 {
372 assert(image);
373
374 /* A transition is a no-op if HiZ is not enabled, or if the initial and
375 * final layouts are equal.
376 *
377 * The undefined layout indicates that the user doesn't care about the data
378 * that's currently in the buffer. Therefore, a data-preserving resolve
379 * operation is not needed.
380 */
381 if (image->planes[0].aux_usage != ISL_AUX_USAGE_HIZ || initial_layout == final_layout)
382 return;
383
384 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
385 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
386 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
387 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
388 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
389 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
390
391 enum blorp_hiz_op hiz_op;
392 if (hiz_enabled && !enable_hiz) {
393 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
394 } else if (!hiz_enabled && enable_hiz) {
395 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
396 } else {
397 assert(hiz_enabled == enable_hiz);
398 /* If the same buffer will be used, no resolves are necessary. */
399 hiz_op = BLORP_HIZ_OP_NONE;
400 }
401
402 if (hiz_op != BLORP_HIZ_OP_NONE)
403 anv_gen8_hiz_op_resolve(cmd_buffer, image, hiz_op);
404 }
405
406 #define MI_PREDICATE_SRC0 0x2400
407 #define MI_PREDICATE_SRC1 0x2408
408
409 /* Manages the state of an color image subresource to ensure resolves are
410 * performed properly.
411 */
412 static void
413 genX(set_image_needs_resolve)(struct anv_cmd_buffer *cmd_buffer,
414 const struct anv_image *image,
415 VkImageAspectFlagBits aspect,
416 unsigned level, bool needs_resolve)
417 {
418 assert(cmd_buffer && image);
419 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
420 assert(level < anv_image_aux_levels(image, aspect));
421
422 /* The HW docs say that there is no way to guarantee the completion of
423 * the following command. We use it nevertheless because it shows no
424 * issues in testing is currently being used in the GL driver.
425 */
426 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
427 sdi.Address = anv_image_get_needs_resolve_addr(cmd_buffer->device,
428 image, aspect, level);
429 sdi.ImmediateData = needs_resolve;
430 }
431 }
432
433 static void
434 genX(load_needs_resolve_predicate)(struct anv_cmd_buffer *cmd_buffer,
435 const struct anv_image *image,
436 VkImageAspectFlagBits aspect,
437 unsigned level)
438 {
439 assert(cmd_buffer && image);
440 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
441 assert(level < anv_image_aux_levels(image, aspect));
442
443 const struct anv_address resolve_flag_addr =
444 anv_image_get_needs_resolve_addr(cmd_buffer->device,
445 image, aspect, level);
446
447 /* Make the pending predicated resolve a no-op if one is not needed.
448 * predicate = do_resolve = resolve_flag != 0;
449 */
450 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
451 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
452 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 , 0);
453 emit_lrm(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4,
454 resolve_flag_addr.bo, resolve_flag_addr.offset);
455 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
456 mip.LoadOperation = LOAD_LOADINV;
457 mip.CombineOperation = COMBINE_SET;
458 mip.CompareOperation = COMPARE_SRCS_EQUAL;
459 }
460 }
461
462 static void
463 init_fast_clear_state_entry(struct anv_cmd_buffer *cmd_buffer,
464 const struct anv_image *image,
465 VkImageAspectFlagBits aspect,
466 unsigned level)
467 {
468 assert(cmd_buffer && image);
469 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
470 assert(level < anv_image_aux_levels(image, aspect));
471
472 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
473 enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
474
475 /* The resolve flag should updated to signify that fast-clear/compression
476 * data needs to be removed when leaving the undefined layout. Such data
477 * may need to be removed if it would cause accesses to the color buffer
478 * to return incorrect data. The fast clear data in CCS_D buffers should
479 * be removed because CCS_D isn't enabled all the time.
480 */
481 genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level,
482 aux_usage == ISL_AUX_USAGE_NONE);
483
484 /* The fast clear value dword(s) will be copied into a surface state object.
485 * Ensure that the restrictions of the fields in the dword(s) are followed.
486 *
487 * CCS buffers on SKL+ can have any value set for the clear colors.
488 */
489 if (image->samples == 1 && GEN_GEN >= 9)
490 return;
491
492 /* Other combinations of auxiliary buffers and platforms require specific
493 * values in the clear value dword(s).
494 */
495 struct anv_address addr =
496 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
497 unsigned i = 0;
498 for (; i < cmd_buffer->device->isl_dev.ss.clear_value_size; i += 4) {
499 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
500 sdi.Address = addr;
501
502 if (GEN_GEN >= 9) {
503 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
504 assert(aux_usage == ISL_AUX_USAGE_MCS);
505 sdi.ImmediateData = 0;
506 } else if (GEN_VERSIONx10 >= 75) {
507 /* Pre-SKL, the dword containing the clear values also contains
508 * other fields, so we need to initialize those fields to match the
509 * values that would be in a color attachment.
510 */
511 assert(i == 0);
512 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
513 ISL_CHANNEL_SELECT_GREEN << 22 |
514 ISL_CHANNEL_SELECT_BLUE << 19 |
515 ISL_CHANNEL_SELECT_ALPHA << 16;
516 } else if (GEN_VERSIONx10 == 70) {
517 /* On IVB, the dword containing the clear values also contains
518 * other fields that must be zero or can be zero.
519 */
520 assert(i == 0);
521 sdi.ImmediateData = 0;
522 }
523 }
524
525 addr.offset += 4;
526 }
527 }
528
529 /* Copy the fast-clear value dword(s) between a surface state object and an
530 * image's fast clear state buffer.
531 */
532 static void
533 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
534 struct anv_state surface_state,
535 const struct anv_image *image,
536 VkImageAspectFlagBits aspect,
537 unsigned level,
538 bool copy_from_surface_state)
539 {
540 assert(cmd_buffer && image);
541 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
542 assert(level < anv_image_aux_levels(image, aspect));
543
544 struct anv_bo *ss_bo =
545 &cmd_buffer->device->surface_state_pool.block_pool.bo;
546 uint32_t ss_clear_offset = surface_state.offset +
547 cmd_buffer->device->isl_dev.ss.clear_value_offset;
548 const struct anv_address entry_addr =
549 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
550 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
551
552 if (copy_from_surface_state) {
553 genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr.bo, entry_addr.offset,
554 ss_bo, ss_clear_offset, copy_size);
555 } else {
556 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_bo, ss_clear_offset,
557 entry_addr.bo, entry_addr.offset, copy_size);
558
559 /* Updating a surface state object may require that the state cache be
560 * invalidated. From the SKL PRM, Shared Functions -> State -> State
561 * Caching:
562 *
563 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
564 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
565 * modified [...], the L1 state cache must be invalidated to ensure
566 * the new surface or sampler state is fetched from system memory.
567 *
568 * In testing, SKL doesn't actually seem to need this, but HSW does.
569 */
570 cmd_buffer->state.pending_pipe_bits |=
571 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
572 }
573 }
574
575 /**
576 * @brief Transitions a color buffer from one layout to another.
577 *
578 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
579 * more information.
580 *
581 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
582 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
583 * this represents the maximum layers to transition at each
584 * specified miplevel.
585 */
586 static void
587 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
588 const struct anv_image *image,
589 VkImageAspectFlagBits aspect,
590 const uint32_t base_level, uint32_t level_count,
591 uint32_t base_layer, uint32_t layer_count,
592 VkImageLayout initial_layout,
593 VkImageLayout final_layout)
594 {
595 /* Validate the inputs. */
596 assert(cmd_buffer);
597 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
598 /* These values aren't supported for simplicity's sake. */
599 assert(level_count != VK_REMAINING_MIP_LEVELS &&
600 layer_count != VK_REMAINING_ARRAY_LAYERS);
601 /* Ensure the subresource range is valid. */
602 uint64_t last_level_num = base_level + level_count;
603 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
604 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
605 assert((uint64_t)base_layer + layer_count <= image_layers);
606 assert(last_level_num <= image->levels);
607 /* The spec disallows these final layouts. */
608 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
609 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
610
611 /* No work is necessary if the layout stays the same or if this subresource
612 * range lacks auxiliary data.
613 */
614 if (initial_layout == final_layout)
615 return;
616
617 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
618
619 if (image->planes[plane].shadow_surface.isl.size > 0 &&
620 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
621 /* This surface is a linear compressed image with a tiled shadow surface
622 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
623 * we need to ensure the shadow copy is up-to-date.
624 */
625 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
626 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
627 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
628 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
629 assert(plane == 0);
630 anv_image_copy_to_shadow(cmd_buffer, image,
631 base_level, level_count,
632 base_layer, layer_count);
633 }
634
635 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
636 return;
637
638 /* A transition of a 3D subresource works on all slices at a time. */
639 if (image->type == VK_IMAGE_TYPE_3D) {
640 base_layer = 0;
641 layer_count = anv_minify(image->extent.depth, base_level);
642 }
643
644 /* We're interested in the subresource range subset that has aux data. */
645 level_count = MIN2(level_count, anv_image_aux_levels(image, aspect) - base_level);
646 layer_count = MIN2(layer_count,
647 anv_image_aux_layers(image, aspect, base_level) - base_layer);
648 last_level_num = base_level + level_count;
649
650 /* Record whether or not the layout is undefined. Pre-initialized images
651 * with auxiliary buffers have a non-linear layout and are thus undefined.
652 */
653 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
654 const bool undef_layout = initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
655 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
656
657 /* Do preparatory work before the resolve operation or return early if no
658 * resolve is actually needed.
659 */
660 if (undef_layout) {
661 /* A subresource in the undefined layout may have been aliased and
662 * populated with any arrangement of bits. Therefore, we must initialize
663 * the related aux buffer and clear buffer entry with desirable values.
664 *
665 * Initialize the relevant clear buffer entries.
666 */
667 for (unsigned level = base_level; level < last_level_num; level++)
668 init_fast_clear_state_entry(cmd_buffer, image, aspect, level);
669
670 /* Initialize the aux buffers to enable correct rendering. This operation
671 * requires up to two steps: one to rid the aux buffer of data that may
672 * cause GPU hangs, and another to ensure that writes done without aux
673 * will be visible to reads done with aux.
674 *
675 * Having an aux buffer with invalid data is possible for CCS buffers
676 * SKL+ and for MCS buffers with certain sample counts (2x and 8x). One
677 * easy way to get to a valid state is to fast-clear the specified range.
678 *
679 * Even for MCS buffers that have sample counts that don't require
680 * certain bits to be reserved (4x and 8x), we're unsure if the hardware
681 * will be okay with the sample mappings given by the undefined buffer.
682 * We don't have any data to show that this is a problem, but we want to
683 * avoid causing difficult-to-debug problems.
684 */
685 if ((GEN_GEN >= 9 && image->samples == 1) || image->samples > 1) {
686 if (image->samples == 4 || image->samples == 16) {
687 anv_perf_warn(cmd_buffer->device->instance, image,
688 "Doing a potentially unnecessary fast-clear to "
689 "define an MCS buffer.");
690 }
691
692 anv_image_fast_clear(cmd_buffer, image, aspect,
693 base_level, level_count,
694 base_layer, layer_count);
695 }
696 /* At this point, some elements of the CCS buffer may have the fast-clear
697 * bit-arrangement. As the user writes to a subresource, we need to have
698 * the associated CCS elements enter the ambiguated state. This enables
699 * reads (implicit or explicit) to reflect the user-written data instead
700 * of the clear color. The only time such elements will not change their
701 * state as described above, is in a final layout that doesn't have CCS
702 * enabled. In this case, we must force the associated CCS buffers of the
703 * specified range to enter the ambiguated state in advance.
704 */
705 if (image->samples == 1 &&
706 image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E &&
707 final_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
708 /* The CCS_D buffer may not be enabled in the final layout. Continue
709 * executing this function to perform a resolve.
710 */
711 anv_perf_warn(cmd_buffer->device->instance, image,
712 "Performing an additional resolve for CCS_D layout "
713 "transition. Consider always leaving it on or "
714 "performing an ambiguation pass.");
715 } else {
716 /* Writes in the final layout will be aware of the auxiliary buffer.
717 * In addition, the clear buffer entries and the auxiliary buffers
718 * have been populated with values that will result in correct
719 * rendering.
720 */
721 return;
722 }
723 } else if (initial_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
724 /* Resolves are only necessary if the subresource may contain blocks
725 * fast-cleared to values unsupported in other layouts. This only occurs
726 * if the initial layout is COLOR_ATTACHMENT_OPTIMAL.
727 */
728 return;
729 } else if (image->samples > 1) {
730 /* MCS buffers don't need resolving. */
731 return;
732 }
733
734 /* Perform a resolve to synchronize data between the main and aux buffer.
735 * Before we begin, we must satisfy the cache flushing requirement specified
736 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
737 *
738 * Any transition from any value in {Clear, Render, Resolve} to a
739 * different value in {Clear, Render, Resolve} requires end of pipe
740 * synchronization.
741 *
742 * We perform a flush of the write cache before and after the clear and
743 * resolve operations to meet this requirement.
744 *
745 * Unlike other drawing, fast clear operations are not properly
746 * synchronized. The first PIPE_CONTROL here likely ensures that the
747 * contents of the previous render or clear hit the render target before we
748 * resolve and the second likely ensures that the resolve is complete before
749 * we do any more rendering or clearing.
750 */
751 cmd_buffer->state.pending_pipe_bits |=
752 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
753
754 for (uint32_t level = base_level; level < last_level_num; level++) {
755
756 /* The number of layers changes at each 3D miplevel. */
757 if (image->type == VK_IMAGE_TYPE_3D) {
758 layer_count = MIN2(layer_count, anv_image_aux_layers(image, aspect, level));
759 }
760
761 genX(load_needs_resolve_predicate)(cmd_buffer, image, aspect, level);
762
763 anv_ccs_resolve(cmd_buffer, image, aspect, level, base_layer, layer_count,
764 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E ?
765 BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL :
766 BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
767
768 genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level, false);
769 }
770
771 cmd_buffer->state.pending_pipe_bits |=
772 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
773 }
774
775 /**
776 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
777 */
778 static VkResult
779 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
780 struct anv_render_pass *pass,
781 const VkRenderPassBeginInfo *begin)
782 {
783 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
784 struct anv_cmd_state *state = &cmd_buffer->state;
785
786 vk_free(&cmd_buffer->pool->alloc, state->attachments);
787
788 if (pass->attachment_count > 0) {
789 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
790 pass->attachment_count *
791 sizeof(state->attachments[0]),
792 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
793 if (state->attachments == NULL) {
794 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
795 return anv_batch_set_error(&cmd_buffer->batch,
796 VK_ERROR_OUT_OF_HOST_MEMORY);
797 }
798 } else {
799 state->attachments = NULL;
800 }
801
802 /* Reserve one for the NULL state. */
803 unsigned num_states = 1;
804 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
805 if (vk_format_is_color(pass->attachments[i].format))
806 num_states++;
807
808 if (need_input_attachment_state(&pass->attachments[i]))
809 num_states++;
810 }
811
812 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
813 state->render_pass_states =
814 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
815 num_states * ss_stride, isl_dev->ss.align);
816
817 struct anv_state next_state = state->render_pass_states;
818 next_state.alloc_size = isl_dev->ss.size;
819
820 state->null_surface_state = next_state;
821 next_state.offset += ss_stride;
822 next_state.map += ss_stride;
823
824 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
825 if (vk_format_is_color(pass->attachments[i].format)) {
826 state->attachments[i].color.state = next_state;
827 next_state.offset += ss_stride;
828 next_state.map += ss_stride;
829 }
830
831 if (need_input_attachment_state(&pass->attachments[i])) {
832 state->attachments[i].input.state = next_state;
833 next_state.offset += ss_stride;
834 next_state.map += ss_stride;
835 }
836 }
837 assert(next_state.offset == state->render_pass_states.offset +
838 state->render_pass_states.alloc_size);
839
840 if (begin) {
841 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
842 assert(pass->attachment_count == framebuffer->attachment_count);
843
844 isl_null_fill_state(isl_dev, state->null_surface_state.map,
845 isl_extent3d(framebuffer->width,
846 framebuffer->height,
847 framebuffer->layers));
848
849 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
850 struct anv_render_pass_attachment *att = &pass->attachments[i];
851 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
852 VkImageAspectFlags clear_aspects = 0;
853
854 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
855 /* color attachment */
856 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
857 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
858 }
859 } else {
860 /* depthstencil attachment */
861 if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
862 att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
863 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
864 }
865 if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
866 att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
867 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
868 }
869 }
870
871 state->attachments[i].current_layout = att->initial_layout;
872 state->attachments[i].pending_clear_aspects = clear_aspects;
873 if (clear_aspects)
874 state->attachments[i].clear_value = begin->pClearValues[i];
875
876 struct anv_image_view *iview = framebuffer->attachments[i];
877 anv_assert(iview->vk_format == att->format);
878 anv_assert(iview->n_planes == 1);
879
880 union isl_color_value clear_color = { .u32 = { 0, } };
881 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
882 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
883 color_attachment_compute_aux_usage(cmd_buffer->device,
884 state, i, begin->renderArea,
885 &clear_color);
886
887 anv_image_fill_surface_state(cmd_buffer->device,
888 iview->image,
889 VK_IMAGE_ASPECT_COLOR_BIT,
890 &iview->planes[0].isl,
891 ISL_SURF_USAGE_RENDER_TARGET_BIT,
892 state->attachments[i].aux_usage,
893 &clear_color,
894 0,
895 &state->attachments[i].color,
896 NULL);
897
898 add_image_view_relocs(cmd_buffer, iview, 0,
899 state->attachments[i].color);
900 } else {
901 /* This field will be initialized after the first subpass
902 * transition.
903 */
904 state->attachments[i].aux_usage = ISL_AUX_USAGE_NONE;
905
906 state->attachments[i].input_aux_usage = ISL_AUX_USAGE_NONE;
907 }
908
909 if (need_input_attachment_state(&pass->attachments[i])) {
910 anv_image_fill_surface_state(cmd_buffer->device,
911 iview->image,
912 VK_IMAGE_ASPECT_COLOR_BIT,
913 &iview->planes[0].isl,
914 ISL_SURF_USAGE_TEXTURE_BIT,
915 state->attachments[i].input_aux_usage,
916 &clear_color,
917 0,
918 &state->attachments[i].input,
919 NULL);
920
921 add_image_view_relocs(cmd_buffer, iview, 0,
922 state->attachments[i].input);
923 }
924 }
925 }
926
927 return VK_SUCCESS;
928 }
929
930 VkResult
931 genX(BeginCommandBuffer)(
932 VkCommandBuffer commandBuffer,
933 const VkCommandBufferBeginInfo* pBeginInfo)
934 {
935 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
936
937 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
938 * command buffer's state. Otherwise, we must *reset* its state. In both
939 * cases we reset it.
940 *
941 * From the Vulkan 1.0 spec:
942 *
943 * If a command buffer is in the executable state and the command buffer
944 * was allocated from a command pool with the
945 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
946 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
947 * as if vkResetCommandBuffer had been called with
948 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
949 * the command buffer in the recording state.
950 */
951 anv_cmd_buffer_reset(cmd_buffer);
952
953 cmd_buffer->usage_flags = pBeginInfo->flags;
954
955 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
956 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
957
958 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
959
960 /* We sometimes store vertex data in the dynamic state buffer for blorp
961 * operations and our dynamic state stream may re-use data from previous
962 * command buffers. In order to prevent stale cache data, we flush the VF
963 * cache. We could do this on every blorp call but that's not really
964 * needed as all of the data will get written by the CPU prior to the GPU
965 * executing anything. The chances are fairly high that they will use
966 * blorp at least once per primary command buffer so it shouldn't be
967 * wasted.
968 */
969 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
970 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
971
972 VkResult result = VK_SUCCESS;
973 if (cmd_buffer->usage_flags &
974 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
975 assert(pBeginInfo->pInheritanceInfo);
976 cmd_buffer->state.pass =
977 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
978 cmd_buffer->state.subpass =
979 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
980
981 /* This is optional in the inheritance info. */
982 cmd_buffer->state.framebuffer =
983 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
984
985 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
986 cmd_buffer->state.pass, NULL);
987
988 /* Record that HiZ is enabled if we can. */
989 if (cmd_buffer->state.framebuffer) {
990 const struct anv_image_view * const iview =
991 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
992
993 if (iview) {
994 VkImageLayout layout =
995 cmd_buffer->state.subpass->depth_stencil_attachment.layout;
996
997 enum isl_aux_usage aux_usage =
998 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
999 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1000
1001 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1002 }
1003 }
1004
1005 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1006 }
1007
1008 return result;
1009 }
1010
1011 /**
1012 * From the PRM, Volume 2a:
1013 *
1014 * "Indirect State Pointers Disable
1015 *
1016 * At the completion of the post-sync operation associated with this pipe
1017 * control packet, the indirect state pointers in the hardware are
1018 * considered invalid; the indirect pointers are not saved in the context.
1019 * If any new indirect state commands are executed in the command stream
1020 * while the pipe control is pending, the new indirect state commands are
1021 * preserved.
1022 *
1023 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1024 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1025 * commands are only considered as Indirect State Pointers. Once ISP is
1026 * issued in a context, SW must initialize by programming push constant
1027 * commands for all the shaders (at least to zero length) before attempting
1028 * any rendering operation for the same context."
1029 *
1030 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1031 * even though they point to a BO that has been already unreferenced at
1032 * the end of the previous batch buffer. This has been fine so far since
1033 * we are protected by these scratch page (every address not covered by
1034 * a BO should be pointing to the scratch page). But on CNL, it is
1035 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1036 * instruction.
1037 *
1038 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1039 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1040 * context restore, so the mentioned hang doesn't happen. However,
1041 * software must program push constant commands for all stages prior to
1042 * rendering anything, so we flag them as dirty.
1043 */
1044 static void
1045 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1046 {
1047 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1048 pc.IndirectStatePointersDisable = true;
1049 pc.PostSyncOperation = WriteImmediateData;
1050 pc.Address =
1051 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
1052 }
1053 }
1054
1055 VkResult
1056 genX(EndCommandBuffer)(
1057 VkCommandBuffer commandBuffer)
1058 {
1059 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1060
1061 if (anv_batch_has_error(&cmd_buffer->batch))
1062 return cmd_buffer->batch.status;
1063
1064 /* We want every command buffer to start with the PMA fix in a known state,
1065 * so we disable it at the end of the command buffer.
1066 */
1067 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1068
1069 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1070
1071 if (GEN_GEN == 10)
1072 emit_isp_disable(cmd_buffer);
1073
1074 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1075
1076 return VK_SUCCESS;
1077 }
1078
1079 void
1080 genX(CmdExecuteCommands)(
1081 VkCommandBuffer commandBuffer,
1082 uint32_t commandBufferCount,
1083 const VkCommandBuffer* pCmdBuffers)
1084 {
1085 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1086
1087 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1088
1089 if (anv_batch_has_error(&primary->batch))
1090 return;
1091
1092 /* The secondary command buffers will assume that the PMA fix is disabled
1093 * when they begin executing. Make sure this is true.
1094 */
1095 genX(cmd_buffer_enable_pma_fix)(primary, false);
1096
1097 /* The secondary command buffer doesn't know which textures etc. have been
1098 * flushed prior to their execution. Apply those flushes now.
1099 */
1100 genX(cmd_buffer_apply_pipe_flushes)(primary);
1101
1102 for (uint32_t i = 0; i < commandBufferCount; i++) {
1103 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1104
1105 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1106 assert(!anv_batch_has_error(&secondary->batch));
1107
1108 if (secondary->usage_flags &
1109 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1110 /* If we're continuing a render pass from the primary, we need to
1111 * copy the surface states for the current subpass into the storage
1112 * we allocated for them in BeginCommandBuffer.
1113 */
1114 struct anv_bo *ss_bo =
1115 &primary->device->surface_state_pool.block_pool.bo;
1116 struct anv_state src_state = primary->state.render_pass_states;
1117 struct anv_state dst_state = secondary->state.render_pass_states;
1118 assert(src_state.alloc_size == dst_state.alloc_size);
1119
1120 genX(cmd_buffer_so_memcpy)(primary, ss_bo, dst_state.offset,
1121 ss_bo, src_state.offset,
1122 src_state.alloc_size);
1123 }
1124
1125 anv_cmd_buffer_add_secondary(primary, secondary);
1126 }
1127
1128 /* The secondary may have selected a different pipeline (3D or compute) and
1129 * may have changed the current L3$ configuration. Reset our tracking
1130 * variables to invalid values to ensure that we re-emit these in the case
1131 * where we do any draws or compute dispatches from the primary after the
1132 * secondary has returned.
1133 */
1134 primary->state.current_pipeline = UINT32_MAX;
1135 primary->state.current_l3_config = NULL;
1136
1137 /* Each of the secondary command buffers will use its own state base
1138 * address. We need to re-emit state base address for the primary after
1139 * all of the secondaries are done.
1140 *
1141 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1142 * address calls?
1143 */
1144 genX(cmd_buffer_emit_state_base_address)(primary);
1145 }
1146
1147 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1148 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1149 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1150
1151 /**
1152 * Program the hardware to use the specified L3 configuration.
1153 */
1154 void
1155 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1156 const struct gen_l3_config *cfg)
1157 {
1158 assert(cfg);
1159 if (cfg == cmd_buffer->state.current_l3_config)
1160 return;
1161
1162 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1163 intel_logd("L3 config transition: ");
1164 gen_dump_l3_config(cfg, stderr);
1165 }
1166
1167 const bool has_slm = cfg->n[GEN_L3P_SLM];
1168
1169 /* According to the hardware docs, the L3 partitioning can only be changed
1170 * while the pipeline is completely drained and the caches are flushed,
1171 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1172 */
1173 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1174 pc.DCFlushEnable = true;
1175 pc.PostSyncOperation = NoWrite;
1176 pc.CommandStreamerStallEnable = true;
1177 }
1178
1179 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1180 * invalidation of the relevant caches. Note that because RO invalidation
1181 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1182 * command is processed by the CS) we cannot combine it with the previous
1183 * stalling flush as the hardware documentation suggests, because that
1184 * would cause the CS to stall on previous rendering *after* RO
1185 * invalidation and wouldn't prevent the RO caches from being polluted by
1186 * concurrent rendering before the stall completes. This intentionally
1187 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1188 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1189 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1190 * already guarantee that there is no concurrent GPGPU kernel execution
1191 * (see SKL HSD 2132585).
1192 */
1193 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1194 pc.TextureCacheInvalidationEnable = true;
1195 pc.ConstantCacheInvalidationEnable = true;
1196 pc.InstructionCacheInvalidateEnable = true;
1197 pc.StateCacheInvalidationEnable = true;
1198 pc.PostSyncOperation = NoWrite;
1199 }
1200
1201 /* Now send a third stalling flush to make sure that invalidation is
1202 * complete when the L3 configuration registers are modified.
1203 */
1204 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1205 pc.DCFlushEnable = true;
1206 pc.PostSyncOperation = NoWrite;
1207 pc.CommandStreamerStallEnable = true;
1208 }
1209
1210 #if GEN_GEN >= 8
1211
1212 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1213
1214 uint32_t l3cr;
1215 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1216 .SLMEnable = has_slm,
1217 .URBAllocation = cfg->n[GEN_L3P_URB],
1218 .ROAllocation = cfg->n[GEN_L3P_RO],
1219 .DCAllocation = cfg->n[GEN_L3P_DC],
1220 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1221
1222 /* Set up the L3 partitioning. */
1223 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1224
1225 #else
1226
1227 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1228 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1229 cfg->n[GEN_L3P_ALL];
1230 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1231 cfg->n[GEN_L3P_ALL];
1232 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1233 cfg->n[GEN_L3P_ALL];
1234
1235 assert(!cfg->n[GEN_L3P_ALL]);
1236
1237 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1238 * the matching space on the remaining banks has to be allocated to a
1239 * client (URB for all validated configurations) set to the
1240 * lower-bandwidth 2-bank address hashing mode.
1241 */
1242 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1243 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1244 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1245
1246 /* Minimum number of ways that can be allocated to the URB. */
1247 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1248 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1249
1250 uint32_t l3sqcr1, l3cr2, l3cr3;
1251 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1252 .ConvertDC_UC = !has_dc,
1253 .ConvertIS_UC = !has_is,
1254 .ConvertC_UC = !has_c,
1255 .ConvertT_UC = !has_t);
1256 l3sqcr1 |=
1257 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1258 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1259 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1260
1261 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1262 .SLMEnable = has_slm,
1263 .URBLowBandwidth = urb_low_bw,
1264 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1265 #if !GEN_IS_HASWELL
1266 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1267 #endif
1268 .ROAllocation = cfg->n[GEN_L3P_RO],
1269 .DCAllocation = cfg->n[GEN_L3P_DC]);
1270
1271 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1272 .ISAllocation = cfg->n[GEN_L3P_IS],
1273 .ISLowBandwidth = 0,
1274 .CAllocation = cfg->n[GEN_L3P_C],
1275 .CLowBandwidth = 0,
1276 .TAllocation = cfg->n[GEN_L3P_T],
1277 .TLowBandwidth = 0);
1278
1279 /* Set up the L3 partitioning. */
1280 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1281 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1282 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1283
1284 #if GEN_IS_HASWELL
1285 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1286 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1287 * them disabled to avoid crashing the system hard.
1288 */
1289 uint32_t scratch1, chicken3;
1290 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1291 .L3AtomicDisable = !has_dc);
1292 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1293 .L3AtomicDisableMask = true,
1294 .L3AtomicDisable = !has_dc);
1295 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1296 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1297 }
1298 #endif
1299
1300 #endif
1301
1302 cmd_buffer->state.current_l3_config = cfg;
1303 }
1304
1305 void
1306 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1307 {
1308 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1309
1310 /* Flushes are pipelined while invalidations are handled immediately.
1311 * Therefore, if we're flushing anything then we need to schedule a stall
1312 * before any invalidations can happen.
1313 */
1314 if (bits & ANV_PIPE_FLUSH_BITS)
1315 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1316
1317 /* If we're going to do an invalidate and we have a pending CS stall that
1318 * has yet to be resolved, we do the CS stall now.
1319 */
1320 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1321 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1322 bits |= ANV_PIPE_CS_STALL_BIT;
1323 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1324 }
1325
1326 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1327 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1328 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1329 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1330 pipe.RenderTargetCacheFlushEnable =
1331 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1332
1333 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1334 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1335 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1336
1337 /*
1338 * According to the Broadwell documentation, any PIPE_CONTROL with the
1339 * "Command Streamer Stall" bit set must also have another bit set,
1340 * with five different options:
1341 *
1342 * - Render Target Cache Flush
1343 * - Depth Cache Flush
1344 * - Stall at Pixel Scoreboard
1345 * - Post-Sync Operation
1346 * - Depth Stall
1347 * - DC Flush Enable
1348 *
1349 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1350 * mesa and it seems to work fine. The choice is fairly arbitrary.
1351 */
1352 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1353 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1354 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1355 pipe.StallAtPixelScoreboard = true;
1356 }
1357
1358 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1359 }
1360
1361 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1362 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1363 pipe.StateCacheInvalidationEnable =
1364 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1365 pipe.ConstantCacheInvalidationEnable =
1366 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1367 pipe.VFCacheInvalidationEnable =
1368 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1369 pipe.TextureCacheInvalidationEnable =
1370 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1371 pipe.InstructionCacheInvalidateEnable =
1372 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1373 }
1374
1375 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1376 }
1377
1378 cmd_buffer->state.pending_pipe_bits = bits;
1379 }
1380
1381 void genX(CmdPipelineBarrier)(
1382 VkCommandBuffer commandBuffer,
1383 VkPipelineStageFlags srcStageMask,
1384 VkPipelineStageFlags destStageMask,
1385 VkBool32 byRegion,
1386 uint32_t memoryBarrierCount,
1387 const VkMemoryBarrier* pMemoryBarriers,
1388 uint32_t bufferMemoryBarrierCount,
1389 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1390 uint32_t imageMemoryBarrierCount,
1391 const VkImageMemoryBarrier* pImageMemoryBarriers)
1392 {
1393 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1394
1395 /* XXX: Right now, we're really dumb and just flush whatever categories
1396 * the app asks for. One of these days we may make this a bit better
1397 * but right now that's all the hardware allows for in most areas.
1398 */
1399 VkAccessFlags src_flags = 0;
1400 VkAccessFlags dst_flags = 0;
1401
1402 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1403 src_flags |= pMemoryBarriers[i].srcAccessMask;
1404 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1405 }
1406
1407 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1408 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1409 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1410 }
1411
1412 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1413 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1414 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1415 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1416 const VkImageSubresourceRange *range =
1417 &pImageMemoryBarriers[i].subresourceRange;
1418
1419 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1420 transition_depth_buffer(cmd_buffer, image,
1421 pImageMemoryBarriers[i].oldLayout,
1422 pImageMemoryBarriers[i].newLayout);
1423 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1424 VkImageAspectFlags color_aspects =
1425 anv_image_expand_aspects(image, range->aspectMask);
1426 uint32_t aspect_bit;
1427
1428 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1429 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1430 range->baseMipLevel,
1431 anv_get_levelCount(image, range),
1432 range->baseArrayLayer,
1433 anv_get_layerCount(image, range),
1434 pImageMemoryBarriers[i].oldLayout,
1435 pImageMemoryBarriers[i].newLayout);
1436 }
1437 }
1438 }
1439
1440 cmd_buffer->state.pending_pipe_bits |=
1441 anv_pipe_flush_bits_for_access_flags(src_flags) |
1442 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1443 }
1444
1445 static void
1446 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1447 {
1448 VkShaderStageFlags stages =
1449 cmd_buffer->state.gfx.base.pipeline->active_stages;
1450
1451 /* In order to avoid thrash, we assume that vertex and fragment stages
1452 * always exist. In the rare case where one is missing *and* the other
1453 * uses push concstants, this may be suboptimal. However, avoiding stalls
1454 * seems more important.
1455 */
1456 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1457
1458 if (stages == cmd_buffer->state.push_constant_stages)
1459 return;
1460
1461 #if GEN_GEN >= 8
1462 const unsigned push_constant_kb = 32;
1463 #elif GEN_IS_HASWELL
1464 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1465 #else
1466 const unsigned push_constant_kb = 16;
1467 #endif
1468
1469 const unsigned num_stages =
1470 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1471 unsigned size_per_stage = push_constant_kb / num_stages;
1472
1473 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1474 * units of 2KB. Incidentally, these are the same platforms that have
1475 * 32KB worth of push constant space.
1476 */
1477 if (push_constant_kb == 32)
1478 size_per_stage &= ~1u;
1479
1480 uint32_t kb_used = 0;
1481 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1482 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1483 anv_batch_emit(&cmd_buffer->batch,
1484 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1485 alloc._3DCommandSubOpcode = 18 + i;
1486 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1487 alloc.ConstantBufferSize = push_size;
1488 }
1489 kb_used += push_size;
1490 }
1491
1492 anv_batch_emit(&cmd_buffer->batch,
1493 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1494 alloc.ConstantBufferOffset = kb_used;
1495 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1496 }
1497
1498 cmd_buffer->state.push_constant_stages = stages;
1499
1500 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1501 *
1502 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1503 * the next 3DPRIMITIVE command after programming the
1504 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1505 *
1506 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1507 * pipeline setup, we need to dirty push constants.
1508 */
1509 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1510 }
1511
1512 static const struct anv_descriptor *
1513 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1514 const struct anv_pipeline_binding *binding)
1515 {
1516 assert(binding->set < MAX_SETS);
1517 const struct anv_descriptor_set *set =
1518 pipe_state->descriptors[binding->set];
1519 const uint32_t offset =
1520 set->layout->binding[binding->binding].descriptor_index;
1521 return &set->descriptors[offset + binding->index];
1522 }
1523
1524 static uint32_t
1525 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1526 const struct anv_pipeline_binding *binding)
1527 {
1528 assert(binding->set < MAX_SETS);
1529 const struct anv_descriptor_set *set =
1530 pipe_state->descriptors[binding->set];
1531
1532 uint32_t dynamic_offset_idx =
1533 pipe_state->layout->set[binding->set].dynamic_offset_start +
1534 set->layout->binding[binding->binding].dynamic_offset_index +
1535 binding->index;
1536
1537 return pipe_state->dynamic_offsets[dynamic_offset_idx];
1538 }
1539
1540 static VkResult
1541 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1542 gl_shader_stage stage,
1543 struct anv_state *bt_state)
1544 {
1545 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1546 struct anv_cmd_pipeline_state *pipe_state;
1547 struct anv_pipeline *pipeline;
1548 uint32_t bias, state_offset;
1549
1550 switch (stage) {
1551 case MESA_SHADER_COMPUTE:
1552 pipe_state = &cmd_buffer->state.compute.base;
1553 bias = 1;
1554 break;
1555 default:
1556 pipe_state = &cmd_buffer->state.gfx.base;
1557 bias = 0;
1558 break;
1559 }
1560 pipeline = pipe_state->pipeline;
1561
1562 if (!anv_pipeline_has_stage(pipeline, stage)) {
1563 *bt_state = (struct anv_state) { 0, };
1564 return VK_SUCCESS;
1565 }
1566
1567 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1568 if (bias + map->surface_count == 0) {
1569 *bt_state = (struct anv_state) { 0, };
1570 return VK_SUCCESS;
1571 }
1572
1573 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1574 bias + map->surface_count,
1575 &state_offset);
1576 uint32_t *bt_map = bt_state->map;
1577
1578 if (bt_state->map == NULL)
1579 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1580
1581 if (stage == MESA_SHADER_COMPUTE &&
1582 get_cs_prog_data(pipeline)->uses_num_work_groups) {
1583 struct anv_bo *bo = cmd_buffer->state.compute.num_workgroups.bo;
1584 uint32_t bo_offset = cmd_buffer->state.compute.num_workgroups.offset;
1585
1586 struct anv_state surface_state;
1587 surface_state =
1588 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1589
1590 const enum isl_format format =
1591 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1592 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1593 format, bo_offset, 12, 1);
1594
1595 bt_map[0] = surface_state.offset + state_offset;
1596 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
1597 }
1598
1599 if (map->surface_count == 0)
1600 goto out;
1601
1602 if (map->image_count > 0) {
1603 VkResult result =
1604 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1605 if (result != VK_SUCCESS)
1606 return result;
1607
1608 cmd_buffer->state.push_constants_dirty |= 1 << stage;
1609 }
1610
1611 uint32_t image = 0;
1612 for (uint32_t s = 0; s < map->surface_count; s++) {
1613 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
1614
1615 struct anv_state surface_state;
1616
1617 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
1618 /* Color attachment binding */
1619 assert(stage == MESA_SHADER_FRAGMENT);
1620 assert(binding->binding == 0);
1621 if (binding->index < subpass->color_count) {
1622 const unsigned att =
1623 subpass->color_attachments[binding->index].attachment;
1624
1625 /* From the Vulkan 1.0.46 spec:
1626 *
1627 * "If any color or depth/stencil attachments are
1628 * VK_ATTACHMENT_UNUSED, then no writes occur for those
1629 * attachments."
1630 */
1631 if (att == VK_ATTACHMENT_UNUSED) {
1632 surface_state = cmd_buffer->state.null_surface_state;
1633 } else {
1634 surface_state = cmd_buffer->state.attachments[att].color.state;
1635 }
1636 } else {
1637 surface_state = cmd_buffer->state.null_surface_state;
1638 }
1639
1640 bt_map[bias + s] = surface_state.offset + state_offset;
1641 continue;
1642 }
1643
1644 const struct anv_descriptor *desc =
1645 anv_descriptor_for_binding(pipe_state, binding);
1646
1647 switch (desc->type) {
1648 case VK_DESCRIPTOR_TYPE_SAMPLER:
1649 /* Nothing for us to do here */
1650 continue;
1651
1652 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1653 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
1654 struct anv_surface_state sstate =
1655 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1656 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1657 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1658 surface_state = sstate.state;
1659 assert(surface_state.alloc_size);
1660 add_image_view_relocs(cmd_buffer, desc->image_view,
1661 binding->plane, sstate);
1662 break;
1663 }
1664 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1665 assert(stage == MESA_SHADER_FRAGMENT);
1666 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
1667 /* For depth and stencil input attachments, we treat it like any
1668 * old texture that a user may have bound.
1669 */
1670 struct anv_surface_state sstate =
1671 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1672 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1673 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1674 surface_state = sstate.state;
1675 assert(surface_state.alloc_size);
1676 add_image_view_relocs(cmd_buffer, desc->image_view,
1677 binding->plane, sstate);
1678 } else {
1679 /* For color input attachments, we create the surface state at
1680 * vkBeginRenderPass time so that we can include aux and clear
1681 * color information.
1682 */
1683 assert(binding->input_attachment_index < subpass->input_count);
1684 const unsigned subpass_att = binding->input_attachment_index;
1685 const unsigned att = subpass->input_attachments[subpass_att].attachment;
1686 surface_state = cmd_buffer->state.attachments[att].input.state;
1687 }
1688 break;
1689
1690 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1691 struct anv_surface_state sstate = (binding->write_only)
1692 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
1693 : desc->image_view->planes[binding->plane].storage_surface_state;
1694 surface_state = sstate.state;
1695 assert(surface_state.alloc_size);
1696 add_image_view_relocs(cmd_buffer, desc->image_view,
1697 binding->plane, sstate);
1698
1699 struct brw_image_param *image_param =
1700 &cmd_buffer->state.push_constants[stage]->images[image++];
1701
1702 *image_param = desc->image_view->planes[binding->plane].storage_image_param;
1703 image_param->surface_idx = bias + s;
1704 break;
1705 }
1706
1707 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1708 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1709 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1710 surface_state = desc->buffer_view->surface_state;
1711 assert(surface_state.alloc_size);
1712 add_surface_state_reloc(cmd_buffer, surface_state,
1713 desc->buffer_view->bo,
1714 desc->buffer_view->offset);
1715 break;
1716
1717 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1718 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1719 /* Compute the offset within the buffer */
1720 uint32_t dynamic_offset =
1721 dynamic_offset_for_binding(pipe_state, binding);
1722 uint64_t offset = desc->offset + dynamic_offset;
1723 /* Clamp to the buffer size */
1724 offset = MIN2(offset, desc->buffer->size);
1725 /* Clamp the range to the buffer size */
1726 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
1727
1728 surface_state =
1729 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
1730 enum isl_format format =
1731 anv_isl_format_for_descriptor_type(desc->type);
1732
1733 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1734 format, offset, range, 1);
1735 add_surface_state_reloc(cmd_buffer, surface_state,
1736 desc->buffer->bo,
1737 desc->buffer->offset + offset);
1738 break;
1739 }
1740
1741 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1742 surface_state = (binding->write_only)
1743 ? desc->buffer_view->writeonly_storage_surface_state
1744 : desc->buffer_view->storage_surface_state;
1745 assert(surface_state.alloc_size);
1746 add_surface_state_reloc(cmd_buffer, surface_state,
1747 desc->buffer_view->bo,
1748 desc->buffer_view->offset);
1749
1750 struct brw_image_param *image_param =
1751 &cmd_buffer->state.push_constants[stage]->images[image++];
1752
1753 *image_param = desc->buffer_view->storage_image_param;
1754 image_param->surface_idx = bias + s;
1755 break;
1756
1757 default:
1758 assert(!"Invalid descriptor type");
1759 continue;
1760 }
1761
1762 bt_map[bias + s] = surface_state.offset + state_offset;
1763 }
1764 assert(image == map->image_count);
1765
1766 out:
1767 anv_state_flush(cmd_buffer->device, *bt_state);
1768
1769 return VK_SUCCESS;
1770 }
1771
1772 static VkResult
1773 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1774 gl_shader_stage stage,
1775 struct anv_state *state)
1776 {
1777 struct anv_cmd_pipeline_state *pipe_state =
1778 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
1779 &cmd_buffer->state.gfx.base;
1780 struct anv_pipeline *pipeline = pipe_state->pipeline;
1781
1782 if (!anv_pipeline_has_stage(pipeline, stage)) {
1783 *state = (struct anv_state) { 0, };
1784 return VK_SUCCESS;
1785 }
1786
1787 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1788 if (map->sampler_count == 0) {
1789 *state = (struct anv_state) { 0, };
1790 return VK_SUCCESS;
1791 }
1792
1793 uint32_t size = map->sampler_count * 16;
1794 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
1795
1796 if (state->map == NULL)
1797 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1798
1799 for (uint32_t s = 0; s < map->sampler_count; s++) {
1800 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
1801 const struct anv_descriptor *desc =
1802 anv_descriptor_for_binding(pipe_state, binding);
1803
1804 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
1805 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
1806 continue;
1807
1808 struct anv_sampler *sampler = desc->sampler;
1809
1810 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
1811 * happens to be zero.
1812 */
1813 if (sampler == NULL)
1814 continue;
1815
1816 memcpy(state->map + (s * 16),
1817 sampler->state[binding->plane], sizeof(sampler->state[0]));
1818 }
1819
1820 anv_state_flush(cmd_buffer->device, *state);
1821
1822 return VK_SUCCESS;
1823 }
1824
1825 static uint32_t
1826 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
1827 {
1828 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
1829
1830 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
1831 pipeline->active_stages;
1832
1833 VkResult result = VK_SUCCESS;
1834 anv_foreach_stage(s, dirty) {
1835 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1836 if (result != VK_SUCCESS)
1837 break;
1838 result = emit_binding_table(cmd_buffer, s,
1839 &cmd_buffer->state.binding_tables[s]);
1840 if (result != VK_SUCCESS)
1841 break;
1842 }
1843
1844 if (result != VK_SUCCESS) {
1845 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
1846
1847 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
1848 if (result != VK_SUCCESS)
1849 return 0;
1850
1851 /* Re-emit state base addresses so we get the new surface state base
1852 * address before we start emitting binding tables etc.
1853 */
1854 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1855
1856 /* Re-emit all active binding tables */
1857 dirty |= pipeline->active_stages;
1858 anv_foreach_stage(s, dirty) {
1859 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1860 if (result != VK_SUCCESS) {
1861 anv_batch_set_error(&cmd_buffer->batch, result);
1862 return 0;
1863 }
1864 result = emit_binding_table(cmd_buffer, s,
1865 &cmd_buffer->state.binding_tables[s]);
1866 if (result != VK_SUCCESS) {
1867 anv_batch_set_error(&cmd_buffer->batch, result);
1868 return 0;
1869 }
1870 }
1871 }
1872
1873 cmd_buffer->state.descriptors_dirty &= ~dirty;
1874
1875 return dirty;
1876 }
1877
1878 static void
1879 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
1880 uint32_t stages)
1881 {
1882 static const uint32_t sampler_state_opcodes[] = {
1883 [MESA_SHADER_VERTEX] = 43,
1884 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
1885 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
1886 [MESA_SHADER_GEOMETRY] = 46,
1887 [MESA_SHADER_FRAGMENT] = 47,
1888 [MESA_SHADER_COMPUTE] = 0,
1889 };
1890
1891 static const uint32_t binding_table_opcodes[] = {
1892 [MESA_SHADER_VERTEX] = 38,
1893 [MESA_SHADER_TESS_CTRL] = 39,
1894 [MESA_SHADER_TESS_EVAL] = 40,
1895 [MESA_SHADER_GEOMETRY] = 41,
1896 [MESA_SHADER_FRAGMENT] = 42,
1897 [MESA_SHADER_COMPUTE] = 0,
1898 };
1899
1900 anv_foreach_stage(s, stages) {
1901 assert(s < ARRAY_SIZE(binding_table_opcodes));
1902 assert(binding_table_opcodes[s] > 0);
1903
1904 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
1905 anv_batch_emit(&cmd_buffer->batch,
1906 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
1907 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
1908 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
1909 }
1910 }
1911
1912 /* Always emit binding table pointers if we're asked to, since on SKL
1913 * this is what flushes push constants. */
1914 anv_batch_emit(&cmd_buffer->batch,
1915 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
1916 btp._3DCommandSubOpcode = binding_table_opcodes[s];
1917 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
1918 }
1919 }
1920 }
1921
1922 static void
1923 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
1924 VkShaderStageFlags dirty_stages)
1925 {
1926 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
1927 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
1928
1929 static const uint32_t push_constant_opcodes[] = {
1930 [MESA_SHADER_VERTEX] = 21,
1931 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
1932 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
1933 [MESA_SHADER_GEOMETRY] = 22,
1934 [MESA_SHADER_FRAGMENT] = 23,
1935 [MESA_SHADER_COMPUTE] = 0,
1936 };
1937
1938 VkShaderStageFlags flushed = 0;
1939
1940 anv_foreach_stage(stage, dirty_stages) {
1941 assert(stage < ARRAY_SIZE(push_constant_opcodes));
1942 assert(push_constant_opcodes[stage] > 0);
1943
1944 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
1945 c._3DCommandSubOpcode = push_constant_opcodes[stage];
1946
1947 if (anv_pipeline_has_stage(pipeline, stage)) {
1948 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1949 const struct brw_stage_prog_data *prog_data =
1950 pipeline->shaders[stage]->prog_data;
1951 const struct anv_pipeline_bind_map *bind_map =
1952 &pipeline->shaders[stage]->bind_map;
1953
1954 /* The Skylake PRM contains the following restriction:
1955 *
1956 * "The driver must ensure The following case does not occur
1957 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
1958 * buffer 3 read length equal to zero committed followed by a
1959 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
1960 * zero committed."
1961 *
1962 * To avoid this, we program the buffers in the highest slots.
1963 * This way, slot 0 is only used if slot 3 is also used.
1964 */
1965 int n = 3;
1966
1967 for (int i = 3; i >= 0; i--) {
1968 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
1969 if (range->length == 0)
1970 continue;
1971
1972 const unsigned surface =
1973 prog_data->binding_table.ubo_start + range->block;
1974
1975 assert(surface <= bind_map->surface_count);
1976 const struct anv_pipeline_binding *binding =
1977 &bind_map->surface_to_descriptor[surface];
1978
1979 const struct anv_descriptor *desc =
1980 anv_descriptor_for_binding(&gfx_state->base, binding);
1981
1982 struct anv_address read_addr;
1983 uint32_t read_len;
1984 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
1985 read_len = MIN2(range->length,
1986 DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
1987 read_addr = (struct anv_address) {
1988 .bo = desc->buffer_view->bo,
1989 .offset = desc->buffer_view->offset +
1990 range->start * 32,
1991 };
1992 } else {
1993 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
1994
1995 uint32_t dynamic_offset =
1996 dynamic_offset_for_binding(&gfx_state->base, binding);
1997 uint32_t buf_offset =
1998 MIN2(desc->offset + dynamic_offset, desc->buffer->size);
1999 uint32_t buf_range =
2000 MIN2(desc->range, desc->buffer->size - buf_offset);
2001
2002 read_len = MIN2(range->length,
2003 DIV_ROUND_UP(buf_range, 32) - range->start);
2004 read_addr = (struct anv_address) {
2005 .bo = desc->buffer->bo,
2006 .offset = desc->buffer->offset + buf_offset +
2007 range->start * 32,
2008 };
2009 }
2010
2011 if (read_len > 0) {
2012 c.ConstantBody.Buffer[n] = read_addr;
2013 c.ConstantBody.ReadLength[n] = read_len;
2014 n--;
2015 }
2016 }
2017
2018 struct anv_state state =
2019 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2020
2021 if (state.alloc_size > 0) {
2022 c.ConstantBody.Buffer[n] = (struct anv_address) {
2023 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2024 .offset = state.offset,
2025 };
2026 c.ConstantBody.ReadLength[n] =
2027 DIV_ROUND_UP(state.alloc_size, 32);
2028 }
2029 #else
2030 /* For Ivy Bridge, the push constants packets have a different
2031 * rule that would require us to iterate in the other direction
2032 * and possibly mess around with dynamic state base address.
2033 * Don't bother; just emit regular push constants at n = 0.
2034 */
2035 struct anv_state state =
2036 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2037
2038 if (state.alloc_size > 0) {
2039 c.ConstantBody.Buffer[0].offset = state.offset,
2040 c.ConstantBody.ReadLength[0] =
2041 DIV_ROUND_UP(state.alloc_size, 32);
2042 }
2043 #endif
2044 }
2045 }
2046
2047 flushed |= mesa_to_vk_shader_stage(stage);
2048 }
2049
2050 cmd_buffer->state.push_constants_dirty &= ~flushed;
2051 }
2052
2053 void
2054 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2055 {
2056 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2057 uint32_t *p;
2058
2059 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2060
2061 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2062
2063 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2064
2065 genX(flush_pipeline_select_3d)(cmd_buffer);
2066
2067 if (vb_emit) {
2068 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2069 const uint32_t num_dwords = 1 + num_buffers * 4;
2070
2071 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2072 GENX(3DSTATE_VERTEX_BUFFERS));
2073 uint32_t vb, i = 0;
2074 for_each_bit(vb, vb_emit) {
2075 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2076 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2077
2078 struct GENX(VERTEX_BUFFER_STATE) state = {
2079 .VertexBufferIndex = vb,
2080
2081 #if GEN_GEN >= 8
2082 .MemoryObjectControlState = GENX(MOCS),
2083 #else
2084 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
2085 /* Our implementation of VK_KHR_multiview uses instancing to draw
2086 * the different views. If the client asks for instancing, we
2087 * need to use the Instance Data Step Rate to ensure that we
2088 * repeat the client's per-instance data once for each view.
2089 */
2090 .InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass),
2091 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2092 #endif
2093
2094 .AddressModifyEnable = true,
2095 .BufferPitch = pipeline->binding_stride[vb],
2096 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
2097
2098 #if GEN_GEN >= 8
2099 .BufferSize = buffer->size - offset
2100 #else
2101 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
2102 #endif
2103 };
2104
2105 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2106 i++;
2107 }
2108 }
2109
2110 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2111
2112 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2113 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2114
2115 /* The exact descriptor layout is pulled from the pipeline, so we need
2116 * to re-emit binding tables on every pipeline change.
2117 */
2118 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2119
2120 /* If the pipeline changed, we may need to re-allocate push constant
2121 * space in the URB.
2122 */
2123 cmd_buffer_alloc_push_constants(cmd_buffer);
2124 }
2125
2126 #if GEN_GEN <= 7
2127 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2128 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2129 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2130 *
2131 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2132 * stall needs to be sent just prior to any 3DSTATE_VS,
2133 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2134 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2135 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2136 * PIPE_CONTROL needs to be sent before any combination of VS
2137 * associated 3DSTATE."
2138 */
2139 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2140 pc.DepthStallEnable = true;
2141 pc.PostSyncOperation = WriteImmediateData;
2142 pc.Address =
2143 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2144 }
2145 }
2146 #endif
2147
2148 /* Render targets live in the same binding table as fragment descriptors */
2149 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2150 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2151
2152 /* We emit the binding tables and sampler tables first, then emit push
2153 * constants and then finally emit binding table and sampler table
2154 * pointers. It has to happen in this order, since emitting the binding
2155 * tables may change the push constants (in case of storage images). After
2156 * emitting push constants, on SKL+ we have to emit the corresponding
2157 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2158 */
2159 uint32_t dirty = 0;
2160 if (cmd_buffer->state.descriptors_dirty)
2161 dirty = flush_descriptor_sets(cmd_buffer);
2162
2163 if (dirty || cmd_buffer->state.push_constants_dirty) {
2164 /* Because we're pushing UBOs, we have to push whenever either
2165 * descriptors or push constants is dirty.
2166 */
2167 dirty |= cmd_buffer->state.push_constants_dirty;
2168 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2169 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2170 }
2171
2172 if (dirty)
2173 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2174
2175 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2176 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2177
2178 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2179 ANV_CMD_DIRTY_PIPELINE)) {
2180 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2181 pipeline->depth_clamp_enable);
2182 }
2183
2184 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
2185 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2186
2187 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2188
2189 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2190 }
2191
2192 static void
2193 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2194 struct anv_bo *bo, uint32_t offset,
2195 uint32_t size, uint32_t index)
2196 {
2197 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2198 GENX(3DSTATE_VERTEX_BUFFERS));
2199
2200 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2201 &(struct GENX(VERTEX_BUFFER_STATE)) {
2202 .VertexBufferIndex = index,
2203 .AddressModifyEnable = true,
2204 .BufferPitch = 0,
2205 #if (GEN_GEN >= 8)
2206 .MemoryObjectControlState = GENX(MOCS),
2207 .BufferStartingAddress = { bo, offset },
2208 .BufferSize = size
2209 #else
2210 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2211 .BufferStartingAddress = { bo, offset },
2212 .EndAddress = { bo, offset + size },
2213 #endif
2214 });
2215 }
2216
2217 static void
2218 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2219 struct anv_bo *bo, uint32_t offset)
2220 {
2221 emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
2222 }
2223
2224 static void
2225 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2226 uint32_t base_vertex, uint32_t base_instance)
2227 {
2228 struct anv_state id_state =
2229 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2230
2231 ((uint32_t *)id_state.map)[0] = base_vertex;
2232 ((uint32_t *)id_state.map)[1] = base_instance;
2233
2234 anv_state_flush(cmd_buffer->device, id_state);
2235
2236 emit_base_vertex_instance_bo(cmd_buffer,
2237 &cmd_buffer->device->dynamic_state_pool.block_pool.bo, id_state.offset);
2238 }
2239
2240 static void
2241 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2242 {
2243 struct anv_state state =
2244 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2245
2246 ((uint32_t *)state.map)[0] = draw_index;
2247
2248 anv_state_flush(cmd_buffer->device, state);
2249
2250 emit_vertex_bo(cmd_buffer,
2251 &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2252 state.offset, 4, ANV_DRAWID_VB_INDEX);
2253 }
2254
2255 void genX(CmdDraw)(
2256 VkCommandBuffer commandBuffer,
2257 uint32_t vertexCount,
2258 uint32_t instanceCount,
2259 uint32_t firstVertex,
2260 uint32_t firstInstance)
2261 {
2262 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2263 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2264 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2265
2266 if (anv_batch_has_error(&cmd_buffer->batch))
2267 return;
2268
2269 genX(cmd_buffer_flush_state)(cmd_buffer);
2270
2271 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2272 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2273 if (vs_prog_data->uses_drawid)
2274 emit_draw_index(cmd_buffer, 0);
2275
2276 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2277 * different views. We need to multiply instanceCount by the view count.
2278 */
2279 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2280
2281 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2282 prim.VertexAccessType = SEQUENTIAL;
2283 prim.PrimitiveTopologyType = pipeline->topology;
2284 prim.VertexCountPerInstance = vertexCount;
2285 prim.StartVertexLocation = firstVertex;
2286 prim.InstanceCount = instanceCount;
2287 prim.StartInstanceLocation = firstInstance;
2288 prim.BaseVertexLocation = 0;
2289 }
2290 }
2291
2292 void genX(CmdDrawIndexed)(
2293 VkCommandBuffer commandBuffer,
2294 uint32_t indexCount,
2295 uint32_t instanceCount,
2296 uint32_t firstIndex,
2297 int32_t vertexOffset,
2298 uint32_t firstInstance)
2299 {
2300 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2301 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2302 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2303
2304 if (anv_batch_has_error(&cmd_buffer->batch))
2305 return;
2306
2307 genX(cmd_buffer_flush_state)(cmd_buffer);
2308
2309 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2310 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2311 if (vs_prog_data->uses_drawid)
2312 emit_draw_index(cmd_buffer, 0);
2313
2314 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2315 * different views. We need to multiply instanceCount by the view count.
2316 */
2317 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2318
2319 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2320 prim.VertexAccessType = RANDOM;
2321 prim.PrimitiveTopologyType = pipeline->topology;
2322 prim.VertexCountPerInstance = indexCount;
2323 prim.StartVertexLocation = firstIndex;
2324 prim.InstanceCount = instanceCount;
2325 prim.StartInstanceLocation = firstInstance;
2326 prim.BaseVertexLocation = vertexOffset;
2327 }
2328 }
2329
2330 /* Auto-Draw / Indirect Registers */
2331 #define GEN7_3DPRIM_END_OFFSET 0x2420
2332 #define GEN7_3DPRIM_START_VERTEX 0x2430
2333 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2334 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2335 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2336 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2337
2338 /* MI_MATH only exists on Haswell+ */
2339 #if GEN_IS_HASWELL || GEN_GEN >= 8
2340
2341 static uint32_t
2342 mi_alu(uint32_t opcode, uint32_t op1, uint32_t op2)
2343 {
2344 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
2345 .ALUOpcode = opcode,
2346 .Operand1 = op1,
2347 .Operand2 = op2,
2348 };
2349
2350 uint32_t dw;
2351 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
2352
2353 return dw;
2354 }
2355
2356 #define CS_GPR(n) (0x2600 + (n) * 8)
2357
2358 /* Emit dwords to multiply GPR0 by N */
2359 static void
2360 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2361 {
2362 VK_OUTARRAY_MAKE(out, dw, dw_count);
2363
2364 #define append_alu(opcode, operand1, operand2) \
2365 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2366
2367 assert(N > 0);
2368 unsigned top_bit = 31 - __builtin_clz(N);
2369 for (int i = top_bit - 1; i >= 0; i--) {
2370 /* We get our initial data in GPR0 and we write the final data out to
2371 * GPR0 but we use GPR1 as our scratch register.
2372 */
2373 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2374 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2375
2376 /* Shift the current value left by 1 */
2377 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2378 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2379 append_alu(MI_ALU_ADD, 0, 0);
2380
2381 if (N & (1 << i)) {
2382 /* Store ACCU to R1 and add R0 to R1 */
2383 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2384 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2385 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2386 append_alu(MI_ALU_ADD, 0, 0);
2387 }
2388
2389 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2390 }
2391
2392 #undef append_alu
2393 }
2394
2395 static void
2396 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2397 {
2398 uint32_t num_dwords;
2399 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2400
2401 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2402 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2403 }
2404
2405 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2406
2407 static void
2408 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2409 struct anv_buffer *buffer, uint64_t offset,
2410 bool indexed)
2411 {
2412 struct anv_batch *batch = &cmd_buffer->batch;
2413 struct anv_bo *bo = buffer->bo;
2414 uint32_t bo_offset = buffer->offset + offset;
2415
2416 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2417
2418 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2419 if (view_count > 1) {
2420 #if GEN_IS_HASWELL || GEN_GEN >= 8
2421 emit_lrm(batch, CS_GPR(0), bo, bo_offset + 4);
2422 emit_mul_gpr0(batch, view_count);
2423 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2424 #else
2425 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2426 "MI_MATH is not supported on Ivy Bridge");
2427 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2428 #endif
2429 } else {
2430 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2431 }
2432
2433 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2434
2435 if (indexed) {
2436 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
2437 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
2438 } else {
2439 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
2440 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2441 }
2442 }
2443
2444 void genX(CmdDrawIndirect)(
2445 VkCommandBuffer commandBuffer,
2446 VkBuffer _buffer,
2447 VkDeviceSize offset,
2448 uint32_t drawCount,
2449 uint32_t stride)
2450 {
2451 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2452 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2453 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2454 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2455
2456 if (anv_batch_has_error(&cmd_buffer->batch))
2457 return;
2458
2459 genX(cmd_buffer_flush_state)(cmd_buffer);
2460
2461 for (uint32_t i = 0; i < drawCount; i++) {
2462 struct anv_bo *bo = buffer->bo;
2463 uint32_t bo_offset = buffer->offset + offset;
2464
2465 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2466 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
2467 if (vs_prog_data->uses_drawid)
2468 emit_draw_index(cmd_buffer, i);
2469
2470 load_indirect_parameters(cmd_buffer, buffer, offset, false);
2471
2472 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2473 prim.IndirectParameterEnable = true;
2474 prim.VertexAccessType = SEQUENTIAL;
2475 prim.PrimitiveTopologyType = pipeline->topology;
2476 }
2477
2478 offset += stride;
2479 }
2480 }
2481
2482 void genX(CmdDrawIndexedIndirect)(
2483 VkCommandBuffer commandBuffer,
2484 VkBuffer _buffer,
2485 VkDeviceSize offset,
2486 uint32_t drawCount,
2487 uint32_t stride)
2488 {
2489 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2490 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2491 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2492 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2493
2494 if (anv_batch_has_error(&cmd_buffer->batch))
2495 return;
2496
2497 genX(cmd_buffer_flush_state)(cmd_buffer);
2498
2499 for (uint32_t i = 0; i < drawCount; i++) {
2500 struct anv_bo *bo = buffer->bo;
2501 uint32_t bo_offset = buffer->offset + offset;
2502
2503 /* TODO: We need to stomp base vertex to 0 somehow */
2504 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2505 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
2506 if (vs_prog_data->uses_drawid)
2507 emit_draw_index(cmd_buffer, i);
2508
2509 load_indirect_parameters(cmd_buffer, buffer, offset, true);
2510
2511 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2512 prim.IndirectParameterEnable = true;
2513 prim.VertexAccessType = RANDOM;
2514 prim.PrimitiveTopologyType = pipeline->topology;
2515 }
2516
2517 offset += stride;
2518 }
2519 }
2520
2521 static VkResult
2522 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
2523 {
2524 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2525 struct anv_state surfaces = { 0, }, samplers = { 0, };
2526 VkResult result;
2527
2528 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2529 if (result != VK_SUCCESS) {
2530 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2531
2532 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2533 if (result != VK_SUCCESS)
2534 return result;
2535
2536 /* Re-emit state base addresses so we get the new surface state base
2537 * address before we start emitting binding tables etc.
2538 */
2539 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2540
2541 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2542 if (result != VK_SUCCESS) {
2543 anv_batch_set_error(&cmd_buffer->batch, result);
2544 return result;
2545 }
2546 }
2547
2548 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
2549 if (result != VK_SUCCESS) {
2550 anv_batch_set_error(&cmd_buffer->batch, result);
2551 return result;
2552 }
2553
2554 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
2555 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2556 .BindingTablePointer = surfaces.offset,
2557 .SamplerStatePointer = samplers.offset,
2558 };
2559 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
2560
2561 struct anv_state state =
2562 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
2563 pipeline->interface_descriptor_data,
2564 GENX(INTERFACE_DESCRIPTOR_DATA_length),
2565 64);
2566
2567 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
2568 anv_batch_emit(&cmd_buffer->batch,
2569 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
2570 mid.InterfaceDescriptorTotalLength = size;
2571 mid.InterfaceDescriptorDataStartAddress = state.offset;
2572 }
2573
2574 return VK_SUCCESS;
2575 }
2576
2577 void
2578 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
2579 {
2580 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2581 MAYBE_UNUSED VkResult result;
2582
2583 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
2584
2585 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2586
2587 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
2588
2589 if (cmd_buffer->state.compute.pipeline_dirty) {
2590 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
2591 *
2592 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
2593 * the only bits that are changed are scoreboard related: Scoreboard
2594 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
2595 * these scoreboard related states, a MEDIA_STATE_FLUSH is
2596 * sufficient."
2597 */
2598 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2599 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2600
2601 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2602 }
2603
2604 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
2605 cmd_buffer->state.compute.pipeline_dirty) {
2606 /* FIXME: figure out descriptors for gen7 */
2607 result = flush_compute_descriptor_set(cmd_buffer);
2608 if (result != VK_SUCCESS)
2609 return;
2610
2611 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
2612 }
2613
2614 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
2615 struct anv_state push_state =
2616 anv_cmd_buffer_cs_push_constants(cmd_buffer);
2617
2618 if (push_state.alloc_size) {
2619 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
2620 curbe.CURBETotalDataLength = push_state.alloc_size;
2621 curbe.CURBEDataStartAddress = push_state.offset;
2622 }
2623 }
2624 }
2625
2626 cmd_buffer->state.compute.pipeline_dirty = false;
2627
2628 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2629 }
2630
2631 #if GEN_GEN == 7
2632
2633 static VkResult
2634 verify_cmd_parser(const struct anv_device *device,
2635 int required_version,
2636 const char *function)
2637 {
2638 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
2639 return vk_errorf(device->instance, device->instance,
2640 VK_ERROR_FEATURE_NOT_PRESENT,
2641 "cmd parser version %d is required for %s",
2642 required_version, function);
2643 } else {
2644 return VK_SUCCESS;
2645 }
2646 }
2647
2648 #endif
2649
2650 void genX(CmdDispatch)(
2651 VkCommandBuffer commandBuffer,
2652 uint32_t x,
2653 uint32_t y,
2654 uint32_t z)
2655 {
2656 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2657 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2658 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2659
2660 if (anv_batch_has_error(&cmd_buffer->batch))
2661 return;
2662
2663 if (prog_data->uses_num_work_groups) {
2664 struct anv_state state =
2665 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
2666 uint32_t *sizes = state.map;
2667 sizes[0] = x;
2668 sizes[1] = y;
2669 sizes[2] = z;
2670 anv_state_flush(cmd_buffer->device, state);
2671 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
2672 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2673 .offset = state.offset,
2674 };
2675 }
2676
2677 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2678
2679 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
2680 ggw.SIMDSize = prog_data->simd_size / 16;
2681 ggw.ThreadDepthCounterMaximum = 0;
2682 ggw.ThreadHeightCounterMaximum = 0;
2683 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2684 ggw.ThreadGroupIDXDimension = x;
2685 ggw.ThreadGroupIDYDimension = y;
2686 ggw.ThreadGroupIDZDimension = z;
2687 ggw.RightExecutionMask = pipeline->cs_right_mask;
2688 ggw.BottomExecutionMask = 0xffffffff;
2689 }
2690
2691 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
2692 }
2693
2694 #define GPGPU_DISPATCHDIMX 0x2500
2695 #define GPGPU_DISPATCHDIMY 0x2504
2696 #define GPGPU_DISPATCHDIMZ 0x2508
2697
2698 void genX(CmdDispatchIndirect)(
2699 VkCommandBuffer commandBuffer,
2700 VkBuffer _buffer,
2701 VkDeviceSize offset)
2702 {
2703 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2704 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2705 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2706 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2707 struct anv_bo *bo = buffer->bo;
2708 uint32_t bo_offset = buffer->offset + offset;
2709 struct anv_batch *batch = &cmd_buffer->batch;
2710
2711 #if GEN_GEN == 7
2712 /* Linux 4.4 added command parser version 5 which allows the GPGPU
2713 * indirect dispatch registers to be written.
2714 */
2715 if (verify_cmd_parser(cmd_buffer->device, 5,
2716 "vkCmdDispatchIndirect") != VK_SUCCESS)
2717 return;
2718 #endif
2719
2720 if (prog_data->uses_num_work_groups) {
2721 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
2722 .bo = bo,
2723 .offset = bo_offset,
2724 };
2725 }
2726
2727 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2728
2729 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
2730 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
2731 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
2732
2733 #if GEN_GEN <= 7
2734 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
2735 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
2736 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
2737 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
2738
2739 /* Load compute_dispatch_indirect_x_size into SRC0 */
2740 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
2741
2742 /* predicate = (compute_dispatch_indirect_x_size == 0); */
2743 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2744 mip.LoadOperation = LOAD_LOAD;
2745 mip.CombineOperation = COMBINE_SET;
2746 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2747 }
2748
2749 /* Load compute_dispatch_indirect_y_size into SRC0 */
2750 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
2751
2752 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
2753 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2754 mip.LoadOperation = LOAD_LOAD;
2755 mip.CombineOperation = COMBINE_OR;
2756 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2757 }
2758
2759 /* Load compute_dispatch_indirect_z_size into SRC0 */
2760 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
2761
2762 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
2763 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2764 mip.LoadOperation = LOAD_LOAD;
2765 mip.CombineOperation = COMBINE_OR;
2766 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2767 }
2768
2769 /* predicate = !predicate; */
2770 #define COMPARE_FALSE 1
2771 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2772 mip.LoadOperation = LOAD_LOADINV;
2773 mip.CombineOperation = COMBINE_OR;
2774 mip.CompareOperation = COMPARE_FALSE;
2775 }
2776 #endif
2777
2778 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
2779 ggw.IndirectParameterEnable = true;
2780 ggw.PredicateEnable = GEN_GEN <= 7;
2781 ggw.SIMDSize = prog_data->simd_size / 16;
2782 ggw.ThreadDepthCounterMaximum = 0;
2783 ggw.ThreadHeightCounterMaximum = 0;
2784 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2785 ggw.RightExecutionMask = pipeline->cs_right_mask;
2786 ggw.BottomExecutionMask = 0xffffffff;
2787 }
2788
2789 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
2790 }
2791
2792 static void
2793 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
2794 uint32_t pipeline)
2795 {
2796 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
2797
2798 if (cmd_buffer->state.current_pipeline == pipeline)
2799 return;
2800
2801 #if GEN_GEN >= 8 && GEN_GEN < 10
2802 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
2803 *
2804 * Software must clear the COLOR_CALC_STATE Valid field in
2805 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
2806 * with Pipeline Select set to GPGPU.
2807 *
2808 * The internal hardware docs recommend the same workaround for Gen9
2809 * hardware too.
2810 */
2811 if (pipeline == GPGPU)
2812 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
2813 #endif
2814
2815 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
2816 * PIPELINE_SELECT [DevBWR+]":
2817 *
2818 * Project: DEVSNB+
2819 *
2820 * Software must ensure all the write caches are flushed through a
2821 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
2822 * command to invalidate read only caches prior to programming
2823 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
2824 */
2825 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2826 pc.RenderTargetCacheFlushEnable = true;
2827 pc.DepthCacheFlushEnable = true;
2828 pc.DCFlushEnable = true;
2829 pc.PostSyncOperation = NoWrite;
2830 pc.CommandStreamerStallEnable = true;
2831 }
2832
2833 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2834 pc.TextureCacheInvalidationEnable = true;
2835 pc.ConstantCacheInvalidationEnable = true;
2836 pc.StateCacheInvalidationEnable = true;
2837 pc.InstructionCacheInvalidateEnable = true;
2838 pc.PostSyncOperation = NoWrite;
2839 }
2840
2841 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
2842 #if GEN_GEN >= 9
2843 ps.MaskBits = 3;
2844 #endif
2845 ps.PipelineSelection = pipeline;
2846 }
2847
2848 #if GEN_GEN == 9
2849 if (devinfo->is_geminilake) {
2850 /* Project: DevGLK
2851 *
2852 * "This chicken bit works around a hardware issue with barrier logic
2853 * encountered when switching between GPGPU and 3D pipelines. To
2854 * workaround the issue, this mode bit should be set after a pipeline
2855 * is selected."
2856 */
2857 uint32_t scec;
2858 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
2859 .GLKBarrierMode =
2860 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
2861 : GLK_BARRIER_MODE_3D_HULL,
2862 .GLKBarrierModeMask = 1);
2863 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
2864 }
2865 #endif
2866
2867 cmd_buffer->state.current_pipeline = pipeline;
2868 }
2869
2870 void
2871 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
2872 {
2873 genX(flush_pipeline_select)(cmd_buffer, _3D);
2874 }
2875
2876 void
2877 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
2878 {
2879 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
2880 }
2881
2882 void
2883 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
2884 {
2885 if (GEN_GEN >= 8)
2886 return;
2887
2888 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
2889 *
2890 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
2891 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
2892 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
2893 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
2894 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
2895 * Depth Flush Bit set, followed by another pipelined depth stall
2896 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
2897 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
2898 * via a preceding MI_FLUSH)."
2899 */
2900 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2901 pipe.DepthStallEnable = true;
2902 }
2903 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2904 pipe.DepthCacheFlushEnable = true;
2905 }
2906 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2907 pipe.DepthStallEnable = true;
2908 }
2909 }
2910
2911 static void
2912 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
2913 {
2914 struct anv_device *device = cmd_buffer->device;
2915 const struct anv_image_view *iview =
2916 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
2917 const struct anv_image *image = iview ? iview->image : NULL;
2918
2919 /* FIXME: Width and Height are wrong */
2920
2921 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
2922
2923 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
2924 device->isl_dev.ds.size / 4);
2925 if (dw == NULL)
2926 return;
2927
2928 struct isl_depth_stencil_hiz_emit_info info = {
2929 .mocs = device->default_mocs,
2930 };
2931
2932 if (iview)
2933 info.view = &iview->planes[0].isl;
2934
2935 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
2936 uint32_t depth_plane =
2937 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
2938 const struct anv_surface *surface = &image->planes[depth_plane].surface;
2939
2940 info.depth_surf = &surface->isl;
2941
2942 info.depth_address =
2943 anv_batch_emit_reloc(&cmd_buffer->batch,
2944 dw + device->isl_dev.ds.depth_offset / 4,
2945 image->planes[depth_plane].bo,
2946 image->planes[depth_plane].bo_offset +
2947 surface->offset);
2948
2949 const uint32_t ds =
2950 cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
2951 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
2952 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
2953 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
2954
2955 info.hiz_address =
2956 anv_batch_emit_reloc(&cmd_buffer->batch,
2957 dw + device->isl_dev.ds.hiz_offset / 4,
2958 image->planes[depth_plane].bo,
2959 image->planes[depth_plane].bo_offset +
2960 image->planes[depth_plane].aux_surface.offset);
2961
2962 info.depth_clear_value = ANV_HZ_FC_VAL;
2963 }
2964 }
2965
2966 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
2967 uint32_t stencil_plane =
2968 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
2969 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
2970
2971 info.stencil_surf = &surface->isl;
2972
2973 info.stencil_address =
2974 anv_batch_emit_reloc(&cmd_buffer->batch,
2975 dw + device->isl_dev.ds.stencil_offset / 4,
2976 image->planes[stencil_plane].bo,
2977 image->planes[stencil_plane].bo_offset + surface->offset);
2978 }
2979
2980 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
2981
2982 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
2983 }
2984
2985
2986 /**
2987 * @brief Perform any layout transitions required at the beginning and/or end
2988 * of the current subpass for depth buffers.
2989 *
2990 * TODO: Consider preprocessing the attachment reference array at render pass
2991 * create time to determine if no layout transition is needed at the
2992 * beginning and/or end of each subpass.
2993 *
2994 * @param cmd_buffer The command buffer the transition is happening within.
2995 * @param subpass_end If true, marks that the transition is happening at the
2996 * end of the subpass.
2997 */
2998 static void
2999 cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,
3000 const bool subpass_end)
3001 {
3002 /* We need a non-NULL command buffer. */
3003 assert(cmd_buffer);
3004
3005 const struct anv_cmd_state * const cmd_state = &cmd_buffer->state;
3006 const struct anv_subpass * const subpass = cmd_state->subpass;
3007
3008 /* This function must be called within a subpass. */
3009 assert(subpass);
3010
3011 /* If there are attachment references, the array shouldn't be NULL.
3012 */
3013 if (subpass->attachment_count > 0)
3014 assert(subpass->attachments);
3015
3016 /* Iterate over the array of attachment references. */
3017 for (const VkAttachmentReference *att_ref = subpass->attachments;
3018 att_ref < subpass->attachments + subpass->attachment_count; att_ref++) {
3019
3020 /* If the attachment is unused, we can't perform a layout transition. */
3021 if (att_ref->attachment == VK_ATTACHMENT_UNUSED)
3022 continue;
3023
3024 /* This attachment index shouldn't go out of bounds. */
3025 assert(att_ref->attachment < cmd_state->pass->attachment_count);
3026
3027 const struct anv_render_pass_attachment * const att_desc =
3028 &cmd_state->pass->attachments[att_ref->attachment];
3029 struct anv_attachment_state * const att_state =
3030 &cmd_buffer->state.attachments[att_ref->attachment];
3031
3032 /* The attachment should not be used in a subpass after its last. */
3033 assert(att_desc->last_subpass_idx >= anv_get_subpass_id(cmd_state));
3034
3035 if (subpass_end && anv_get_subpass_id(cmd_state) <
3036 att_desc->last_subpass_idx) {
3037 /* We're calling this function on a buffer twice in one subpass and
3038 * this is not the last use of the buffer. The layout should not have
3039 * changed from the first call and no transition is necessary.
3040 */
3041 assert(att_state->current_layout == att_ref->layout ||
3042 att_state->current_layout ==
3043 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
3044 continue;
3045 }
3046
3047 /* The attachment index must be less than the number of attachments
3048 * within the framebuffer.
3049 */
3050 assert(att_ref->attachment < cmd_state->framebuffer->attachment_count);
3051
3052 const struct anv_image_view * const iview =
3053 cmd_state->framebuffer->attachments[att_ref->attachment];
3054 const struct anv_image * const image = iview->image;
3055
3056 /* Get the appropriate target layout for this attachment. */
3057 VkImageLayout target_layout;
3058
3059 /* A resolve is necessary before use as an input attachment if the clear
3060 * color or auxiliary buffer usage isn't supported by the sampler.
3061 */
3062 const bool input_needs_resolve =
3063 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
3064 att_state->input_aux_usage != att_state->aux_usage;
3065 if (subpass_end) {
3066 target_layout = att_desc->final_layout;
3067 } else if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
3068 !input_needs_resolve) {
3069 /* Layout transitions before the final only help to enable sampling as
3070 * an input attachment. If the input attachment supports sampling
3071 * using the auxiliary surface, we can skip such transitions by making
3072 * the target layout one that is CCS-aware.
3073 */
3074 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
3075 } else {
3076 target_layout = att_ref->layout;
3077 }
3078
3079 /* Perform the layout transition. */
3080 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3081 transition_depth_buffer(cmd_buffer, image,
3082 att_state->current_layout, target_layout);
3083 att_state->aux_usage =
3084 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
3085 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
3086 } else if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3087 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3088 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3089 iview->planes[0].isl.base_level, 1,
3090 iview->planes[0].isl.base_array_layer,
3091 iview->planes[0].isl.array_len,
3092 att_state->current_layout, target_layout);
3093 }
3094
3095 att_state->current_layout = target_layout;
3096 }
3097 }
3098
3099 /* Update the clear value dword(s) in surface state objects or the fast clear
3100 * state buffer entry for the color attachments used in this subpass.
3101 */
3102 static void
3103 cmd_buffer_subpass_sync_fast_clear_values(struct anv_cmd_buffer *cmd_buffer)
3104 {
3105 assert(cmd_buffer && cmd_buffer->state.subpass);
3106
3107 const struct anv_cmd_state *state = &cmd_buffer->state;
3108
3109 /* Iterate through every color attachment used in this subpass. */
3110 for (uint32_t i = 0; i < state->subpass->color_count; ++i) {
3111
3112 /* The attachment should be one of the attachments described in the
3113 * render pass and used in the subpass.
3114 */
3115 const uint32_t a = state->subpass->color_attachments[i].attachment;
3116 if (a == VK_ATTACHMENT_UNUSED)
3117 continue;
3118
3119 assert(a < state->pass->attachment_count);
3120
3121 /* Store some information regarding this attachment. */
3122 const struct anv_attachment_state *att_state = &state->attachments[a];
3123 const struct anv_image_view *iview = state->framebuffer->attachments[a];
3124 const struct anv_render_pass_attachment *rp_att =
3125 &state->pass->attachments[a];
3126
3127 if (att_state->aux_usage == ISL_AUX_USAGE_NONE)
3128 continue;
3129
3130 /* The fast clear state entry must be updated if a fast clear is going to
3131 * happen. The surface state must be updated if the clear value from a
3132 * prior fast clear may be needed.
3133 */
3134 if (att_state->pending_clear_aspects && att_state->fast_clear) {
3135 /* Update the fast clear state entry. */
3136 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3137 iview->image,
3138 VK_IMAGE_ASPECT_COLOR_BIT,
3139 iview->planes[0].isl.base_level,
3140 true /* copy from ss */);
3141
3142 /* Fast-clears impact whether or not a resolve will be necessary. */
3143 if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E &&
3144 att_state->clear_color_is_zero) {
3145 /* This image always has the auxiliary buffer enabled. We can mark
3146 * the subresource as not needing a resolve because the clear color
3147 * will match what's in every RENDER_SURFACE_STATE object when it's
3148 * being used for sampling.
3149 */
3150 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
3151 VK_IMAGE_ASPECT_COLOR_BIT,
3152 iview->planes[0].isl.base_level,
3153 false);
3154 } else {
3155 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
3156 VK_IMAGE_ASPECT_COLOR_BIT,
3157 iview->planes[0].isl.base_level,
3158 true);
3159 }
3160 } else if (rp_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
3161 /* The attachment may have been fast-cleared in a previous render
3162 * pass and the value is needed now. Update the surface state(s).
3163 *
3164 * TODO: Do this only once per render pass instead of every subpass.
3165 */
3166 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3167 iview->image,
3168 VK_IMAGE_ASPECT_COLOR_BIT,
3169 iview->planes[0].isl.base_level,
3170 false /* copy to ss */);
3171
3172 if (need_input_attachment_state(rp_att) &&
3173 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3174 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3175 iview->image,
3176 VK_IMAGE_ASPECT_COLOR_BIT,
3177 iview->planes[0].isl.base_level,
3178 false /* copy to ss */);
3179 }
3180 }
3181 }
3182 }
3183
3184
3185 static void
3186 genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
3187 struct anv_subpass *subpass)
3188 {
3189 cmd_buffer->state.subpass = subpass;
3190
3191 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3192
3193 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3194 * different views. If the client asks for instancing, we need to use the
3195 * Instance Data Step Rate to ensure that we repeat the client's
3196 * per-instance data once for each view. Since this bit is in
3197 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3198 * of each subpass.
3199 */
3200 if (GEN_GEN == 7)
3201 cmd_buffer->state.gfx.vb_dirty |= ~0;
3202
3203 /* Perform transitions to the subpass layout before any writes have
3204 * occurred.
3205 */
3206 cmd_buffer_subpass_transition_layouts(cmd_buffer, false);
3207
3208 /* Update clear values *after* performing automatic layout transitions.
3209 * This ensures that transitions from the UNDEFINED layout have had a chance
3210 * to populate the clear value buffer with the correct values for the
3211 * LOAD_OP_LOAD loadOp and that the fast-clears will update the buffer
3212 * without the aforementioned layout transition overwriting the fast-clear
3213 * value.
3214 */
3215 cmd_buffer_subpass_sync_fast_clear_values(cmd_buffer);
3216
3217 cmd_buffer_emit_depth_stencil(cmd_buffer);
3218
3219 anv_cmd_buffer_clear_subpass(cmd_buffer);
3220 }
3221
3222 void genX(CmdBeginRenderPass)(
3223 VkCommandBuffer commandBuffer,
3224 const VkRenderPassBeginInfo* pRenderPassBegin,
3225 VkSubpassContents contents)
3226 {
3227 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3228 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3229 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3230
3231 cmd_buffer->state.framebuffer = framebuffer;
3232 cmd_buffer->state.pass = pass;
3233 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3234 VkResult result =
3235 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3236
3237 /* If we failed to setup the attachments we should not try to go further */
3238 if (result != VK_SUCCESS) {
3239 assert(anv_batch_has_error(&cmd_buffer->batch));
3240 return;
3241 }
3242
3243 genX(flush_pipeline_select_3d)(cmd_buffer);
3244
3245 genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
3246
3247 cmd_buffer->state.pending_pipe_bits |=
3248 cmd_buffer->state.pass->subpass_flushes[0];
3249 }
3250
3251 void genX(CmdNextSubpass)(
3252 VkCommandBuffer commandBuffer,
3253 VkSubpassContents contents)
3254 {
3255 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3256
3257 if (anv_batch_has_error(&cmd_buffer->batch))
3258 return;
3259
3260 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3261
3262 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3263
3264 /* Perform transitions to the final layout after all writes have occurred.
3265 */
3266 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3267
3268 genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
3269
3270 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3271 cmd_buffer->state.pending_pipe_bits |=
3272 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3273 }
3274
3275 void genX(CmdEndRenderPass)(
3276 VkCommandBuffer commandBuffer)
3277 {
3278 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3279
3280 if (anv_batch_has_error(&cmd_buffer->batch))
3281 return;
3282
3283 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3284
3285 /* Perform transitions to the final layout after all writes have occurred.
3286 */
3287 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3288
3289 cmd_buffer->state.pending_pipe_bits |=
3290 cmd_buffer->state.pass->subpass_flushes[cmd_buffer->state.pass->subpass_count];
3291
3292 cmd_buffer->state.hiz_enabled = false;
3293
3294 #ifndef NDEBUG
3295 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
3296 #endif
3297
3298 /* Remove references to render pass specific state. This enables us to
3299 * detect whether or not we're in a renderpass.
3300 */
3301 cmd_buffer->state.framebuffer = NULL;
3302 cmd_buffer->state.pass = NULL;
3303 cmd_buffer->state.subpass = NULL;
3304 }