anv: Split graphics and compute bits from anv_pipeline
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 #include "util/fast_idiv_by_const.h"
31
32 #include "common/gen_aux_map.h"
33 #include "common/gen_l3_config.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
36
37 /* We reserve GPR 14 and 15 for conditional rendering */
38 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
39 #define __gen_get_batch_dwords anv_batch_emit_dwords
40 #define __gen_address_offset anv_address_add
41 #include "common/gen_mi_builder.h"
42
43 static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
44 uint32_t pipeline);
45
46 static void
47 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
48 {
49 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
50 lri.RegisterOffset = reg;
51 lri.DataDWord = imm;
52 }
53 }
54
55 void
56 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
57 {
58 struct anv_device *device = cmd_buffer->device;
59 UNUSED const struct gen_device_info *devinfo = &device->info;
60 uint32_t mocs = device->isl_dev.mocs.internal;
61
62 /* If we are emitting a new state base address we probably need to re-emit
63 * binding tables.
64 */
65 cmd_buffer->state.descriptors_dirty |= ~0;
66
67 /* Emit a render target cache flush.
68 *
69 * This isn't documented anywhere in the PRM. However, it seems to be
70 * necessary prior to changing the surface state base adress. Without
71 * this, we get GPU hangs when using multi-level command buffers which
72 * clear depth, reset state base address, and then go render stuff.
73 */
74 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
75 pc.DCFlushEnable = true;
76 pc.RenderTargetCacheFlushEnable = true;
77 pc.CommandStreamerStallEnable = true;
78 #if GEN_GEN >= 12
79 pc.TileCacheFlushEnable = true;
80 #endif
81 #if GEN_GEN == 12
82 /* GEN:BUG:1606662791:
83 *
84 * Software must program PIPE_CONTROL command with "HDC Pipeline
85 * Flush" prior to programming of the below two non-pipeline state :
86 * * STATE_BASE_ADDRESS
87 * * 3DSTATE_BINDING_TABLE_POOL_ALLOC
88 */
89 if (devinfo->revision == 0 /* A0 */)
90 pc.HDCPipelineFlushEnable = true;
91 #endif
92 }
93
94 #if GEN_GEN == 12
95 /* GEN:BUG:1607854226:
96 *
97 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
98 * mode by putting the pipeline temporarily in 3D mode.
99 */
100 uint32_t gen12_wa_pipeline = cmd_buffer->state.current_pipeline;
101 genX(flush_pipeline_select_3d)(cmd_buffer);
102 #endif
103
104 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
105 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
106 sba.GeneralStateMOCS = mocs;
107 sba.GeneralStateBaseAddressModifyEnable = true;
108
109 sba.StatelessDataPortAccessMOCS = mocs;
110
111 sba.SurfaceStateBaseAddress =
112 anv_cmd_buffer_surface_base_address(cmd_buffer);
113 sba.SurfaceStateMOCS = mocs;
114 sba.SurfaceStateBaseAddressModifyEnable = true;
115
116 sba.DynamicStateBaseAddress =
117 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
118 sba.DynamicStateMOCS = mocs;
119 sba.DynamicStateBaseAddressModifyEnable = true;
120
121 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
122 sba.IndirectObjectMOCS = mocs;
123 sba.IndirectObjectBaseAddressModifyEnable = true;
124
125 sba.InstructionBaseAddress =
126 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
127 sba.InstructionMOCS = mocs;
128 sba.InstructionBaseAddressModifyEnable = true;
129
130 # if (GEN_GEN >= 8)
131 /* Broadwell requires that we specify a buffer size for a bunch of
132 * these fields. However, since we will be growing the BO's live, we
133 * just set them all to the maximum.
134 */
135 sba.GeneralStateBufferSize = 0xfffff;
136 sba.IndirectObjectBufferSize = 0xfffff;
137 if (device->physical->use_softpin) {
138 /* With softpin, we use fixed addresses so we actually know how big
139 * our base addresses are.
140 */
141 sba.DynamicStateBufferSize = DYNAMIC_STATE_POOL_SIZE / 4096;
142 sba.InstructionBufferSize = INSTRUCTION_STATE_POOL_SIZE / 4096;
143 } else {
144 sba.DynamicStateBufferSize = 0xfffff;
145 sba.InstructionBufferSize = 0xfffff;
146 }
147 sba.GeneralStateBufferSizeModifyEnable = true;
148 sba.IndirectObjectBufferSizeModifyEnable = true;
149 sba.DynamicStateBufferSizeModifyEnable = true;
150 sba.InstructionBuffersizeModifyEnable = true;
151 # else
152 /* On gen7, we have upper bounds instead. According to the docs,
153 * setting an upper bound of zero means that no bounds checking is
154 * performed so, in theory, we should be able to leave them zero.
155 * However, border color is broken and the GPU bounds-checks anyway.
156 * To avoid this and other potential problems, we may as well set it
157 * for everything.
158 */
159 sba.GeneralStateAccessUpperBound =
160 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
161 sba.GeneralStateAccessUpperBoundModifyEnable = true;
162 sba.DynamicStateAccessUpperBound =
163 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
164 sba.DynamicStateAccessUpperBoundModifyEnable = true;
165 sba.InstructionAccessUpperBound =
166 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
167 sba.InstructionAccessUpperBoundModifyEnable = true;
168 # endif
169 # if (GEN_GEN >= 9)
170 if (cmd_buffer->device->physical->use_softpin) {
171 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
172 .bo = device->surface_state_pool.block_pool.bo,
173 .offset = 0,
174 };
175 sba.BindlessSurfaceStateSize = (1 << 20) - 1;
176 } else {
177 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
178 sba.BindlessSurfaceStateSize = 0;
179 }
180 sba.BindlessSurfaceStateMOCS = mocs;
181 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
182 # endif
183 # if (GEN_GEN >= 10)
184 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
185 sba.BindlessSamplerStateMOCS = mocs;
186 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
187 sba.BindlessSamplerStateBufferSize = 0;
188 # endif
189 }
190
191 #if GEN_GEN == 12
192 /* GEN:BUG:1607854226:
193 *
194 * Put the pipeline back into its current mode.
195 */
196 if (gen12_wa_pipeline != UINT32_MAX)
197 genX(flush_pipeline_select)(cmd_buffer, gen12_wa_pipeline);
198 #endif
199
200 /* After re-setting the surface state base address, we have to do some
201 * cache flusing so that the sampler engine will pick up the new
202 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
203 * Shared Function > 3D Sampler > State > State Caching (page 96):
204 *
205 * Coherency with system memory in the state cache, like the texture
206 * cache is handled partially by software. It is expected that the
207 * command stream or shader will issue Cache Flush operation or
208 * Cache_Flush sampler message to ensure that the L1 cache remains
209 * coherent with system memory.
210 *
211 * [...]
212 *
213 * Whenever the value of the Dynamic_State_Base_Addr,
214 * Surface_State_Base_Addr are altered, the L1 state cache must be
215 * invalidated to ensure the new surface or sampler state is fetched
216 * from system memory.
217 *
218 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
219 * which, according the PIPE_CONTROL instruction documentation in the
220 * Broadwell PRM:
221 *
222 * Setting this bit is independent of any other bit in this packet.
223 * This bit controls the invalidation of the L1 and L2 state caches
224 * at the top of the pipe i.e. at the parsing time.
225 *
226 * Unfortunately, experimentation seems to indicate that state cache
227 * invalidation through a PIPE_CONTROL does nothing whatsoever in
228 * regards to surface state and binding tables. In stead, it seems that
229 * invalidating the texture cache is what is actually needed.
230 *
231 * XXX: As far as we have been able to determine through
232 * experimentation, shows that flush the texture cache appears to be
233 * sufficient. The theory here is that all of the sampling/rendering
234 * units cache the binding table in the texture cache. However, we have
235 * yet to be able to actually confirm this.
236 */
237 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
238 pc.TextureCacheInvalidationEnable = true;
239 pc.ConstantCacheInvalidationEnable = true;
240 pc.StateCacheInvalidationEnable = true;
241 }
242 }
243
244 static void
245 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
246 struct anv_state state, struct anv_address addr)
247 {
248 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
249
250 VkResult result =
251 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
252 state.offset + isl_dev->ss.addr_offset,
253 addr.bo, addr.offset, NULL);
254 if (result != VK_SUCCESS)
255 anv_batch_set_error(&cmd_buffer->batch, result);
256 }
257
258 static void
259 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
260 struct anv_surface_state state)
261 {
262 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
263
264 assert(!anv_address_is_null(state.address));
265 add_surface_reloc(cmd_buffer, state.state, state.address);
266
267 if (!anv_address_is_null(state.aux_address)) {
268 VkResult result =
269 anv_reloc_list_add(&cmd_buffer->surface_relocs,
270 &cmd_buffer->pool->alloc,
271 state.state.offset + isl_dev->ss.aux_addr_offset,
272 state.aux_address.bo,
273 state.aux_address.offset,
274 NULL);
275 if (result != VK_SUCCESS)
276 anv_batch_set_error(&cmd_buffer->batch, result);
277 }
278
279 if (!anv_address_is_null(state.clear_address)) {
280 VkResult result =
281 anv_reloc_list_add(&cmd_buffer->surface_relocs,
282 &cmd_buffer->pool->alloc,
283 state.state.offset +
284 isl_dev->ss.clear_color_state_offset,
285 state.clear_address.bo,
286 state.clear_address.offset,
287 NULL);
288 if (result != VK_SUCCESS)
289 anv_batch_set_error(&cmd_buffer->batch, result);
290 }
291 }
292
293 static void
294 color_attachment_compute_aux_usage(struct anv_device * device,
295 struct anv_cmd_state * cmd_state,
296 uint32_t att, VkRect2D render_area,
297 union isl_color_value *fast_clear_color)
298 {
299 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
300 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
301
302 assert(iview->n_planes == 1);
303
304 if (iview->planes[0].isl.base_array_layer >=
305 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
306 iview->planes[0].isl.base_level)) {
307 /* There is no aux buffer which corresponds to the level and layer(s)
308 * being accessed.
309 */
310 att_state->aux_usage = ISL_AUX_USAGE_NONE;
311 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
312 att_state->fast_clear = false;
313 return;
314 }
315
316 att_state->aux_usage =
317 anv_layout_to_aux_usage(&device->info, iview->image,
318 VK_IMAGE_ASPECT_COLOR_BIT,
319 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
320 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
321
322 /* If we don't have aux, then we should have returned early in the layer
323 * check above. If we got here, we must have something.
324 */
325 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
326
327 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
328 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
329 att_state->input_aux_usage = att_state->aux_usage;
330 } else {
331 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
332 *
333 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
334 * setting is only allowed if Surface Format supported for Fast
335 * Clear. In addition, if the surface is bound to the sampling
336 * engine, Surface Format must be supported for Render Target
337 * Compression for surfaces bound to the sampling engine."
338 *
339 * In other words, we can only sample from a fast-cleared image if it
340 * also supports color compression.
341 */
342 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format) &&
343 isl_format_supports_ccs_d(&device->info, iview->planes[0].isl.format)) {
344 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
345
346 /* While fast-clear resolves and partial resolves are fairly cheap in the
347 * case where you render to most of the pixels, full resolves are not
348 * because they potentially involve reading and writing the entire
349 * framebuffer. If we can't texture with CCS_E, we should leave it off and
350 * limit ourselves to fast clears.
351 */
352 if (cmd_state->pass->attachments[att].first_subpass_layout ==
353 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
354 anv_perf_warn(device, iview->image,
355 "Not temporarily enabling CCS_E.");
356 }
357 } else {
358 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
359 }
360 }
361
362 assert(iview->image->planes[0].aux_surface.isl.usage &
363 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
364
365 union isl_color_value clear_color = {};
366 anv_clear_color_from_att_state(&clear_color, att_state, iview);
367
368 att_state->clear_color_is_zero_one =
369 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
370 att_state->clear_color_is_zero =
371 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
372
373 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
374 /* Start by getting the fast clear type. We use the first subpass
375 * layout here because we don't want to fast-clear if the first subpass
376 * to use the attachment can't handle fast-clears.
377 */
378 enum anv_fast_clear_type fast_clear_type =
379 anv_layout_to_fast_clear_type(&device->info, iview->image,
380 VK_IMAGE_ASPECT_COLOR_BIT,
381 cmd_state->pass->attachments[att].first_subpass_layout);
382 switch (fast_clear_type) {
383 case ANV_FAST_CLEAR_NONE:
384 att_state->fast_clear = false;
385 break;
386 case ANV_FAST_CLEAR_DEFAULT_VALUE:
387 att_state->fast_clear = att_state->clear_color_is_zero;
388 break;
389 case ANV_FAST_CLEAR_ANY:
390 att_state->fast_clear = true;
391 break;
392 }
393
394 /* Potentially, we could do partial fast-clears but doing so has crazy
395 * alignment restrictions. It's easier to just restrict to full size
396 * fast clears for now.
397 */
398 if (render_area.offset.x != 0 ||
399 render_area.offset.y != 0 ||
400 render_area.extent.width != iview->extent.width ||
401 render_area.extent.height != iview->extent.height)
402 att_state->fast_clear = false;
403
404 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
405 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
406 att_state->fast_clear = false;
407
408 /* We only allow fast clears to the first slice of an image (level 0,
409 * layer 0) and only for the entire slice. This guarantees us that, at
410 * any given time, there is only one clear color on any given image at
411 * any given time. At the time of our testing (Jan 17, 2018), there
412 * were no known applications which would benefit from fast-clearing
413 * more than just the first slice.
414 */
415 if (att_state->fast_clear &&
416 (iview->planes[0].isl.base_level > 0 ||
417 iview->planes[0].isl.base_array_layer > 0)) {
418 anv_perf_warn(device, iview->image,
419 "Rendering with multi-lod or multi-layer framebuffer "
420 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
421 "baseArrayLayer > 0. Not fast clearing.");
422 att_state->fast_clear = false;
423 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
424 anv_perf_warn(device, iview->image,
425 "Rendering to a multi-layer framebuffer with "
426 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
427 }
428
429 if (att_state->fast_clear)
430 *fast_clear_color = clear_color;
431 } else {
432 att_state->fast_clear = false;
433 }
434 }
435
436 static void
437 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
438 struct anv_cmd_state *cmd_state,
439 uint32_t att, VkRect2D render_area)
440 {
441 struct anv_render_pass_attachment *pass_att =
442 &cmd_state->pass->attachments[att];
443 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
444 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
445
446 /* These will be initialized after the first subpass transition. */
447 att_state->aux_usage = ISL_AUX_USAGE_NONE;
448 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
449
450 /* This is unused for depth/stencil but valgrind complains if it
451 * isn't initialized
452 */
453 att_state->clear_color_is_zero_one = false;
454
455 if (GEN_GEN == 7) {
456 /* We don't do any HiZ or depth fast-clears on gen7 yet */
457 att_state->fast_clear = false;
458 return;
459 }
460
461 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
462 /* If we're just clearing stencil, we can always HiZ clear */
463 att_state->fast_clear = true;
464 return;
465 }
466
467 /* Default to false for now */
468 att_state->fast_clear = false;
469
470 /* We must have depth in order to have HiZ */
471 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
472 return;
473
474 const enum isl_aux_usage first_subpass_aux_usage =
475 anv_layout_to_aux_usage(&device->info, iview->image,
476 VK_IMAGE_ASPECT_DEPTH_BIT,
477 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
478 pass_att->first_subpass_layout);
479 if (!blorp_can_hiz_clear_depth(&device->info,
480 &iview->image->planes[0].surface.isl,
481 first_subpass_aux_usage,
482 iview->planes[0].isl.base_level,
483 iview->planes[0].isl.base_array_layer,
484 render_area.offset.x,
485 render_area.offset.y,
486 render_area.offset.x +
487 render_area.extent.width,
488 render_area.offset.y +
489 render_area.extent.height))
490 return;
491
492 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
493 return;
494
495 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
496 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
497 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
498 * only supports returning 0.0f. Gens prior to gen8 do not support this
499 * feature at all.
500 */
501 return;
502 }
503
504 /* If we got here, then we can fast clear */
505 att_state->fast_clear = true;
506 }
507
508 static bool
509 need_input_attachment_state(const struct anv_render_pass_attachment *att)
510 {
511 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
512 return false;
513
514 /* We only allocate input attachment states for color surfaces. Compression
515 * is not yet enabled for depth textures and stencil doesn't allow
516 * compression so we can just use the texture surface state from the view.
517 */
518 return vk_format_is_color(att->format);
519 }
520
521 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
522 * the initial layout is undefined, the HiZ buffer and depth buffer will
523 * represent the same data at the end of this operation.
524 */
525 static void
526 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
527 const struct anv_image *image,
528 VkImageLayout initial_layout,
529 VkImageLayout final_layout)
530 {
531 uint32_t depth_plane =
532 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
533 if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE)
534 return;
535
536 const enum isl_aux_state initial_state =
537 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
538 VK_IMAGE_ASPECT_DEPTH_BIT,
539 initial_layout);
540 const enum isl_aux_state final_state =
541 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
542 VK_IMAGE_ASPECT_DEPTH_BIT,
543 final_layout);
544
545 const bool initial_depth_valid =
546 isl_aux_state_has_valid_primary(initial_state);
547 const bool initial_hiz_valid =
548 isl_aux_state_has_valid_aux(initial_state);
549 const bool final_needs_depth =
550 isl_aux_state_has_valid_primary(final_state);
551 const bool final_needs_hiz =
552 isl_aux_state_has_valid_aux(final_state);
553
554 /* Getting into the pass-through state for Depth is tricky and involves
555 * both a resolve and an ambiguate. We don't handle that state right now
556 * as anv_layout_to_aux_state never returns it.
557 */
558 assert(final_state != ISL_AUX_STATE_PASS_THROUGH);
559
560 if (final_needs_depth && !initial_depth_valid) {
561 assert(initial_hiz_valid);
562 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
563 0, 0, 1, ISL_AUX_OP_FULL_RESOLVE);
564 } else if (final_needs_hiz && !initial_hiz_valid) {
565 assert(initial_depth_valid);
566 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
567 0, 0, 1, ISL_AUX_OP_AMBIGUATE);
568 }
569 }
570
571 static inline bool
572 vk_image_layout_stencil_write_optimal(VkImageLayout layout)
573 {
574 return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
575 layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
576 layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
577 }
578
579 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
580 * the initial layout is undefined, the HiZ buffer and depth buffer will
581 * represent the same data at the end of this operation.
582 */
583 static void
584 transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
585 const struct anv_image *image,
586 uint32_t base_level, uint32_t level_count,
587 uint32_t base_layer, uint32_t layer_count,
588 VkImageLayout initial_layout,
589 VkImageLayout final_layout)
590 {
591 #if GEN_GEN == 7
592 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
593 VK_IMAGE_ASPECT_STENCIL_BIT);
594
595 /* On gen7, we have to store a texturable version of the stencil buffer in
596 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
597 * forth at strategic points. Stencil writes are only allowed in following
598 * layouts:
599 *
600 * - VK_IMAGE_LAYOUT_GENERAL
601 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
602 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
603 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
604 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
605 *
606 * For general, we have no nice opportunity to transition so we do the copy
607 * to the shadow unconditionally at the end of the subpass. For transfer
608 * destinations, we can update it as part of the transfer op. For the other
609 * layouts, we delay the copy until a transition into some other layout.
610 */
611 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
612 vk_image_layout_stencil_write_optimal(initial_layout) &&
613 !vk_image_layout_stencil_write_optimal(final_layout)) {
614 anv_image_copy_to_shadow(cmd_buffer, image,
615 VK_IMAGE_ASPECT_STENCIL_BIT,
616 base_level, level_count,
617 base_layer, layer_count);
618 }
619 #endif /* GEN_GEN == 7 */
620 }
621
622 #define MI_PREDICATE_SRC0 0x2400
623 #define MI_PREDICATE_SRC1 0x2408
624 #define MI_PREDICATE_RESULT 0x2418
625
626 static void
627 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
628 const struct anv_image *image,
629 VkImageAspectFlagBits aspect,
630 uint32_t level,
631 uint32_t base_layer, uint32_t layer_count,
632 bool compressed)
633 {
634 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
635
636 /* We only have compression tracking for CCS_E */
637 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
638 return;
639
640 for (uint32_t a = 0; a < layer_count; a++) {
641 uint32_t layer = base_layer + a;
642 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
643 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
644 image, aspect,
645 level, layer);
646 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
647 }
648 }
649 }
650
651 static void
652 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
653 const struct anv_image *image,
654 VkImageAspectFlagBits aspect,
655 enum anv_fast_clear_type fast_clear)
656 {
657 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
658 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
659 image, aspect);
660 sdi.ImmediateData = fast_clear;
661 }
662
663 /* Whenever we have fast-clear, we consider that slice to be compressed.
664 * This makes building predicates much easier.
665 */
666 if (fast_clear != ANV_FAST_CLEAR_NONE)
667 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
668 }
669
670 /* This is only really practical on haswell and above because it requires
671 * MI math in order to get it correct.
672 */
673 #if GEN_GEN >= 8 || GEN_IS_HASWELL
674 static void
675 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
676 const struct anv_image *image,
677 VkImageAspectFlagBits aspect,
678 uint32_t level, uint32_t array_layer,
679 enum isl_aux_op resolve_op,
680 enum anv_fast_clear_type fast_clear_supported)
681 {
682 struct gen_mi_builder b;
683 gen_mi_builder_init(&b, &cmd_buffer->batch);
684
685 const struct gen_mi_value fast_clear_type =
686 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
687 image, aspect));
688
689 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
690 /* In this case, we're doing a full resolve which means we want the
691 * resolve to happen if any compression (including fast-clears) is
692 * present.
693 *
694 * In order to simplify the logic a bit, we make the assumption that,
695 * if the first slice has been fast-cleared, it is also marked as
696 * compressed. See also set_image_fast_clear_state.
697 */
698 const struct gen_mi_value compression_state =
699 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
700 image, aspect,
701 level, array_layer));
702 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
703 compression_state);
704 gen_mi_store(&b, compression_state, gen_mi_imm(0));
705
706 if (level == 0 && array_layer == 0) {
707 /* If the predicate is true, we want to write 0 to the fast clear type
708 * and, if it's false, leave it alone. We can do this by writing
709 *
710 * clear_type = clear_type & ~predicate;
711 */
712 struct gen_mi_value new_fast_clear_type =
713 gen_mi_iand(&b, fast_clear_type,
714 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
715 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
716 }
717 } else if (level == 0 && array_layer == 0) {
718 /* In this case, we are doing a partial resolve to get rid of fast-clear
719 * colors. We don't care about the compression state but we do care
720 * about how much fast clear is allowed by the final layout.
721 */
722 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
723 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
724
725 /* We need to compute (fast_clear_supported < image->fast_clear) */
726 struct gen_mi_value pred =
727 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
728 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
729 gen_mi_value_ref(&b, pred));
730
731 /* If the predicate is true, we want to write 0 to the fast clear type
732 * and, if it's false, leave it alone. We can do this by writing
733 *
734 * clear_type = clear_type & ~predicate;
735 */
736 struct gen_mi_value new_fast_clear_type =
737 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
738 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
739 } else {
740 /* In this case, we're trying to do a partial resolve on a slice that
741 * doesn't have clear color. There's nothing to do.
742 */
743 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
744 return;
745 }
746
747 /* Set src1 to 0 and use a != condition */
748 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
749
750 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
751 mip.LoadOperation = LOAD_LOADINV;
752 mip.CombineOperation = COMBINE_SET;
753 mip.CompareOperation = COMPARE_SRCS_EQUAL;
754 }
755 }
756 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
757
758 #if GEN_GEN <= 8
759 static void
760 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
761 const struct anv_image *image,
762 VkImageAspectFlagBits aspect,
763 uint32_t level, uint32_t array_layer,
764 enum isl_aux_op resolve_op,
765 enum anv_fast_clear_type fast_clear_supported)
766 {
767 struct gen_mi_builder b;
768 gen_mi_builder_init(&b, &cmd_buffer->batch);
769
770 struct gen_mi_value fast_clear_type_mem =
771 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
772 image, aspect));
773
774 /* This only works for partial resolves and only when the clear color is
775 * all or nothing. On the upside, this emits less command streamer code
776 * and works on Ivybridge and Bay Trail.
777 */
778 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
779 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
780
781 /* We don't support fast clears on anything other than the first slice. */
782 if (level > 0 || array_layer > 0)
783 return;
784
785 /* On gen8, we don't have a concept of default clear colors because we
786 * can't sample from CCS surfaces. It's enough to just load the fast clear
787 * state into the predicate register.
788 */
789 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
790 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
791 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
792
793 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
794 mip.LoadOperation = LOAD_LOADINV;
795 mip.CombineOperation = COMBINE_SET;
796 mip.CompareOperation = COMPARE_SRCS_EQUAL;
797 }
798 }
799 #endif /* GEN_GEN <= 8 */
800
801 static void
802 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
803 const struct anv_image *image,
804 enum isl_format format,
805 VkImageAspectFlagBits aspect,
806 uint32_t level, uint32_t array_layer,
807 enum isl_aux_op resolve_op,
808 enum anv_fast_clear_type fast_clear_supported)
809 {
810 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
811
812 #if GEN_GEN >= 9
813 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
814 aspect, level, array_layer,
815 resolve_op, fast_clear_supported);
816 #else /* GEN_GEN <= 8 */
817 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
818 aspect, level, array_layer,
819 resolve_op, fast_clear_supported);
820 #endif
821
822 /* CCS_D only supports full resolves and BLORP will assert on us if we try
823 * to do a partial resolve on a CCS_D surface.
824 */
825 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
826 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D)
827 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
828
829 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
830 array_layer, 1, resolve_op, NULL, true);
831 }
832
833 static void
834 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
835 const struct anv_image *image,
836 enum isl_format format,
837 VkImageAspectFlagBits aspect,
838 uint32_t array_layer,
839 enum isl_aux_op resolve_op,
840 enum anv_fast_clear_type fast_clear_supported)
841 {
842 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
843 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
844
845 #if GEN_GEN >= 8 || GEN_IS_HASWELL
846 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
847 aspect, 0, array_layer,
848 resolve_op, fast_clear_supported);
849
850 anv_image_mcs_op(cmd_buffer, image, format, aspect,
851 array_layer, 1, resolve_op, NULL, true);
852 #else
853 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
854 #endif
855 }
856
857 void
858 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
859 const struct anv_image *image,
860 VkImageAspectFlagBits aspect,
861 enum isl_aux_usage aux_usage,
862 uint32_t level,
863 uint32_t base_layer,
864 uint32_t layer_count)
865 {
866 /* The aspect must be exactly one of the image aspects. */
867 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
868
869 /* The only compression types with more than just fast-clears are MCS,
870 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
871 * track the current fast-clear and compression state. This leaves us
872 * with just MCS and CCS_E.
873 */
874 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
875 aux_usage != ISL_AUX_USAGE_MCS)
876 return;
877
878 set_image_compressed_bit(cmd_buffer, image, aspect,
879 level, base_layer, layer_count, true);
880 }
881
882 static void
883 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
884 const struct anv_image *image,
885 VkImageAspectFlagBits aspect)
886 {
887 assert(cmd_buffer && image);
888 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
889
890 set_image_fast_clear_state(cmd_buffer, image, aspect,
891 ANV_FAST_CLEAR_NONE);
892
893 /* Initialize the struct fields that are accessed for fast-clears so that
894 * the HW restrictions on the field values are satisfied.
895 */
896 struct anv_address addr =
897 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
898
899 if (GEN_GEN >= 9) {
900 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
901 const unsigned num_dwords = GEN_GEN >= 10 ?
902 isl_dev->ss.clear_color_state_size / 4 :
903 isl_dev->ss.clear_value_size / 4;
904 for (unsigned i = 0; i < num_dwords; i++) {
905 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
906 sdi.Address = addr;
907 sdi.Address.offset += i * 4;
908 sdi.ImmediateData = 0;
909 }
910 }
911 } else {
912 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
913 sdi.Address = addr;
914 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
915 /* Pre-SKL, the dword containing the clear values also contains
916 * other fields, so we need to initialize those fields to match the
917 * values that would be in a color attachment.
918 */
919 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
920 ISL_CHANNEL_SELECT_GREEN << 22 |
921 ISL_CHANNEL_SELECT_BLUE << 19 |
922 ISL_CHANNEL_SELECT_ALPHA << 16;
923 } else if (GEN_GEN == 7) {
924 /* On IVB, the dword containing the clear values also contains
925 * other fields that must be zero or can be zero.
926 */
927 sdi.ImmediateData = 0;
928 }
929 }
930 }
931 }
932
933 /* Copy the fast-clear value dword(s) between a surface state object and an
934 * image's fast clear state buffer.
935 */
936 static void
937 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
938 struct anv_state surface_state,
939 const struct anv_image *image,
940 VkImageAspectFlagBits aspect,
941 bool copy_from_surface_state)
942 {
943 assert(cmd_buffer && image);
944 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
945
946 struct anv_address ss_clear_addr = {
947 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
948 .offset = surface_state.offset +
949 cmd_buffer->device->isl_dev.ss.clear_value_offset,
950 };
951 const struct anv_address entry_addr =
952 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
953 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
954
955 #if GEN_GEN == 7
956 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
957 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
958 * in-flight when they are issued even if the memory touched is not
959 * currently active for rendering. The weird bit is that it is not the
960 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
961 * rendering hangs such that the next stalling command after the
962 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
963 *
964 * It is unclear exactly why this hang occurs. Both MI commands come with
965 * warnings about the 3D pipeline but that doesn't seem to fully explain
966 * it. My (Jason's) best theory is that it has something to do with the
967 * fact that we're using a GPU state register as our temporary and that
968 * something with reading/writing it is causing problems.
969 *
970 * In order to work around this issue, we emit a PIPE_CONTROL with the
971 * command streamer stall bit set.
972 */
973 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
974 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
975 #endif
976
977 struct gen_mi_builder b;
978 gen_mi_builder_init(&b, &cmd_buffer->batch);
979
980 if (copy_from_surface_state) {
981 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
982 } else {
983 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
984
985 /* Updating a surface state object may require that the state cache be
986 * invalidated. From the SKL PRM, Shared Functions -> State -> State
987 * Caching:
988 *
989 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
990 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
991 * modified [...], the L1 state cache must be invalidated to ensure
992 * the new surface or sampler state is fetched from system memory.
993 *
994 * In testing, SKL doesn't actually seem to need this, but HSW does.
995 */
996 cmd_buffer->state.pending_pipe_bits |=
997 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
998 }
999 }
1000
1001 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
1002
1003 #if GEN_GEN == 12
1004 static void
1005 anv_image_init_aux_tt(struct anv_cmd_buffer *cmd_buffer,
1006 const struct anv_image *image,
1007 VkImageAspectFlagBits aspect,
1008 uint32_t base_level, uint32_t level_count,
1009 uint32_t base_layer, uint32_t layer_count)
1010 {
1011 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1012
1013 uint64_t base_address =
1014 anv_address_physical(image->planes[plane].address);
1015
1016 const struct isl_surf *isl_surf = &image->planes[plane].surface.isl;
1017 uint64_t format_bits = gen_aux_map_format_bits_for_isl_surf(isl_surf);
1018
1019 /* We're about to live-update the AUX-TT. We really don't want anyone else
1020 * trying to read it while we're doing this. We could probably get away
1021 * with not having this stall in some cases if we were really careful but
1022 * it's better to play it safe. Full stall the GPU.
1023 */
1024 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1025 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1026
1027 struct gen_mi_builder b;
1028 gen_mi_builder_init(&b, &cmd_buffer->batch);
1029
1030 for (uint32_t a = 0; a < layer_count; a++) {
1031 const uint32_t layer = base_layer + a;
1032
1033 uint64_t start_offset_B = UINT64_MAX, end_offset_B = 0;
1034 for (uint32_t l = 0; l < level_count; l++) {
1035 const uint32_t level = base_level + l;
1036
1037 uint32_t logical_array_layer, logical_z_offset_px;
1038 if (image->type == VK_IMAGE_TYPE_3D) {
1039 logical_array_layer = 0;
1040
1041 /* If the given miplevel does not have this layer, then any higher
1042 * miplevels won't either because miplevels only get smaller the
1043 * higher the LOD.
1044 */
1045 assert(layer < image->extent.depth);
1046 if (layer >= anv_minify(image->extent.depth, level))
1047 break;
1048 logical_z_offset_px = layer;
1049 } else {
1050 assert(layer < image->array_size);
1051 logical_array_layer = layer;
1052 logical_z_offset_px = 0;
1053 }
1054
1055 uint32_t slice_start_offset_B, slice_end_offset_B;
1056 isl_surf_get_image_range_B_tile(isl_surf, level,
1057 logical_array_layer,
1058 logical_z_offset_px,
1059 &slice_start_offset_B,
1060 &slice_end_offset_B);
1061
1062 start_offset_B = MIN2(start_offset_B, slice_start_offset_B);
1063 end_offset_B = MAX2(end_offset_B, slice_end_offset_B);
1064 }
1065
1066 /* Aux operates 64K at a time */
1067 start_offset_B = align_down_u64(start_offset_B, 64 * 1024);
1068 end_offset_B = align_u64(end_offset_B, 64 * 1024);
1069
1070 for (uint64_t offset = start_offset_B;
1071 offset < end_offset_B; offset += 64 * 1024) {
1072 uint64_t address = base_address + offset;
1073
1074 uint64_t aux_entry_addr64, *aux_entry_map;
1075 aux_entry_map = gen_aux_map_get_entry(cmd_buffer->device->aux_map_ctx,
1076 address, &aux_entry_addr64);
1077
1078 assert(cmd_buffer->device->physical->use_softpin);
1079 struct anv_address aux_entry_address = {
1080 .bo = NULL,
1081 .offset = aux_entry_addr64,
1082 };
1083
1084 const uint64_t old_aux_entry = READ_ONCE(*aux_entry_map);
1085 uint64_t new_aux_entry =
1086 (old_aux_entry & GEN_AUX_MAP_ADDRESS_MASK) | format_bits;
1087
1088 if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage))
1089 new_aux_entry |= GEN_AUX_MAP_ENTRY_VALID_BIT;
1090
1091 gen_mi_store(&b, gen_mi_mem64(aux_entry_address),
1092 gen_mi_imm(new_aux_entry));
1093 }
1094 }
1095
1096 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1097 }
1098 #endif /* GEN_GEN == 12 */
1099
1100 /**
1101 * @brief Transitions a color buffer from one layout to another.
1102 *
1103 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
1104 * more information.
1105 *
1106 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
1107 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
1108 * this represents the maximum layers to transition at each
1109 * specified miplevel.
1110 */
1111 static void
1112 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
1113 const struct anv_image *image,
1114 VkImageAspectFlagBits aspect,
1115 const uint32_t base_level, uint32_t level_count,
1116 uint32_t base_layer, uint32_t layer_count,
1117 VkImageLayout initial_layout,
1118 VkImageLayout final_layout)
1119 {
1120 struct anv_device *device = cmd_buffer->device;
1121 const struct gen_device_info *devinfo = &device->info;
1122 /* Validate the inputs. */
1123 assert(cmd_buffer);
1124 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1125 /* These values aren't supported for simplicity's sake. */
1126 assert(level_count != VK_REMAINING_MIP_LEVELS &&
1127 layer_count != VK_REMAINING_ARRAY_LAYERS);
1128 /* Ensure the subresource range is valid. */
1129 UNUSED uint64_t last_level_num = base_level + level_count;
1130 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
1131 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
1132 assert((uint64_t)base_layer + layer_count <= image_layers);
1133 assert(last_level_num <= image->levels);
1134 /* The spec disallows these final layouts. */
1135 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
1136 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
1137
1138 /* No work is necessary if the layout stays the same or if this subresource
1139 * range lacks auxiliary data.
1140 */
1141 if (initial_layout == final_layout)
1142 return;
1143
1144 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1145
1146 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1147 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
1148 /* This surface is a linear compressed image with a tiled shadow surface
1149 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
1150 * we need to ensure the shadow copy is up-to-date.
1151 */
1152 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1153 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
1154 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1155 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
1156 assert(plane == 0);
1157 anv_image_copy_to_shadow(cmd_buffer, image,
1158 VK_IMAGE_ASPECT_COLOR_BIT,
1159 base_level, level_count,
1160 base_layer, layer_count);
1161 }
1162
1163 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
1164 return;
1165
1166 assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR);
1167
1168 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
1169 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
1170 #if GEN_GEN == 12
1171 if (device->physical->has_implicit_ccs && devinfo->has_aux_map) {
1172 anv_image_init_aux_tt(cmd_buffer, image, aspect,
1173 base_level, level_count,
1174 base_layer, layer_count);
1175 }
1176 #else
1177 assert(!(device->physical->has_implicit_ccs && devinfo->has_aux_map));
1178 #endif
1179
1180 /* A subresource in the undefined layout may have been aliased and
1181 * populated with any arrangement of bits. Therefore, we must initialize
1182 * the related aux buffer and clear buffer entry with desirable values.
1183 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
1184 * images with VK_IMAGE_TILING_OPTIMAL.
1185 *
1186 * Initialize the relevant clear buffer entries.
1187 */
1188 if (base_level == 0 && base_layer == 0)
1189 init_fast_clear_color(cmd_buffer, image, aspect);
1190
1191 /* Initialize the aux buffers to enable correct rendering. In order to
1192 * ensure that things such as storage images work correctly, aux buffers
1193 * need to be initialized to valid data.
1194 *
1195 * Having an aux buffer with invalid data is a problem for two reasons:
1196 *
1197 * 1) Having an invalid value in the buffer can confuse the hardware.
1198 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1199 * invalid and leads to the hardware doing strange things. It
1200 * doesn't hang as far as we can tell but rendering corruption can
1201 * occur.
1202 *
1203 * 2) If this transition is into the GENERAL layout and we then use the
1204 * image as a storage image, then we must have the aux buffer in the
1205 * pass-through state so that, if we then go to texture from the
1206 * image, we get the results of our storage image writes and not the
1207 * fast clear color or other random data.
1208 *
1209 * For CCS both of the problems above are real demonstrable issues. In
1210 * that case, the only thing we can do is to perform an ambiguate to
1211 * transition the aux surface into the pass-through state.
1212 *
1213 * For MCS, (2) is never an issue because we don't support multisampled
1214 * storage images. In theory, issue (1) is a problem with MCS but we've
1215 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1216 * theory, be interpreted as something but we don't know that all bit
1217 * patterns are actually valid. For 2x and 8x, you could easily end up
1218 * with the MCS referring to an invalid plane because not all bits of
1219 * the MCS value are actually used. Even though we've never seen issues
1220 * in the wild, it's best to play it safe and initialize the MCS. We
1221 * can use a fast-clear for MCS because we only ever touch from render
1222 * and texture (no image load store).
1223 */
1224 if (image->samples == 1) {
1225 for (uint32_t l = 0; l < level_count; l++) {
1226 const uint32_t level = base_level + l;
1227
1228 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1229 if (base_layer >= aux_layers)
1230 break; /* We will only get fewer layers as level increases */
1231 uint32_t level_layer_count =
1232 MIN2(layer_count, aux_layers - base_layer);
1233
1234 anv_image_ccs_op(cmd_buffer, image,
1235 image->planes[plane].surface.isl.format,
1236 aspect, level, base_layer, level_layer_count,
1237 ISL_AUX_OP_AMBIGUATE, NULL, false);
1238
1239 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1240 set_image_compressed_bit(cmd_buffer, image, aspect,
1241 level, base_layer, level_layer_count,
1242 false);
1243 }
1244 }
1245 } else {
1246 if (image->samples == 4 || image->samples == 16) {
1247 anv_perf_warn(cmd_buffer->device, image,
1248 "Doing a potentially unnecessary fast-clear to "
1249 "define an MCS buffer.");
1250 }
1251
1252 assert(base_level == 0 && level_count == 1);
1253 anv_image_mcs_op(cmd_buffer, image,
1254 image->planes[plane].surface.isl.format,
1255 aspect, base_layer, layer_count,
1256 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1257 }
1258 return;
1259 }
1260
1261 const enum isl_aux_usage initial_aux_usage =
1262 anv_layout_to_aux_usage(devinfo, image, aspect, 0, initial_layout);
1263 const enum isl_aux_usage final_aux_usage =
1264 anv_layout_to_aux_usage(devinfo, image, aspect, 0, final_layout);
1265
1266 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1267 * We can handle transitions between CCS_D/E to and from NONE. What we
1268 * don't yet handle is switching between CCS_E and CCS_D within a given
1269 * image. Doing so in a performant way requires more detailed aux state
1270 * tracking such as what is done in i965. For now, just assume that we
1271 * only have one type of compression.
1272 */
1273 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1274 final_aux_usage == ISL_AUX_USAGE_NONE ||
1275 initial_aux_usage == final_aux_usage);
1276
1277 /* If initial aux usage is NONE, there is nothing to resolve */
1278 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1279 return;
1280
1281 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1282
1283 /* If the initial layout supports more fast clear than the final layout
1284 * then we need at least a partial resolve.
1285 */
1286 const enum anv_fast_clear_type initial_fast_clear =
1287 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1288 const enum anv_fast_clear_type final_fast_clear =
1289 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1290 if (final_fast_clear < initial_fast_clear)
1291 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1292
1293 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1294 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1295 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1296
1297 if (resolve_op == ISL_AUX_OP_NONE)
1298 return;
1299
1300 /* Perform a resolve to synchronize data between the main and aux buffer.
1301 * Before we begin, we must satisfy the cache flushing requirement specified
1302 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1303 *
1304 * Any transition from any value in {Clear, Render, Resolve} to a
1305 * different value in {Clear, Render, Resolve} requires end of pipe
1306 * synchronization.
1307 *
1308 * We perform a flush of the write cache before and after the clear and
1309 * resolve operations to meet this requirement.
1310 *
1311 * Unlike other drawing, fast clear operations are not properly
1312 * synchronized. The first PIPE_CONTROL here likely ensures that the
1313 * contents of the previous render or clear hit the render target before we
1314 * resolve and the second likely ensures that the resolve is complete before
1315 * we do any more rendering or clearing.
1316 */
1317 cmd_buffer->state.pending_pipe_bits |=
1318 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT;
1319
1320 for (uint32_t l = 0; l < level_count; l++) {
1321 uint32_t level = base_level + l;
1322
1323 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1324 if (base_layer >= aux_layers)
1325 break; /* We will only get fewer layers as level increases */
1326 uint32_t level_layer_count =
1327 MIN2(layer_count, aux_layers - base_layer);
1328
1329 for (uint32_t a = 0; a < level_layer_count; a++) {
1330 uint32_t array_layer = base_layer + a;
1331 if (image->samples == 1) {
1332 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1333 image->planes[plane].surface.isl.format,
1334 aspect, level, array_layer, resolve_op,
1335 final_fast_clear);
1336 } else {
1337 /* We only support fast-clear on the first layer so partial
1338 * resolves should not be used on other layers as they will use
1339 * the clear color stored in memory that is only valid for layer0.
1340 */
1341 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1342 array_layer != 0)
1343 continue;
1344
1345 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1346 image->planes[plane].surface.isl.format,
1347 aspect, array_layer, resolve_op,
1348 final_fast_clear);
1349 }
1350 }
1351 }
1352
1353 cmd_buffer->state.pending_pipe_bits |=
1354 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT;
1355 }
1356
1357 /**
1358 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1359 */
1360 static VkResult
1361 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1362 struct anv_render_pass *pass,
1363 const VkRenderPassBeginInfo *begin)
1364 {
1365 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1366 struct anv_cmd_state *state = &cmd_buffer->state;
1367 struct anv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
1368
1369 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1370
1371 if (pass->attachment_count > 0) {
1372 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1373 pass->attachment_count *
1374 sizeof(state->attachments[0]),
1375 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1376 if (state->attachments == NULL) {
1377 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1378 return anv_batch_set_error(&cmd_buffer->batch,
1379 VK_ERROR_OUT_OF_HOST_MEMORY);
1380 }
1381 } else {
1382 state->attachments = NULL;
1383 }
1384
1385 /* Reserve one for the NULL state. */
1386 unsigned num_states = 1;
1387 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1388 if (vk_format_is_color(pass->attachments[i].format))
1389 num_states++;
1390
1391 if (need_input_attachment_state(&pass->attachments[i]))
1392 num_states++;
1393 }
1394
1395 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1396 state->render_pass_states =
1397 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1398 num_states * ss_stride, isl_dev->ss.align);
1399
1400 struct anv_state next_state = state->render_pass_states;
1401 next_state.alloc_size = isl_dev->ss.size;
1402
1403 state->null_surface_state = next_state;
1404 next_state.offset += ss_stride;
1405 next_state.map += ss_stride;
1406
1407 const VkRenderPassAttachmentBeginInfoKHR *begin_attachment =
1408 vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
1409
1410 if (begin && !begin_attachment)
1411 assert(pass->attachment_count == framebuffer->attachment_count);
1412
1413 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1414 if (vk_format_is_color(pass->attachments[i].format)) {
1415 state->attachments[i].color.state = next_state;
1416 next_state.offset += ss_stride;
1417 next_state.map += ss_stride;
1418 }
1419
1420 if (need_input_attachment_state(&pass->attachments[i])) {
1421 state->attachments[i].input.state = next_state;
1422 next_state.offset += ss_stride;
1423 next_state.map += ss_stride;
1424 }
1425
1426 if (begin_attachment && begin_attachment->attachmentCount != 0) {
1427 assert(begin_attachment->attachmentCount == pass->attachment_count);
1428 ANV_FROM_HANDLE(anv_image_view, iview, begin_attachment->pAttachments[i]);
1429 cmd_buffer->state.attachments[i].image_view = iview;
1430 } else if (framebuffer && i < framebuffer->attachment_count) {
1431 cmd_buffer->state.attachments[i].image_view = framebuffer->attachments[i];
1432 }
1433 }
1434 assert(next_state.offset == state->render_pass_states.offset +
1435 state->render_pass_states.alloc_size);
1436
1437 if (begin) {
1438 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1439 isl_extent3d(framebuffer->width,
1440 framebuffer->height,
1441 framebuffer->layers));
1442
1443 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1444 struct anv_render_pass_attachment *att = &pass->attachments[i];
1445 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1446 VkImageAspectFlags clear_aspects = 0;
1447 VkImageAspectFlags load_aspects = 0;
1448
1449 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1450 /* color attachment */
1451 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1452 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1453 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1454 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1455 }
1456 } else {
1457 /* depthstencil attachment */
1458 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1459 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1460 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1461 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1462 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1463 }
1464 }
1465 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1466 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1467 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1468 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1469 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1470 }
1471 }
1472 }
1473
1474 state->attachments[i].current_layout = att->initial_layout;
1475 state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
1476 state->attachments[i].pending_clear_aspects = clear_aspects;
1477 state->attachments[i].pending_load_aspects = load_aspects;
1478 if (clear_aspects)
1479 state->attachments[i].clear_value = begin->pClearValues[i];
1480
1481 struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
1482 anv_assert(iview->vk_format == att->format);
1483
1484 const uint32_t num_layers = iview->planes[0].isl.array_len;
1485 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1486
1487 union isl_color_value clear_color = { .u32 = { 0, } };
1488 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1489 anv_assert(iview->n_planes == 1);
1490 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1491 color_attachment_compute_aux_usage(cmd_buffer->device,
1492 state, i, begin->renderArea,
1493 &clear_color);
1494
1495 anv_image_fill_surface_state(cmd_buffer->device,
1496 iview->image,
1497 VK_IMAGE_ASPECT_COLOR_BIT,
1498 &iview->planes[0].isl,
1499 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1500 state->attachments[i].aux_usage,
1501 &clear_color,
1502 0,
1503 &state->attachments[i].color,
1504 NULL);
1505
1506 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1507 } else {
1508 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1509 state, i,
1510 begin->renderArea);
1511 }
1512
1513 if (need_input_attachment_state(&pass->attachments[i])) {
1514 anv_image_fill_surface_state(cmd_buffer->device,
1515 iview->image,
1516 VK_IMAGE_ASPECT_COLOR_BIT,
1517 &iview->planes[0].isl,
1518 ISL_SURF_USAGE_TEXTURE_BIT,
1519 state->attachments[i].input_aux_usage,
1520 &clear_color,
1521 0,
1522 &state->attachments[i].input,
1523 NULL);
1524
1525 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1526 }
1527 }
1528 }
1529
1530 return VK_SUCCESS;
1531 }
1532
1533 VkResult
1534 genX(BeginCommandBuffer)(
1535 VkCommandBuffer commandBuffer,
1536 const VkCommandBufferBeginInfo* pBeginInfo)
1537 {
1538 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1539
1540 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1541 * command buffer's state. Otherwise, we must *reset* its state. In both
1542 * cases we reset it.
1543 *
1544 * From the Vulkan 1.0 spec:
1545 *
1546 * If a command buffer is in the executable state and the command buffer
1547 * was allocated from a command pool with the
1548 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1549 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1550 * as if vkResetCommandBuffer had been called with
1551 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1552 * the command buffer in the recording state.
1553 */
1554 anv_cmd_buffer_reset(cmd_buffer);
1555
1556 cmd_buffer->usage_flags = pBeginInfo->flags;
1557
1558 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1559 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1560
1561 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1562
1563 /* We sometimes store vertex data in the dynamic state buffer for blorp
1564 * operations and our dynamic state stream may re-use data from previous
1565 * command buffers. In order to prevent stale cache data, we flush the VF
1566 * cache. We could do this on every blorp call but that's not really
1567 * needed as all of the data will get written by the CPU prior to the GPU
1568 * executing anything. The chances are fairly high that they will use
1569 * blorp at least once per primary command buffer so it shouldn't be
1570 * wasted.
1571 *
1572 * There is also a workaround on gen8 which requires us to invalidate the
1573 * VF cache occasionally. It's easier if we can assume we start with a
1574 * fresh cache (See also genX(cmd_buffer_set_binding_for_gen8_vb_flush).)
1575 */
1576 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1577
1578 /* Re-emit the aux table register in every command buffer. This way we're
1579 * ensured that we have the table even if this command buffer doesn't
1580 * initialize any images.
1581 */
1582 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1583
1584 /* We send an "Indirect State Pointers Disable" packet at
1585 * EndCommandBuffer, so all push contant packets are ignored during a
1586 * context restore. Documentation says after that command, we need to
1587 * emit push constants again before any rendering operation. So we
1588 * flag them dirty here to make sure they get emitted.
1589 */
1590 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1591
1592 VkResult result = VK_SUCCESS;
1593 if (cmd_buffer->usage_flags &
1594 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1595 assert(pBeginInfo->pInheritanceInfo);
1596 cmd_buffer->state.pass =
1597 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1598 cmd_buffer->state.subpass =
1599 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1600
1601 /* This is optional in the inheritance info. */
1602 cmd_buffer->state.framebuffer =
1603 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1604
1605 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1606 cmd_buffer->state.pass, NULL);
1607
1608 /* Record that HiZ is enabled if we can. */
1609 if (cmd_buffer->state.framebuffer) {
1610 const struct anv_image_view * const iview =
1611 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1612
1613 if (iview) {
1614 VkImageLayout layout =
1615 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1616
1617 enum isl_aux_usage aux_usage =
1618 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1619 VK_IMAGE_ASPECT_DEPTH_BIT,
1620 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
1621 layout);
1622
1623 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1624 }
1625 }
1626
1627 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1628 }
1629
1630 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1631 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1632 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1633 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1634
1635 /* If secondary buffer supports conditional rendering
1636 * we should emit commands as if conditional rendering is enabled.
1637 */
1638 cmd_buffer->state.conditional_render_enabled =
1639 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1640 }
1641 #endif
1642
1643 return result;
1644 }
1645
1646 /* From the PRM, Volume 2a:
1647 *
1648 * "Indirect State Pointers Disable
1649 *
1650 * At the completion of the post-sync operation associated with this pipe
1651 * control packet, the indirect state pointers in the hardware are
1652 * considered invalid; the indirect pointers are not saved in the context.
1653 * If any new indirect state commands are executed in the command stream
1654 * while the pipe control is pending, the new indirect state commands are
1655 * preserved.
1656 *
1657 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1658 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1659 * commands are only considered as Indirect State Pointers. Once ISP is
1660 * issued in a context, SW must initialize by programming push constant
1661 * commands for all the shaders (at least to zero length) before attempting
1662 * any rendering operation for the same context."
1663 *
1664 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1665 * even though they point to a BO that has been already unreferenced at
1666 * the end of the previous batch buffer. This has been fine so far since
1667 * we are protected by these scratch page (every address not covered by
1668 * a BO should be pointing to the scratch page). But on CNL, it is
1669 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1670 * instruction.
1671 *
1672 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1673 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1674 * context restore, so the mentioned hang doesn't happen. However,
1675 * software must program push constant commands for all stages prior to
1676 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1677 *
1678 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1679 * constants have been loaded into the EUs prior to disable the push constants
1680 * so that it doesn't hang a previous 3DPRIMITIVE.
1681 */
1682 static void
1683 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1684 {
1685 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1686 pc.StallAtPixelScoreboard = true;
1687 pc.CommandStreamerStallEnable = true;
1688 }
1689 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1690 pc.IndirectStatePointersDisable = true;
1691 pc.CommandStreamerStallEnable = true;
1692 }
1693 }
1694
1695 VkResult
1696 genX(EndCommandBuffer)(
1697 VkCommandBuffer commandBuffer)
1698 {
1699 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1700
1701 if (anv_batch_has_error(&cmd_buffer->batch))
1702 return cmd_buffer->batch.status;
1703
1704 /* We want every command buffer to start with the PMA fix in a known state,
1705 * so we disable it at the end of the command buffer.
1706 */
1707 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1708
1709 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1710
1711 emit_isp_disable(cmd_buffer);
1712
1713 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1714
1715 return VK_SUCCESS;
1716 }
1717
1718 void
1719 genX(CmdExecuteCommands)(
1720 VkCommandBuffer commandBuffer,
1721 uint32_t commandBufferCount,
1722 const VkCommandBuffer* pCmdBuffers)
1723 {
1724 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1725
1726 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1727
1728 if (anv_batch_has_error(&primary->batch))
1729 return;
1730
1731 /* The secondary command buffers will assume that the PMA fix is disabled
1732 * when they begin executing. Make sure this is true.
1733 */
1734 genX(cmd_buffer_enable_pma_fix)(primary, false);
1735
1736 /* The secondary command buffer doesn't know which textures etc. have been
1737 * flushed prior to their execution. Apply those flushes now.
1738 */
1739 genX(cmd_buffer_apply_pipe_flushes)(primary);
1740
1741 for (uint32_t i = 0; i < commandBufferCount; i++) {
1742 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1743
1744 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1745 assert(!anv_batch_has_error(&secondary->batch));
1746
1747 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1748 if (secondary->state.conditional_render_enabled) {
1749 if (!primary->state.conditional_render_enabled) {
1750 /* Secondary buffer is constructed as if it will be executed
1751 * with conditional rendering, we should satisfy this dependency
1752 * regardless of conditional rendering being enabled in primary.
1753 */
1754 struct gen_mi_builder b;
1755 gen_mi_builder_init(&b, &primary->batch);
1756 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
1757 gen_mi_imm(UINT64_MAX));
1758 }
1759 }
1760 #endif
1761
1762 if (secondary->usage_flags &
1763 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1764 /* If we're continuing a render pass from the primary, we need to
1765 * copy the surface states for the current subpass into the storage
1766 * we allocated for them in BeginCommandBuffer.
1767 */
1768 struct anv_bo *ss_bo =
1769 primary->device->surface_state_pool.block_pool.bo;
1770 struct anv_state src_state = primary->state.render_pass_states;
1771 struct anv_state dst_state = secondary->state.render_pass_states;
1772 assert(src_state.alloc_size == dst_state.alloc_size);
1773
1774 genX(cmd_buffer_so_memcpy)(primary,
1775 (struct anv_address) {
1776 .bo = ss_bo,
1777 .offset = dst_state.offset,
1778 },
1779 (struct anv_address) {
1780 .bo = ss_bo,
1781 .offset = src_state.offset,
1782 },
1783 src_state.alloc_size);
1784 }
1785
1786 anv_cmd_buffer_add_secondary(primary, secondary);
1787 }
1788
1789 /* The secondary isn't counted in our VF cache tracking so we need to
1790 * invalidate the whole thing.
1791 */
1792 if (GEN_GEN >= 8 && GEN_GEN <= 9) {
1793 primary->state.pending_pipe_bits |=
1794 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1795 }
1796
1797 /* The secondary may have selected a different pipeline (3D or compute) and
1798 * may have changed the current L3$ configuration. Reset our tracking
1799 * variables to invalid values to ensure that we re-emit these in the case
1800 * where we do any draws or compute dispatches from the primary after the
1801 * secondary has returned.
1802 */
1803 primary->state.current_pipeline = UINT32_MAX;
1804 primary->state.current_l3_config = NULL;
1805 primary->state.current_hash_scale = 0;
1806
1807 /* Each of the secondary command buffers will use its own state base
1808 * address. We need to re-emit state base address for the primary after
1809 * all of the secondaries are done.
1810 *
1811 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1812 * address calls?
1813 */
1814 genX(cmd_buffer_emit_state_base_address)(primary);
1815 }
1816
1817 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1818 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1819 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1820
1821 /**
1822 * Program the hardware to use the specified L3 configuration.
1823 */
1824 void
1825 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1826 const struct gen_l3_config *cfg)
1827 {
1828 assert(cfg);
1829 if (cfg == cmd_buffer->state.current_l3_config)
1830 return;
1831
1832 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1833 intel_logd("L3 config transition: ");
1834 gen_dump_l3_config(cfg, stderr);
1835 }
1836
1837 UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM];
1838
1839 /* According to the hardware docs, the L3 partitioning can only be changed
1840 * while the pipeline is completely drained and the caches are flushed,
1841 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1842 */
1843 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1844 pc.DCFlushEnable = true;
1845 pc.PostSyncOperation = NoWrite;
1846 pc.CommandStreamerStallEnable = true;
1847 }
1848
1849 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1850 * invalidation of the relevant caches. Note that because RO invalidation
1851 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1852 * command is processed by the CS) we cannot combine it with the previous
1853 * stalling flush as the hardware documentation suggests, because that
1854 * would cause the CS to stall on previous rendering *after* RO
1855 * invalidation and wouldn't prevent the RO caches from being polluted by
1856 * concurrent rendering before the stall completes. This intentionally
1857 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1858 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1859 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1860 * already guarantee that there is no concurrent GPGPU kernel execution
1861 * (see SKL HSD 2132585).
1862 */
1863 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1864 pc.TextureCacheInvalidationEnable = true;
1865 pc.ConstantCacheInvalidationEnable = true;
1866 pc.InstructionCacheInvalidateEnable = true;
1867 pc.StateCacheInvalidationEnable = true;
1868 pc.PostSyncOperation = NoWrite;
1869 }
1870
1871 /* Now send a third stalling flush to make sure that invalidation is
1872 * complete when the L3 configuration registers are modified.
1873 */
1874 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1875 pc.DCFlushEnable = true;
1876 pc.PostSyncOperation = NoWrite;
1877 pc.CommandStreamerStallEnable = true;
1878 }
1879
1880 #if GEN_GEN >= 8
1881
1882 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1883
1884 #if GEN_GEN >= 12
1885 #define L3_ALLOCATION_REG GENX(L3ALLOC)
1886 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
1887 #else
1888 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
1889 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
1890 #endif
1891
1892 uint32_t l3cr;
1893 anv_pack_struct(&l3cr, L3_ALLOCATION_REG,
1894 #if GEN_GEN < 11
1895 .SLMEnable = has_slm,
1896 #endif
1897 #if GEN_GEN == 11
1898 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1899 * in L3CNTLREG register. The default setting of the bit is not the
1900 * desirable behavior.
1901 */
1902 .ErrorDetectionBehaviorControl = true,
1903 .UseFullWays = true,
1904 #endif
1905 .URBAllocation = cfg->n[GEN_L3P_URB],
1906 .ROAllocation = cfg->n[GEN_L3P_RO],
1907 .DCAllocation = cfg->n[GEN_L3P_DC],
1908 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1909
1910 /* Set up the L3 partitioning. */
1911 emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr);
1912
1913 #else
1914
1915 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1916 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1917 cfg->n[GEN_L3P_ALL];
1918 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1919 cfg->n[GEN_L3P_ALL];
1920 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1921 cfg->n[GEN_L3P_ALL];
1922
1923 assert(!cfg->n[GEN_L3P_ALL]);
1924
1925 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1926 * the matching space on the remaining banks has to be allocated to a
1927 * client (URB for all validated configurations) set to the
1928 * lower-bandwidth 2-bank address hashing mode.
1929 */
1930 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1931 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1932 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1933
1934 /* Minimum number of ways that can be allocated to the URB. */
1935 const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1936 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1937
1938 uint32_t l3sqcr1, l3cr2, l3cr3;
1939 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1940 .ConvertDC_UC = !has_dc,
1941 .ConvertIS_UC = !has_is,
1942 .ConvertC_UC = !has_c,
1943 .ConvertT_UC = !has_t);
1944 l3sqcr1 |=
1945 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1946 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1947 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1948
1949 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1950 .SLMEnable = has_slm,
1951 .URBLowBandwidth = urb_low_bw,
1952 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1953 #if !GEN_IS_HASWELL
1954 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1955 #endif
1956 .ROAllocation = cfg->n[GEN_L3P_RO],
1957 .DCAllocation = cfg->n[GEN_L3P_DC]);
1958
1959 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1960 .ISAllocation = cfg->n[GEN_L3P_IS],
1961 .ISLowBandwidth = 0,
1962 .CAllocation = cfg->n[GEN_L3P_C],
1963 .CLowBandwidth = 0,
1964 .TAllocation = cfg->n[GEN_L3P_T],
1965 .TLowBandwidth = 0);
1966
1967 /* Set up the L3 partitioning. */
1968 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1969 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1970 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1971
1972 #if GEN_IS_HASWELL
1973 if (cmd_buffer->device->physical->cmd_parser_version >= 4) {
1974 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1975 * them disabled to avoid crashing the system hard.
1976 */
1977 uint32_t scratch1, chicken3;
1978 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1979 .L3AtomicDisable = !has_dc);
1980 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1981 .L3AtomicDisableMask = true,
1982 .L3AtomicDisable = !has_dc);
1983 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1984 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1985 }
1986 #endif
1987
1988 #endif
1989
1990 cmd_buffer->state.current_l3_config = cfg;
1991 }
1992
1993 void
1994 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1995 {
1996 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1997 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1998
1999 if (cmd_buffer->device->physical->always_flush_cache)
2000 bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
2001
2002 /*
2003 * From Sandybridge PRM, volume 2, "1.7.2 End-of-Pipe Synchronization":
2004 *
2005 * Write synchronization is a special case of end-of-pipe
2006 * synchronization that requires that the render cache and/or depth
2007 * related caches are flushed to memory, where the data will become
2008 * globally visible. This type of synchronization is required prior to
2009 * SW (CPU) actually reading the result data from memory, or initiating
2010 * an operation that will use as a read surface (such as a texture
2011 * surface) a previous render target and/or depth/stencil buffer
2012 *
2013 *
2014 * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
2015 *
2016 * Exercising the write cache flush bits (Render Target Cache Flush
2017 * Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only
2018 * ensures the write caches are flushed and doesn't guarantee the data
2019 * is globally visible.
2020 *
2021 * SW can track the completion of the end-of-pipe-synchronization by
2022 * using "Notify Enable" and "PostSync Operation - Write Immediate
2023 * Data" in the PIPE_CONTROL command.
2024 *
2025 * In other words, flushes are pipelined while invalidations are handled
2026 * immediately. Therefore, if we're flushing anything then we need to
2027 * schedule an end-of-pipe sync before any invalidations can happen.
2028 */
2029 if (bits & ANV_PIPE_FLUSH_BITS)
2030 bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2031
2032
2033 /* HSD 1209978178: docs say that before programming the aux table:
2034 *
2035 * "Driver must ensure that the engine is IDLE but ensure it doesn't
2036 * add extra flushes in the case it knows that the engine is already
2037 * IDLE."
2038 */
2039 if (GEN_GEN == 12 && ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2040 bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2041
2042 /* If we're going to do an invalidate and we have a pending end-of-pipe
2043 * sync that has yet to be resolved, we do the end-of-pipe sync now.
2044 */
2045 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
2046 (bits & ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT)) {
2047 bits |= ANV_PIPE_END_OF_PIPE_SYNC_BIT;
2048 bits &= ~ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2049 }
2050
2051 if (GEN_GEN >= 12 &&
2052 ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) ||
2053 (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) {
2054 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
2055 * Enable):
2056 *
2057 * Unified Cache (Tile Cache Disabled):
2058 *
2059 * When the Color and Depth (Z) streams are enabled to be cached in
2060 * the DC space of L2, Software must use "Render Target Cache Flush
2061 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
2062 * Flush" for getting the color and depth (Z) write data to be
2063 * globally observable. In this mode of operation it is not required
2064 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
2065 */
2066 bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2067 }
2068
2069 /* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which
2070 * invalidates the instruction cache
2071 */
2072 if (GEN_GEN == 12 && (bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT))
2073 bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2074
2075 if ((GEN_GEN >= 8 && GEN_GEN <= 9) &&
2076 (bits & ANV_PIPE_CS_STALL_BIT) &&
2077 (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
2078 /* If we are doing a VF cache invalidate AND a CS stall (it must be
2079 * both) then we can reset our vertex cache tracking.
2080 */
2081 memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
2082 sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
2083 memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
2084 sizeof(cmd_buffer->state.gfx.ib_dirty_range));
2085 }
2086
2087 /* Project: SKL / Argument: LRI Post Sync Operation [23]
2088 *
2089 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
2090 * programmed prior to programming a PIPECONTROL command with "LRI
2091 * Post Sync Operation" in GPGPU mode of operation (i.e when
2092 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
2093 *
2094 * The same text exists a few rows below for Post Sync Op.
2095 *
2096 * On Gen12 this is GEN:BUG:1607156449.
2097 */
2098 if (bits & ANV_PIPE_POST_SYNC_BIT) {
2099 if ((GEN_GEN == 9 || (GEN_GEN == 12 && devinfo->revision == 0 /* A0 */)) &&
2100 cmd_buffer->state.current_pipeline == GPGPU)
2101 bits |= ANV_PIPE_CS_STALL_BIT;
2102 bits &= ~ANV_PIPE_POST_SYNC_BIT;
2103 }
2104
2105 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT |
2106 ANV_PIPE_END_OF_PIPE_SYNC_BIT)) {
2107 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2108 #if GEN_GEN >= 12
2109 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2110 #endif
2111 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2112 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2113 pipe.RenderTargetCacheFlushEnable =
2114 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2115
2116 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
2117 * be set with any PIPE_CONTROL with Depth Flush Enable bit set.
2118 */
2119 #if GEN_GEN >= 12
2120 pipe.DepthStallEnable =
2121 pipe.DepthCacheFlushEnable || (bits & ANV_PIPE_DEPTH_STALL_BIT);
2122 #else
2123 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
2124 #endif
2125
2126 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
2127 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2128
2129 /* From Sandybridge PRM, volume 2, "1.7.3.1 Writing a Value to Memory":
2130 *
2131 * "The most common action to perform upon reaching a
2132 * synchronization point is to write a value out to memory. An
2133 * immediate value (included with the synchronization command) may
2134 * be written."
2135 *
2136 *
2137 * From Broadwell PRM, volume 7, "End-of-Pipe Synchronization":
2138 *
2139 * "In case the data flushed out by the render engine is to be
2140 * read back in to the render engine in coherent manner, then the
2141 * render engine has to wait for the fence completion before
2142 * accessing the flushed data. This can be achieved by following
2143 * means on various products: PIPE_CONTROL command with CS Stall
2144 * and the required write caches flushed with Post-Sync-Operation
2145 * as Write Immediate Data.
2146 *
2147 * Example:
2148 * - Workload-1 (3D/GPGPU/MEDIA)
2149 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
2150 * Immediate Data, Required Write Cache Flush bits set)
2151 * - Workload-2 (Can use the data produce or output by
2152 * Workload-1)
2153 */
2154 if (bits & ANV_PIPE_END_OF_PIPE_SYNC_BIT) {
2155 pipe.CommandStreamerStallEnable = true;
2156 pipe.PostSyncOperation = WriteImmediateData;
2157 pipe.Address = (struct anv_address) {
2158 .bo = cmd_buffer->device->workaround_bo,
2159 .offset = 0
2160 };
2161 }
2162
2163 /*
2164 * According to the Broadwell documentation, any PIPE_CONTROL with the
2165 * "Command Streamer Stall" bit set must also have another bit set,
2166 * with five different options:
2167 *
2168 * - Render Target Cache Flush
2169 * - Depth Cache Flush
2170 * - Stall at Pixel Scoreboard
2171 * - Post-Sync Operation
2172 * - Depth Stall
2173 * - DC Flush Enable
2174 *
2175 * I chose "Stall at Pixel Scoreboard" since that's what we use in
2176 * mesa and it seems to work fine. The choice is fairly arbitrary.
2177 */
2178 if (pipe.CommandStreamerStallEnable &&
2179 !pipe.RenderTargetCacheFlushEnable &&
2180 !pipe.DepthCacheFlushEnable &&
2181 !pipe.StallAtPixelScoreboard &&
2182 !pipe.PostSyncOperation &&
2183 !pipe.DepthStallEnable &&
2184 !pipe.DCFlushEnable)
2185 pipe.StallAtPixelScoreboard = true;
2186 }
2187
2188 /* If a render target flush was emitted, then we can toggle off the bit
2189 * saying that render target writes are ongoing.
2190 */
2191 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
2192 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
2193
2194 if (GEN_IS_HASWELL) {
2195 /* Haswell needs addition work-arounds:
2196 *
2197 * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
2198 *
2199 * Option 1:
2200 * PIPE_CONTROL command with the CS Stall and the required write
2201 * caches flushed with Post-SyncOperation as Write Immediate Data
2202 * followed by eight dummy MI_STORE_DATA_IMM (write to scratch
2203 * spce) commands.
2204 *
2205 * Example:
2206 * - Workload-1
2207 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
2208 * Immediate Data, Required Write Cache Flush bits set)
2209 * - MI_STORE_DATA_IMM (8 times) (Dummy data, Scratch Address)
2210 * - Workload-2 (Can use the data produce or output by
2211 * Workload-1)
2212 *
2213 * Unfortunately, both the PRMs and the internal docs are a bit
2214 * out-of-date in this regard. What the windows driver does (and
2215 * this appears to actually work) is to emit a register read from the
2216 * memory address written by the pipe control above.
2217 *
2218 * What register we load into doesn't matter. We choose an indirect
2219 * rendering register because we know it always exists and it's one
2220 * of the first registers the command parser allows us to write. If
2221 * you don't have command parser support in your kernel (pre-4.2),
2222 * this will get turned into MI_NOOP and you won't get the
2223 * workaround. Unfortunately, there's just not much we can do in
2224 * that case. This register is perfectly safe to write since we
2225 * always re-load all of the indirect draw registers right before
2226 * 3DPRIMITIVE when needed anyway.
2227 */
2228 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
2229 lrm.RegisterAddress = 0x243C; /* GEN7_3DPRIM_START_INSTANCE */
2230 lrm.MemoryAddress = (struct anv_address) {
2231 .bo = cmd_buffer->device->workaround_bo,
2232 .offset = 0
2233 };
2234 }
2235 }
2236
2237 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT |
2238 ANV_PIPE_END_OF_PIPE_SYNC_BIT);
2239 }
2240
2241 if (bits & ANV_PIPE_INVALIDATE_BITS) {
2242 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2243 *
2244 * "If the VF Cache Invalidation Enable is set to a 1 in a
2245 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
2246 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
2247 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
2248 * a 1."
2249 *
2250 * This appears to hang Broadwell, so we restrict it to just gen9.
2251 */
2252 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
2253 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
2254
2255 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2256 pipe.StateCacheInvalidationEnable =
2257 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
2258 pipe.ConstantCacheInvalidationEnable =
2259 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2260 pipe.VFCacheInvalidationEnable =
2261 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2262 pipe.TextureCacheInvalidationEnable =
2263 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2264 pipe.InstructionCacheInvalidateEnable =
2265 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
2266
2267 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2268 *
2269 * "When VF Cache Invalidate is set “Post Sync Operation” must be
2270 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
2271 * “Write Timestamp”.
2272 */
2273 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
2274 pipe.PostSyncOperation = WriteImmediateData;
2275 pipe.Address =
2276 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
2277 }
2278 }
2279
2280 #if GEN_GEN == 12
2281 if ((bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT) &&
2282 cmd_buffer->device->info.has_aux_map) {
2283 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2284 lri.RegisterOffset = GENX(GFX_CCS_AUX_INV_num);
2285 lri.DataDWord = 1;
2286 }
2287 }
2288 #endif
2289
2290 bits &= ~ANV_PIPE_INVALIDATE_BITS;
2291 }
2292
2293 cmd_buffer->state.pending_pipe_bits = bits;
2294 }
2295
2296 void genX(CmdPipelineBarrier)(
2297 VkCommandBuffer commandBuffer,
2298 VkPipelineStageFlags srcStageMask,
2299 VkPipelineStageFlags destStageMask,
2300 VkBool32 byRegion,
2301 uint32_t memoryBarrierCount,
2302 const VkMemoryBarrier* pMemoryBarriers,
2303 uint32_t bufferMemoryBarrierCount,
2304 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
2305 uint32_t imageMemoryBarrierCount,
2306 const VkImageMemoryBarrier* pImageMemoryBarriers)
2307 {
2308 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2309
2310 /* XXX: Right now, we're really dumb and just flush whatever categories
2311 * the app asks for. One of these days we may make this a bit better
2312 * but right now that's all the hardware allows for in most areas.
2313 */
2314 VkAccessFlags src_flags = 0;
2315 VkAccessFlags dst_flags = 0;
2316
2317 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
2318 src_flags |= pMemoryBarriers[i].srcAccessMask;
2319 dst_flags |= pMemoryBarriers[i].dstAccessMask;
2320 }
2321
2322 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
2323 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
2324 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
2325 }
2326
2327 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
2328 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
2329 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
2330 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
2331 const VkImageSubresourceRange *range =
2332 &pImageMemoryBarriers[i].subresourceRange;
2333
2334 uint32_t base_layer, layer_count;
2335 if (image->type == VK_IMAGE_TYPE_3D) {
2336 base_layer = 0;
2337 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
2338 } else {
2339 base_layer = range->baseArrayLayer;
2340 layer_count = anv_get_layerCount(image, range);
2341 }
2342
2343 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
2344 transition_depth_buffer(cmd_buffer, image,
2345 pImageMemoryBarriers[i].oldLayout,
2346 pImageMemoryBarriers[i].newLayout);
2347 }
2348
2349 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
2350 transition_stencil_buffer(cmd_buffer, image,
2351 range->baseMipLevel,
2352 anv_get_levelCount(image, range),
2353 base_layer, layer_count,
2354 pImageMemoryBarriers[i].oldLayout,
2355 pImageMemoryBarriers[i].newLayout);
2356 }
2357
2358 if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2359 VkImageAspectFlags color_aspects =
2360 anv_image_expand_aspects(image, range->aspectMask);
2361 uint32_t aspect_bit;
2362 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
2363 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
2364 range->baseMipLevel,
2365 anv_get_levelCount(image, range),
2366 base_layer, layer_count,
2367 pImageMemoryBarriers[i].oldLayout,
2368 pImageMemoryBarriers[i].newLayout);
2369 }
2370 }
2371 }
2372
2373 cmd_buffer->state.pending_pipe_bits |=
2374 anv_pipe_flush_bits_for_access_flags(src_flags) |
2375 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
2376 }
2377
2378 static void
2379 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2380 {
2381 VkShaderStageFlags stages =
2382 cmd_buffer->state.gfx.pipeline->active_stages;
2383
2384 /* In order to avoid thrash, we assume that vertex and fragment stages
2385 * always exist. In the rare case where one is missing *and* the other
2386 * uses push concstants, this may be suboptimal. However, avoiding stalls
2387 * seems more important.
2388 */
2389 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
2390
2391 if (stages == cmd_buffer->state.push_constant_stages)
2392 return;
2393
2394 #if GEN_GEN >= 8
2395 const unsigned push_constant_kb = 32;
2396 #elif GEN_IS_HASWELL
2397 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
2398 #else
2399 const unsigned push_constant_kb = 16;
2400 #endif
2401
2402 const unsigned num_stages =
2403 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2404 unsigned size_per_stage = push_constant_kb / num_stages;
2405
2406 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2407 * units of 2KB. Incidentally, these are the same platforms that have
2408 * 32KB worth of push constant space.
2409 */
2410 if (push_constant_kb == 32)
2411 size_per_stage &= ~1u;
2412
2413 uint32_t kb_used = 0;
2414 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2415 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2416 anv_batch_emit(&cmd_buffer->batch,
2417 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2418 alloc._3DCommandSubOpcode = 18 + i;
2419 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2420 alloc.ConstantBufferSize = push_size;
2421 }
2422 kb_used += push_size;
2423 }
2424
2425 anv_batch_emit(&cmd_buffer->batch,
2426 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2427 alloc.ConstantBufferOffset = kb_used;
2428 alloc.ConstantBufferSize = push_constant_kb - kb_used;
2429 }
2430
2431 cmd_buffer->state.push_constant_stages = stages;
2432
2433 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2434 *
2435 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2436 * the next 3DPRIMITIVE command after programming the
2437 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2438 *
2439 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2440 * pipeline setup, we need to dirty push constants.
2441 */
2442 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2443 }
2444
2445 static struct anv_address
2446 anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
2447 struct anv_descriptor_set *set)
2448 {
2449 if (set->pool) {
2450 /* This is a normal descriptor set */
2451 return (struct anv_address) {
2452 .bo = set->pool->bo,
2453 .offset = set->desc_mem.offset,
2454 };
2455 } else {
2456 /* This is a push descriptor set. We have to flag it as used on the GPU
2457 * so that the next time we push descriptors, we grab a new memory.
2458 */
2459 struct anv_push_descriptor_set *push_set =
2460 (struct anv_push_descriptor_set *)set;
2461 push_set->set_used_on_gpu = true;
2462
2463 return (struct anv_address) {
2464 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
2465 .offset = set->desc_mem.offset,
2466 };
2467 }
2468 }
2469
2470 static VkResult
2471 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2472 struct anv_cmd_pipeline_state *pipe_state,
2473 struct anv_shader_bin *shader,
2474 struct anv_state *bt_state)
2475 {
2476 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2477 uint32_t state_offset;
2478
2479 struct anv_pipeline_bind_map *map = &shader->bind_map;
2480 if (map->surface_count == 0) {
2481 *bt_state = (struct anv_state) { 0, };
2482 return VK_SUCCESS;
2483 }
2484
2485 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2486 map->surface_count,
2487 &state_offset);
2488 uint32_t *bt_map = bt_state->map;
2489
2490 if (bt_state->map == NULL)
2491 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2492
2493 /* We only need to emit relocs if we're not using softpin. If we are using
2494 * softpin then we always keep all user-allocated memory objects resident.
2495 */
2496 const bool need_client_mem_relocs =
2497 !cmd_buffer->device->physical->use_softpin;
2498
2499 for (uint32_t s = 0; s < map->surface_count; s++) {
2500 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2501
2502 struct anv_state surface_state;
2503
2504 switch (binding->set) {
2505 case ANV_DESCRIPTOR_SET_NULL:
2506 bt_map[s] = 0;
2507 break;
2508
2509 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
2510 /* Color attachment binding */
2511 assert(shader->stage == MESA_SHADER_FRAGMENT);
2512 if (binding->index < subpass->color_count) {
2513 const unsigned att =
2514 subpass->color_attachments[binding->index].attachment;
2515
2516 /* From the Vulkan 1.0.46 spec:
2517 *
2518 * "If any color or depth/stencil attachments are
2519 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2520 * attachments."
2521 */
2522 if (att == VK_ATTACHMENT_UNUSED) {
2523 surface_state = cmd_buffer->state.null_surface_state;
2524 } else {
2525 surface_state = cmd_buffer->state.attachments[att].color.state;
2526 }
2527 } else {
2528 surface_state = cmd_buffer->state.null_surface_state;
2529 }
2530
2531 bt_map[s] = surface_state.offset + state_offset;
2532 break;
2533
2534 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
2535 struct anv_state surface_state =
2536 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2537
2538 struct anv_address constant_data = {
2539 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2540 .offset = shader->constant_data.offset,
2541 };
2542 unsigned constant_data_size = shader->constant_data_size;
2543
2544 const enum isl_format format =
2545 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2546 anv_fill_buffer_surface_state(cmd_buffer->device,
2547 surface_state, format,
2548 constant_data, constant_data_size, 1);
2549
2550 bt_map[s] = surface_state.offset + state_offset;
2551 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2552 break;
2553 }
2554
2555 case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
2556 /* This is always the first binding for compute shaders */
2557 assert(shader->stage == MESA_SHADER_COMPUTE && s == 0);
2558
2559 struct anv_state surface_state =
2560 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2561
2562 const enum isl_format format =
2563 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2564 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2565 format,
2566 cmd_buffer->state.compute.num_workgroups,
2567 12, 1);
2568 bt_map[s] = surface_state.offset + state_offset;
2569 if (need_client_mem_relocs) {
2570 add_surface_reloc(cmd_buffer, surface_state,
2571 cmd_buffer->state.compute.num_workgroups);
2572 }
2573 break;
2574 }
2575
2576 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2577 /* This is a descriptor set buffer so the set index is actually
2578 * given by binding->binding. (Yes, that's confusing.)
2579 */
2580 struct anv_descriptor_set *set =
2581 pipe_state->descriptors[binding->index];
2582 assert(set->desc_mem.alloc_size);
2583 assert(set->desc_surface_state.alloc_size);
2584 bt_map[s] = set->desc_surface_state.offset + state_offset;
2585 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2586 anv_descriptor_set_address(cmd_buffer, set));
2587 break;
2588 }
2589
2590 default: {
2591 assert(binding->set < MAX_SETS);
2592 const struct anv_descriptor *desc =
2593 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2594
2595 switch (desc->type) {
2596 case VK_DESCRIPTOR_TYPE_SAMPLER:
2597 /* Nothing for us to do here */
2598 continue;
2599
2600 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2601 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2602 struct anv_surface_state sstate =
2603 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2604 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2605 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2606 surface_state = sstate.state;
2607 assert(surface_state.alloc_size);
2608 if (need_client_mem_relocs)
2609 add_surface_state_relocs(cmd_buffer, sstate);
2610 break;
2611 }
2612 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2613 assert(shader->stage == MESA_SHADER_FRAGMENT);
2614 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2615 /* For depth and stencil input attachments, we treat it like any
2616 * old texture that a user may have bound.
2617 */
2618 assert(desc->image_view->n_planes == 1);
2619 struct anv_surface_state sstate =
2620 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2621 desc->image_view->planes[0].general_sampler_surface_state :
2622 desc->image_view->planes[0].optimal_sampler_surface_state;
2623 surface_state = sstate.state;
2624 assert(surface_state.alloc_size);
2625 if (need_client_mem_relocs)
2626 add_surface_state_relocs(cmd_buffer, sstate);
2627 } else {
2628 /* For color input attachments, we create the surface state at
2629 * vkBeginRenderPass time so that we can include aux and clear
2630 * color information.
2631 */
2632 assert(binding->input_attachment_index < subpass->input_count);
2633 const unsigned subpass_att = binding->input_attachment_index;
2634 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2635 surface_state = cmd_buffer->state.attachments[att].input.state;
2636 }
2637 break;
2638
2639 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2640 struct anv_surface_state sstate = (binding->write_only)
2641 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2642 : desc->image_view->planes[binding->plane].storage_surface_state;
2643 surface_state = sstate.state;
2644 assert(surface_state.alloc_size);
2645 if (need_client_mem_relocs)
2646 add_surface_state_relocs(cmd_buffer, sstate);
2647 break;
2648 }
2649
2650 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2651 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2652 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2653 surface_state = desc->buffer_view->surface_state;
2654 assert(surface_state.alloc_size);
2655 if (need_client_mem_relocs) {
2656 add_surface_reloc(cmd_buffer, surface_state,
2657 desc->buffer_view->address);
2658 }
2659 break;
2660
2661 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2662 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2663 /* Compute the offset within the buffer */
2664 struct anv_push_constants *push =
2665 &cmd_buffer->state.push_constants[shader->stage];
2666
2667 uint32_t dynamic_offset =
2668 push->dynamic_offsets[binding->dynamic_offset_index];
2669 uint64_t offset = desc->offset + dynamic_offset;
2670 /* Clamp to the buffer size */
2671 offset = MIN2(offset, desc->buffer->size);
2672 /* Clamp the range to the buffer size */
2673 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2674
2675 /* Align the range for consistency */
2676 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC)
2677 range = align_u32(range, ANV_UBO_BOUNDS_CHECK_ALIGNMENT);
2678
2679 struct anv_address address =
2680 anv_address_add(desc->buffer->address, offset);
2681
2682 surface_state =
2683 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2684 enum isl_format format =
2685 anv_isl_format_for_descriptor_type(desc->type);
2686
2687 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2688 format, address, range, 1);
2689 if (need_client_mem_relocs)
2690 add_surface_reloc(cmd_buffer, surface_state, address);
2691 break;
2692 }
2693
2694 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2695 surface_state = (binding->write_only)
2696 ? desc->buffer_view->writeonly_storage_surface_state
2697 : desc->buffer_view->storage_surface_state;
2698 assert(surface_state.alloc_size);
2699 if (need_client_mem_relocs) {
2700 add_surface_reloc(cmd_buffer, surface_state,
2701 desc->buffer_view->address);
2702 }
2703 break;
2704
2705 default:
2706 assert(!"Invalid descriptor type");
2707 continue;
2708 }
2709 bt_map[s] = surface_state.offset + state_offset;
2710 break;
2711 }
2712 }
2713 }
2714
2715 return VK_SUCCESS;
2716 }
2717
2718 static VkResult
2719 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2720 struct anv_cmd_pipeline_state *pipe_state,
2721 struct anv_shader_bin *shader,
2722 struct anv_state *state)
2723 {
2724 struct anv_pipeline_bind_map *map = &shader->bind_map;
2725 if (map->sampler_count == 0) {
2726 *state = (struct anv_state) { 0, };
2727 return VK_SUCCESS;
2728 }
2729
2730 uint32_t size = map->sampler_count * 16;
2731 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2732
2733 if (state->map == NULL)
2734 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2735
2736 for (uint32_t s = 0; s < map->sampler_count; s++) {
2737 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2738 const struct anv_descriptor *desc =
2739 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2740
2741 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2742 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2743 continue;
2744
2745 struct anv_sampler *sampler = desc->sampler;
2746
2747 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2748 * happens to be zero.
2749 */
2750 if (sampler == NULL)
2751 continue;
2752
2753 memcpy(state->map + (s * 16),
2754 sampler->state[binding->plane], sizeof(sampler->state[0]));
2755 }
2756
2757 return VK_SUCCESS;
2758 }
2759
2760 static uint32_t
2761 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer,
2762 struct anv_cmd_pipeline_state *pipe_state,
2763 struct anv_shader_bin **shaders,
2764 uint32_t num_shaders)
2765 {
2766 const VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty;
2767 VkShaderStageFlags flushed = 0;
2768
2769 VkResult result = VK_SUCCESS;
2770 for (uint32_t i = 0; i < num_shaders; i++) {
2771 if (!shaders[i])
2772 continue;
2773
2774 gl_shader_stage stage = shaders[i]->stage;
2775 VkShaderStageFlags vk_stage = mesa_to_vk_shader_stage(stage);
2776 if ((vk_stage & dirty) == 0)
2777 continue;
2778
2779 result = emit_samplers(cmd_buffer, pipe_state, shaders[i],
2780 &cmd_buffer->state.samplers[stage]);
2781 if (result != VK_SUCCESS)
2782 break;
2783 result = emit_binding_table(cmd_buffer, pipe_state, shaders[i],
2784 &cmd_buffer->state.binding_tables[stage]);
2785 if (result != VK_SUCCESS)
2786 break;
2787
2788 flushed |= vk_stage;
2789 }
2790
2791 if (result != VK_SUCCESS) {
2792 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2793
2794 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2795 if (result != VK_SUCCESS)
2796 return 0;
2797
2798 /* Re-emit state base addresses so we get the new surface state base
2799 * address before we start emitting binding tables etc.
2800 */
2801 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2802
2803 /* Re-emit all active binding tables */
2804 flushed = 0;
2805
2806 for (uint32_t i = 0; i < num_shaders; i++) {
2807 if (!shaders[i])
2808 continue;
2809
2810 gl_shader_stage stage = shaders[i]->stage;
2811
2812 result = emit_samplers(cmd_buffer, pipe_state, shaders[i],
2813 &cmd_buffer->state.samplers[stage]);
2814 if (result != VK_SUCCESS) {
2815 anv_batch_set_error(&cmd_buffer->batch, result);
2816 return 0;
2817 }
2818 result = emit_binding_table(cmd_buffer, pipe_state, shaders[i],
2819 &cmd_buffer->state.binding_tables[stage]);
2820 if (result != VK_SUCCESS) {
2821 anv_batch_set_error(&cmd_buffer->batch, result);
2822 return 0;
2823 }
2824
2825 flushed |= mesa_to_vk_shader_stage(stage);
2826 }
2827 }
2828
2829 cmd_buffer->state.descriptors_dirty &= ~flushed;
2830
2831 return flushed;
2832 }
2833
2834 static void
2835 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2836 uint32_t stages)
2837 {
2838 static const uint32_t sampler_state_opcodes[] = {
2839 [MESA_SHADER_VERTEX] = 43,
2840 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2841 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2842 [MESA_SHADER_GEOMETRY] = 46,
2843 [MESA_SHADER_FRAGMENT] = 47,
2844 [MESA_SHADER_COMPUTE] = 0,
2845 };
2846
2847 static const uint32_t binding_table_opcodes[] = {
2848 [MESA_SHADER_VERTEX] = 38,
2849 [MESA_SHADER_TESS_CTRL] = 39,
2850 [MESA_SHADER_TESS_EVAL] = 40,
2851 [MESA_SHADER_GEOMETRY] = 41,
2852 [MESA_SHADER_FRAGMENT] = 42,
2853 [MESA_SHADER_COMPUTE] = 0,
2854 };
2855
2856 anv_foreach_stage(s, stages) {
2857 assert(s < ARRAY_SIZE(binding_table_opcodes));
2858 assert(binding_table_opcodes[s] > 0);
2859
2860 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2861 anv_batch_emit(&cmd_buffer->batch,
2862 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2863 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2864 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2865 }
2866 }
2867
2868 /* Always emit binding table pointers if we're asked to, since on SKL
2869 * this is what flushes push constants. */
2870 anv_batch_emit(&cmd_buffer->batch,
2871 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2872 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2873 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2874 }
2875 }
2876 }
2877
2878 static struct anv_address
2879 get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
2880 gl_shader_stage stage,
2881 const struct anv_push_range *range)
2882 {
2883 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2884 switch (range->set) {
2885 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2886 /* This is a descriptor set buffer so the set index is
2887 * actually given by binding->binding. (Yes, that's
2888 * confusing.)
2889 */
2890 struct anv_descriptor_set *set =
2891 gfx_state->base.descriptors[range->index];
2892 return anv_descriptor_set_address(cmd_buffer, set);
2893 }
2894
2895 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
2896 struct anv_state state =
2897 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2898 return (struct anv_address) {
2899 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2900 .offset = state.offset,
2901 };
2902 }
2903
2904 default: {
2905 assert(range->set < MAX_SETS);
2906 struct anv_descriptor_set *set =
2907 gfx_state->base.descriptors[range->set];
2908 const struct anv_descriptor *desc =
2909 &set->descriptors[range->index];
2910
2911 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2912 return desc->buffer_view->address;
2913 } else {
2914 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2915 struct anv_push_constants *push =
2916 &cmd_buffer->state.push_constants[stage];
2917 uint32_t dynamic_offset =
2918 push->dynamic_offsets[range->dynamic_offset_index];
2919 return anv_address_add(desc->buffer->address,
2920 desc->offset + dynamic_offset);
2921 }
2922 }
2923 }
2924 }
2925
2926
2927 /** Returns the size in bytes of the bound buffer relative to range->start
2928 *
2929 * This may be smaller than range->length * 32.
2930 */
2931 static uint32_t
2932 get_push_range_bound_size(struct anv_cmd_buffer *cmd_buffer,
2933 gl_shader_stage stage,
2934 const struct anv_push_range *range)
2935 {
2936 assert(stage != MESA_SHADER_COMPUTE);
2937 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2938 switch (range->set) {
2939 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2940 struct anv_descriptor_set *set =
2941 gfx_state->base.descriptors[range->index];
2942 assert(range->start * 32 < set->desc_mem.alloc_size);
2943 assert((range->start + range->length) * 32 < set->desc_mem.alloc_size);
2944 return set->desc_mem.alloc_size - range->start * 32;
2945 }
2946
2947 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
2948 return range->length * 32;
2949
2950 default: {
2951 assert(range->set < MAX_SETS);
2952 struct anv_descriptor_set *set =
2953 gfx_state->base.descriptors[range->set];
2954 const struct anv_descriptor *desc =
2955 &set->descriptors[range->index];
2956
2957 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2958 if (range->start * 32 > desc->buffer_view->range)
2959 return 0;
2960
2961 return desc->buffer_view->range - range->start * 32;
2962 } else {
2963 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2964 /* Compute the offset within the buffer */
2965 struct anv_push_constants *push =
2966 &cmd_buffer->state.push_constants[stage];
2967 uint32_t dynamic_offset =
2968 push->dynamic_offsets[range->dynamic_offset_index];
2969 uint64_t offset = desc->offset + dynamic_offset;
2970 /* Clamp to the buffer size */
2971 offset = MIN2(offset, desc->buffer->size);
2972 /* Clamp the range to the buffer size */
2973 uint32_t bound_range = MIN2(desc->range, desc->buffer->size - offset);
2974
2975 /* Align the range for consistency */
2976 bound_range = align_u32(bound_range, ANV_UBO_BOUNDS_CHECK_ALIGNMENT);
2977
2978 if (range->start * 32 > bound_range)
2979 return 0;
2980
2981 return bound_range - range->start * 32;
2982 }
2983 }
2984 }
2985 }
2986
2987 static void
2988 cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
2989 gl_shader_stage stage,
2990 struct anv_address *buffers,
2991 unsigned buffer_count)
2992 {
2993 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2994 const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
2995
2996 static const uint32_t push_constant_opcodes[] = {
2997 [MESA_SHADER_VERTEX] = 21,
2998 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2999 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3000 [MESA_SHADER_GEOMETRY] = 22,
3001 [MESA_SHADER_FRAGMENT] = 23,
3002 [MESA_SHADER_COMPUTE] = 0,
3003 };
3004
3005 assert(stage < ARRAY_SIZE(push_constant_opcodes));
3006 assert(push_constant_opcodes[stage] > 0);
3007
3008 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
3009 c._3DCommandSubOpcode = push_constant_opcodes[stage];
3010
3011 if (anv_pipeline_has_stage(pipeline, stage)) {
3012 const struct anv_pipeline_bind_map *bind_map =
3013 &pipeline->shaders[stage]->bind_map;
3014
3015 #if GEN_GEN >= 12
3016 c.MOCS = cmd_buffer->device->isl_dev.mocs.internal;
3017 #endif
3018
3019 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3020 /* The Skylake PRM contains the following restriction:
3021 *
3022 * "The driver must ensure The following case does not occur
3023 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3024 * buffer 3 read length equal to zero committed followed by a
3025 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3026 * zero committed."
3027 *
3028 * To avoid this, we program the buffers in the highest slots.
3029 * This way, slot 0 is only used if slot 3 is also used.
3030 */
3031 assert(buffer_count <= 4);
3032 const unsigned shift = 4 - buffer_count;
3033 for (unsigned i = 0; i < buffer_count; i++) {
3034 const struct anv_push_range *range = &bind_map->push_ranges[i];
3035
3036 /* At this point we only have non-empty ranges */
3037 assert(range->length > 0);
3038
3039 /* For Ivy Bridge, make sure we only set the first range (actual
3040 * push constants)
3041 */
3042 assert((GEN_GEN >= 8 || GEN_IS_HASWELL) || i == 0);
3043
3044 c.ConstantBody.ReadLength[i + shift] = range->length;
3045 c.ConstantBody.Buffer[i + shift] =
3046 anv_address_add(buffers[i], range->start * 32);
3047 }
3048 #else
3049 /* For Ivy Bridge, push constants are relative to dynamic state
3050 * base address and we only ever push actual push constants.
3051 */
3052 if (bind_map->push_ranges[0].length > 0) {
3053 assert(buffer_count == 1);
3054 assert(bind_map->push_ranges[0].set ==
3055 ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
3056 assert(buffers[0].bo ==
3057 cmd_buffer->device->dynamic_state_pool.block_pool.bo);
3058 c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
3059 c.ConstantBody.Buffer[0].bo = NULL;
3060 c.ConstantBody.Buffer[0].offset = buffers[0].offset;
3061 }
3062 assert(bind_map->push_ranges[1].length == 0);
3063 assert(bind_map->push_ranges[2].length == 0);
3064 assert(bind_map->push_ranges[3].length == 0);
3065 #endif
3066 }
3067 }
3068 }
3069
3070 #if GEN_GEN >= 12
3071 static void
3072 cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
3073 uint32_t shader_mask,
3074 struct anv_address *buffers,
3075 uint32_t buffer_count)
3076 {
3077 if (buffer_count == 0) {
3078 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
3079 c.ShaderUpdateEnable = shader_mask;
3080 c.MOCS = cmd_buffer->device->isl_dev.mocs.internal;
3081 }
3082 return;
3083 }
3084
3085 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3086 const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
3087
3088 static const uint32_t push_constant_opcodes[] = {
3089 [MESA_SHADER_VERTEX] = 21,
3090 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3091 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3092 [MESA_SHADER_GEOMETRY] = 22,
3093 [MESA_SHADER_FRAGMENT] = 23,
3094 [MESA_SHADER_COMPUTE] = 0,
3095 };
3096
3097 gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
3098 assert(stage < ARRAY_SIZE(push_constant_opcodes));
3099 assert(push_constant_opcodes[stage] > 0);
3100
3101 const struct anv_pipeline_bind_map *bind_map =
3102 &pipeline->shaders[stage]->bind_map;
3103
3104 uint32_t *dw;
3105 const uint32_t buffer_mask = (1 << buffer_count) - 1;
3106 const uint32_t num_dwords = 2 + 2 * buffer_count;
3107
3108 dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3109 GENX(3DSTATE_CONSTANT_ALL),
3110 .ShaderUpdateEnable = shader_mask,
3111 .PointerBufferMask = buffer_mask,
3112 .MOCS = cmd_buffer->device->isl_dev.mocs.internal);
3113
3114 for (int i = 0; i < buffer_count; i++) {
3115 const struct anv_push_range *range = &bind_map->push_ranges[i];
3116 GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
3117 &cmd_buffer->batch, dw + 2 + i * 2,
3118 &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
3119 .PointerToConstantBuffer =
3120 anv_address_add(buffers[i], range->start * 32),
3121 .ConstantBufferReadLength = range->length,
3122 });
3123 }
3124 }
3125 #endif
3126
3127 static void
3128 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
3129 VkShaderStageFlags dirty_stages)
3130 {
3131 VkShaderStageFlags flushed = 0;
3132 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3133 const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
3134
3135 #if GEN_GEN >= 12
3136 uint32_t nobuffer_stages = 0;
3137 #endif
3138
3139 anv_foreach_stage(stage, dirty_stages) {
3140 unsigned buffer_count = 0;
3141 flushed |= mesa_to_vk_shader_stage(stage);
3142 UNUSED uint32_t max_push_range = 0;
3143
3144 struct anv_address buffers[4] = {};
3145 if (anv_pipeline_has_stage(pipeline, stage)) {
3146 const struct anv_pipeline_bind_map *bind_map =
3147 &pipeline->shaders[stage]->bind_map;
3148 struct anv_push_constants *push =
3149 &cmd_buffer->state.push_constants[stage];
3150
3151 if (cmd_buffer->device->robust_buffer_access) {
3152 for (unsigned i = 0; i < 4; i++) {
3153 const struct anv_push_range *range = &bind_map->push_ranges[i];
3154 if (range->length == 0) {
3155 push->push_ubo_sizes[i] = 0;
3156 } else {
3157 push->push_ubo_sizes[i] =
3158 get_push_range_bound_size(cmd_buffer, stage, range);
3159 }
3160 cmd_buffer->state.push_constants_dirty |=
3161 mesa_to_vk_shader_stage(stage);
3162 }
3163 }
3164
3165 /* We have to gather buffer addresses as a second step because the
3166 * loop above puts data into the push constant area and the call to
3167 * get_push_range_address is what locks our push constants and copies
3168 * them into the actual GPU buffer. If we did the two loops at the
3169 * same time, we'd risk only having some of the sizes in the push
3170 * constant buffer when we did the copy.
3171 */
3172 for (unsigned i = 0; i < 4; i++) {
3173 const struct anv_push_range *range = &bind_map->push_ranges[i];
3174 if (range->length == 0)
3175 break;
3176
3177 buffers[i] = get_push_range_address(cmd_buffer, stage, range);
3178 max_push_range = MAX2(max_push_range, range->length);
3179 buffer_count++;
3180 }
3181
3182 /* We have at most 4 buffers but they should be tightly packed */
3183 for (unsigned i = buffer_count; i < 4; i++)
3184 assert(bind_map->push_ranges[i].length == 0);
3185 }
3186
3187 #if GEN_GEN >= 12
3188 /* If this stage doesn't have any push constants, emit it later in a
3189 * single CONSTANT_ALL packet.
3190 */
3191 if (buffer_count == 0) {
3192 nobuffer_stages |= 1 << stage;
3193 continue;
3194 }
3195
3196 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
3197 * contains only 5 bits, so we can only use it for buffers smaller than
3198 * 32.
3199 */
3200 if (max_push_range < 32) {
3201 cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
3202 buffers, buffer_count);
3203 continue;
3204 }
3205 #endif
3206
3207 cmd_buffer_emit_push_constant(cmd_buffer, stage, buffers, buffer_count);
3208 }
3209
3210 #if GEN_GEN >= 12
3211 if (nobuffer_stages)
3212 cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, NULL, 0);
3213 #endif
3214
3215 cmd_buffer->state.push_constants_dirty &= ~flushed;
3216 }
3217
3218 void
3219 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
3220 {
3221 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3222 uint32_t *p;
3223
3224 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
3225 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
3226 vb_emit |= pipeline->vb_used;
3227
3228 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
3229
3230 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config);
3231
3232 genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
3233
3234 genX(flush_pipeline_select_3d)(cmd_buffer);
3235
3236 if (vb_emit) {
3237 const uint32_t num_buffers = __builtin_popcount(vb_emit);
3238 const uint32_t num_dwords = 1 + num_buffers * 4;
3239
3240 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3241 GENX(3DSTATE_VERTEX_BUFFERS));
3242 uint32_t vb, i = 0;
3243 for_each_bit(vb, vb_emit) {
3244 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
3245 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
3246
3247 struct GENX(VERTEX_BUFFER_STATE) state = {
3248 .VertexBufferIndex = vb,
3249
3250 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
3251 #if GEN_GEN <= 7
3252 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
3253 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
3254 #endif
3255
3256 .AddressModifyEnable = true,
3257 .BufferPitch = pipeline->vb[vb].stride,
3258 .BufferStartingAddress = anv_address_add(buffer->address, offset),
3259
3260 #if GEN_GEN >= 8
3261 .BufferSize = buffer->size - offset
3262 #else
3263 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
3264 #endif
3265 };
3266
3267 #if GEN_GEN >= 8 && GEN_GEN <= 9
3268 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, vb,
3269 state.BufferStartingAddress,
3270 state.BufferSize);
3271 #endif
3272
3273 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
3274 i++;
3275 }
3276 }
3277
3278 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
3279
3280 #if GEN_GEN >= 8
3281 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
3282 /* We don't need any per-buffer dirty tracking because you're not
3283 * allowed to bind different XFB buffers while XFB is enabled.
3284 */
3285 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3286 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
3287 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
3288 #if GEN_GEN < 12
3289 sob.SOBufferIndex = idx;
3290 #else
3291 sob._3DCommandOpcode = 0;
3292 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
3293 #endif
3294
3295 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
3296 sob.SOBufferEnable = true;
3297 sob.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
3298 sob.StreamOffsetWriteEnable = false;
3299 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
3300 xfb->offset);
3301 /* Size is in DWords - 1 */
3302 sob.SurfaceSize = xfb->size / 4 - 1;
3303 }
3304 }
3305 }
3306
3307 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
3308 if (GEN_GEN >= 10)
3309 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3310 }
3311 #endif
3312
3313 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
3314 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch);
3315
3316 /* If the pipeline changed, we may need to re-allocate push constant
3317 * space in the URB.
3318 */
3319 cmd_buffer_alloc_push_constants(cmd_buffer);
3320 }
3321
3322 #if GEN_GEN <= 7
3323 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
3324 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
3325 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
3326 *
3327 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
3328 * stall needs to be sent just prior to any 3DSTATE_VS,
3329 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
3330 * 3DSTATE_BINDING_TABLE_POINTER_VS,
3331 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
3332 * PIPE_CONTROL needs to be sent before any combination of VS
3333 * associated 3DSTATE."
3334 */
3335 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3336 pc.DepthStallEnable = true;
3337 pc.PostSyncOperation = WriteImmediateData;
3338 pc.Address =
3339 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
3340 }
3341 }
3342 #endif
3343
3344 /* Render targets live in the same binding table as fragment descriptors */
3345 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
3346 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
3347
3348 /* We emit the binding tables and sampler tables first, then emit push
3349 * constants and then finally emit binding table and sampler table
3350 * pointers. It has to happen in this order, since emitting the binding
3351 * tables may change the push constants (in case of storage images). After
3352 * emitting push constants, on SKL+ we have to emit the corresponding
3353 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
3354 */
3355 uint32_t dirty = 0;
3356 if (cmd_buffer->state.descriptors_dirty) {
3357 dirty = flush_descriptor_sets(cmd_buffer,
3358 &cmd_buffer->state.gfx.base,
3359 pipeline->shaders,
3360 ARRAY_SIZE(pipeline->shaders));
3361 }
3362
3363 if (dirty || cmd_buffer->state.push_constants_dirty) {
3364 /* Because we're pushing UBOs, we have to push whenever either
3365 * descriptors or push constants is dirty.
3366 */
3367 dirty |= cmd_buffer->state.push_constants_dirty;
3368 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
3369 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
3370 }
3371
3372 if (dirty)
3373 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
3374
3375 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
3376 gen8_cmd_buffer_emit_viewport(cmd_buffer);
3377
3378 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
3379 ANV_CMD_DIRTY_PIPELINE)) {
3380 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
3381 pipeline->depth_clamp_enable);
3382 }
3383
3384 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
3385 ANV_CMD_DIRTY_RENDER_TARGETS))
3386 gen7_cmd_buffer_emit_scissor(cmd_buffer);
3387
3388 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
3389 }
3390
3391 static void
3392 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
3393 struct anv_address addr,
3394 uint32_t size, uint32_t index)
3395 {
3396 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
3397 GENX(3DSTATE_VERTEX_BUFFERS));
3398
3399 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
3400 &(struct GENX(VERTEX_BUFFER_STATE)) {
3401 .VertexBufferIndex = index,
3402 .AddressModifyEnable = true,
3403 .BufferPitch = 0,
3404 .MOCS = addr.bo ? anv_mocs_for_bo(cmd_buffer->device, addr.bo) : 0,
3405 .NullVertexBuffer = size == 0,
3406 #if (GEN_GEN >= 8)
3407 .BufferStartingAddress = addr,
3408 .BufferSize = size
3409 #else
3410 .BufferStartingAddress = addr,
3411 .EndAddress = anv_address_add(addr, size),
3412 #endif
3413 });
3414
3415 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer,
3416 index, addr, size);
3417 }
3418
3419 static void
3420 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
3421 struct anv_address addr)
3422 {
3423 emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
3424 }
3425
3426 static void
3427 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
3428 uint32_t base_vertex, uint32_t base_instance)
3429 {
3430 if (base_vertex == 0 && base_instance == 0) {
3431 emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
3432 } else {
3433 struct anv_state id_state =
3434 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
3435
3436 ((uint32_t *)id_state.map)[0] = base_vertex;
3437 ((uint32_t *)id_state.map)[1] = base_instance;
3438
3439 struct anv_address addr = {
3440 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3441 .offset = id_state.offset,
3442 };
3443
3444 emit_base_vertex_instance_bo(cmd_buffer, addr);
3445 }
3446 }
3447
3448 static void
3449 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
3450 {
3451 struct anv_state state =
3452 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
3453
3454 ((uint32_t *)state.map)[0] = draw_index;
3455
3456 struct anv_address addr = {
3457 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3458 .offset = state.offset,
3459 };
3460
3461 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
3462 }
3463
3464 static void
3465 update_dirty_vbs_for_gen8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
3466 uint32_t access_type)
3467 {
3468 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3469 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3470
3471 uint64_t vb_used = pipeline->vb_used;
3472 if (vs_prog_data->uses_firstvertex ||
3473 vs_prog_data->uses_baseinstance)
3474 vb_used |= 1ull << ANV_SVGS_VB_INDEX;
3475 if (vs_prog_data->uses_drawid)
3476 vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
3477
3478 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(cmd_buffer,
3479 access_type == RANDOM,
3480 vb_used);
3481 }
3482
3483 void genX(CmdDraw)(
3484 VkCommandBuffer commandBuffer,
3485 uint32_t vertexCount,
3486 uint32_t instanceCount,
3487 uint32_t firstVertex,
3488 uint32_t firstInstance)
3489 {
3490 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3491 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3492 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3493
3494 if (anv_batch_has_error(&cmd_buffer->batch))
3495 return;
3496
3497 genX(cmd_buffer_flush_state)(cmd_buffer);
3498
3499 if (cmd_buffer->state.conditional_render_enabled)
3500 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3501
3502 if (vs_prog_data->uses_firstvertex ||
3503 vs_prog_data->uses_baseinstance)
3504 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3505 if (vs_prog_data->uses_drawid)
3506 emit_draw_index(cmd_buffer, 0);
3507
3508 /* Emitting draw index or vertex index BOs may result in needing
3509 * additional VF cache flushes.
3510 */
3511 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3512
3513 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3514 * different views. We need to multiply instanceCount by the view count.
3515 */
3516 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3517
3518 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3519 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3520 prim.VertexAccessType = SEQUENTIAL;
3521 prim.PrimitiveTopologyType = pipeline->topology;
3522 prim.VertexCountPerInstance = vertexCount;
3523 prim.StartVertexLocation = firstVertex;
3524 prim.InstanceCount = instanceCount;
3525 prim.StartInstanceLocation = firstInstance;
3526 prim.BaseVertexLocation = 0;
3527 }
3528
3529 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3530 }
3531
3532 void genX(CmdDrawIndexed)(
3533 VkCommandBuffer commandBuffer,
3534 uint32_t indexCount,
3535 uint32_t instanceCount,
3536 uint32_t firstIndex,
3537 int32_t vertexOffset,
3538 uint32_t firstInstance)
3539 {
3540 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3541 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3542 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3543
3544 if (anv_batch_has_error(&cmd_buffer->batch))
3545 return;
3546
3547 genX(cmd_buffer_flush_state)(cmd_buffer);
3548
3549 if (cmd_buffer->state.conditional_render_enabled)
3550 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3551
3552 if (vs_prog_data->uses_firstvertex ||
3553 vs_prog_data->uses_baseinstance)
3554 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
3555 if (vs_prog_data->uses_drawid)
3556 emit_draw_index(cmd_buffer, 0);
3557
3558 /* Emitting draw index or vertex index BOs may result in needing
3559 * additional VF cache flushes.
3560 */
3561 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3562
3563 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3564 * different views. We need to multiply instanceCount by the view count.
3565 */
3566 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3567
3568 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3569 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3570 prim.VertexAccessType = RANDOM;
3571 prim.PrimitiveTopologyType = pipeline->topology;
3572 prim.VertexCountPerInstance = indexCount;
3573 prim.StartVertexLocation = firstIndex;
3574 prim.InstanceCount = instanceCount;
3575 prim.StartInstanceLocation = firstInstance;
3576 prim.BaseVertexLocation = vertexOffset;
3577 }
3578
3579 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3580 }
3581
3582 /* Auto-Draw / Indirect Registers */
3583 #define GEN7_3DPRIM_END_OFFSET 0x2420
3584 #define GEN7_3DPRIM_START_VERTEX 0x2430
3585 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
3586 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
3587 #define GEN7_3DPRIM_START_INSTANCE 0x243C
3588 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
3589
3590 void genX(CmdDrawIndirectByteCountEXT)(
3591 VkCommandBuffer commandBuffer,
3592 uint32_t instanceCount,
3593 uint32_t firstInstance,
3594 VkBuffer counterBuffer,
3595 VkDeviceSize counterBufferOffset,
3596 uint32_t counterOffset,
3597 uint32_t vertexStride)
3598 {
3599 #if GEN_IS_HASWELL || GEN_GEN >= 8
3600 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3601 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
3602 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3603 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3604
3605 /* firstVertex is always zero for this draw function */
3606 const uint32_t firstVertex = 0;
3607
3608 if (anv_batch_has_error(&cmd_buffer->batch))
3609 return;
3610
3611 genX(cmd_buffer_flush_state)(cmd_buffer);
3612
3613 if (vs_prog_data->uses_firstvertex ||
3614 vs_prog_data->uses_baseinstance)
3615 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3616 if (vs_prog_data->uses_drawid)
3617 emit_draw_index(cmd_buffer, 0);
3618
3619 /* Emitting draw index or vertex index BOs may result in needing
3620 * additional VF cache flushes.
3621 */
3622 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3623
3624 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3625 * different views. We need to multiply instanceCount by the view count.
3626 */
3627 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3628
3629 struct gen_mi_builder b;
3630 gen_mi_builder_init(&b, &cmd_buffer->batch);
3631 struct gen_mi_value count =
3632 gen_mi_mem32(anv_address_add(counter_buffer->address,
3633 counterBufferOffset));
3634 if (counterOffset)
3635 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
3636 count = gen_mi_udiv32_imm(&b, count, vertexStride);
3637 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
3638
3639 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3640 gen_mi_imm(firstVertex));
3641 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
3642 gen_mi_imm(instanceCount));
3643 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3644 gen_mi_imm(firstInstance));
3645 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3646
3647 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3648 prim.IndirectParameterEnable = true;
3649 prim.VertexAccessType = SEQUENTIAL;
3650 prim.PrimitiveTopologyType = pipeline->topology;
3651 }
3652
3653 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3654 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
3655 }
3656
3657 static void
3658 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
3659 struct anv_address addr,
3660 bool indexed)
3661 {
3662 struct gen_mi_builder b;
3663 gen_mi_builder_init(&b, &cmd_buffer->batch);
3664
3665 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
3666 gen_mi_mem32(anv_address_add(addr, 0)));
3667
3668 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
3669 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
3670 if (view_count > 1) {
3671 #if GEN_IS_HASWELL || GEN_GEN >= 8
3672 instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
3673 #else
3674 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3675 "MI_MATH is not supported on Ivy Bridge");
3676 #endif
3677 }
3678 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
3679
3680 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3681 gen_mi_mem32(anv_address_add(addr, 8)));
3682
3683 if (indexed) {
3684 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
3685 gen_mi_mem32(anv_address_add(addr, 12)));
3686 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3687 gen_mi_mem32(anv_address_add(addr, 16)));
3688 } else {
3689 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3690 gen_mi_mem32(anv_address_add(addr, 12)));
3691 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3692 }
3693 }
3694
3695 void genX(CmdDrawIndirect)(
3696 VkCommandBuffer commandBuffer,
3697 VkBuffer _buffer,
3698 VkDeviceSize offset,
3699 uint32_t drawCount,
3700 uint32_t stride)
3701 {
3702 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3703 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3704 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3705 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3706
3707 if (anv_batch_has_error(&cmd_buffer->batch))
3708 return;
3709
3710 genX(cmd_buffer_flush_state)(cmd_buffer);
3711
3712 if (cmd_buffer->state.conditional_render_enabled)
3713 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3714
3715 for (uint32_t i = 0; i < drawCount; i++) {
3716 struct anv_address draw = anv_address_add(buffer->address, offset);
3717
3718 if (vs_prog_data->uses_firstvertex ||
3719 vs_prog_data->uses_baseinstance)
3720 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3721 if (vs_prog_data->uses_drawid)
3722 emit_draw_index(cmd_buffer, i);
3723
3724 /* Emitting draw index or vertex index BOs may result in needing
3725 * additional VF cache flushes.
3726 */
3727 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3728
3729 load_indirect_parameters(cmd_buffer, draw, false);
3730
3731 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3732 prim.IndirectParameterEnable = true;
3733 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3734 prim.VertexAccessType = SEQUENTIAL;
3735 prim.PrimitiveTopologyType = pipeline->topology;
3736 }
3737
3738 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3739
3740 offset += stride;
3741 }
3742 }
3743
3744 void genX(CmdDrawIndexedIndirect)(
3745 VkCommandBuffer commandBuffer,
3746 VkBuffer _buffer,
3747 VkDeviceSize offset,
3748 uint32_t drawCount,
3749 uint32_t stride)
3750 {
3751 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3752 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3753 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3754 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3755
3756 if (anv_batch_has_error(&cmd_buffer->batch))
3757 return;
3758
3759 genX(cmd_buffer_flush_state)(cmd_buffer);
3760
3761 if (cmd_buffer->state.conditional_render_enabled)
3762 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3763
3764 for (uint32_t i = 0; i < drawCount; i++) {
3765 struct anv_address draw = anv_address_add(buffer->address, offset);
3766
3767 /* TODO: We need to stomp base vertex to 0 somehow */
3768 if (vs_prog_data->uses_firstvertex ||
3769 vs_prog_data->uses_baseinstance)
3770 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3771 if (vs_prog_data->uses_drawid)
3772 emit_draw_index(cmd_buffer, i);
3773
3774 /* Emitting draw index or vertex index BOs may result in needing
3775 * additional VF cache flushes.
3776 */
3777 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3778
3779 load_indirect_parameters(cmd_buffer, draw, true);
3780
3781 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3782 prim.IndirectParameterEnable = true;
3783 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3784 prim.VertexAccessType = RANDOM;
3785 prim.PrimitiveTopologyType = pipeline->topology;
3786 }
3787
3788 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3789
3790 offset += stride;
3791 }
3792 }
3793
3794 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3795
3796 static void
3797 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3798 struct anv_address count_address,
3799 const bool conditional_render_enabled)
3800 {
3801 struct gen_mi_builder b;
3802 gen_mi_builder_init(&b, &cmd_buffer->batch);
3803
3804 if (conditional_render_enabled) {
3805 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3806 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
3807 gen_mi_mem32(count_address));
3808 #endif
3809 } else {
3810 /* Upload the current draw count from the draw parameters buffer to
3811 * MI_PREDICATE_SRC0.
3812 */
3813 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
3814 gen_mi_mem32(count_address));
3815
3816 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
3817 }
3818 }
3819
3820 static void
3821 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3822 uint32_t draw_index)
3823 {
3824 struct gen_mi_builder b;
3825 gen_mi_builder_init(&b, &cmd_buffer->batch);
3826
3827 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3828 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
3829
3830 if (draw_index == 0) {
3831 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3832 mip.LoadOperation = LOAD_LOADINV;
3833 mip.CombineOperation = COMBINE_SET;
3834 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3835 }
3836 } else {
3837 /* While draw_index < draw_count the predicate's result will be
3838 * (draw_index == draw_count) ^ TRUE = TRUE
3839 * When draw_index == draw_count the result is
3840 * (TRUE) ^ TRUE = FALSE
3841 * After this all results will be:
3842 * (FALSE) ^ FALSE = FALSE
3843 */
3844 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3845 mip.LoadOperation = LOAD_LOAD;
3846 mip.CombineOperation = COMBINE_XOR;
3847 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3848 }
3849 }
3850 }
3851
3852 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3853 static void
3854 emit_draw_count_predicate_with_conditional_render(
3855 struct anv_cmd_buffer *cmd_buffer,
3856 uint32_t draw_index)
3857 {
3858 struct gen_mi_builder b;
3859 gen_mi_builder_init(&b, &cmd_buffer->batch);
3860
3861 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
3862 gen_mi_reg64(TMP_DRAW_COUNT_REG));
3863 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
3864
3865 #if GEN_GEN >= 8
3866 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
3867 #else
3868 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3869 * so we emit MI_PREDICATE to set it.
3870 */
3871
3872 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
3873 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3874
3875 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3876 mip.LoadOperation = LOAD_LOADINV;
3877 mip.CombineOperation = COMBINE_SET;
3878 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3879 }
3880 #endif
3881 }
3882 #endif
3883
3884 void genX(CmdDrawIndirectCount)(
3885 VkCommandBuffer commandBuffer,
3886 VkBuffer _buffer,
3887 VkDeviceSize offset,
3888 VkBuffer _countBuffer,
3889 VkDeviceSize countBufferOffset,
3890 uint32_t maxDrawCount,
3891 uint32_t stride)
3892 {
3893 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3894 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3895 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3896 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3897 struct anv_graphics_pipeline *pipeline = cmd_state->gfx.pipeline;
3898 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3899
3900 if (anv_batch_has_error(&cmd_buffer->batch))
3901 return;
3902
3903 genX(cmd_buffer_flush_state)(cmd_buffer);
3904
3905 struct anv_address count_address =
3906 anv_address_add(count_buffer->address, countBufferOffset);
3907
3908 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3909 cmd_state->conditional_render_enabled);
3910
3911 for (uint32_t i = 0; i < maxDrawCount; i++) {
3912 struct anv_address draw = anv_address_add(buffer->address, offset);
3913
3914 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3915 if (cmd_state->conditional_render_enabled) {
3916 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3917 } else {
3918 emit_draw_count_predicate(cmd_buffer, i);
3919 }
3920 #else
3921 emit_draw_count_predicate(cmd_buffer, i);
3922 #endif
3923
3924 if (vs_prog_data->uses_firstvertex ||
3925 vs_prog_data->uses_baseinstance)
3926 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3927 if (vs_prog_data->uses_drawid)
3928 emit_draw_index(cmd_buffer, i);
3929
3930 /* Emitting draw index or vertex index BOs may result in needing
3931 * additional VF cache flushes.
3932 */
3933 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3934
3935 load_indirect_parameters(cmd_buffer, draw, false);
3936
3937 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3938 prim.IndirectParameterEnable = true;
3939 prim.PredicateEnable = true;
3940 prim.VertexAccessType = SEQUENTIAL;
3941 prim.PrimitiveTopologyType = pipeline->topology;
3942 }
3943
3944 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3945
3946 offset += stride;
3947 }
3948 }
3949
3950 void genX(CmdDrawIndexedIndirectCount)(
3951 VkCommandBuffer commandBuffer,
3952 VkBuffer _buffer,
3953 VkDeviceSize offset,
3954 VkBuffer _countBuffer,
3955 VkDeviceSize countBufferOffset,
3956 uint32_t maxDrawCount,
3957 uint32_t stride)
3958 {
3959 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3960 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3961 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3962 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3963 struct anv_graphics_pipeline *pipeline = cmd_state->gfx.pipeline;
3964 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3965
3966 if (anv_batch_has_error(&cmd_buffer->batch))
3967 return;
3968
3969 genX(cmd_buffer_flush_state)(cmd_buffer);
3970
3971 struct anv_address count_address =
3972 anv_address_add(count_buffer->address, countBufferOffset);
3973
3974 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3975 cmd_state->conditional_render_enabled);
3976
3977 for (uint32_t i = 0; i < maxDrawCount; i++) {
3978 struct anv_address draw = anv_address_add(buffer->address, offset);
3979
3980 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3981 if (cmd_state->conditional_render_enabled) {
3982 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3983 } else {
3984 emit_draw_count_predicate(cmd_buffer, i);
3985 }
3986 #else
3987 emit_draw_count_predicate(cmd_buffer, i);
3988 #endif
3989
3990 /* TODO: We need to stomp base vertex to 0 somehow */
3991 if (vs_prog_data->uses_firstvertex ||
3992 vs_prog_data->uses_baseinstance)
3993 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3994 if (vs_prog_data->uses_drawid)
3995 emit_draw_index(cmd_buffer, i);
3996
3997 /* Emitting draw index or vertex index BOs may result in needing
3998 * additional VF cache flushes.
3999 */
4000 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4001
4002 load_indirect_parameters(cmd_buffer, draw, true);
4003
4004 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4005 prim.IndirectParameterEnable = true;
4006 prim.PredicateEnable = true;
4007 prim.VertexAccessType = RANDOM;
4008 prim.PrimitiveTopologyType = pipeline->topology;
4009 }
4010
4011 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
4012
4013 offset += stride;
4014 }
4015 }
4016
4017 void genX(CmdBeginTransformFeedbackEXT)(
4018 VkCommandBuffer commandBuffer,
4019 uint32_t firstCounterBuffer,
4020 uint32_t counterBufferCount,
4021 const VkBuffer* pCounterBuffers,
4022 const VkDeviceSize* pCounterBufferOffsets)
4023 {
4024 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4025
4026 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
4027 assert(counterBufferCount <= MAX_XFB_BUFFERS);
4028 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
4029
4030 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
4031 *
4032 * "Ssoftware must ensure that no HW stream output operations can be in
4033 * process or otherwise pending at the point that the MI_LOAD/STORE
4034 * commands are processed. This will likely require a pipeline flush."
4035 */
4036 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4037 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4038
4039 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
4040 /* If we have a counter buffer, this is a resume so we need to load the
4041 * value into the streamout offset register. Otherwise, this is a begin
4042 * and we need to reset it to zero.
4043 */
4044 if (pCounterBuffers &&
4045 idx >= firstCounterBuffer &&
4046 idx - firstCounterBuffer < counterBufferCount &&
4047 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
4048 uint32_t cb_idx = idx - firstCounterBuffer;
4049 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
4050 uint64_t offset = pCounterBufferOffsets ?
4051 pCounterBufferOffsets[cb_idx] : 0;
4052
4053 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4054 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4055 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
4056 offset);
4057 }
4058 } else {
4059 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4060 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4061 lri.DataDWord = 0;
4062 }
4063 }
4064 }
4065
4066 cmd_buffer->state.xfb_enabled = true;
4067 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
4068 }
4069
4070 void genX(CmdEndTransformFeedbackEXT)(
4071 VkCommandBuffer commandBuffer,
4072 uint32_t firstCounterBuffer,
4073 uint32_t counterBufferCount,
4074 const VkBuffer* pCounterBuffers,
4075 const VkDeviceSize* pCounterBufferOffsets)
4076 {
4077 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4078
4079 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
4080 assert(counterBufferCount <= MAX_XFB_BUFFERS);
4081 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
4082
4083 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
4084 *
4085 * "Ssoftware must ensure that no HW stream output operations can be in
4086 * process or otherwise pending at the point that the MI_LOAD/STORE
4087 * commands are processed. This will likely require a pipeline flush."
4088 */
4089 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4090 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4091
4092 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
4093 unsigned idx = firstCounterBuffer + cb_idx;
4094
4095 /* If we have a counter buffer, this is a resume so we need to load the
4096 * value into the streamout offset register. Otherwise, this is a begin
4097 * and we need to reset it to zero.
4098 */
4099 if (pCounterBuffers &&
4100 cb_idx < counterBufferCount &&
4101 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
4102 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
4103 uint64_t offset = pCounterBufferOffsets ?
4104 pCounterBufferOffsets[cb_idx] : 0;
4105
4106 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4107 srm.MemoryAddress = anv_address_add(counter_buffer->address,
4108 offset);
4109 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4110 }
4111 }
4112 }
4113
4114 cmd_buffer->state.xfb_enabled = false;
4115 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
4116 }
4117
4118 void
4119 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
4120 {
4121 struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline;
4122
4123 assert(pipeline->cs);
4124
4125 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config);
4126
4127 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
4128
4129 if (cmd_buffer->state.compute.pipeline_dirty) {
4130 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
4131 *
4132 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4133 * the only bits that are changed are scoreboard related: Scoreboard
4134 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4135 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4136 * sufficient."
4137 */
4138 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4139 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4140
4141 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch);
4142
4143 /* The workgroup size of the pipeline affects our push constant layout
4144 * so flag push constants as dirty if we change the pipeline.
4145 */
4146 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4147 }
4148
4149 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
4150 cmd_buffer->state.compute.pipeline_dirty) {
4151 flush_descriptor_sets(cmd_buffer,
4152 &cmd_buffer->state.compute.base,
4153 &pipeline->cs, 1);
4154
4155 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4156 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
4157 .BindingTablePointer =
4158 cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
4159 .SamplerStatePointer =
4160 cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
4161 };
4162 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
4163
4164 struct anv_state state =
4165 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
4166 pipeline->interface_descriptor_data,
4167 GENX(INTERFACE_DESCRIPTOR_DATA_length),
4168 64);
4169
4170 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4171 anv_batch_emit(&cmd_buffer->batch,
4172 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
4173 mid.InterfaceDescriptorTotalLength = size;
4174 mid.InterfaceDescriptorDataStartAddress = state.offset;
4175 }
4176 }
4177
4178 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
4179 struct anv_state push_state =
4180 anv_cmd_buffer_cs_push_constants(cmd_buffer);
4181
4182 if (push_state.alloc_size) {
4183 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4184 curbe.CURBETotalDataLength = push_state.alloc_size;
4185 curbe.CURBEDataStartAddress = push_state.offset;
4186 }
4187 }
4188
4189 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
4190 }
4191
4192 cmd_buffer->state.compute.pipeline_dirty = false;
4193
4194 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4195 }
4196
4197 #if GEN_GEN == 7
4198
4199 static VkResult
4200 verify_cmd_parser(const struct anv_device *device,
4201 int required_version,
4202 const char *function)
4203 {
4204 if (device->physical->cmd_parser_version < required_version) {
4205 return vk_errorf(device, device->physical,
4206 VK_ERROR_FEATURE_NOT_PRESENT,
4207 "cmd parser version %d is required for %s",
4208 required_version, function);
4209 } else {
4210 return VK_SUCCESS;
4211 }
4212 }
4213
4214 #endif
4215
4216 static void
4217 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
4218 uint32_t baseGroupX,
4219 uint32_t baseGroupY,
4220 uint32_t baseGroupZ)
4221 {
4222 if (anv_batch_has_error(&cmd_buffer->batch))
4223 return;
4224
4225 struct anv_push_constants *push =
4226 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
4227 if (push->cs.base_work_group_id[0] != baseGroupX ||
4228 push->cs.base_work_group_id[1] != baseGroupY ||
4229 push->cs.base_work_group_id[2] != baseGroupZ) {
4230 push->cs.base_work_group_id[0] = baseGroupX;
4231 push->cs.base_work_group_id[1] = baseGroupY;
4232 push->cs.base_work_group_id[2] = baseGroupZ;
4233
4234 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4235 }
4236 }
4237
4238 void genX(CmdDispatch)(
4239 VkCommandBuffer commandBuffer,
4240 uint32_t x,
4241 uint32_t y,
4242 uint32_t z)
4243 {
4244 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
4245 }
4246
4247 void genX(CmdDispatchBase)(
4248 VkCommandBuffer commandBuffer,
4249 uint32_t baseGroupX,
4250 uint32_t baseGroupY,
4251 uint32_t baseGroupZ,
4252 uint32_t groupCountX,
4253 uint32_t groupCountY,
4254 uint32_t groupCountZ)
4255 {
4256 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4257 struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline;
4258 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4259
4260 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
4261 baseGroupY, baseGroupZ);
4262
4263 if (anv_batch_has_error(&cmd_buffer->batch))
4264 return;
4265
4266 if (prog_data->uses_num_work_groups) {
4267 struct anv_state state =
4268 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
4269 uint32_t *sizes = state.map;
4270 sizes[0] = groupCountX;
4271 sizes[1] = groupCountY;
4272 sizes[2] = groupCountZ;
4273 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
4274 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
4275 .offset = state.offset,
4276 };
4277
4278 /* The num_workgroups buffer goes in the binding table */
4279 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4280 }
4281
4282 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4283
4284 if (cmd_buffer->state.conditional_render_enabled)
4285 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4286
4287 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
4288 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
4289 ggw.SIMDSize = prog_data->simd_size / 16;
4290 ggw.ThreadDepthCounterMaximum = 0;
4291 ggw.ThreadHeightCounterMaximum = 0;
4292 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4293 ggw.ThreadGroupIDXDimension = groupCountX;
4294 ggw.ThreadGroupIDYDimension = groupCountY;
4295 ggw.ThreadGroupIDZDimension = groupCountZ;
4296 ggw.RightExecutionMask = pipeline->cs_right_mask;
4297 ggw.BottomExecutionMask = 0xffffffff;
4298 }
4299
4300 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
4301 }
4302
4303 #define GPGPU_DISPATCHDIMX 0x2500
4304 #define GPGPU_DISPATCHDIMY 0x2504
4305 #define GPGPU_DISPATCHDIMZ 0x2508
4306
4307 void genX(CmdDispatchIndirect)(
4308 VkCommandBuffer commandBuffer,
4309 VkBuffer _buffer,
4310 VkDeviceSize offset)
4311 {
4312 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4313 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4314 struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline;
4315 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4316 struct anv_address addr = anv_address_add(buffer->address, offset);
4317 struct anv_batch *batch = &cmd_buffer->batch;
4318
4319 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
4320
4321 #if GEN_GEN == 7
4322 /* Linux 4.4 added command parser version 5 which allows the GPGPU
4323 * indirect dispatch registers to be written.
4324 */
4325 if (verify_cmd_parser(cmd_buffer->device, 5,
4326 "vkCmdDispatchIndirect") != VK_SUCCESS)
4327 return;
4328 #endif
4329
4330 if (prog_data->uses_num_work_groups) {
4331 cmd_buffer->state.compute.num_workgroups = addr;
4332
4333 /* The num_workgroups buffer goes in the binding table */
4334 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4335 }
4336
4337 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4338
4339 struct gen_mi_builder b;
4340 gen_mi_builder_init(&b, &cmd_buffer->batch);
4341
4342 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
4343 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
4344 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
4345
4346 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
4347 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
4348 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
4349
4350 #if GEN_GEN <= 7
4351 /* predicate = (compute_dispatch_indirect_x_size == 0); */
4352 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
4353 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
4354 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4355 mip.LoadOperation = LOAD_LOAD;
4356 mip.CombineOperation = COMBINE_SET;
4357 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4358 }
4359
4360 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
4361 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
4362 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4363 mip.LoadOperation = LOAD_LOAD;
4364 mip.CombineOperation = COMBINE_OR;
4365 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4366 }
4367
4368 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
4369 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
4370 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4371 mip.LoadOperation = LOAD_LOAD;
4372 mip.CombineOperation = COMBINE_OR;
4373 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4374 }
4375
4376 /* predicate = !predicate; */
4377 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4378 mip.LoadOperation = LOAD_LOADINV;
4379 mip.CombineOperation = COMBINE_OR;
4380 mip.CompareOperation = COMPARE_FALSE;
4381 }
4382
4383 #if GEN_IS_HASWELL
4384 if (cmd_buffer->state.conditional_render_enabled) {
4385 /* predicate &= !(conditional_rendering_predicate == 0); */
4386 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
4387 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
4388 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4389 mip.LoadOperation = LOAD_LOADINV;
4390 mip.CombineOperation = COMBINE_AND;
4391 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4392 }
4393 }
4394 #endif
4395
4396 #else /* GEN_GEN > 7 */
4397 if (cmd_buffer->state.conditional_render_enabled)
4398 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4399 #endif
4400
4401 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
4402 ggw.IndirectParameterEnable = true;
4403 ggw.PredicateEnable = GEN_GEN <= 7 ||
4404 cmd_buffer->state.conditional_render_enabled;
4405 ggw.SIMDSize = prog_data->simd_size / 16;
4406 ggw.ThreadDepthCounterMaximum = 0;
4407 ggw.ThreadHeightCounterMaximum = 0;
4408 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4409 ggw.RightExecutionMask = pipeline->cs_right_mask;
4410 ggw.BottomExecutionMask = 0xffffffff;
4411 }
4412
4413 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
4414 }
4415
4416 static void
4417 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
4418 uint32_t pipeline)
4419 {
4420 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4421
4422 if (cmd_buffer->state.current_pipeline == pipeline)
4423 return;
4424
4425 #if GEN_GEN >= 8 && GEN_GEN < 10
4426 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
4427 *
4428 * Software must clear the COLOR_CALC_STATE Valid field in
4429 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
4430 * with Pipeline Select set to GPGPU.
4431 *
4432 * The internal hardware docs recommend the same workaround for Gen9
4433 * hardware too.
4434 */
4435 if (pipeline == GPGPU)
4436 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
4437 #endif
4438
4439 #if GEN_GEN == 9
4440 if (pipeline == _3D) {
4441 /* There is a mid-object preemption workaround which requires you to
4442 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
4443 * even without preemption, we have issues with geometry flickering when
4444 * GPGPU and 3D are back-to-back and this seems to fix it. We don't
4445 * really know why.
4446 */
4447 const uint32_t subslices =
4448 MAX2(cmd_buffer->device->physical->subslice_total, 1);
4449 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
4450 vfe.MaximumNumberofThreads =
4451 devinfo->max_cs_threads * subslices - 1;
4452 vfe.NumberofURBEntries = 2;
4453 vfe.URBEntryAllocationSize = 2;
4454 }
4455
4456 /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
4457 * invalid. Set the compute pipeline to dirty to force a re-emit of the
4458 * pipeline in case we get back-to-back dispatch calls with the same
4459 * pipeline and a PIPELINE_SELECT in between.
4460 */
4461 cmd_buffer->state.compute.pipeline_dirty = true;
4462 }
4463 #endif
4464
4465 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
4466 * PIPELINE_SELECT [DevBWR+]":
4467 *
4468 * Project: DEVSNB+
4469 *
4470 * Software must ensure all the write caches are flushed through a
4471 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
4472 * command to invalidate read only caches prior to programming
4473 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
4474 */
4475 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4476 pc.RenderTargetCacheFlushEnable = true;
4477 pc.DepthCacheFlushEnable = true;
4478 pc.DCFlushEnable = true;
4479 pc.PostSyncOperation = NoWrite;
4480 pc.CommandStreamerStallEnable = true;
4481 #if GEN_GEN >= 12
4482 pc.TileCacheFlushEnable = true;
4483
4484 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must be
4485 * set with any PIPE_CONTROL with Depth Flush Enable bit set.
4486 */
4487 pc.DepthStallEnable = true;
4488 #endif
4489 }
4490
4491 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4492 pc.TextureCacheInvalidationEnable = true;
4493 pc.ConstantCacheInvalidationEnable = true;
4494 pc.StateCacheInvalidationEnable = true;
4495 pc.InstructionCacheInvalidateEnable = true;
4496 pc.PostSyncOperation = NoWrite;
4497 #if GEN_GEN >= 12
4498 pc.TileCacheFlushEnable = true;
4499 #endif
4500 }
4501
4502 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
4503 #if GEN_GEN >= 9
4504 ps.MaskBits = 3;
4505 #endif
4506 ps.PipelineSelection = pipeline;
4507 }
4508
4509 #if GEN_GEN == 9
4510 if (devinfo->is_geminilake) {
4511 /* Project: DevGLK
4512 *
4513 * "This chicken bit works around a hardware issue with barrier logic
4514 * encountered when switching between GPGPU and 3D pipelines. To
4515 * workaround the issue, this mode bit should be set after a pipeline
4516 * is selected."
4517 */
4518 uint32_t scec;
4519 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
4520 .GLKBarrierMode =
4521 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
4522 : GLK_BARRIER_MODE_3D_HULL,
4523 .GLKBarrierModeMask = 1);
4524 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
4525 }
4526 #endif
4527
4528 cmd_buffer->state.current_pipeline = pipeline;
4529 }
4530
4531 void
4532 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
4533 {
4534 genX(flush_pipeline_select)(cmd_buffer, _3D);
4535 }
4536
4537 void
4538 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
4539 {
4540 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
4541 }
4542
4543 void
4544 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
4545 {
4546 if (GEN_GEN >= 8)
4547 return;
4548
4549 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
4550 *
4551 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
4552 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
4553 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
4554 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
4555 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
4556 * Depth Flush Bit set, followed by another pipelined depth stall
4557 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
4558 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
4559 * via a preceding MI_FLUSH)."
4560 */
4561 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4562 pipe.DepthStallEnable = true;
4563 }
4564 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4565 pipe.DepthCacheFlushEnable = true;
4566 #if GEN_GEN >= 12
4567 pipe.TileCacheFlushEnable = true;
4568 #endif
4569 }
4570 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4571 pipe.DepthStallEnable = true;
4572 }
4573 }
4574
4575 /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
4576 *
4577 * "The VF cache needs to be invalidated before binding and then using
4578 * Vertex Buffers that overlap with any previously bound Vertex Buffer
4579 * (at a 64B granularity) since the last invalidation. A VF cache
4580 * invalidate is performed by setting the "VF Cache Invalidation Enable"
4581 * bit in PIPE_CONTROL."
4582 *
4583 * This is implemented by carefully tracking all vertex and index buffer
4584 * bindings and flushing if the cache ever ends up with a range in the cache
4585 * that would exceed 4 GiB. This is implemented in three parts:
4586 *
4587 * 1. genX(cmd_buffer_set_binding_for_gen8_vb_flush)() which must be called
4588 * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
4589 * tracking code of the new binding. If this new binding would cause
4590 * the cache to have a too-large range on the next draw call, a pipeline
4591 * stall and VF cache invalidate are added to pending_pipeline_bits.
4592 *
4593 * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
4594 * empty whenever we emit a VF invalidate.
4595 *
4596 * 3. genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)() must be called
4597 * after every 3DPRIMITIVE and copies the bound range into the dirty
4598 * range for each used buffer. This has to be a separate step because
4599 * we don't always re-bind all buffers and so 1. can't know which
4600 * buffers are actually bound.
4601 */
4602 void
4603 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4604 int vb_index,
4605 struct anv_address vb_address,
4606 uint32_t vb_size)
4607 {
4608 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4609 !cmd_buffer->device->physical->use_softpin)
4610 return;
4611
4612 struct anv_vb_cache_range *bound, *dirty;
4613 if (vb_index == -1) {
4614 bound = &cmd_buffer->state.gfx.ib_bound_range;
4615 dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4616 } else {
4617 assert(vb_index >= 0);
4618 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4619 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4620 bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
4621 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
4622 }
4623
4624 if (vb_size == 0) {
4625 bound->start = 0;
4626 bound->end = 0;
4627 return;
4628 }
4629
4630 assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED));
4631 bound->start = gen_48b_address(anv_address_physical(vb_address));
4632 bound->end = bound->start + vb_size;
4633 assert(bound->end > bound->start); /* No overflow */
4634
4635 /* Align everything to a cache line */
4636 bound->start &= ~(64ull - 1ull);
4637 bound->end = align_u64(bound->end, 64);
4638
4639 /* Compute the dirty range */
4640 dirty->start = MIN2(dirty->start, bound->start);
4641 dirty->end = MAX2(dirty->end, bound->end);
4642
4643 /* If our range is larger than 32 bits, we have to flush */
4644 assert(bound->end - bound->start <= (1ull << 32));
4645 if (dirty->end - dirty->start > (1ull << 32)) {
4646 cmd_buffer->state.pending_pipe_bits |=
4647 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
4648 }
4649 }
4650
4651 void
4652 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4653 uint32_t access_type,
4654 uint64_t vb_used)
4655 {
4656 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4657 !cmd_buffer->device->physical->use_softpin)
4658 return;
4659
4660 if (access_type == RANDOM) {
4661 /* We have an index buffer */
4662 struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
4663 struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4664
4665 if (bound->end > bound->start) {
4666 dirty->start = MIN2(dirty->start, bound->start);
4667 dirty->end = MAX2(dirty->end, bound->end);
4668 }
4669 }
4670
4671 uint64_t mask = vb_used;
4672 while (mask) {
4673 int i = u_bit_scan64(&mask);
4674 assert(i >= 0);
4675 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4676 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4677
4678 struct anv_vb_cache_range *bound, *dirty;
4679 bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
4680 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
4681
4682 if (bound->end > bound->start) {
4683 dirty->start = MIN2(dirty->start, bound->start);
4684 dirty->end = MAX2(dirty->end, bound->end);
4685 }
4686 }
4687 }
4688
4689 /**
4690 * Update the pixel hashing modes that determine the balancing of PS threads
4691 * across subslices and slices.
4692 *
4693 * \param width Width bound of the rendering area (already scaled down if \p
4694 * scale is greater than 1).
4695 * \param height Height bound of the rendering area (already scaled down if \p
4696 * scale is greater than 1).
4697 * \param scale The number of framebuffer samples that could potentially be
4698 * affected by an individual channel of the PS thread. This is
4699 * typically one for single-sampled rendering, but for operations
4700 * like CCS resolves and fast clears a single PS invocation may
4701 * update a huge number of pixels, in which case a finer
4702 * balancing is desirable in order to maximally utilize the
4703 * bandwidth available. UINT_MAX can be used as shorthand for
4704 * "finest hashing mode available".
4705 */
4706 void
4707 genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
4708 unsigned width, unsigned height,
4709 unsigned scale)
4710 {
4711 #if GEN_GEN == 9
4712 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4713 const unsigned slice_hashing[] = {
4714 /* Because all Gen9 platforms with more than one slice require
4715 * three-way subslice hashing, a single "normal" 16x16 slice hashing
4716 * block is guaranteed to suffer from substantial imbalance, with one
4717 * subslice receiving twice as much work as the other two in the
4718 * slice.
4719 *
4720 * The performance impact of that would be particularly severe when
4721 * three-way hashing is also in use for slice balancing (which is the
4722 * case for all Gen9 GT4 platforms), because one of the slices
4723 * receives one every three 16x16 blocks in either direction, which
4724 * is roughly the periodicity of the underlying subslice imbalance
4725 * pattern ("roughly" because in reality the hardware's
4726 * implementation of three-way hashing doesn't do exact modulo 3
4727 * arithmetic, which somewhat decreases the magnitude of this effect
4728 * in practice). This leads to a systematic subslice imbalance
4729 * within that slice regardless of the size of the primitive. The
4730 * 32x32 hashing mode guarantees that the subslice imbalance within a
4731 * single slice hashing block is minimal, largely eliminating this
4732 * effect.
4733 */
4734 _32x32,
4735 /* Finest slice hashing mode available. */
4736 NORMAL
4737 };
4738 const unsigned subslice_hashing[] = {
4739 /* 16x16 would provide a slight cache locality benefit especially
4740 * visible in the sampler L1 cache efficiency of low-bandwidth
4741 * non-LLC platforms, but it comes at the cost of greater subslice
4742 * imbalance for primitives of dimensions approximately intermediate
4743 * between 16x4 and 16x16.
4744 */
4745 _16x4,
4746 /* Finest subslice hashing mode available. */
4747 _8x4
4748 };
4749 /* Dimensions of the smallest hashing block of a given hashing mode. If
4750 * the rendering area is smaller than this there can't possibly be any
4751 * benefit from switching to this mode, so we optimize out the
4752 * transition.
4753 */
4754 const unsigned min_size[][2] = {
4755 { 16, 4 },
4756 { 8, 4 }
4757 };
4758 const unsigned idx = scale > 1;
4759
4760 if (cmd_buffer->state.current_hash_scale != scale &&
4761 (width > min_size[idx][0] || height > min_size[idx][1])) {
4762 uint32_t gt_mode;
4763
4764 anv_pack_struct(&gt_mode, GENX(GT_MODE),
4765 .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0),
4766 .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0),
4767 .SubsliceHashing = subslice_hashing[idx],
4768 .SubsliceHashingMask = -1);
4769
4770 cmd_buffer->state.pending_pipe_bits |=
4771 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
4772 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4773
4774 emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode);
4775
4776 cmd_buffer->state.current_hash_scale = scale;
4777 }
4778 #endif
4779 }
4780
4781 static void
4782 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
4783 {
4784 struct anv_device *device = cmd_buffer->device;
4785 const struct anv_image_view *iview =
4786 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
4787 const struct anv_image *image = iview ? iview->image : NULL;
4788
4789 /* FIXME: Width and Height are wrong */
4790
4791 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
4792
4793 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
4794 device->isl_dev.ds.size / 4);
4795 if (dw == NULL)
4796 return;
4797
4798 struct isl_depth_stencil_hiz_emit_info info = { };
4799
4800 if (iview)
4801 info.view = &iview->planes[0].isl;
4802
4803 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4804 uint32_t depth_plane =
4805 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
4806 const struct anv_surface *surface = &image->planes[depth_plane].surface;
4807
4808 info.depth_surf = &surface->isl;
4809
4810 info.depth_address =
4811 anv_batch_emit_reloc(&cmd_buffer->batch,
4812 dw + device->isl_dev.ds.depth_offset / 4,
4813 image->planes[depth_plane].address.bo,
4814 image->planes[depth_plane].address.offset +
4815 surface->offset);
4816 info.mocs =
4817 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
4818
4819 const uint32_t ds =
4820 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
4821 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
4822 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
4823 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
4824
4825 info.hiz_address =
4826 anv_batch_emit_reloc(&cmd_buffer->batch,
4827 dw + device->isl_dev.ds.hiz_offset / 4,
4828 image->planes[depth_plane].address.bo,
4829 image->planes[depth_plane].address.offset +
4830 image->planes[depth_plane].aux_surface.offset);
4831
4832 info.depth_clear_value = ANV_HZ_FC_VAL;
4833 }
4834 }
4835
4836 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
4837 uint32_t stencil_plane =
4838 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
4839 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
4840
4841 info.stencil_surf = &surface->isl;
4842
4843 info.stencil_address =
4844 anv_batch_emit_reloc(&cmd_buffer->batch,
4845 dw + device->isl_dev.ds.stencil_offset / 4,
4846 image->planes[stencil_plane].address.bo,
4847 image->planes[stencil_plane].address.offset +
4848 surface->offset);
4849 info.mocs =
4850 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
4851 }
4852
4853 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
4854
4855 if (GEN_GEN >= 12) {
4856 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
4857 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4858
4859 /* GEN:BUG:1408224581
4860 *
4861 * Workaround: Gen12LP Astep only An additional pipe control with
4862 * post-sync = store dword operation would be required.( w/a is to
4863 * have an additional pipe control after the stencil state whenever
4864 * the surface state bits of this state is changing).
4865 */
4866 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4867 pc.PostSyncOperation = WriteImmediateData;
4868 pc.Address =
4869 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
4870 }
4871 }
4872 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
4873 }
4874
4875 /**
4876 * This ANDs the view mask of the current subpass with the pending clear
4877 * views in the attachment to get the mask of views active in the subpass
4878 * that still need to be cleared.
4879 */
4880 static inline uint32_t
4881 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
4882 const struct anv_attachment_state *att_state)
4883 {
4884 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
4885 }
4886
4887 static inline bool
4888 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
4889 const struct anv_attachment_state *att_state)
4890 {
4891 if (!cmd_state->subpass->view_mask)
4892 return true;
4893
4894 uint32_t pending_clear_mask =
4895 get_multiview_subpass_clear_mask(cmd_state, att_state);
4896
4897 return pending_clear_mask & 1;
4898 }
4899
4900 static inline bool
4901 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
4902 uint32_t att_idx)
4903 {
4904 const uint32_t last_subpass_idx =
4905 cmd_state->pass->attachments[att_idx].last_subpass_idx;
4906 const struct anv_subpass *last_subpass =
4907 &cmd_state->pass->subpasses[last_subpass_idx];
4908 return last_subpass == cmd_state->subpass;
4909 }
4910
4911 static void
4912 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
4913 uint32_t subpass_id)
4914 {
4915 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4916 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
4917 cmd_state->subpass = subpass;
4918
4919 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
4920
4921 /* Our implementation of VK_KHR_multiview uses instancing to draw the
4922 * different views. If the client asks for instancing, we need to use the
4923 * Instance Data Step Rate to ensure that we repeat the client's
4924 * per-instance data once for each view. Since this bit is in
4925 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
4926 * of each subpass.
4927 */
4928 if (GEN_GEN == 7)
4929 cmd_buffer->state.gfx.vb_dirty |= ~0;
4930
4931 /* It is possible to start a render pass with an old pipeline. Because the
4932 * render pass and subpass index are both baked into the pipeline, this is
4933 * highly unlikely. In order to do so, it requires that you have a render
4934 * pass with a single subpass and that you use that render pass twice
4935 * back-to-back and use the same pipeline at the start of the second render
4936 * pass as at the end of the first. In order to avoid unpredictable issues
4937 * with this edge case, we just dirty the pipeline at the start of every
4938 * subpass.
4939 */
4940 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
4941
4942 /* Accumulate any subpass flushes that need to happen before the subpass */
4943 cmd_buffer->state.pending_pipe_bits |=
4944 cmd_buffer->state.pass->subpass_flushes[subpass_id];
4945
4946 VkRect2D render_area = cmd_buffer->state.render_area;
4947 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4948
4949 bool is_multiview = subpass->view_mask != 0;
4950
4951 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4952 const uint32_t a = subpass->attachments[i].attachment;
4953 if (a == VK_ATTACHMENT_UNUSED)
4954 continue;
4955
4956 assert(a < cmd_state->pass->attachment_count);
4957 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4958
4959 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
4960 const struct anv_image *image = iview->image;
4961
4962 /* A resolve is necessary before use as an input attachment if the clear
4963 * color or auxiliary buffer usage isn't supported by the sampler.
4964 */
4965 const bool input_needs_resolve =
4966 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
4967 att_state->input_aux_usage != att_state->aux_usage;
4968
4969 VkImageLayout target_layout;
4970 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
4971 !input_needs_resolve) {
4972 /* Layout transitions before the final only help to enable sampling
4973 * as an input attachment. If the input attachment supports sampling
4974 * using the auxiliary surface, we can skip such transitions by
4975 * making the target layout one that is CCS-aware.
4976 */
4977 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
4978 } else {
4979 target_layout = subpass->attachments[i].layout;
4980 }
4981
4982 VkImageLayout target_stencil_layout =
4983 subpass->attachments[i].stencil_layout;
4984
4985 uint32_t base_layer, layer_count;
4986 if (image->type == VK_IMAGE_TYPE_3D) {
4987 base_layer = 0;
4988 layer_count = anv_minify(iview->image->extent.depth,
4989 iview->planes[0].isl.base_level);
4990 } else {
4991 base_layer = iview->planes[0].isl.base_array_layer;
4992 layer_count = fb->layers;
4993 }
4994
4995 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4996 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4997 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4998 iview->planes[0].isl.base_level, 1,
4999 base_layer, layer_count,
5000 att_state->current_layout, target_layout);
5001 }
5002
5003 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5004 transition_depth_buffer(cmd_buffer, image,
5005 att_state->current_layout, target_layout);
5006 att_state->aux_usage =
5007 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
5008 VK_IMAGE_ASPECT_DEPTH_BIT,
5009 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
5010 target_layout);
5011 }
5012
5013 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5014 transition_stencil_buffer(cmd_buffer, image,
5015 iview->planes[0].isl.base_level, 1,
5016 base_layer, layer_count,
5017 att_state->current_stencil_layout,
5018 target_stencil_layout);
5019 }
5020 att_state->current_layout = target_layout;
5021 att_state->current_stencil_layout = target_stencil_layout;
5022
5023 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
5024 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5025
5026 /* Multi-planar images are not supported as attachments */
5027 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5028 assert(image->n_planes == 1);
5029
5030 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
5031 uint32_t clear_layer_count = fb->layers;
5032
5033 if (att_state->fast_clear &&
5034 do_first_layer_clear(cmd_state, att_state)) {
5035 /* We only support fast-clears on the first layer */
5036 assert(iview->planes[0].isl.base_level == 0);
5037 assert(iview->planes[0].isl.base_array_layer == 0);
5038
5039 union isl_color_value clear_color = {};
5040 anv_clear_color_from_att_state(&clear_color, att_state, iview);
5041 if (iview->image->samples == 1) {
5042 anv_image_ccs_op(cmd_buffer, image,
5043 iview->planes[0].isl.format,
5044 VK_IMAGE_ASPECT_COLOR_BIT,
5045 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
5046 &clear_color,
5047 false);
5048 } else {
5049 anv_image_mcs_op(cmd_buffer, image,
5050 iview->planes[0].isl.format,
5051 VK_IMAGE_ASPECT_COLOR_BIT,
5052 0, 1, ISL_AUX_OP_FAST_CLEAR,
5053 &clear_color,
5054 false);
5055 }
5056 base_clear_layer++;
5057 clear_layer_count--;
5058 if (is_multiview)
5059 att_state->pending_clear_views &= ~1;
5060
5061 if (att_state->clear_color_is_zero) {
5062 /* This image has the auxiliary buffer enabled. We can mark the
5063 * subresource as not needing a resolve because the clear color
5064 * will match what's in every RENDER_SURFACE_STATE object when
5065 * it's being used for sampling.
5066 */
5067 set_image_fast_clear_state(cmd_buffer, iview->image,
5068 VK_IMAGE_ASPECT_COLOR_BIT,
5069 ANV_FAST_CLEAR_DEFAULT_VALUE);
5070 } else {
5071 set_image_fast_clear_state(cmd_buffer, iview->image,
5072 VK_IMAGE_ASPECT_COLOR_BIT,
5073 ANV_FAST_CLEAR_ANY);
5074 }
5075 }
5076
5077 /* From the VkFramebufferCreateInfo spec:
5078 *
5079 * "If the render pass uses multiview, then layers must be one and each
5080 * attachment requires a number of layers that is greater than the
5081 * maximum bit index set in the view mask in the subpasses in which it
5082 * is used."
5083 *
5084 * So if multiview is active we ignore the number of layers in the
5085 * framebuffer and instead we honor the view mask from the subpass.
5086 */
5087 if (is_multiview) {
5088 assert(image->n_planes == 1);
5089 uint32_t pending_clear_mask =
5090 get_multiview_subpass_clear_mask(cmd_state, att_state);
5091
5092 uint32_t layer_idx;
5093 for_each_bit(layer_idx, pending_clear_mask) {
5094 uint32_t layer =
5095 iview->planes[0].isl.base_array_layer + layer_idx;
5096
5097 anv_image_clear_color(cmd_buffer, image,
5098 VK_IMAGE_ASPECT_COLOR_BIT,
5099 att_state->aux_usage,
5100 iview->planes[0].isl.format,
5101 iview->planes[0].isl.swizzle,
5102 iview->planes[0].isl.base_level,
5103 layer, 1,
5104 render_area,
5105 vk_to_isl_color(att_state->clear_value.color));
5106 }
5107
5108 att_state->pending_clear_views &= ~pending_clear_mask;
5109 } else if (clear_layer_count > 0) {
5110 assert(image->n_planes == 1);
5111 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5112 att_state->aux_usage,
5113 iview->planes[0].isl.format,
5114 iview->planes[0].isl.swizzle,
5115 iview->planes[0].isl.base_level,
5116 base_clear_layer, clear_layer_count,
5117 render_area,
5118 vk_to_isl_color(att_state->clear_value.color));
5119 }
5120 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
5121 VK_IMAGE_ASPECT_STENCIL_BIT)) {
5122 if (att_state->fast_clear && !is_multiview) {
5123 /* We currently only support HiZ for single-layer images */
5124 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5125 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
5126 assert(iview->planes[0].isl.base_level == 0);
5127 assert(iview->planes[0].isl.base_array_layer == 0);
5128 assert(fb->layers == 1);
5129 }
5130
5131 anv_image_hiz_clear(cmd_buffer, image,
5132 att_state->pending_clear_aspects,
5133 iview->planes[0].isl.base_level,
5134 iview->planes[0].isl.base_array_layer,
5135 fb->layers, render_area,
5136 att_state->clear_value.depthStencil.stencil);
5137 } else if (is_multiview) {
5138 uint32_t pending_clear_mask =
5139 get_multiview_subpass_clear_mask(cmd_state, att_state);
5140
5141 uint32_t layer_idx;
5142 for_each_bit(layer_idx, pending_clear_mask) {
5143 uint32_t layer =
5144 iview->planes[0].isl.base_array_layer + layer_idx;
5145
5146 anv_image_clear_depth_stencil(cmd_buffer, image,
5147 att_state->pending_clear_aspects,
5148 att_state->aux_usage,
5149 iview->planes[0].isl.base_level,
5150 layer, 1,
5151 render_area,
5152 att_state->clear_value.depthStencil.depth,
5153 att_state->clear_value.depthStencil.stencil);
5154 }
5155
5156 att_state->pending_clear_views &= ~pending_clear_mask;
5157 } else {
5158 anv_image_clear_depth_stencil(cmd_buffer, image,
5159 att_state->pending_clear_aspects,
5160 att_state->aux_usage,
5161 iview->planes[0].isl.base_level,
5162 iview->planes[0].isl.base_array_layer,
5163 fb->layers, render_area,
5164 att_state->clear_value.depthStencil.depth,
5165 att_state->clear_value.depthStencil.stencil);
5166 }
5167 } else {
5168 assert(att_state->pending_clear_aspects == 0);
5169 }
5170
5171 if (GEN_GEN < 10 &&
5172 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5173 image->planes[0].aux_usage != ISL_AUX_USAGE_NONE &&
5174 iview->planes[0].isl.base_level == 0 &&
5175 iview->planes[0].isl.base_array_layer == 0) {
5176 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
5177 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
5178 image, VK_IMAGE_ASPECT_COLOR_BIT,
5179 false /* copy to ss */);
5180 }
5181
5182 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
5183 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
5184 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
5185 image, VK_IMAGE_ASPECT_COLOR_BIT,
5186 false /* copy to ss */);
5187 }
5188 }
5189
5190 if (subpass->attachments[i].usage ==
5191 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
5192 /* We assume that if we're starting a subpass, we're going to do some
5193 * rendering so we may end up with compressed data.
5194 */
5195 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
5196 VK_IMAGE_ASPECT_COLOR_BIT,
5197 att_state->aux_usage,
5198 iview->planes[0].isl.base_level,
5199 iview->planes[0].isl.base_array_layer,
5200 fb->layers);
5201 } else if (subpass->attachments[i].usage ==
5202 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
5203 /* We may be writing depth or stencil so we need to mark the surface.
5204 * Unfortunately, there's no way to know at this point whether the
5205 * depth or stencil tests used will actually write to the surface.
5206 *
5207 * Even though stencil may be plane 1, it always shares a base_level
5208 * with depth.
5209 */
5210 const struct isl_view *ds_view = &iview->planes[0].isl;
5211 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
5212 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5213 VK_IMAGE_ASPECT_DEPTH_BIT,
5214 att_state->aux_usage,
5215 ds_view->base_level,
5216 ds_view->base_array_layer,
5217 fb->layers);
5218 }
5219 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
5220 /* Even though stencil may be plane 1, it always shares a
5221 * base_level with depth.
5222 */
5223 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5224 VK_IMAGE_ASPECT_STENCIL_BIT,
5225 ISL_AUX_USAGE_NONE,
5226 ds_view->base_level,
5227 ds_view->base_array_layer,
5228 fb->layers);
5229 }
5230 }
5231
5232 /* If multiview is enabled, then we are only done clearing when we no
5233 * longer have pending layers to clear, or when we have processed the
5234 * last subpass that uses this attachment.
5235 */
5236 if (!is_multiview ||
5237 att_state->pending_clear_views == 0 ||
5238 current_subpass_is_last_for_attachment(cmd_state, a)) {
5239 att_state->pending_clear_aspects = 0;
5240 }
5241
5242 att_state->pending_load_aspects = 0;
5243 }
5244
5245 #if GEN_GEN >= 11
5246 /* The PIPE_CONTROL command description says:
5247 *
5248 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
5249 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
5250 * Target Cache Flush by enabling this bit. When render target flush
5251 * is set due to new association of BTI, PS Scoreboard Stall bit must
5252 * be set in this packet."
5253 */
5254 cmd_buffer->state.pending_pipe_bits |=
5255 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
5256 ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
5257 #endif
5258
5259 #if GEN_GEN == 12
5260 /* GEN:BUG:14010455700
5261 *
5262 * ISL will change some CHICKEN registers depending on the depth surface
5263 * format, along with emitting the depth and stencil packets. In that case,
5264 * we want to do a depth flush and stall, so the pipeline is not using these
5265 * settings while we change the registers.
5266 */
5267 cmd_buffer->state.pending_pipe_bits |=
5268 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT |
5269 ANV_PIPE_DEPTH_STALL_BIT |
5270 ANV_PIPE_END_OF_PIPE_SYNC_BIT;
5271 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5272 #endif
5273
5274 cmd_buffer_emit_depth_stencil(cmd_buffer);
5275 }
5276
5277 static enum blorp_filter
5278 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
5279 {
5280 switch (vk_mode) {
5281 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
5282 return BLORP_FILTER_SAMPLE_0;
5283 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
5284 return BLORP_FILTER_AVERAGE;
5285 case VK_RESOLVE_MODE_MIN_BIT_KHR:
5286 return BLORP_FILTER_MIN_SAMPLE;
5287 case VK_RESOLVE_MODE_MAX_BIT_KHR:
5288 return BLORP_FILTER_MAX_SAMPLE;
5289 default:
5290 return BLORP_FILTER_NONE;
5291 }
5292 }
5293
5294 static void
5295 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
5296 {
5297 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5298 struct anv_subpass *subpass = cmd_state->subpass;
5299 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
5300 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
5301
5302 if (subpass->has_color_resolve) {
5303 /* We are about to do some MSAA resolves. We need to flush so that the
5304 * result of writes to the MSAA color attachments show up in the sampler
5305 * when we blit to the single-sampled resolve target.
5306 */
5307 cmd_buffer->state.pending_pipe_bits |=
5308 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5309 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
5310
5311 for (uint32_t i = 0; i < subpass->color_count; ++i) {
5312 uint32_t src_att = subpass->color_attachments[i].attachment;
5313 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
5314
5315 if (dst_att == VK_ATTACHMENT_UNUSED)
5316 continue;
5317
5318 assert(src_att < cmd_buffer->state.pass->attachment_count);
5319 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5320
5321 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5322 /* From the Vulkan 1.0 spec:
5323 *
5324 * If the first use of an attachment in a render pass is as a
5325 * resolve attachment, then the loadOp is effectively ignored
5326 * as the resolve is guaranteed to overwrite all pixels in the
5327 * render area.
5328 */
5329 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5330 }
5331
5332 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5333 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5334
5335 const VkRect2D render_area = cmd_buffer->state.render_area;
5336
5337 enum isl_aux_usage src_aux_usage =
5338 cmd_buffer->state.attachments[src_att].aux_usage;
5339 enum isl_aux_usage dst_aux_usage =
5340 cmd_buffer->state.attachments[dst_att].aux_usage;
5341
5342 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
5343 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
5344
5345 anv_image_msaa_resolve(cmd_buffer,
5346 src_iview->image, src_aux_usage,
5347 src_iview->planes[0].isl.base_level,
5348 src_iview->planes[0].isl.base_array_layer,
5349 dst_iview->image, dst_aux_usage,
5350 dst_iview->planes[0].isl.base_level,
5351 dst_iview->planes[0].isl.base_array_layer,
5352 VK_IMAGE_ASPECT_COLOR_BIT,
5353 render_area.offset.x, render_area.offset.y,
5354 render_area.offset.x, render_area.offset.y,
5355 render_area.extent.width,
5356 render_area.extent.height,
5357 fb->layers, BLORP_FILTER_NONE);
5358 }
5359 }
5360
5361 if (subpass->ds_resolve_attachment) {
5362 /* We are about to do some MSAA resolves. We need to flush so that the
5363 * result of writes to the MSAA depth attachments show up in the sampler
5364 * when we blit to the single-sampled resolve target.
5365 */
5366 cmd_buffer->state.pending_pipe_bits |=
5367 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5368 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
5369
5370 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
5371 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
5372
5373 assert(src_att < cmd_buffer->state.pass->attachment_count);
5374 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5375
5376 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5377 /* From the Vulkan 1.0 spec:
5378 *
5379 * If the first use of an attachment in a render pass is as a
5380 * resolve attachment, then the loadOp is effectively ignored
5381 * as the resolve is guaranteed to overwrite all pixels in the
5382 * render area.
5383 */
5384 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5385 }
5386
5387 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5388 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5389
5390 const VkRect2D render_area = cmd_buffer->state.render_area;
5391
5392 struct anv_attachment_state *src_state =
5393 &cmd_state->attachments[src_att];
5394 struct anv_attachment_state *dst_state =
5395 &cmd_state->attachments[dst_att];
5396
5397 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
5398 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5399
5400 /* MSAA resolves sample from the source attachment. Transition the
5401 * depth attachment first to get rid of any HiZ that we may not be
5402 * able to handle.
5403 */
5404 transition_depth_buffer(cmd_buffer, src_iview->image,
5405 src_state->current_layout,
5406 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5407 src_state->aux_usage =
5408 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
5409 VK_IMAGE_ASPECT_DEPTH_BIT,
5410 VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
5411 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5412 src_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5413
5414 /* MSAA resolves write to the resolve attachment as if it were any
5415 * other transfer op. Transition the resolve attachment accordingly.
5416 */
5417 VkImageLayout dst_initial_layout = dst_state->current_layout;
5418
5419 /* If our render area is the entire size of the image, we're going to
5420 * blow it all away so we can claim the initial layout is UNDEFINED
5421 * and we'll get a HiZ ambiguate instead of a resolve.
5422 */
5423 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
5424 render_area.offset.x == 0 && render_area.offset.y == 0 &&
5425 render_area.extent.width == dst_iview->extent.width &&
5426 render_area.extent.height == dst_iview->extent.height)
5427 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5428
5429 transition_depth_buffer(cmd_buffer, dst_iview->image,
5430 dst_initial_layout,
5431 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5432 dst_state->aux_usage =
5433 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
5434 VK_IMAGE_ASPECT_DEPTH_BIT,
5435 VK_IMAGE_USAGE_TRANSFER_DST_BIT,
5436 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5437 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5438
5439 enum blorp_filter filter =
5440 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
5441
5442 anv_image_msaa_resolve(cmd_buffer,
5443 src_iview->image, src_state->aux_usage,
5444 src_iview->planes[0].isl.base_level,
5445 src_iview->planes[0].isl.base_array_layer,
5446 dst_iview->image, dst_state->aux_usage,
5447 dst_iview->planes[0].isl.base_level,
5448 dst_iview->planes[0].isl.base_array_layer,
5449 VK_IMAGE_ASPECT_DEPTH_BIT,
5450 render_area.offset.x, render_area.offset.y,
5451 render_area.offset.x, render_area.offset.y,
5452 render_area.extent.width,
5453 render_area.extent.height,
5454 fb->layers, filter);
5455 }
5456
5457 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
5458 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5459
5460 src_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5461 dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5462
5463 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
5464 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
5465
5466 enum blorp_filter filter =
5467 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
5468
5469 anv_image_msaa_resolve(cmd_buffer,
5470 src_iview->image, src_aux_usage,
5471 src_iview->planes[0].isl.base_level,
5472 src_iview->planes[0].isl.base_array_layer,
5473 dst_iview->image, dst_aux_usage,
5474 dst_iview->planes[0].isl.base_level,
5475 dst_iview->planes[0].isl.base_array_layer,
5476 VK_IMAGE_ASPECT_STENCIL_BIT,
5477 render_area.offset.x, render_area.offset.y,
5478 render_area.offset.x, render_area.offset.y,
5479 render_area.extent.width,
5480 render_area.extent.height,
5481 fb->layers, filter);
5482 }
5483 }
5484
5485 #if GEN_GEN == 7
5486 /* On gen7, we have to store a texturable version of the stencil buffer in
5487 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
5488 * forth at strategic points. Stencil writes are only allowed in following
5489 * layouts:
5490 *
5491 * - VK_IMAGE_LAYOUT_GENERAL
5492 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
5493 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
5494 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
5495 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
5496 *
5497 * For general, we have no nice opportunity to transition so we do the copy
5498 * to the shadow unconditionally at the end of the subpass. For transfer
5499 * destinations, we can update it as part of the transfer op. For the other
5500 * layouts, we delay the copy until a transition into some other layout.
5501 */
5502 if (subpass->depth_stencil_attachment) {
5503 uint32_t a = subpass->depth_stencil_attachment->attachment;
5504 assert(a != VK_ATTACHMENT_UNUSED);
5505
5506 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5507 struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
5508 const struct anv_image *image = iview->image;
5509
5510 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5511 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
5512 VK_IMAGE_ASPECT_STENCIL_BIT);
5513
5514 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
5515 att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
5516 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
5517 anv_image_copy_to_shadow(cmd_buffer, image,
5518 VK_IMAGE_ASPECT_STENCIL_BIT,
5519 iview->planes[plane].isl.base_level, 1,
5520 iview->planes[plane].isl.base_array_layer,
5521 fb->layers);
5522 }
5523 }
5524 }
5525 #endif /* GEN_GEN == 7 */
5526
5527 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
5528 const uint32_t a = subpass->attachments[i].attachment;
5529 if (a == VK_ATTACHMENT_UNUSED)
5530 continue;
5531
5532 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
5533 continue;
5534
5535 assert(a < cmd_state->pass->attachment_count);
5536 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5537 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
5538 const struct anv_image *image = iview->image;
5539
5540 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5541 image->vk_format != iview->vk_format) {
5542 enum anv_fast_clear_type fast_clear_type =
5543 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
5544 image, VK_IMAGE_ASPECT_COLOR_BIT,
5545 att_state->current_layout);
5546
5547 /* If any clear color was used, flush it down the aux surfaces. If we
5548 * don't do it now using the view's format we might use the clear
5549 * color incorrectly in the following resolves (for example with an
5550 * SRGB view & a UNORM image).
5551 */
5552 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
5553 anv_perf_warn(cmd_buffer->device, iview,
5554 "Doing a partial resolve to get rid of clear color at the "
5555 "end of a renderpass due to an image/view format mismatch");
5556
5557 uint32_t base_layer, layer_count;
5558 if (image->type == VK_IMAGE_TYPE_3D) {
5559 base_layer = 0;
5560 layer_count = anv_minify(iview->image->extent.depth,
5561 iview->planes[0].isl.base_level);
5562 } else {
5563 base_layer = iview->planes[0].isl.base_array_layer;
5564 layer_count = fb->layers;
5565 }
5566
5567 for (uint32_t a = 0; a < layer_count; a++) {
5568 uint32_t array_layer = base_layer + a;
5569 if (image->samples == 1) {
5570 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
5571 iview->planes[0].isl.format,
5572 VK_IMAGE_ASPECT_COLOR_BIT,
5573 iview->planes[0].isl.base_level,
5574 array_layer,
5575 ISL_AUX_OP_PARTIAL_RESOLVE,
5576 ANV_FAST_CLEAR_NONE);
5577 } else {
5578 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
5579 iview->planes[0].isl.format,
5580 VK_IMAGE_ASPECT_COLOR_BIT,
5581 base_layer,
5582 ISL_AUX_OP_PARTIAL_RESOLVE,
5583 ANV_FAST_CLEAR_NONE);
5584 }
5585 }
5586 }
5587 }
5588
5589 /* Transition the image into the final layout for this render pass */
5590 VkImageLayout target_layout =
5591 cmd_state->pass->attachments[a].final_layout;
5592 VkImageLayout target_stencil_layout =
5593 cmd_state->pass->attachments[a].stencil_final_layout;
5594
5595 uint32_t base_layer, layer_count;
5596 if (image->type == VK_IMAGE_TYPE_3D) {
5597 base_layer = 0;
5598 layer_count = anv_minify(iview->image->extent.depth,
5599 iview->planes[0].isl.base_level);
5600 } else {
5601 base_layer = iview->planes[0].isl.base_array_layer;
5602 layer_count = fb->layers;
5603 }
5604
5605 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
5606 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5607 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5608 iview->planes[0].isl.base_level, 1,
5609 base_layer, layer_count,
5610 att_state->current_layout, target_layout);
5611 }
5612
5613 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5614 transition_depth_buffer(cmd_buffer, image,
5615 att_state->current_layout, target_layout);
5616 }
5617
5618 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5619 transition_stencil_buffer(cmd_buffer, image,
5620 iview->planes[0].isl.base_level, 1,
5621 base_layer, layer_count,
5622 att_state->current_stencil_layout,
5623 target_stencil_layout);
5624 }
5625 }
5626
5627 /* Accumulate any subpass flushes that need to happen after the subpass.
5628 * Yes, they do get accumulated twice in the NextSubpass case but since
5629 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
5630 * ORing the bits in twice so it's harmless.
5631 */
5632 cmd_buffer->state.pending_pipe_bits |=
5633 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
5634 }
5635
5636 void genX(CmdBeginRenderPass)(
5637 VkCommandBuffer commandBuffer,
5638 const VkRenderPassBeginInfo* pRenderPassBegin,
5639 VkSubpassContents contents)
5640 {
5641 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5642 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
5643 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
5644
5645 cmd_buffer->state.framebuffer = framebuffer;
5646 cmd_buffer->state.pass = pass;
5647 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
5648 VkResult result =
5649 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
5650
5651 /* If we failed to setup the attachments we should not try to go further */
5652 if (result != VK_SUCCESS) {
5653 assert(anv_batch_has_error(&cmd_buffer->batch));
5654 return;
5655 }
5656
5657 genX(flush_pipeline_select_3d)(cmd_buffer);
5658
5659 cmd_buffer_begin_subpass(cmd_buffer, 0);
5660 }
5661
5662 void genX(CmdBeginRenderPass2)(
5663 VkCommandBuffer commandBuffer,
5664 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
5665 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
5666 {
5667 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
5668 pSubpassBeginInfo->contents);
5669 }
5670
5671 void genX(CmdNextSubpass)(
5672 VkCommandBuffer commandBuffer,
5673 VkSubpassContents contents)
5674 {
5675 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5676
5677 if (anv_batch_has_error(&cmd_buffer->batch))
5678 return;
5679
5680 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
5681
5682 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
5683 cmd_buffer_end_subpass(cmd_buffer);
5684 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
5685 }
5686
5687 void genX(CmdNextSubpass2)(
5688 VkCommandBuffer commandBuffer,
5689 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
5690 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5691 {
5692 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
5693 }
5694
5695 void genX(CmdEndRenderPass)(
5696 VkCommandBuffer commandBuffer)
5697 {
5698 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5699
5700 if (anv_batch_has_error(&cmd_buffer->batch))
5701 return;
5702
5703 cmd_buffer_end_subpass(cmd_buffer);
5704
5705 cmd_buffer->state.hiz_enabled = false;
5706
5707 #ifndef NDEBUG
5708 anv_dump_add_attachments(cmd_buffer);
5709 #endif
5710
5711 /* Remove references to render pass specific state. This enables us to
5712 * detect whether or not we're in a renderpass.
5713 */
5714 cmd_buffer->state.framebuffer = NULL;
5715 cmd_buffer->state.pass = NULL;
5716 cmd_buffer->state.subpass = NULL;
5717 }
5718
5719 void genX(CmdEndRenderPass2)(
5720 VkCommandBuffer commandBuffer,
5721 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5722 {
5723 genX(CmdEndRenderPass)(commandBuffer);
5724 }
5725
5726 void
5727 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
5728 {
5729 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5730 struct gen_mi_builder b;
5731 gen_mi_builder_init(&b, &cmd_buffer->batch);
5732
5733 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
5734 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
5735 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
5736
5737 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
5738 mip.LoadOperation = LOAD_LOADINV;
5739 mip.CombineOperation = COMBINE_SET;
5740 mip.CompareOperation = COMPARE_SRCS_EQUAL;
5741 }
5742 #endif
5743 }
5744
5745 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5746 void genX(CmdBeginConditionalRenderingEXT)(
5747 VkCommandBuffer commandBuffer,
5748 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
5749 {
5750 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5751 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
5752 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5753 struct anv_address value_address =
5754 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
5755
5756 const bool isInverted = pConditionalRenderingBegin->flags &
5757 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
5758
5759 cmd_state->conditional_render_enabled = true;
5760
5761 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5762
5763 struct gen_mi_builder b;
5764 gen_mi_builder_init(&b, &cmd_buffer->batch);
5765
5766 /* Section 19.4 of the Vulkan 1.1.85 spec says:
5767 *
5768 * If the value of the predicate in buffer memory changes
5769 * while conditional rendering is active, the rendering commands
5770 * may be discarded in an implementation-dependent way.
5771 * Some implementations may latch the value of the predicate
5772 * upon beginning conditional rendering while others
5773 * may read it before every rendering command.
5774 *
5775 * So it's perfectly fine to read a value from the buffer once.
5776 */
5777 struct gen_mi_value value = gen_mi_mem32(value_address);
5778
5779 /* Precompute predicate result, it is necessary to support secondary
5780 * command buffers since it is unknown if conditional rendering is
5781 * inverted when populating them.
5782 */
5783 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
5784 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
5785 gen_mi_ult(&b, gen_mi_imm(0), value));
5786 }
5787
5788 void genX(CmdEndConditionalRenderingEXT)(
5789 VkCommandBuffer commandBuffer)
5790 {
5791 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5792 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5793
5794 cmd_state->conditional_render_enabled = false;
5795 }
5796 #endif
5797
5798 /* Set of stage bits for which are pipelined, i.e. they get queued by the
5799 * command streamer for later execution.
5800 */
5801 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5802 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
5803 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
5804 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
5805 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
5806 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
5807 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
5808 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
5809 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
5810 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
5811 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
5812 VK_PIPELINE_STAGE_TRANSFER_BIT | \
5813 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
5814 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
5815 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
5816
5817 void genX(CmdSetEvent)(
5818 VkCommandBuffer commandBuffer,
5819 VkEvent _event,
5820 VkPipelineStageFlags stageMask)
5821 {
5822 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5823 ANV_FROM_HANDLE(anv_event, event, _event);
5824
5825 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5826 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5827
5828 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5829 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5830 pc.StallAtPixelScoreboard = true;
5831 pc.CommandStreamerStallEnable = true;
5832 }
5833
5834 pc.DestinationAddressType = DAT_PPGTT,
5835 pc.PostSyncOperation = WriteImmediateData,
5836 pc.Address = (struct anv_address) {
5837 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5838 event->state.offset
5839 };
5840 pc.ImmediateData = VK_EVENT_SET;
5841 }
5842 }
5843
5844 void genX(CmdResetEvent)(
5845 VkCommandBuffer commandBuffer,
5846 VkEvent _event,
5847 VkPipelineStageFlags stageMask)
5848 {
5849 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5850 ANV_FROM_HANDLE(anv_event, event, _event);
5851
5852 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5853 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5854
5855 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5856 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5857 pc.StallAtPixelScoreboard = true;
5858 pc.CommandStreamerStallEnable = true;
5859 }
5860
5861 pc.DestinationAddressType = DAT_PPGTT;
5862 pc.PostSyncOperation = WriteImmediateData;
5863 pc.Address = (struct anv_address) {
5864 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5865 event->state.offset
5866 };
5867 pc.ImmediateData = VK_EVENT_RESET;
5868 }
5869 }
5870
5871 void genX(CmdWaitEvents)(
5872 VkCommandBuffer commandBuffer,
5873 uint32_t eventCount,
5874 const VkEvent* pEvents,
5875 VkPipelineStageFlags srcStageMask,
5876 VkPipelineStageFlags destStageMask,
5877 uint32_t memoryBarrierCount,
5878 const VkMemoryBarrier* pMemoryBarriers,
5879 uint32_t bufferMemoryBarrierCount,
5880 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
5881 uint32_t imageMemoryBarrierCount,
5882 const VkImageMemoryBarrier* pImageMemoryBarriers)
5883 {
5884 #if GEN_GEN >= 8
5885 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5886
5887 for (uint32_t i = 0; i < eventCount; i++) {
5888 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
5889
5890 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
5891 sem.WaitMode = PollingMode,
5892 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
5893 sem.SemaphoreDataDword = VK_EVENT_SET,
5894 sem.SemaphoreAddress = (struct anv_address) {
5895 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5896 event->state.offset
5897 };
5898 }
5899 }
5900 #else
5901 anv_finishme("Implement events on gen7");
5902 #endif
5903
5904 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
5905 false, /* byRegion */
5906 memoryBarrierCount, pMemoryBarriers,
5907 bufferMemoryBarrierCount, pBufferMemoryBarriers,
5908 imageMemoryBarrierCount, pImageMemoryBarriers);
5909 }
5910
5911 VkResult genX(CmdSetPerformanceOverrideINTEL)(
5912 VkCommandBuffer commandBuffer,
5913 const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
5914 {
5915 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5916
5917 switch (pOverrideInfo->type) {
5918 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
5919 uint32_t dw;
5920
5921 #if GEN_GEN >= 9
5922 anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2),
5923 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5924 .MediaInstructionDisable = pOverrideInfo->enable,
5925 ._3DRenderingInstructionDisableMask = true,
5926 .MediaInstructionDisableMask = true);
5927 emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw);
5928 #else
5929 anv_pack_struct(&dw, GENX(INSTPM),
5930 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5931 .MediaInstructionDisable = pOverrideInfo->enable,
5932 ._3DRenderingInstructionDisableMask = true,
5933 .MediaInstructionDisableMask = true);
5934 emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw);
5935 #endif
5936 break;
5937 }
5938
5939 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
5940 if (pOverrideInfo->enable) {
5941 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5942 cmd_buffer->state.pending_pipe_bits |=
5943 ANV_PIPE_FLUSH_BITS |
5944 ANV_PIPE_INVALIDATE_BITS;
5945 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5946 }
5947 break;
5948
5949 default:
5950 unreachable("Invalid override");
5951 }
5952
5953 return VK_SUCCESS;
5954 }
5955
5956 VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
5957 VkCommandBuffer commandBuffer,
5958 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
5959 {
5960 /* TODO: Waiting on the register to write, might depend on generation. */
5961
5962 return VK_SUCCESS;
5963 }