anv/cmd_buffer: Re-emit the pipeline at every subpass
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
36 emit_lrm(struct anv_batch *batch,
37 uint32_t reg, struct anv_bo *bo, uint32_t offset)
38 {
39 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
40 lrm.RegisterAddress = reg;
41 lrm.MemoryAddress = (struct anv_address) { bo, offset };
42 }
43 }
44
45 static void
46 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
47 {
48 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
49 lri.RegisterOffset = reg;
50 lri.DataDWord = imm;
51 }
52 }
53
54 #if GEN_IS_HASWELL || GEN_GEN >= 8
55 static void
56 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
57 {
58 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
59 lrr.SourceRegisterAddress = src;
60 lrr.DestinationRegisterAddress = dst;
61 }
62 }
63 #endif
64
65 void
66 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
67 {
68 struct anv_device *device = cmd_buffer->device;
69
70 /* Emit a render target cache flush.
71 *
72 * This isn't documented anywhere in the PRM. However, it seems to be
73 * necessary prior to changing the surface state base adress. Without
74 * this, we get GPU hangs when using multi-level command buffers which
75 * clear depth, reset state base address, and then go render stuff.
76 */
77 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
78 pc.DCFlushEnable = true;
79 pc.RenderTargetCacheFlushEnable = true;
80 pc.CommandStreamerStallEnable = true;
81 }
82
83 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
84 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
85 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
86 sba.GeneralStateBaseAddressModifyEnable = true;
87
88 sba.SurfaceStateBaseAddress =
89 anv_cmd_buffer_surface_base_address(cmd_buffer);
90 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
91 sba.SurfaceStateBaseAddressModifyEnable = true;
92
93 sba.DynamicStateBaseAddress =
94 (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
95 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
96 sba.DynamicStateBaseAddressModifyEnable = true;
97
98 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
99 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
100 sba.IndirectObjectBaseAddressModifyEnable = true;
101
102 sba.InstructionBaseAddress =
103 (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
104 sba.InstructionMemoryObjectControlState = GENX(MOCS);
105 sba.InstructionBaseAddressModifyEnable = true;
106
107 # if (GEN_GEN >= 8)
108 /* Broadwell requires that we specify a buffer size for a bunch of
109 * these fields. However, since we will be growing the BO's live, we
110 * just set them all to the maximum.
111 */
112 sba.GeneralStateBufferSize = 0xfffff;
113 sba.GeneralStateBufferSizeModifyEnable = true;
114 sba.DynamicStateBufferSize = 0xfffff;
115 sba.DynamicStateBufferSizeModifyEnable = true;
116 sba.IndirectObjectBufferSize = 0xfffff;
117 sba.IndirectObjectBufferSizeModifyEnable = true;
118 sba.InstructionBufferSize = 0xfffff;
119 sba.InstructionBuffersizeModifyEnable = true;
120 # endif
121 }
122
123 /* After re-setting the surface state base address, we have to do some
124 * cache flusing so that the sampler engine will pick up the new
125 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
126 * Shared Function > 3D Sampler > State > State Caching (page 96):
127 *
128 * Coherency with system memory in the state cache, like the texture
129 * cache is handled partially by software. It is expected that the
130 * command stream or shader will issue Cache Flush operation or
131 * Cache_Flush sampler message to ensure that the L1 cache remains
132 * coherent with system memory.
133 *
134 * [...]
135 *
136 * Whenever the value of the Dynamic_State_Base_Addr,
137 * Surface_State_Base_Addr are altered, the L1 state cache must be
138 * invalidated to ensure the new surface or sampler state is fetched
139 * from system memory.
140 *
141 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
142 * which, according the PIPE_CONTROL instruction documentation in the
143 * Broadwell PRM:
144 *
145 * Setting this bit is independent of any other bit in this packet.
146 * This bit controls the invalidation of the L1 and L2 state caches
147 * at the top of the pipe i.e. at the parsing time.
148 *
149 * Unfortunately, experimentation seems to indicate that state cache
150 * invalidation through a PIPE_CONTROL does nothing whatsoever in
151 * regards to surface state and binding tables. In stead, it seems that
152 * invalidating the texture cache is what is actually needed.
153 *
154 * XXX: As far as we have been able to determine through
155 * experimentation, shows that flush the texture cache appears to be
156 * sufficient. The theory here is that all of the sampling/rendering
157 * units cache the binding table in the texture cache. However, we have
158 * yet to be able to actually confirm this.
159 */
160 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
161 pc.TextureCacheInvalidationEnable = true;
162 pc.ConstantCacheInvalidationEnable = true;
163 pc.StateCacheInvalidationEnable = true;
164 }
165 }
166
167 static void
168 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
169 struct anv_state state,
170 struct anv_bo *bo, uint32_t offset)
171 {
172 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
173
174 VkResult result =
175 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
176 state.offset + isl_dev->ss.addr_offset, bo, offset);
177 if (result != VK_SUCCESS)
178 anv_batch_set_error(&cmd_buffer->batch, result);
179 }
180
181 static void
182 add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
183 const struct anv_image_view *image_view,
184 const uint32_t plane,
185 struct anv_surface_state state)
186 {
187 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188 const struct anv_image *image = image_view->image;
189 uint32_t image_plane = image_view->planes[plane].image_plane;
190
191 add_surface_state_reloc(cmd_buffer, state.state,
192 image->planes[image_plane].bo, state.address);
193
194 if (state.aux_address) {
195 VkResult result =
196 anv_reloc_list_add(&cmd_buffer->surface_relocs,
197 &cmd_buffer->pool->alloc,
198 state.state.offset + isl_dev->ss.aux_addr_offset,
199 image->planes[image_plane].bo, state.aux_address);
200 if (result != VK_SUCCESS)
201 anv_batch_set_error(&cmd_buffer->batch, result);
202 }
203 }
204
205 static bool
206 color_is_zero_one(VkClearColorValue value, enum isl_format format)
207 {
208 if (isl_format_has_int_channel(format)) {
209 for (unsigned i = 0; i < 4; i++) {
210 if (value.int32[i] != 0 && value.int32[i] != 1)
211 return false;
212 }
213 } else {
214 for (unsigned i = 0; i < 4; i++) {
215 if (value.float32[i] != 0.0f && value.float32[i] != 1.0f)
216 return false;
217 }
218 }
219
220 return true;
221 }
222
223 static void
224 color_attachment_compute_aux_usage(struct anv_device * device,
225 struct anv_cmd_state * cmd_state,
226 uint32_t att, VkRect2D render_area,
227 union isl_color_value *fast_clear_color)
228 {
229 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
230 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
231
232 assert(iview->n_planes == 1);
233
234 if (iview->planes[0].isl.base_array_layer >=
235 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
236 iview->planes[0].isl.base_level)) {
237 /* There is no aux buffer which corresponds to the level and layer(s)
238 * being accessed.
239 */
240 att_state->aux_usage = ISL_AUX_USAGE_NONE;
241 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
242 att_state->fast_clear = false;
243 return;
244 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_MCS) {
245 att_state->aux_usage = ISL_AUX_USAGE_MCS;
246 att_state->input_aux_usage = ISL_AUX_USAGE_MCS;
247 att_state->fast_clear = false;
248 return;
249 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E) {
250 att_state->aux_usage = ISL_AUX_USAGE_CCS_E;
251 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_E;
252 } else {
253 att_state->aux_usage = ISL_AUX_USAGE_CCS_D;
254 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
255 *
256 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
257 * setting is only allowed if Surface Format supported for Fast
258 * Clear. In addition, if the surface is bound to the sampling
259 * engine, Surface Format must be supported for Render Target
260 * Compression for surfaces bound to the sampling engine."
261 *
262 * In other words, we can only sample from a fast-cleared image if it
263 * also supports color compression.
264 */
265 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
266 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
267
268 /* While fast-clear resolves and partial resolves are fairly cheap in the
269 * case where you render to most of the pixels, full resolves are not
270 * because they potentially involve reading and writing the entire
271 * framebuffer. If we can't texture with CCS_E, we should leave it off and
272 * limit ourselves to fast clears.
273 */
274 if (cmd_state->pass->attachments[att].first_subpass_layout ==
275 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
276 anv_perf_warn(device->instance, iview->image,
277 "Not temporarily enabling CCS_E.");
278 }
279 } else {
280 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
281 }
282 }
283
284 assert(iview->image->planes[0].aux_surface.isl.usage & ISL_SURF_USAGE_CCS_BIT);
285
286 att_state->clear_color_is_zero_one =
287 color_is_zero_one(att_state->clear_value.color, iview->planes[0].isl.format);
288 att_state->clear_color_is_zero =
289 att_state->clear_value.color.uint32[0] == 0 &&
290 att_state->clear_value.color.uint32[1] == 0 &&
291 att_state->clear_value.color.uint32[2] == 0 &&
292 att_state->clear_value.color.uint32[3] == 0;
293
294 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
295 /* Start off assuming fast clears are possible */
296 att_state->fast_clear = true;
297
298 /* Potentially, we could do partial fast-clears but doing so has crazy
299 * alignment restrictions. It's easier to just restrict to full size
300 * fast clears for now.
301 */
302 if (render_area.offset.x != 0 ||
303 render_area.offset.y != 0 ||
304 render_area.extent.width != iview->extent.width ||
305 render_area.extent.height != iview->extent.height)
306 att_state->fast_clear = false;
307
308 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
309 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
310 att_state->fast_clear = false;
311
312 /* We allow fast clears when all aux layers of the miplevel are targeted.
313 * See add_fast_clear_state_buffer() for more information. Also, because
314 * we only either do a fast clear or a normal clear and not both, this
315 * complies with the gen7 restriction of not fast-clearing multiple
316 * layers.
317 */
318 if (cmd_state->framebuffer->layers !=
319 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
320 iview->planes[0].isl.base_level)) {
321 att_state->fast_clear = false;
322 if (GEN_GEN == 7) {
323 anv_perf_warn(device->instance, iview->image,
324 "Not fast-clearing the first layer in "
325 "a multi-layer fast clear.");
326 }
327 }
328
329 /* We only allow fast clears in the GENERAL layout if the auxiliary
330 * buffer is always enabled and the fast-clear value is all 0's. See
331 * add_fast_clear_state_buffer() for more information.
332 */
333 if (cmd_state->pass->attachments[att].first_subpass_layout ==
334 VK_IMAGE_LAYOUT_GENERAL &&
335 (!att_state->clear_color_is_zero ||
336 iview->image->planes[0].aux_usage == ISL_AUX_USAGE_NONE)) {
337 att_state->fast_clear = false;
338 }
339
340 if (att_state->fast_clear) {
341 memcpy(fast_clear_color->u32, att_state->clear_value.color.uint32,
342 sizeof(fast_clear_color->u32));
343 }
344 } else {
345 att_state->fast_clear = false;
346 }
347 }
348
349 static bool
350 need_input_attachment_state(const struct anv_render_pass_attachment *att)
351 {
352 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
353 return false;
354
355 /* We only allocate input attachment states for color surfaces. Compression
356 * is not yet enabled for depth textures and stencil doesn't allow
357 * compression so we can just use the texture surface state from the view.
358 */
359 return vk_format_is_color(att->format);
360 }
361
362 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
363 * the initial layout is undefined, the HiZ buffer and depth buffer will
364 * represent the same data at the end of this operation.
365 */
366 static void
367 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
368 const struct anv_image *image,
369 VkImageLayout initial_layout,
370 VkImageLayout final_layout)
371 {
372 assert(image);
373
374 /* A transition is a no-op if HiZ is not enabled, or if the initial and
375 * final layouts are equal.
376 *
377 * The undefined layout indicates that the user doesn't care about the data
378 * that's currently in the buffer. Therefore, a data-preserving resolve
379 * operation is not needed.
380 */
381 if (image->planes[0].aux_usage != ISL_AUX_USAGE_HIZ || initial_layout == final_layout)
382 return;
383
384 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
385 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
386 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
387 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
388 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
389 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
390
391 enum blorp_hiz_op hiz_op;
392 if (hiz_enabled && !enable_hiz) {
393 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
394 } else if (!hiz_enabled && enable_hiz) {
395 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
396 } else {
397 assert(hiz_enabled == enable_hiz);
398 /* If the same buffer will be used, no resolves are necessary. */
399 hiz_op = BLORP_HIZ_OP_NONE;
400 }
401
402 if (hiz_op != BLORP_HIZ_OP_NONE)
403 anv_gen8_hiz_op_resolve(cmd_buffer, image, hiz_op);
404 }
405
406 #define MI_PREDICATE_SRC0 0x2400
407 #define MI_PREDICATE_SRC1 0x2408
408
409 /* Manages the state of an color image subresource to ensure resolves are
410 * performed properly.
411 */
412 static void
413 genX(set_image_needs_resolve)(struct anv_cmd_buffer *cmd_buffer,
414 const struct anv_image *image,
415 VkImageAspectFlagBits aspect,
416 unsigned level, bool needs_resolve)
417 {
418 assert(cmd_buffer && image);
419 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
420 assert(level < anv_image_aux_levels(image, aspect));
421
422 /* The HW docs say that there is no way to guarantee the completion of
423 * the following command. We use it nevertheless because it shows no
424 * issues in testing is currently being used in the GL driver.
425 */
426 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
427 sdi.Address = anv_image_get_needs_resolve_addr(cmd_buffer->device,
428 image, aspect, level);
429 sdi.ImmediateData = needs_resolve;
430 }
431 }
432
433 static void
434 genX(load_needs_resolve_predicate)(struct anv_cmd_buffer *cmd_buffer,
435 const struct anv_image *image,
436 VkImageAspectFlagBits aspect,
437 unsigned level)
438 {
439 assert(cmd_buffer && image);
440 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
441 assert(level < anv_image_aux_levels(image, aspect));
442
443 const struct anv_address resolve_flag_addr =
444 anv_image_get_needs_resolve_addr(cmd_buffer->device,
445 image, aspect, level);
446
447 /* Make the pending predicated resolve a no-op if one is not needed.
448 * predicate = do_resolve = resolve_flag != 0;
449 */
450 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
451 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
452 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 , 0);
453 emit_lrm(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4,
454 resolve_flag_addr.bo, resolve_flag_addr.offset);
455 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
456 mip.LoadOperation = LOAD_LOADINV;
457 mip.CombineOperation = COMBINE_SET;
458 mip.CompareOperation = COMPARE_SRCS_EQUAL;
459 }
460 }
461
462 static void
463 init_fast_clear_state_entry(struct anv_cmd_buffer *cmd_buffer,
464 const struct anv_image *image,
465 VkImageAspectFlagBits aspect,
466 unsigned level)
467 {
468 assert(cmd_buffer && image);
469 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
470 assert(level < anv_image_aux_levels(image, aspect));
471
472 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
473 enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
474
475 /* The resolve flag should updated to signify that fast-clear/compression
476 * data needs to be removed when leaving the undefined layout. Such data
477 * may need to be removed if it would cause accesses to the color buffer
478 * to return incorrect data. The fast clear data in CCS_D buffers should
479 * be removed because CCS_D isn't enabled all the time.
480 */
481 genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level,
482 aux_usage == ISL_AUX_USAGE_NONE);
483
484 /* The fast clear value dword(s) will be copied into a surface state object.
485 * Ensure that the restrictions of the fields in the dword(s) are followed.
486 *
487 * CCS buffers on SKL+ can have any value set for the clear colors.
488 */
489 if (image->samples == 1 && GEN_GEN >= 9)
490 return;
491
492 /* Other combinations of auxiliary buffers and platforms require specific
493 * values in the clear value dword(s).
494 */
495 struct anv_address addr =
496 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
497 unsigned i = 0;
498 for (; i < cmd_buffer->device->isl_dev.ss.clear_value_size; i += 4) {
499 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
500 sdi.Address = addr;
501
502 if (GEN_GEN >= 9) {
503 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
504 assert(aux_usage == ISL_AUX_USAGE_MCS);
505 sdi.ImmediateData = 0;
506 } else if (GEN_VERSIONx10 >= 75) {
507 /* Pre-SKL, the dword containing the clear values also contains
508 * other fields, so we need to initialize those fields to match the
509 * values that would be in a color attachment.
510 */
511 assert(i == 0);
512 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
513 ISL_CHANNEL_SELECT_GREEN << 22 |
514 ISL_CHANNEL_SELECT_BLUE << 19 |
515 ISL_CHANNEL_SELECT_ALPHA << 16;
516 } else if (GEN_VERSIONx10 == 70) {
517 /* On IVB, the dword containing the clear values also contains
518 * other fields that must be zero or can be zero.
519 */
520 assert(i == 0);
521 sdi.ImmediateData = 0;
522 }
523 }
524
525 addr.offset += 4;
526 }
527 }
528
529 /* Copy the fast-clear value dword(s) between a surface state object and an
530 * image's fast clear state buffer.
531 */
532 static void
533 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
534 struct anv_state surface_state,
535 const struct anv_image *image,
536 VkImageAspectFlagBits aspect,
537 unsigned level,
538 bool copy_from_surface_state)
539 {
540 assert(cmd_buffer && image);
541 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
542 assert(level < anv_image_aux_levels(image, aspect));
543
544 struct anv_bo *ss_bo =
545 &cmd_buffer->device->surface_state_pool.block_pool.bo;
546 uint32_t ss_clear_offset = surface_state.offset +
547 cmd_buffer->device->isl_dev.ss.clear_value_offset;
548 const struct anv_address entry_addr =
549 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
550 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
551
552 if (copy_from_surface_state) {
553 genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr.bo, entry_addr.offset,
554 ss_bo, ss_clear_offset, copy_size);
555 } else {
556 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_bo, ss_clear_offset,
557 entry_addr.bo, entry_addr.offset, copy_size);
558
559 /* Updating a surface state object may require that the state cache be
560 * invalidated. From the SKL PRM, Shared Functions -> State -> State
561 * Caching:
562 *
563 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
564 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
565 * modified [...], the L1 state cache must be invalidated to ensure
566 * the new surface or sampler state is fetched from system memory.
567 *
568 * In testing, SKL doesn't actually seem to need this, but HSW does.
569 */
570 cmd_buffer->state.pending_pipe_bits |=
571 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
572 }
573 }
574
575 /**
576 * @brief Transitions a color buffer from one layout to another.
577 *
578 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
579 * more information.
580 *
581 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
582 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
583 * this represents the maximum layers to transition at each
584 * specified miplevel.
585 */
586 static void
587 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
588 const struct anv_image *image,
589 VkImageAspectFlagBits aspect,
590 const uint32_t base_level, uint32_t level_count,
591 uint32_t base_layer, uint32_t layer_count,
592 VkImageLayout initial_layout,
593 VkImageLayout final_layout)
594 {
595 /* Validate the inputs. */
596 assert(cmd_buffer);
597 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
598 /* These values aren't supported for simplicity's sake. */
599 assert(level_count != VK_REMAINING_MIP_LEVELS &&
600 layer_count != VK_REMAINING_ARRAY_LAYERS);
601 /* Ensure the subresource range is valid. */
602 uint64_t last_level_num = base_level + level_count;
603 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
604 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
605 assert((uint64_t)base_layer + layer_count <= image_layers);
606 assert(last_level_num <= image->levels);
607 /* The spec disallows these final layouts. */
608 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
609 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
610
611 /* No work is necessary if the layout stays the same or if this subresource
612 * range lacks auxiliary data.
613 */
614 if (initial_layout == final_layout)
615 return;
616
617 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
618
619 if (image->planes[plane].shadow_surface.isl.size > 0 &&
620 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
621 /* This surface is a linear compressed image with a tiled shadow surface
622 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
623 * we need to ensure the shadow copy is up-to-date.
624 */
625 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
626 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
627 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
628 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
629 assert(plane == 0);
630 anv_image_copy_to_shadow(cmd_buffer, image,
631 base_level, level_count,
632 base_layer, layer_count);
633 }
634
635 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
636 return;
637
638 /* A transition of a 3D subresource works on all slices at a time. */
639 if (image->type == VK_IMAGE_TYPE_3D) {
640 base_layer = 0;
641 layer_count = anv_minify(image->extent.depth, base_level);
642 }
643
644 /* We're interested in the subresource range subset that has aux data. */
645 level_count = MIN2(level_count, anv_image_aux_levels(image, aspect) - base_level);
646 layer_count = MIN2(layer_count,
647 anv_image_aux_layers(image, aspect, base_level) - base_layer);
648 last_level_num = base_level + level_count;
649
650 /* Record whether or not the layout is undefined. Pre-initialized images
651 * with auxiliary buffers have a non-linear layout and are thus undefined.
652 */
653 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
654 const bool undef_layout = initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
655 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
656
657 /* Do preparatory work before the resolve operation or return early if no
658 * resolve is actually needed.
659 */
660 if (undef_layout) {
661 /* A subresource in the undefined layout may have been aliased and
662 * populated with any arrangement of bits. Therefore, we must initialize
663 * the related aux buffer and clear buffer entry with desirable values.
664 *
665 * Initialize the relevant clear buffer entries.
666 */
667 for (unsigned level = base_level; level < last_level_num; level++)
668 init_fast_clear_state_entry(cmd_buffer, image, aspect, level);
669
670 /* Initialize the aux buffers to enable correct rendering. This operation
671 * requires up to two steps: one to rid the aux buffer of data that may
672 * cause GPU hangs, and another to ensure that writes done without aux
673 * will be visible to reads done with aux.
674 *
675 * Having an aux buffer with invalid data is possible for CCS buffers
676 * SKL+ and for MCS buffers with certain sample counts (2x and 8x). One
677 * easy way to get to a valid state is to fast-clear the specified range.
678 *
679 * Even for MCS buffers that have sample counts that don't require
680 * certain bits to be reserved (4x and 8x), we're unsure if the hardware
681 * will be okay with the sample mappings given by the undefined buffer.
682 * We don't have any data to show that this is a problem, but we want to
683 * avoid causing difficult-to-debug problems.
684 */
685 if ((GEN_GEN >= 9 && image->samples == 1) || image->samples > 1) {
686 if (image->samples == 4 || image->samples == 16) {
687 anv_perf_warn(cmd_buffer->device->instance, image,
688 "Doing a potentially unnecessary fast-clear to "
689 "define an MCS buffer.");
690 }
691
692 anv_image_fast_clear(cmd_buffer, image, aspect,
693 base_level, level_count,
694 base_layer, layer_count);
695 }
696 /* At this point, some elements of the CCS buffer may have the fast-clear
697 * bit-arrangement. As the user writes to a subresource, we need to have
698 * the associated CCS elements enter the ambiguated state. This enables
699 * reads (implicit or explicit) to reflect the user-written data instead
700 * of the clear color. The only time such elements will not change their
701 * state as described above, is in a final layout that doesn't have CCS
702 * enabled. In this case, we must force the associated CCS buffers of the
703 * specified range to enter the ambiguated state in advance.
704 */
705 if (image->samples == 1 &&
706 image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E &&
707 final_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
708 /* The CCS_D buffer may not be enabled in the final layout. Continue
709 * executing this function to perform a resolve.
710 */
711 anv_perf_warn(cmd_buffer->device->instance, image,
712 "Performing an additional resolve for CCS_D layout "
713 "transition. Consider always leaving it on or "
714 "performing an ambiguation pass.");
715 } else {
716 /* Writes in the final layout will be aware of the auxiliary buffer.
717 * In addition, the clear buffer entries and the auxiliary buffers
718 * have been populated with values that will result in correct
719 * rendering.
720 */
721 return;
722 }
723 } else if (initial_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
724 /* Resolves are only necessary if the subresource may contain blocks
725 * fast-cleared to values unsupported in other layouts. This only occurs
726 * if the initial layout is COLOR_ATTACHMENT_OPTIMAL.
727 */
728 return;
729 } else if (image->samples > 1) {
730 /* MCS buffers don't need resolving. */
731 return;
732 }
733
734 /* Perform a resolve to synchronize data between the main and aux buffer.
735 * Before we begin, we must satisfy the cache flushing requirement specified
736 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
737 *
738 * Any transition from any value in {Clear, Render, Resolve} to a
739 * different value in {Clear, Render, Resolve} requires end of pipe
740 * synchronization.
741 *
742 * We perform a flush of the write cache before and after the clear and
743 * resolve operations to meet this requirement.
744 *
745 * Unlike other drawing, fast clear operations are not properly
746 * synchronized. The first PIPE_CONTROL here likely ensures that the
747 * contents of the previous render or clear hit the render target before we
748 * resolve and the second likely ensures that the resolve is complete before
749 * we do any more rendering or clearing.
750 */
751 cmd_buffer->state.pending_pipe_bits |=
752 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
753
754 for (uint32_t level = base_level; level < last_level_num; level++) {
755
756 /* The number of layers changes at each 3D miplevel. */
757 if (image->type == VK_IMAGE_TYPE_3D) {
758 layer_count = MIN2(layer_count, anv_image_aux_layers(image, aspect, level));
759 }
760
761 genX(load_needs_resolve_predicate)(cmd_buffer, image, aspect, level);
762
763 anv_ccs_resolve(cmd_buffer, image, aspect, level, base_layer, layer_count,
764 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E ?
765 BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL :
766 BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
767
768 genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level, false);
769 }
770
771 cmd_buffer->state.pending_pipe_bits |=
772 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
773 }
774
775 /**
776 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
777 */
778 static VkResult
779 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
780 struct anv_render_pass *pass,
781 const VkRenderPassBeginInfo *begin)
782 {
783 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
784 struct anv_cmd_state *state = &cmd_buffer->state;
785
786 vk_free(&cmd_buffer->pool->alloc, state->attachments);
787
788 if (pass->attachment_count > 0) {
789 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
790 pass->attachment_count *
791 sizeof(state->attachments[0]),
792 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
793 if (state->attachments == NULL) {
794 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
795 return anv_batch_set_error(&cmd_buffer->batch,
796 VK_ERROR_OUT_OF_HOST_MEMORY);
797 }
798 } else {
799 state->attachments = NULL;
800 }
801
802 /* Reserve one for the NULL state. */
803 unsigned num_states = 1;
804 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
805 if (vk_format_is_color(pass->attachments[i].format))
806 num_states++;
807
808 if (need_input_attachment_state(&pass->attachments[i]))
809 num_states++;
810 }
811
812 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
813 state->render_pass_states =
814 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
815 num_states * ss_stride, isl_dev->ss.align);
816
817 struct anv_state next_state = state->render_pass_states;
818 next_state.alloc_size = isl_dev->ss.size;
819
820 state->null_surface_state = next_state;
821 next_state.offset += ss_stride;
822 next_state.map += ss_stride;
823
824 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
825 if (vk_format_is_color(pass->attachments[i].format)) {
826 state->attachments[i].color.state = next_state;
827 next_state.offset += ss_stride;
828 next_state.map += ss_stride;
829 }
830
831 if (need_input_attachment_state(&pass->attachments[i])) {
832 state->attachments[i].input.state = next_state;
833 next_state.offset += ss_stride;
834 next_state.map += ss_stride;
835 }
836 }
837 assert(next_state.offset == state->render_pass_states.offset +
838 state->render_pass_states.alloc_size);
839
840 if (begin) {
841 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
842 assert(pass->attachment_count == framebuffer->attachment_count);
843
844 isl_null_fill_state(isl_dev, state->null_surface_state.map,
845 isl_extent3d(framebuffer->width,
846 framebuffer->height,
847 framebuffer->layers));
848
849 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
850 struct anv_render_pass_attachment *att = &pass->attachments[i];
851 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
852 VkImageAspectFlags clear_aspects = 0;
853
854 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
855 /* color attachment */
856 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
857 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
858 }
859 } else {
860 /* depthstencil attachment */
861 if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
862 att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
863 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
864 }
865 if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
866 att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
867 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
868 }
869 }
870
871 state->attachments[i].current_layout = att->initial_layout;
872 state->attachments[i].pending_clear_aspects = clear_aspects;
873 if (clear_aspects)
874 state->attachments[i].clear_value = begin->pClearValues[i];
875
876 struct anv_image_view *iview = framebuffer->attachments[i];
877 anv_assert(iview->vk_format == att->format);
878 anv_assert(iview->n_planes == 1);
879
880 union isl_color_value clear_color = { .u32 = { 0, } };
881 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
882 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
883 color_attachment_compute_aux_usage(cmd_buffer->device,
884 state, i, begin->renderArea,
885 &clear_color);
886
887 anv_image_fill_surface_state(cmd_buffer->device,
888 iview->image,
889 VK_IMAGE_ASPECT_COLOR_BIT,
890 &iview->planes[0].isl,
891 ISL_SURF_USAGE_RENDER_TARGET_BIT,
892 state->attachments[i].aux_usage,
893 &clear_color,
894 0,
895 &state->attachments[i].color,
896 NULL);
897
898 add_image_view_relocs(cmd_buffer, iview, 0,
899 state->attachments[i].color);
900 } else {
901 /* This field will be initialized after the first subpass
902 * transition.
903 */
904 state->attachments[i].aux_usage = ISL_AUX_USAGE_NONE;
905
906 state->attachments[i].input_aux_usage = ISL_AUX_USAGE_NONE;
907 }
908
909 if (need_input_attachment_state(&pass->attachments[i])) {
910 anv_image_fill_surface_state(cmd_buffer->device,
911 iview->image,
912 VK_IMAGE_ASPECT_COLOR_BIT,
913 &iview->planes[0].isl,
914 ISL_SURF_USAGE_TEXTURE_BIT,
915 state->attachments[i].input_aux_usage,
916 &clear_color,
917 0,
918 &state->attachments[i].input,
919 NULL);
920
921 add_image_view_relocs(cmd_buffer, iview, 0,
922 state->attachments[i].input);
923 }
924 }
925 }
926
927 return VK_SUCCESS;
928 }
929
930 VkResult
931 genX(BeginCommandBuffer)(
932 VkCommandBuffer commandBuffer,
933 const VkCommandBufferBeginInfo* pBeginInfo)
934 {
935 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
936
937 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
938 * command buffer's state. Otherwise, we must *reset* its state. In both
939 * cases we reset it.
940 *
941 * From the Vulkan 1.0 spec:
942 *
943 * If a command buffer is in the executable state and the command buffer
944 * was allocated from a command pool with the
945 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
946 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
947 * as if vkResetCommandBuffer had been called with
948 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
949 * the command buffer in the recording state.
950 */
951 anv_cmd_buffer_reset(cmd_buffer);
952
953 cmd_buffer->usage_flags = pBeginInfo->flags;
954
955 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
956 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
957
958 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
959
960 /* We sometimes store vertex data in the dynamic state buffer for blorp
961 * operations and our dynamic state stream may re-use data from previous
962 * command buffers. In order to prevent stale cache data, we flush the VF
963 * cache. We could do this on every blorp call but that's not really
964 * needed as all of the data will get written by the CPU prior to the GPU
965 * executing anything. The chances are fairly high that they will use
966 * blorp at least once per primary command buffer so it shouldn't be
967 * wasted.
968 */
969 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
970 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
971
972 /* We send an "Indirect State Pointers Disable" packet at
973 * EndCommandBuffer, so all push contant packets are ignored during a
974 * context restore. Documentation says after that command, we need to
975 * emit push constants again before any rendering operation. So we
976 * flag them dirty here to make sure they get emitted.
977 */
978 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
979
980 VkResult result = VK_SUCCESS;
981 if (cmd_buffer->usage_flags &
982 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
983 assert(pBeginInfo->pInheritanceInfo);
984 cmd_buffer->state.pass =
985 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
986 cmd_buffer->state.subpass =
987 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
988
989 /* This is optional in the inheritance info. */
990 cmd_buffer->state.framebuffer =
991 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
992
993 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
994 cmd_buffer->state.pass, NULL);
995
996 /* Record that HiZ is enabled if we can. */
997 if (cmd_buffer->state.framebuffer) {
998 const struct anv_image_view * const iview =
999 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1000
1001 if (iview) {
1002 VkImageLayout layout =
1003 cmd_buffer->state.subpass->depth_stencil_attachment.layout;
1004
1005 enum isl_aux_usage aux_usage =
1006 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1007 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1008
1009 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1010 }
1011 }
1012
1013 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1014 }
1015
1016 return result;
1017 }
1018
1019 /* From the PRM, Volume 2a:
1020 *
1021 * "Indirect State Pointers Disable
1022 *
1023 * At the completion of the post-sync operation associated with this pipe
1024 * control packet, the indirect state pointers in the hardware are
1025 * considered invalid; the indirect pointers are not saved in the context.
1026 * If any new indirect state commands are executed in the command stream
1027 * while the pipe control is pending, the new indirect state commands are
1028 * preserved.
1029 *
1030 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1031 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1032 * commands are only considered as Indirect State Pointers. Once ISP is
1033 * issued in a context, SW must initialize by programming push constant
1034 * commands for all the shaders (at least to zero length) before attempting
1035 * any rendering operation for the same context."
1036 *
1037 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1038 * even though they point to a BO that has been already unreferenced at
1039 * the end of the previous batch buffer. This has been fine so far since
1040 * we are protected by these scratch page (every address not covered by
1041 * a BO should be pointing to the scratch page). But on CNL, it is
1042 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1043 * instruction.
1044 *
1045 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1046 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1047 * context restore, so the mentioned hang doesn't happen. However,
1048 * software must program push constant commands for all stages prior to
1049 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1050 */
1051 static void
1052 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1053 {
1054 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1055 pc.IndirectStatePointersDisable = true;
1056 pc.CommandStreamerStallEnable = true;
1057 }
1058 }
1059
1060 VkResult
1061 genX(EndCommandBuffer)(
1062 VkCommandBuffer commandBuffer)
1063 {
1064 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1065
1066 if (anv_batch_has_error(&cmd_buffer->batch))
1067 return cmd_buffer->batch.status;
1068
1069 /* We want every command buffer to start with the PMA fix in a known state,
1070 * so we disable it at the end of the command buffer.
1071 */
1072 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1073
1074 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1075
1076 emit_isp_disable(cmd_buffer);
1077
1078 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1079
1080 return VK_SUCCESS;
1081 }
1082
1083 void
1084 genX(CmdExecuteCommands)(
1085 VkCommandBuffer commandBuffer,
1086 uint32_t commandBufferCount,
1087 const VkCommandBuffer* pCmdBuffers)
1088 {
1089 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1090
1091 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1092
1093 if (anv_batch_has_error(&primary->batch))
1094 return;
1095
1096 /* The secondary command buffers will assume that the PMA fix is disabled
1097 * when they begin executing. Make sure this is true.
1098 */
1099 genX(cmd_buffer_enable_pma_fix)(primary, false);
1100
1101 /* The secondary command buffer doesn't know which textures etc. have been
1102 * flushed prior to their execution. Apply those flushes now.
1103 */
1104 genX(cmd_buffer_apply_pipe_flushes)(primary);
1105
1106 for (uint32_t i = 0; i < commandBufferCount; i++) {
1107 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1108
1109 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1110 assert(!anv_batch_has_error(&secondary->batch));
1111
1112 if (secondary->usage_flags &
1113 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1114 /* If we're continuing a render pass from the primary, we need to
1115 * copy the surface states for the current subpass into the storage
1116 * we allocated for them in BeginCommandBuffer.
1117 */
1118 struct anv_bo *ss_bo =
1119 &primary->device->surface_state_pool.block_pool.bo;
1120 struct anv_state src_state = primary->state.render_pass_states;
1121 struct anv_state dst_state = secondary->state.render_pass_states;
1122 assert(src_state.alloc_size == dst_state.alloc_size);
1123
1124 genX(cmd_buffer_so_memcpy)(primary, ss_bo, dst_state.offset,
1125 ss_bo, src_state.offset,
1126 src_state.alloc_size);
1127 }
1128
1129 anv_cmd_buffer_add_secondary(primary, secondary);
1130 }
1131
1132 /* The secondary may have selected a different pipeline (3D or compute) and
1133 * may have changed the current L3$ configuration. Reset our tracking
1134 * variables to invalid values to ensure that we re-emit these in the case
1135 * where we do any draws or compute dispatches from the primary after the
1136 * secondary has returned.
1137 */
1138 primary->state.current_pipeline = UINT32_MAX;
1139 primary->state.current_l3_config = NULL;
1140
1141 /* Each of the secondary command buffers will use its own state base
1142 * address. We need to re-emit state base address for the primary after
1143 * all of the secondaries are done.
1144 *
1145 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1146 * address calls?
1147 */
1148 genX(cmd_buffer_emit_state_base_address)(primary);
1149 }
1150
1151 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1152 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1153 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1154
1155 /**
1156 * Program the hardware to use the specified L3 configuration.
1157 */
1158 void
1159 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1160 const struct gen_l3_config *cfg)
1161 {
1162 assert(cfg);
1163 if (cfg == cmd_buffer->state.current_l3_config)
1164 return;
1165
1166 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1167 intel_logd("L3 config transition: ");
1168 gen_dump_l3_config(cfg, stderr);
1169 }
1170
1171 const bool has_slm = cfg->n[GEN_L3P_SLM];
1172
1173 /* According to the hardware docs, the L3 partitioning can only be changed
1174 * while the pipeline is completely drained and the caches are flushed,
1175 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1176 */
1177 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1178 pc.DCFlushEnable = true;
1179 pc.PostSyncOperation = NoWrite;
1180 pc.CommandStreamerStallEnable = true;
1181 }
1182
1183 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1184 * invalidation of the relevant caches. Note that because RO invalidation
1185 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1186 * command is processed by the CS) we cannot combine it with the previous
1187 * stalling flush as the hardware documentation suggests, because that
1188 * would cause the CS to stall on previous rendering *after* RO
1189 * invalidation and wouldn't prevent the RO caches from being polluted by
1190 * concurrent rendering before the stall completes. This intentionally
1191 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1192 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1193 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1194 * already guarantee that there is no concurrent GPGPU kernel execution
1195 * (see SKL HSD 2132585).
1196 */
1197 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1198 pc.TextureCacheInvalidationEnable = true;
1199 pc.ConstantCacheInvalidationEnable = true;
1200 pc.InstructionCacheInvalidateEnable = true;
1201 pc.StateCacheInvalidationEnable = true;
1202 pc.PostSyncOperation = NoWrite;
1203 }
1204
1205 /* Now send a third stalling flush to make sure that invalidation is
1206 * complete when the L3 configuration registers are modified.
1207 */
1208 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1209 pc.DCFlushEnable = true;
1210 pc.PostSyncOperation = NoWrite;
1211 pc.CommandStreamerStallEnable = true;
1212 }
1213
1214 #if GEN_GEN >= 8
1215
1216 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1217
1218 uint32_t l3cr;
1219 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1220 .SLMEnable = has_slm,
1221 .URBAllocation = cfg->n[GEN_L3P_URB],
1222 .ROAllocation = cfg->n[GEN_L3P_RO],
1223 .DCAllocation = cfg->n[GEN_L3P_DC],
1224 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1225
1226 /* Set up the L3 partitioning. */
1227 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1228
1229 #else
1230
1231 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1232 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1233 cfg->n[GEN_L3P_ALL];
1234 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1235 cfg->n[GEN_L3P_ALL];
1236 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1237 cfg->n[GEN_L3P_ALL];
1238
1239 assert(!cfg->n[GEN_L3P_ALL]);
1240
1241 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1242 * the matching space on the remaining banks has to be allocated to a
1243 * client (URB for all validated configurations) set to the
1244 * lower-bandwidth 2-bank address hashing mode.
1245 */
1246 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1247 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1248 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1249
1250 /* Minimum number of ways that can be allocated to the URB. */
1251 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1252 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1253
1254 uint32_t l3sqcr1, l3cr2, l3cr3;
1255 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1256 .ConvertDC_UC = !has_dc,
1257 .ConvertIS_UC = !has_is,
1258 .ConvertC_UC = !has_c,
1259 .ConvertT_UC = !has_t);
1260 l3sqcr1 |=
1261 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1262 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1263 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1264
1265 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1266 .SLMEnable = has_slm,
1267 .URBLowBandwidth = urb_low_bw,
1268 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1269 #if !GEN_IS_HASWELL
1270 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1271 #endif
1272 .ROAllocation = cfg->n[GEN_L3P_RO],
1273 .DCAllocation = cfg->n[GEN_L3P_DC]);
1274
1275 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1276 .ISAllocation = cfg->n[GEN_L3P_IS],
1277 .ISLowBandwidth = 0,
1278 .CAllocation = cfg->n[GEN_L3P_C],
1279 .CLowBandwidth = 0,
1280 .TAllocation = cfg->n[GEN_L3P_T],
1281 .TLowBandwidth = 0);
1282
1283 /* Set up the L3 partitioning. */
1284 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1285 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1286 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1287
1288 #if GEN_IS_HASWELL
1289 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1290 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1291 * them disabled to avoid crashing the system hard.
1292 */
1293 uint32_t scratch1, chicken3;
1294 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1295 .L3AtomicDisable = !has_dc);
1296 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1297 .L3AtomicDisableMask = true,
1298 .L3AtomicDisable = !has_dc);
1299 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1300 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1301 }
1302 #endif
1303
1304 #endif
1305
1306 cmd_buffer->state.current_l3_config = cfg;
1307 }
1308
1309 void
1310 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1311 {
1312 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1313
1314 /* Flushes are pipelined while invalidations are handled immediately.
1315 * Therefore, if we're flushing anything then we need to schedule a stall
1316 * before any invalidations can happen.
1317 */
1318 if (bits & ANV_PIPE_FLUSH_BITS)
1319 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1320
1321 /* If we're going to do an invalidate and we have a pending CS stall that
1322 * has yet to be resolved, we do the CS stall now.
1323 */
1324 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1325 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1326 bits |= ANV_PIPE_CS_STALL_BIT;
1327 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1328 }
1329
1330 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1331 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1332 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1333 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1334 pipe.RenderTargetCacheFlushEnable =
1335 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1336
1337 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1338 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1339 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1340
1341 /*
1342 * According to the Broadwell documentation, any PIPE_CONTROL with the
1343 * "Command Streamer Stall" bit set must also have another bit set,
1344 * with five different options:
1345 *
1346 * - Render Target Cache Flush
1347 * - Depth Cache Flush
1348 * - Stall at Pixel Scoreboard
1349 * - Post-Sync Operation
1350 * - Depth Stall
1351 * - DC Flush Enable
1352 *
1353 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1354 * mesa and it seems to work fine. The choice is fairly arbitrary.
1355 */
1356 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1357 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1358 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1359 pipe.StallAtPixelScoreboard = true;
1360 }
1361
1362 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1363 }
1364
1365 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1366 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1367 pipe.StateCacheInvalidationEnable =
1368 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1369 pipe.ConstantCacheInvalidationEnable =
1370 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1371 pipe.VFCacheInvalidationEnable =
1372 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1373 pipe.TextureCacheInvalidationEnable =
1374 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1375 pipe.InstructionCacheInvalidateEnable =
1376 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1377 }
1378
1379 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1380 }
1381
1382 cmd_buffer->state.pending_pipe_bits = bits;
1383 }
1384
1385 void genX(CmdPipelineBarrier)(
1386 VkCommandBuffer commandBuffer,
1387 VkPipelineStageFlags srcStageMask,
1388 VkPipelineStageFlags destStageMask,
1389 VkBool32 byRegion,
1390 uint32_t memoryBarrierCount,
1391 const VkMemoryBarrier* pMemoryBarriers,
1392 uint32_t bufferMemoryBarrierCount,
1393 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1394 uint32_t imageMemoryBarrierCount,
1395 const VkImageMemoryBarrier* pImageMemoryBarriers)
1396 {
1397 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1398
1399 /* XXX: Right now, we're really dumb and just flush whatever categories
1400 * the app asks for. One of these days we may make this a bit better
1401 * but right now that's all the hardware allows for in most areas.
1402 */
1403 VkAccessFlags src_flags = 0;
1404 VkAccessFlags dst_flags = 0;
1405
1406 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1407 src_flags |= pMemoryBarriers[i].srcAccessMask;
1408 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1409 }
1410
1411 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1412 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1413 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1414 }
1415
1416 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1417 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1418 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1419 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1420 const VkImageSubresourceRange *range =
1421 &pImageMemoryBarriers[i].subresourceRange;
1422
1423 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1424 transition_depth_buffer(cmd_buffer, image,
1425 pImageMemoryBarriers[i].oldLayout,
1426 pImageMemoryBarriers[i].newLayout);
1427 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1428 VkImageAspectFlags color_aspects =
1429 anv_image_expand_aspects(image, range->aspectMask);
1430 uint32_t aspect_bit;
1431
1432 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1433 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1434 range->baseMipLevel,
1435 anv_get_levelCount(image, range),
1436 range->baseArrayLayer,
1437 anv_get_layerCount(image, range),
1438 pImageMemoryBarriers[i].oldLayout,
1439 pImageMemoryBarriers[i].newLayout);
1440 }
1441 }
1442 }
1443
1444 cmd_buffer->state.pending_pipe_bits |=
1445 anv_pipe_flush_bits_for_access_flags(src_flags) |
1446 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1447 }
1448
1449 static void
1450 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1451 {
1452 VkShaderStageFlags stages =
1453 cmd_buffer->state.gfx.base.pipeline->active_stages;
1454
1455 /* In order to avoid thrash, we assume that vertex and fragment stages
1456 * always exist. In the rare case where one is missing *and* the other
1457 * uses push concstants, this may be suboptimal. However, avoiding stalls
1458 * seems more important.
1459 */
1460 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1461
1462 if (stages == cmd_buffer->state.push_constant_stages)
1463 return;
1464
1465 #if GEN_GEN >= 8
1466 const unsigned push_constant_kb = 32;
1467 #elif GEN_IS_HASWELL
1468 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1469 #else
1470 const unsigned push_constant_kb = 16;
1471 #endif
1472
1473 const unsigned num_stages =
1474 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1475 unsigned size_per_stage = push_constant_kb / num_stages;
1476
1477 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1478 * units of 2KB. Incidentally, these are the same platforms that have
1479 * 32KB worth of push constant space.
1480 */
1481 if (push_constant_kb == 32)
1482 size_per_stage &= ~1u;
1483
1484 uint32_t kb_used = 0;
1485 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1486 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1487 anv_batch_emit(&cmd_buffer->batch,
1488 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1489 alloc._3DCommandSubOpcode = 18 + i;
1490 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1491 alloc.ConstantBufferSize = push_size;
1492 }
1493 kb_used += push_size;
1494 }
1495
1496 anv_batch_emit(&cmd_buffer->batch,
1497 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1498 alloc.ConstantBufferOffset = kb_used;
1499 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1500 }
1501
1502 cmd_buffer->state.push_constant_stages = stages;
1503
1504 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1505 *
1506 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1507 * the next 3DPRIMITIVE command after programming the
1508 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1509 *
1510 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1511 * pipeline setup, we need to dirty push constants.
1512 */
1513 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1514 }
1515
1516 static const struct anv_descriptor *
1517 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1518 const struct anv_pipeline_binding *binding)
1519 {
1520 assert(binding->set < MAX_SETS);
1521 const struct anv_descriptor_set *set =
1522 pipe_state->descriptors[binding->set];
1523 const uint32_t offset =
1524 set->layout->binding[binding->binding].descriptor_index;
1525 return &set->descriptors[offset + binding->index];
1526 }
1527
1528 static uint32_t
1529 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1530 const struct anv_pipeline_binding *binding)
1531 {
1532 assert(binding->set < MAX_SETS);
1533 const struct anv_descriptor_set *set =
1534 pipe_state->descriptors[binding->set];
1535
1536 uint32_t dynamic_offset_idx =
1537 pipe_state->layout->set[binding->set].dynamic_offset_start +
1538 set->layout->binding[binding->binding].dynamic_offset_index +
1539 binding->index;
1540
1541 return pipe_state->dynamic_offsets[dynamic_offset_idx];
1542 }
1543
1544 static VkResult
1545 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1546 gl_shader_stage stage,
1547 struct anv_state *bt_state)
1548 {
1549 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1550 struct anv_cmd_pipeline_state *pipe_state;
1551 struct anv_pipeline *pipeline;
1552 uint32_t bias, state_offset;
1553
1554 switch (stage) {
1555 case MESA_SHADER_COMPUTE:
1556 pipe_state = &cmd_buffer->state.compute.base;
1557 bias = 1;
1558 break;
1559 default:
1560 pipe_state = &cmd_buffer->state.gfx.base;
1561 bias = 0;
1562 break;
1563 }
1564 pipeline = pipe_state->pipeline;
1565
1566 if (!anv_pipeline_has_stage(pipeline, stage)) {
1567 *bt_state = (struct anv_state) { 0, };
1568 return VK_SUCCESS;
1569 }
1570
1571 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1572 if (bias + map->surface_count == 0) {
1573 *bt_state = (struct anv_state) { 0, };
1574 return VK_SUCCESS;
1575 }
1576
1577 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1578 bias + map->surface_count,
1579 &state_offset);
1580 uint32_t *bt_map = bt_state->map;
1581
1582 if (bt_state->map == NULL)
1583 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1584
1585 if (stage == MESA_SHADER_COMPUTE &&
1586 get_cs_prog_data(pipeline)->uses_num_work_groups) {
1587 struct anv_bo *bo = cmd_buffer->state.compute.num_workgroups.bo;
1588 uint32_t bo_offset = cmd_buffer->state.compute.num_workgroups.offset;
1589
1590 struct anv_state surface_state;
1591 surface_state =
1592 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1593
1594 const enum isl_format format =
1595 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1596 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1597 format, bo_offset, 12, 1);
1598
1599 bt_map[0] = surface_state.offset + state_offset;
1600 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
1601 }
1602
1603 if (map->surface_count == 0)
1604 goto out;
1605
1606 if (map->image_count > 0) {
1607 VkResult result =
1608 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1609 if (result != VK_SUCCESS)
1610 return result;
1611
1612 cmd_buffer->state.push_constants_dirty |= 1 << stage;
1613 }
1614
1615 uint32_t image = 0;
1616 for (uint32_t s = 0; s < map->surface_count; s++) {
1617 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
1618
1619 struct anv_state surface_state;
1620
1621 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
1622 /* Color attachment binding */
1623 assert(stage == MESA_SHADER_FRAGMENT);
1624 assert(binding->binding == 0);
1625 if (binding->index < subpass->color_count) {
1626 const unsigned att =
1627 subpass->color_attachments[binding->index].attachment;
1628
1629 /* From the Vulkan 1.0.46 spec:
1630 *
1631 * "If any color or depth/stencil attachments are
1632 * VK_ATTACHMENT_UNUSED, then no writes occur for those
1633 * attachments."
1634 */
1635 if (att == VK_ATTACHMENT_UNUSED) {
1636 surface_state = cmd_buffer->state.null_surface_state;
1637 } else {
1638 surface_state = cmd_buffer->state.attachments[att].color.state;
1639 }
1640 } else {
1641 surface_state = cmd_buffer->state.null_surface_state;
1642 }
1643
1644 bt_map[bias + s] = surface_state.offset + state_offset;
1645 continue;
1646 }
1647
1648 const struct anv_descriptor *desc =
1649 anv_descriptor_for_binding(pipe_state, binding);
1650
1651 switch (desc->type) {
1652 case VK_DESCRIPTOR_TYPE_SAMPLER:
1653 /* Nothing for us to do here */
1654 continue;
1655
1656 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1657 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
1658 struct anv_surface_state sstate =
1659 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1660 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1661 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1662 surface_state = sstate.state;
1663 assert(surface_state.alloc_size);
1664 add_image_view_relocs(cmd_buffer, desc->image_view,
1665 binding->plane, sstate);
1666 break;
1667 }
1668 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1669 assert(stage == MESA_SHADER_FRAGMENT);
1670 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
1671 /* For depth and stencil input attachments, we treat it like any
1672 * old texture that a user may have bound.
1673 */
1674 struct anv_surface_state sstate =
1675 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1676 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1677 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1678 surface_state = sstate.state;
1679 assert(surface_state.alloc_size);
1680 add_image_view_relocs(cmd_buffer, desc->image_view,
1681 binding->plane, sstate);
1682 } else {
1683 /* For color input attachments, we create the surface state at
1684 * vkBeginRenderPass time so that we can include aux and clear
1685 * color information.
1686 */
1687 assert(binding->input_attachment_index < subpass->input_count);
1688 const unsigned subpass_att = binding->input_attachment_index;
1689 const unsigned att = subpass->input_attachments[subpass_att].attachment;
1690 surface_state = cmd_buffer->state.attachments[att].input.state;
1691 }
1692 break;
1693
1694 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1695 struct anv_surface_state sstate = (binding->write_only)
1696 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
1697 : desc->image_view->planes[binding->plane].storage_surface_state;
1698 surface_state = sstate.state;
1699 assert(surface_state.alloc_size);
1700 add_image_view_relocs(cmd_buffer, desc->image_view,
1701 binding->plane, sstate);
1702
1703 struct brw_image_param *image_param =
1704 &cmd_buffer->state.push_constants[stage]->images[image++];
1705
1706 *image_param = desc->image_view->planes[binding->plane].storage_image_param;
1707 image_param->surface_idx = bias + s;
1708 break;
1709 }
1710
1711 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1712 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1713 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1714 surface_state = desc->buffer_view->surface_state;
1715 assert(surface_state.alloc_size);
1716 add_surface_state_reloc(cmd_buffer, surface_state,
1717 desc->buffer_view->bo,
1718 desc->buffer_view->offset);
1719 break;
1720
1721 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1722 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1723 /* Compute the offset within the buffer */
1724 uint32_t dynamic_offset =
1725 dynamic_offset_for_binding(pipe_state, binding);
1726 uint64_t offset = desc->offset + dynamic_offset;
1727 /* Clamp to the buffer size */
1728 offset = MIN2(offset, desc->buffer->size);
1729 /* Clamp the range to the buffer size */
1730 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
1731
1732 surface_state =
1733 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
1734 enum isl_format format =
1735 anv_isl_format_for_descriptor_type(desc->type);
1736
1737 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1738 format, offset, range, 1);
1739 add_surface_state_reloc(cmd_buffer, surface_state,
1740 desc->buffer->bo,
1741 desc->buffer->offset + offset);
1742 break;
1743 }
1744
1745 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1746 surface_state = (binding->write_only)
1747 ? desc->buffer_view->writeonly_storage_surface_state
1748 : desc->buffer_view->storage_surface_state;
1749 assert(surface_state.alloc_size);
1750 add_surface_state_reloc(cmd_buffer, surface_state,
1751 desc->buffer_view->bo,
1752 desc->buffer_view->offset);
1753
1754 struct brw_image_param *image_param =
1755 &cmd_buffer->state.push_constants[stage]->images[image++];
1756
1757 *image_param = desc->buffer_view->storage_image_param;
1758 image_param->surface_idx = bias + s;
1759 break;
1760
1761 default:
1762 assert(!"Invalid descriptor type");
1763 continue;
1764 }
1765
1766 bt_map[bias + s] = surface_state.offset + state_offset;
1767 }
1768 assert(image == map->image_count);
1769
1770 out:
1771 anv_state_flush(cmd_buffer->device, *bt_state);
1772
1773 return VK_SUCCESS;
1774 }
1775
1776 static VkResult
1777 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1778 gl_shader_stage stage,
1779 struct anv_state *state)
1780 {
1781 struct anv_cmd_pipeline_state *pipe_state =
1782 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
1783 &cmd_buffer->state.gfx.base;
1784 struct anv_pipeline *pipeline = pipe_state->pipeline;
1785
1786 if (!anv_pipeline_has_stage(pipeline, stage)) {
1787 *state = (struct anv_state) { 0, };
1788 return VK_SUCCESS;
1789 }
1790
1791 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1792 if (map->sampler_count == 0) {
1793 *state = (struct anv_state) { 0, };
1794 return VK_SUCCESS;
1795 }
1796
1797 uint32_t size = map->sampler_count * 16;
1798 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
1799
1800 if (state->map == NULL)
1801 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1802
1803 for (uint32_t s = 0; s < map->sampler_count; s++) {
1804 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
1805 const struct anv_descriptor *desc =
1806 anv_descriptor_for_binding(pipe_state, binding);
1807
1808 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
1809 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
1810 continue;
1811
1812 struct anv_sampler *sampler = desc->sampler;
1813
1814 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
1815 * happens to be zero.
1816 */
1817 if (sampler == NULL)
1818 continue;
1819
1820 memcpy(state->map + (s * 16),
1821 sampler->state[binding->plane], sizeof(sampler->state[0]));
1822 }
1823
1824 anv_state_flush(cmd_buffer->device, *state);
1825
1826 return VK_SUCCESS;
1827 }
1828
1829 static uint32_t
1830 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
1831 {
1832 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
1833
1834 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
1835 pipeline->active_stages;
1836
1837 VkResult result = VK_SUCCESS;
1838 anv_foreach_stage(s, dirty) {
1839 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1840 if (result != VK_SUCCESS)
1841 break;
1842 result = emit_binding_table(cmd_buffer, s,
1843 &cmd_buffer->state.binding_tables[s]);
1844 if (result != VK_SUCCESS)
1845 break;
1846 }
1847
1848 if (result != VK_SUCCESS) {
1849 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
1850
1851 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
1852 if (result != VK_SUCCESS)
1853 return 0;
1854
1855 /* Re-emit state base addresses so we get the new surface state base
1856 * address before we start emitting binding tables etc.
1857 */
1858 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1859
1860 /* Re-emit all active binding tables */
1861 dirty |= pipeline->active_stages;
1862 anv_foreach_stage(s, dirty) {
1863 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1864 if (result != VK_SUCCESS) {
1865 anv_batch_set_error(&cmd_buffer->batch, result);
1866 return 0;
1867 }
1868 result = emit_binding_table(cmd_buffer, s,
1869 &cmd_buffer->state.binding_tables[s]);
1870 if (result != VK_SUCCESS) {
1871 anv_batch_set_error(&cmd_buffer->batch, result);
1872 return 0;
1873 }
1874 }
1875 }
1876
1877 cmd_buffer->state.descriptors_dirty &= ~dirty;
1878
1879 return dirty;
1880 }
1881
1882 static void
1883 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
1884 uint32_t stages)
1885 {
1886 static const uint32_t sampler_state_opcodes[] = {
1887 [MESA_SHADER_VERTEX] = 43,
1888 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
1889 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
1890 [MESA_SHADER_GEOMETRY] = 46,
1891 [MESA_SHADER_FRAGMENT] = 47,
1892 [MESA_SHADER_COMPUTE] = 0,
1893 };
1894
1895 static const uint32_t binding_table_opcodes[] = {
1896 [MESA_SHADER_VERTEX] = 38,
1897 [MESA_SHADER_TESS_CTRL] = 39,
1898 [MESA_SHADER_TESS_EVAL] = 40,
1899 [MESA_SHADER_GEOMETRY] = 41,
1900 [MESA_SHADER_FRAGMENT] = 42,
1901 [MESA_SHADER_COMPUTE] = 0,
1902 };
1903
1904 anv_foreach_stage(s, stages) {
1905 assert(s < ARRAY_SIZE(binding_table_opcodes));
1906 assert(binding_table_opcodes[s] > 0);
1907
1908 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
1909 anv_batch_emit(&cmd_buffer->batch,
1910 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
1911 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
1912 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
1913 }
1914 }
1915
1916 /* Always emit binding table pointers if we're asked to, since on SKL
1917 * this is what flushes push constants. */
1918 anv_batch_emit(&cmd_buffer->batch,
1919 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
1920 btp._3DCommandSubOpcode = binding_table_opcodes[s];
1921 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
1922 }
1923 }
1924 }
1925
1926 static void
1927 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
1928 VkShaderStageFlags dirty_stages)
1929 {
1930 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
1931 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
1932
1933 static const uint32_t push_constant_opcodes[] = {
1934 [MESA_SHADER_VERTEX] = 21,
1935 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
1936 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
1937 [MESA_SHADER_GEOMETRY] = 22,
1938 [MESA_SHADER_FRAGMENT] = 23,
1939 [MESA_SHADER_COMPUTE] = 0,
1940 };
1941
1942 VkShaderStageFlags flushed = 0;
1943
1944 anv_foreach_stage(stage, dirty_stages) {
1945 assert(stage < ARRAY_SIZE(push_constant_opcodes));
1946 assert(push_constant_opcodes[stage] > 0);
1947
1948 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
1949 c._3DCommandSubOpcode = push_constant_opcodes[stage];
1950
1951 if (anv_pipeline_has_stage(pipeline, stage)) {
1952 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1953 const struct brw_stage_prog_data *prog_data =
1954 pipeline->shaders[stage]->prog_data;
1955 const struct anv_pipeline_bind_map *bind_map =
1956 &pipeline->shaders[stage]->bind_map;
1957
1958 /* The Skylake PRM contains the following restriction:
1959 *
1960 * "The driver must ensure The following case does not occur
1961 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
1962 * buffer 3 read length equal to zero committed followed by a
1963 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
1964 * zero committed."
1965 *
1966 * To avoid this, we program the buffers in the highest slots.
1967 * This way, slot 0 is only used if slot 3 is also used.
1968 */
1969 int n = 3;
1970
1971 for (int i = 3; i >= 0; i--) {
1972 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
1973 if (range->length == 0)
1974 continue;
1975
1976 const unsigned surface =
1977 prog_data->binding_table.ubo_start + range->block;
1978
1979 assert(surface <= bind_map->surface_count);
1980 const struct anv_pipeline_binding *binding =
1981 &bind_map->surface_to_descriptor[surface];
1982
1983 const struct anv_descriptor *desc =
1984 anv_descriptor_for_binding(&gfx_state->base, binding);
1985
1986 struct anv_address read_addr;
1987 uint32_t read_len;
1988 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
1989 read_len = MIN2(range->length,
1990 DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
1991 read_addr = (struct anv_address) {
1992 .bo = desc->buffer_view->bo,
1993 .offset = desc->buffer_view->offset +
1994 range->start * 32,
1995 };
1996 } else {
1997 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
1998
1999 uint32_t dynamic_offset =
2000 dynamic_offset_for_binding(&gfx_state->base, binding);
2001 uint32_t buf_offset =
2002 MIN2(desc->offset + dynamic_offset, desc->buffer->size);
2003 uint32_t buf_range =
2004 MIN2(desc->range, desc->buffer->size - buf_offset);
2005
2006 read_len = MIN2(range->length,
2007 DIV_ROUND_UP(buf_range, 32) - range->start);
2008 read_addr = (struct anv_address) {
2009 .bo = desc->buffer->bo,
2010 .offset = desc->buffer->offset + buf_offset +
2011 range->start * 32,
2012 };
2013 }
2014
2015 if (read_len > 0) {
2016 c.ConstantBody.Buffer[n] = read_addr;
2017 c.ConstantBody.ReadLength[n] = read_len;
2018 n--;
2019 }
2020 }
2021
2022 struct anv_state state =
2023 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2024
2025 if (state.alloc_size > 0) {
2026 c.ConstantBody.Buffer[n] = (struct anv_address) {
2027 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2028 .offset = state.offset,
2029 };
2030 c.ConstantBody.ReadLength[n] =
2031 DIV_ROUND_UP(state.alloc_size, 32);
2032 }
2033 #else
2034 /* For Ivy Bridge, the push constants packets have a different
2035 * rule that would require us to iterate in the other direction
2036 * and possibly mess around with dynamic state base address.
2037 * Don't bother; just emit regular push constants at n = 0.
2038 */
2039 struct anv_state state =
2040 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2041
2042 if (state.alloc_size > 0) {
2043 c.ConstantBody.Buffer[0].offset = state.offset,
2044 c.ConstantBody.ReadLength[0] =
2045 DIV_ROUND_UP(state.alloc_size, 32);
2046 }
2047 #endif
2048 }
2049 }
2050
2051 flushed |= mesa_to_vk_shader_stage(stage);
2052 }
2053
2054 cmd_buffer->state.push_constants_dirty &= ~flushed;
2055 }
2056
2057 void
2058 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2059 {
2060 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2061 uint32_t *p;
2062
2063 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2064
2065 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2066
2067 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2068
2069 genX(flush_pipeline_select_3d)(cmd_buffer);
2070
2071 if (vb_emit) {
2072 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2073 const uint32_t num_dwords = 1 + num_buffers * 4;
2074
2075 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2076 GENX(3DSTATE_VERTEX_BUFFERS));
2077 uint32_t vb, i = 0;
2078 for_each_bit(vb, vb_emit) {
2079 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2080 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2081
2082 struct GENX(VERTEX_BUFFER_STATE) state = {
2083 .VertexBufferIndex = vb,
2084
2085 #if GEN_GEN >= 8
2086 .MemoryObjectControlState = GENX(MOCS),
2087 #else
2088 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
2089 /* Our implementation of VK_KHR_multiview uses instancing to draw
2090 * the different views. If the client asks for instancing, we
2091 * need to use the Instance Data Step Rate to ensure that we
2092 * repeat the client's per-instance data once for each view.
2093 */
2094 .InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass),
2095 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2096 #endif
2097
2098 .AddressModifyEnable = true,
2099 .BufferPitch = pipeline->binding_stride[vb],
2100 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
2101
2102 #if GEN_GEN >= 8
2103 .BufferSize = buffer->size - offset
2104 #else
2105 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
2106 #endif
2107 };
2108
2109 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2110 i++;
2111 }
2112 }
2113
2114 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2115
2116 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2117 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2118
2119 /* The exact descriptor layout is pulled from the pipeline, so we need
2120 * to re-emit binding tables on every pipeline change.
2121 */
2122 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2123
2124 /* If the pipeline changed, we may need to re-allocate push constant
2125 * space in the URB.
2126 */
2127 cmd_buffer_alloc_push_constants(cmd_buffer);
2128 }
2129
2130 #if GEN_GEN <= 7
2131 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2132 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2133 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2134 *
2135 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2136 * stall needs to be sent just prior to any 3DSTATE_VS,
2137 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2138 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2139 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2140 * PIPE_CONTROL needs to be sent before any combination of VS
2141 * associated 3DSTATE."
2142 */
2143 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2144 pc.DepthStallEnable = true;
2145 pc.PostSyncOperation = WriteImmediateData;
2146 pc.Address =
2147 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2148 }
2149 }
2150 #endif
2151
2152 /* Render targets live in the same binding table as fragment descriptors */
2153 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2154 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2155
2156 /* We emit the binding tables and sampler tables first, then emit push
2157 * constants and then finally emit binding table and sampler table
2158 * pointers. It has to happen in this order, since emitting the binding
2159 * tables may change the push constants (in case of storage images). After
2160 * emitting push constants, on SKL+ we have to emit the corresponding
2161 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2162 */
2163 uint32_t dirty = 0;
2164 if (cmd_buffer->state.descriptors_dirty)
2165 dirty = flush_descriptor_sets(cmd_buffer);
2166
2167 if (dirty || cmd_buffer->state.push_constants_dirty) {
2168 /* Because we're pushing UBOs, we have to push whenever either
2169 * descriptors or push constants is dirty.
2170 */
2171 dirty |= cmd_buffer->state.push_constants_dirty;
2172 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2173 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2174 }
2175
2176 if (dirty)
2177 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2178
2179 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2180 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2181
2182 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2183 ANV_CMD_DIRTY_PIPELINE)) {
2184 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2185 pipeline->depth_clamp_enable);
2186 }
2187
2188 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
2189 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2190
2191 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2192
2193 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2194 }
2195
2196 static void
2197 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2198 struct anv_bo *bo, uint32_t offset,
2199 uint32_t size, uint32_t index)
2200 {
2201 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2202 GENX(3DSTATE_VERTEX_BUFFERS));
2203
2204 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2205 &(struct GENX(VERTEX_BUFFER_STATE)) {
2206 .VertexBufferIndex = index,
2207 .AddressModifyEnable = true,
2208 .BufferPitch = 0,
2209 #if (GEN_GEN >= 8)
2210 .MemoryObjectControlState = GENX(MOCS),
2211 .BufferStartingAddress = { bo, offset },
2212 .BufferSize = size
2213 #else
2214 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2215 .BufferStartingAddress = { bo, offset },
2216 .EndAddress = { bo, offset + size },
2217 #endif
2218 });
2219 }
2220
2221 static void
2222 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2223 struct anv_bo *bo, uint32_t offset)
2224 {
2225 emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
2226 }
2227
2228 static void
2229 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2230 uint32_t base_vertex, uint32_t base_instance)
2231 {
2232 struct anv_state id_state =
2233 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2234
2235 ((uint32_t *)id_state.map)[0] = base_vertex;
2236 ((uint32_t *)id_state.map)[1] = base_instance;
2237
2238 anv_state_flush(cmd_buffer->device, id_state);
2239
2240 emit_base_vertex_instance_bo(cmd_buffer,
2241 &cmd_buffer->device->dynamic_state_pool.block_pool.bo, id_state.offset);
2242 }
2243
2244 static void
2245 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2246 {
2247 struct anv_state state =
2248 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2249
2250 ((uint32_t *)state.map)[0] = draw_index;
2251
2252 anv_state_flush(cmd_buffer->device, state);
2253
2254 emit_vertex_bo(cmd_buffer,
2255 &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2256 state.offset, 4, ANV_DRAWID_VB_INDEX);
2257 }
2258
2259 void genX(CmdDraw)(
2260 VkCommandBuffer commandBuffer,
2261 uint32_t vertexCount,
2262 uint32_t instanceCount,
2263 uint32_t firstVertex,
2264 uint32_t firstInstance)
2265 {
2266 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2267 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2268 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2269
2270 if (anv_batch_has_error(&cmd_buffer->batch))
2271 return;
2272
2273 genX(cmd_buffer_flush_state)(cmd_buffer);
2274
2275 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2276 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2277 if (vs_prog_data->uses_drawid)
2278 emit_draw_index(cmd_buffer, 0);
2279
2280 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2281 * different views. We need to multiply instanceCount by the view count.
2282 */
2283 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2284
2285 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2286 prim.VertexAccessType = SEQUENTIAL;
2287 prim.PrimitiveTopologyType = pipeline->topology;
2288 prim.VertexCountPerInstance = vertexCount;
2289 prim.StartVertexLocation = firstVertex;
2290 prim.InstanceCount = instanceCount;
2291 prim.StartInstanceLocation = firstInstance;
2292 prim.BaseVertexLocation = 0;
2293 }
2294 }
2295
2296 void genX(CmdDrawIndexed)(
2297 VkCommandBuffer commandBuffer,
2298 uint32_t indexCount,
2299 uint32_t instanceCount,
2300 uint32_t firstIndex,
2301 int32_t vertexOffset,
2302 uint32_t firstInstance)
2303 {
2304 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2305 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2306 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2307
2308 if (anv_batch_has_error(&cmd_buffer->batch))
2309 return;
2310
2311 genX(cmd_buffer_flush_state)(cmd_buffer);
2312
2313 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2314 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2315 if (vs_prog_data->uses_drawid)
2316 emit_draw_index(cmd_buffer, 0);
2317
2318 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2319 * different views. We need to multiply instanceCount by the view count.
2320 */
2321 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2322
2323 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2324 prim.VertexAccessType = RANDOM;
2325 prim.PrimitiveTopologyType = pipeline->topology;
2326 prim.VertexCountPerInstance = indexCount;
2327 prim.StartVertexLocation = firstIndex;
2328 prim.InstanceCount = instanceCount;
2329 prim.StartInstanceLocation = firstInstance;
2330 prim.BaseVertexLocation = vertexOffset;
2331 }
2332 }
2333
2334 /* Auto-Draw / Indirect Registers */
2335 #define GEN7_3DPRIM_END_OFFSET 0x2420
2336 #define GEN7_3DPRIM_START_VERTEX 0x2430
2337 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2338 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2339 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2340 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2341
2342 /* MI_MATH only exists on Haswell+ */
2343 #if GEN_IS_HASWELL || GEN_GEN >= 8
2344
2345 static uint32_t
2346 mi_alu(uint32_t opcode, uint32_t op1, uint32_t op2)
2347 {
2348 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
2349 .ALUOpcode = opcode,
2350 .Operand1 = op1,
2351 .Operand2 = op2,
2352 };
2353
2354 uint32_t dw;
2355 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
2356
2357 return dw;
2358 }
2359
2360 #define CS_GPR(n) (0x2600 + (n) * 8)
2361
2362 /* Emit dwords to multiply GPR0 by N */
2363 static void
2364 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2365 {
2366 VK_OUTARRAY_MAKE(out, dw, dw_count);
2367
2368 #define append_alu(opcode, operand1, operand2) \
2369 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2370
2371 assert(N > 0);
2372 unsigned top_bit = 31 - __builtin_clz(N);
2373 for (int i = top_bit - 1; i >= 0; i--) {
2374 /* We get our initial data in GPR0 and we write the final data out to
2375 * GPR0 but we use GPR1 as our scratch register.
2376 */
2377 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2378 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2379
2380 /* Shift the current value left by 1 */
2381 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2382 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2383 append_alu(MI_ALU_ADD, 0, 0);
2384
2385 if (N & (1 << i)) {
2386 /* Store ACCU to R1 and add R0 to R1 */
2387 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2388 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2389 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2390 append_alu(MI_ALU_ADD, 0, 0);
2391 }
2392
2393 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2394 }
2395
2396 #undef append_alu
2397 }
2398
2399 static void
2400 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2401 {
2402 uint32_t num_dwords;
2403 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2404
2405 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2406 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2407 }
2408
2409 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2410
2411 static void
2412 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2413 struct anv_buffer *buffer, uint64_t offset,
2414 bool indexed)
2415 {
2416 struct anv_batch *batch = &cmd_buffer->batch;
2417 struct anv_bo *bo = buffer->bo;
2418 uint32_t bo_offset = buffer->offset + offset;
2419
2420 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2421
2422 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2423 if (view_count > 1) {
2424 #if GEN_IS_HASWELL || GEN_GEN >= 8
2425 emit_lrm(batch, CS_GPR(0), bo, bo_offset + 4);
2426 emit_mul_gpr0(batch, view_count);
2427 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2428 #else
2429 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2430 "MI_MATH is not supported on Ivy Bridge");
2431 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2432 #endif
2433 } else {
2434 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2435 }
2436
2437 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2438
2439 if (indexed) {
2440 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
2441 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
2442 } else {
2443 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
2444 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2445 }
2446 }
2447
2448 void genX(CmdDrawIndirect)(
2449 VkCommandBuffer commandBuffer,
2450 VkBuffer _buffer,
2451 VkDeviceSize offset,
2452 uint32_t drawCount,
2453 uint32_t stride)
2454 {
2455 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2456 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2457 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2458 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2459
2460 if (anv_batch_has_error(&cmd_buffer->batch))
2461 return;
2462
2463 genX(cmd_buffer_flush_state)(cmd_buffer);
2464
2465 for (uint32_t i = 0; i < drawCount; i++) {
2466 struct anv_bo *bo = buffer->bo;
2467 uint32_t bo_offset = buffer->offset + offset;
2468
2469 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2470 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
2471 if (vs_prog_data->uses_drawid)
2472 emit_draw_index(cmd_buffer, i);
2473
2474 load_indirect_parameters(cmd_buffer, buffer, offset, false);
2475
2476 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2477 prim.IndirectParameterEnable = true;
2478 prim.VertexAccessType = SEQUENTIAL;
2479 prim.PrimitiveTopologyType = pipeline->topology;
2480 }
2481
2482 offset += stride;
2483 }
2484 }
2485
2486 void genX(CmdDrawIndexedIndirect)(
2487 VkCommandBuffer commandBuffer,
2488 VkBuffer _buffer,
2489 VkDeviceSize offset,
2490 uint32_t drawCount,
2491 uint32_t stride)
2492 {
2493 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2494 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2495 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2496 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2497
2498 if (anv_batch_has_error(&cmd_buffer->batch))
2499 return;
2500
2501 genX(cmd_buffer_flush_state)(cmd_buffer);
2502
2503 for (uint32_t i = 0; i < drawCount; i++) {
2504 struct anv_bo *bo = buffer->bo;
2505 uint32_t bo_offset = buffer->offset + offset;
2506
2507 /* TODO: We need to stomp base vertex to 0 somehow */
2508 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2509 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
2510 if (vs_prog_data->uses_drawid)
2511 emit_draw_index(cmd_buffer, i);
2512
2513 load_indirect_parameters(cmd_buffer, buffer, offset, true);
2514
2515 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2516 prim.IndirectParameterEnable = true;
2517 prim.VertexAccessType = RANDOM;
2518 prim.PrimitiveTopologyType = pipeline->topology;
2519 }
2520
2521 offset += stride;
2522 }
2523 }
2524
2525 static VkResult
2526 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
2527 {
2528 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2529 struct anv_state surfaces = { 0, }, samplers = { 0, };
2530 VkResult result;
2531
2532 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2533 if (result != VK_SUCCESS) {
2534 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2535
2536 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2537 if (result != VK_SUCCESS)
2538 return result;
2539
2540 /* Re-emit state base addresses so we get the new surface state base
2541 * address before we start emitting binding tables etc.
2542 */
2543 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2544
2545 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2546 if (result != VK_SUCCESS) {
2547 anv_batch_set_error(&cmd_buffer->batch, result);
2548 return result;
2549 }
2550 }
2551
2552 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
2553 if (result != VK_SUCCESS) {
2554 anv_batch_set_error(&cmd_buffer->batch, result);
2555 return result;
2556 }
2557
2558 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
2559 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2560 .BindingTablePointer = surfaces.offset,
2561 .SamplerStatePointer = samplers.offset,
2562 };
2563 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
2564
2565 struct anv_state state =
2566 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
2567 pipeline->interface_descriptor_data,
2568 GENX(INTERFACE_DESCRIPTOR_DATA_length),
2569 64);
2570
2571 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
2572 anv_batch_emit(&cmd_buffer->batch,
2573 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
2574 mid.InterfaceDescriptorTotalLength = size;
2575 mid.InterfaceDescriptorDataStartAddress = state.offset;
2576 }
2577
2578 return VK_SUCCESS;
2579 }
2580
2581 void
2582 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
2583 {
2584 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2585 MAYBE_UNUSED VkResult result;
2586
2587 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
2588
2589 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2590
2591 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
2592
2593 if (cmd_buffer->state.compute.pipeline_dirty) {
2594 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
2595 *
2596 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
2597 * the only bits that are changed are scoreboard related: Scoreboard
2598 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
2599 * these scoreboard related states, a MEDIA_STATE_FLUSH is
2600 * sufficient."
2601 */
2602 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2603 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2604
2605 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2606 }
2607
2608 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
2609 cmd_buffer->state.compute.pipeline_dirty) {
2610 /* FIXME: figure out descriptors for gen7 */
2611 result = flush_compute_descriptor_set(cmd_buffer);
2612 if (result != VK_SUCCESS)
2613 return;
2614
2615 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
2616 }
2617
2618 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
2619 struct anv_state push_state =
2620 anv_cmd_buffer_cs_push_constants(cmd_buffer);
2621
2622 if (push_state.alloc_size) {
2623 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
2624 curbe.CURBETotalDataLength = push_state.alloc_size;
2625 curbe.CURBEDataStartAddress = push_state.offset;
2626 }
2627 }
2628 }
2629
2630 cmd_buffer->state.compute.pipeline_dirty = false;
2631
2632 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2633 }
2634
2635 #if GEN_GEN == 7
2636
2637 static VkResult
2638 verify_cmd_parser(const struct anv_device *device,
2639 int required_version,
2640 const char *function)
2641 {
2642 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
2643 return vk_errorf(device->instance, device->instance,
2644 VK_ERROR_FEATURE_NOT_PRESENT,
2645 "cmd parser version %d is required for %s",
2646 required_version, function);
2647 } else {
2648 return VK_SUCCESS;
2649 }
2650 }
2651
2652 #endif
2653
2654 void genX(CmdDispatch)(
2655 VkCommandBuffer commandBuffer,
2656 uint32_t x,
2657 uint32_t y,
2658 uint32_t z)
2659 {
2660 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2661 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2662 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2663
2664 if (anv_batch_has_error(&cmd_buffer->batch))
2665 return;
2666
2667 if (prog_data->uses_num_work_groups) {
2668 struct anv_state state =
2669 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
2670 uint32_t *sizes = state.map;
2671 sizes[0] = x;
2672 sizes[1] = y;
2673 sizes[2] = z;
2674 anv_state_flush(cmd_buffer->device, state);
2675 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
2676 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2677 .offset = state.offset,
2678 };
2679 }
2680
2681 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2682
2683 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
2684 ggw.SIMDSize = prog_data->simd_size / 16;
2685 ggw.ThreadDepthCounterMaximum = 0;
2686 ggw.ThreadHeightCounterMaximum = 0;
2687 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2688 ggw.ThreadGroupIDXDimension = x;
2689 ggw.ThreadGroupIDYDimension = y;
2690 ggw.ThreadGroupIDZDimension = z;
2691 ggw.RightExecutionMask = pipeline->cs_right_mask;
2692 ggw.BottomExecutionMask = 0xffffffff;
2693 }
2694
2695 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
2696 }
2697
2698 #define GPGPU_DISPATCHDIMX 0x2500
2699 #define GPGPU_DISPATCHDIMY 0x2504
2700 #define GPGPU_DISPATCHDIMZ 0x2508
2701
2702 void genX(CmdDispatchIndirect)(
2703 VkCommandBuffer commandBuffer,
2704 VkBuffer _buffer,
2705 VkDeviceSize offset)
2706 {
2707 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2708 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2709 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2710 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2711 struct anv_bo *bo = buffer->bo;
2712 uint32_t bo_offset = buffer->offset + offset;
2713 struct anv_batch *batch = &cmd_buffer->batch;
2714
2715 #if GEN_GEN == 7
2716 /* Linux 4.4 added command parser version 5 which allows the GPGPU
2717 * indirect dispatch registers to be written.
2718 */
2719 if (verify_cmd_parser(cmd_buffer->device, 5,
2720 "vkCmdDispatchIndirect") != VK_SUCCESS)
2721 return;
2722 #endif
2723
2724 if (prog_data->uses_num_work_groups) {
2725 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
2726 .bo = bo,
2727 .offset = bo_offset,
2728 };
2729 }
2730
2731 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2732
2733 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
2734 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
2735 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
2736
2737 #if GEN_GEN <= 7
2738 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
2739 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
2740 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
2741 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
2742
2743 /* Load compute_dispatch_indirect_x_size into SRC0 */
2744 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
2745
2746 /* predicate = (compute_dispatch_indirect_x_size == 0); */
2747 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2748 mip.LoadOperation = LOAD_LOAD;
2749 mip.CombineOperation = COMBINE_SET;
2750 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2751 }
2752
2753 /* Load compute_dispatch_indirect_y_size into SRC0 */
2754 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
2755
2756 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
2757 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2758 mip.LoadOperation = LOAD_LOAD;
2759 mip.CombineOperation = COMBINE_OR;
2760 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2761 }
2762
2763 /* Load compute_dispatch_indirect_z_size into SRC0 */
2764 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
2765
2766 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
2767 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2768 mip.LoadOperation = LOAD_LOAD;
2769 mip.CombineOperation = COMBINE_OR;
2770 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2771 }
2772
2773 /* predicate = !predicate; */
2774 #define COMPARE_FALSE 1
2775 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2776 mip.LoadOperation = LOAD_LOADINV;
2777 mip.CombineOperation = COMBINE_OR;
2778 mip.CompareOperation = COMPARE_FALSE;
2779 }
2780 #endif
2781
2782 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
2783 ggw.IndirectParameterEnable = true;
2784 ggw.PredicateEnable = GEN_GEN <= 7;
2785 ggw.SIMDSize = prog_data->simd_size / 16;
2786 ggw.ThreadDepthCounterMaximum = 0;
2787 ggw.ThreadHeightCounterMaximum = 0;
2788 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2789 ggw.RightExecutionMask = pipeline->cs_right_mask;
2790 ggw.BottomExecutionMask = 0xffffffff;
2791 }
2792
2793 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
2794 }
2795
2796 static void
2797 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
2798 uint32_t pipeline)
2799 {
2800 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
2801
2802 if (cmd_buffer->state.current_pipeline == pipeline)
2803 return;
2804
2805 #if GEN_GEN >= 8 && GEN_GEN < 10
2806 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
2807 *
2808 * Software must clear the COLOR_CALC_STATE Valid field in
2809 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
2810 * with Pipeline Select set to GPGPU.
2811 *
2812 * The internal hardware docs recommend the same workaround for Gen9
2813 * hardware too.
2814 */
2815 if (pipeline == GPGPU)
2816 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
2817 #endif
2818
2819 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
2820 * PIPELINE_SELECT [DevBWR+]":
2821 *
2822 * Project: DEVSNB+
2823 *
2824 * Software must ensure all the write caches are flushed through a
2825 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
2826 * command to invalidate read only caches prior to programming
2827 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
2828 */
2829 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2830 pc.RenderTargetCacheFlushEnable = true;
2831 pc.DepthCacheFlushEnable = true;
2832 pc.DCFlushEnable = true;
2833 pc.PostSyncOperation = NoWrite;
2834 pc.CommandStreamerStallEnable = true;
2835 }
2836
2837 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2838 pc.TextureCacheInvalidationEnable = true;
2839 pc.ConstantCacheInvalidationEnable = true;
2840 pc.StateCacheInvalidationEnable = true;
2841 pc.InstructionCacheInvalidateEnable = true;
2842 pc.PostSyncOperation = NoWrite;
2843 }
2844
2845 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
2846 #if GEN_GEN >= 9
2847 ps.MaskBits = 3;
2848 #endif
2849 ps.PipelineSelection = pipeline;
2850 }
2851
2852 #if GEN_GEN == 9
2853 if (devinfo->is_geminilake) {
2854 /* Project: DevGLK
2855 *
2856 * "This chicken bit works around a hardware issue with barrier logic
2857 * encountered when switching between GPGPU and 3D pipelines. To
2858 * workaround the issue, this mode bit should be set after a pipeline
2859 * is selected."
2860 */
2861 uint32_t scec;
2862 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
2863 .GLKBarrierMode =
2864 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
2865 : GLK_BARRIER_MODE_3D_HULL,
2866 .GLKBarrierModeMask = 1);
2867 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
2868 }
2869 #endif
2870
2871 cmd_buffer->state.current_pipeline = pipeline;
2872 }
2873
2874 void
2875 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
2876 {
2877 genX(flush_pipeline_select)(cmd_buffer, _3D);
2878 }
2879
2880 void
2881 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
2882 {
2883 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
2884 }
2885
2886 void
2887 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
2888 {
2889 if (GEN_GEN >= 8)
2890 return;
2891
2892 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
2893 *
2894 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
2895 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
2896 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
2897 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
2898 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
2899 * Depth Flush Bit set, followed by another pipelined depth stall
2900 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
2901 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
2902 * via a preceding MI_FLUSH)."
2903 */
2904 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2905 pipe.DepthStallEnable = true;
2906 }
2907 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2908 pipe.DepthCacheFlushEnable = true;
2909 }
2910 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2911 pipe.DepthStallEnable = true;
2912 }
2913 }
2914
2915 static void
2916 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
2917 {
2918 struct anv_device *device = cmd_buffer->device;
2919 const struct anv_image_view *iview =
2920 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
2921 const struct anv_image *image = iview ? iview->image : NULL;
2922
2923 /* FIXME: Width and Height are wrong */
2924
2925 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
2926
2927 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
2928 device->isl_dev.ds.size / 4);
2929 if (dw == NULL)
2930 return;
2931
2932 struct isl_depth_stencil_hiz_emit_info info = {
2933 .mocs = device->default_mocs,
2934 };
2935
2936 if (iview)
2937 info.view = &iview->planes[0].isl;
2938
2939 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
2940 uint32_t depth_plane =
2941 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
2942 const struct anv_surface *surface = &image->planes[depth_plane].surface;
2943
2944 info.depth_surf = &surface->isl;
2945
2946 info.depth_address =
2947 anv_batch_emit_reloc(&cmd_buffer->batch,
2948 dw + device->isl_dev.ds.depth_offset / 4,
2949 image->planes[depth_plane].bo,
2950 image->planes[depth_plane].bo_offset +
2951 surface->offset);
2952
2953 const uint32_t ds =
2954 cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
2955 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
2956 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
2957 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
2958
2959 info.hiz_address =
2960 anv_batch_emit_reloc(&cmd_buffer->batch,
2961 dw + device->isl_dev.ds.hiz_offset / 4,
2962 image->planes[depth_plane].bo,
2963 image->planes[depth_plane].bo_offset +
2964 image->planes[depth_plane].aux_surface.offset);
2965
2966 info.depth_clear_value = ANV_HZ_FC_VAL;
2967 }
2968 }
2969
2970 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
2971 uint32_t stencil_plane =
2972 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
2973 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
2974
2975 info.stencil_surf = &surface->isl;
2976
2977 info.stencil_address =
2978 anv_batch_emit_reloc(&cmd_buffer->batch,
2979 dw + device->isl_dev.ds.stencil_offset / 4,
2980 image->planes[stencil_plane].bo,
2981 image->planes[stencil_plane].bo_offset + surface->offset);
2982 }
2983
2984 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
2985
2986 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
2987 }
2988
2989
2990 /**
2991 * @brief Perform any layout transitions required at the beginning and/or end
2992 * of the current subpass for depth buffers.
2993 *
2994 * TODO: Consider preprocessing the attachment reference array at render pass
2995 * create time to determine if no layout transition is needed at the
2996 * beginning and/or end of each subpass.
2997 *
2998 * @param cmd_buffer The command buffer the transition is happening within.
2999 * @param subpass_end If true, marks that the transition is happening at the
3000 * end of the subpass.
3001 */
3002 static void
3003 cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,
3004 const bool subpass_end)
3005 {
3006 /* We need a non-NULL command buffer. */
3007 assert(cmd_buffer);
3008
3009 const struct anv_cmd_state * const cmd_state = &cmd_buffer->state;
3010 const struct anv_subpass * const subpass = cmd_state->subpass;
3011
3012 /* This function must be called within a subpass. */
3013 assert(subpass);
3014
3015 /* If there are attachment references, the array shouldn't be NULL.
3016 */
3017 if (subpass->attachment_count > 0)
3018 assert(subpass->attachments);
3019
3020 /* Iterate over the array of attachment references. */
3021 for (const VkAttachmentReference *att_ref = subpass->attachments;
3022 att_ref < subpass->attachments + subpass->attachment_count; att_ref++) {
3023
3024 /* If the attachment is unused, we can't perform a layout transition. */
3025 if (att_ref->attachment == VK_ATTACHMENT_UNUSED)
3026 continue;
3027
3028 /* This attachment index shouldn't go out of bounds. */
3029 assert(att_ref->attachment < cmd_state->pass->attachment_count);
3030
3031 const struct anv_render_pass_attachment * const att_desc =
3032 &cmd_state->pass->attachments[att_ref->attachment];
3033 struct anv_attachment_state * const att_state =
3034 &cmd_buffer->state.attachments[att_ref->attachment];
3035
3036 /* The attachment should not be used in a subpass after its last. */
3037 assert(att_desc->last_subpass_idx >= anv_get_subpass_id(cmd_state));
3038
3039 if (subpass_end && anv_get_subpass_id(cmd_state) <
3040 att_desc->last_subpass_idx) {
3041 /* We're calling this function on a buffer twice in one subpass and
3042 * this is not the last use of the buffer. The layout should not have
3043 * changed from the first call and no transition is necessary.
3044 */
3045 assert(att_state->current_layout == att_ref->layout ||
3046 att_state->current_layout ==
3047 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
3048 continue;
3049 }
3050
3051 /* The attachment index must be less than the number of attachments
3052 * within the framebuffer.
3053 */
3054 assert(att_ref->attachment < cmd_state->framebuffer->attachment_count);
3055
3056 const struct anv_image_view * const iview =
3057 cmd_state->framebuffer->attachments[att_ref->attachment];
3058 const struct anv_image * const image = iview->image;
3059
3060 /* Get the appropriate target layout for this attachment. */
3061 VkImageLayout target_layout;
3062
3063 /* A resolve is necessary before use as an input attachment if the clear
3064 * color or auxiliary buffer usage isn't supported by the sampler.
3065 */
3066 const bool input_needs_resolve =
3067 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
3068 att_state->input_aux_usage != att_state->aux_usage;
3069 if (subpass_end) {
3070 target_layout = att_desc->final_layout;
3071 } else if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
3072 !input_needs_resolve) {
3073 /* Layout transitions before the final only help to enable sampling as
3074 * an input attachment. If the input attachment supports sampling
3075 * using the auxiliary surface, we can skip such transitions by making
3076 * the target layout one that is CCS-aware.
3077 */
3078 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
3079 } else {
3080 target_layout = att_ref->layout;
3081 }
3082
3083 /* Perform the layout transition. */
3084 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3085 transition_depth_buffer(cmd_buffer, image,
3086 att_state->current_layout, target_layout);
3087 att_state->aux_usage =
3088 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
3089 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
3090 } else if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3091 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3092 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3093 iview->planes[0].isl.base_level, 1,
3094 iview->planes[0].isl.base_array_layer,
3095 iview->planes[0].isl.array_len,
3096 att_state->current_layout, target_layout);
3097 }
3098
3099 att_state->current_layout = target_layout;
3100 }
3101 }
3102
3103 /* Update the clear value dword(s) in surface state objects or the fast clear
3104 * state buffer entry for the color attachments used in this subpass.
3105 */
3106 static void
3107 cmd_buffer_subpass_sync_fast_clear_values(struct anv_cmd_buffer *cmd_buffer)
3108 {
3109 assert(cmd_buffer && cmd_buffer->state.subpass);
3110
3111 const struct anv_cmd_state *state = &cmd_buffer->state;
3112
3113 /* Iterate through every color attachment used in this subpass. */
3114 for (uint32_t i = 0; i < state->subpass->color_count; ++i) {
3115
3116 /* The attachment should be one of the attachments described in the
3117 * render pass and used in the subpass.
3118 */
3119 const uint32_t a = state->subpass->color_attachments[i].attachment;
3120 if (a == VK_ATTACHMENT_UNUSED)
3121 continue;
3122
3123 assert(a < state->pass->attachment_count);
3124
3125 /* Store some information regarding this attachment. */
3126 const struct anv_attachment_state *att_state = &state->attachments[a];
3127 const struct anv_image_view *iview = state->framebuffer->attachments[a];
3128 const struct anv_render_pass_attachment *rp_att =
3129 &state->pass->attachments[a];
3130
3131 if (att_state->aux_usage == ISL_AUX_USAGE_NONE)
3132 continue;
3133
3134 /* The fast clear state entry must be updated if a fast clear is going to
3135 * happen. The surface state must be updated if the clear value from a
3136 * prior fast clear may be needed.
3137 */
3138 if (att_state->pending_clear_aspects && att_state->fast_clear) {
3139 /* Update the fast clear state entry. */
3140 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3141 iview->image,
3142 VK_IMAGE_ASPECT_COLOR_BIT,
3143 iview->planes[0].isl.base_level,
3144 true /* copy from ss */);
3145
3146 /* Fast-clears impact whether or not a resolve will be necessary. */
3147 if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E &&
3148 att_state->clear_color_is_zero) {
3149 /* This image always has the auxiliary buffer enabled. We can mark
3150 * the subresource as not needing a resolve because the clear color
3151 * will match what's in every RENDER_SURFACE_STATE object when it's
3152 * being used for sampling.
3153 */
3154 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
3155 VK_IMAGE_ASPECT_COLOR_BIT,
3156 iview->planes[0].isl.base_level,
3157 false);
3158 } else {
3159 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
3160 VK_IMAGE_ASPECT_COLOR_BIT,
3161 iview->planes[0].isl.base_level,
3162 true);
3163 }
3164 } else if (rp_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
3165 /* The attachment may have been fast-cleared in a previous render
3166 * pass and the value is needed now. Update the surface state(s).
3167 *
3168 * TODO: Do this only once per render pass instead of every subpass.
3169 */
3170 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3171 iview->image,
3172 VK_IMAGE_ASPECT_COLOR_BIT,
3173 iview->planes[0].isl.base_level,
3174 false /* copy to ss */);
3175
3176 if (need_input_attachment_state(rp_att) &&
3177 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3178 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3179 iview->image,
3180 VK_IMAGE_ASPECT_COLOR_BIT,
3181 iview->planes[0].isl.base_level,
3182 false /* copy to ss */);
3183 }
3184 }
3185 }
3186 }
3187
3188
3189 static void
3190 genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
3191 struct anv_subpass *subpass)
3192 {
3193 cmd_buffer->state.subpass = subpass;
3194
3195 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3196
3197 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3198 * different views. If the client asks for instancing, we need to use the
3199 * Instance Data Step Rate to ensure that we repeat the client's
3200 * per-instance data once for each view. Since this bit is in
3201 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3202 * of each subpass.
3203 */
3204 if (GEN_GEN == 7)
3205 cmd_buffer->state.gfx.vb_dirty |= ~0;
3206
3207 /* It is possible to start a render pass with an old pipeline. Because the
3208 * render pass and subpass index are both baked into the pipeline, this is
3209 * highly unlikely. In order to do so, it requires that you have a render
3210 * pass with a single subpass and that you use that render pass twice
3211 * back-to-back and use the same pipeline at the start of the second render
3212 * pass as at the end of the first. In order to avoid unpredictable issues
3213 * with this edge case, we just dirty the pipeline at the start of every
3214 * subpass.
3215 */
3216 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
3217
3218 /* Perform transitions to the subpass layout before any writes have
3219 * occurred.
3220 */
3221 cmd_buffer_subpass_transition_layouts(cmd_buffer, false);
3222
3223 /* Update clear values *after* performing automatic layout transitions.
3224 * This ensures that transitions from the UNDEFINED layout have had a chance
3225 * to populate the clear value buffer with the correct values for the
3226 * LOAD_OP_LOAD loadOp and that the fast-clears will update the buffer
3227 * without the aforementioned layout transition overwriting the fast-clear
3228 * value.
3229 */
3230 cmd_buffer_subpass_sync_fast_clear_values(cmd_buffer);
3231
3232 cmd_buffer_emit_depth_stencil(cmd_buffer);
3233
3234 anv_cmd_buffer_clear_subpass(cmd_buffer);
3235 }
3236
3237 void genX(CmdBeginRenderPass)(
3238 VkCommandBuffer commandBuffer,
3239 const VkRenderPassBeginInfo* pRenderPassBegin,
3240 VkSubpassContents contents)
3241 {
3242 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3243 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3244 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3245
3246 cmd_buffer->state.framebuffer = framebuffer;
3247 cmd_buffer->state.pass = pass;
3248 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3249 VkResult result =
3250 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3251
3252 /* If we failed to setup the attachments we should not try to go further */
3253 if (result != VK_SUCCESS) {
3254 assert(anv_batch_has_error(&cmd_buffer->batch));
3255 return;
3256 }
3257
3258 genX(flush_pipeline_select_3d)(cmd_buffer);
3259
3260 genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
3261
3262 cmd_buffer->state.pending_pipe_bits |=
3263 cmd_buffer->state.pass->subpass_flushes[0];
3264 }
3265
3266 void genX(CmdNextSubpass)(
3267 VkCommandBuffer commandBuffer,
3268 VkSubpassContents contents)
3269 {
3270 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3271
3272 if (anv_batch_has_error(&cmd_buffer->batch))
3273 return;
3274
3275 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3276
3277 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3278
3279 /* Perform transitions to the final layout after all writes have occurred.
3280 */
3281 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3282
3283 genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
3284
3285 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3286 cmd_buffer->state.pending_pipe_bits |=
3287 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3288 }
3289
3290 void genX(CmdEndRenderPass)(
3291 VkCommandBuffer commandBuffer)
3292 {
3293 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3294
3295 if (anv_batch_has_error(&cmd_buffer->batch))
3296 return;
3297
3298 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3299
3300 /* Perform transitions to the final layout after all writes have occurred.
3301 */
3302 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3303
3304 cmd_buffer->state.pending_pipe_bits |=
3305 cmd_buffer->state.pass->subpass_flushes[cmd_buffer->state.pass->subpass_count];
3306
3307 cmd_buffer->state.hiz_enabled = false;
3308
3309 #ifndef NDEBUG
3310 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
3311 #endif
3312
3313 /* Remove references to render pass specific state. This enables us to
3314 * detect whether or not we're in a renderpass.
3315 */
3316 cmd_buffer->state.framebuffer = NULL;
3317 cmd_buffer->state.pass = NULL;
3318 cmd_buffer->state.subpass = NULL;
3319 }