anv: Separate compute and graphics descriptor sets
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
36 emit_lrm(struct anv_batch *batch,
37 uint32_t reg, struct anv_bo *bo, uint32_t offset)
38 {
39 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
40 lrm.RegisterAddress = reg;
41 lrm.MemoryAddress = (struct anv_address) { bo, offset };
42 }
43 }
44
45 static void
46 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
47 {
48 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
49 lri.RegisterOffset = reg;
50 lri.DataDWord = imm;
51 }
52 }
53
54 #if GEN_IS_HASWELL || GEN_GEN >= 8
55 static void
56 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
57 {
58 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
59 lrr.SourceRegisterAddress = src;
60 lrr.DestinationRegisterAddress = dst;
61 }
62 }
63 #endif
64
65 void
66 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
67 {
68 struct anv_device *device = cmd_buffer->device;
69
70 /* Emit a render target cache flush.
71 *
72 * This isn't documented anywhere in the PRM. However, it seems to be
73 * necessary prior to changing the surface state base adress. Without
74 * this, we get GPU hangs when using multi-level command buffers which
75 * clear depth, reset state base address, and then go render stuff.
76 */
77 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
78 pc.DCFlushEnable = true;
79 pc.RenderTargetCacheFlushEnable = true;
80 pc.CommandStreamerStallEnable = true;
81 }
82
83 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
84 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
85 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
86 sba.GeneralStateBaseAddressModifyEnable = true;
87
88 sba.SurfaceStateBaseAddress =
89 anv_cmd_buffer_surface_base_address(cmd_buffer);
90 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
91 sba.SurfaceStateBaseAddressModifyEnable = true;
92
93 sba.DynamicStateBaseAddress =
94 (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
95 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
96 sba.DynamicStateBaseAddressModifyEnable = true;
97
98 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
99 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
100 sba.IndirectObjectBaseAddressModifyEnable = true;
101
102 sba.InstructionBaseAddress =
103 (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
104 sba.InstructionMemoryObjectControlState = GENX(MOCS);
105 sba.InstructionBaseAddressModifyEnable = true;
106
107 # if (GEN_GEN >= 8)
108 /* Broadwell requires that we specify a buffer size for a bunch of
109 * these fields. However, since we will be growing the BO's live, we
110 * just set them all to the maximum.
111 */
112 sba.GeneralStateBufferSize = 0xfffff;
113 sba.GeneralStateBufferSizeModifyEnable = true;
114 sba.DynamicStateBufferSize = 0xfffff;
115 sba.DynamicStateBufferSizeModifyEnable = true;
116 sba.IndirectObjectBufferSize = 0xfffff;
117 sba.IndirectObjectBufferSizeModifyEnable = true;
118 sba.InstructionBufferSize = 0xfffff;
119 sba.InstructionBuffersizeModifyEnable = true;
120 # endif
121 }
122
123 /* After re-setting the surface state base address, we have to do some
124 * cache flusing so that the sampler engine will pick up the new
125 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
126 * Shared Function > 3D Sampler > State > State Caching (page 96):
127 *
128 * Coherency with system memory in the state cache, like the texture
129 * cache is handled partially by software. It is expected that the
130 * command stream or shader will issue Cache Flush operation or
131 * Cache_Flush sampler message to ensure that the L1 cache remains
132 * coherent with system memory.
133 *
134 * [...]
135 *
136 * Whenever the value of the Dynamic_State_Base_Addr,
137 * Surface_State_Base_Addr are altered, the L1 state cache must be
138 * invalidated to ensure the new surface or sampler state is fetched
139 * from system memory.
140 *
141 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
142 * which, according the PIPE_CONTROL instruction documentation in the
143 * Broadwell PRM:
144 *
145 * Setting this bit is independent of any other bit in this packet.
146 * This bit controls the invalidation of the L1 and L2 state caches
147 * at the top of the pipe i.e. at the parsing time.
148 *
149 * Unfortunately, experimentation seems to indicate that state cache
150 * invalidation through a PIPE_CONTROL does nothing whatsoever in
151 * regards to surface state and binding tables. In stead, it seems that
152 * invalidating the texture cache is what is actually needed.
153 *
154 * XXX: As far as we have been able to determine through
155 * experimentation, shows that flush the texture cache appears to be
156 * sufficient. The theory here is that all of the sampling/rendering
157 * units cache the binding table in the texture cache. However, we have
158 * yet to be able to actually confirm this.
159 */
160 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
161 pc.TextureCacheInvalidationEnable = true;
162 pc.ConstantCacheInvalidationEnable = true;
163 pc.StateCacheInvalidationEnable = true;
164 }
165 }
166
167 static void
168 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
169 struct anv_state state,
170 struct anv_bo *bo, uint32_t offset)
171 {
172 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
173
174 VkResult result =
175 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
176 state.offset + isl_dev->ss.addr_offset, bo, offset);
177 if (result != VK_SUCCESS)
178 anv_batch_set_error(&cmd_buffer->batch, result);
179 }
180
181 static void
182 add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
183 const struct anv_image_view *image_view,
184 const uint32_t plane,
185 struct anv_surface_state state)
186 {
187 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188 const struct anv_image *image = image_view->image;
189 uint32_t image_plane = image_view->planes[plane].image_plane;
190
191 add_surface_state_reloc(cmd_buffer, state.state,
192 image->planes[image_plane].bo, state.address);
193
194 if (state.aux_address) {
195 VkResult result =
196 anv_reloc_list_add(&cmd_buffer->surface_relocs,
197 &cmd_buffer->pool->alloc,
198 state.state.offset + isl_dev->ss.aux_addr_offset,
199 image->planes[image_plane].bo, state.aux_address);
200 if (result != VK_SUCCESS)
201 anv_batch_set_error(&cmd_buffer->batch, result);
202 }
203 }
204
205 static bool
206 color_is_zero_one(VkClearColorValue value, enum isl_format format)
207 {
208 if (isl_format_has_int_channel(format)) {
209 for (unsigned i = 0; i < 4; i++) {
210 if (value.int32[i] != 0 && value.int32[i] != 1)
211 return false;
212 }
213 } else {
214 for (unsigned i = 0; i < 4; i++) {
215 if (value.float32[i] != 0.0f && value.float32[i] != 1.0f)
216 return false;
217 }
218 }
219
220 return true;
221 }
222
223 static void
224 color_attachment_compute_aux_usage(struct anv_device * device,
225 struct anv_cmd_state * cmd_state,
226 uint32_t att, VkRect2D render_area,
227 union isl_color_value *fast_clear_color)
228 {
229 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
230 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
231
232 assert(iview->n_planes == 1);
233
234 if (iview->planes[0].isl.base_array_layer >=
235 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
236 iview->planes[0].isl.base_level)) {
237 /* There is no aux buffer which corresponds to the level and layer(s)
238 * being accessed.
239 */
240 att_state->aux_usage = ISL_AUX_USAGE_NONE;
241 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
242 att_state->fast_clear = false;
243 return;
244 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_MCS) {
245 att_state->aux_usage = ISL_AUX_USAGE_MCS;
246 att_state->input_aux_usage = ISL_AUX_USAGE_MCS;
247 att_state->fast_clear = false;
248 return;
249 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E) {
250 att_state->aux_usage = ISL_AUX_USAGE_CCS_E;
251 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_E;
252 } else {
253 att_state->aux_usage = ISL_AUX_USAGE_CCS_D;
254 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
255 *
256 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
257 * setting is only allowed if Surface Format supported for Fast
258 * Clear. In addition, if the surface is bound to the sampling
259 * engine, Surface Format must be supported for Render Target
260 * Compression for surfaces bound to the sampling engine."
261 *
262 * In other words, we can only sample from a fast-cleared image if it
263 * also supports color compression.
264 */
265 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
266 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
267
268 /* While fast-clear resolves and partial resolves are fairly cheap in the
269 * case where you render to most of the pixels, full resolves are not
270 * because they potentially involve reading and writing the entire
271 * framebuffer. If we can't texture with CCS_E, we should leave it off and
272 * limit ourselves to fast clears.
273 */
274 if (cmd_state->pass->attachments[att].first_subpass_layout ==
275 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
276 anv_perf_warn(device->instance, iview->image,
277 "Not temporarily enabling CCS_E.");
278 }
279 } else {
280 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
281 }
282 }
283
284 assert(iview->image->planes[0].aux_surface.isl.usage & ISL_SURF_USAGE_CCS_BIT);
285
286 att_state->clear_color_is_zero_one =
287 color_is_zero_one(att_state->clear_value.color, iview->planes[0].isl.format);
288 att_state->clear_color_is_zero =
289 att_state->clear_value.color.uint32[0] == 0 &&
290 att_state->clear_value.color.uint32[1] == 0 &&
291 att_state->clear_value.color.uint32[2] == 0 &&
292 att_state->clear_value.color.uint32[3] == 0;
293
294 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
295 /* Start off assuming fast clears are possible */
296 att_state->fast_clear = true;
297
298 /* Potentially, we could do partial fast-clears but doing so has crazy
299 * alignment restrictions. It's easier to just restrict to full size
300 * fast clears for now.
301 */
302 if (render_area.offset.x != 0 ||
303 render_area.offset.y != 0 ||
304 render_area.extent.width != iview->extent.width ||
305 render_area.extent.height != iview->extent.height)
306 att_state->fast_clear = false;
307
308 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
309 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
310 att_state->fast_clear = false;
311
312 /* We allow fast clears when all aux layers of the miplevel are targeted.
313 * See add_fast_clear_state_buffer() for more information. Also, because
314 * we only either do a fast clear or a normal clear and not both, this
315 * complies with the gen7 restriction of not fast-clearing multiple
316 * layers.
317 */
318 if (cmd_state->framebuffer->layers !=
319 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
320 iview->planes[0].isl.base_level)) {
321 att_state->fast_clear = false;
322 if (GEN_GEN == 7) {
323 anv_perf_warn(device->instance, iview->image,
324 "Not fast-clearing the first layer in "
325 "a multi-layer fast clear.");
326 }
327 }
328
329 /* We only allow fast clears in the GENERAL layout if the auxiliary
330 * buffer is always enabled and the fast-clear value is all 0's. See
331 * add_fast_clear_state_buffer() for more information.
332 */
333 if (cmd_state->pass->attachments[att].first_subpass_layout ==
334 VK_IMAGE_LAYOUT_GENERAL &&
335 (!att_state->clear_color_is_zero ||
336 iview->image->planes[0].aux_usage == ISL_AUX_USAGE_NONE)) {
337 att_state->fast_clear = false;
338 }
339
340 if (att_state->fast_clear) {
341 memcpy(fast_clear_color->u32, att_state->clear_value.color.uint32,
342 sizeof(fast_clear_color->u32));
343 }
344 } else {
345 att_state->fast_clear = false;
346 }
347 }
348
349 static bool
350 need_input_attachment_state(const struct anv_render_pass_attachment *att)
351 {
352 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
353 return false;
354
355 /* We only allocate input attachment states for color surfaces. Compression
356 * is not yet enabled for depth textures and stencil doesn't allow
357 * compression so we can just use the texture surface state from the view.
358 */
359 return vk_format_is_color(att->format);
360 }
361
362 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
363 * the initial layout is undefined, the HiZ buffer and depth buffer will
364 * represent the same data at the end of this operation.
365 */
366 static void
367 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
368 const struct anv_image *image,
369 VkImageLayout initial_layout,
370 VkImageLayout final_layout)
371 {
372 assert(image);
373
374 /* A transition is a no-op if HiZ is not enabled, or if the initial and
375 * final layouts are equal.
376 *
377 * The undefined layout indicates that the user doesn't care about the data
378 * that's currently in the buffer. Therefore, a data-preserving resolve
379 * operation is not needed.
380 */
381 if (image->planes[0].aux_usage != ISL_AUX_USAGE_HIZ || initial_layout == final_layout)
382 return;
383
384 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
385 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
386 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
387 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
388 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
389 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
390
391 enum blorp_hiz_op hiz_op;
392 if (hiz_enabled && !enable_hiz) {
393 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
394 } else if (!hiz_enabled && enable_hiz) {
395 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
396 } else {
397 assert(hiz_enabled == enable_hiz);
398 /* If the same buffer will be used, no resolves are necessary. */
399 hiz_op = BLORP_HIZ_OP_NONE;
400 }
401
402 if (hiz_op != BLORP_HIZ_OP_NONE)
403 anv_gen8_hiz_op_resolve(cmd_buffer, image, hiz_op);
404 }
405
406 #define MI_PREDICATE_SRC0 0x2400
407 #define MI_PREDICATE_SRC1 0x2408
408
409 /* Manages the state of an color image subresource to ensure resolves are
410 * performed properly.
411 */
412 static void
413 genX(set_image_needs_resolve)(struct anv_cmd_buffer *cmd_buffer,
414 const struct anv_image *image,
415 VkImageAspectFlagBits aspect,
416 unsigned level, bool needs_resolve)
417 {
418 assert(cmd_buffer && image);
419 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
420 assert(level < anv_image_aux_levels(image, aspect));
421
422 /* The HW docs say that there is no way to guarantee the completion of
423 * the following command. We use it nevertheless because it shows no
424 * issues in testing is currently being used in the GL driver.
425 */
426 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
427 sdi.Address = anv_image_get_needs_resolve_addr(cmd_buffer->device,
428 image, aspect, level);
429 sdi.ImmediateData = needs_resolve;
430 }
431 }
432
433 static void
434 genX(load_needs_resolve_predicate)(struct anv_cmd_buffer *cmd_buffer,
435 const struct anv_image *image,
436 VkImageAspectFlagBits aspect,
437 unsigned level)
438 {
439 assert(cmd_buffer && image);
440 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
441 assert(level < anv_image_aux_levels(image, aspect));
442
443 const struct anv_address resolve_flag_addr =
444 anv_image_get_needs_resolve_addr(cmd_buffer->device,
445 image, aspect, level);
446
447 /* Make the pending predicated resolve a no-op if one is not needed.
448 * predicate = do_resolve = resolve_flag != 0;
449 */
450 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
451 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
452 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 , 0);
453 emit_lrm(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4,
454 resolve_flag_addr.bo, resolve_flag_addr.offset);
455 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
456 mip.LoadOperation = LOAD_LOADINV;
457 mip.CombineOperation = COMBINE_SET;
458 mip.CompareOperation = COMPARE_SRCS_EQUAL;
459 }
460 }
461
462 static void
463 init_fast_clear_state_entry(struct anv_cmd_buffer *cmd_buffer,
464 const struct anv_image *image,
465 VkImageAspectFlagBits aspect,
466 unsigned level)
467 {
468 assert(cmd_buffer && image);
469 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
470 assert(level < anv_image_aux_levels(image, aspect));
471
472 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
473 enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
474
475 /* The resolve flag should updated to signify that fast-clear/compression
476 * data needs to be removed when leaving the undefined layout. Such data
477 * may need to be removed if it would cause accesses to the color buffer
478 * to return incorrect data. The fast clear data in CCS_D buffers should
479 * be removed because CCS_D isn't enabled all the time.
480 */
481 genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level,
482 aux_usage == ISL_AUX_USAGE_NONE);
483
484 /* The fast clear value dword(s) will be copied into a surface state object.
485 * Ensure that the restrictions of the fields in the dword(s) are followed.
486 *
487 * CCS buffers on SKL+ can have any value set for the clear colors.
488 */
489 if (image->samples == 1 && GEN_GEN >= 9)
490 return;
491
492 /* Other combinations of auxiliary buffers and platforms require specific
493 * values in the clear value dword(s).
494 */
495 struct anv_address addr =
496 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
497 unsigned i = 0;
498 for (; i < cmd_buffer->device->isl_dev.ss.clear_value_size; i += 4) {
499 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
500 sdi.Address = addr;
501
502 if (GEN_GEN >= 9) {
503 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
504 assert(aux_usage == ISL_AUX_USAGE_MCS);
505 sdi.ImmediateData = 0;
506 } else if (GEN_VERSIONx10 >= 75) {
507 /* Pre-SKL, the dword containing the clear values also contains
508 * other fields, so we need to initialize those fields to match the
509 * values that would be in a color attachment.
510 */
511 assert(i == 0);
512 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
513 ISL_CHANNEL_SELECT_GREEN << 22 |
514 ISL_CHANNEL_SELECT_BLUE << 19 |
515 ISL_CHANNEL_SELECT_ALPHA << 16;
516 } else if (GEN_VERSIONx10 == 70) {
517 /* On IVB, the dword containing the clear values also contains
518 * other fields that must be zero or can be zero.
519 */
520 assert(i == 0);
521 sdi.ImmediateData = 0;
522 }
523 }
524
525 addr.offset += 4;
526 }
527 }
528
529 /* Copy the fast-clear value dword(s) between a surface state object and an
530 * image's fast clear state buffer.
531 */
532 static void
533 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
534 struct anv_state surface_state,
535 const struct anv_image *image,
536 VkImageAspectFlagBits aspect,
537 unsigned level,
538 bool copy_from_surface_state)
539 {
540 assert(cmd_buffer && image);
541 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
542 assert(level < anv_image_aux_levels(image, aspect));
543
544 struct anv_bo *ss_bo =
545 &cmd_buffer->device->surface_state_pool.block_pool.bo;
546 uint32_t ss_clear_offset = surface_state.offset +
547 cmd_buffer->device->isl_dev.ss.clear_value_offset;
548 const struct anv_address entry_addr =
549 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
550 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
551
552 if (copy_from_surface_state) {
553 genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr.bo, entry_addr.offset,
554 ss_bo, ss_clear_offset, copy_size);
555 } else {
556 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_bo, ss_clear_offset,
557 entry_addr.bo, entry_addr.offset, copy_size);
558
559 /* Updating a surface state object may require that the state cache be
560 * invalidated. From the SKL PRM, Shared Functions -> State -> State
561 * Caching:
562 *
563 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
564 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
565 * modified [...], the L1 state cache must be invalidated to ensure
566 * the new surface or sampler state is fetched from system memory.
567 *
568 * In testing, SKL doesn't actually seem to need this, but HSW does.
569 */
570 cmd_buffer->state.pending_pipe_bits |=
571 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
572 }
573 }
574
575 /**
576 * @brief Transitions a color buffer from one layout to another.
577 *
578 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
579 * more information.
580 *
581 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
582 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
583 * this represents the maximum layers to transition at each
584 * specified miplevel.
585 */
586 static void
587 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
588 const struct anv_image *image,
589 VkImageAspectFlagBits aspect,
590 const uint32_t base_level, uint32_t level_count,
591 uint32_t base_layer, uint32_t layer_count,
592 VkImageLayout initial_layout,
593 VkImageLayout final_layout)
594 {
595 /* Validate the inputs. */
596 assert(cmd_buffer);
597 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
598 /* These values aren't supported for simplicity's sake. */
599 assert(level_count != VK_REMAINING_MIP_LEVELS &&
600 layer_count != VK_REMAINING_ARRAY_LAYERS);
601 /* Ensure the subresource range is valid. */
602 uint64_t last_level_num = base_level + level_count;
603 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
604 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
605 assert((uint64_t)base_layer + layer_count <= image_layers);
606 assert(last_level_num <= image->levels);
607 /* The spec disallows these final layouts. */
608 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
609 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
610
611 /* No work is necessary if the layout stays the same or if this subresource
612 * range lacks auxiliary data.
613 */
614 if (initial_layout == final_layout)
615 return;
616
617 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
618
619 if (image->planes[plane].shadow_surface.isl.size > 0 &&
620 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
621 /* This surface is a linear compressed image with a tiled shadow surface
622 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
623 * we need to ensure the shadow copy is up-to-date.
624 */
625 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
626 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
627 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
628 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
629 assert(plane == 0);
630 anv_image_copy_to_shadow(cmd_buffer, image,
631 base_level, level_count,
632 base_layer, layer_count);
633 }
634
635 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
636 return;
637
638 /* A transition of a 3D subresource works on all slices at a time. */
639 if (image->type == VK_IMAGE_TYPE_3D) {
640 base_layer = 0;
641 layer_count = anv_minify(image->extent.depth, base_level);
642 }
643
644 /* We're interested in the subresource range subset that has aux data. */
645 level_count = MIN2(level_count, anv_image_aux_levels(image, aspect) - base_level);
646 layer_count = MIN2(layer_count,
647 anv_image_aux_layers(image, aspect, base_level) - base_layer);
648 last_level_num = base_level + level_count;
649
650 /* Record whether or not the layout is undefined. Pre-initialized images
651 * with auxiliary buffers have a non-linear layout and are thus undefined.
652 */
653 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
654 const bool undef_layout = initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
655 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
656
657 /* Do preparatory work before the resolve operation or return early if no
658 * resolve is actually needed.
659 */
660 if (undef_layout) {
661 /* A subresource in the undefined layout may have been aliased and
662 * populated with any arrangement of bits. Therefore, we must initialize
663 * the related aux buffer and clear buffer entry with desirable values.
664 *
665 * Initialize the relevant clear buffer entries.
666 */
667 for (unsigned level = base_level; level < last_level_num; level++)
668 init_fast_clear_state_entry(cmd_buffer, image, aspect, level);
669
670 /* Initialize the aux buffers to enable correct rendering. This operation
671 * requires up to two steps: one to rid the aux buffer of data that may
672 * cause GPU hangs, and another to ensure that writes done without aux
673 * will be visible to reads done with aux.
674 *
675 * Having an aux buffer with invalid data is possible for CCS buffers
676 * SKL+ and for MCS buffers with certain sample counts (2x and 8x). One
677 * easy way to get to a valid state is to fast-clear the specified range.
678 *
679 * Even for MCS buffers that have sample counts that don't require
680 * certain bits to be reserved (4x and 8x), we're unsure if the hardware
681 * will be okay with the sample mappings given by the undefined buffer.
682 * We don't have any data to show that this is a problem, but we want to
683 * avoid causing difficult-to-debug problems.
684 */
685 if ((GEN_GEN >= 9 && image->samples == 1) || image->samples > 1) {
686 if (image->samples == 4 || image->samples == 16) {
687 anv_perf_warn(cmd_buffer->device->instance, image,
688 "Doing a potentially unnecessary fast-clear to "
689 "define an MCS buffer.");
690 }
691
692 anv_image_fast_clear(cmd_buffer, image, aspect,
693 base_level, level_count,
694 base_layer, layer_count);
695 }
696 /* At this point, some elements of the CCS buffer may have the fast-clear
697 * bit-arrangement. As the user writes to a subresource, we need to have
698 * the associated CCS elements enter the ambiguated state. This enables
699 * reads (implicit or explicit) to reflect the user-written data instead
700 * of the clear color. The only time such elements will not change their
701 * state as described above, is in a final layout that doesn't have CCS
702 * enabled. In this case, we must force the associated CCS buffers of the
703 * specified range to enter the ambiguated state in advance.
704 */
705 if (image->samples == 1 &&
706 image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E &&
707 final_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
708 /* The CCS_D buffer may not be enabled in the final layout. Continue
709 * executing this function to perform a resolve.
710 */
711 anv_perf_warn(cmd_buffer->device->instance, image,
712 "Performing an additional resolve for CCS_D layout "
713 "transition. Consider always leaving it on or "
714 "performing an ambiguation pass.");
715 } else {
716 /* Writes in the final layout will be aware of the auxiliary buffer.
717 * In addition, the clear buffer entries and the auxiliary buffers
718 * have been populated with values that will result in correct
719 * rendering.
720 */
721 return;
722 }
723 } else if (initial_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
724 /* Resolves are only necessary if the subresource may contain blocks
725 * fast-cleared to values unsupported in other layouts. This only occurs
726 * if the initial layout is COLOR_ATTACHMENT_OPTIMAL.
727 */
728 return;
729 } else if (image->samples > 1) {
730 /* MCS buffers don't need resolving. */
731 return;
732 }
733
734 /* Perform a resolve to synchronize data between the main and aux buffer.
735 * Before we begin, we must satisfy the cache flushing requirement specified
736 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
737 *
738 * Any transition from any value in {Clear, Render, Resolve} to a
739 * different value in {Clear, Render, Resolve} requires end of pipe
740 * synchronization.
741 *
742 * We perform a flush of the write cache before and after the clear and
743 * resolve operations to meet this requirement.
744 *
745 * Unlike other drawing, fast clear operations are not properly
746 * synchronized. The first PIPE_CONTROL here likely ensures that the
747 * contents of the previous render or clear hit the render target before we
748 * resolve and the second likely ensures that the resolve is complete before
749 * we do any more rendering or clearing.
750 */
751 cmd_buffer->state.pending_pipe_bits |=
752 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
753
754 for (uint32_t level = base_level; level < last_level_num; level++) {
755
756 /* The number of layers changes at each 3D miplevel. */
757 if (image->type == VK_IMAGE_TYPE_3D) {
758 layer_count = MIN2(layer_count, anv_image_aux_layers(image, aspect, level));
759 }
760
761 genX(load_needs_resolve_predicate)(cmd_buffer, image, aspect, level);
762
763 anv_ccs_resolve(cmd_buffer, image, aspect, level, base_layer, layer_count,
764 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E ?
765 BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL :
766 BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
767
768 genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level, false);
769 }
770
771 cmd_buffer->state.pending_pipe_bits |=
772 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
773 }
774
775 /**
776 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
777 */
778 static VkResult
779 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
780 struct anv_render_pass *pass,
781 const VkRenderPassBeginInfo *begin)
782 {
783 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
784 struct anv_cmd_state *state = &cmd_buffer->state;
785
786 vk_free(&cmd_buffer->pool->alloc, state->attachments);
787
788 if (pass->attachment_count > 0) {
789 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
790 pass->attachment_count *
791 sizeof(state->attachments[0]),
792 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
793 if (state->attachments == NULL) {
794 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
795 return anv_batch_set_error(&cmd_buffer->batch,
796 VK_ERROR_OUT_OF_HOST_MEMORY);
797 }
798 } else {
799 state->attachments = NULL;
800 }
801
802 /* Reserve one for the NULL state. */
803 unsigned num_states = 1;
804 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
805 if (vk_format_is_color(pass->attachments[i].format))
806 num_states++;
807
808 if (need_input_attachment_state(&pass->attachments[i]))
809 num_states++;
810 }
811
812 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
813 state->render_pass_states =
814 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
815 num_states * ss_stride, isl_dev->ss.align);
816
817 struct anv_state next_state = state->render_pass_states;
818 next_state.alloc_size = isl_dev->ss.size;
819
820 state->null_surface_state = next_state;
821 next_state.offset += ss_stride;
822 next_state.map += ss_stride;
823
824 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
825 if (vk_format_is_color(pass->attachments[i].format)) {
826 state->attachments[i].color.state = next_state;
827 next_state.offset += ss_stride;
828 next_state.map += ss_stride;
829 }
830
831 if (need_input_attachment_state(&pass->attachments[i])) {
832 state->attachments[i].input.state = next_state;
833 next_state.offset += ss_stride;
834 next_state.map += ss_stride;
835 }
836 }
837 assert(next_state.offset == state->render_pass_states.offset +
838 state->render_pass_states.alloc_size);
839
840 if (begin) {
841 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
842 assert(pass->attachment_count == framebuffer->attachment_count);
843
844 isl_null_fill_state(isl_dev, state->null_surface_state.map,
845 isl_extent3d(framebuffer->width,
846 framebuffer->height,
847 framebuffer->layers));
848
849 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
850 struct anv_render_pass_attachment *att = &pass->attachments[i];
851 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
852 VkImageAspectFlags clear_aspects = 0;
853
854 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
855 /* color attachment */
856 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
857 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
858 }
859 } else {
860 /* depthstencil attachment */
861 if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
862 att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
863 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
864 }
865 if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
866 att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
867 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
868 }
869 }
870
871 state->attachments[i].current_layout = att->initial_layout;
872 state->attachments[i].pending_clear_aspects = clear_aspects;
873 if (clear_aspects)
874 state->attachments[i].clear_value = begin->pClearValues[i];
875
876 struct anv_image_view *iview = framebuffer->attachments[i];
877 anv_assert(iview->vk_format == att->format);
878 anv_assert(iview->n_planes == 1);
879
880 union isl_color_value clear_color = { .u32 = { 0, } };
881 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
882 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
883 color_attachment_compute_aux_usage(cmd_buffer->device,
884 state, i, begin->renderArea,
885 &clear_color);
886
887 anv_image_fill_surface_state(cmd_buffer->device,
888 iview->image,
889 VK_IMAGE_ASPECT_COLOR_BIT,
890 &iview->planes[0].isl,
891 ISL_SURF_USAGE_RENDER_TARGET_BIT,
892 state->attachments[i].aux_usage,
893 &clear_color,
894 0,
895 &state->attachments[i].color,
896 NULL);
897
898 add_image_view_relocs(cmd_buffer, iview, 0,
899 state->attachments[i].color);
900 } else {
901 /* This field will be initialized after the first subpass
902 * transition.
903 */
904 state->attachments[i].aux_usage = ISL_AUX_USAGE_NONE;
905
906 state->attachments[i].input_aux_usage = ISL_AUX_USAGE_NONE;
907 }
908
909 if (need_input_attachment_state(&pass->attachments[i])) {
910 anv_image_fill_surface_state(cmd_buffer->device,
911 iview->image,
912 VK_IMAGE_ASPECT_COLOR_BIT,
913 &iview->planes[0].isl,
914 ISL_SURF_USAGE_TEXTURE_BIT,
915 state->attachments[i].input_aux_usage,
916 &clear_color,
917 0,
918 &state->attachments[i].input,
919 NULL);
920
921 add_image_view_relocs(cmd_buffer, iview, 0,
922 state->attachments[i].input);
923 }
924 }
925 }
926
927 return VK_SUCCESS;
928 }
929
930 VkResult
931 genX(BeginCommandBuffer)(
932 VkCommandBuffer commandBuffer,
933 const VkCommandBufferBeginInfo* pBeginInfo)
934 {
935 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
936
937 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
938 * command buffer's state. Otherwise, we must *reset* its state. In both
939 * cases we reset it.
940 *
941 * From the Vulkan 1.0 spec:
942 *
943 * If a command buffer is in the executable state and the command buffer
944 * was allocated from a command pool with the
945 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
946 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
947 * as if vkResetCommandBuffer had been called with
948 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
949 * the command buffer in the recording state.
950 */
951 anv_cmd_buffer_reset(cmd_buffer);
952
953 cmd_buffer->usage_flags = pBeginInfo->flags;
954
955 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
956 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
957
958 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
959
960 /* We sometimes store vertex data in the dynamic state buffer for blorp
961 * operations and our dynamic state stream may re-use data from previous
962 * command buffers. In order to prevent stale cache data, we flush the VF
963 * cache. We could do this on every blorp call but that's not really
964 * needed as all of the data will get written by the CPU prior to the GPU
965 * executing anything. The chances are fairly high that they will use
966 * blorp at least once per primary command buffer so it shouldn't be
967 * wasted.
968 */
969 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
970 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
971
972 VkResult result = VK_SUCCESS;
973 if (cmd_buffer->usage_flags &
974 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
975 assert(pBeginInfo->pInheritanceInfo);
976 cmd_buffer->state.pass =
977 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
978 cmd_buffer->state.subpass =
979 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
980
981 /* This is optional in the inheritance info. */
982 cmd_buffer->state.framebuffer =
983 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
984
985 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
986 cmd_buffer->state.pass, NULL);
987
988 /* Record that HiZ is enabled if we can. */
989 if (cmd_buffer->state.framebuffer) {
990 const struct anv_image_view * const iview =
991 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
992
993 if (iview) {
994 VkImageLayout layout =
995 cmd_buffer->state.subpass->depth_stencil_attachment.layout;
996
997 enum isl_aux_usage aux_usage =
998 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
999 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1000
1001 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1002 }
1003 }
1004
1005 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1006 }
1007
1008 return result;
1009 }
1010
1011 VkResult
1012 genX(EndCommandBuffer)(
1013 VkCommandBuffer commandBuffer)
1014 {
1015 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1016
1017 if (anv_batch_has_error(&cmd_buffer->batch))
1018 return cmd_buffer->batch.status;
1019
1020 /* We want every command buffer to start with the PMA fix in a known state,
1021 * so we disable it at the end of the command buffer.
1022 */
1023 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1024
1025 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1026
1027 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1028
1029 return VK_SUCCESS;
1030 }
1031
1032 void
1033 genX(CmdExecuteCommands)(
1034 VkCommandBuffer commandBuffer,
1035 uint32_t commandBufferCount,
1036 const VkCommandBuffer* pCmdBuffers)
1037 {
1038 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1039
1040 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1041
1042 if (anv_batch_has_error(&primary->batch))
1043 return;
1044
1045 /* The secondary command buffers will assume that the PMA fix is disabled
1046 * when they begin executing. Make sure this is true.
1047 */
1048 genX(cmd_buffer_enable_pma_fix)(primary, false);
1049
1050 /* The secondary command buffer doesn't know which textures etc. have been
1051 * flushed prior to their execution. Apply those flushes now.
1052 */
1053 genX(cmd_buffer_apply_pipe_flushes)(primary);
1054
1055 for (uint32_t i = 0; i < commandBufferCount; i++) {
1056 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1057
1058 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1059 assert(!anv_batch_has_error(&secondary->batch));
1060
1061 if (secondary->usage_flags &
1062 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1063 /* If we're continuing a render pass from the primary, we need to
1064 * copy the surface states for the current subpass into the storage
1065 * we allocated for them in BeginCommandBuffer.
1066 */
1067 struct anv_bo *ss_bo =
1068 &primary->device->surface_state_pool.block_pool.bo;
1069 struct anv_state src_state = primary->state.render_pass_states;
1070 struct anv_state dst_state = secondary->state.render_pass_states;
1071 assert(src_state.alloc_size == dst_state.alloc_size);
1072
1073 genX(cmd_buffer_so_memcpy)(primary, ss_bo, dst_state.offset,
1074 ss_bo, src_state.offset,
1075 src_state.alloc_size);
1076 }
1077
1078 anv_cmd_buffer_add_secondary(primary, secondary);
1079 }
1080
1081 /* The secondary may have selected a different pipeline (3D or compute) and
1082 * may have changed the current L3$ configuration. Reset our tracking
1083 * variables to invalid values to ensure that we re-emit these in the case
1084 * where we do any draws or compute dispatches from the primary after the
1085 * secondary has returned.
1086 */
1087 primary->state.current_pipeline = UINT32_MAX;
1088 primary->state.current_l3_config = NULL;
1089
1090 /* Each of the secondary command buffers will use its own state base
1091 * address. We need to re-emit state base address for the primary after
1092 * all of the secondaries are done.
1093 *
1094 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1095 * address calls?
1096 */
1097 genX(cmd_buffer_emit_state_base_address)(primary);
1098 }
1099
1100 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1101 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1102 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1103
1104 /**
1105 * Program the hardware to use the specified L3 configuration.
1106 */
1107 void
1108 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1109 const struct gen_l3_config *cfg)
1110 {
1111 assert(cfg);
1112 if (cfg == cmd_buffer->state.current_l3_config)
1113 return;
1114
1115 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1116 intel_logd("L3 config transition: ");
1117 gen_dump_l3_config(cfg, stderr);
1118 }
1119
1120 const bool has_slm = cfg->n[GEN_L3P_SLM];
1121
1122 /* According to the hardware docs, the L3 partitioning can only be changed
1123 * while the pipeline is completely drained and the caches are flushed,
1124 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1125 */
1126 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1127 pc.DCFlushEnable = true;
1128 pc.PostSyncOperation = NoWrite;
1129 pc.CommandStreamerStallEnable = true;
1130 }
1131
1132 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1133 * invalidation of the relevant caches. Note that because RO invalidation
1134 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1135 * command is processed by the CS) we cannot combine it with the previous
1136 * stalling flush as the hardware documentation suggests, because that
1137 * would cause the CS to stall on previous rendering *after* RO
1138 * invalidation and wouldn't prevent the RO caches from being polluted by
1139 * concurrent rendering before the stall completes. This intentionally
1140 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1141 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1142 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1143 * already guarantee that there is no concurrent GPGPU kernel execution
1144 * (see SKL HSD 2132585).
1145 */
1146 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1147 pc.TextureCacheInvalidationEnable = true;
1148 pc.ConstantCacheInvalidationEnable = true;
1149 pc.InstructionCacheInvalidateEnable = true;
1150 pc.StateCacheInvalidationEnable = true;
1151 pc.PostSyncOperation = NoWrite;
1152 }
1153
1154 /* Now send a third stalling flush to make sure that invalidation is
1155 * complete when the L3 configuration registers are modified.
1156 */
1157 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1158 pc.DCFlushEnable = true;
1159 pc.PostSyncOperation = NoWrite;
1160 pc.CommandStreamerStallEnable = true;
1161 }
1162
1163 #if GEN_GEN >= 8
1164
1165 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1166
1167 uint32_t l3cr;
1168 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1169 .SLMEnable = has_slm,
1170 .URBAllocation = cfg->n[GEN_L3P_URB],
1171 .ROAllocation = cfg->n[GEN_L3P_RO],
1172 .DCAllocation = cfg->n[GEN_L3P_DC],
1173 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1174
1175 /* Set up the L3 partitioning. */
1176 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1177
1178 #else
1179
1180 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1181 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1182 cfg->n[GEN_L3P_ALL];
1183 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1184 cfg->n[GEN_L3P_ALL];
1185 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1186 cfg->n[GEN_L3P_ALL];
1187
1188 assert(!cfg->n[GEN_L3P_ALL]);
1189
1190 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1191 * the matching space on the remaining banks has to be allocated to a
1192 * client (URB for all validated configurations) set to the
1193 * lower-bandwidth 2-bank address hashing mode.
1194 */
1195 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1196 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1197 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1198
1199 /* Minimum number of ways that can be allocated to the URB. */
1200 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1201 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1202
1203 uint32_t l3sqcr1, l3cr2, l3cr3;
1204 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1205 .ConvertDC_UC = !has_dc,
1206 .ConvertIS_UC = !has_is,
1207 .ConvertC_UC = !has_c,
1208 .ConvertT_UC = !has_t);
1209 l3sqcr1 |=
1210 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1211 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1212 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1213
1214 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1215 .SLMEnable = has_slm,
1216 .URBLowBandwidth = urb_low_bw,
1217 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1218 #if !GEN_IS_HASWELL
1219 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1220 #endif
1221 .ROAllocation = cfg->n[GEN_L3P_RO],
1222 .DCAllocation = cfg->n[GEN_L3P_DC]);
1223
1224 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1225 .ISAllocation = cfg->n[GEN_L3P_IS],
1226 .ISLowBandwidth = 0,
1227 .CAllocation = cfg->n[GEN_L3P_C],
1228 .CLowBandwidth = 0,
1229 .TAllocation = cfg->n[GEN_L3P_T],
1230 .TLowBandwidth = 0);
1231
1232 /* Set up the L3 partitioning. */
1233 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1234 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1235 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1236
1237 #if GEN_IS_HASWELL
1238 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1239 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1240 * them disabled to avoid crashing the system hard.
1241 */
1242 uint32_t scratch1, chicken3;
1243 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1244 .L3AtomicDisable = !has_dc);
1245 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1246 .L3AtomicDisableMask = true,
1247 .L3AtomicDisable = !has_dc);
1248 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1249 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1250 }
1251 #endif
1252
1253 #endif
1254
1255 cmd_buffer->state.current_l3_config = cfg;
1256 }
1257
1258 void
1259 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1260 {
1261 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1262
1263 /* Flushes are pipelined while invalidations are handled immediately.
1264 * Therefore, if we're flushing anything then we need to schedule a stall
1265 * before any invalidations can happen.
1266 */
1267 if (bits & ANV_PIPE_FLUSH_BITS)
1268 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1269
1270 /* If we're going to do an invalidate and we have a pending CS stall that
1271 * has yet to be resolved, we do the CS stall now.
1272 */
1273 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1274 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1275 bits |= ANV_PIPE_CS_STALL_BIT;
1276 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1277 }
1278
1279 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1280 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1281 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1282 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1283 pipe.RenderTargetCacheFlushEnable =
1284 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1285
1286 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1287 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1288 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1289
1290 /*
1291 * According to the Broadwell documentation, any PIPE_CONTROL with the
1292 * "Command Streamer Stall" bit set must also have another bit set,
1293 * with five different options:
1294 *
1295 * - Render Target Cache Flush
1296 * - Depth Cache Flush
1297 * - Stall at Pixel Scoreboard
1298 * - Post-Sync Operation
1299 * - Depth Stall
1300 * - DC Flush Enable
1301 *
1302 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1303 * mesa and it seems to work fine. The choice is fairly arbitrary.
1304 */
1305 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1306 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1307 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1308 pipe.StallAtPixelScoreboard = true;
1309 }
1310
1311 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1312 }
1313
1314 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1315 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1316 pipe.StateCacheInvalidationEnable =
1317 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1318 pipe.ConstantCacheInvalidationEnable =
1319 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1320 pipe.VFCacheInvalidationEnable =
1321 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1322 pipe.TextureCacheInvalidationEnable =
1323 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1324 pipe.InstructionCacheInvalidateEnable =
1325 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1326 }
1327
1328 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1329 }
1330
1331 cmd_buffer->state.pending_pipe_bits = bits;
1332 }
1333
1334 void genX(CmdPipelineBarrier)(
1335 VkCommandBuffer commandBuffer,
1336 VkPipelineStageFlags srcStageMask,
1337 VkPipelineStageFlags destStageMask,
1338 VkBool32 byRegion,
1339 uint32_t memoryBarrierCount,
1340 const VkMemoryBarrier* pMemoryBarriers,
1341 uint32_t bufferMemoryBarrierCount,
1342 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1343 uint32_t imageMemoryBarrierCount,
1344 const VkImageMemoryBarrier* pImageMemoryBarriers)
1345 {
1346 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1347
1348 /* XXX: Right now, we're really dumb and just flush whatever categories
1349 * the app asks for. One of these days we may make this a bit better
1350 * but right now that's all the hardware allows for in most areas.
1351 */
1352 VkAccessFlags src_flags = 0;
1353 VkAccessFlags dst_flags = 0;
1354
1355 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1356 src_flags |= pMemoryBarriers[i].srcAccessMask;
1357 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1358 }
1359
1360 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1361 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1362 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1363 }
1364
1365 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1366 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1367 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1368 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1369 const VkImageSubresourceRange *range =
1370 &pImageMemoryBarriers[i].subresourceRange;
1371
1372 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1373 transition_depth_buffer(cmd_buffer, image,
1374 pImageMemoryBarriers[i].oldLayout,
1375 pImageMemoryBarriers[i].newLayout);
1376 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1377 VkImageAspectFlags color_aspects =
1378 anv_image_expand_aspects(image, range->aspectMask);
1379 uint32_t aspect_bit;
1380
1381 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1382 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1383 range->baseMipLevel,
1384 anv_get_levelCount(image, range),
1385 range->baseArrayLayer,
1386 anv_get_layerCount(image, range),
1387 pImageMemoryBarriers[i].oldLayout,
1388 pImageMemoryBarriers[i].newLayout);
1389 }
1390 }
1391 }
1392
1393 cmd_buffer->state.pending_pipe_bits |=
1394 anv_pipe_flush_bits_for_access_flags(src_flags) |
1395 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1396 }
1397
1398 static void
1399 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1400 {
1401 VkShaderStageFlags stages =
1402 cmd_buffer->state.gfx.base.pipeline->active_stages;
1403
1404 /* In order to avoid thrash, we assume that vertex and fragment stages
1405 * always exist. In the rare case where one is missing *and* the other
1406 * uses push concstants, this may be suboptimal. However, avoiding stalls
1407 * seems more important.
1408 */
1409 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1410
1411 if (stages == cmd_buffer->state.push_constant_stages)
1412 return;
1413
1414 #if GEN_GEN >= 8
1415 const unsigned push_constant_kb = 32;
1416 #elif GEN_IS_HASWELL
1417 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1418 #else
1419 const unsigned push_constant_kb = 16;
1420 #endif
1421
1422 const unsigned num_stages =
1423 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1424 unsigned size_per_stage = push_constant_kb / num_stages;
1425
1426 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1427 * units of 2KB. Incidentally, these are the same platforms that have
1428 * 32KB worth of push constant space.
1429 */
1430 if (push_constant_kb == 32)
1431 size_per_stage &= ~1u;
1432
1433 uint32_t kb_used = 0;
1434 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1435 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1436 anv_batch_emit(&cmd_buffer->batch,
1437 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1438 alloc._3DCommandSubOpcode = 18 + i;
1439 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1440 alloc.ConstantBufferSize = push_size;
1441 }
1442 kb_used += push_size;
1443 }
1444
1445 anv_batch_emit(&cmd_buffer->batch,
1446 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1447 alloc.ConstantBufferOffset = kb_used;
1448 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1449 }
1450
1451 cmd_buffer->state.push_constant_stages = stages;
1452
1453 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1454 *
1455 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1456 * the next 3DPRIMITIVE command after programming the
1457 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1458 *
1459 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1460 * pipeline setup, we need to dirty push constants.
1461 */
1462 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1463 }
1464
1465 static const struct anv_descriptor *
1466 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1467 const struct anv_pipeline_binding *binding)
1468 {
1469 assert(binding->set < MAX_SETS);
1470 const struct anv_descriptor_set *set =
1471 pipe_state->descriptors[binding->set];
1472 const uint32_t offset =
1473 set->layout->binding[binding->binding].descriptor_index;
1474 return &set->descriptors[offset + binding->index];
1475 }
1476
1477 static uint32_t
1478 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1479 const struct anv_pipeline *pipeline,
1480 const struct anv_pipeline_binding *binding)
1481 {
1482 assert(binding->set < MAX_SETS);
1483 const struct anv_descriptor_set *set =
1484 pipe_state->descriptors[binding->set];
1485
1486 uint32_t dynamic_offset_idx =
1487 pipeline->layout->set[binding->set].dynamic_offset_start +
1488 set->layout->binding[binding->binding].dynamic_offset_index +
1489 binding->index;
1490
1491 return pipe_state->dynamic_offsets[dynamic_offset_idx];
1492 }
1493
1494 static VkResult
1495 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1496 gl_shader_stage stage,
1497 struct anv_state *bt_state)
1498 {
1499 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1500 struct anv_cmd_pipeline_state *pipe_state;
1501 struct anv_pipeline *pipeline;
1502 uint32_t bias, state_offset;
1503
1504 switch (stage) {
1505 case MESA_SHADER_COMPUTE:
1506 pipe_state = &cmd_buffer->state.compute.base;
1507 bias = 1;
1508 break;
1509 default:
1510 pipe_state = &cmd_buffer->state.gfx.base;
1511 bias = 0;
1512 break;
1513 }
1514 pipeline = pipe_state->pipeline;
1515
1516 if (!anv_pipeline_has_stage(pipeline, stage)) {
1517 *bt_state = (struct anv_state) { 0, };
1518 return VK_SUCCESS;
1519 }
1520
1521 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1522 if (bias + map->surface_count == 0) {
1523 *bt_state = (struct anv_state) { 0, };
1524 return VK_SUCCESS;
1525 }
1526
1527 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1528 bias + map->surface_count,
1529 &state_offset);
1530 uint32_t *bt_map = bt_state->map;
1531
1532 if (bt_state->map == NULL)
1533 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1534
1535 if (stage == MESA_SHADER_COMPUTE &&
1536 get_cs_prog_data(pipeline)->uses_num_work_groups) {
1537 struct anv_bo *bo = cmd_buffer->state.num_workgroups_bo;
1538 uint32_t bo_offset = cmd_buffer->state.num_workgroups_offset;
1539
1540 struct anv_state surface_state;
1541 surface_state =
1542 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1543
1544 const enum isl_format format =
1545 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1546 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1547 format, bo_offset, 12, 1);
1548
1549 bt_map[0] = surface_state.offset + state_offset;
1550 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
1551 }
1552
1553 if (map->surface_count == 0)
1554 goto out;
1555
1556 if (map->image_count > 0) {
1557 VkResult result =
1558 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1559 if (result != VK_SUCCESS)
1560 return result;
1561
1562 cmd_buffer->state.push_constants_dirty |= 1 << stage;
1563 }
1564
1565 uint32_t image = 0;
1566 for (uint32_t s = 0; s < map->surface_count; s++) {
1567 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
1568
1569 struct anv_state surface_state;
1570
1571 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
1572 /* Color attachment binding */
1573 assert(stage == MESA_SHADER_FRAGMENT);
1574 assert(binding->binding == 0);
1575 if (binding->index < subpass->color_count) {
1576 const unsigned att =
1577 subpass->color_attachments[binding->index].attachment;
1578
1579 /* From the Vulkan 1.0.46 spec:
1580 *
1581 * "If any color or depth/stencil attachments are
1582 * VK_ATTACHMENT_UNUSED, then no writes occur for those
1583 * attachments."
1584 */
1585 if (att == VK_ATTACHMENT_UNUSED) {
1586 surface_state = cmd_buffer->state.null_surface_state;
1587 } else {
1588 surface_state = cmd_buffer->state.attachments[att].color.state;
1589 }
1590 } else {
1591 surface_state = cmd_buffer->state.null_surface_state;
1592 }
1593
1594 bt_map[bias + s] = surface_state.offset + state_offset;
1595 continue;
1596 }
1597
1598 const struct anv_descriptor *desc =
1599 anv_descriptor_for_binding(pipe_state, binding);
1600
1601 switch (desc->type) {
1602 case VK_DESCRIPTOR_TYPE_SAMPLER:
1603 /* Nothing for us to do here */
1604 continue;
1605
1606 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1607 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
1608 struct anv_surface_state sstate =
1609 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1610 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1611 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1612 surface_state = sstate.state;
1613 assert(surface_state.alloc_size);
1614 add_image_view_relocs(cmd_buffer, desc->image_view,
1615 binding->plane, sstate);
1616 break;
1617 }
1618 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1619 assert(stage == MESA_SHADER_FRAGMENT);
1620 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
1621 /* For depth and stencil input attachments, we treat it like any
1622 * old texture that a user may have bound.
1623 */
1624 struct anv_surface_state sstate =
1625 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1626 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1627 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1628 surface_state = sstate.state;
1629 assert(surface_state.alloc_size);
1630 add_image_view_relocs(cmd_buffer, desc->image_view,
1631 binding->plane, sstate);
1632 } else {
1633 /* For color input attachments, we create the surface state at
1634 * vkBeginRenderPass time so that we can include aux and clear
1635 * color information.
1636 */
1637 assert(binding->input_attachment_index < subpass->input_count);
1638 const unsigned subpass_att = binding->input_attachment_index;
1639 const unsigned att = subpass->input_attachments[subpass_att].attachment;
1640 surface_state = cmd_buffer->state.attachments[att].input.state;
1641 }
1642 break;
1643
1644 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1645 struct anv_surface_state sstate = (binding->write_only)
1646 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
1647 : desc->image_view->planes[binding->plane].storage_surface_state;
1648 surface_state = sstate.state;
1649 assert(surface_state.alloc_size);
1650 add_image_view_relocs(cmd_buffer, desc->image_view,
1651 binding->plane, sstate);
1652
1653 struct brw_image_param *image_param =
1654 &cmd_buffer->state.push_constants[stage]->images[image++];
1655
1656 *image_param = desc->image_view->planes[binding->plane].storage_image_param;
1657 image_param->surface_idx = bias + s;
1658 break;
1659 }
1660
1661 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1662 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1663 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1664 surface_state = desc->buffer_view->surface_state;
1665 assert(surface_state.alloc_size);
1666 add_surface_state_reloc(cmd_buffer, surface_state,
1667 desc->buffer_view->bo,
1668 desc->buffer_view->offset);
1669 break;
1670
1671 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1672 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1673 /* Compute the offset within the buffer */
1674 uint32_t dynamic_offset =
1675 dynamic_offset_for_binding(pipe_state, pipeline, binding);
1676 uint64_t offset = desc->offset + dynamic_offset;
1677 /* Clamp to the buffer size */
1678 offset = MIN2(offset, desc->buffer->size);
1679 /* Clamp the range to the buffer size */
1680 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
1681
1682 surface_state =
1683 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
1684 enum isl_format format =
1685 anv_isl_format_for_descriptor_type(desc->type);
1686
1687 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1688 format, offset, range, 1);
1689 add_surface_state_reloc(cmd_buffer, surface_state,
1690 desc->buffer->bo,
1691 desc->buffer->offset + offset);
1692 break;
1693 }
1694
1695 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1696 surface_state = (binding->write_only)
1697 ? desc->buffer_view->writeonly_storage_surface_state
1698 : desc->buffer_view->storage_surface_state;
1699 assert(surface_state.alloc_size);
1700 add_surface_state_reloc(cmd_buffer, surface_state,
1701 desc->buffer_view->bo,
1702 desc->buffer_view->offset);
1703
1704 struct brw_image_param *image_param =
1705 &cmd_buffer->state.push_constants[stage]->images[image++];
1706
1707 *image_param = desc->buffer_view->storage_image_param;
1708 image_param->surface_idx = bias + s;
1709 break;
1710
1711 default:
1712 assert(!"Invalid descriptor type");
1713 continue;
1714 }
1715
1716 bt_map[bias + s] = surface_state.offset + state_offset;
1717 }
1718 assert(image == map->image_count);
1719
1720 out:
1721 anv_state_flush(cmd_buffer->device, *bt_state);
1722
1723 return VK_SUCCESS;
1724 }
1725
1726 static VkResult
1727 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1728 gl_shader_stage stage,
1729 struct anv_state *state)
1730 {
1731 struct anv_cmd_pipeline_state *pipe_state =
1732 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
1733 &cmd_buffer->state.gfx.base;
1734 struct anv_pipeline *pipeline = pipe_state->pipeline;
1735
1736 if (!anv_pipeline_has_stage(pipeline, stage)) {
1737 *state = (struct anv_state) { 0, };
1738 return VK_SUCCESS;
1739 }
1740
1741 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1742 if (map->sampler_count == 0) {
1743 *state = (struct anv_state) { 0, };
1744 return VK_SUCCESS;
1745 }
1746
1747 uint32_t size = map->sampler_count * 16;
1748 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
1749
1750 if (state->map == NULL)
1751 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1752
1753 for (uint32_t s = 0; s < map->sampler_count; s++) {
1754 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
1755 const struct anv_descriptor *desc =
1756 anv_descriptor_for_binding(pipe_state, binding);
1757
1758 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
1759 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
1760 continue;
1761
1762 struct anv_sampler *sampler = desc->sampler;
1763
1764 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
1765 * happens to be zero.
1766 */
1767 if (sampler == NULL)
1768 continue;
1769
1770 memcpy(state->map + (s * 16),
1771 sampler->state[binding->plane], sizeof(sampler->state[0]));
1772 }
1773
1774 anv_state_flush(cmd_buffer->device, *state);
1775
1776 return VK_SUCCESS;
1777 }
1778
1779 static uint32_t
1780 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
1781 {
1782 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
1783
1784 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
1785 pipeline->active_stages;
1786
1787 VkResult result = VK_SUCCESS;
1788 anv_foreach_stage(s, dirty) {
1789 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1790 if (result != VK_SUCCESS)
1791 break;
1792 result = emit_binding_table(cmd_buffer, s,
1793 &cmd_buffer->state.binding_tables[s]);
1794 if (result != VK_SUCCESS)
1795 break;
1796 }
1797
1798 if (result != VK_SUCCESS) {
1799 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
1800
1801 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
1802 if (result != VK_SUCCESS)
1803 return 0;
1804
1805 /* Re-emit state base addresses so we get the new surface state base
1806 * address before we start emitting binding tables etc.
1807 */
1808 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1809
1810 /* Re-emit all active binding tables */
1811 dirty |= pipeline->active_stages;
1812 anv_foreach_stage(s, dirty) {
1813 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1814 if (result != VK_SUCCESS) {
1815 anv_batch_set_error(&cmd_buffer->batch, result);
1816 return 0;
1817 }
1818 result = emit_binding_table(cmd_buffer, s,
1819 &cmd_buffer->state.binding_tables[s]);
1820 if (result != VK_SUCCESS) {
1821 anv_batch_set_error(&cmd_buffer->batch, result);
1822 return 0;
1823 }
1824 }
1825 }
1826
1827 cmd_buffer->state.descriptors_dirty &= ~dirty;
1828
1829 return dirty;
1830 }
1831
1832 static void
1833 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
1834 uint32_t stages)
1835 {
1836 static const uint32_t sampler_state_opcodes[] = {
1837 [MESA_SHADER_VERTEX] = 43,
1838 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
1839 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
1840 [MESA_SHADER_GEOMETRY] = 46,
1841 [MESA_SHADER_FRAGMENT] = 47,
1842 [MESA_SHADER_COMPUTE] = 0,
1843 };
1844
1845 static const uint32_t binding_table_opcodes[] = {
1846 [MESA_SHADER_VERTEX] = 38,
1847 [MESA_SHADER_TESS_CTRL] = 39,
1848 [MESA_SHADER_TESS_EVAL] = 40,
1849 [MESA_SHADER_GEOMETRY] = 41,
1850 [MESA_SHADER_FRAGMENT] = 42,
1851 [MESA_SHADER_COMPUTE] = 0,
1852 };
1853
1854 anv_foreach_stage(s, stages) {
1855 assert(s < ARRAY_SIZE(binding_table_opcodes));
1856 assert(binding_table_opcodes[s] > 0);
1857
1858 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
1859 anv_batch_emit(&cmd_buffer->batch,
1860 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
1861 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
1862 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
1863 }
1864 }
1865
1866 /* Always emit binding table pointers if we're asked to, since on SKL
1867 * this is what flushes push constants. */
1868 anv_batch_emit(&cmd_buffer->batch,
1869 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
1870 btp._3DCommandSubOpcode = binding_table_opcodes[s];
1871 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
1872 }
1873 }
1874 }
1875
1876 static void
1877 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
1878 VkShaderStageFlags dirty_stages)
1879 {
1880 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
1881 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
1882
1883 static const uint32_t push_constant_opcodes[] = {
1884 [MESA_SHADER_VERTEX] = 21,
1885 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
1886 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
1887 [MESA_SHADER_GEOMETRY] = 22,
1888 [MESA_SHADER_FRAGMENT] = 23,
1889 [MESA_SHADER_COMPUTE] = 0,
1890 };
1891
1892 VkShaderStageFlags flushed = 0;
1893
1894 anv_foreach_stage(stage, dirty_stages) {
1895 assert(stage < ARRAY_SIZE(push_constant_opcodes));
1896 assert(push_constant_opcodes[stage] > 0);
1897
1898 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
1899 c._3DCommandSubOpcode = push_constant_opcodes[stage];
1900
1901 if (anv_pipeline_has_stage(pipeline, stage)) {
1902 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1903 const struct brw_stage_prog_data *prog_data =
1904 pipeline->shaders[stage]->prog_data;
1905 const struct anv_pipeline_bind_map *bind_map =
1906 &pipeline->shaders[stage]->bind_map;
1907
1908 /* The Skylake PRM contains the following restriction:
1909 *
1910 * "The driver must ensure The following case does not occur
1911 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
1912 * buffer 3 read length equal to zero committed followed by a
1913 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
1914 * zero committed."
1915 *
1916 * To avoid this, we program the buffers in the highest slots.
1917 * This way, slot 0 is only used if slot 3 is also used.
1918 */
1919 int n = 3;
1920
1921 for (int i = 3; i >= 0; i--) {
1922 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
1923 if (range->length == 0)
1924 continue;
1925
1926 const unsigned surface =
1927 prog_data->binding_table.ubo_start + range->block;
1928
1929 assert(surface <= bind_map->surface_count);
1930 const struct anv_pipeline_binding *binding =
1931 &bind_map->surface_to_descriptor[surface];
1932
1933 const struct anv_descriptor *desc =
1934 anv_descriptor_for_binding(&gfx_state->base, binding);
1935
1936 struct anv_address read_addr;
1937 uint32_t read_len;
1938 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
1939 read_len = MIN2(range->length,
1940 DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
1941 read_addr = (struct anv_address) {
1942 .bo = desc->buffer_view->bo,
1943 .offset = desc->buffer_view->offset +
1944 range->start * 32,
1945 };
1946 } else {
1947 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
1948
1949 uint32_t dynamic_offset =
1950 dynamic_offset_for_binding(&gfx_state->base,
1951 pipeline, binding);
1952 uint32_t buf_offset =
1953 MIN2(desc->offset + dynamic_offset, desc->buffer->size);
1954 uint32_t buf_range =
1955 MIN2(desc->range, desc->buffer->size - buf_offset);
1956
1957 read_len = MIN2(range->length,
1958 DIV_ROUND_UP(buf_range, 32) - range->start);
1959 read_addr = (struct anv_address) {
1960 .bo = desc->buffer->bo,
1961 .offset = desc->buffer->offset + buf_offset +
1962 range->start * 32,
1963 };
1964 }
1965
1966 if (read_len > 0) {
1967 c.ConstantBody.Buffer[n] = read_addr;
1968 c.ConstantBody.ReadLength[n] = read_len;
1969 n--;
1970 }
1971 }
1972
1973 struct anv_state state =
1974 anv_cmd_buffer_push_constants(cmd_buffer, stage);
1975
1976 if (state.alloc_size > 0) {
1977 c.ConstantBody.Buffer[n] = (struct anv_address) {
1978 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
1979 .offset = state.offset,
1980 };
1981 c.ConstantBody.ReadLength[n] =
1982 DIV_ROUND_UP(state.alloc_size, 32);
1983 }
1984 #else
1985 /* For Ivy Bridge, the push constants packets have a different
1986 * rule that would require us to iterate in the other direction
1987 * and possibly mess around with dynamic state base address.
1988 * Don't bother; just emit regular push constants at n = 0.
1989 */
1990 struct anv_state state =
1991 anv_cmd_buffer_push_constants(cmd_buffer, stage);
1992
1993 if (state.alloc_size > 0) {
1994 c.ConstantBody.Buffer[0].offset = state.offset,
1995 c.ConstantBody.ReadLength[0] =
1996 DIV_ROUND_UP(state.alloc_size, 32);
1997 }
1998 #endif
1999 }
2000 }
2001
2002 flushed |= mesa_to_vk_shader_stage(stage);
2003 }
2004
2005 cmd_buffer->state.push_constants_dirty &= ~flushed;
2006 }
2007
2008 void
2009 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2010 {
2011 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2012 uint32_t *p;
2013
2014 uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used;
2015
2016 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2017
2018 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2019
2020 genX(flush_pipeline_select_3d)(cmd_buffer);
2021
2022 if (vb_emit) {
2023 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2024 const uint32_t num_dwords = 1 + num_buffers * 4;
2025
2026 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2027 GENX(3DSTATE_VERTEX_BUFFERS));
2028 uint32_t vb, i = 0;
2029 for_each_bit(vb, vb_emit) {
2030 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2031 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2032
2033 struct GENX(VERTEX_BUFFER_STATE) state = {
2034 .VertexBufferIndex = vb,
2035
2036 #if GEN_GEN >= 8
2037 .MemoryObjectControlState = GENX(MOCS),
2038 #else
2039 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
2040 /* Our implementation of VK_KHR_multiview uses instancing to draw
2041 * the different views. If the client asks for instancing, we
2042 * need to use the Instance Data Step Rate to ensure that we
2043 * repeat the client's per-instance data once for each view.
2044 */
2045 .InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass),
2046 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2047 #endif
2048
2049 .AddressModifyEnable = true,
2050 .BufferPitch = pipeline->binding_stride[vb],
2051 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
2052
2053 #if GEN_GEN >= 8
2054 .BufferSize = buffer->size - offset
2055 #else
2056 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
2057 #endif
2058 };
2059
2060 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2061 i++;
2062 }
2063 }
2064
2065 cmd_buffer->state.vb_dirty &= ~vb_emit;
2066
2067 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_PIPELINE) {
2068 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2069
2070 /* The exact descriptor layout is pulled from the pipeline, so we need
2071 * to re-emit binding tables on every pipeline change.
2072 */
2073 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2074
2075 /* If the pipeline changed, we may need to re-allocate push constant
2076 * space in the URB.
2077 */
2078 cmd_buffer_alloc_push_constants(cmd_buffer);
2079 }
2080
2081 #if GEN_GEN <= 7
2082 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2083 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2084 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2085 *
2086 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2087 * stall needs to be sent just prior to any 3DSTATE_VS,
2088 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2089 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2090 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2091 * PIPE_CONTROL needs to be sent before any combination of VS
2092 * associated 3DSTATE."
2093 */
2094 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2095 pc.DepthStallEnable = true;
2096 pc.PostSyncOperation = WriteImmediateData;
2097 pc.Address =
2098 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2099 }
2100 }
2101 #endif
2102
2103 /* Render targets live in the same binding table as fragment descriptors */
2104 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2105 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2106
2107 /* We emit the binding tables and sampler tables first, then emit push
2108 * constants and then finally emit binding table and sampler table
2109 * pointers. It has to happen in this order, since emitting the binding
2110 * tables may change the push constants (in case of storage images). After
2111 * emitting push constants, on SKL+ we have to emit the corresponding
2112 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2113 */
2114 uint32_t dirty = 0;
2115 if (cmd_buffer->state.descriptors_dirty)
2116 dirty = flush_descriptor_sets(cmd_buffer);
2117
2118 if (dirty || cmd_buffer->state.push_constants_dirty) {
2119 /* Because we're pushing UBOs, we have to push whenever either
2120 * descriptors or push constants is dirty.
2121 */
2122 dirty |= cmd_buffer->state.push_constants_dirty;
2123 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2124 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2125 }
2126
2127 if (dirty)
2128 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2129
2130 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2131 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2132
2133 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2134 ANV_CMD_DIRTY_PIPELINE)) {
2135 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2136 pipeline->depth_clamp_enable);
2137 }
2138
2139 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
2140 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2141
2142 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2143
2144 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2145 }
2146
2147 static void
2148 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2149 struct anv_bo *bo, uint32_t offset,
2150 uint32_t size, uint32_t index)
2151 {
2152 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2153 GENX(3DSTATE_VERTEX_BUFFERS));
2154
2155 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2156 &(struct GENX(VERTEX_BUFFER_STATE)) {
2157 .VertexBufferIndex = index,
2158 .AddressModifyEnable = true,
2159 .BufferPitch = 0,
2160 #if (GEN_GEN >= 8)
2161 .MemoryObjectControlState = GENX(MOCS),
2162 .BufferStartingAddress = { bo, offset },
2163 .BufferSize = size
2164 #else
2165 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2166 .BufferStartingAddress = { bo, offset },
2167 .EndAddress = { bo, offset + size },
2168 #endif
2169 });
2170 }
2171
2172 static void
2173 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2174 struct anv_bo *bo, uint32_t offset)
2175 {
2176 emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
2177 }
2178
2179 static void
2180 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2181 uint32_t base_vertex, uint32_t base_instance)
2182 {
2183 struct anv_state id_state =
2184 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2185
2186 ((uint32_t *)id_state.map)[0] = base_vertex;
2187 ((uint32_t *)id_state.map)[1] = base_instance;
2188
2189 anv_state_flush(cmd_buffer->device, id_state);
2190
2191 emit_base_vertex_instance_bo(cmd_buffer,
2192 &cmd_buffer->device->dynamic_state_pool.block_pool.bo, id_state.offset);
2193 }
2194
2195 static void
2196 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2197 {
2198 struct anv_state state =
2199 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2200
2201 ((uint32_t *)state.map)[0] = draw_index;
2202
2203 anv_state_flush(cmd_buffer->device, state);
2204
2205 emit_vertex_bo(cmd_buffer,
2206 &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2207 state.offset, 4, ANV_DRAWID_VB_INDEX);
2208 }
2209
2210 void genX(CmdDraw)(
2211 VkCommandBuffer commandBuffer,
2212 uint32_t vertexCount,
2213 uint32_t instanceCount,
2214 uint32_t firstVertex,
2215 uint32_t firstInstance)
2216 {
2217 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2218 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2219 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2220
2221 if (anv_batch_has_error(&cmd_buffer->batch))
2222 return;
2223
2224 genX(cmd_buffer_flush_state)(cmd_buffer);
2225
2226 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2227 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2228 if (vs_prog_data->uses_drawid)
2229 emit_draw_index(cmd_buffer, 0);
2230
2231 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2232 * different views. We need to multiply instanceCount by the view count.
2233 */
2234 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2235
2236 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2237 prim.VertexAccessType = SEQUENTIAL;
2238 prim.PrimitiveTopologyType = pipeline->topology;
2239 prim.VertexCountPerInstance = vertexCount;
2240 prim.StartVertexLocation = firstVertex;
2241 prim.InstanceCount = instanceCount;
2242 prim.StartInstanceLocation = firstInstance;
2243 prim.BaseVertexLocation = 0;
2244 }
2245 }
2246
2247 void genX(CmdDrawIndexed)(
2248 VkCommandBuffer commandBuffer,
2249 uint32_t indexCount,
2250 uint32_t instanceCount,
2251 uint32_t firstIndex,
2252 int32_t vertexOffset,
2253 uint32_t firstInstance)
2254 {
2255 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2256 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2257 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2258
2259 if (anv_batch_has_error(&cmd_buffer->batch))
2260 return;
2261
2262 genX(cmd_buffer_flush_state)(cmd_buffer);
2263
2264 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2265 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2266 if (vs_prog_data->uses_drawid)
2267 emit_draw_index(cmd_buffer, 0);
2268
2269 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2270 * different views. We need to multiply instanceCount by the view count.
2271 */
2272 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2273
2274 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2275 prim.VertexAccessType = RANDOM;
2276 prim.PrimitiveTopologyType = pipeline->topology;
2277 prim.VertexCountPerInstance = indexCount;
2278 prim.StartVertexLocation = firstIndex;
2279 prim.InstanceCount = instanceCount;
2280 prim.StartInstanceLocation = firstInstance;
2281 prim.BaseVertexLocation = vertexOffset;
2282 }
2283 }
2284
2285 /* Auto-Draw / Indirect Registers */
2286 #define GEN7_3DPRIM_END_OFFSET 0x2420
2287 #define GEN7_3DPRIM_START_VERTEX 0x2430
2288 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2289 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2290 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2291 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2292
2293 /* MI_MATH only exists on Haswell+ */
2294 #if GEN_IS_HASWELL || GEN_GEN >= 8
2295
2296 static uint32_t
2297 mi_alu(uint32_t opcode, uint32_t op1, uint32_t op2)
2298 {
2299 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
2300 .ALUOpcode = opcode,
2301 .Operand1 = op1,
2302 .Operand2 = op2,
2303 };
2304
2305 uint32_t dw;
2306 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
2307
2308 return dw;
2309 }
2310
2311 #define CS_GPR(n) (0x2600 + (n) * 8)
2312
2313 /* Emit dwords to multiply GPR0 by N */
2314 static void
2315 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2316 {
2317 VK_OUTARRAY_MAKE(out, dw, dw_count);
2318
2319 #define append_alu(opcode, operand1, operand2) \
2320 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2321
2322 assert(N > 0);
2323 unsigned top_bit = 31 - __builtin_clz(N);
2324 for (int i = top_bit - 1; i >= 0; i--) {
2325 /* We get our initial data in GPR0 and we write the final data out to
2326 * GPR0 but we use GPR1 as our scratch register.
2327 */
2328 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2329 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2330
2331 /* Shift the current value left by 1 */
2332 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2333 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2334 append_alu(MI_ALU_ADD, 0, 0);
2335
2336 if (N & (1 << i)) {
2337 /* Store ACCU to R1 and add R0 to R1 */
2338 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2339 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2340 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2341 append_alu(MI_ALU_ADD, 0, 0);
2342 }
2343
2344 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2345 }
2346
2347 #undef append_alu
2348 }
2349
2350 static void
2351 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2352 {
2353 uint32_t num_dwords;
2354 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2355
2356 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2357 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2358 }
2359
2360 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2361
2362 static void
2363 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2364 struct anv_buffer *buffer, uint64_t offset,
2365 bool indexed)
2366 {
2367 struct anv_batch *batch = &cmd_buffer->batch;
2368 struct anv_bo *bo = buffer->bo;
2369 uint32_t bo_offset = buffer->offset + offset;
2370
2371 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2372
2373 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2374 if (view_count > 1) {
2375 #if GEN_IS_HASWELL || GEN_GEN >= 8
2376 emit_lrm(batch, CS_GPR(0), bo, bo_offset + 4);
2377 emit_mul_gpr0(batch, view_count);
2378 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2379 #else
2380 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2381 "MI_MATH is not supported on Ivy Bridge");
2382 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2383 #endif
2384 } else {
2385 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2386 }
2387
2388 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2389
2390 if (indexed) {
2391 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
2392 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
2393 } else {
2394 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
2395 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2396 }
2397 }
2398
2399 void genX(CmdDrawIndirect)(
2400 VkCommandBuffer commandBuffer,
2401 VkBuffer _buffer,
2402 VkDeviceSize offset,
2403 uint32_t drawCount,
2404 uint32_t stride)
2405 {
2406 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2407 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2408 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2409 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2410
2411 if (anv_batch_has_error(&cmd_buffer->batch))
2412 return;
2413
2414 genX(cmd_buffer_flush_state)(cmd_buffer);
2415
2416 for (uint32_t i = 0; i < drawCount; i++) {
2417 struct anv_bo *bo = buffer->bo;
2418 uint32_t bo_offset = buffer->offset + offset;
2419
2420 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2421 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
2422 if (vs_prog_data->uses_drawid)
2423 emit_draw_index(cmd_buffer, i);
2424
2425 load_indirect_parameters(cmd_buffer, buffer, offset, false);
2426
2427 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2428 prim.IndirectParameterEnable = true;
2429 prim.VertexAccessType = SEQUENTIAL;
2430 prim.PrimitiveTopologyType = pipeline->topology;
2431 }
2432
2433 offset += stride;
2434 }
2435 }
2436
2437 void genX(CmdDrawIndexedIndirect)(
2438 VkCommandBuffer commandBuffer,
2439 VkBuffer _buffer,
2440 VkDeviceSize offset,
2441 uint32_t drawCount,
2442 uint32_t stride)
2443 {
2444 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2445 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2446 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2447 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2448
2449 if (anv_batch_has_error(&cmd_buffer->batch))
2450 return;
2451
2452 genX(cmd_buffer_flush_state)(cmd_buffer);
2453
2454 for (uint32_t i = 0; i < drawCount; i++) {
2455 struct anv_bo *bo = buffer->bo;
2456 uint32_t bo_offset = buffer->offset + offset;
2457
2458 /* TODO: We need to stomp base vertex to 0 somehow */
2459 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2460 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
2461 if (vs_prog_data->uses_drawid)
2462 emit_draw_index(cmd_buffer, i);
2463
2464 load_indirect_parameters(cmd_buffer, buffer, offset, true);
2465
2466 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2467 prim.IndirectParameterEnable = true;
2468 prim.VertexAccessType = RANDOM;
2469 prim.PrimitiveTopologyType = pipeline->topology;
2470 }
2471
2472 offset += stride;
2473 }
2474 }
2475
2476 static VkResult
2477 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
2478 {
2479 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2480 struct anv_state surfaces = { 0, }, samplers = { 0, };
2481 VkResult result;
2482
2483 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2484 if (result != VK_SUCCESS) {
2485 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2486
2487 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2488 if (result != VK_SUCCESS)
2489 return result;
2490
2491 /* Re-emit state base addresses so we get the new surface state base
2492 * address before we start emitting binding tables etc.
2493 */
2494 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2495
2496 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2497 if (result != VK_SUCCESS) {
2498 anv_batch_set_error(&cmd_buffer->batch, result);
2499 return result;
2500 }
2501 }
2502
2503 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
2504 if (result != VK_SUCCESS) {
2505 anv_batch_set_error(&cmd_buffer->batch, result);
2506 return result;
2507 }
2508
2509 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
2510 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2511 .BindingTablePointer = surfaces.offset,
2512 .SamplerStatePointer = samplers.offset,
2513 };
2514 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
2515
2516 struct anv_state state =
2517 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
2518 pipeline->interface_descriptor_data,
2519 GENX(INTERFACE_DESCRIPTOR_DATA_length),
2520 64);
2521
2522 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
2523 anv_batch_emit(&cmd_buffer->batch,
2524 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
2525 mid.InterfaceDescriptorTotalLength = size;
2526 mid.InterfaceDescriptorDataStartAddress = state.offset;
2527 }
2528
2529 return VK_SUCCESS;
2530 }
2531
2532 void
2533 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
2534 {
2535 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2536 MAYBE_UNUSED VkResult result;
2537
2538 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
2539
2540 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2541
2542 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
2543
2544 if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE) {
2545 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
2546 *
2547 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
2548 * the only bits that are changed are scoreboard related: Scoreboard
2549 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
2550 * these scoreboard related states, a MEDIA_STATE_FLUSH is
2551 * sufficient."
2552 */
2553 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2554 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2555
2556 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2557 }
2558
2559 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
2560 (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
2561 /* FIXME: figure out descriptors for gen7 */
2562 result = flush_compute_descriptor_set(cmd_buffer);
2563 if (result != VK_SUCCESS)
2564 return;
2565
2566 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
2567 }
2568
2569 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
2570 struct anv_state push_state =
2571 anv_cmd_buffer_cs_push_constants(cmd_buffer);
2572
2573 if (push_state.alloc_size) {
2574 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
2575 curbe.CURBETotalDataLength = push_state.alloc_size;
2576 curbe.CURBEDataStartAddress = push_state.offset;
2577 }
2578 }
2579 }
2580
2581 cmd_buffer->state.compute_dirty = 0;
2582
2583 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2584 }
2585
2586 #if GEN_GEN == 7
2587
2588 static VkResult
2589 verify_cmd_parser(const struct anv_device *device,
2590 int required_version,
2591 const char *function)
2592 {
2593 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
2594 return vk_errorf(device->instance, device->instance,
2595 VK_ERROR_FEATURE_NOT_PRESENT,
2596 "cmd parser version %d is required for %s",
2597 required_version, function);
2598 } else {
2599 return VK_SUCCESS;
2600 }
2601 }
2602
2603 #endif
2604
2605 void genX(CmdDispatch)(
2606 VkCommandBuffer commandBuffer,
2607 uint32_t x,
2608 uint32_t y,
2609 uint32_t z)
2610 {
2611 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2612 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2613 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2614
2615 if (anv_batch_has_error(&cmd_buffer->batch))
2616 return;
2617
2618 if (prog_data->uses_num_work_groups) {
2619 struct anv_state state =
2620 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
2621 uint32_t *sizes = state.map;
2622 sizes[0] = x;
2623 sizes[1] = y;
2624 sizes[2] = z;
2625 anv_state_flush(cmd_buffer->device, state);
2626 cmd_buffer->state.num_workgroups_offset = state.offset;
2627 cmd_buffer->state.num_workgroups_bo =
2628 &cmd_buffer->device->dynamic_state_pool.block_pool.bo;
2629 }
2630
2631 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2632
2633 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
2634 ggw.SIMDSize = prog_data->simd_size / 16;
2635 ggw.ThreadDepthCounterMaximum = 0;
2636 ggw.ThreadHeightCounterMaximum = 0;
2637 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2638 ggw.ThreadGroupIDXDimension = x;
2639 ggw.ThreadGroupIDYDimension = y;
2640 ggw.ThreadGroupIDZDimension = z;
2641 ggw.RightExecutionMask = pipeline->cs_right_mask;
2642 ggw.BottomExecutionMask = 0xffffffff;
2643 }
2644
2645 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
2646 }
2647
2648 #define GPGPU_DISPATCHDIMX 0x2500
2649 #define GPGPU_DISPATCHDIMY 0x2504
2650 #define GPGPU_DISPATCHDIMZ 0x2508
2651
2652 void genX(CmdDispatchIndirect)(
2653 VkCommandBuffer commandBuffer,
2654 VkBuffer _buffer,
2655 VkDeviceSize offset)
2656 {
2657 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2658 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2659 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2660 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2661 struct anv_bo *bo = buffer->bo;
2662 uint32_t bo_offset = buffer->offset + offset;
2663 struct anv_batch *batch = &cmd_buffer->batch;
2664
2665 #if GEN_GEN == 7
2666 /* Linux 4.4 added command parser version 5 which allows the GPGPU
2667 * indirect dispatch registers to be written.
2668 */
2669 if (verify_cmd_parser(cmd_buffer->device, 5,
2670 "vkCmdDispatchIndirect") != VK_SUCCESS)
2671 return;
2672 #endif
2673
2674 if (prog_data->uses_num_work_groups) {
2675 cmd_buffer->state.num_workgroups_offset = bo_offset;
2676 cmd_buffer->state.num_workgroups_bo = bo;
2677 }
2678
2679 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2680
2681 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
2682 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
2683 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
2684
2685 #if GEN_GEN <= 7
2686 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
2687 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
2688 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
2689 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
2690
2691 /* Load compute_dispatch_indirect_x_size into SRC0 */
2692 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
2693
2694 /* predicate = (compute_dispatch_indirect_x_size == 0); */
2695 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2696 mip.LoadOperation = LOAD_LOAD;
2697 mip.CombineOperation = COMBINE_SET;
2698 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2699 }
2700
2701 /* Load compute_dispatch_indirect_y_size into SRC0 */
2702 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
2703
2704 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
2705 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2706 mip.LoadOperation = LOAD_LOAD;
2707 mip.CombineOperation = COMBINE_OR;
2708 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2709 }
2710
2711 /* Load compute_dispatch_indirect_z_size into SRC0 */
2712 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
2713
2714 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
2715 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2716 mip.LoadOperation = LOAD_LOAD;
2717 mip.CombineOperation = COMBINE_OR;
2718 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2719 }
2720
2721 /* predicate = !predicate; */
2722 #define COMPARE_FALSE 1
2723 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2724 mip.LoadOperation = LOAD_LOADINV;
2725 mip.CombineOperation = COMBINE_OR;
2726 mip.CompareOperation = COMPARE_FALSE;
2727 }
2728 #endif
2729
2730 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
2731 ggw.IndirectParameterEnable = true;
2732 ggw.PredicateEnable = GEN_GEN <= 7;
2733 ggw.SIMDSize = prog_data->simd_size / 16;
2734 ggw.ThreadDepthCounterMaximum = 0;
2735 ggw.ThreadHeightCounterMaximum = 0;
2736 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2737 ggw.RightExecutionMask = pipeline->cs_right_mask;
2738 ggw.BottomExecutionMask = 0xffffffff;
2739 }
2740
2741 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
2742 }
2743
2744 static void
2745 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
2746 uint32_t pipeline)
2747 {
2748 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
2749
2750 if (cmd_buffer->state.current_pipeline == pipeline)
2751 return;
2752
2753 #if GEN_GEN >= 8 && GEN_GEN < 10
2754 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
2755 *
2756 * Software must clear the COLOR_CALC_STATE Valid field in
2757 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
2758 * with Pipeline Select set to GPGPU.
2759 *
2760 * The internal hardware docs recommend the same workaround for Gen9
2761 * hardware too.
2762 */
2763 if (pipeline == GPGPU)
2764 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
2765 #endif
2766
2767 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
2768 * PIPELINE_SELECT [DevBWR+]":
2769 *
2770 * Project: DEVSNB+
2771 *
2772 * Software must ensure all the write caches are flushed through a
2773 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
2774 * command to invalidate read only caches prior to programming
2775 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
2776 */
2777 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2778 pc.RenderTargetCacheFlushEnable = true;
2779 pc.DepthCacheFlushEnable = true;
2780 pc.DCFlushEnable = true;
2781 pc.PostSyncOperation = NoWrite;
2782 pc.CommandStreamerStallEnable = true;
2783 }
2784
2785 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2786 pc.TextureCacheInvalidationEnable = true;
2787 pc.ConstantCacheInvalidationEnable = true;
2788 pc.StateCacheInvalidationEnable = true;
2789 pc.InstructionCacheInvalidateEnable = true;
2790 pc.PostSyncOperation = NoWrite;
2791 }
2792
2793 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
2794 #if GEN_GEN >= 9
2795 ps.MaskBits = 3;
2796 #endif
2797 ps.PipelineSelection = pipeline;
2798 }
2799
2800 #if GEN_GEN == 9
2801 if (devinfo->is_geminilake) {
2802 /* Project: DevGLK
2803 *
2804 * "This chicken bit works around a hardware issue with barrier logic
2805 * encountered when switching between GPGPU and 3D pipelines. To
2806 * workaround the issue, this mode bit should be set after a pipeline
2807 * is selected."
2808 */
2809 uint32_t scec;
2810 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
2811 .GLKBarrierMode =
2812 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
2813 : GLK_BARRIER_MODE_3D_HULL,
2814 .GLKBarrierModeMask = 1);
2815 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
2816 }
2817 #endif
2818
2819 cmd_buffer->state.current_pipeline = pipeline;
2820 }
2821
2822 void
2823 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
2824 {
2825 genX(flush_pipeline_select)(cmd_buffer, _3D);
2826 }
2827
2828 void
2829 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
2830 {
2831 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
2832 }
2833
2834 void
2835 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
2836 {
2837 if (GEN_GEN >= 8)
2838 return;
2839
2840 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
2841 *
2842 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
2843 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
2844 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
2845 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
2846 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
2847 * Depth Flush Bit set, followed by another pipelined depth stall
2848 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
2849 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
2850 * via a preceding MI_FLUSH)."
2851 */
2852 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2853 pipe.DepthStallEnable = true;
2854 }
2855 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2856 pipe.DepthCacheFlushEnable = true;
2857 }
2858 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2859 pipe.DepthStallEnable = true;
2860 }
2861 }
2862
2863 static void
2864 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
2865 {
2866 struct anv_device *device = cmd_buffer->device;
2867 const struct anv_image_view *iview =
2868 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
2869 const struct anv_image *image = iview ? iview->image : NULL;
2870
2871 /* FIXME: Width and Height are wrong */
2872
2873 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
2874
2875 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
2876 device->isl_dev.ds.size / 4);
2877 if (dw == NULL)
2878 return;
2879
2880 struct isl_depth_stencil_hiz_emit_info info = {
2881 .mocs = device->default_mocs,
2882 };
2883
2884 if (iview)
2885 info.view = &iview->planes[0].isl;
2886
2887 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
2888 uint32_t depth_plane =
2889 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
2890 const struct anv_surface *surface = &image->planes[depth_plane].surface;
2891
2892 info.depth_surf = &surface->isl;
2893
2894 info.depth_address =
2895 anv_batch_emit_reloc(&cmd_buffer->batch,
2896 dw + device->isl_dev.ds.depth_offset / 4,
2897 image->planes[depth_plane].bo,
2898 image->planes[depth_plane].bo_offset +
2899 surface->offset);
2900
2901 const uint32_t ds =
2902 cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
2903 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
2904 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
2905 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
2906
2907 info.hiz_address =
2908 anv_batch_emit_reloc(&cmd_buffer->batch,
2909 dw + device->isl_dev.ds.hiz_offset / 4,
2910 image->planes[depth_plane].bo,
2911 image->planes[depth_plane].bo_offset +
2912 image->planes[depth_plane].aux_surface.offset);
2913
2914 info.depth_clear_value = ANV_HZ_FC_VAL;
2915 }
2916 }
2917
2918 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
2919 uint32_t stencil_plane =
2920 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
2921 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
2922
2923 info.stencil_surf = &surface->isl;
2924
2925 info.stencil_address =
2926 anv_batch_emit_reloc(&cmd_buffer->batch,
2927 dw + device->isl_dev.ds.stencil_offset / 4,
2928 image->planes[stencil_plane].bo,
2929 image->planes[stencil_plane].bo_offset + surface->offset);
2930 }
2931
2932 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
2933
2934 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
2935 }
2936
2937
2938 /**
2939 * @brief Perform any layout transitions required at the beginning and/or end
2940 * of the current subpass for depth buffers.
2941 *
2942 * TODO: Consider preprocessing the attachment reference array at render pass
2943 * create time to determine if no layout transition is needed at the
2944 * beginning and/or end of each subpass.
2945 *
2946 * @param cmd_buffer The command buffer the transition is happening within.
2947 * @param subpass_end If true, marks that the transition is happening at the
2948 * end of the subpass.
2949 */
2950 static void
2951 cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,
2952 const bool subpass_end)
2953 {
2954 /* We need a non-NULL command buffer. */
2955 assert(cmd_buffer);
2956
2957 const struct anv_cmd_state * const cmd_state = &cmd_buffer->state;
2958 const struct anv_subpass * const subpass = cmd_state->subpass;
2959
2960 /* This function must be called within a subpass. */
2961 assert(subpass);
2962
2963 /* If there are attachment references, the array shouldn't be NULL.
2964 */
2965 if (subpass->attachment_count > 0)
2966 assert(subpass->attachments);
2967
2968 /* Iterate over the array of attachment references. */
2969 for (const VkAttachmentReference *att_ref = subpass->attachments;
2970 att_ref < subpass->attachments + subpass->attachment_count; att_ref++) {
2971
2972 /* If the attachment is unused, we can't perform a layout transition. */
2973 if (att_ref->attachment == VK_ATTACHMENT_UNUSED)
2974 continue;
2975
2976 /* This attachment index shouldn't go out of bounds. */
2977 assert(att_ref->attachment < cmd_state->pass->attachment_count);
2978
2979 const struct anv_render_pass_attachment * const att_desc =
2980 &cmd_state->pass->attachments[att_ref->attachment];
2981 struct anv_attachment_state * const att_state =
2982 &cmd_buffer->state.attachments[att_ref->attachment];
2983
2984 /* The attachment should not be used in a subpass after its last. */
2985 assert(att_desc->last_subpass_idx >= anv_get_subpass_id(cmd_state));
2986
2987 if (subpass_end && anv_get_subpass_id(cmd_state) <
2988 att_desc->last_subpass_idx) {
2989 /* We're calling this function on a buffer twice in one subpass and
2990 * this is not the last use of the buffer. The layout should not have
2991 * changed from the first call and no transition is necessary.
2992 */
2993 assert(att_state->current_layout == att_ref->layout ||
2994 att_state->current_layout ==
2995 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
2996 continue;
2997 }
2998
2999 /* The attachment index must be less than the number of attachments
3000 * within the framebuffer.
3001 */
3002 assert(att_ref->attachment < cmd_state->framebuffer->attachment_count);
3003
3004 const struct anv_image_view * const iview =
3005 cmd_state->framebuffer->attachments[att_ref->attachment];
3006 const struct anv_image * const image = iview->image;
3007
3008 /* Get the appropriate target layout for this attachment. */
3009 VkImageLayout target_layout;
3010
3011 /* A resolve is necessary before use as an input attachment if the clear
3012 * color or auxiliary buffer usage isn't supported by the sampler.
3013 */
3014 const bool input_needs_resolve =
3015 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
3016 att_state->input_aux_usage != att_state->aux_usage;
3017 if (subpass_end) {
3018 target_layout = att_desc->final_layout;
3019 } else if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
3020 !input_needs_resolve) {
3021 /* Layout transitions before the final only help to enable sampling as
3022 * an input attachment. If the input attachment supports sampling
3023 * using the auxiliary surface, we can skip such transitions by making
3024 * the target layout one that is CCS-aware.
3025 */
3026 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
3027 } else {
3028 target_layout = att_ref->layout;
3029 }
3030
3031 /* Perform the layout transition. */
3032 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3033 transition_depth_buffer(cmd_buffer, image,
3034 att_state->current_layout, target_layout);
3035 att_state->aux_usage =
3036 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
3037 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
3038 } else if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3039 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3040 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3041 iview->planes[0].isl.base_level, 1,
3042 iview->planes[0].isl.base_array_layer,
3043 iview->planes[0].isl.array_len,
3044 att_state->current_layout, target_layout);
3045 }
3046
3047 att_state->current_layout = target_layout;
3048 }
3049 }
3050
3051 /* Update the clear value dword(s) in surface state objects or the fast clear
3052 * state buffer entry for the color attachments used in this subpass.
3053 */
3054 static void
3055 cmd_buffer_subpass_sync_fast_clear_values(struct anv_cmd_buffer *cmd_buffer)
3056 {
3057 assert(cmd_buffer && cmd_buffer->state.subpass);
3058
3059 const struct anv_cmd_state *state = &cmd_buffer->state;
3060
3061 /* Iterate through every color attachment used in this subpass. */
3062 for (uint32_t i = 0; i < state->subpass->color_count; ++i) {
3063
3064 /* The attachment should be one of the attachments described in the
3065 * render pass and used in the subpass.
3066 */
3067 const uint32_t a = state->subpass->color_attachments[i].attachment;
3068 if (a == VK_ATTACHMENT_UNUSED)
3069 continue;
3070
3071 assert(a < state->pass->attachment_count);
3072
3073 /* Store some information regarding this attachment. */
3074 const struct anv_attachment_state *att_state = &state->attachments[a];
3075 const struct anv_image_view *iview = state->framebuffer->attachments[a];
3076 const struct anv_render_pass_attachment *rp_att =
3077 &state->pass->attachments[a];
3078
3079 if (att_state->aux_usage == ISL_AUX_USAGE_NONE)
3080 continue;
3081
3082 /* The fast clear state entry must be updated if a fast clear is going to
3083 * happen. The surface state must be updated if the clear value from a
3084 * prior fast clear may be needed.
3085 */
3086 if (att_state->pending_clear_aspects && att_state->fast_clear) {
3087 /* Update the fast clear state entry. */
3088 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3089 iview->image,
3090 VK_IMAGE_ASPECT_COLOR_BIT,
3091 iview->planes[0].isl.base_level,
3092 true /* copy from ss */);
3093
3094 /* Fast-clears impact whether or not a resolve will be necessary. */
3095 if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E &&
3096 att_state->clear_color_is_zero) {
3097 /* This image always has the auxiliary buffer enabled. We can mark
3098 * the subresource as not needing a resolve because the clear color
3099 * will match what's in every RENDER_SURFACE_STATE object when it's
3100 * being used for sampling.
3101 */
3102 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
3103 VK_IMAGE_ASPECT_COLOR_BIT,
3104 iview->planes[0].isl.base_level,
3105 false);
3106 } else {
3107 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
3108 VK_IMAGE_ASPECT_COLOR_BIT,
3109 iview->planes[0].isl.base_level,
3110 true);
3111 }
3112 } else if (rp_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
3113 /* The attachment may have been fast-cleared in a previous render
3114 * pass and the value is needed now. Update the surface state(s).
3115 *
3116 * TODO: Do this only once per render pass instead of every subpass.
3117 */
3118 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3119 iview->image,
3120 VK_IMAGE_ASPECT_COLOR_BIT,
3121 iview->planes[0].isl.base_level,
3122 false /* copy to ss */);
3123
3124 if (need_input_attachment_state(rp_att) &&
3125 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3126 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3127 iview->image,
3128 VK_IMAGE_ASPECT_COLOR_BIT,
3129 iview->planes[0].isl.base_level,
3130 false /* copy to ss */);
3131 }
3132 }
3133 }
3134 }
3135
3136
3137 static void
3138 genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
3139 struct anv_subpass *subpass)
3140 {
3141 cmd_buffer->state.subpass = subpass;
3142
3143 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3144
3145 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3146 * different views. If the client asks for instancing, we need to use the
3147 * Instance Data Step Rate to ensure that we repeat the client's
3148 * per-instance data once for each view. Since this bit is in
3149 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3150 * of each subpass.
3151 */
3152 if (GEN_GEN == 7)
3153 cmd_buffer->state.vb_dirty |= ~0;
3154
3155 /* Perform transitions to the subpass layout before any writes have
3156 * occurred.
3157 */
3158 cmd_buffer_subpass_transition_layouts(cmd_buffer, false);
3159
3160 /* Update clear values *after* performing automatic layout transitions.
3161 * This ensures that transitions from the UNDEFINED layout have had a chance
3162 * to populate the clear value buffer with the correct values for the
3163 * LOAD_OP_LOAD loadOp and that the fast-clears will update the buffer
3164 * without the aforementioned layout transition overwriting the fast-clear
3165 * value.
3166 */
3167 cmd_buffer_subpass_sync_fast_clear_values(cmd_buffer);
3168
3169 cmd_buffer_emit_depth_stencil(cmd_buffer);
3170
3171 anv_cmd_buffer_clear_subpass(cmd_buffer);
3172 }
3173
3174 void genX(CmdBeginRenderPass)(
3175 VkCommandBuffer commandBuffer,
3176 const VkRenderPassBeginInfo* pRenderPassBegin,
3177 VkSubpassContents contents)
3178 {
3179 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3180 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3181 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3182
3183 cmd_buffer->state.framebuffer = framebuffer;
3184 cmd_buffer->state.pass = pass;
3185 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3186 VkResult result =
3187 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3188
3189 /* If we failed to setup the attachments we should not try to go further */
3190 if (result != VK_SUCCESS) {
3191 assert(anv_batch_has_error(&cmd_buffer->batch));
3192 return;
3193 }
3194
3195 genX(flush_pipeline_select_3d)(cmd_buffer);
3196
3197 genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
3198
3199 cmd_buffer->state.pending_pipe_bits |=
3200 cmd_buffer->state.pass->subpass_flushes[0];
3201 }
3202
3203 void genX(CmdNextSubpass)(
3204 VkCommandBuffer commandBuffer,
3205 VkSubpassContents contents)
3206 {
3207 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3208
3209 if (anv_batch_has_error(&cmd_buffer->batch))
3210 return;
3211
3212 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3213
3214 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3215
3216 /* Perform transitions to the final layout after all writes have occurred.
3217 */
3218 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3219
3220 genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
3221
3222 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3223 cmd_buffer->state.pending_pipe_bits |=
3224 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3225 }
3226
3227 void genX(CmdEndRenderPass)(
3228 VkCommandBuffer commandBuffer)
3229 {
3230 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3231
3232 if (anv_batch_has_error(&cmd_buffer->batch))
3233 return;
3234
3235 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3236
3237 /* Perform transitions to the final layout after all writes have occurred.
3238 */
3239 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3240
3241 cmd_buffer->state.pending_pipe_bits |=
3242 cmd_buffer->state.pass->subpass_flushes[cmd_buffer->state.pass->subpass_count];
3243
3244 cmd_buffer->state.hiz_enabled = false;
3245
3246 #ifndef NDEBUG
3247 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
3248 #endif
3249
3250 /* Remove references to render pass specific state. This enables us to
3251 * detect whether or not we're in a renderpass.
3252 */
3253 cmd_buffer->state.framebuffer = NULL;
3254 cmd_buffer->state.pass = NULL;
3255 cmd_buffer->state.subpass = NULL;
3256 }