anv: Use the PIPE_CONTROL instead of bits for the CS stall W/A
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 #include "util/fast_idiv_by_const.h"
31
32 #include "common/gen_aux_map.h"
33 #include "common/gen_l3_config.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
36
37 /* We reserve GPR 14 and 15 for conditional rendering */
38 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
39 #define __gen_get_batch_dwords anv_batch_emit_dwords
40 #define __gen_address_offset anv_address_add
41 #include "common/gen_mi_builder.h"
42
43 static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
44 uint32_t pipeline);
45
46 static void
47 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
48 {
49 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
50 lri.RegisterOffset = reg;
51 lri.DataDWord = imm;
52 }
53 }
54
55 void
56 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
57 {
58 struct anv_device *device = cmd_buffer->device;
59 UNUSED const struct gen_device_info *devinfo = &device->info;
60 uint32_t mocs = device->isl_dev.mocs.internal;
61
62 /* If we are emitting a new state base address we probably need to re-emit
63 * binding tables.
64 */
65 cmd_buffer->state.descriptors_dirty |= ~0;
66
67 /* Emit a render target cache flush.
68 *
69 * This isn't documented anywhere in the PRM. However, it seems to be
70 * necessary prior to changing the surface state base adress. Without
71 * this, we get GPU hangs when using multi-level command buffers which
72 * clear depth, reset state base address, and then go render stuff.
73 */
74 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
75 pc.DCFlushEnable = true;
76 pc.RenderTargetCacheFlushEnable = true;
77 pc.CommandStreamerStallEnable = true;
78 #if GEN_GEN >= 12
79 pc.TileCacheFlushEnable = true;
80 #endif
81 #if GEN_GEN == 12
82 /* GEN:BUG:1606662791:
83 *
84 * Software must program PIPE_CONTROL command with "HDC Pipeline
85 * Flush" prior to programming of the below two non-pipeline state :
86 * * STATE_BASE_ADDRESS
87 * * 3DSTATE_BINDING_TABLE_POOL_ALLOC
88 */
89 if (devinfo->revision == 0 /* A0 */)
90 pc.HDCPipelineFlushEnable = true;
91 #endif
92 }
93
94 #if GEN_GEN == 12
95 /* GEN:BUG:1607854226:
96 *
97 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
98 * mode by putting the pipeline temporarily in 3D mode.
99 */
100 uint32_t gen12_wa_pipeline = cmd_buffer->state.current_pipeline;
101 genX(flush_pipeline_select_3d)(cmd_buffer);
102 #endif
103
104 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
105 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
106 sba.GeneralStateMOCS = mocs;
107 sba.GeneralStateBaseAddressModifyEnable = true;
108
109 sba.StatelessDataPortAccessMOCS = mocs;
110
111 sba.SurfaceStateBaseAddress =
112 anv_cmd_buffer_surface_base_address(cmd_buffer);
113 sba.SurfaceStateMOCS = mocs;
114 sba.SurfaceStateBaseAddressModifyEnable = true;
115
116 sba.DynamicStateBaseAddress =
117 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
118 sba.DynamicStateMOCS = mocs;
119 sba.DynamicStateBaseAddressModifyEnable = true;
120
121 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
122 sba.IndirectObjectMOCS = mocs;
123 sba.IndirectObjectBaseAddressModifyEnable = true;
124
125 sba.InstructionBaseAddress =
126 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
127 sba.InstructionMOCS = mocs;
128 sba.InstructionBaseAddressModifyEnable = true;
129
130 # if (GEN_GEN >= 8)
131 /* Broadwell requires that we specify a buffer size for a bunch of
132 * these fields. However, since we will be growing the BO's live, we
133 * just set them all to the maximum.
134 */
135 sba.GeneralStateBufferSize = 0xfffff;
136 sba.IndirectObjectBufferSize = 0xfffff;
137 if (device->physical->use_softpin) {
138 /* With softpin, we use fixed addresses so we actually know how big
139 * our base addresses are.
140 */
141 sba.DynamicStateBufferSize = DYNAMIC_STATE_POOL_SIZE / 4096;
142 sba.InstructionBufferSize = INSTRUCTION_STATE_POOL_SIZE / 4096;
143 } else {
144 sba.DynamicStateBufferSize = 0xfffff;
145 sba.InstructionBufferSize = 0xfffff;
146 }
147 sba.GeneralStateBufferSizeModifyEnable = true;
148 sba.IndirectObjectBufferSizeModifyEnable = true;
149 sba.DynamicStateBufferSizeModifyEnable = true;
150 sba.InstructionBuffersizeModifyEnable = true;
151 # else
152 /* On gen7, we have upper bounds instead. According to the docs,
153 * setting an upper bound of zero means that no bounds checking is
154 * performed so, in theory, we should be able to leave them zero.
155 * However, border color is broken and the GPU bounds-checks anyway.
156 * To avoid this and other potential problems, we may as well set it
157 * for everything.
158 */
159 sba.GeneralStateAccessUpperBound =
160 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
161 sba.GeneralStateAccessUpperBoundModifyEnable = true;
162 sba.DynamicStateAccessUpperBound =
163 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
164 sba.DynamicStateAccessUpperBoundModifyEnable = true;
165 sba.InstructionAccessUpperBound =
166 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
167 sba.InstructionAccessUpperBoundModifyEnable = true;
168 # endif
169 # if (GEN_GEN >= 9)
170 if (cmd_buffer->device->physical->use_softpin) {
171 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
172 .bo = device->surface_state_pool.block_pool.bo,
173 .offset = 0,
174 };
175 sba.BindlessSurfaceStateSize = (1 << 20) - 1;
176 } else {
177 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
178 sba.BindlessSurfaceStateSize = 0;
179 }
180 sba.BindlessSurfaceStateMOCS = mocs;
181 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
182 # endif
183 # if (GEN_GEN >= 10)
184 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
185 sba.BindlessSamplerStateMOCS = mocs;
186 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
187 sba.BindlessSamplerStateBufferSize = 0;
188 # endif
189 }
190
191 #if GEN_GEN == 12
192 /* GEN:BUG:1607854226:
193 *
194 * Put the pipeline back into its current mode.
195 */
196 if (gen12_wa_pipeline != UINT32_MAX)
197 genX(flush_pipeline_select)(cmd_buffer, gen12_wa_pipeline);
198 #endif
199
200 /* After re-setting the surface state base address, we have to do some
201 * cache flusing so that the sampler engine will pick up the new
202 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
203 * Shared Function > 3D Sampler > State > State Caching (page 96):
204 *
205 * Coherency with system memory in the state cache, like the texture
206 * cache is handled partially by software. It is expected that the
207 * command stream or shader will issue Cache Flush operation or
208 * Cache_Flush sampler message to ensure that the L1 cache remains
209 * coherent with system memory.
210 *
211 * [...]
212 *
213 * Whenever the value of the Dynamic_State_Base_Addr,
214 * Surface_State_Base_Addr are altered, the L1 state cache must be
215 * invalidated to ensure the new surface or sampler state is fetched
216 * from system memory.
217 *
218 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
219 * which, according the PIPE_CONTROL instruction documentation in the
220 * Broadwell PRM:
221 *
222 * Setting this bit is independent of any other bit in this packet.
223 * This bit controls the invalidation of the L1 and L2 state caches
224 * at the top of the pipe i.e. at the parsing time.
225 *
226 * Unfortunately, experimentation seems to indicate that state cache
227 * invalidation through a PIPE_CONTROL does nothing whatsoever in
228 * regards to surface state and binding tables. In stead, it seems that
229 * invalidating the texture cache is what is actually needed.
230 *
231 * XXX: As far as we have been able to determine through
232 * experimentation, shows that flush the texture cache appears to be
233 * sufficient. The theory here is that all of the sampling/rendering
234 * units cache the binding table in the texture cache. However, we have
235 * yet to be able to actually confirm this.
236 */
237 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
238 pc.TextureCacheInvalidationEnable = true;
239 pc.ConstantCacheInvalidationEnable = true;
240 pc.StateCacheInvalidationEnable = true;
241 }
242 }
243
244 static void
245 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
246 struct anv_state state, struct anv_address addr)
247 {
248 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
249
250 VkResult result =
251 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
252 state.offset + isl_dev->ss.addr_offset,
253 addr.bo, addr.offset, NULL);
254 if (result != VK_SUCCESS)
255 anv_batch_set_error(&cmd_buffer->batch, result);
256 }
257
258 static void
259 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
260 struct anv_surface_state state)
261 {
262 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
263
264 assert(!anv_address_is_null(state.address));
265 add_surface_reloc(cmd_buffer, state.state, state.address);
266
267 if (!anv_address_is_null(state.aux_address)) {
268 VkResult result =
269 anv_reloc_list_add(&cmd_buffer->surface_relocs,
270 &cmd_buffer->pool->alloc,
271 state.state.offset + isl_dev->ss.aux_addr_offset,
272 state.aux_address.bo,
273 state.aux_address.offset,
274 NULL);
275 if (result != VK_SUCCESS)
276 anv_batch_set_error(&cmd_buffer->batch, result);
277 }
278
279 if (!anv_address_is_null(state.clear_address)) {
280 VkResult result =
281 anv_reloc_list_add(&cmd_buffer->surface_relocs,
282 &cmd_buffer->pool->alloc,
283 state.state.offset +
284 isl_dev->ss.clear_color_state_offset,
285 state.clear_address.bo,
286 state.clear_address.offset,
287 NULL);
288 if (result != VK_SUCCESS)
289 anv_batch_set_error(&cmd_buffer->batch, result);
290 }
291 }
292
293 static void
294 color_attachment_compute_aux_usage(struct anv_device * device,
295 struct anv_cmd_state * cmd_state,
296 uint32_t att, VkRect2D render_area,
297 union isl_color_value *fast_clear_color)
298 {
299 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
300 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
301
302 assert(iview->n_planes == 1);
303
304 if (iview->planes[0].isl.base_array_layer >=
305 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
306 iview->planes[0].isl.base_level)) {
307 /* There is no aux buffer which corresponds to the level and layer(s)
308 * being accessed.
309 */
310 att_state->aux_usage = ISL_AUX_USAGE_NONE;
311 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
312 att_state->fast_clear = false;
313 return;
314 }
315
316 att_state->aux_usage =
317 anv_layout_to_aux_usage(&device->info, iview->image,
318 VK_IMAGE_ASPECT_COLOR_BIT,
319 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
320 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
321
322 /* If we don't have aux, then we should have returned early in the layer
323 * check above. If we got here, we must have something.
324 */
325 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
326
327 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
328 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
329 att_state->input_aux_usage = att_state->aux_usage;
330 } else {
331 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
332 *
333 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
334 * setting is only allowed if Surface Format supported for Fast
335 * Clear. In addition, if the surface is bound to the sampling
336 * engine, Surface Format must be supported for Render Target
337 * Compression for surfaces bound to the sampling engine."
338 *
339 * In other words, we can only sample from a fast-cleared image if it
340 * also supports color compression.
341 */
342 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format) &&
343 isl_format_supports_ccs_d(&device->info, iview->planes[0].isl.format)) {
344 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
345
346 /* While fast-clear resolves and partial resolves are fairly cheap in the
347 * case where you render to most of the pixels, full resolves are not
348 * because they potentially involve reading and writing the entire
349 * framebuffer. If we can't texture with CCS_E, we should leave it off and
350 * limit ourselves to fast clears.
351 */
352 if (cmd_state->pass->attachments[att].first_subpass_layout ==
353 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
354 anv_perf_warn(device, iview->image,
355 "Not temporarily enabling CCS_E.");
356 }
357 } else {
358 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
359 }
360 }
361
362 assert(iview->image->planes[0].aux_surface.isl.usage &
363 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
364
365 union isl_color_value clear_color = {};
366 anv_clear_color_from_att_state(&clear_color, att_state, iview);
367
368 att_state->clear_color_is_zero_one =
369 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
370 att_state->clear_color_is_zero =
371 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
372
373 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
374 /* Start by getting the fast clear type. We use the first subpass
375 * layout here because we don't want to fast-clear if the first subpass
376 * to use the attachment can't handle fast-clears.
377 */
378 enum anv_fast_clear_type fast_clear_type =
379 anv_layout_to_fast_clear_type(&device->info, iview->image,
380 VK_IMAGE_ASPECT_COLOR_BIT,
381 cmd_state->pass->attachments[att].first_subpass_layout);
382 switch (fast_clear_type) {
383 case ANV_FAST_CLEAR_NONE:
384 att_state->fast_clear = false;
385 break;
386 case ANV_FAST_CLEAR_DEFAULT_VALUE:
387 att_state->fast_clear = att_state->clear_color_is_zero;
388 break;
389 case ANV_FAST_CLEAR_ANY:
390 att_state->fast_clear = true;
391 break;
392 }
393
394 /* Potentially, we could do partial fast-clears but doing so has crazy
395 * alignment restrictions. It's easier to just restrict to full size
396 * fast clears for now.
397 */
398 if (render_area.offset.x != 0 ||
399 render_area.offset.y != 0 ||
400 render_area.extent.width != iview->extent.width ||
401 render_area.extent.height != iview->extent.height)
402 att_state->fast_clear = false;
403
404 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
405 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
406 att_state->fast_clear = false;
407
408 /* We only allow fast clears to the first slice of an image (level 0,
409 * layer 0) and only for the entire slice. This guarantees us that, at
410 * any given time, there is only one clear color on any given image at
411 * any given time. At the time of our testing (Jan 17, 2018), there
412 * were no known applications which would benefit from fast-clearing
413 * more than just the first slice.
414 */
415 if (att_state->fast_clear &&
416 (iview->planes[0].isl.base_level > 0 ||
417 iview->planes[0].isl.base_array_layer > 0)) {
418 anv_perf_warn(device, iview->image,
419 "Rendering with multi-lod or multi-layer framebuffer "
420 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
421 "baseArrayLayer > 0. Not fast clearing.");
422 att_state->fast_clear = false;
423 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
424 anv_perf_warn(device, iview->image,
425 "Rendering to a multi-layer framebuffer with "
426 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
427 }
428
429 if (att_state->fast_clear)
430 *fast_clear_color = clear_color;
431 } else {
432 att_state->fast_clear = false;
433 }
434 }
435
436 static void
437 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
438 struct anv_cmd_state *cmd_state,
439 uint32_t att, VkRect2D render_area)
440 {
441 struct anv_render_pass_attachment *pass_att =
442 &cmd_state->pass->attachments[att];
443 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
444 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
445
446 /* These will be initialized after the first subpass transition. */
447 att_state->aux_usage = ISL_AUX_USAGE_NONE;
448 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
449
450 /* This is unused for depth/stencil but valgrind complains if it
451 * isn't initialized
452 */
453 att_state->clear_color_is_zero_one = false;
454
455 if (GEN_GEN == 7) {
456 /* We don't do any HiZ or depth fast-clears on gen7 yet */
457 att_state->fast_clear = false;
458 return;
459 }
460
461 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
462 /* If we're just clearing stencil, we can always HiZ clear */
463 att_state->fast_clear = true;
464 return;
465 }
466
467 /* Default to false for now */
468 att_state->fast_clear = false;
469
470 /* We must have depth in order to have HiZ */
471 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
472 return;
473
474 const enum isl_aux_usage first_subpass_aux_usage =
475 anv_layout_to_aux_usage(&device->info, iview->image,
476 VK_IMAGE_ASPECT_DEPTH_BIT,
477 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
478 pass_att->first_subpass_layout);
479 if (!blorp_can_hiz_clear_depth(&device->info,
480 &iview->image->planes[0].surface.isl,
481 first_subpass_aux_usage,
482 iview->planes[0].isl.base_level,
483 iview->planes[0].isl.base_array_layer,
484 render_area.offset.x,
485 render_area.offset.y,
486 render_area.offset.x +
487 render_area.extent.width,
488 render_area.offset.y +
489 render_area.extent.height))
490 return;
491
492 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
493 return;
494
495 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
496 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
497 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
498 * only supports returning 0.0f. Gens prior to gen8 do not support this
499 * feature at all.
500 */
501 return;
502 }
503
504 /* If we got here, then we can fast clear */
505 att_state->fast_clear = true;
506 }
507
508 static bool
509 need_input_attachment_state(const struct anv_render_pass_attachment *att)
510 {
511 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
512 return false;
513
514 /* We only allocate input attachment states for color surfaces. Compression
515 * is not yet enabled for depth textures and stencil doesn't allow
516 * compression so we can just use the texture surface state from the view.
517 */
518 return vk_format_is_color(att->format);
519 }
520
521 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
522 * the initial layout is undefined, the HiZ buffer and depth buffer will
523 * represent the same data at the end of this operation.
524 */
525 static void
526 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
527 const struct anv_image *image,
528 VkImageLayout initial_layout,
529 VkImageLayout final_layout)
530 {
531 uint32_t depth_plane =
532 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
533 if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE)
534 return;
535
536 const enum isl_aux_state initial_state =
537 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
538 VK_IMAGE_ASPECT_DEPTH_BIT,
539 initial_layout);
540 const enum isl_aux_state final_state =
541 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
542 VK_IMAGE_ASPECT_DEPTH_BIT,
543 final_layout);
544
545 const bool initial_depth_valid =
546 isl_aux_state_has_valid_primary(initial_state);
547 const bool initial_hiz_valid =
548 isl_aux_state_has_valid_aux(initial_state);
549 const bool final_needs_depth =
550 isl_aux_state_has_valid_primary(final_state);
551 const bool final_needs_hiz =
552 isl_aux_state_has_valid_aux(final_state);
553
554 /* Getting into the pass-through state for Depth is tricky and involves
555 * both a resolve and an ambiguate. We don't handle that state right now
556 * as anv_layout_to_aux_state never returns it.
557 */
558 assert(final_state != ISL_AUX_STATE_PASS_THROUGH);
559
560 if (final_needs_depth && !initial_depth_valid) {
561 assert(initial_hiz_valid);
562 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
563 0, 0, 1, ISL_AUX_OP_FULL_RESOLVE);
564 } else if (final_needs_hiz && !initial_hiz_valid) {
565 assert(initial_depth_valid);
566 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
567 0, 0, 1, ISL_AUX_OP_AMBIGUATE);
568 }
569 }
570
571 static inline bool
572 vk_image_layout_stencil_write_optimal(VkImageLayout layout)
573 {
574 return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
575 layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
576 layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
577 }
578
579 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
580 * the initial layout is undefined, the HiZ buffer and depth buffer will
581 * represent the same data at the end of this operation.
582 */
583 static void
584 transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
585 const struct anv_image *image,
586 uint32_t base_level, uint32_t level_count,
587 uint32_t base_layer, uint32_t layer_count,
588 VkImageLayout initial_layout,
589 VkImageLayout final_layout)
590 {
591 #if GEN_GEN == 7
592 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
593 VK_IMAGE_ASPECT_STENCIL_BIT);
594
595 /* On gen7, we have to store a texturable version of the stencil buffer in
596 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
597 * forth at strategic points. Stencil writes are only allowed in following
598 * layouts:
599 *
600 * - VK_IMAGE_LAYOUT_GENERAL
601 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
602 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
603 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
604 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
605 *
606 * For general, we have no nice opportunity to transition so we do the copy
607 * to the shadow unconditionally at the end of the subpass. For transfer
608 * destinations, we can update it as part of the transfer op. For the other
609 * layouts, we delay the copy until a transition into some other layout.
610 */
611 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
612 vk_image_layout_stencil_write_optimal(initial_layout) &&
613 !vk_image_layout_stencil_write_optimal(final_layout)) {
614 anv_image_copy_to_shadow(cmd_buffer, image,
615 VK_IMAGE_ASPECT_STENCIL_BIT,
616 base_level, level_count,
617 base_layer, layer_count);
618 }
619 #endif /* GEN_GEN == 7 */
620 }
621
622 #define MI_PREDICATE_SRC0 0x2400
623 #define MI_PREDICATE_SRC1 0x2408
624 #define MI_PREDICATE_RESULT 0x2418
625
626 static void
627 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
628 const struct anv_image *image,
629 VkImageAspectFlagBits aspect,
630 uint32_t level,
631 uint32_t base_layer, uint32_t layer_count,
632 bool compressed)
633 {
634 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
635
636 /* We only have compression tracking for CCS_E */
637 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
638 return;
639
640 for (uint32_t a = 0; a < layer_count; a++) {
641 uint32_t layer = base_layer + a;
642 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
643 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
644 image, aspect,
645 level, layer);
646 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
647 }
648 }
649 }
650
651 static void
652 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
653 const struct anv_image *image,
654 VkImageAspectFlagBits aspect,
655 enum anv_fast_clear_type fast_clear)
656 {
657 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
658 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
659 image, aspect);
660 sdi.ImmediateData = fast_clear;
661 }
662
663 /* Whenever we have fast-clear, we consider that slice to be compressed.
664 * This makes building predicates much easier.
665 */
666 if (fast_clear != ANV_FAST_CLEAR_NONE)
667 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
668 }
669
670 /* This is only really practical on haswell and above because it requires
671 * MI math in order to get it correct.
672 */
673 #if GEN_GEN >= 8 || GEN_IS_HASWELL
674 static void
675 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
676 const struct anv_image *image,
677 VkImageAspectFlagBits aspect,
678 uint32_t level, uint32_t array_layer,
679 enum isl_aux_op resolve_op,
680 enum anv_fast_clear_type fast_clear_supported)
681 {
682 struct gen_mi_builder b;
683 gen_mi_builder_init(&b, &cmd_buffer->batch);
684
685 const struct gen_mi_value fast_clear_type =
686 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
687 image, aspect));
688
689 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
690 /* In this case, we're doing a full resolve which means we want the
691 * resolve to happen if any compression (including fast-clears) is
692 * present.
693 *
694 * In order to simplify the logic a bit, we make the assumption that,
695 * if the first slice has been fast-cleared, it is also marked as
696 * compressed. See also set_image_fast_clear_state.
697 */
698 const struct gen_mi_value compression_state =
699 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
700 image, aspect,
701 level, array_layer));
702 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
703 compression_state);
704 gen_mi_store(&b, compression_state, gen_mi_imm(0));
705
706 if (level == 0 && array_layer == 0) {
707 /* If the predicate is true, we want to write 0 to the fast clear type
708 * and, if it's false, leave it alone. We can do this by writing
709 *
710 * clear_type = clear_type & ~predicate;
711 */
712 struct gen_mi_value new_fast_clear_type =
713 gen_mi_iand(&b, fast_clear_type,
714 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
715 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
716 }
717 } else if (level == 0 && array_layer == 0) {
718 /* In this case, we are doing a partial resolve to get rid of fast-clear
719 * colors. We don't care about the compression state but we do care
720 * about how much fast clear is allowed by the final layout.
721 */
722 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
723 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
724
725 /* We need to compute (fast_clear_supported < image->fast_clear) */
726 struct gen_mi_value pred =
727 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
728 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
729 gen_mi_value_ref(&b, pred));
730
731 /* If the predicate is true, we want to write 0 to the fast clear type
732 * and, if it's false, leave it alone. We can do this by writing
733 *
734 * clear_type = clear_type & ~predicate;
735 */
736 struct gen_mi_value new_fast_clear_type =
737 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
738 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
739 } else {
740 /* In this case, we're trying to do a partial resolve on a slice that
741 * doesn't have clear color. There's nothing to do.
742 */
743 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
744 return;
745 }
746
747 /* Set src1 to 0 and use a != condition */
748 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
749
750 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
751 mip.LoadOperation = LOAD_LOADINV;
752 mip.CombineOperation = COMBINE_SET;
753 mip.CompareOperation = COMPARE_SRCS_EQUAL;
754 }
755 }
756 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
757
758 #if GEN_GEN <= 8
759 static void
760 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
761 const struct anv_image *image,
762 VkImageAspectFlagBits aspect,
763 uint32_t level, uint32_t array_layer,
764 enum isl_aux_op resolve_op,
765 enum anv_fast_clear_type fast_clear_supported)
766 {
767 struct gen_mi_builder b;
768 gen_mi_builder_init(&b, &cmd_buffer->batch);
769
770 struct gen_mi_value fast_clear_type_mem =
771 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
772 image, aspect));
773
774 /* This only works for partial resolves and only when the clear color is
775 * all or nothing. On the upside, this emits less command streamer code
776 * and works on Ivybridge and Bay Trail.
777 */
778 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
779 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
780
781 /* We don't support fast clears on anything other than the first slice. */
782 if (level > 0 || array_layer > 0)
783 return;
784
785 /* On gen8, we don't have a concept of default clear colors because we
786 * can't sample from CCS surfaces. It's enough to just load the fast clear
787 * state into the predicate register.
788 */
789 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
790 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
791 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
792
793 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
794 mip.LoadOperation = LOAD_LOADINV;
795 mip.CombineOperation = COMBINE_SET;
796 mip.CompareOperation = COMPARE_SRCS_EQUAL;
797 }
798 }
799 #endif /* GEN_GEN <= 8 */
800
801 static void
802 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
803 const struct anv_image *image,
804 enum isl_format format,
805 VkImageAspectFlagBits aspect,
806 uint32_t level, uint32_t array_layer,
807 enum isl_aux_op resolve_op,
808 enum anv_fast_clear_type fast_clear_supported)
809 {
810 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
811
812 #if GEN_GEN >= 9
813 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
814 aspect, level, array_layer,
815 resolve_op, fast_clear_supported);
816 #else /* GEN_GEN <= 8 */
817 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
818 aspect, level, array_layer,
819 resolve_op, fast_clear_supported);
820 #endif
821
822 /* CCS_D only supports full resolves and BLORP will assert on us if we try
823 * to do a partial resolve on a CCS_D surface.
824 */
825 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
826 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D)
827 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
828
829 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
830 array_layer, 1, resolve_op, NULL, true);
831 }
832
833 static void
834 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
835 const struct anv_image *image,
836 enum isl_format format,
837 VkImageAspectFlagBits aspect,
838 uint32_t array_layer,
839 enum isl_aux_op resolve_op,
840 enum anv_fast_clear_type fast_clear_supported)
841 {
842 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
843 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
844
845 #if GEN_GEN >= 8 || GEN_IS_HASWELL
846 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
847 aspect, 0, array_layer,
848 resolve_op, fast_clear_supported);
849
850 anv_image_mcs_op(cmd_buffer, image, format, aspect,
851 array_layer, 1, resolve_op, NULL, true);
852 #else
853 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
854 #endif
855 }
856
857 void
858 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
859 const struct anv_image *image,
860 VkImageAspectFlagBits aspect,
861 enum isl_aux_usage aux_usage,
862 uint32_t level,
863 uint32_t base_layer,
864 uint32_t layer_count)
865 {
866 /* The aspect must be exactly one of the image aspects. */
867 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
868
869 /* The only compression types with more than just fast-clears are MCS,
870 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
871 * track the current fast-clear and compression state. This leaves us
872 * with just MCS and CCS_E.
873 */
874 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
875 aux_usage != ISL_AUX_USAGE_MCS)
876 return;
877
878 set_image_compressed_bit(cmd_buffer, image, aspect,
879 level, base_layer, layer_count, true);
880 }
881
882 static void
883 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
884 const struct anv_image *image,
885 VkImageAspectFlagBits aspect)
886 {
887 assert(cmd_buffer && image);
888 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
889
890 set_image_fast_clear_state(cmd_buffer, image, aspect,
891 ANV_FAST_CLEAR_NONE);
892
893 /* Initialize the struct fields that are accessed for fast-clears so that
894 * the HW restrictions on the field values are satisfied.
895 */
896 struct anv_address addr =
897 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
898
899 if (GEN_GEN >= 9) {
900 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
901 const unsigned num_dwords = GEN_GEN >= 10 ?
902 isl_dev->ss.clear_color_state_size / 4 :
903 isl_dev->ss.clear_value_size / 4;
904 for (unsigned i = 0; i < num_dwords; i++) {
905 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
906 sdi.Address = addr;
907 sdi.Address.offset += i * 4;
908 sdi.ImmediateData = 0;
909 }
910 }
911 } else {
912 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
913 sdi.Address = addr;
914 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
915 /* Pre-SKL, the dword containing the clear values also contains
916 * other fields, so we need to initialize those fields to match the
917 * values that would be in a color attachment.
918 */
919 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
920 ISL_CHANNEL_SELECT_GREEN << 22 |
921 ISL_CHANNEL_SELECT_BLUE << 19 |
922 ISL_CHANNEL_SELECT_ALPHA << 16;
923 } else if (GEN_GEN == 7) {
924 /* On IVB, the dword containing the clear values also contains
925 * other fields that must be zero or can be zero.
926 */
927 sdi.ImmediateData = 0;
928 }
929 }
930 }
931 }
932
933 /* Copy the fast-clear value dword(s) between a surface state object and an
934 * image's fast clear state buffer.
935 */
936 static void
937 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
938 struct anv_state surface_state,
939 const struct anv_image *image,
940 VkImageAspectFlagBits aspect,
941 bool copy_from_surface_state)
942 {
943 assert(cmd_buffer && image);
944 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
945
946 struct anv_address ss_clear_addr = {
947 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
948 .offset = surface_state.offset +
949 cmd_buffer->device->isl_dev.ss.clear_value_offset,
950 };
951 const struct anv_address entry_addr =
952 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
953 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
954
955 #if GEN_GEN == 7
956 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
957 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
958 * in-flight when they are issued even if the memory touched is not
959 * currently active for rendering. The weird bit is that it is not the
960 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
961 * rendering hangs such that the next stalling command after the
962 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
963 *
964 * It is unclear exactly why this hang occurs. Both MI commands come with
965 * warnings about the 3D pipeline but that doesn't seem to fully explain
966 * it. My (Jason's) best theory is that it has something to do with the
967 * fact that we're using a GPU state register as our temporary and that
968 * something with reading/writing it is causing problems.
969 *
970 * In order to work around this issue, we emit a PIPE_CONTROL with the
971 * command streamer stall bit set.
972 */
973 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
974 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
975 #endif
976
977 struct gen_mi_builder b;
978 gen_mi_builder_init(&b, &cmd_buffer->batch);
979
980 if (copy_from_surface_state) {
981 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
982 } else {
983 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
984
985 /* Updating a surface state object may require that the state cache be
986 * invalidated. From the SKL PRM, Shared Functions -> State -> State
987 * Caching:
988 *
989 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
990 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
991 * modified [...], the L1 state cache must be invalidated to ensure
992 * the new surface or sampler state is fetched from system memory.
993 *
994 * In testing, SKL doesn't actually seem to need this, but HSW does.
995 */
996 cmd_buffer->state.pending_pipe_bits |=
997 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
998 }
999 }
1000
1001 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
1002
1003 #if GEN_GEN == 12
1004 static void
1005 anv_image_init_aux_tt(struct anv_cmd_buffer *cmd_buffer,
1006 const struct anv_image *image,
1007 VkImageAspectFlagBits aspect,
1008 uint32_t base_level, uint32_t level_count,
1009 uint32_t base_layer, uint32_t layer_count)
1010 {
1011 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1012
1013 uint64_t base_address =
1014 anv_address_physical(image->planes[plane].address);
1015
1016 const struct isl_surf *isl_surf = &image->planes[plane].surface.isl;
1017 uint64_t format_bits = gen_aux_map_format_bits_for_isl_surf(isl_surf);
1018
1019 /* We're about to live-update the AUX-TT. We really don't want anyone else
1020 * trying to read it while we're doing this. We could probably get away
1021 * with not having this stall in some cases if we were really careful but
1022 * it's better to play it safe. Full stall the GPU.
1023 */
1024 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1025 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1026
1027 struct gen_mi_builder b;
1028 gen_mi_builder_init(&b, &cmd_buffer->batch);
1029
1030 for (uint32_t a = 0; a < layer_count; a++) {
1031 const uint32_t layer = base_layer + a;
1032
1033 uint64_t start_offset_B = UINT64_MAX, end_offset_B = 0;
1034 for (uint32_t l = 0; l < level_count; l++) {
1035 const uint32_t level = base_level + l;
1036
1037 uint32_t logical_array_layer, logical_z_offset_px;
1038 if (image->type == VK_IMAGE_TYPE_3D) {
1039 logical_array_layer = 0;
1040
1041 /* If the given miplevel does not have this layer, then any higher
1042 * miplevels won't either because miplevels only get smaller the
1043 * higher the LOD.
1044 */
1045 assert(layer < image->extent.depth);
1046 if (layer >= anv_minify(image->extent.depth, level))
1047 break;
1048 logical_z_offset_px = layer;
1049 } else {
1050 assert(layer < image->array_size);
1051 logical_array_layer = layer;
1052 logical_z_offset_px = 0;
1053 }
1054
1055 uint32_t slice_start_offset_B, slice_end_offset_B;
1056 isl_surf_get_image_range_B_tile(isl_surf, level,
1057 logical_array_layer,
1058 logical_z_offset_px,
1059 &slice_start_offset_B,
1060 &slice_end_offset_B);
1061
1062 start_offset_B = MIN2(start_offset_B, slice_start_offset_B);
1063 end_offset_B = MAX2(end_offset_B, slice_end_offset_B);
1064 }
1065
1066 /* Aux operates 64K at a time */
1067 start_offset_B = align_down_u64(start_offset_B, 64 * 1024);
1068 end_offset_B = align_u64(end_offset_B, 64 * 1024);
1069
1070 for (uint64_t offset = start_offset_B;
1071 offset < end_offset_B; offset += 64 * 1024) {
1072 uint64_t address = base_address + offset;
1073
1074 uint64_t aux_entry_addr64, *aux_entry_map;
1075 aux_entry_map = gen_aux_map_get_entry(cmd_buffer->device->aux_map_ctx,
1076 address, &aux_entry_addr64);
1077
1078 assert(cmd_buffer->device->physical->use_softpin);
1079 struct anv_address aux_entry_address = {
1080 .bo = NULL,
1081 .offset = aux_entry_addr64,
1082 };
1083
1084 const uint64_t old_aux_entry = READ_ONCE(*aux_entry_map);
1085 uint64_t new_aux_entry =
1086 (old_aux_entry & GEN_AUX_MAP_ADDRESS_MASK) | format_bits;
1087
1088 if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage))
1089 new_aux_entry |= GEN_AUX_MAP_ENTRY_VALID_BIT;
1090
1091 gen_mi_store(&b, gen_mi_mem64(aux_entry_address),
1092 gen_mi_imm(new_aux_entry));
1093 }
1094 }
1095
1096 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1097 }
1098 #endif /* GEN_GEN == 12 */
1099
1100 /**
1101 * @brief Transitions a color buffer from one layout to another.
1102 *
1103 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
1104 * more information.
1105 *
1106 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
1107 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
1108 * this represents the maximum layers to transition at each
1109 * specified miplevel.
1110 */
1111 static void
1112 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
1113 const struct anv_image *image,
1114 VkImageAspectFlagBits aspect,
1115 const uint32_t base_level, uint32_t level_count,
1116 uint32_t base_layer, uint32_t layer_count,
1117 VkImageLayout initial_layout,
1118 VkImageLayout final_layout)
1119 {
1120 struct anv_device *device = cmd_buffer->device;
1121 const struct gen_device_info *devinfo = &device->info;
1122 /* Validate the inputs. */
1123 assert(cmd_buffer);
1124 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1125 /* These values aren't supported for simplicity's sake. */
1126 assert(level_count != VK_REMAINING_MIP_LEVELS &&
1127 layer_count != VK_REMAINING_ARRAY_LAYERS);
1128 /* Ensure the subresource range is valid. */
1129 UNUSED uint64_t last_level_num = base_level + level_count;
1130 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
1131 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
1132 assert((uint64_t)base_layer + layer_count <= image_layers);
1133 assert(last_level_num <= image->levels);
1134 /* The spec disallows these final layouts. */
1135 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
1136 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
1137
1138 /* No work is necessary if the layout stays the same or if this subresource
1139 * range lacks auxiliary data.
1140 */
1141 if (initial_layout == final_layout)
1142 return;
1143
1144 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1145
1146 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1147 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
1148 /* This surface is a linear compressed image with a tiled shadow surface
1149 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
1150 * we need to ensure the shadow copy is up-to-date.
1151 */
1152 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1153 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
1154 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1155 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
1156 assert(plane == 0);
1157 anv_image_copy_to_shadow(cmd_buffer, image,
1158 VK_IMAGE_ASPECT_COLOR_BIT,
1159 base_level, level_count,
1160 base_layer, layer_count);
1161 }
1162
1163 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
1164 return;
1165
1166 assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR);
1167
1168 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
1169 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
1170 #if GEN_GEN == 12
1171 if (device->physical->has_implicit_ccs && devinfo->has_aux_map) {
1172 anv_image_init_aux_tt(cmd_buffer, image, aspect,
1173 base_level, level_count,
1174 base_layer, layer_count);
1175 }
1176 #else
1177 assert(!(device->physical->has_implicit_ccs && devinfo->has_aux_map));
1178 #endif
1179
1180 /* A subresource in the undefined layout may have been aliased and
1181 * populated with any arrangement of bits. Therefore, we must initialize
1182 * the related aux buffer and clear buffer entry with desirable values.
1183 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
1184 * images with VK_IMAGE_TILING_OPTIMAL.
1185 *
1186 * Initialize the relevant clear buffer entries.
1187 */
1188 if (base_level == 0 && base_layer == 0)
1189 init_fast_clear_color(cmd_buffer, image, aspect);
1190
1191 /* Initialize the aux buffers to enable correct rendering. In order to
1192 * ensure that things such as storage images work correctly, aux buffers
1193 * need to be initialized to valid data.
1194 *
1195 * Having an aux buffer with invalid data is a problem for two reasons:
1196 *
1197 * 1) Having an invalid value in the buffer can confuse the hardware.
1198 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1199 * invalid and leads to the hardware doing strange things. It
1200 * doesn't hang as far as we can tell but rendering corruption can
1201 * occur.
1202 *
1203 * 2) If this transition is into the GENERAL layout and we then use the
1204 * image as a storage image, then we must have the aux buffer in the
1205 * pass-through state so that, if we then go to texture from the
1206 * image, we get the results of our storage image writes and not the
1207 * fast clear color or other random data.
1208 *
1209 * For CCS both of the problems above are real demonstrable issues. In
1210 * that case, the only thing we can do is to perform an ambiguate to
1211 * transition the aux surface into the pass-through state.
1212 *
1213 * For MCS, (2) is never an issue because we don't support multisampled
1214 * storage images. In theory, issue (1) is a problem with MCS but we've
1215 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1216 * theory, be interpreted as something but we don't know that all bit
1217 * patterns are actually valid. For 2x and 8x, you could easily end up
1218 * with the MCS referring to an invalid plane because not all bits of
1219 * the MCS value are actually used. Even though we've never seen issues
1220 * in the wild, it's best to play it safe and initialize the MCS. We
1221 * can use a fast-clear for MCS because we only ever touch from render
1222 * and texture (no image load store).
1223 */
1224 if (image->samples == 1) {
1225 for (uint32_t l = 0; l < level_count; l++) {
1226 const uint32_t level = base_level + l;
1227
1228 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1229 if (base_layer >= aux_layers)
1230 break; /* We will only get fewer layers as level increases */
1231 uint32_t level_layer_count =
1232 MIN2(layer_count, aux_layers - base_layer);
1233
1234 anv_image_ccs_op(cmd_buffer, image,
1235 image->planes[plane].surface.isl.format,
1236 aspect, level, base_layer, level_layer_count,
1237 ISL_AUX_OP_AMBIGUATE, NULL, false);
1238
1239 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1240 set_image_compressed_bit(cmd_buffer, image, aspect,
1241 level, base_layer, level_layer_count,
1242 false);
1243 }
1244 }
1245 } else {
1246 if (image->samples == 4 || image->samples == 16) {
1247 anv_perf_warn(cmd_buffer->device, image,
1248 "Doing a potentially unnecessary fast-clear to "
1249 "define an MCS buffer.");
1250 }
1251
1252 assert(base_level == 0 && level_count == 1);
1253 anv_image_mcs_op(cmd_buffer, image,
1254 image->planes[plane].surface.isl.format,
1255 aspect, base_layer, layer_count,
1256 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1257 }
1258 return;
1259 }
1260
1261 const enum isl_aux_usage initial_aux_usage =
1262 anv_layout_to_aux_usage(devinfo, image, aspect, 0, initial_layout);
1263 const enum isl_aux_usage final_aux_usage =
1264 anv_layout_to_aux_usage(devinfo, image, aspect, 0, final_layout);
1265
1266 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1267 * We can handle transitions between CCS_D/E to and from NONE. What we
1268 * don't yet handle is switching between CCS_E and CCS_D within a given
1269 * image. Doing so in a performant way requires more detailed aux state
1270 * tracking such as what is done in i965. For now, just assume that we
1271 * only have one type of compression.
1272 */
1273 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1274 final_aux_usage == ISL_AUX_USAGE_NONE ||
1275 initial_aux_usage == final_aux_usage);
1276
1277 /* If initial aux usage is NONE, there is nothing to resolve */
1278 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1279 return;
1280
1281 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1282
1283 /* If the initial layout supports more fast clear than the final layout
1284 * then we need at least a partial resolve.
1285 */
1286 const enum anv_fast_clear_type initial_fast_clear =
1287 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1288 const enum anv_fast_clear_type final_fast_clear =
1289 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1290 if (final_fast_clear < initial_fast_clear)
1291 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1292
1293 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1294 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1295 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1296
1297 if (resolve_op == ISL_AUX_OP_NONE)
1298 return;
1299
1300 /* Perform a resolve to synchronize data between the main and aux buffer.
1301 * Before we begin, we must satisfy the cache flushing requirement specified
1302 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1303 *
1304 * Any transition from any value in {Clear, Render, Resolve} to a
1305 * different value in {Clear, Render, Resolve} requires end of pipe
1306 * synchronization.
1307 *
1308 * We perform a flush of the write cache before and after the clear and
1309 * resolve operations to meet this requirement.
1310 *
1311 * Unlike other drawing, fast clear operations are not properly
1312 * synchronized. The first PIPE_CONTROL here likely ensures that the
1313 * contents of the previous render or clear hit the render target before we
1314 * resolve and the second likely ensures that the resolve is complete before
1315 * we do any more rendering or clearing.
1316 */
1317 cmd_buffer->state.pending_pipe_bits |=
1318 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1319
1320 for (uint32_t l = 0; l < level_count; l++) {
1321 uint32_t level = base_level + l;
1322
1323 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1324 if (base_layer >= aux_layers)
1325 break; /* We will only get fewer layers as level increases */
1326 uint32_t level_layer_count =
1327 MIN2(layer_count, aux_layers - base_layer);
1328
1329 for (uint32_t a = 0; a < level_layer_count; a++) {
1330 uint32_t array_layer = base_layer + a;
1331 if (image->samples == 1) {
1332 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1333 image->planes[plane].surface.isl.format,
1334 aspect, level, array_layer, resolve_op,
1335 final_fast_clear);
1336 } else {
1337 /* We only support fast-clear on the first layer so partial
1338 * resolves should not be used on other layers as they will use
1339 * the clear color stored in memory that is only valid for layer0.
1340 */
1341 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1342 array_layer != 0)
1343 continue;
1344
1345 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1346 image->planes[plane].surface.isl.format,
1347 aspect, array_layer, resolve_op,
1348 final_fast_clear);
1349 }
1350 }
1351 }
1352
1353 cmd_buffer->state.pending_pipe_bits |=
1354 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1355 }
1356
1357 /**
1358 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1359 */
1360 static VkResult
1361 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1362 struct anv_render_pass *pass,
1363 const VkRenderPassBeginInfo *begin)
1364 {
1365 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1366 struct anv_cmd_state *state = &cmd_buffer->state;
1367 struct anv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
1368
1369 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1370
1371 if (pass->attachment_count > 0) {
1372 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1373 pass->attachment_count *
1374 sizeof(state->attachments[0]),
1375 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1376 if (state->attachments == NULL) {
1377 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1378 return anv_batch_set_error(&cmd_buffer->batch,
1379 VK_ERROR_OUT_OF_HOST_MEMORY);
1380 }
1381 } else {
1382 state->attachments = NULL;
1383 }
1384
1385 /* Reserve one for the NULL state. */
1386 unsigned num_states = 1;
1387 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1388 if (vk_format_is_color(pass->attachments[i].format))
1389 num_states++;
1390
1391 if (need_input_attachment_state(&pass->attachments[i]))
1392 num_states++;
1393 }
1394
1395 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1396 state->render_pass_states =
1397 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1398 num_states * ss_stride, isl_dev->ss.align);
1399
1400 struct anv_state next_state = state->render_pass_states;
1401 next_state.alloc_size = isl_dev->ss.size;
1402
1403 state->null_surface_state = next_state;
1404 next_state.offset += ss_stride;
1405 next_state.map += ss_stride;
1406
1407 const VkRenderPassAttachmentBeginInfoKHR *begin_attachment =
1408 vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
1409
1410 if (begin && !begin_attachment)
1411 assert(pass->attachment_count == framebuffer->attachment_count);
1412
1413 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1414 if (vk_format_is_color(pass->attachments[i].format)) {
1415 state->attachments[i].color.state = next_state;
1416 next_state.offset += ss_stride;
1417 next_state.map += ss_stride;
1418 }
1419
1420 if (need_input_attachment_state(&pass->attachments[i])) {
1421 state->attachments[i].input.state = next_state;
1422 next_state.offset += ss_stride;
1423 next_state.map += ss_stride;
1424 }
1425
1426 if (begin_attachment && begin_attachment->attachmentCount != 0) {
1427 assert(begin_attachment->attachmentCount == pass->attachment_count);
1428 ANV_FROM_HANDLE(anv_image_view, iview, begin_attachment->pAttachments[i]);
1429 cmd_buffer->state.attachments[i].image_view = iview;
1430 } else if (framebuffer && i < framebuffer->attachment_count) {
1431 cmd_buffer->state.attachments[i].image_view = framebuffer->attachments[i];
1432 }
1433 }
1434 assert(next_state.offset == state->render_pass_states.offset +
1435 state->render_pass_states.alloc_size);
1436
1437 if (begin) {
1438 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1439 isl_extent3d(framebuffer->width,
1440 framebuffer->height,
1441 framebuffer->layers));
1442
1443 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1444 struct anv_render_pass_attachment *att = &pass->attachments[i];
1445 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1446 VkImageAspectFlags clear_aspects = 0;
1447 VkImageAspectFlags load_aspects = 0;
1448
1449 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1450 /* color attachment */
1451 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1452 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1453 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1454 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1455 }
1456 } else {
1457 /* depthstencil attachment */
1458 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1459 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1460 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1461 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1462 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1463 }
1464 }
1465 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1466 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1467 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1468 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1469 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1470 }
1471 }
1472 }
1473
1474 state->attachments[i].current_layout = att->initial_layout;
1475 state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
1476 state->attachments[i].pending_clear_aspects = clear_aspects;
1477 state->attachments[i].pending_load_aspects = load_aspects;
1478 if (clear_aspects)
1479 state->attachments[i].clear_value = begin->pClearValues[i];
1480
1481 struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
1482 anv_assert(iview->vk_format == att->format);
1483
1484 const uint32_t num_layers = iview->planes[0].isl.array_len;
1485 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1486
1487 union isl_color_value clear_color = { .u32 = { 0, } };
1488 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1489 anv_assert(iview->n_planes == 1);
1490 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1491 color_attachment_compute_aux_usage(cmd_buffer->device,
1492 state, i, begin->renderArea,
1493 &clear_color);
1494
1495 anv_image_fill_surface_state(cmd_buffer->device,
1496 iview->image,
1497 VK_IMAGE_ASPECT_COLOR_BIT,
1498 &iview->planes[0].isl,
1499 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1500 state->attachments[i].aux_usage,
1501 &clear_color,
1502 0,
1503 &state->attachments[i].color,
1504 NULL);
1505
1506 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1507 } else {
1508 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1509 state, i,
1510 begin->renderArea);
1511 }
1512
1513 if (need_input_attachment_state(&pass->attachments[i])) {
1514 anv_image_fill_surface_state(cmd_buffer->device,
1515 iview->image,
1516 VK_IMAGE_ASPECT_COLOR_BIT,
1517 &iview->planes[0].isl,
1518 ISL_SURF_USAGE_TEXTURE_BIT,
1519 state->attachments[i].input_aux_usage,
1520 &clear_color,
1521 0,
1522 &state->attachments[i].input,
1523 NULL);
1524
1525 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1526 }
1527 }
1528 }
1529
1530 return VK_SUCCESS;
1531 }
1532
1533 VkResult
1534 genX(BeginCommandBuffer)(
1535 VkCommandBuffer commandBuffer,
1536 const VkCommandBufferBeginInfo* pBeginInfo)
1537 {
1538 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1539
1540 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1541 * command buffer's state. Otherwise, we must *reset* its state. In both
1542 * cases we reset it.
1543 *
1544 * From the Vulkan 1.0 spec:
1545 *
1546 * If a command buffer is in the executable state and the command buffer
1547 * was allocated from a command pool with the
1548 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1549 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1550 * as if vkResetCommandBuffer had been called with
1551 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1552 * the command buffer in the recording state.
1553 */
1554 anv_cmd_buffer_reset(cmd_buffer);
1555
1556 cmd_buffer->usage_flags = pBeginInfo->flags;
1557
1558 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1559 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1560
1561 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1562
1563 /* We sometimes store vertex data in the dynamic state buffer for blorp
1564 * operations and our dynamic state stream may re-use data from previous
1565 * command buffers. In order to prevent stale cache data, we flush the VF
1566 * cache. We could do this on every blorp call but that's not really
1567 * needed as all of the data will get written by the CPU prior to the GPU
1568 * executing anything. The chances are fairly high that they will use
1569 * blorp at least once per primary command buffer so it shouldn't be
1570 * wasted.
1571 *
1572 * There is also a workaround on gen8 which requires us to invalidate the
1573 * VF cache occasionally. It's easier if we can assume we start with a
1574 * fresh cache (See also genX(cmd_buffer_set_binding_for_gen8_vb_flush).)
1575 */
1576 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1577
1578 /* Re-emit the aux table register in every command buffer. This way we're
1579 * ensured that we have the table even if this command buffer doesn't
1580 * initialize any images.
1581 */
1582 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1583
1584 /* We send an "Indirect State Pointers Disable" packet at
1585 * EndCommandBuffer, so all push contant packets are ignored during a
1586 * context restore. Documentation says after that command, we need to
1587 * emit push constants again before any rendering operation. So we
1588 * flag them dirty here to make sure they get emitted.
1589 */
1590 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1591
1592 VkResult result = VK_SUCCESS;
1593 if (cmd_buffer->usage_flags &
1594 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1595 assert(pBeginInfo->pInheritanceInfo);
1596 cmd_buffer->state.pass =
1597 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1598 cmd_buffer->state.subpass =
1599 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1600
1601 /* This is optional in the inheritance info. */
1602 cmd_buffer->state.framebuffer =
1603 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1604
1605 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1606 cmd_buffer->state.pass, NULL);
1607
1608 /* Record that HiZ is enabled if we can. */
1609 if (cmd_buffer->state.framebuffer) {
1610 const struct anv_image_view * const iview =
1611 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1612
1613 if (iview) {
1614 VkImageLayout layout =
1615 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1616
1617 enum isl_aux_usage aux_usage =
1618 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1619 VK_IMAGE_ASPECT_DEPTH_BIT,
1620 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
1621 layout);
1622
1623 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1624 }
1625 }
1626
1627 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1628 }
1629
1630 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1631 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1632 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1633 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1634
1635 /* If secondary buffer supports conditional rendering
1636 * we should emit commands as if conditional rendering is enabled.
1637 */
1638 cmd_buffer->state.conditional_render_enabled =
1639 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1640 }
1641 #endif
1642
1643 return result;
1644 }
1645
1646 /* From the PRM, Volume 2a:
1647 *
1648 * "Indirect State Pointers Disable
1649 *
1650 * At the completion of the post-sync operation associated with this pipe
1651 * control packet, the indirect state pointers in the hardware are
1652 * considered invalid; the indirect pointers are not saved in the context.
1653 * If any new indirect state commands are executed in the command stream
1654 * while the pipe control is pending, the new indirect state commands are
1655 * preserved.
1656 *
1657 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1658 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1659 * commands are only considered as Indirect State Pointers. Once ISP is
1660 * issued in a context, SW must initialize by programming push constant
1661 * commands for all the shaders (at least to zero length) before attempting
1662 * any rendering operation for the same context."
1663 *
1664 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1665 * even though they point to a BO that has been already unreferenced at
1666 * the end of the previous batch buffer. This has been fine so far since
1667 * we are protected by these scratch page (every address not covered by
1668 * a BO should be pointing to the scratch page). But on CNL, it is
1669 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1670 * instruction.
1671 *
1672 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1673 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1674 * context restore, so the mentioned hang doesn't happen. However,
1675 * software must program push constant commands for all stages prior to
1676 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1677 *
1678 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1679 * constants have been loaded into the EUs prior to disable the push constants
1680 * so that it doesn't hang a previous 3DPRIMITIVE.
1681 */
1682 static void
1683 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1684 {
1685 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1686 pc.StallAtPixelScoreboard = true;
1687 pc.CommandStreamerStallEnable = true;
1688 }
1689 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1690 pc.IndirectStatePointersDisable = true;
1691 pc.CommandStreamerStallEnable = true;
1692 }
1693 }
1694
1695 VkResult
1696 genX(EndCommandBuffer)(
1697 VkCommandBuffer commandBuffer)
1698 {
1699 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1700
1701 if (anv_batch_has_error(&cmd_buffer->batch))
1702 return cmd_buffer->batch.status;
1703
1704 /* We want every command buffer to start with the PMA fix in a known state,
1705 * so we disable it at the end of the command buffer.
1706 */
1707 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1708
1709 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1710
1711 emit_isp_disable(cmd_buffer);
1712
1713 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1714
1715 return VK_SUCCESS;
1716 }
1717
1718 void
1719 genX(CmdExecuteCommands)(
1720 VkCommandBuffer commandBuffer,
1721 uint32_t commandBufferCount,
1722 const VkCommandBuffer* pCmdBuffers)
1723 {
1724 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1725
1726 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1727
1728 if (anv_batch_has_error(&primary->batch))
1729 return;
1730
1731 /* The secondary command buffers will assume that the PMA fix is disabled
1732 * when they begin executing. Make sure this is true.
1733 */
1734 genX(cmd_buffer_enable_pma_fix)(primary, false);
1735
1736 /* The secondary command buffer doesn't know which textures etc. have been
1737 * flushed prior to their execution. Apply those flushes now.
1738 */
1739 genX(cmd_buffer_apply_pipe_flushes)(primary);
1740
1741 for (uint32_t i = 0; i < commandBufferCount; i++) {
1742 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1743
1744 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1745 assert(!anv_batch_has_error(&secondary->batch));
1746
1747 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1748 if (secondary->state.conditional_render_enabled) {
1749 if (!primary->state.conditional_render_enabled) {
1750 /* Secondary buffer is constructed as if it will be executed
1751 * with conditional rendering, we should satisfy this dependency
1752 * regardless of conditional rendering being enabled in primary.
1753 */
1754 struct gen_mi_builder b;
1755 gen_mi_builder_init(&b, &primary->batch);
1756 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
1757 gen_mi_imm(UINT64_MAX));
1758 }
1759 }
1760 #endif
1761
1762 if (secondary->usage_flags &
1763 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1764 /* If we're continuing a render pass from the primary, we need to
1765 * copy the surface states for the current subpass into the storage
1766 * we allocated for them in BeginCommandBuffer.
1767 */
1768 struct anv_bo *ss_bo =
1769 primary->device->surface_state_pool.block_pool.bo;
1770 struct anv_state src_state = primary->state.render_pass_states;
1771 struct anv_state dst_state = secondary->state.render_pass_states;
1772 assert(src_state.alloc_size == dst_state.alloc_size);
1773
1774 genX(cmd_buffer_so_memcpy)(primary,
1775 (struct anv_address) {
1776 .bo = ss_bo,
1777 .offset = dst_state.offset,
1778 },
1779 (struct anv_address) {
1780 .bo = ss_bo,
1781 .offset = src_state.offset,
1782 },
1783 src_state.alloc_size);
1784 }
1785
1786 anv_cmd_buffer_add_secondary(primary, secondary);
1787 }
1788
1789 /* The secondary isn't counted in our VF cache tracking so we need to
1790 * invalidate the whole thing.
1791 */
1792 if (GEN_GEN >= 8 && GEN_GEN <= 9) {
1793 primary->state.pending_pipe_bits |=
1794 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1795 }
1796
1797 /* The secondary may have selected a different pipeline (3D or compute) and
1798 * may have changed the current L3$ configuration. Reset our tracking
1799 * variables to invalid values to ensure that we re-emit these in the case
1800 * where we do any draws or compute dispatches from the primary after the
1801 * secondary has returned.
1802 */
1803 primary->state.current_pipeline = UINT32_MAX;
1804 primary->state.current_l3_config = NULL;
1805 primary->state.current_hash_scale = 0;
1806
1807 /* Each of the secondary command buffers will use its own state base
1808 * address. We need to re-emit state base address for the primary after
1809 * all of the secondaries are done.
1810 *
1811 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1812 * address calls?
1813 */
1814 genX(cmd_buffer_emit_state_base_address)(primary);
1815 }
1816
1817 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1818 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1819 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1820
1821 /**
1822 * Program the hardware to use the specified L3 configuration.
1823 */
1824 void
1825 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1826 const struct gen_l3_config *cfg)
1827 {
1828 assert(cfg);
1829 if (cfg == cmd_buffer->state.current_l3_config)
1830 return;
1831
1832 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1833 intel_logd("L3 config transition: ");
1834 gen_dump_l3_config(cfg, stderr);
1835 }
1836
1837 UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM];
1838
1839 /* According to the hardware docs, the L3 partitioning can only be changed
1840 * while the pipeline is completely drained and the caches are flushed,
1841 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1842 */
1843 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1844 pc.DCFlushEnable = true;
1845 pc.PostSyncOperation = NoWrite;
1846 pc.CommandStreamerStallEnable = true;
1847 }
1848
1849 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1850 * invalidation of the relevant caches. Note that because RO invalidation
1851 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1852 * command is processed by the CS) we cannot combine it with the previous
1853 * stalling flush as the hardware documentation suggests, because that
1854 * would cause the CS to stall on previous rendering *after* RO
1855 * invalidation and wouldn't prevent the RO caches from being polluted by
1856 * concurrent rendering before the stall completes. This intentionally
1857 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1858 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1859 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1860 * already guarantee that there is no concurrent GPGPU kernel execution
1861 * (see SKL HSD 2132585).
1862 */
1863 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1864 pc.TextureCacheInvalidationEnable = true;
1865 pc.ConstantCacheInvalidationEnable = true;
1866 pc.InstructionCacheInvalidateEnable = true;
1867 pc.StateCacheInvalidationEnable = true;
1868 pc.PostSyncOperation = NoWrite;
1869 }
1870
1871 /* Now send a third stalling flush to make sure that invalidation is
1872 * complete when the L3 configuration registers are modified.
1873 */
1874 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1875 pc.DCFlushEnable = true;
1876 pc.PostSyncOperation = NoWrite;
1877 pc.CommandStreamerStallEnable = true;
1878 }
1879
1880 #if GEN_GEN >= 8
1881
1882 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1883
1884 #if GEN_GEN >= 12
1885 #define L3_ALLOCATION_REG GENX(L3ALLOC)
1886 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
1887 #else
1888 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
1889 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
1890 #endif
1891
1892 uint32_t l3cr;
1893 anv_pack_struct(&l3cr, L3_ALLOCATION_REG,
1894 #if GEN_GEN < 11
1895 .SLMEnable = has_slm,
1896 #endif
1897 #if GEN_GEN == 11
1898 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1899 * in L3CNTLREG register. The default setting of the bit is not the
1900 * desirable behavior.
1901 */
1902 .ErrorDetectionBehaviorControl = true,
1903 .UseFullWays = true,
1904 #endif
1905 .URBAllocation = cfg->n[GEN_L3P_URB],
1906 .ROAllocation = cfg->n[GEN_L3P_RO],
1907 .DCAllocation = cfg->n[GEN_L3P_DC],
1908 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1909
1910 /* Set up the L3 partitioning. */
1911 emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr);
1912
1913 #else
1914
1915 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1916 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1917 cfg->n[GEN_L3P_ALL];
1918 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1919 cfg->n[GEN_L3P_ALL];
1920 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1921 cfg->n[GEN_L3P_ALL];
1922
1923 assert(!cfg->n[GEN_L3P_ALL]);
1924
1925 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1926 * the matching space on the remaining banks has to be allocated to a
1927 * client (URB for all validated configurations) set to the
1928 * lower-bandwidth 2-bank address hashing mode.
1929 */
1930 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1931 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1932 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1933
1934 /* Minimum number of ways that can be allocated to the URB. */
1935 const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1936 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1937
1938 uint32_t l3sqcr1, l3cr2, l3cr3;
1939 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1940 .ConvertDC_UC = !has_dc,
1941 .ConvertIS_UC = !has_is,
1942 .ConvertC_UC = !has_c,
1943 .ConvertT_UC = !has_t);
1944 l3sqcr1 |=
1945 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1946 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1947 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1948
1949 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1950 .SLMEnable = has_slm,
1951 .URBLowBandwidth = urb_low_bw,
1952 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1953 #if !GEN_IS_HASWELL
1954 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1955 #endif
1956 .ROAllocation = cfg->n[GEN_L3P_RO],
1957 .DCAllocation = cfg->n[GEN_L3P_DC]);
1958
1959 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1960 .ISAllocation = cfg->n[GEN_L3P_IS],
1961 .ISLowBandwidth = 0,
1962 .CAllocation = cfg->n[GEN_L3P_C],
1963 .CLowBandwidth = 0,
1964 .TAllocation = cfg->n[GEN_L3P_T],
1965 .TLowBandwidth = 0);
1966
1967 /* Set up the L3 partitioning. */
1968 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1969 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1970 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1971
1972 #if GEN_IS_HASWELL
1973 if (cmd_buffer->device->physical->cmd_parser_version >= 4) {
1974 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1975 * them disabled to avoid crashing the system hard.
1976 */
1977 uint32_t scratch1, chicken3;
1978 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1979 .L3AtomicDisable = !has_dc);
1980 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1981 .L3AtomicDisableMask = true,
1982 .L3AtomicDisable = !has_dc);
1983 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1984 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1985 }
1986 #endif
1987
1988 #endif
1989
1990 cmd_buffer->state.current_l3_config = cfg;
1991 }
1992
1993 void
1994 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1995 {
1996 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1997 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1998
1999 if (cmd_buffer->device->physical->always_flush_cache)
2000 bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
2001
2002 /* Flushes are pipelined while invalidations are handled immediately.
2003 * Therefore, if we're flushing anything then we need to schedule a stall
2004 * before any invalidations can happen.
2005 */
2006 if (bits & ANV_PIPE_FLUSH_BITS)
2007 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
2008
2009 /* If we're going to do an invalidate and we have a pending CS stall that
2010 * has yet to be resolved, we do the CS stall now.
2011 */
2012 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
2013 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
2014 bits |= ANV_PIPE_CS_STALL_BIT;
2015 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
2016 }
2017
2018 if (GEN_GEN >= 12 &&
2019 ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) ||
2020 (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) {
2021 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
2022 * Enable):
2023 *
2024 * Unified Cache (Tile Cache Disabled):
2025 *
2026 * When the Color and Depth (Z) streams are enabled to be cached in
2027 * the DC space of L2, Software must use "Render Target Cache Flush
2028 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
2029 * Flush" for getting the color and depth (Z) write data to be
2030 * globally observable. In this mode of operation it is not required
2031 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
2032 */
2033 bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2034 }
2035
2036 /* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which
2037 * invalidates the instruction cache
2038 */
2039 if (GEN_GEN == 12 && (bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT))
2040 bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2041
2042 if ((GEN_GEN >= 8 && GEN_GEN <= 9) &&
2043 (bits & ANV_PIPE_CS_STALL_BIT) &&
2044 (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
2045 /* If we are doing a VF cache invalidate AND a CS stall (it must be
2046 * both) then we can reset our vertex cache tracking.
2047 */
2048 memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
2049 sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
2050 memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
2051 sizeof(cmd_buffer->state.gfx.ib_dirty_range));
2052 }
2053
2054 /* Project: SKL / Argument: LRI Post Sync Operation [23]
2055 *
2056 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
2057 * programmed prior to programming a PIPECONTROL command with "LRI
2058 * Post Sync Operation" in GPGPU mode of operation (i.e when
2059 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
2060 *
2061 * The same text exists a few rows below for Post Sync Op.
2062 *
2063 * On Gen12 this is GEN:BUG:1607156449.
2064 */
2065 if (bits & ANV_PIPE_POST_SYNC_BIT) {
2066 if ((GEN_GEN == 9 || (GEN_GEN == 12 && devinfo->revision == 0 /* A0 */)) &&
2067 cmd_buffer->state.current_pipeline == GPGPU)
2068 bits |= ANV_PIPE_CS_STALL_BIT;
2069 bits &= ~ANV_PIPE_POST_SYNC_BIT;
2070 }
2071
2072 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
2073 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2074 #if GEN_GEN >= 12
2075 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2076 #endif
2077 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2078 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2079 pipe.RenderTargetCacheFlushEnable =
2080 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2081
2082 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
2083 * be set with any PIPE_CONTROL with Depth Flush Enable bit set.
2084 */
2085 #if GEN_GEN >= 12
2086 pipe.DepthStallEnable =
2087 pipe.DepthCacheFlushEnable || (bits & ANV_PIPE_DEPTH_STALL_BIT);
2088 #else
2089 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
2090 #endif
2091
2092 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
2093 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2094
2095 /*
2096 * According to the Broadwell documentation, any PIPE_CONTROL with the
2097 * "Command Streamer Stall" bit set must also have another bit set,
2098 * with five different options:
2099 *
2100 * - Render Target Cache Flush
2101 * - Depth Cache Flush
2102 * - Stall at Pixel Scoreboard
2103 * - Post-Sync Operation
2104 * - Depth Stall
2105 * - DC Flush Enable
2106 *
2107 * I chose "Stall at Pixel Scoreboard" since that's what we use in
2108 * mesa and it seems to work fine. The choice is fairly arbitrary.
2109 */
2110 if (pipe.CommandStreamerStallEnable &&
2111 !pipe.RenderTargetCacheFlushEnable &&
2112 !pipe.DepthCacheFlushEnable &&
2113 !pipe.StallAtPixelScoreboard &&
2114 !pipe.PostSyncOperation &&
2115 !pipe.DepthStallEnable &&
2116 !pipe.DCFlushEnable)
2117 pipe.StallAtPixelScoreboard = true;
2118 }
2119
2120 /* If a render target flush was emitted, then we can toggle off the bit
2121 * saying that render target writes are ongoing.
2122 */
2123 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
2124 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
2125
2126 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
2127 }
2128
2129 if (bits & ANV_PIPE_INVALIDATE_BITS) {
2130 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2131 *
2132 * "If the VF Cache Invalidation Enable is set to a 1 in a
2133 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
2134 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
2135 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
2136 * a 1."
2137 *
2138 * This appears to hang Broadwell, so we restrict it to just gen9.
2139 */
2140 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
2141 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
2142
2143 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2144 pipe.StateCacheInvalidationEnable =
2145 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
2146 pipe.ConstantCacheInvalidationEnable =
2147 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2148 pipe.VFCacheInvalidationEnable =
2149 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2150 pipe.TextureCacheInvalidationEnable =
2151 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2152 pipe.InstructionCacheInvalidateEnable =
2153 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
2154
2155 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2156 *
2157 * "When VF Cache Invalidate is set “Post Sync Operation” must be
2158 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
2159 * “Write Timestamp”.
2160 */
2161 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
2162 pipe.PostSyncOperation = WriteImmediateData;
2163 pipe.Address =
2164 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
2165 }
2166 }
2167
2168 #if GEN_GEN == 12
2169 if ((bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT) &&
2170 cmd_buffer->device->info.has_aux_map) {
2171 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2172 lri.RegisterOffset = GENX(GFX_CCS_AUX_INV_num);
2173 lri.DataDWord = 1;
2174 }
2175 }
2176 #endif
2177
2178 bits &= ~ANV_PIPE_INVALIDATE_BITS;
2179 }
2180
2181 cmd_buffer->state.pending_pipe_bits = bits;
2182 }
2183
2184 void genX(CmdPipelineBarrier)(
2185 VkCommandBuffer commandBuffer,
2186 VkPipelineStageFlags srcStageMask,
2187 VkPipelineStageFlags destStageMask,
2188 VkBool32 byRegion,
2189 uint32_t memoryBarrierCount,
2190 const VkMemoryBarrier* pMemoryBarriers,
2191 uint32_t bufferMemoryBarrierCount,
2192 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
2193 uint32_t imageMemoryBarrierCount,
2194 const VkImageMemoryBarrier* pImageMemoryBarriers)
2195 {
2196 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2197
2198 /* XXX: Right now, we're really dumb and just flush whatever categories
2199 * the app asks for. One of these days we may make this a bit better
2200 * but right now that's all the hardware allows for in most areas.
2201 */
2202 VkAccessFlags src_flags = 0;
2203 VkAccessFlags dst_flags = 0;
2204
2205 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
2206 src_flags |= pMemoryBarriers[i].srcAccessMask;
2207 dst_flags |= pMemoryBarriers[i].dstAccessMask;
2208 }
2209
2210 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
2211 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
2212 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
2213 }
2214
2215 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
2216 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
2217 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
2218 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
2219 const VkImageSubresourceRange *range =
2220 &pImageMemoryBarriers[i].subresourceRange;
2221
2222 uint32_t base_layer, layer_count;
2223 if (image->type == VK_IMAGE_TYPE_3D) {
2224 base_layer = 0;
2225 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
2226 } else {
2227 base_layer = range->baseArrayLayer;
2228 layer_count = anv_get_layerCount(image, range);
2229 }
2230
2231 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
2232 transition_depth_buffer(cmd_buffer, image,
2233 pImageMemoryBarriers[i].oldLayout,
2234 pImageMemoryBarriers[i].newLayout);
2235 }
2236
2237 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
2238 transition_stencil_buffer(cmd_buffer, image,
2239 range->baseMipLevel,
2240 anv_get_levelCount(image, range),
2241 base_layer, layer_count,
2242 pImageMemoryBarriers[i].oldLayout,
2243 pImageMemoryBarriers[i].newLayout);
2244 }
2245
2246 if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2247 VkImageAspectFlags color_aspects =
2248 anv_image_expand_aspects(image, range->aspectMask);
2249 uint32_t aspect_bit;
2250 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
2251 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
2252 range->baseMipLevel,
2253 anv_get_levelCount(image, range),
2254 base_layer, layer_count,
2255 pImageMemoryBarriers[i].oldLayout,
2256 pImageMemoryBarriers[i].newLayout);
2257 }
2258 }
2259 }
2260
2261 cmd_buffer->state.pending_pipe_bits |=
2262 anv_pipe_flush_bits_for_access_flags(src_flags) |
2263 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
2264 }
2265
2266 static void
2267 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2268 {
2269 VkShaderStageFlags stages =
2270 cmd_buffer->state.gfx.base.pipeline->active_stages;
2271
2272 /* In order to avoid thrash, we assume that vertex and fragment stages
2273 * always exist. In the rare case where one is missing *and* the other
2274 * uses push concstants, this may be suboptimal. However, avoiding stalls
2275 * seems more important.
2276 */
2277 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
2278
2279 if (stages == cmd_buffer->state.push_constant_stages)
2280 return;
2281
2282 #if GEN_GEN >= 8
2283 const unsigned push_constant_kb = 32;
2284 #elif GEN_IS_HASWELL
2285 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
2286 #else
2287 const unsigned push_constant_kb = 16;
2288 #endif
2289
2290 const unsigned num_stages =
2291 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2292 unsigned size_per_stage = push_constant_kb / num_stages;
2293
2294 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2295 * units of 2KB. Incidentally, these are the same platforms that have
2296 * 32KB worth of push constant space.
2297 */
2298 if (push_constant_kb == 32)
2299 size_per_stage &= ~1u;
2300
2301 uint32_t kb_used = 0;
2302 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2303 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2304 anv_batch_emit(&cmd_buffer->batch,
2305 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2306 alloc._3DCommandSubOpcode = 18 + i;
2307 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2308 alloc.ConstantBufferSize = push_size;
2309 }
2310 kb_used += push_size;
2311 }
2312
2313 anv_batch_emit(&cmd_buffer->batch,
2314 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2315 alloc.ConstantBufferOffset = kb_used;
2316 alloc.ConstantBufferSize = push_constant_kb - kb_used;
2317 }
2318
2319 cmd_buffer->state.push_constant_stages = stages;
2320
2321 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2322 *
2323 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2324 * the next 3DPRIMITIVE command after programming the
2325 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2326 *
2327 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2328 * pipeline setup, we need to dirty push constants.
2329 */
2330 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2331 }
2332
2333 static struct anv_address
2334 anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
2335 struct anv_descriptor_set *set)
2336 {
2337 if (set->pool) {
2338 /* This is a normal descriptor set */
2339 return (struct anv_address) {
2340 .bo = set->pool->bo,
2341 .offset = set->desc_mem.offset,
2342 };
2343 } else {
2344 /* This is a push descriptor set. We have to flag it as used on the GPU
2345 * so that the next time we push descriptors, we grab a new memory.
2346 */
2347 struct anv_push_descriptor_set *push_set =
2348 (struct anv_push_descriptor_set *)set;
2349 push_set->set_used_on_gpu = true;
2350
2351 return (struct anv_address) {
2352 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
2353 .offset = set->desc_mem.offset,
2354 };
2355 }
2356 }
2357
2358 static struct anv_cmd_pipeline_state *
2359 pipe_state_for_stage(struct anv_cmd_buffer *cmd_buffer,
2360 gl_shader_stage stage)
2361 {
2362 switch (stage) {
2363 case MESA_SHADER_COMPUTE:
2364 return &cmd_buffer->state.compute.base;
2365
2366 case MESA_SHADER_VERTEX:
2367 case MESA_SHADER_TESS_CTRL:
2368 case MESA_SHADER_TESS_EVAL:
2369 case MESA_SHADER_GEOMETRY:
2370 case MESA_SHADER_FRAGMENT:
2371 return &cmd_buffer->state.gfx.base;
2372
2373 default:
2374 unreachable("invalid stage");
2375 }
2376 }
2377
2378 static VkResult
2379 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2380 gl_shader_stage stage,
2381 struct anv_state *bt_state)
2382 {
2383 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2384 uint32_t state_offset;
2385
2386 struct anv_cmd_pipeline_state *pipe_state =
2387 pipe_state_for_stage(cmd_buffer, stage);
2388 struct anv_pipeline *pipeline = pipe_state->pipeline;
2389
2390 if (!anv_pipeline_has_stage(pipeline, stage)) {
2391 *bt_state = (struct anv_state) { 0, };
2392 return VK_SUCCESS;
2393 }
2394
2395 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2396 if (map->surface_count == 0) {
2397 *bt_state = (struct anv_state) { 0, };
2398 return VK_SUCCESS;
2399 }
2400
2401 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2402 map->surface_count,
2403 &state_offset);
2404 uint32_t *bt_map = bt_state->map;
2405
2406 if (bt_state->map == NULL)
2407 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2408
2409 /* We only need to emit relocs if we're not using softpin. If we are using
2410 * softpin then we always keep all user-allocated memory objects resident.
2411 */
2412 const bool need_client_mem_relocs =
2413 !cmd_buffer->device->physical->use_softpin;
2414
2415 for (uint32_t s = 0; s < map->surface_count; s++) {
2416 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2417
2418 struct anv_state surface_state;
2419
2420 switch (binding->set) {
2421 case ANV_DESCRIPTOR_SET_NULL:
2422 bt_map[s] = 0;
2423 break;
2424
2425 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
2426 /* Color attachment binding */
2427 assert(stage == MESA_SHADER_FRAGMENT);
2428 if (binding->index < subpass->color_count) {
2429 const unsigned att =
2430 subpass->color_attachments[binding->index].attachment;
2431
2432 /* From the Vulkan 1.0.46 spec:
2433 *
2434 * "If any color or depth/stencil attachments are
2435 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2436 * attachments."
2437 */
2438 if (att == VK_ATTACHMENT_UNUSED) {
2439 surface_state = cmd_buffer->state.null_surface_state;
2440 } else {
2441 surface_state = cmd_buffer->state.attachments[att].color.state;
2442 }
2443 } else {
2444 surface_state = cmd_buffer->state.null_surface_state;
2445 }
2446
2447 bt_map[s] = surface_state.offset + state_offset;
2448 break;
2449
2450 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
2451 struct anv_state surface_state =
2452 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2453
2454 struct anv_address constant_data = {
2455 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2456 .offset = pipeline->shaders[stage]->constant_data.offset,
2457 };
2458 unsigned constant_data_size =
2459 pipeline->shaders[stage]->constant_data_size;
2460
2461 const enum isl_format format =
2462 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2463 anv_fill_buffer_surface_state(cmd_buffer->device,
2464 surface_state, format,
2465 constant_data, constant_data_size, 1);
2466
2467 bt_map[s] = surface_state.offset + state_offset;
2468 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2469 break;
2470 }
2471
2472 case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
2473 /* This is always the first binding for compute shaders */
2474 assert(stage == MESA_SHADER_COMPUTE && s == 0);
2475
2476 struct anv_state surface_state =
2477 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2478
2479 const enum isl_format format =
2480 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2481 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2482 format,
2483 cmd_buffer->state.compute.num_workgroups,
2484 12, 1);
2485 bt_map[s] = surface_state.offset + state_offset;
2486 if (need_client_mem_relocs) {
2487 add_surface_reloc(cmd_buffer, surface_state,
2488 cmd_buffer->state.compute.num_workgroups);
2489 }
2490 break;
2491 }
2492
2493 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2494 /* This is a descriptor set buffer so the set index is actually
2495 * given by binding->binding. (Yes, that's confusing.)
2496 */
2497 struct anv_descriptor_set *set =
2498 pipe_state->descriptors[binding->index];
2499 assert(set->desc_mem.alloc_size);
2500 assert(set->desc_surface_state.alloc_size);
2501 bt_map[s] = set->desc_surface_state.offset + state_offset;
2502 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2503 anv_descriptor_set_address(cmd_buffer, set));
2504 break;
2505 }
2506
2507 default: {
2508 assert(binding->set < MAX_SETS);
2509 const struct anv_descriptor *desc =
2510 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2511
2512 switch (desc->type) {
2513 case VK_DESCRIPTOR_TYPE_SAMPLER:
2514 /* Nothing for us to do here */
2515 continue;
2516
2517 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2518 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2519 struct anv_surface_state sstate =
2520 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2521 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2522 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2523 surface_state = sstate.state;
2524 assert(surface_state.alloc_size);
2525 if (need_client_mem_relocs)
2526 add_surface_state_relocs(cmd_buffer, sstate);
2527 break;
2528 }
2529 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2530 assert(stage == MESA_SHADER_FRAGMENT);
2531 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2532 /* For depth and stencil input attachments, we treat it like any
2533 * old texture that a user may have bound.
2534 */
2535 assert(desc->image_view->n_planes == 1);
2536 struct anv_surface_state sstate =
2537 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2538 desc->image_view->planes[0].general_sampler_surface_state :
2539 desc->image_view->planes[0].optimal_sampler_surface_state;
2540 surface_state = sstate.state;
2541 assert(surface_state.alloc_size);
2542 if (need_client_mem_relocs)
2543 add_surface_state_relocs(cmd_buffer, sstate);
2544 } else {
2545 /* For color input attachments, we create the surface state at
2546 * vkBeginRenderPass time so that we can include aux and clear
2547 * color information.
2548 */
2549 assert(binding->input_attachment_index < subpass->input_count);
2550 const unsigned subpass_att = binding->input_attachment_index;
2551 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2552 surface_state = cmd_buffer->state.attachments[att].input.state;
2553 }
2554 break;
2555
2556 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2557 struct anv_surface_state sstate = (binding->write_only)
2558 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2559 : desc->image_view->planes[binding->plane].storage_surface_state;
2560 surface_state = sstate.state;
2561 assert(surface_state.alloc_size);
2562 if (need_client_mem_relocs)
2563 add_surface_state_relocs(cmd_buffer, sstate);
2564 break;
2565 }
2566
2567 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2568 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2569 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2570 surface_state = desc->buffer_view->surface_state;
2571 assert(surface_state.alloc_size);
2572 if (need_client_mem_relocs) {
2573 add_surface_reloc(cmd_buffer, surface_state,
2574 desc->buffer_view->address);
2575 }
2576 break;
2577
2578 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2579 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2580 /* Compute the offset within the buffer */
2581 struct anv_push_constants *push =
2582 &cmd_buffer->state.push_constants[stage];
2583
2584 uint32_t dynamic_offset =
2585 push->dynamic_offsets[binding->dynamic_offset_index];
2586 uint64_t offset = desc->offset + dynamic_offset;
2587 /* Clamp to the buffer size */
2588 offset = MIN2(offset, desc->buffer->size);
2589 /* Clamp the range to the buffer size */
2590 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2591
2592 struct anv_address address =
2593 anv_address_add(desc->buffer->address, offset);
2594
2595 surface_state =
2596 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2597 enum isl_format format =
2598 anv_isl_format_for_descriptor_type(desc->type);
2599
2600 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2601 format, address, range, 1);
2602 if (need_client_mem_relocs)
2603 add_surface_reloc(cmd_buffer, surface_state, address);
2604 break;
2605 }
2606
2607 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2608 surface_state = (binding->write_only)
2609 ? desc->buffer_view->writeonly_storage_surface_state
2610 : desc->buffer_view->storage_surface_state;
2611 assert(surface_state.alloc_size);
2612 if (need_client_mem_relocs) {
2613 add_surface_reloc(cmd_buffer, surface_state,
2614 desc->buffer_view->address);
2615 }
2616 break;
2617
2618 default:
2619 assert(!"Invalid descriptor type");
2620 continue;
2621 }
2622 bt_map[s] = surface_state.offset + state_offset;
2623 break;
2624 }
2625 }
2626 }
2627
2628 return VK_SUCCESS;
2629 }
2630
2631 static VkResult
2632 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2633 gl_shader_stage stage,
2634 struct anv_state *state)
2635 {
2636 struct anv_cmd_pipeline_state *pipe_state =
2637 pipe_state_for_stage(cmd_buffer, stage);
2638 struct anv_pipeline *pipeline = pipe_state->pipeline;
2639
2640 if (!anv_pipeline_has_stage(pipeline, stage)) {
2641 *state = (struct anv_state) { 0, };
2642 return VK_SUCCESS;
2643 }
2644
2645 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2646 if (map->sampler_count == 0) {
2647 *state = (struct anv_state) { 0, };
2648 return VK_SUCCESS;
2649 }
2650
2651 uint32_t size = map->sampler_count * 16;
2652 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2653
2654 if (state->map == NULL)
2655 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2656
2657 for (uint32_t s = 0; s < map->sampler_count; s++) {
2658 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2659 const struct anv_descriptor *desc =
2660 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2661
2662 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2663 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2664 continue;
2665
2666 struct anv_sampler *sampler = desc->sampler;
2667
2668 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2669 * happens to be zero.
2670 */
2671 if (sampler == NULL)
2672 continue;
2673
2674 memcpy(state->map + (s * 16),
2675 sampler->state[binding->plane], sizeof(sampler->state[0]));
2676 }
2677
2678 return VK_SUCCESS;
2679 }
2680
2681 static uint32_t
2682 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer,
2683 struct anv_pipeline *pipeline)
2684 {
2685 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2686 pipeline->active_stages;
2687
2688 VkResult result = VK_SUCCESS;
2689 anv_foreach_stage(s, dirty) {
2690 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2691 if (result != VK_SUCCESS)
2692 break;
2693 result = emit_binding_table(cmd_buffer, s,
2694 &cmd_buffer->state.binding_tables[s]);
2695 if (result != VK_SUCCESS)
2696 break;
2697 }
2698
2699 if (result != VK_SUCCESS) {
2700 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2701
2702 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2703 if (result != VK_SUCCESS)
2704 return 0;
2705
2706 /* Re-emit state base addresses so we get the new surface state base
2707 * address before we start emitting binding tables etc.
2708 */
2709 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2710
2711 /* Re-emit all active binding tables */
2712 dirty |= pipeline->active_stages;
2713 anv_foreach_stage(s, dirty) {
2714 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2715 if (result != VK_SUCCESS) {
2716 anv_batch_set_error(&cmd_buffer->batch, result);
2717 return 0;
2718 }
2719 result = emit_binding_table(cmd_buffer, s,
2720 &cmd_buffer->state.binding_tables[s]);
2721 if (result != VK_SUCCESS) {
2722 anv_batch_set_error(&cmd_buffer->batch, result);
2723 return 0;
2724 }
2725 }
2726 }
2727
2728 cmd_buffer->state.descriptors_dirty &= ~dirty;
2729
2730 return dirty;
2731 }
2732
2733 static void
2734 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2735 uint32_t stages)
2736 {
2737 static const uint32_t sampler_state_opcodes[] = {
2738 [MESA_SHADER_VERTEX] = 43,
2739 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2740 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2741 [MESA_SHADER_GEOMETRY] = 46,
2742 [MESA_SHADER_FRAGMENT] = 47,
2743 [MESA_SHADER_COMPUTE] = 0,
2744 };
2745
2746 static const uint32_t binding_table_opcodes[] = {
2747 [MESA_SHADER_VERTEX] = 38,
2748 [MESA_SHADER_TESS_CTRL] = 39,
2749 [MESA_SHADER_TESS_EVAL] = 40,
2750 [MESA_SHADER_GEOMETRY] = 41,
2751 [MESA_SHADER_FRAGMENT] = 42,
2752 [MESA_SHADER_COMPUTE] = 0,
2753 };
2754
2755 anv_foreach_stage(s, stages) {
2756 assert(s < ARRAY_SIZE(binding_table_opcodes));
2757 assert(binding_table_opcodes[s] > 0);
2758
2759 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2760 anv_batch_emit(&cmd_buffer->batch,
2761 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2762 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2763 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2764 }
2765 }
2766
2767 /* Always emit binding table pointers if we're asked to, since on SKL
2768 * this is what flushes push constants. */
2769 anv_batch_emit(&cmd_buffer->batch,
2770 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2771 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2772 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2773 }
2774 }
2775 }
2776
2777 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2778 static struct anv_address
2779 get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
2780 gl_shader_stage stage,
2781 const struct anv_push_range *range)
2782 {
2783 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2784 switch (range->set) {
2785 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2786 /* This is a descriptor set buffer so the set index is
2787 * actually given by binding->binding. (Yes, that's
2788 * confusing.)
2789 */
2790 struct anv_descriptor_set *set =
2791 gfx_state->base.descriptors[range->index];
2792 return anv_descriptor_set_address(cmd_buffer, set);
2793 break;
2794 }
2795
2796 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
2797 struct anv_state state =
2798 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2799 return (struct anv_address) {
2800 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2801 .offset = state.offset,
2802 };
2803 break;
2804 }
2805
2806 default: {
2807 assert(range->set < MAX_SETS);
2808 struct anv_descriptor_set *set =
2809 gfx_state->base.descriptors[range->set];
2810 const struct anv_descriptor *desc =
2811 &set->descriptors[range->index];
2812
2813 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2814 return desc->buffer_view->address;
2815 } else {
2816 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2817 struct anv_push_constants *push =
2818 &cmd_buffer->state.push_constants[stage];
2819 uint32_t dynamic_offset =
2820 push->dynamic_offsets[range->dynamic_offset_index];
2821 return anv_address_add(desc->buffer->address,
2822 desc->offset + dynamic_offset);
2823 }
2824 }
2825 }
2826 }
2827 #endif
2828
2829 static void
2830 cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
2831 gl_shader_stage stage, unsigned buffer_count)
2832 {
2833 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2834 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2835
2836 static const uint32_t push_constant_opcodes[] = {
2837 [MESA_SHADER_VERTEX] = 21,
2838 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2839 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2840 [MESA_SHADER_GEOMETRY] = 22,
2841 [MESA_SHADER_FRAGMENT] = 23,
2842 [MESA_SHADER_COMPUTE] = 0,
2843 };
2844
2845 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2846 assert(push_constant_opcodes[stage] > 0);
2847
2848 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2849 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2850
2851 if (anv_pipeline_has_stage(pipeline, stage)) {
2852 const struct anv_pipeline_bind_map *bind_map =
2853 &pipeline->shaders[stage]->bind_map;
2854
2855 #if GEN_GEN >= 12
2856 c.MOCS = cmd_buffer->device->isl_dev.mocs.internal;
2857 #endif
2858
2859 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2860 /* The Skylake PRM contains the following restriction:
2861 *
2862 * "The driver must ensure The following case does not occur
2863 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2864 * buffer 3 read length equal to zero committed followed by a
2865 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2866 * zero committed."
2867 *
2868 * To avoid this, we program the buffers in the highest slots.
2869 * This way, slot 0 is only used if slot 3 is also used.
2870 */
2871 assert(buffer_count <= 4);
2872 const unsigned shift = 4 - buffer_count;
2873 for (unsigned i = 0; i < buffer_count; i++) {
2874 const struct anv_push_range *range = &bind_map->push_ranges[i];
2875
2876 /* At this point we only have non-empty ranges */
2877 assert(range->length > 0);
2878
2879 /* For Ivy Bridge, make sure we only set the first range (actual
2880 * push constants)
2881 */
2882 assert((GEN_GEN >= 8 || GEN_IS_HASWELL) || i == 0);
2883
2884 const struct anv_address addr =
2885 get_push_range_address(cmd_buffer, stage, range);
2886 c.ConstantBody.ReadLength[i + shift] = range->length;
2887 c.ConstantBody.Buffer[i + shift] =
2888 anv_address_add(addr, range->start * 32);
2889 }
2890 #else
2891 /* For Ivy Bridge, push constants are relative to dynamic state
2892 * base address and we only ever push actual push constants.
2893 */
2894 if (bind_map->push_ranges[0].length > 0) {
2895 assert(bind_map->push_ranges[0].set ==
2896 ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
2897 struct anv_state state =
2898 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2899 c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
2900 c.ConstantBody.Buffer[0].bo = NULL;
2901 c.ConstantBody.Buffer[0].offset = state.offset;
2902 }
2903 assert(bind_map->push_ranges[1].length == 0);
2904 assert(bind_map->push_ranges[2].length == 0);
2905 assert(bind_map->push_ranges[3].length == 0);
2906 #endif
2907 }
2908 }
2909 }
2910
2911 #if GEN_GEN >= 12
2912 static void
2913 cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
2914 uint32_t shader_mask, uint32_t count)
2915 {
2916 if (count == 0) {
2917 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
2918 c.ShaderUpdateEnable = shader_mask;
2919 c.MOCS = cmd_buffer->device->isl_dev.mocs.internal;
2920 }
2921 return;
2922 }
2923
2924 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2925 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2926
2927 static const uint32_t push_constant_opcodes[] = {
2928 [MESA_SHADER_VERTEX] = 21,
2929 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2930 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2931 [MESA_SHADER_GEOMETRY] = 22,
2932 [MESA_SHADER_FRAGMENT] = 23,
2933 [MESA_SHADER_COMPUTE] = 0,
2934 };
2935
2936 gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
2937 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2938 assert(push_constant_opcodes[stage] > 0);
2939
2940 const struct anv_pipeline_bind_map *bind_map =
2941 &pipeline->shaders[stage]->bind_map;
2942
2943 uint32_t *dw;
2944 const uint32_t buffers = (1 << count) - 1;
2945 const uint32_t num_dwords = 2 + 2 * count;
2946
2947 dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2948 GENX(3DSTATE_CONSTANT_ALL),
2949 .ShaderUpdateEnable = shader_mask,
2950 .PointerBufferMask = buffers,
2951 .MOCS = cmd_buffer->device->isl_dev.mocs.internal);
2952
2953 for (int i = 0; i < count; i++) {
2954 const struct anv_push_range *range = &bind_map->push_ranges[i];
2955 const struct anv_address addr =
2956 get_push_range_address(cmd_buffer, stage, range);
2957
2958 GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
2959 &cmd_buffer->batch, dw + 2 + i * 2,
2960 &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
2961 .PointerToConstantBuffer = anv_address_add(addr, range->start * 32),
2962 .ConstantBufferReadLength = range->length,
2963 });
2964 }
2965 }
2966 #endif
2967
2968 static void
2969 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2970 VkShaderStageFlags dirty_stages)
2971 {
2972 VkShaderStageFlags flushed = 0;
2973 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2974 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2975
2976 #if GEN_GEN >= 12
2977 uint32_t nobuffer_stages = 0;
2978 #endif
2979
2980 anv_foreach_stage(stage, dirty_stages) {
2981 unsigned buffer_count = 0;
2982 flushed |= mesa_to_vk_shader_stage(stage);
2983 uint32_t max_push_range = 0;
2984
2985 if (anv_pipeline_has_stage(pipeline, stage)) {
2986 const struct anv_pipeline_bind_map *bind_map =
2987 &pipeline->shaders[stage]->bind_map;
2988
2989 for (unsigned i = 0; i < 4; i++) {
2990 const struct anv_push_range *range = &bind_map->push_ranges[i];
2991 if (range->length > 0) {
2992 buffer_count++;
2993 if (GEN_GEN >= 12 && range->length > max_push_range)
2994 max_push_range = range->length;
2995 }
2996 }
2997 }
2998
2999 #if GEN_GEN >= 12
3000 /* If this stage doesn't have any push constants, emit it later in a
3001 * single CONSTANT_ALL packet.
3002 */
3003 if (buffer_count == 0) {
3004 nobuffer_stages |= 1 << stage;
3005 continue;
3006 }
3007
3008 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
3009 * contains only 5 bits, so we can only use it for buffers smaller than
3010 * 32.
3011 */
3012 if (max_push_range < 32) {
3013 cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
3014 buffer_count);
3015 continue;
3016 }
3017 #endif
3018
3019 cmd_buffer_emit_push_constant(cmd_buffer, stage, buffer_count);
3020 }
3021
3022 #if GEN_GEN >= 12
3023 if (nobuffer_stages)
3024 cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, 0);
3025 #endif
3026
3027 cmd_buffer->state.push_constants_dirty &= ~flushed;
3028 }
3029
3030 void
3031 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
3032 {
3033 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3034 uint32_t *p;
3035
3036 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
3037 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
3038 vb_emit |= pipeline->vb_used;
3039
3040 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
3041
3042 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->l3_config);
3043
3044 genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
3045
3046 genX(flush_pipeline_select_3d)(cmd_buffer);
3047
3048 if (vb_emit) {
3049 const uint32_t num_buffers = __builtin_popcount(vb_emit);
3050 const uint32_t num_dwords = 1 + num_buffers * 4;
3051
3052 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3053 GENX(3DSTATE_VERTEX_BUFFERS));
3054 uint32_t vb, i = 0;
3055 for_each_bit(vb, vb_emit) {
3056 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
3057 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
3058
3059 struct GENX(VERTEX_BUFFER_STATE) state = {
3060 .VertexBufferIndex = vb,
3061
3062 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
3063 #if GEN_GEN <= 7
3064 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
3065 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
3066 #endif
3067
3068 .AddressModifyEnable = true,
3069 .BufferPitch = pipeline->vb[vb].stride,
3070 .BufferStartingAddress = anv_address_add(buffer->address, offset),
3071
3072 #if GEN_GEN >= 8
3073 .BufferSize = buffer->size - offset
3074 #else
3075 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
3076 #endif
3077 };
3078
3079 #if GEN_GEN >= 8 && GEN_GEN <= 9
3080 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, vb,
3081 state.BufferStartingAddress,
3082 state.BufferSize);
3083 #endif
3084
3085 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
3086 i++;
3087 }
3088 }
3089
3090 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
3091
3092 #if GEN_GEN >= 8
3093 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
3094 /* We don't need any per-buffer dirty tracking because you're not
3095 * allowed to bind different XFB buffers while XFB is enabled.
3096 */
3097 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3098 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
3099 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
3100 #if GEN_GEN < 12
3101 sob.SOBufferIndex = idx;
3102 #else
3103 sob._3DCommandOpcode = 0;
3104 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
3105 #endif
3106
3107 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
3108 sob.SOBufferEnable = true;
3109 sob.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
3110 sob.StreamOffsetWriteEnable = false;
3111 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
3112 xfb->offset);
3113 /* Size is in DWords - 1 */
3114 sob.SurfaceSize = xfb->size / 4 - 1;
3115 }
3116 }
3117 }
3118
3119 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
3120 if (GEN_GEN >= 10)
3121 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3122 }
3123 #endif
3124
3125 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
3126 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3127
3128 /* If the pipeline changed, we may need to re-allocate push constant
3129 * space in the URB.
3130 */
3131 cmd_buffer_alloc_push_constants(cmd_buffer);
3132 }
3133
3134 #if GEN_GEN <= 7
3135 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
3136 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
3137 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
3138 *
3139 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
3140 * stall needs to be sent just prior to any 3DSTATE_VS,
3141 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
3142 * 3DSTATE_BINDING_TABLE_POINTER_VS,
3143 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
3144 * PIPE_CONTROL needs to be sent before any combination of VS
3145 * associated 3DSTATE."
3146 */
3147 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3148 pc.DepthStallEnable = true;
3149 pc.PostSyncOperation = WriteImmediateData;
3150 pc.Address =
3151 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
3152 }
3153 }
3154 #endif
3155
3156 /* Render targets live in the same binding table as fragment descriptors */
3157 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
3158 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
3159
3160 /* We emit the binding tables and sampler tables first, then emit push
3161 * constants and then finally emit binding table and sampler table
3162 * pointers. It has to happen in this order, since emitting the binding
3163 * tables may change the push constants (in case of storage images). After
3164 * emitting push constants, on SKL+ we have to emit the corresponding
3165 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
3166 */
3167 uint32_t dirty = 0;
3168 if (cmd_buffer->state.descriptors_dirty)
3169 dirty = flush_descriptor_sets(cmd_buffer, pipeline);
3170
3171 if (dirty || cmd_buffer->state.push_constants_dirty) {
3172 /* Because we're pushing UBOs, we have to push whenever either
3173 * descriptors or push constants is dirty.
3174 */
3175 dirty |= cmd_buffer->state.push_constants_dirty;
3176 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
3177 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
3178 }
3179
3180 if (dirty)
3181 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
3182
3183 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
3184 gen8_cmd_buffer_emit_viewport(cmd_buffer);
3185
3186 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
3187 ANV_CMD_DIRTY_PIPELINE)) {
3188 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
3189 pipeline->depth_clamp_enable);
3190 }
3191
3192 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
3193 ANV_CMD_DIRTY_RENDER_TARGETS))
3194 gen7_cmd_buffer_emit_scissor(cmd_buffer);
3195
3196 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
3197 }
3198
3199 static void
3200 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
3201 struct anv_address addr,
3202 uint32_t size, uint32_t index)
3203 {
3204 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
3205 GENX(3DSTATE_VERTEX_BUFFERS));
3206
3207 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
3208 &(struct GENX(VERTEX_BUFFER_STATE)) {
3209 .VertexBufferIndex = index,
3210 .AddressModifyEnable = true,
3211 .BufferPitch = 0,
3212 .MOCS = addr.bo ? anv_mocs_for_bo(cmd_buffer->device, addr.bo) : 0,
3213 .NullVertexBuffer = size == 0,
3214 #if (GEN_GEN >= 8)
3215 .BufferStartingAddress = addr,
3216 .BufferSize = size
3217 #else
3218 .BufferStartingAddress = addr,
3219 .EndAddress = anv_address_add(addr, size),
3220 #endif
3221 });
3222
3223 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer,
3224 index, addr, size);
3225 }
3226
3227 static void
3228 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
3229 struct anv_address addr)
3230 {
3231 emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
3232 }
3233
3234 static void
3235 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
3236 uint32_t base_vertex, uint32_t base_instance)
3237 {
3238 if (base_vertex == 0 && base_instance == 0) {
3239 emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
3240 } else {
3241 struct anv_state id_state =
3242 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
3243
3244 ((uint32_t *)id_state.map)[0] = base_vertex;
3245 ((uint32_t *)id_state.map)[1] = base_instance;
3246
3247 struct anv_address addr = {
3248 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3249 .offset = id_state.offset,
3250 };
3251
3252 emit_base_vertex_instance_bo(cmd_buffer, addr);
3253 }
3254 }
3255
3256 static void
3257 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
3258 {
3259 struct anv_state state =
3260 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
3261
3262 ((uint32_t *)state.map)[0] = draw_index;
3263
3264 struct anv_address addr = {
3265 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3266 .offset = state.offset,
3267 };
3268
3269 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
3270 }
3271
3272 static void
3273 update_dirty_vbs_for_gen8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
3274 uint32_t access_type)
3275 {
3276 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3277 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3278
3279 uint64_t vb_used = pipeline->vb_used;
3280 if (vs_prog_data->uses_firstvertex ||
3281 vs_prog_data->uses_baseinstance)
3282 vb_used |= 1ull << ANV_SVGS_VB_INDEX;
3283 if (vs_prog_data->uses_drawid)
3284 vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
3285
3286 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(cmd_buffer,
3287 access_type == RANDOM,
3288 vb_used);
3289 }
3290
3291 void genX(CmdDraw)(
3292 VkCommandBuffer commandBuffer,
3293 uint32_t vertexCount,
3294 uint32_t instanceCount,
3295 uint32_t firstVertex,
3296 uint32_t firstInstance)
3297 {
3298 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3299 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3300 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3301
3302 if (anv_batch_has_error(&cmd_buffer->batch))
3303 return;
3304
3305 genX(cmd_buffer_flush_state)(cmd_buffer);
3306
3307 if (cmd_buffer->state.conditional_render_enabled)
3308 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3309
3310 if (vs_prog_data->uses_firstvertex ||
3311 vs_prog_data->uses_baseinstance)
3312 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3313 if (vs_prog_data->uses_drawid)
3314 emit_draw_index(cmd_buffer, 0);
3315
3316 /* Emitting draw index or vertex index BOs may result in needing
3317 * additional VF cache flushes.
3318 */
3319 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3320
3321 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3322 * different views. We need to multiply instanceCount by the view count.
3323 */
3324 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3325
3326 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3327 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3328 prim.VertexAccessType = SEQUENTIAL;
3329 prim.PrimitiveTopologyType = pipeline->topology;
3330 prim.VertexCountPerInstance = vertexCount;
3331 prim.StartVertexLocation = firstVertex;
3332 prim.InstanceCount = instanceCount;
3333 prim.StartInstanceLocation = firstInstance;
3334 prim.BaseVertexLocation = 0;
3335 }
3336
3337 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3338 }
3339
3340 void genX(CmdDrawIndexed)(
3341 VkCommandBuffer commandBuffer,
3342 uint32_t indexCount,
3343 uint32_t instanceCount,
3344 uint32_t firstIndex,
3345 int32_t vertexOffset,
3346 uint32_t firstInstance)
3347 {
3348 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3349 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3350 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3351
3352 if (anv_batch_has_error(&cmd_buffer->batch))
3353 return;
3354
3355 genX(cmd_buffer_flush_state)(cmd_buffer);
3356
3357 if (cmd_buffer->state.conditional_render_enabled)
3358 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3359
3360 if (vs_prog_data->uses_firstvertex ||
3361 vs_prog_data->uses_baseinstance)
3362 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
3363 if (vs_prog_data->uses_drawid)
3364 emit_draw_index(cmd_buffer, 0);
3365
3366 /* Emitting draw index or vertex index BOs may result in needing
3367 * additional VF cache flushes.
3368 */
3369 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3370
3371 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3372 * different views. We need to multiply instanceCount by the view count.
3373 */
3374 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3375
3376 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3377 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3378 prim.VertexAccessType = RANDOM;
3379 prim.PrimitiveTopologyType = pipeline->topology;
3380 prim.VertexCountPerInstance = indexCount;
3381 prim.StartVertexLocation = firstIndex;
3382 prim.InstanceCount = instanceCount;
3383 prim.StartInstanceLocation = firstInstance;
3384 prim.BaseVertexLocation = vertexOffset;
3385 }
3386
3387 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3388 }
3389
3390 /* Auto-Draw / Indirect Registers */
3391 #define GEN7_3DPRIM_END_OFFSET 0x2420
3392 #define GEN7_3DPRIM_START_VERTEX 0x2430
3393 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
3394 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
3395 #define GEN7_3DPRIM_START_INSTANCE 0x243C
3396 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
3397
3398 void genX(CmdDrawIndirectByteCountEXT)(
3399 VkCommandBuffer commandBuffer,
3400 uint32_t instanceCount,
3401 uint32_t firstInstance,
3402 VkBuffer counterBuffer,
3403 VkDeviceSize counterBufferOffset,
3404 uint32_t counterOffset,
3405 uint32_t vertexStride)
3406 {
3407 #if GEN_IS_HASWELL || GEN_GEN >= 8
3408 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3409 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
3410 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3411 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3412
3413 /* firstVertex is always zero for this draw function */
3414 const uint32_t firstVertex = 0;
3415
3416 if (anv_batch_has_error(&cmd_buffer->batch))
3417 return;
3418
3419 genX(cmd_buffer_flush_state)(cmd_buffer);
3420
3421 if (vs_prog_data->uses_firstvertex ||
3422 vs_prog_data->uses_baseinstance)
3423 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3424 if (vs_prog_data->uses_drawid)
3425 emit_draw_index(cmd_buffer, 0);
3426
3427 /* Emitting draw index or vertex index BOs may result in needing
3428 * additional VF cache flushes.
3429 */
3430 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3431
3432 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3433 * different views. We need to multiply instanceCount by the view count.
3434 */
3435 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3436
3437 struct gen_mi_builder b;
3438 gen_mi_builder_init(&b, &cmd_buffer->batch);
3439 struct gen_mi_value count =
3440 gen_mi_mem32(anv_address_add(counter_buffer->address,
3441 counterBufferOffset));
3442 if (counterOffset)
3443 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
3444 count = gen_mi_udiv32_imm(&b, count, vertexStride);
3445 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
3446
3447 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3448 gen_mi_imm(firstVertex));
3449 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
3450 gen_mi_imm(instanceCount));
3451 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3452 gen_mi_imm(firstInstance));
3453 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3454
3455 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3456 prim.IndirectParameterEnable = true;
3457 prim.VertexAccessType = SEQUENTIAL;
3458 prim.PrimitiveTopologyType = pipeline->topology;
3459 }
3460
3461 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3462 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
3463 }
3464
3465 static void
3466 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
3467 struct anv_address addr,
3468 bool indexed)
3469 {
3470 struct gen_mi_builder b;
3471 gen_mi_builder_init(&b, &cmd_buffer->batch);
3472
3473 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
3474 gen_mi_mem32(anv_address_add(addr, 0)));
3475
3476 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
3477 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
3478 if (view_count > 1) {
3479 #if GEN_IS_HASWELL || GEN_GEN >= 8
3480 instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
3481 #else
3482 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3483 "MI_MATH is not supported on Ivy Bridge");
3484 #endif
3485 }
3486 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
3487
3488 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3489 gen_mi_mem32(anv_address_add(addr, 8)));
3490
3491 if (indexed) {
3492 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
3493 gen_mi_mem32(anv_address_add(addr, 12)));
3494 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3495 gen_mi_mem32(anv_address_add(addr, 16)));
3496 } else {
3497 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3498 gen_mi_mem32(anv_address_add(addr, 12)));
3499 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3500 }
3501 }
3502
3503 void genX(CmdDrawIndirect)(
3504 VkCommandBuffer commandBuffer,
3505 VkBuffer _buffer,
3506 VkDeviceSize offset,
3507 uint32_t drawCount,
3508 uint32_t stride)
3509 {
3510 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3511 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3512 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3513 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3514
3515 if (anv_batch_has_error(&cmd_buffer->batch))
3516 return;
3517
3518 genX(cmd_buffer_flush_state)(cmd_buffer);
3519
3520 if (cmd_buffer->state.conditional_render_enabled)
3521 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3522
3523 for (uint32_t i = 0; i < drawCount; i++) {
3524 struct anv_address draw = anv_address_add(buffer->address, offset);
3525
3526 if (vs_prog_data->uses_firstvertex ||
3527 vs_prog_data->uses_baseinstance)
3528 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3529 if (vs_prog_data->uses_drawid)
3530 emit_draw_index(cmd_buffer, i);
3531
3532 /* Emitting draw index or vertex index BOs may result in needing
3533 * additional VF cache flushes.
3534 */
3535 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3536
3537 load_indirect_parameters(cmd_buffer, draw, false);
3538
3539 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3540 prim.IndirectParameterEnable = true;
3541 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3542 prim.VertexAccessType = SEQUENTIAL;
3543 prim.PrimitiveTopologyType = pipeline->topology;
3544 }
3545
3546 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3547
3548 offset += stride;
3549 }
3550 }
3551
3552 void genX(CmdDrawIndexedIndirect)(
3553 VkCommandBuffer commandBuffer,
3554 VkBuffer _buffer,
3555 VkDeviceSize offset,
3556 uint32_t drawCount,
3557 uint32_t stride)
3558 {
3559 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3560 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3561 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3562 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3563
3564 if (anv_batch_has_error(&cmd_buffer->batch))
3565 return;
3566
3567 genX(cmd_buffer_flush_state)(cmd_buffer);
3568
3569 if (cmd_buffer->state.conditional_render_enabled)
3570 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3571
3572 for (uint32_t i = 0; i < drawCount; i++) {
3573 struct anv_address draw = anv_address_add(buffer->address, offset);
3574
3575 /* TODO: We need to stomp base vertex to 0 somehow */
3576 if (vs_prog_data->uses_firstvertex ||
3577 vs_prog_data->uses_baseinstance)
3578 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3579 if (vs_prog_data->uses_drawid)
3580 emit_draw_index(cmd_buffer, i);
3581
3582 /* Emitting draw index or vertex index BOs may result in needing
3583 * additional VF cache flushes.
3584 */
3585 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3586
3587 load_indirect_parameters(cmd_buffer, draw, true);
3588
3589 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3590 prim.IndirectParameterEnable = true;
3591 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3592 prim.VertexAccessType = RANDOM;
3593 prim.PrimitiveTopologyType = pipeline->topology;
3594 }
3595
3596 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3597
3598 offset += stride;
3599 }
3600 }
3601
3602 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3603
3604 static void
3605 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3606 struct anv_address count_address,
3607 const bool conditional_render_enabled)
3608 {
3609 struct gen_mi_builder b;
3610 gen_mi_builder_init(&b, &cmd_buffer->batch);
3611
3612 if (conditional_render_enabled) {
3613 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3614 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
3615 gen_mi_mem32(count_address));
3616 #endif
3617 } else {
3618 /* Upload the current draw count from the draw parameters buffer to
3619 * MI_PREDICATE_SRC0.
3620 */
3621 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
3622 gen_mi_mem32(count_address));
3623
3624 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
3625 }
3626 }
3627
3628 static void
3629 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3630 uint32_t draw_index)
3631 {
3632 struct gen_mi_builder b;
3633 gen_mi_builder_init(&b, &cmd_buffer->batch);
3634
3635 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3636 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
3637
3638 if (draw_index == 0) {
3639 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3640 mip.LoadOperation = LOAD_LOADINV;
3641 mip.CombineOperation = COMBINE_SET;
3642 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3643 }
3644 } else {
3645 /* While draw_index < draw_count the predicate's result will be
3646 * (draw_index == draw_count) ^ TRUE = TRUE
3647 * When draw_index == draw_count the result is
3648 * (TRUE) ^ TRUE = FALSE
3649 * After this all results will be:
3650 * (FALSE) ^ FALSE = FALSE
3651 */
3652 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3653 mip.LoadOperation = LOAD_LOAD;
3654 mip.CombineOperation = COMBINE_XOR;
3655 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3656 }
3657 }
3658 }
3659
3660 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3661 static void
3662 emit_draw_count_predicate_with_conditional_render(
3663 struct anv_cmd_buffer *cmd_buffer,
3664 uint32_t draw_index)
3665 {
3666 struct gen_mi_builder b;
3667 gen_mi_builder_init(&b, &cmd_buffer->batch);
3668
3669 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
3670 gen_mi_reg64(TMP_DRAW_COUNT_REG));
3671 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
3672
3673 #if GEN_GEN >= 8
3674 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
3675 #else
3676 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3677 * so we emit MI_PREDICATE to set it.
3678 */
3679
3680 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
3681 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3682
3683 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3684 mip.LoadOperation = LOAD_LOADINV;
3685 mip.CombineOperation = COMBINE_SET;
3686 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3687 }
3688 #endif
3689 }
3690 #endif
3691
3692 void genX(CmdDrawIndirectCount)(
3693 VkCommandBuffer commandBuffer,
3694 VkBuffer _buffer,
3695 VkDeviceSize offset,
3696 VkBuffer _countBuffer,
3697 VkDeviceSize countBufferOffset,
3698 uint32_t maxDrawCount,
3699 uint32_t stride)
3700 {
3701 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3702 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3703 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3704 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3705 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3706 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3707
3708 if (anv_batch_has_error(&cmd_buffer->batch))
3709 return;
3710
3711 genX(cmd_buffer_flush_state)(cmd_buffer);
3712
3713 struct anv_address count_address =
3714 anv_address_add(count_buffer->address, countBufferOffset);
3715
3716 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3717 cmd_state->conditional_render_enabled);
3718
3719 for (uint32_t i = 0; i < maxDrawCount; i++) {
3720 struct anv_address draw = anv_address_add(buffer->address, offset);
3721
3722 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3723 if (cmd_state->conditional_render_enabled) {
3724 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3725 } else {
3726 emit_draw_count_predicate(cmd_buffer, i);
3727 }
3728 #else
3729 emit_draw_count_predicate(cmd_buffer, i);
3730 #endif
3731
3732 if (vs_prog_data->uses_firstvertex ||
3733 vs_prog_data->uses_baseinstance)
3734 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3735 if (vs_prog_data->uses_drawid)
3736 emit_draw_index(cmd_buffer, i);
3737
3738 /* Emitting draw index or vertex index BOs may result in needing
3739 * additional VF cache flushes.
3740 */
3741 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3742
3743 load_indirect_parameters(cmd_buffer, draw, false);
3744
3745 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3746 prim.IndirectParameterEnable = true;
3747 prim.PredicateEnable = true;
3748 prim.VertexAccessType = SEQUENTIAL;
3749 prim.PrimitiveTopologyType = pipeline->topology;
3750 }
3751
3752 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3753
3754 offset += stride;
3755 }
3756 }
3757
3758 void genX(CmdDrawIndexedIndirectCount)(
3759 VkCommandBuffer commandBuffer,
3760 VkBuffer _buffer,
3761 VkDeviceSize offset,
3762 VkBuffer _countBuffer,
3763 VkDeviceSize countBufferOffset,
3764 uint32_t maxDrawCount,
3765 uint32_t stride)
3766 {
3767 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3768 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3769 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3770 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3771 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3772 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3773
3774 if (anv_batch_has_error(&cmd_buffer->batch))
3775 return;
3776
3777 genX(cmd_buffer_flush_state)(cmd_buffer);
3778
3779 struct anv_address count_address =
3780 anv_address_add(count_buffer->address, countBufferOffset);
3781
3782 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3783 cmd_state->conditional_render_enabled);
3784
3785 for (uint32_t i = 0; i < maxDrawCount; i++) {
3786 struct anv_address draw = anv_address_add(buffer->address, offset);
3787
3788 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3789 if (cmd_state->conditional_render_enabled) {
3790 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3791 } else {
3792 emit_draw_count_predicate(cmd_buffer, i);
3793 }
3794 #else
3795 emit_draw_count_predicate(cmd_buffer, i);
3796 #endif
3797
3798 /* TODO: We need to stomp base vertex to 0 somehow */
3799 if (vs_prog_data->uses_firstvertex ||
3800 vs_prog_data->uses_baseinstance)
3801 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3802 if (vs_prog_data->uses_drawid)
3803 emit_draw_index(cmd_buffer, i);
3804
3805 /* Emitting draw index or vertex index BOs may result in needing
3806 * additional VF cache flushes.
3807 */
3808 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3809
3810 load_indirect_parameters(cmd_buffer, draw, true);
3811
3812 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3813 prim.IndirectParameterEnable = true;
3814 prim.PredicateEnable = true;
3815 prim.VertexAccessType = RANDOM;
3816 prim.PrimitiveTopologyType = pipeline->topology;
3817 }
3818
3819 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3820
3821 offset += stride;
3822 }
3823 }
3824
3825 void genX(CmdBeginTransformFeedbackEXT)(
3826 VkCommandBuffer commandBuffer,
3827 uint32_t firstCounterBuffer,
3828 uint32_t counterBufferCount,
3829 const VkBuffer* pCounterBuffers,
3830 const VkDeviceSize* pCounterBufferOffsets)
3831 {
3832 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3833
3834 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3835 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3836 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3837
3838 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3839 *
3840 * "Ssoftware must ensure that no HW stream output operations can be in
3841 * process or otherwise pending at the point that the MI_LOAD/STORE
3842 * commands are processed. This will likely require a pipeline flush."
3843 */
3844 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3845 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3846
3847 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3848 /* If we have a counter buffer, this is a resume so we need to load the
3849 * value into the streamout offset register. Otherwise, this is a begin
3850 * and we need to reset it to zero.
3851 */
3852 if (pCounterBuffers &&
3853 idx >= firstCounterBuffer &&
3854 idx - firstCounterBuffer < counterBufferCount &&
3855 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
3856 uint32_t cb_idx = idx - firstCounterBuffer;
3857 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3858 uint64_t offset = pCounterBufferOffsets ?
3859 pCounterBufferOffsets[cb_idx] : 0;
3860
3861 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3862 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3863 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
3864 offset);
3865 }
3866 } else {
3867 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
3868 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3869 lri.DataDWord = 0;
3870 }
3871 }
3872 }
3873
3874 cmd_buffer->state.xfb_enabled = true;
3875 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3876 }
3877
3878 void genX(CmdEndTransformFeedbackEXT)(
3879 VkCommandBuffer commandBuffer,
3880 uint32_t firstCounterBuffer,
3881 uint32_t counterBufferCount,
3882 const VkBuffer* pCounterBuffers,
3883 const VkDeviceSize* pCounterBufferOffsets)
3884 {
3885 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3886
3887 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3888 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3889 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3890
3891 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3892 *
3893 * "Ssoftware must ensure that no HW stream output operations can be in
3894 * process or otherwise pending at the point that the MI_LOAD/STORE
3895 * commands are processed. This will likely require a pipeline flush."
3896 */
3897 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3898 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3899
3900 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
3901 unsigned idx = firstCounterBuffer + cb_idx;
3902
3903 /* If we have a counter buffer, this is a resume so we need to load the
3904 * value into the streamout offset register. Otherwise, this is a begin
3905 * and we need to reset it to zero.
3906 */
3907 if (pCounterBuffers &&
3908 cb_idx < counterBufferCount &&
3909 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
3910 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3911 uint64_t offset = pCounterBufferOffsets ?
3912 pCounterBufferOffsets[cb_idx] : 0;
3913
3914 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
3915 srm.MemoryAddress = anv_address_add(counter_buffer->address,
3916 offset);
3917 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3918 }
3919 }
3920 }
3921
3922 cmd_buffer->state.xfb_enabled = false;
3923 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3924 }
3925
3926 void
3927 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
3928 {
3929 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3930
3931 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
3932
3933 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->l3_config);
3934
3935 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
3936
3937 if (cmd_buffer->state.compute.pipeline_dirty) {
3938 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
3939 *
3940 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
3941 * the only bits that are changed are scoreboard related: Scoreboard
3942 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
3943 * these scoreboard related states, a MEDIA_STATE_FLUSH is
3944 * sufficient."
3945 */
3946 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3947 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3948
3949 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3950
3951 /* The workgroup size of the pipeline affects our push constant layout
3952 * so flag push constants as dirty if we change the pipeline.
3953 */
3954 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3955 }
3956
3957 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
3958 cmd_buffer->state.compute.pipeline_dirty) {
3959 flush_descriptor_sets(cmd_buffer, pipeline);
3960
3961 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
3962 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
3963 .BindingTablePointer =
3964 cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
3965 .SamplerStatePointer =
3966 cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
3967 };
3968 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
3969
3970 struct anv_state state =
3971 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
3972 pipeline->interface_descriptor_data,
3973 GENX(INTERFACE_DESCRIPTOR_DATA_length),
3974 64);
3975
3976 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3977 anv_batch_emit(&cmd_buffer->batch,
3978 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
3979 mid.InterfaceDescriptorTotalLength = size;
3980 mid.InterfaceDescriptorDataStartAddress = state.offset;
3981 }
3982 }
3983
3984 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
3985 struct anv_state push_state =
3986 anv_cmd_buffer_cs_push_constants(cmd_buffer);
3987
3988 if (push_state.alloc_size) {
3989 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
3990 curbe.CURBETotalDataLength = push_state.alloc_size;
3991 curbe.CURBEDataStartAddress = push_state.offset;
3992 }
3993 }
3994
3995 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3996 }
3997
3998 cmd_buffer->state.compute.pipeline_dirty = false;
3999
4000 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4001 }
4002
4003 #if GEN_GEN == 7
4004
4005 static VkResult
4006 verify_cmd_parser(const struct anv_device *device,
4007 int required_version,
4008 const char *function)
4009 {
4010 if (device->physical->cmd_parser_version < required_version) {
4011 return vk_errorf(device, device->physical,
4012 VK_ERROR_FEATURE_NOT_PRESENT,
4013 "cmd parser version %d is required for %s",
4014 required_version, function);
4015 } else {
4016 return VK_SUCCESS;
4017 }
4018 }
4019
4020 #endif
4021
4022 static void
4023 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
4024 uint32_t baseGroupX,
4025 uint32_t baseGroupY,
4026 uint32_t baseGroupZ)
4027 {
4028 if (anv_batch_has_error(&cmd_buffer->batch))
4029 return;
4030
4031 struct anv_push_constants *push =
4032 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
4033 if (push->cs.base_work_group_id[0] != baseGroupX ||
4034 push->cs.base_work_group_id[1] != baseGroupY ||
4035 push->cs.base_work_group_id[2] != baseGroupZ) {
4036 push->cs.base_work_group_id[0] = baseGroupX;
4037 push->cs.base_work_group_id[1] = baseGroupY;
4038 push->cs.base_work_group_id[2] = baseGroupZ;
4039
4040 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4041 }
4042 }
4043
4044 void genX(CmdDispatch)(
4045 VkCommandBuffer commandBuffer,
4046 uint32_t x,
4047 uint32_t y,
4048 uint32_t z)
4049 {
4050 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
4051 }
4052
4053 void genX(CmdDispatchBase)(
4054 VkCommandBuffer commandBuffer,
4055 uint32_t baseGroupX,
4056 uint32_t baseGroupY,
4057 uint32_t baseGroupZ,
4058 uint32_t groupCountX,
4059 uint32_t groupCountY,
4060 uint32_t groupCountZ)
4061 {
4062 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4063 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4064 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4065
4066 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
4067 baseGroupY, baseGroupZ);
4068
4069 if (anv_batch_has_error(&cmd_buffer->batch))
4070 return;
4071
4072 if (prog_data->uses_num_work_groups) {
4073 struct anv_state state =
4074 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
4075 uint32_t *sizes = state.map;
4076 sizes[0] = groupCountX;
4077 sizes[1] = groupCountY;
4078 sizes[2] = groupCountZ;
4079 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
4080 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
4081 .offset = state.offset,
4082 };
4083
4084 /* The num_workgroups buffer goes in the binding table */
4085 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4086 }
4087
4088 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4089
4090 if (cmd_buffer->state.conditional_render_enabled)
4091 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4092
4093 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
4094 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
4095 ggw.SIMDSize = prog_data->simd_size / 16;
4096 ggw.ThreadDepthCounterMaximum = 0;
4097 ggw.ThreadHeightCounterMaximum = 0;
4098 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4099 ggw.ThreadGroupIDXDimension = groupCountX;
4100 ggw.ThreadGroupIDYDimension = groupCountY;
4101 ggw.ThreadGroupIDZDimension = groupCountZ;
4102 ggw.RightExecutionMask = pipeline->cs_right_mask;
4103 ggw.BottomExecutionMask = 0xffffffff;
4104 }
4105
4106 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
4107 }
4108
4109 #define GPGPU_DISPATCHDIMX 0x2500
4110 #define GPGPU_DISPATCHDIMY 0x2504
4111 #define GPGPU_DISPATCHDIMZ 0x2508
4112
4113 void genX(CmdDispatchIndirect)(
4114 VkCommandBuffer commandBuffer,
4115 VkBuffer _buffer,
4116 VkDeviceSize offset)
4117 {
4118 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4119 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4120 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4121 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4122 struct anv_address addr = anv_address_add(buffer->address, offset);
4123 struct anv_batch *batch = &cmd_buffer->batch;
4124
4125 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
4126
4127 #if GEN_GEN == 7
4128 /* Linux 4.4 added command parser version 5 which allows the GPGPU
4129 * indirect dispatch registers to be written.
4130 */
4131 if (verify_cmd_parser(cmd_buffer->device, 5,
4132 "vkCmdDispatchIndirect") != VK_SUCCESS)
4133 return;
4134 #endif
4135
4136 if (prog_data->uses_num_work_groups) {
4137 cmd_buffer->state.compute.num_workgroups = addr;
4138
4139 /* The num_workgroups buffer goes in the binding table */
4140 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4141 }
4142
4143 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4144
4145 struct gen_mi_builder b;
4146 gen_mi_builder_init(&b, &cmd_buffer->batch);
4147
4148 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
4149 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
4150 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
4151
4152 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
4153 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
4154 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
4155
4156 #if GEN_GEN <= 7
4157 /* predicate = (compute_dispatch_indirect_x_size == 0); */
4158 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
4159 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
4160 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4161 mip.LoadOperation = LOAD_LOAD;
4162 mip.CombineOperation = COMBINE_SET;
4163 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4164 }
4165
4166 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
4167 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
4168 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4169 mip.LoadOperation = LOAD_LOAD;
4170 mip.CombineOperation = COMBINE_OR;
4171 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4172 }
4173
4174 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
4175 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
4176 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4177 mip.LoadOperation = LOAD_LOAD;
4178 mip.CombineOperation = COMBINE_OR;
4179 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4180 }
4181
4182 /* predicate = !predicate; */
4183 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4184 mip.LoadOperation = LOAD_LOADINV;
4185 mip.CombineOperation = COMBINE_OR;
4186 mip.CompareOperation = COMPARE_FALSE;
4187 }
4188
4189 #if GEN_IS_HASWELL
4190 if (cmd_buffer->state.conditional_render_enabled) {
4191 /* predicate &= !(conditional_rendering_predicate == 0); */
4192 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
4193 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
4194 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4195 mip.LoadOperation = LOAD_LOADINV;
4196 mip.CombineOperation = COMBINE_AND;
4197 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4198 }
4199 }
4200 #endif
4201
4202 #else /* GEN_GEN > 7 */
4203 if (cmd_buffer->state.conditional_render_enabled)
4204 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4205 #endif
4206
4207 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
4208 ggw.IndirectParameterEnable = true;
4209 ggw.PredicateEnable = GEN_GEN <= 7 ||
4210 cmd_buffer->state.conditional_render_enabled;
4211 ggw.SIMDSize = prog_data->simd_size / 16;
4212 ggw.ThreadDepthCounterMaximum = 0;
4213 ggw.ThreadHeightCounterMaximum = 0;
4214 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4215 ggw.RightExecutionMask = pipeline->cs_right_mask;
4216 ggw.BottomExecutionMask = 0xffffffff;
4217 }
4218
4219 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
4220 }
4221
4222 static void
4223 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
4224 uint32_t pipeline)
4225 {
4226 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4227
4228 if (cmd_buffer->state.current_pipeline == pipeline)
4229 return;
4230
4231 #if GEN_GEN >= 8 && GEN_GEN < 10
4232 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
4233 *
4234 * Software must clear the COLOR_CALC_STATE Valid field in
4235 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
4236 * with Pipeline Select set to GPGPU.
4237 *
4238 * The internal hardware docs recommend the same workaround for Gen9
4239 * hardware too.
4240 */
4241 if (pipeline == GPGPU)
4242 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
4243 #endif
4244
4245 #if GEN_GEN == 9
4246 if (pipeline == _3D) {
4247 /* There is a mid-object preemption workaround which requires you to
4248 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
4249 * even without preemption, we have issues with geometry flickering when
4250 * GPGPU and 3D are back-to-back and this seems to fix it. We don't
4251 * really know why.
4252 */
4253 const uint32_t subslices =
4254 MAX2(cmd_buffer->device->physical->subslice_total, 1);
4255 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
4256 vfe.MaximumNumberofThreads =
4257 devinfo->max_cs_threads * subslices - 1;
4258 vfe.NumberofURBEntries = 2;
4259 vfe.URBEntryAllocationSize = 2;
4260 }
4261
4262 /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
4263 * invalid. Set the compute pipeline to dirty to force a re-emit of the
4264 * pipeline in case we get back-to-back dispatch calls with the same
4265 * pipeline and a PIPELINE_SELECT in between.
4266 */
4267 cmd_buffer->state.compute.pipeline_dirty = true;
4268 }
4269 #endif
4270
4271 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
4272 * PIPELINE_SELECT [DevBWR+]":
4273 *
4274 * Project: DEVSNB+
4275 *
4276 * Software must ensure all the write caches are flushed through a
4277 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
4278 * command to invalidate read only caches prior to programming
4279 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
4280 */
4281 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4282 pc.RenderTargetCacheFlushEnable = true;
4283 pc.DepthCacheFlushEnable = true;
4284 pc.DCFlushEnable = true;
4285 pc.PostSyncOperation = NoWrite;
4286 pc.CommandStreamerStallEnable = true;
4287 #if GEN_GEN >= 12
4288 pc.TileCacheFlushEnable = true;
4289
4290 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must be
4291 * set with any PIPE_CONTROL with Depth Flush Enable bit set.
4292 */
4293 pc.DepthStallEnable = true;
4294 #endif
4295 }
4296
4297 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4298 pc.TextureCacheInvalidationEnable = true;
4299 pc.ConstantCacheInvalidationEnable = true;
4300 pc.StateCacheInvalidationEnable = true;
4301 pc.InstructionCacheInvalidateEnable = true;
4302 pc.PostSyncOperation = NoWrite;
4303 #if GEN_GEN >= 12
4304 pc.TileCacheFlushEnable = true;
4305 #endif
4306 }
4307
4308 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
4309 #if GEN_GEN >= 9
4310 ps.MaskBits = 3;
4311 #endif
4312 ps.PipelineSelection = pipeline;
4313 }
4314
4315 #if GEN_GEN == 9
4316 if (devinfo->is_geminilake) {
4317 /* Project: DevGLK
4318 *
4319 * "This chicken bit works around a hardware issue with barrier logic
4320 * encountered when switching between GPGPU and 3D pipelines. To
4321 * workaround the issue, this mode bit should be set after a pipeline
4322 * is selected."
4323 */
4324 uint32_t scec;
4325 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
4326 .GLKBarrierMode =
4327 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
4328 : GLK_BARRIER_MODE_3D_HULL,
4329 .GLKBarrierModeMask = 1);
4330 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
4331 }
4332 #endif
4333
4334 cmd_buffer->state.current_pipeline = pipeline;
4335 }
4336
4337 void
4338 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
4339 {
4340 genX(flush_pipeline_select)(cmd_buffer, _3D);
4341 }
4342
4343 void
4344 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
4345 {
4346 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
4347 }
4348
4349 void
4350 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
4351 {
4352 if (GEN_GEN >= 8)
4353 return;
4354
4355 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
4356 *
4357 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
4358 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
4359 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
4360 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
4361 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
4362 * Depth Flush Bit set, followed by another pipelined depth stall
4363 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
4364 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
4365 * via a preceding MI_FLUSH)."
4366 */
4367 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4368 pipe.DepthStallEnable = true;
4369 }
4370 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4371 pipe.DepthCacheFlushEnable = true;
4372 #if GEN_GEN >= 12
4373 pipe.TileCacheFlushEnable = true;
4374 #endif
4375 }
4376 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4377 pipe.DepthStallEnable = true;
4378 }
4379 }
4380
4381 /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
4382 *
4383 * "The VF cache needs to be invalidated before binding and then using
4384 * Vertex Buffers that overlap with any previously bound Vertex Buffer
4385 * (at a 64B granularity) since the last invalidation. A VF cache
4386 * invalidate is performed by setting the "VF Cache Invalidation Enable"
4387 * bit in PIPE_CONTROL."
4388 *
4389 * This is implemented by carefully tracking all vertex and index buffer
4390 * bindings and flushing if the cache ever ends up with a range in the cache
4391 * that would exceed 4 GiB. This is implemented in three parts:
4392 *
4393 * 1. genX(cmd_buffer_set_binding_for_gen8_vb_flush)() which must be called
4394 * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
4395 * tracking code of the new binding. If this new binding would cause
4396 * the cache to have a too-large range on the next draw call, a pipeline
4397 * stall and VF cache invalidate are added to pending_pipeline_bits.
4398 *
4399 * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
4400 * empty whenever we emit a VF invalidate.
4401 *
4402 * 3. genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)() must be called
4403 * after every 3DPRIMITIVE and copies the bound range into the dirty
4404 * range for each used buffer. This has to be a separate step because
4405 * we don't always re-bind all buffers and so 1. can't know which
4406 * buffers are actually bound.
4407 */
4408 void
4409 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4410 int vb_index,
4411 struct anv_address vb_address,
4412 uint32_t vb_size)
4413 {
4414 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4415 !cmd_buffer->device->physical->use_softpin)
4416 return;
4417
4418 struct anv_vb_cache_range *bound, *dirty;
4419 if (vb_index == -1) {
4420 bound = &cmd_buffer->state.gfx.ib_bound_range;
4421 dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4422 } else {
4423 assert(vb_index >= 0);
4424 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4425 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4426 bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
4427 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
4428 }
4429
4430 if (vb_size == 0) {
4431 bound->start = 0;
4432 bound->end = 0;
4433 return;
4434 }
4435
4436 assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED));
4437 bound->start = gen_48b_address(anv_address_physical(vb_address));
4438 bound->end = bound->start + vb_size;
4439 assert(bound->end > bound->start); /* No overflow */
4440
4441 /* Align everything to a cache line */
4442 bound->start &= ~(64ull - 1ull);
4443 bound->end = align_u64(bound->end, 64);
4444
4445 /* Compute the dirty range */
4446 dirty->start = MIN2(dirty->start, bound->start);
4447 dirty->end = MAX2(dirty->end, bound->end);
4448
4449 /* If our range is larger than 32 bits, we have to flush */
4450 assert(bound->end - bound->start <= (1ull << 32));
4451 if (dirty->end - dirty->start > (1ull << 32)) {
4452 cmd_buffer->state.pending_pipe_bits |=
4453 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
4454 }
4455 }
4456
4457 void
4458 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4459 uint32_t access_type,
4460 uint64_t vb_used)
4461 {
4462 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4463 !cmd_buffer->device->physical->use_softpin)
4464 return;
4465
4466 if (access_type == RANDOM) {
4467 /* We have an index buffer */
4468 struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
4469 struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4470
4471 if (bound->end > bound->start) {
4472 dirty->start = MIN2(dirty->start, bound->start);
4473 dirty->end = MAX2(dirty->end, bound->end);
4474 }
4475 }
4476
4477 uint64_t mask = vb_used;
4478 while (mask) {
4479 int i = u_bit_scan64(&mask);
4480 assert(i >= 0);
4481 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4482 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4483
4484 struct anv_vb_cache_range *bound, *dirty;
4485 bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
4486 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
4487
4488 if (bound->end > bound->start) {
4489 dirty->start = MIN2(dirty->start, bound->start);
4490 dirty->end = MAX2(dirty->end, bound->end);
4491 }
4492 }
4493 }
4494
4495 /**
4496 * Update the pixel hashing modes that determine the balancing of PS threads
4497 * across subslices and slices.
4498 *
4499 * \param width Width bound of the rendering area (already scaled down if \p
4500 * scale is greater than 1).
4501 * \param height Height bound of the rendering area (already scaled down if \p
4502 * scale is greater than 1).
4503 * \param scale The number of framebuffer samples that could potentially be
4504 * affected by an individual channel of the PS thread. This is
4505 * typically one for single-sampled rendering, but for operations
4506 * like CCS resolves and fast clears a single PS invocation may
4507 * update a huge number of pixels, in which case a finer
4508 * balancing is desirable in order to maximally utilize the
4509 * bandwidth available. UINT_MAX can be used as shorthand for
4510 * "finest hashing mode available".
4511 */
4512 void
4513 genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
4514 unsigned width, unsigned height,
4515 unsigned scale)
4516 {
4517 #if GEN_GEN == 9
4518 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4519 const unsigned slice_hashing[] = {
4520 /* Because all Gen9 platforms with more than one slice require
4521 * three-way subslice hashing, a single "normal" 16x16 slice hashing
4522 * block is guaranteed to suffer from substantial imbalance, with one
4523 * subslice receiving twice as much work as the other two in the
4524 * slice.
4525 *
4526 * The performance impact of that would be particularly severe when
4527 * three-way hashing is also in use for slice balancing (which is the
4528 * case for all Gen9 GT4 platforms), because one of the slices
4529 * receives one every three 16x16 blocks in either direction, which
4530 * is roughly the periodicity of the underlying subslice imbalance
4531 * pattern ("roughly" because in reality the hardware's
4532 * implementation of three-way hashing doesn't do exact modulo 3
4533 * arithmetic, which somewhat decreases the magnitude of this effect
4534 * in practice). This leads to a systematic subslice imbalance
4535 * within that slice regardless of the size of the primitive. The
4536 * 32x32 hashing mode guarantees that the subslice imbalance within a
4537 * single slice hashing block is minimal, largely eliminating this
4538 * effect.
4539 */
4540 _32x32,
4541 /* Finest slice hashing mode available. */
4542 NORMAL
4543 };
4544 const unsigned subslice_hashing[] = {
4545 /* 16x16 would provide a slight cache locality benefit especially
4546 * visible in the sampler L1 cache efficiency of low-bandwidth
4547 * non-LLC platforms, but it comes at the cost of greater subslice
4548 * imbalance for primitives of dimensions approximately intermediate
4549 * between 16x4 and 16x16.
4550 */
4551 _16x4,
4552 /* Finest subslice hashing mode available. */
4553 _8x4
4554 };
4555 /* Dimensions of the smallest hashing block of a given hashing mode. If
4556 * the rendering area is smaller than this there can't possibly be any
4557 * benefit from switching to this mode, so we optimize out the
4558 * transition.
4559 */
4560 const unsigned min_size[][2] = {
4561 { 16, 4 },
4562 { 8, 4 }
4563 };
4564 const unsigned idx = scale > 1;
4565
4566 if (cmd_buffer->state.current_hash_scale != scale &&
4567 (width > min_size[idx][0] || height > min_size[idx][1])) {
4568 uint32_t gt_mode;
4569
4570 anv_pack_struct(&gt_mode, GENX(GT_MODE),
4571 .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0),
4572 .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0),
4573 .SubsliceHashing = subslice_hashing[idx],
4574 .SubsliceHashingMask = -1);
4575
4576 cmd_buffer->state.pending_pipe_bits |=
4577 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
4578 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4579
4580 emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode);
4581
4582 cmd_buffer->state.current_hash_scale = scale;
4583 }
4584 #endif
4585 }
4586
4587 static void
4588 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
4589 {
4590 struct anv_device *device = cmd_buffer->device;
4591 const struct anv_image_view *iview =
4592 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
4593 const struct anv_image *image = iview ? iview->image : NULL;
4594
4595 /* FIXME: Width and Height are wrong */
4596
4597 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
4598
4599 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
4600 device->isl_dev.ds.size / 4);
4601 if (dw == NULL)
4602 return;
4603
4604 struct isl_depth_stencil_hiz_emit_info info = { };
4605
4606 if (iview)
4607 info.view = &iview->planes[0].isl;
4608
4609 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4610 uint32_t depth_plane =
4611 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
4612 const struct anv_surface *surface = &image->planes[depth_plane].surface;
4613
4614 info.depth_surf = &surface->isl;
4615
4616 info.depth_address =
4617 anv_batch_emit_reloc(&cmd_buffer->batch,
4618 dw + device->isl_dev.ds.depth_offset / 4,
4619 image->planes[depth_plane].address.bo,
4620 image->planes[depth_plane].address.offset +
4621 surface->offset);
4622 info.mocs =
4623 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
4624
4625 const uint32_t ds =
4626 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
4627 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
4628 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
4629 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
4630
4631 info.hiz_address =
4632 anv_batch_emit_reloc(&cmd_buffer->batch,
4633 dw + device->isl_dev.ds.hiz_offset / 4,
4634 image->planes[depth_plane].address.bo,
4635 image->planes[depth_plane].address.offset +
4636 image->planes[depth_plane].aux_surface.offset);
4637
4638 info.depth_clear_value = ANV_HZ_FC_VAL;
4639 }
4640 }
4641
4642 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
4643 uint32_t stencil_plane =
4644 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
4645 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
4646
4647 info.stencil_surf = &surface->isl;
4648
4649 info.stencil_address =
4650 anv_batch_emit_reloc(&cmd_buffer->batch,
4651 dw + device->isl_dev.ds.stencil_offset / 4,
4652 image->planes[stencil_plane].address.bo,
4653 image->planes[stencil_plane].address.offset +
4654 surface->offset);
4655 info.mocs =
4656 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
4657 }
4658
4659 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
4660
4661 if (GEN_GEN >= 12) {
4662 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
4663 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4664
4665 /* GEN:BUG:1408224581
4666 *
4667 * Workaround: Gen12LP Astep only An additional pipe control with
4668 * post-sync = store dword operation would be required.( w/a is to
4669 * have an additional pipe control after the stencil state whenever
4670 * the surface state bits of this state is changing).
4671 */
4672 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4673 pc.PostSyncOperation = WriteImmediateData;
4674 pc.Address =
4675 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
4676 }
4677 }
4678 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
4679 }
4680
4681 /**
4682 * This ANDs the view mask of the current subpass with the pending clear
4683 * views in the attachment to get the mask of views active in the subpass
4684 * that still need to be cleared.
4685 */
4686 static inline uint32_t
4687 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
4688 const struct anv_attachment_state *att_state)
4689 {
4690 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
4691 }
4692
4693 static inline bool
4694 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
4695 const struct anv_attachment_state *att_state)
4696 {
4697 if (!cmd_state->subpass->view_mask)
4698 return true;
4699
4700 uint32_t pending_clear_mask =
4701 get_multiview_subpass_clear_mask(cmd_state, att_state);
4702
4703 return pending_clear_mask & 1;
4704 }
4705
4706 static inline bool
4707 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
4708 uint32_t att_idx)
4709 {
4710 const uint32_t last_subpass_idx =
4711 cmd_state->pass->attachments[att_idx].last_subpass_idx;
4712 const struct anv_subpass *last_subpass =
4713 &cmd_state->pass->subpasses[last_subpass_idx];
4714 return last_subpass == cmd_state->subpass;
4715 }
4716
4717 static void
4718 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
4719 uint32_t subpass_id)
4720 {
4721 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4722 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
4723 cmd_state->subpass = subpass;
4724
4725 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
4726
4727 /* Our implementation of VK_KHR_multiview uses instancing to draw the
4728 * different views. If the client asks for instancing, we need to use the
4729 * Instance Data Step Rate to ensure that we repeat the client's
4730 * per-instance data once for each view. Since this bit is in
4731 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
4732 * of each subpass.
4733 */
4734 if (GEN_GEN == 7)
4735 cmd_buffer->state.gfx.vb_dirty |= ~0;
4736
4737 /* It is possible to start a render pass with an old pipeline. Because the
4738 * render pass and subpass index are both baked into the pipeline, this is
4739 * highly unlikely. In order to do so, it requires that you have a render
4740 * pass with a single subpass and that you use that render pass twice
4741 * back-to-back and use the same pipeline at the start of the second render
4742 * pass as at the end of the first. In order to avoid unpredictable issues
4743 * with this edge case, we just dirty the pipeline at the start of every
4744 * subpass.
4745 */
4746 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
4747
4748 /* Accumulate any subpass flushes that need to happen before the subpass */
4749 cmd_buffer->state.pending_pipe_bits |=
4750 cmd_buffer->state.pass->subpass_flushes[subpass_id];
4751
4752 VkRect2D render_area = cmd_buffer->state.render_area;
4753 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4754
4755 bool is_multiview = subpass->view_mask != 0;
4756
4757 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4758 const uint32_t a = subpass->attachments[i].attachment;
4759 if (a == VK_ATTACHMENT_UNUSED)
4760 continue;
4761
4762 assert(a < cmd_state->pass->attachment_count);
4763 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4764
4765 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
4766 const struct anv_image *image = iview->image;
4767
4768 /* A resolve is necessary before use as an input attachment if the clear
4769 * color or auxiliary buffer usage isn't supported by the sampler.
4770 */
4771 const bool input_needs_resolve =
4772 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
4773 att_state->input_aux_usage != att_state->aux_usage;
4774
4775 VkImageLayout target_layout;
4776 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
4777 !input_needs_resolve) {
4778 /* Layout transitions before the final only help to enable sampling
4779 * as an input attachment. If the input attachment supports sampling
4780 * using the auxiliary surface, we can skip such transitions by
4781 * making the target layout one that is CCS-aware.
4782 */
4783 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
4784 } else {
4785 target_layout = subpass->attachments[i].layout;
4786 }
4787
4788 VkImageLayout target_stencil_layout =
4789 subpass->attachments[i].stencil_layout;
4790
4791 uint32_t base_layer, layer_count;
4792 if (image->type == VK_IMAGE_TYPE_3D) {
4793 base_layer = 0;
4794 layer_count = anv_minify(iview->image->extent.depth,
4795 iview->planes[0].isl.base_level);
4796 } else {
4797 base_layer = iview->planes[0].isl.base_array_layer;
4798 layer_count = fb->layers;
4799 }
4800
4801 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4802 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4803 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4804 iview->planes[0].isl.base_level, 1,
4805 base_layer, layer_count,
4806 att_state->current_layout, target_layout);
4807 }
4808
4809 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4810 transition_depth_buffer(cmd_buffer, image,
4811 att_state->current_layout, target_layout);
4812 att_state->aux_usage =
4813 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
4814 VK_IMAGE_ASPECT_DEPTH_BIT,
4815 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
4816 target_layout);
4817 }
4818
4819 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4820 transition_stencil_buffer(cmd_buffer, image,
4821 iview->planes[0].isl.base_level, 1,
4822 base_layer, layer_count,
4823 att_state->current_stencil_layout,
4824 target_stencil_layout);
4825 }
4826 att_state->current_layout = target_layout;
4827 att_state->current_stencil_layout = target_stencil_layout;
4828
4829 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
4830 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4831
4832 /* Multi-planar images are not supported as attachments */
4833 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4834 assert(image->n_planes == 1);
4835
4836 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
4837 uint32_t clear_layer_count = fb->layers;
4838
4839 if (att_state->fast_clear &&
4840 do_first_layer_clear(cmd_state, att_state)) {
4841 /* We only support fast-clears on the first layer */
4842 assert(iview->planes[0].isl.base_level == 0);
4843 assert(iview->planes[0].isl.base_array_layer == 0);
4844
4845 union isl_color_value clear_color = {};
4846 anv_clear_color_from_att_state(&clear_color, att_state, iview);
4847 if (iview->image->samples == 1) {
4848 anv_image_ccs_op(cmd_buffer, image,
4849 iview->planes[0].isl.format,
4850 VK_IMAGE_ASPECT_COLOR_BIT,
4851 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
4852 &clear_color,
4853 false);
4854 } else {
4855 anv_image_mcs_op(cmd_buffer, image,
4856 iview->planes[0].isl.format,
4857 VK_IMAGE_ASPECT_COLOR_BIT,
4858 0, 1, ISL_AUX_OP_FAST_CLEAR,
4859 &clear_color,
4860 false);
4861 }
4862 base_clear_layer++;
4863 clear_layer_count--;
4864 if (is_multiview)
4865 att_state->pending_clear_views &= ~1;
4866
4867 if (att_state->clear_color_is_zero) {
4868 /* This image has the auxiliary buffer enabled. We can mark the
4869 * subresource as not needing a resolve because the clear color
4870 * will match what's in every RENDER_SURFACE_STATE object when
4871 * it's being used for sampling.
4872 */
4873 set_image_fast_clear_state(cmd_buffer, iview->image,
4874 VK_IMAGE_ASPECT_COLOR_BIT,
4875 ANV_FAST_CLEAR_DEFAULT_VALUE);
4876 } else {
4877 set_image_fast_clear_state(cmd_buffer, iview->image,
4878 VK_IMAGE_ASPECT_COLOR_BIT,
4879 ANV_FAST_CLEAR_ANY);
4880 }
4881 }
4882
4883 /* From the VkFramebufferCreateInfo spec:
4884 *
4885 * "If the render pass uses multiview, then layers must be one and each
4886 * attachment requires a number of layers that is greater than the
4887 * maximum bit index set in the view mask in the subpasses in which it
4888 * is used."
4889 *
4890 * So if multiview is active we ignore the number of layers in the
4891 * framebuffer and instead we honor the view mask from the subpass.
4892 */
4893 if (is_multiview) {
4894 assert(image->n_planes == 1);
4895 uint32_t pending_clear_mask =
4896 get_multiview_subpass_clear_mask(cmd_state, att_state);
4897
4898 uint32_t layer_idx;
4899 for_each_bit(layer_idx, pending_clear_mask) {
4900 uint32_t layer =
4901 iview->planes[0].isl.base_array_layer + layer_idx;
4902
4903 anv_image_clear_color(cmd_buffer, image,
4904 VK_IMAGE_ASPECT_COLOR_BIT,
4905 att_state->aux_usage,
4906 iview->planes[0].isl.format,
4907 iview->planes[0].isl.swizzle,
4908 iview->planes[0].isl.base_level,
4909 layer, 1,
4910 render_area,
4911 vk_to_isl_color(att_state->clear_value.color));
4912 }
4913
4914 att_state->pending_clear_views &= ~pending_clear_mask;
4915 } else if (clear_layer_count > 0) {
4916 assert(image->n_planes == 1);
4917 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4918 att_state->aux_usage,
4919 iview->planes[0].isl.format,
4920 iview->planes[0].isl.swizzle,
4921 iview->planes[0].isl.base_level,
4922 base_clear_layer, clear_layer_count,
4923 render_area,
4924 vk_to_isl_color(att_state->clear_value.color));
4925 }
4926 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
4927 VK_IMAGE_ASPECT_STENCIL_BIT)) {
4928 if (att_state->fast_clear && !is_multiview) {
4929 /* We currently only support HiZ for single-layer images */
4930 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4931 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
4932 assert(iview->planes[0].isl.base_level == 0);
4933 assert(iview->planes[0].isl.base_array_layer == 0);
4934 assert(fb->layers == 1);
4935 }
4936
4937 anv_image_hiz_clear(cmd_buffer, image,
4938 att_state->pending_clear_aspects,
4939 iview->planes[0].isl.base_level,
4940 iview->planes[0].isl.base_array_layer,
4941 fb->layers, render_area,
4942 att_state->clear_value.depthStencil.stencil);
4943 } else if (is_multiview) {
4944 uint32_t pending_clear_mask =
4945 get_multiview_subpass_clear_mask(cmd_state, att_state);
4946
4947 uint32_t layer_idx;
4948 for_each_bit(layer_idx, pending_clear_mask) {
4949 uint32_t layer =
4950 iview->planes[0].isl.base_array_layer + layer_idx;
4951
4952 anv_image_clear_depth_stencil(cmd_buffer, image,
4953 att_state->pending_clear_aspects,
4954 att_state->aux_usage,
4955 iview->planes[0].isl.base_level,
4956 layer, 1,
4957 render_area,
4958 att_state->clear_value.depthStencil.depth,
4959 att_state->clear_value.depthStencil.stencil);
4960 }
4961
4962 att_state->pending_clear_views &= ~pending_clear_mask;
4963 } else {
4964 anv_image_clear_depth_stencil(cmd_buffer, image,
4965 att_state->pending_clear_aspects,
4966 att_state->aux_usage,
4967 iview->planes[0].isl.base_level,
4968 iview->planes[0].isl.base_array_layer,
4969 fb->layers, render_area,
4970 att_state->clear_value.depthStencil.depth,
4971 att_state->clear_value.depthStencil.stencil);
4972 }
4973 } else {
4974 assert(att_state->pending_clear_aspects == 0);
4975 }
4976
4977 if (GEN_GEN < 10 &&
4978 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
4979 image->planes[0].aux_usage != ISL_AUX_USAGE_NONE &&
4980 iview->planes[0].isl.base_level == 0 &&
4981 iview->planes[0].isl.base_array_layer == 0) {
4982 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
4983 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
4984 image, VK_IMAGE_ASPECT_COLOR_BIT,
4985 false /* copy to ss */);
4986 }
4987
4988 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
4989 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
4990 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
4991 image, VK_IMAGE_ASPECT_COLOR_BIT,
4992 false /* copy to ss */);
4993 }
4994 }
4995
4996 if (subpass->attachments[i].usage ==
4997 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
4998 /* We assume that if we're starting a subpass, we're going to do some
4999 * rendering so we may end up with compressed data.
5000 */
5001 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
5002 VK_IMAGE_ASPECT_COLOR_BIT,
5003 att_state->aux_usage,
5004 iview->planes[0].isl.base_level,
5005 iview->planes[0].isl.base_array_layer,
5006 fb->layers);
5007 } else if (subpass->attachments[i].usage ==
5008 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
5009 /* We may be writing depth or stencil so we need to mark the surface.
5010 * Unfortunately, there's no way to know at this point whether the
5011 * depth or stencil tests used will actually write to the surface.
5012 *
5013 * Even though stencil may be plane 1, it always shares a base_level
5014 * with depth.
5015 */
5016 const struct isl_view *ds_view = &iview->planes[0].isl;
5017 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
5018 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5019 VK_IMAGE_ASPECT_DEPTH_BIT,
5020 att_state->aux_usage,
5021 ds_view->base_level,
5022 ds_view->base_array_layer,
5023 fb->layers);
5024 }
5025 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
5026 /* Even though stencil may be plane 1, it always shares a
5027 * base_level with depth.
5028 */
5029 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5030 VK_IMAGE_ASPECT_STENCIL_BIT,
5031 ISL_AUX_USAGE_NONE,
5032 ds_view->base_level,
5033 ds_view->base_array_layer,
5034 fb->layers);
5035 }
5036 }
5037
5038 /* If multiview is enabled, then we are only done clearing when we no
5039 * longer have pending layers to clear, or when we have processed the
5040 * last subpass that uses this attachment.
5041 */
5042 if (!is_multiview ||
5043 att_state->pending_clear_views == 0 ||
5044 current_subpass_is_last_for_attachment(cmd_state, a)) {
5045 att_state->pending_clear_aspects = 0;
5046 }
5047
5048 att_state->pending_load_aspects = 0;
5049 }
5050
5051 cmd_buffer_emit_depth_stencil(cmd_buffer);
5052
5053 #if GEN_GEN >= 11
5054 /* The PIPE_CONTROL command description says:
5055 *
5056 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
5057 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
5058 * Target Cache Flush by enabling this bit. When render target flush
5059 * is set due to new association of BTI, PS Scoreboard Stall bit must
5060 * be set in this packet."
5061 */
5062 cmd_buffer->state.pending_pipe_bits |=
5063 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
5064 ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
5065 #endif
5066 }
5067
5068 static enum blorp_filter
5069 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
5070 {
5071 switch (vk_mode) {
5072 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
5073 return BLORP_FILTER_SAMPLE_0;
5074 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
5075 return BLORP_FILTER_AVERAGE;
5076 case VK_RESOLVE_MODE_MIN_BIT_KHR:
5077 return BLORP_FILTER_MIN_SAMPLE;
5078 case VK_RESOLVE_MODE_MAX_BIT_KHR:
5079 return BLORP_FILTER_MAX_SAMPLE;
5080 default:
5081 return BLORP_FILTER_NONE;
5082 }
5083 }
5084
5085 static void
5086 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
5087 {
5088 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5089 struct anv_subpass *subpass = cmd_state->subpass;
5090 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
5091 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
5092
5093 if (subpass->has_color_resolve) {
5094 /* We are about to do some MSAA resolves. We need to flush so that the
5095 * result of writes to the MSAA color attachments show up in the sampler
5096 * when we blit to the single-sampled resolve target.
5097 */
5098 cmd_buffer->state.pending_pipe_bits |=
5099 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5100 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
5101
5102 for (uint32_t i = 0; i < subpass->color_count; ++i) {
5103 uint32_t src_att = subpass->color_attachments[i].attachment;
5104 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
5105
5106 if (dst_att == VK_ATTACHMENT_UNUSED)
5107 continue;
5108
5109 assert(src_att < cmd_buffer->state.pass->attachment_count);
5110 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5111
5112 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5113 /* From the Vulkan 1.0 spec:
5114 *
5115 * If the first use of an attachment in a render pass is as a
5116 * resolve attachment, then the loadOp is effectively ignored
5117 * as the resolve is guaranteed to overwrite all pixels in the
5118 * render area.
5119 */
5120 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5121 }
5122
5123 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5124 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5125
5126 const VkRect2D render_area = cmd_buffer->state.render_area;
5127
5128 enum isl_aux_usage src_aux_usage =
5129 cmd_buffer->state.attachments[src_att].aux_usage;
5130 enum isl_aux_usage dst_aux_usage =
5131 cmd_buffer->state.attachments[dst_att].aux_usage;
5132
5133 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
5134 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
5135
5136 anv_image_msaa_resolve(cmd_buffer,
5137 src_iview->image, src_aux_usage,
5138 src_iview->planes[0].isl.base_level,
5139 src_iview->planes[0].isl.base_array_layer,
5140 dst_iview->image, dst_aux_usage,
5141 dst_iview->planes[0].isl.base_level,
5142 dst_iview->planes[0].isl.base_array_layer,
5143 VK_IMAGE_ASPECT_COLOR_BIT,
5144 render_area.offset.x, render_area.offset.y,
5145 render_area.offset.x, render_area.offset.y,
5146 render_area.extent.width,
5147 render_area.extent.height,
5148 fb->layers, BLORP_FILTER_NONE);
5149 }
5150 }
5151
5152 if (subpass->ds_resolve_attachment) {
5153 /* We are about to do some MSAA resolves. We need to flush so that the
5154 * result of writes to the MSAA depth attachments show up in the sampler
5155 * when we blit to the single-sampled resolve target.
5156 */
5157 cmd_buffer->state.pending_pipe_bits |=
5158 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5159 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
5160
5161 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
5162 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
5163
5164 assert(src_att < cmd_buffer->state.pass->attachment_count);
5165 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5166
5167 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5168 /* From the Vulkan 1.0 spec:
5169 *
5170 * If the first use of an attachment in a render pass is as a
5171 * resolve attachment, then the loadOp is effectively ignored
5172 * as the resolve is guaranteed to overwrite all pixels in the
5173 * render area.
5174 */
5175 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5176 }
5177
5178 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5179 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5180
5181 const VkRect2D render_area = cmd_buffer->state.render_area;
5182
5183 struct anv_attachment_state *src_state =
5184 &cmd_state->attachments[src_att];
5185 struct anv_attachment_state *dst_state =
5186 &cmd_state->attachments[dst_att];
5187
5188 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
5189 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5190
5191 /* MSAA resolves sample from the source attachment. Transition the
5192 * depth attachment first to get rid of any HiZ that we may not be
5193 * able to handle.
5194 */
5195 transition_depth_buffer(cmd_buffer, src_iview->image,
5196 src_state->current_layout,
5197 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5198 src_state->aux_usage =
5199 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
5200 VK_IMAGE_ASPECT_DEPTH_BIT,
5201 VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
5202 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5203 src_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5204
5205 /* MSAA resolves write to the resolve attachment as if it were any
5206 * other transfer op. Transition the resolve attachment accordingly.
5207 */
5208 VkImageLayout dst_initial_layout = dst_state->current_layout;
5209
5210 /* If our render area is the entire size of the image, we're going to
5211 * blow it all away so we can claim the initial layout is UNDEFINED
5212 * and we'll get a HiZ ambiguate instead of a resolve.
5213 */
5214 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
5215 render_area.offset.x == 0 && render_area.offset.y == 0 &&
5216 render_area.extent.width == dst_iview->extent.width &&
5217 render_area.extent.height == dst_iview->extent.height)
5218 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5219
5220 transition_depth_buffer(cmd_buffer, dst_iview->image,
5221 dst_initial_layout,
5222 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5223 dst_state->aux_usage =
5224 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
5225 VK_IMAGE_ASPECT_DEPTH_BIT,
5226 VK_IMAGE_USAGE_TRANSFER_DST_BIT,
5227 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5228 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5229
5230 enum blorp_filter filter =
5231 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
5232
5233 anv_image_msaa_resolve(cmd_buffer,
5234 src_iview->image, src_state->aux_usage,
5235 src_iview->planes[0].isl.base_level,
5236 src_iview->planes[0].isl.base_array_layer,
5237 dst_iview->image, dst_state->aux_usage,
5238 dst_iview->planes[0].isl.base_level,
5239 dst_iview->planes[0].isl.base_array_layer,
5240 VK_IMAGE_ASPECT_DEPTH_BIT,
5241 render_area.offset.x, render_area.offset.y,
5242 render_area.offset.x, render_area.offset.y,
5243 render_area.extent.width,
5244 render_area.extent.height,
5245 fb->layers, filter);
5246 }
5247
5248 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
5249 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5250
5251 src_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5252 dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5253
5254 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
5255 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
5256
5257 enum blorp_filter filter =
5258 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
5259
5260 anv_image_msaa_resolve(cmd_buffer,
5261 src_iview->image, src_aux_usage,
5262 src_iview->planes[0].isl.base_level,
5263 src_iview->planes[0].isl.base_array_layer,
5264 dst_iview->image, dst_aux_usage,
5265 dst_iview->planes[0].isl.base_level,
5266 dst_iview->planes[0].isl.base_array_layer,
5267 VK_IMAGE_ASPECT_STENCIL_BIT,
5268 render_area.offset.x, render_area.offset.y,
5269 render_area.offset.x, render_area.offset.y,
5270 render_area.extent.width,
5271 render_area.extent.height,
5272 fb->layers, filter);
5273 }
5274 }
5275
5276 #if GEN_GEN == 7
5277 /* On gen7, we have to store a texturable version of the stencil buffer in
5278 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
5279 * forth at strategic points. Stencil writes are only allowed in following
5280 * layouts:
5281 *
5282 * - VK_IMAGE_LAYOUT_GENERAL
5283 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
5284 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
5285 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
5286 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
5287 *
5288 * For general, we have no nice opportunity to transition so we do the copy
5289 * to the shadow unconditionally at the end of the subpass. For transfer
5290 * destinations, we can update it as part of the transfer op. For the other
5291 * layouts, we delay the copy until a transition into some other layout.
5292 */
5293 if (subpass->depth_stencil_attachment) {
5294 uint32_t a = subpass->depth_stencil_attachment->attachment;
5295 assert(a != VK_ATTACHMENT_UNUSED);
5296
5297 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5298 struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
5299 const struct anv_image *image = iview->image;
5300
5301 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5302 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
5303 VK_IMAGE_ASPECT_STENCIL_BIT);
5304
5305 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
5306 att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
5307 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
5308 anv_image_copy_to_shadow(cmd_buffer, image,
5309 VK_IMAGE_ASPECT_STENCIL_BIT,
5310 iview->planes[plane].isl.base_level, 1,
5311 iview->planes[plane].isl.base_array_layer,
5312 fb->layers);
5313 }
5314 }
5315 }
5316 #endif /* GEN_GEN == 7 */
5317
5318 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
5319 const uint32_t a = subpass->attachments[i].attachment;
5320 if (a == VK_ATTACHMENT_UNUSED)
5321 continue;
5322
5323 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
5324 continue;
5325
5326 assert(a < cmd_state->pass->attachment_count);
5327 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5328 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
5329 const struct anv_image *image = iview->image;
5330
5331 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5332 image->vk_format != iview->vk_format) {
5333 enum anv_fast_clear_type fast_clear_type =
5334 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
5335 image, VK_IMAGE_ASPECT_COLOR_BIT,
5336 att_state->current_layout);
5337
5338 /* If any clear color was used, flush it down the aux surfaces. If we
5339 * don't do it now using the view's format we might use the clear
5340 * color incorrectly in the following resolves (for example with an
5341 * SRGB view & a UNORM image).
5342 */
5343 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
5344 anv_perf_warn(cmd_buffer->device, iview,
5345 "Doing a partial resolve to get rid of clear color at the "
5346 "end of a renderpass due to an image/view format mismatch");
5347
5348 uint32_t base_layer, layer_count;
5349 if (image->type == VK_IMAGE_TYPE_3D) {
5350 base_layer = 0;
5351 layer_count = anv_minify(iview->image->extent.depth,
5352 iview->planes[0].isl.base_level);
5353 } else {
5354 base_layer = iview->planes[0].isl.base_array_layer;
5355 layer_count = fb->layers;
5356 }
5357
5358 for (uint32_t a = 0; a < layer_count; a++) {
5359 uint32_t array_layer = base_layer + a;
5360 if (image->samples == 1) {
5361 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
5362 iview->planes[0].isl.format,
5363 VK_IMAGE_ASPECT_COLOR_BIT,
5364 iview->planes[0].isl.base_level,
5365 array_layer,
5366 ISL_AUX_OP_PARTIAL_RESOLVE,
5367 ANV_FAST_CLEAR_NONE);
5368 } else {
5369 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
5370 iview->planes[0].isl.format,
5371 VK_IMAGE_ASPECT_COLOR_BIT,
5372 base_layer,
5373 ISL_AUX_OP_PARTIAL_RESOLVE,
5374 ANV_FAST_CLEAR_NONE);
5375 }
5376 }
5377 }
5378 }
5379
5380 /* Transition the image into the final layout for this render pass */
5381 VkImageLayout target_layout =
5382 cmd_state->pass->attachments[a].final_layout;
5383 VkImageLayout target_stencil_layout =
5384 cmd_state->pass->attachments[a].stencil_final_layout;
5385
5386 uint32_t base_layer, layer_count;
5387 if (image->type == VK_IMAGE_TYPE_3D) {
5388 base_layer = 0;
5389 layer_count = anv_minify(iview->image->extent.depth,
5390 iview->planes[0].isl.base_level);
5391 } else {
5392 base_layer = iview->planes[0].isl.base_array_layer;
5393 layer_count = fb->layers;
5394 }
5395
5396 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
5397 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5398 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5399 iview->planes[0].isl.base_level, 1,
5400 base_layer, layer_count,
5401 att_state->current_layout, target_layout);
5402 }
5403
5404 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5405 transition_depth_buffer(cmd_buffer, image,
5406 att_state->current_layout, target_layout);
5407 }
5408
5409 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5410 transition_stencil_buffer(cmd_buffer, image,
5411 iview->planes[0].isl.base_level, 1,
5412 base_layer, layer_count,
5413 att_state->current_stencil_layout,
5414 target_stencil_layout);
5415 }
5416 }
5417
5418 /* Accumulate any subpass flushes that need to happen after the subpass.
5419 * Yes, they do get accumulated twice in the NextSubpass case but since
5420 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
5421 * ORing the bits in twice so it's harmless.
5422 */
5423 cmd_buffer->state.pending_pipe_bits |=
5424 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
5425 }
5426
5427 void genX(CmdBeginRenderPass)(
5428 VkCommandBuffer commandBuffer,
5429 const VkRenderPassBeginInfo* pRenderPassBegin,
5430 VkSubpassContents contents)
5431 {
5432 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5433 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
5434 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
5435
5436 cmd_buffer->state.framebuffer = framebuffer;
5437 cmd_buffer->state.pass = pass;
5438 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
5439 VkResult result =
5440 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
5441
5442 /* If we failed to setup the attachments we should not try to go further */
5443 if (result != VK_SUCCESS) {
5444 assert(anv_batch_has_error(&cmd_buffer->batch));
5445 return;
5446 }
5447
5448 genX(flush_pipeline_select_3d)(cmd_buffer);
5449
5450 cmd_buffer_begin_subpass(cmd_buffer, 0);
5451 }
5452
5453 void genX(CmdBeginRenderPass2)(
5454 VkCommandBuffer commandBuffer,
5455 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
5456 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
5457 {
5458 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
5459 pSubpassBeginInfo->contents);
5460 }
5461
5462 void genX(CmdNextSubpass)(
5463 VkCommandBuffer commandBuffer,
5464 VkSubpassContents contents)
5465 {
5466 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5467
5468 if (anv_batch_has_error(&cmd_buffer->batch))
5469 return;
5470
5471 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
5472
5473 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
5474 cmd_buffer_end_subpass(cmd_buffer);
5475 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
5476 }
5477
5478 void genX(CmdNextSubpass2)(
5479 VkCommandBuffer commandBuffer,
5480 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
5481 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5482 {
5483 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
5484 }
5485
5486 void genX(CmdEndRenderPass)(
5487 VkCommandBuffer commandBuffer)
5488 {
5489 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5490
5491 if (anv_batch_has_error(&cmd_buffer->batch))
5492 return;
5493
5494 cmd_buffer_end_subpass(cmd_buffer);
5495
5496 cmd_buffer->state.hiz_enabled = false;
5497
5498 #ifndef NDEBUG
5499 anv_dump_add_attachments(cmd_buffer);
5500 #endif
5501
5502 /* Remove references to render pass specific state. This enables us to
5503 * detect whether or not we're in a renderpass.
5504 */
5505 cmd_buffer->state.framebuffer = NULL;
5506 cmd_buffer->state.pass = NULL;
5507 cmd_buffer->state.subpass = NULL;
5508 }
5509
5510 void genX(CmdEndRenderPass2)(
5511 VkCommandBuffer commandBuffer,
5512 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5513 {
5514 genX(CmdEndRenderPass)(commandBuffer);
5515 }
5516
5517 void
5518 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
5519 {
5520 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5521 struct gen_mi_builder b;
5522 gen_mi_builder_init(&b, &cmd_buffer->batch);
5523
5524 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
5525 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
5526 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
5527
5528 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
5529 mip.LoadOperation = LOAD_LOADINV;
5530 mip.CombineOperation = COMBINE_SET;
5531 mip.CompareOperation = COMPARE_SRCS_EQUAL;
5532 }
5533 #endif
5534 }
5535
5536 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5537 void genX(CmdBeginConditionalRenderingEXT)(
5538 VkCommandBuffer commandBuffer,
5539 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
5540 {
5541 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5542 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
5543 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5544 struct anv_address value_address =
5545 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
5546
5547 const bool isInverted = pConditionalRenderingBegin->flags &
5548 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
5549
5550 cmd_state->conditional_render_enabled = true;
5551
5552 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5553
5554 struct gen_mi_builder b;
5555 gen_mi_builder_init(&b, &cmd_buffer->batch);
5556
5557 /* Section 19.4 of the Vulkan 1.1.85 spec says:
5558 *
5559 * If the value of the predicate in buffer memory changes
5560 * while conditional rendering is active, the rendering commands
5561 * may be discarded in an implementation-dependent way.
5562 * Some implementations may latch the value of the predicate
5563 * upon beginning conditional rendering while others
5564 * may read it before every rendering command.
5565 *
5566 * So it's perfectly fine to read a value from the buffer once.
5567 */
5568 struct gen_mi_value value = gen_mi_mem32(value_address);
5569
5570 /* Precompute predicate result, it is necessary to support secondary
5571 * command buffers since it is unknown if conditional rendering is
5572 * inverted when populating them.
5573 */
5574 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
5575 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
5576 gen_mi_ult(&b, gen_mi_imm(0), value));
5577 }
5578
5579 void genX(CmdEndConditionalRenderingEXT)(
5580 VkCommandBuffer commandBuffer)
5581 {
5582 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5583 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5584
5585 cmd_state->conditional_render_enabled = false;
5586 }
5587 #endif
5588
5589 /* Set of stage bits for which are pipelined, i.e. they get queued by the
5590 * command streamer for later execution.
5591 */
5592 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5593 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
5594 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
5595 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
5596 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
5597 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
5598 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
5599 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
5600 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
5601 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
5602 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
5603 VK_PIPELINE_STAGE_TRANSFER_BIT | \
5604 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
5605 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
5606 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
5607
5608 void genX(CmdSetEvent)(
5609 VkCommandBuffer commandBuffer,
5610 VkEvent _event,
5611 VkPipelineStageFlags stageMask)
5612 {
5613 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5614 ANV_FROM_HANDLE(anv_event, event, _event);
5615
5616 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5617 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5618
5619 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5620 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5621 pc.StallAtPixelScoreboard = true;
5622 pc.CommandStreamerStallEnable = true;
5623 }
5624
5625 pc.DestinationAddressType = DAT_PPGTT,
5626 pc.PostSyncOperation = WriteImmediateData,
5627 pc.Address = (struct anv_address) {
5628 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5629 event->state.offset
5630 };
5631 pc.ImmediateData = VK_EVENT_SET;
5632 }
5633 }
5634
5635 void genX(CmdResetEvent)(
5636 VkCommandBuffer commandBuffer,
5637 VkEvent _event,
5638 VkPipelineStageFlags stageMask)
5639 {
5640 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5641 ANV_FROM_HANDLE(anv_event, event, _event);
5642
5643 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5644 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5645
5646 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5647 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5648 pc.StallAtPixelScoreboard = true;
5649 pc.CommandStreamerStallEnable = true;
5650 }
5651
5652 pc.DestinationAddressType = DAT_PPGTT;
5653 pc.PostSyncOperation = WriteImmediateData;
5654 pc.Address = (struct anv_address) {
5655 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5656 event->state.offset
5657 };
5658 pc.ImmediateData = VK_EVENT_RESET;
5659 }
5660 }
5661
5662 void genX(CmdWaitEvents)(
5663 VkCommandBuffer commandBuffer,
5664 uint32_t eventCount,
5665 const VkEvent* pEvents,
5666 VkPipelineStageFlags srcStageMask,
5667 VkPipelineStageFlags destStageMask,
5668 uint32_t memoryBarrierCount,
5669 const VkMemoryBarrier* pMemoryBarriers,
5670 uint32_t bufferMemoryBarrierCount,
5671 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
5672 uint32_t imageMemoryBarrierCount,
5673 const VkImageMemoryBarrier* pImageMemoryBarriers)
5674 {
5675 #if GEN_GEN >= 8
5676 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5677
5678 for (uint32_t i = 0; i < eventCount; i++) {
5679 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
5680
5681 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
5682 sem.WaitMode = PollingMode,
5683 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
5684 sem.SemaphoreDataDword = VK_EVENT_SET,
5685 sem.SemaphoreAddress = (struct anv_address) {
5686 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5687 event->state.offset
5688 };
5689 }
5690 }
5691 #else
5692 anv_finishme("Implement events on gen7");
5693 #endif
5694
5695 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
5696 false, /* byRegion */
5697 memoryBarrierCount, pMemoryBarriers,
5698 bufferMemoryBarrierCount, pBufferMemoryBarriers,
5699 imageMemoryBarrierCount, pImageMemoryBarriers);
5700 }
5701
5702 VkResult genX(CmdSetPerformanceOverrideINTEL)(
5703 VkCommandBuffer commandBuffer,
5704 const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
5705 {
5706 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5707
5708 switch (pOverrideInfo->type) {
5709 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
5710 uint32_t dw;
5711
5712 #if GEN_GEN >= 9
5713 anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2),
5714 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5715 .MediaInstructionDisable = pOverrideInfo->enable,
5716 ._3DRenderingInstructionDisableMask = true,
5717 .MediaInstructionDisableMask = true);
5718 emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw);
5719 #else
5720 anv_pack_struct(&dw, GENX(INSTPM),
5721 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5722 .MediaInstructionDisable = pOverrideInfo->enable,
5723 ._3DRenderingInstructionDisableMask = true,
5724 .MediaInstructionDisableMask = true);
5725 emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw);
5726 #endif
5727 break;
5728 }
5729
5730 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
5731 if (pOverrideInfo->enable) {
5732 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5733 cmd_buffer->state.pending_pipe_bits |=
5734 ANV_PIPE_FLUSH_BITS |
5735 ANV_PIPE_INVALIDATE_BITS;
5736 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5737 }
5738 break;
5739
5740 default:
5741 unreachable("Invalid override");
5742 }
5743
5744 return VK_SUCCESS;
5745 }
5746
5747 VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
5748 VkCommandBuffer commandBuffer,
5749 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
5750 {
5751 /* TODO: Waiting on the register to write, might depend on generation. */
5752
5753 return VK_SUCCESS;
5754 }