anv: Pre-compute push ranges for graphics pipelines
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 #include "util/fast_idiv_by_const.h"
31
32 #include "common/gen_aux_map.h"
33 #include "common/gen_l3_config.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
36
37 /* We reserve GPR 14 and 15 for conditional rendering */
38 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
39 #define __gen_get_batch_dwords anv_batch_emit_dwords
40 #define __gen_address_offset anv_address_add
41 #include "common/gen_mi_builder.h"
42
43 static void
44 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
45 {
46 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
47 lri.RegisterOffset = reg;
48 lri.DataDWord = imm;
49 }
50 }
51
52 void
53 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
54 {
55 struct anv_device *device = cmd_buffer->device;
56 uint32_t mocs = device->isl_dev.mocs.internal;
57
58 /* If we are emitting a new state base address we probably need to re-emit
59 * binding tables.
60 */
61 cmd_buffer->state.descriptors_dirty |= ~0;
62
63 /* Emit a render target cache flush.
64 *
65 * This isn't documented anywhere in the PRM. However, it seems to be
66 * necessary prior to changing the surface state base adress. Without
67 * this, we get GPU hangs when using multi-level command buffers which
68 * clear depth, reset state base address, and then go render stuff.
69 */
70 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
71 pc.DCFlushEnable = true;
72 pc.RenderTargetCacheFlushEnable = true;
73 pc.CommandStreamerStallEnable = true;
74 #if GEN_GEN >= 12
75 pc.TileCacheFlushEnable = true;
76 #endif
77 }
78
79 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
80 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
81 sba.GeneralStateMOCS = mocs;
82 sba.GeneralStateBaseAddressModifyEnable = true;
83
84 sba.StatelessDataPortAccessMOCS = mocs;
85
86 sba.SurfaceStateBaseAddress =
87 anv_cmd_buffer_surface_base_address(cmd_buffer);
88 sba.SurfaceStateMOCS = mocs;
89 sba.SurfaceStateBaseAddressModifyEnable = true;
90
91 sba.DynamicStateBaseAddress =
92 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
93 sba.DynamicStateMOCS = mocs;
94 sba.DynamicStateBaseAddressModifyEnable = true;
95
96 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
97 sba.IndirectObjectMOCS = mocs;
98 sba.IndirectObjectBaseAddressModifyEnable = true;
99
100 sba.InstructionBaseAddress =
101 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
102 sba.InstructionMOCS = mocs;
103 sba.InstructionBaseAddressModifyEnable = true;
104
105 # if (GEN_GEN >= 8)
106 /* Broadwell requires that we specify a buffer size for a bunch of
107 * these fields. However, since we will be growing the BO's live, we
108 * just set them all to the maximum.
109 */
110 sba.GeneralStateBufferSize = 0xfffff;
111 sba.GeneralStateBufferSizeModifyEnable = true;
112 sba.DynamicStateBufferSize = 0xfffff;
113 sba.DynamicStateBufferSizeModifyEnable = true;
114 sba.IndirectObjectBufferSize = 0xfffff;
115 sba.IndirectObjectBufferSizeModifyEnable = true;
116 sba.InstructionBufferSize = 0xfffff;
117 sba.InstructionBuffersizeModifyEnable = true;
118 # else
119 /* On gen7, we have upper bounds instead. According to the docs,
120 * setting an upper bound of zero means that no bounds checking is
121 * performed so, in theory, we should be able to leave them zero.
122 * However, border color is broken and the GPU bounds-checks anyway.
123 * To avoid this and other potential problems, we may as well set it
124 * for everything.
125 */
126 sba.GeneralStateAccessUpperBound =
127 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
128 sba.GeneralStateAccessUpperBoundModifyEnable = true;
129 sba.DynamicStateAccessUpperBound =
130 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
131 sba.DynamicStateAccessUpperBoundModifyEnable = true;
132 sba.InstructionAccessUpperBound =
133 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
134 sba.InstructionAccessUpperBoundModifyEnable = true;
135 # endif
136 # if (GEN_GEN >= 9)
137 if (cmd_buffer->device->instance->physicalDevice.use_softpin) {
138 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
139 .bo = device->surface_state_pool.block_pool.bo,
140 .offset = 0,
141 };
142 sba.BindlessSurfaceStateSize = (1 << 20) - 1;
143 } else {
144 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
145 sba.BindlessSurfaceStateSize = 0;
146 }
147 sba.BindlessSurfaceStateMOCS = mocs;
148 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
149 # endif
150 # if (GEN_GEN >= 10)
151 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
152 sba.BindlessSamplerStateMOCS = mocs;
153 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
154 sba.BindlessSamplerStateBufferSize = 0;
155 # endif
156 }
157
158 /* After re-setting the surface state base address, we have to do some
159 * cache flusing so that the sampler engine will pick up the new
160 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
161 * Shared Function > 3D Sampler > State > State Caching (page 96):
162 *
163 * Coherency with system memory in the state cache, like the texture
164 * cache is handled partially by software. It is expected that the
165 * command stream or shader will issue Cache Flush operation or
166 * Cache_Flush sampler message to ensure that the L1 cache remains
167 * coherent with system memory.
168 *
169 * [...]
170 *
171 * Whenever the value of the Dynamic_State_Base_Addr,
172 * Surface_State_Base_Addr are altered, the L1 state cache must be
173 * invalidated to ensure the new surface or sampler state is fetched
174 * from system memory.
175 *
176 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
177 * which, according the PIPE_CONTROL instruction documentation in the
178 * Broadwell PRM:
179 *
180 * Setting this bit is independent of any other bit in this packet.
181 * This bit controls the invalidation of the L1 and L2 state caches
182 * at the top of the pipe i.e. at the parsing time.
183 *
184 * Unfortunately, experimentation seems to indicate that state cache
185 * invalidation through a PIPE_CONTROL does nothing whatsoever in
186 * regards to surface state and binding tables. In stead, it seems that
187 * invalidating the texture cache is what is actually needed.
188 *
189 * XXX: As far as we have been able to determine through
190 * experimentation, shows that flush the texture cache appears to be
191 * sufficient. The theory here is that all of the sampling/rendering
192 * units cache the binding table in the texture cache. However, we have
193 * yet to be able to actually confirm this.
194 */
195 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
196 pc.TextureCacheInvalidationEnable = true;
197 pc.ConstantCacheInvalidationEnable = true;
198 pc.StateCacheInvalidationEnable = true;
199 }
200 }
201
202 static void
203 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
204 struct anv_state state, struct anv_address addr)
205 {
206 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
207
208 VkResult result =
209 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
210 state.offset + isl_dev->ss.addr_offset,
211 addr.bo, addr.offset, NULL);
212 if (result != VK_SUCCESS)
213 anv_batch_set_error(&cmd_buffer->batch, result);
214 }
215
216 static void
217 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
218 struct anv_surface_state state)
219 {
220 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
221
222 assert(!anv_address_is_null(state.address));
223 add_surface_reloc(cmd_buffer, state.state, state.address);
224
225 if (!anv_address_is_null(state.aux_address)) {
226 VkResult result =
227 anv_reloc_list_add(&cmd_buffer->surface_relocs,
228 &cmd_buffer->pool->alloc,
229 state.state.offset + isl_dev->ss.aux_addr_offset,
230 state.aux_address.bo,
231 state.aux_address.offset,
232 NULL);
233 if (result != VK_SUCCESS)
234 anv_batch_set_error(&cmd_buffer->batch, result);
235 }
236
237 if (!anv_address_is_null(state.clear_address)) {
238 VkResult result =
239 anv_reloc_list_add(&cmd_buffer->surface_relocs,
240 &cmd_buffer->pool->alloc,
241 state.state.offset +
242 isl_dev->ss.clear_color_state_offset,
243 state.clear_address.bo,
244 state.clear_address.offset,
245 NULL);
246 if (result != VK_SUCCESS)
247 anv_batch_set_error(&cmd_buffer->batch, result);
248 }
249 }
250
251 static void
252 color_attachment_compute_aux_usage(struct anv_device * device,
253 struct anv_cmd_state * cmd_state,
254 uint32_t att, VkRect2D render_area,
255 union isl_color_value *fast_clear_color)
256 {
257 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
258 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
259
260 assert(iview->n_planes == 1);
261
262 if (iview->planes[0].isl.base_array_layer >=
263 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
264 iview->planes[0].isl.base_level)) {
265 /* There is no aux buffer which corresponds to the level and layer(s)
266 * being accessed.
267 */
268 att_state->aux_usage = ISL_AUX_USAGE_NONE;
269 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
270 att_state->fast_clear = false;
271 return;
272 }
273
274 att_state->aux_usage =
275 anv_layout_to_aux_usage(&device->info, iview->image,
276 VK_IMAGE_ASPECT_COLOR_BIT,
277 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
278
279 /* If we don't have aux, then we should have returned early in the layer
280 * check above. If we got here, we must have something.
281 */
282 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
283
284 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
285 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
286 att_state->input_aux_usage = att_state->aux_usage;
287 } else {
288 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
289 *
290 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
291 * setting is only allowed if Surface Format supported for Fast
292 * Clear. In addition, if the surface is bound to the sampling
293 * engine, Surface Format must be supported for Render Target
294 * Compression for surfaces bound to the sampling engine."
295 *
296 * In other words, we can only sample from a fast-cleared image if it
297 * also supports color compression.
298 */
299 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format) &&
300 isl_format_supports_ccs_d(&device->info, iview->planes[0].isl.format)) {
301 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
302
303 /* While fast-clear resolves and partial resolves are fairly cheap in the
304 * case where you render to most of the pixels, full resolves are not
305 * because they potentially involve reading and writing the entire
306 * framebuffer. If we can't texture with CCS_E, we should leave it off and
307 * limit ourselves to fast clears.
308 */
309 if (cmd_state->pass->attachments[att].first_subpass_layout ==
310 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
311 anv_perf_warn(device->instance, iview->image,
312 "Not temporarily enabling CCS_E.");
313 }
314 } else {
315 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
316 }
317 }
318
319 assert(iview->image->planes[0].aux_surface.isl.usage &
320 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
321
322 union isl_color_value clear_color = {};
323 anv_clear_color_from_att_state(&clear_color, att_state, iview);
324
325 att_state->clear_color_is_zero_one =
326 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
327 att_state->clear_color_is_zero =
328 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
329
330 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
331 /* Start by getting the fast clear type. We use the first subpass
332 * layout here because we don't want to fast-clear if the first subpass
333 * to use the attachment can't handle fast-clears.
334 */
335 enum anv_fast_clear_type fast_clear_type =
336 anv_layout_to_fast_clear_type(&device->info, iview->image,
337 VK_IMAGE_ASPECT_COLOR_BIT,
338 cmd_state->pass->attachments[att].first_subpass_layout);
339 switch (fast_clear_type) {
340 case ANV_FAST_CLEAR_NONE:
341 att_state->fast_clear = false;
342 break;
343 case ANV_FAST_CLEAR_DEFAULT_VALUE:
344 att_state->fast_clear = att_state->clear_color_is_zero;
345 break;
346 case ANV_FAST_CLEAR_ANY:
347 att_state->fast_clear = true;
348 break;
349 }
350
351 /* Potentially, we could do partial fast-clears but doing so has crazy
352 * alignment restrictions. It's easier to just restrict to full size
353 * fast clears for now.
354 */
355 if (render_area.offset.x != 0 ||
356 render_area.offset.y != 0 ||
357 render_area.extent.width != iview->extent.width ||
358 render_area.extent.height != iview->extent.height)
359 att_state->fast_clear = false;
360
361 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
362 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
363 att_state->fast_clear = false;
364
365 /* We only allow fast clears to the first slice of an image (level 0,
366 * layer 0) and only for the entire slice. This guarantees us that, at
367 * any given time, there is only one clear color on any given image at
368 * any given time. At the time of our testing (Jan 17, 2018), there
369 * were no known applications which would benefit from fast-clearing
370 * more than just the first slice.
371 */
372 if (att_state->fast_clear &&
373 (iview->planes[0].isl.base_level > 0 ||
374 iview->planes[0].isl.base_array_layer > 0)) {
375 anv_perf_warn(device->instance, iview->image,
376 "Rendering with multi-lod or multi-layer framebuffer "
377 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
378 "baseArrayLayer > 0. Not fast clearing.");
379 att_state->fast_clear = false;
380 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
381 anv_perf_warn(device->instance, iview->image,
382 "Rendering to a multi-layer framebuffer with "
383 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
384 }
385
386 if (att_state->fast_clear)
387 *fast_clear_color = clear_color;
388 } else {
389 att_state->fast_clear = false;
390 }
391 }
392
393 static void
394 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
395 struct anv_cmd_state *cmd_state,
396 uint32_t att, VkRect2D render_area)
397 {
398 struct anv_render_pass_attachment *pass_att =
399 &cmd_state->pass->attachments[att];
400 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
401 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
402
403 /* These will be initialized after the first subpass transition. */
404 att_state->aux_usage = ISL_AUX_USAGE_NONE;
405 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
406
407 if (GEN_GEN == 7) {
408 /* We don't do any HiZ or depth fast-clears on gen7 yet */
409 att_state->fast_clear = false;
410 return;
411 }
412
413 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
414 /* If we're just clearing stencil, we can always HiZ clear */
415 att_state->fast_clear = true;
416 return;
417 }
418
419 /* Default to false for now */
420 att_state->fast_clear = false;
421
422 /* We must have depth in order to have HiZ */
423 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
424 return;
425
426 const enum isl_aux_usage first_subpass_aux_usage =
427 anv_layout_to_aux_usage(&device->info, iview->image,
428 VK_IMAGE_ASPECT_DEPTH_BIT,
429 pass_att->first_subpass_layout);
430 if (!blorp_can_hiz_clear_depth(&device->info,
431 &iview->image->planes[0].surface.isl,
432 first_subpass_aux_usage,
433 iview->planes[0].isl.base_level,
434 iview->planes[0].isl.base_array_layer,
435 render_area.offset.x,
436 render_area.offset.y,
437 render_area.offset.x +
438 render_area.extent.width,
439 render_area.offset.y +
440 render_area.extent.height))
441 return;
442
443 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
444 return;
445
446 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
447 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
448 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
449 * only supports returning 0.0f. Gens prior to gen8 do not support this
450 * feature at all.
451 */
452 return;
453 }
454
455 /* If we got here, then we can fast clear */
456 att_state->fast_clear = true;
457 }
458
459 static bool
460 need_input_attachment_state(const struct anv_render_pass_attachment *att)
461 {
462 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
463 return false;
464
465 /* We only allocate input attachment states for color surfaces. Compression
466 * is not yet enabled for depth textures and stencil doesn't allow
467 * compression so we can just use the texture surface state from the view.
468 */
469 return vk_format_is_color(att->format);
470 }
471
472 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
473 * the initial layout is undefined, the HiZ buffer and depth buffer will
474 * represent the same data at the end of this operation.
475 */
476 static void
477 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
478 const struct anv_image *image,
479 VkImageLayout initial_layout,
480 VkImageLayout final_layout)
481 {
482 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
483 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
484 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
485 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
486 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
487 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
488
489 enum isl_aux_op hiz_op;
490 if (hiz_enabled && !enable_hiz) {
491 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
492 } else if (!hiz_enabled && enable_hiz) {
493 hiz_op = ISL_AUX_OP_AMBIGUATE;
494 } else {
495 assert(hiz_enabled == enable_hiz);
496 /* If the same buffer will be used, no resolves are necessary. */
497 hiz_op = ISL_AUX_OP_NONE;
498 }
499
500 if (hiz_op != ISL_AUX_OP_NONE)
501 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
502 0, 0, 1, hiz_op);
503 }
504
505 static inline bool
506 vk_image_layout_stencil_write_optimal(VkImageLayout layout)
507 {
508 return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
509 layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
510 layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
511 }
512
513 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
514 * the initial layout is undefined, the HiZ buffer and depth buffer will
515 * represent the same data at the end of this operation.
516 */
517 static void
518 transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
519 const struct anv_image *image,
520 uint32_t base_level, uint32_t level_count,
521 uint32_t base_layer, uint32_t layer_count,
522 VkImageLayout initial_layout,
523 VkImageLayout final_layout)
524 {
525 #if GEN_GEN == 7
526 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
527 VK_IMAGE_ASPECT_STENCIL_BIT);
528
529 /* On gen7, we have to store a texturable version of the stencil buffer in
530 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
531 * forth at strategic points. Stencil writes are only allowed in following
532 * layouts:
533 *
534 * - VK_IMAGE_LAYOUT_GENERAL
535 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
536 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
537 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
538 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
539 *
540 * For general, we have no nice opportunity to transition so we do the copy
541 * to the shadow unconditionally at the end of the subpass. For transfer
542 * destinations, we can update it as part of the transfer op. For the other
543 * layouts, we delay the copy until a transition into some other layout.
544 */
545 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
546 vk_image_layout_stencil_write_optimal(initial_layout) &&
547 !vk_image_layout_stencil_write_optimal(final_layout)) {
548 anv_image_copy_to_shadow(cmd_buffer, image,
549 VK_IMAGE_ASPECT_STENCIL_BIT,
550 base_level, level_count,
551 base_layer, layer_count);
552 }
553 #endif /* GEN_GEN == 7 */
554 }
555
556 #define MI_PREDICATE_SRC0 0x2400
557 #define MI_PREDICATE_SRC1 0x2408
558 #define MI_PREDICATE_RESULT 0x2418
559
560 static void
561 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
562 const struct anv_image *image,
563 VkImageAspectFlagBits aspect,
564 uint32_t level,
565 uint32_t base_layer, uint32_t layer_count,
566 bool compressed)
567 {
568 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
569
570 /* We only have compression tracking for CCS_E */
571 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
572 return;
573
574 for (uint32_t a = 0; a < layer_count; a++) {
575 uint32_t layer = base_layer + a;
576 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
577 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
578 image, aspect,
579 level, layer);
580 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
581 }
582 }
583 }
584
585 static void
586 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
587 const struct anv_image *image,
588 VkImageAspectFlagBits aspect,
589 enum anv_fast_clear_type fast_clear)
590 {
591 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
592 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
593 image, aspect);
594 sdi.ImmediateData = fast_clear;
595 }
596
597 /* Whenever we have fast-clear, we consider that slice to be compressed.
598 * This makes building predicates much easier.
599 */
600 if (fast_clear != ANV_FAST_CLEAR_NONE)
601 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
602 }
603
604 /* This is only really practical on haswell and above because it requires
605 * MI math in order to get it correct.
606 */
607 #if GEN_GEN >= 8 || GEN_IS_HASWELL
608 static void
609 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
610 const struct anv_image *image,
611 VkImageAspectFlagBits aspect,
612 uint32_t level, uint32_t array_layer,
613 enum isl_aux_op resolve_op,
614 enum anv_fast_clear_type fast_clear_supported)
615 {
616 struct gen_mi_builder b;
617 gen_mi_builder_init(&b, &cmd_buffer->batch);
618
619 const struct gen_mi_value fast_clear_type =
620 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
621 image, aspect));
622
623 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
624 /* In this case, we're doing a full resolve which means we want the
625 * resolve to happen if any compression (including fast-clears) is
626 * present.
627 *
628 * In order to simplify the logic a bit, we make the assumption that,
629 * if the first slice has been fast-cleared, it is also marked as
630 * compressed. See also set_image_fast_clear_state.
631 */
632 const struct gen_mi_value compression_state =
633 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
634 image, aspect,
635 level, array_layer));
636 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
637 compression_state);
638 gen_mi_store(&b, compression_state, gen_mi_imm(0));
639
640 if (level == 0 && array_layer == 0) {
641 /* If the predicate is true, we want to write 0 to the fast clear type
642 * and, if it's false, leave it alone. We can do this by writing
643 *
644 * clear_type = clear_type & ~predicate;
645 */
646 struct gen_mi_value new_fast_clear_type =
647 gen_mi_iand(&b, fast_clear_type,
648 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
649 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
650 }
651 } else if (level == 0 && array_layer == 0) {
652 /* In this case, we are doing a partial resolve to get rid of fast-clear
653 * colors. We don't care about the compression state but we do care
654 * about how much fast clear is allowed by the final layout.
655 */
656 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
657 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
658
659 /* We need to compute (fast_clear_supported < image->fast_clear) */
660 struct gen_mi_value pred =
661 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
662 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
663 gen_mi_value_ref(&b, pred));
664
665 /* If the predicate is true, we want to write 0 to the fast clear type
666 * and, if it's false, leave it alone. We can do this by writing
667 *
668 * clear_type = clear_type & ~predicate;
669 */
670 struct gen_mi_value new_fast_clear_type =
671 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
672 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
673 } else {
674 /* In this case, we're trying to do a partial resolve on a slice that
675 * doesn't have clear color. There's nothing to do.
676 */
677 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
678 return;
679 }
680
681 /* Set src1 to 0 and use a != condition */
682 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
683
684 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
685 mip.LoadOperation = LOAD_LOADINV;
686 mip.CombineOperation = COMBINE_SET;
687 mip.CompareOperation = COMPARE_SRCS_EQUAL;
688 }
689 }
690 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
691
692 #if GEN_GEN <= 8
693 static void
694 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
695 const struct anv_image *image,
696 VkImageAspectFlagBits aspect,
697 uint32_t level, uint32_t array_layer,
698 enum isl_aux_op resolve_op,
699 enum anv_fast_clear_type fast_clear_supported)
700 {
701 struct gen_mi_builder b;
702 gen_mi_builder_init(&b, &cmd_buffer->batch);
703
704 struct gen_mi_value fast_clear_type_mem =
705 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
706 image, aspect));
707
708 /* This only works for partial resolves and only when the clear color is
709 * all or nothing. On the upside, this emits less command streamer code
710 * and works on Ivybridge and Bay Trail.
711 */
712 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
713 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
714
715 /* We don't support fast clears on anything other than the first slice. */
716 if (level > 0 || array_layer > 0)
717 return;
718
719 /* On gen8, we don't have a concept of default clear colors because we
720 * can't sample from CCS surfaces. It's enough to just load the fast clear
721 * state into the predicate register.
722 */
723 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
724 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
725 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
726
727 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
728 mip.LoadOperation = LOAD_LOADINV;
729 mip.CombineOperation = COMBINE_SET;
730 mip.CompareOperation = COMPARE_SRCS_EQUAL;
731 }
732 }
733 #endif /* GEN_GEN <= 8 */
734
735 static void
736 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
737 const struct anv_image *image,
738 enum isl_format format,
739 VkImageAspectFlagBits aspect,
740 uint32_t level, uint32_t array_layer,
741 enum isl_aux_op resolve_op,
742 enum anv_fast_clear_type fast_clear_supported)
743 {
744 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
745
746 #if GEN_GEN >= 9
747 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
748 aspect, level, array_layer,
749 resolve_op, fast_clear_supported);
750 #else /* GEN_GEN <= 8 */
751 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
752 aspect, level, array_layer,
753 resolve_op, fast_clear_supported);
754 #endif
755
756 /* CCS_D only supports full resolves and BLORP will assert on us if we try
757 * to do a partial resolve on a CCS_D surface.
758 */
759 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
760 image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
761 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
762
763 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
764 array_layer, 1, resolve_op, NULL, true);
765 }
766
767 static void
768 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
769 const struct anv_image *image,
770 enum isl_format format,
771 VkImageAspectFlagBits aspect,
772 uint32_t array_layer,
773 enum isl_aux_op resolve_op,
774 enum anv_fast_clear_type fast_clear_supported)
775 {
776 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
777 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
778
779 #if GEN_GEN >= 8 || GEN_IS_HASWELL
780 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
781 aspect, 0, array_layer,
782 resolve_op, fast_clear_supported);
783
784 anv_image_mcs_op(cmd_buffer, image, format, aspect,
785 array_layer, 1, resolve_op, NULL, true);
786 #else
787 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
788 #endif
789 }
790
791 void
792 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
793 const struct anv_image *image,
794 VkImageAspectFlagBits aspect,
795 enum isl_aux_usage aux_usage,
796 uint32_t level,
797 uint32_t base_layer,
798 uint32_t layer_count)
799 {
800 /* The aspect must be exactly one of the image aspects. */
801 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
802
803 /* The only compression types with more than just fast-clears are MCS,
804 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
805 * track the current fast-clear and compression state. This leaves us
806 * with just MCS and CCS_E.
807 */
808 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
809 aux_usage != ISL_AUX_USAGE_MCS)
810 return;
811
812 set_image_compressed_bit(cmd_buffer, image, aspect,
813 level, base_layer, layer_count, true);
814 }
815
816 static void
817 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
818 const struct anv_image *image,
819 VkImageAspectFlagBits aspect)
820 {
821 assert(cmd_buffer && image);
822 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
823
824 set_image_fast_clear_state(cmd_buffer, image, aspect,
825 ANV_FAST_CLEAR_NONE);
826
827 /* Initialize the struct fields that are accessed for fast-clears so that
828 * the HW restrictions on the field values are satisfied.
829 */
830 struct anv_address addr =
831 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
832
833 if (GEN_GEN >= 9) {
834 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
835 const unsigned num_dwords = GEN_GEN >= 10 ?
836 isl_dev->ss.clear_color_state_size / 4 :
837 isl_dev->ss.clear_value_size / 4;
838 for (unsigned i = 0; i < num_dwords; i++) {
839 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
840 sdi.Address = addr;
841 sdi.Address.offset += i * 4;
842 sdi.ImmediateData = 0;
843 }
844 }
845 } else {
846 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
847 sdi.Address = addr;
848 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
849 /* Pre-SKL, the dword containing the clear values also contains
850 * other fields, so we need to initialize those fields to match the
851 * values that would be in a color attachment.
852 */
853 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
854 ISL_CHANNEL_SELECT_GREEN << 22 |
855 ISL_CHANNEL_SELECT_BLUE << 19 |
856 ISL_CHANNEL_SELECT_ALPHA << 16;
857 } else if (GEN_GEN == 7) {
858 /* On IVB, the dword containing the clear values also contains
859 * other fields that must be zero or can be zero.
860 */
861 sdi.ImmediateData = 0;
862 }
863 }
864 }
865 }
866
867 /* Copy the fast-clear value dword(s) between a surface state object and an
868 * image's fast clear state buffer.
869 */
870 static void
871 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
872 struct anv_state surface_state,
873 const struct anv_image *image,
874 VkImageAspectFlagBits aspect,
875 bool copy_from_surface_state)
876 {
877 assert(cmd_buffer && image);
878 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
879
880 struct anv_address ss_clear_addr = {
881 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
882 .offset = surface_state.offset +
883 cmd_buffer->device->isl_dev.ss.clear_value_offset,
884 };
885 const struct anv_address entry_addr =
886 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
887 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
888
889 #if GEN_GEN == 7
890 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
891 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
892 * in-flight when they are issued even if the memory touched is not
893 * currently active for rendering. The weird bit is that it is not the
894 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
895 * rendering hangs such that the next stalling command after the
896 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
897 *
898 * It is unclear exactly why this hang occurs. Both MI commands come with
899 * warnings about the 3D pipeline but that doesn't seem to fully explain
900 * it. My (Jason's) best theory is that it has something to do with the
901 * fact that we're using a GPU state register as our temporary and that
902 * something with reading/writing it is causing problems.
903 *
904 * In order to work around this issue, we emit a PIPE_CONTROL with the
905 * command streamer stall bit set.
906 */
907 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
908 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
909 #endif
910
911 struct gen_mi_builder b;
912 gen_mi_builder_init(&b, &cmd_buffer->batch);
913
914 if (copy_from_surface_state) {
915 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
916 } else {
917 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
918
919 /* Updating a surface state object may require that the state cache be
920 * invalidated. From the SKL PRM, Shared Functions -> State -> State
921 * Caching:
922 *
923 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
924 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
925 * modified [...], the L1 state cache must be invalidated to ensure
926 * the new surface or sampler state is fetched from system memory.
927 *
928 * In testing, SKL doesn't actually seem to need this, but HSW does.
929 */
930 cmd_buffer->state.pending_pipe_bits |=
931 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
932 }
933 }
934
935 /**
936 * @brief Transitions a color buffer from one layout to another.
937 *
938 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
939 * more information.
940 *
941 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
942 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
943 * this represents the maximum layers to transition at each
944 * specified miplevel.
945 */
946 static void
947 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
948 const struct anv_image *image,
949 VkImageAspectFlagBits aspect,
950 const uint32_t base_level, uint32_t level_count,
951 uint32_t base_layer, uint32_t layer_count,
952 VkImageLayout initial_layout,
953 VkImageLayout final_layout)
954 {
955 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
956 /* Validate the inputs. */
957 assert(cmd_buffer);
958 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
959 /* These values aren't supported for simplicity's sake. */
960 assert(level_count != VK_REMAINING_MIP_LEVELS &&
961 layer_count != VK_REMAINING_ARRAY_LAYERS);
962 /* Ensure the subresource range is valid. */
963 UNUSED uint64_t last_level_num = base_level + level_count;
964 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
965 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
966 assert((uint64_t)base_layer + layer_count <= image_layers);
967 assert(last_level_num <= image->levels);
968 /* The spec disallows these final layouts. */
969 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
970 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
971
972 /* No work is necessary if the layout stays the same or if this subresource
973 * range lacks auxiliary data.
974 */
975 if (initial_layout == final_layout)
976 return;
977
978 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
979
980 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
981 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
982 /* This surface is a linear compressed image with a tiled shadow surface
983 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
984 * we need to ensure the shadow copy is up-to-date.
985 */
986 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
987 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
988 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
989 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
990 assert(plane == 0);
991 anv_image_copy_to_shadow(cmd_buffer, image,
992 VK_IMAGE_ASPECT_COLOR_BIT,
993 base_level, level_count,
994 base_layer, layer_count);
995 }
996
997 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
998 return;
999
1000 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
1001
1002 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
1003 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
1004 /* A subresource in the undefined layout may have been aliased and
1005 * populated with any arrangement of bits. Therefore, we must initialize
1006 * the related aux buffer and clear buffer entry with desirable values.
1007 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
1008 * images with VK_IMAGE_TILING_OPTIMAL.
1009 *
1010 * Initialize the relevant clear buffer entries.
1011 */
1012 if (base_level == 0 && base_layer == 0)
1013 init_fast_clear_color(cmd_buffer, image, aspect);
1014
1015 /* Initialize the aux buffers to enable correct rendering. In order to
1016 * ensure that things such as storage images work correctly, aux buffers
1017 * need to be initialized to valid data.
1018 *
1019 * Having an aux buffer with invalid data is a problem for two reasons:
1020 *
1021 * 1) Having an invalid value in the buffer can confuse the hardware.
1022 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1023 * invalid and leads to the hardware doing strange things. It
1024 * doesn't hang as far as we can tell but rendering corruption can
1025 * occur.
1026 *
1027 * 2) If this transition is into the GENERAL layout and we then use the
1028 * image as a storage image, then we must have the aux buffer in the
1029 * pass-through state so that, if we then go to texture from the
1030 * image, we get the results of our storage image writes and not the
1031 * fast clear color or other random data.
1032 *
1033 * For CCS both of the problems above are real demonstrable issues. In
1034 * that case, the only thing we can do is to perform an ambiguate to
1035 * transition the aux surface into the pass-through state.
1036 *
1037 * For MCS, (2) is never an issue because we don't support multisampled
1038 * storage images. In theory, issue (1) is a problem with MCS but we've
1039 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1040 * theory, be interpreted as something but we don't know that all bit
1041 * patterns are actually valid. For 2x and 8x, you could easily end up
1042 * with the MCS referring to an invalid plane because not all bits of
1043 * the MCS value are actually used. Even though we've never seen issues
1044 * in the wild, it's best to play it safe and initialize the MCS. We
1045 * can use a fast-clear for MCS because we only ever touch from render
1046 * and texture (no image load store).
1047 */
1048 if (image->samples == 1) {
1049 for (uint32_t l = 0; l < level_count; l++) {
1050 const uint32_t level = base_level + l;
1051
1052 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1053 if (base_layer >= aux_layers)
1054 break; /* We will only get fewer layers as level increases */
1055 uint32_t level_layer_count =
1056 MIN2(layer_count, aux_layers - base_layer);
1057
1058 anv_image_ccs_op(cmd_buffer, image,
1059 image->planes[plane].surface.isl.format,
1060 aspect, level, base_layer, level_layer_count,
1061 ISL_AUX_OP_AMBIGUATE, NULL, false);
1062
1063 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1064 set_image_compressed_bit(cmd_buffer, image, aspect,
1065 level, base_layer, level_layer_count,
1066 false);
1067 }
1068 }
1069 } else {
1070 if (image->samples == 4 || image->samples == 16) {
1071 anv_perf_warn(cmd_buffer->device->instance, image,
1072 "Doing a potentially unnecessary fast-clear to "
1073 "define an MCS buffer.");
1074 }
1075
1076 assert(base_level == 0 && level_count == 1);
1077 anv_image_mcs_op(cmd_buffer, image,
1078 image->planes[plane].surface.isl.format,
1079 aspect, base_layer, layer_count,
1080 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1081 }
1082 return;
1083 }
1084
1085 const enum isl_aux_usage initial_aux_usage =
1086 anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout);
1087 const enum isl_aux_usage final_aux_usage =
1088 anv_layout_to_aux_usage(devinfo, image, aspect, final_layout);
1089
1090 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1091 * We can handle transitions between CCS_D/E to and from NONE. What we
1092 * don't yet handle is switching between CCS_E and CCS_D within a given
1093 * image. Doing so in a performant way requires more detailed aux state
1094 * tracking such as what is done in i965. For now, just assume that we
1095 * only have one type of compression.
1096 */
1097 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1098 final_aux_usage == ISL_AUX_USAGE_NONE ||
1099 initial_aux_usage == final_aux_usage);
1100
1101 /* If initial aux usage is NONE, there is nothing to resolve */
1102 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1103 return;
1104
1105 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1106
1107 /* If the initial layout supports more fast clear than the final layout
1108 * then we need at least a partial resolve.
1109 */
1110 const enum anv_fast_clear_type initial_fast_clear =
1111 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1112 const enum anv_fast_clear_type final_fast_clear =
1113 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1114 if (final_fast_clear < initial_fast_clear)
1115 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1116
1117 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1118 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1119 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1120
1121 if (resolve_op == ISL_AUX_OP_NONE)
1122 return;
1123
1124 /* Perform a resolve to synchronize data between the main and aux buffer.
1125 * Before we begin, we must satisfy the cache flushing requirement specified
1126 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1127 *
1128 * Any transition from any value in {Clear, Render, Resolve} to a
1129 * different value in {Clear, Render, Resolve} requires end of pipe
1130 * synchronization.
1131 *
1132 * We perform a flush of the write cache before and after the clear and
1133 * resolve operations to meet this requirement.
1134 *
1135 * Unlike other drawing, fast clear operations are not properly
1136 * synchronized. The first PIPE_CONTROL here likely ensures that the
1137 * contents of the previous render or clear hit the render target before we
1138 * resolve and the second likely ensures that the resolve is complete before
1139 * we do any more rendering or clearing.
1140 */
1141 cmd_buffer->state.pending_pipe_bits |=
1142 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1143
1144 for (uint32_t l = 0; l < level_count; l++) {
1145 uint32_t level = base_level + l;
1146
1147 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1148 if (base_layer >= aux_layers)
1149 break; /* We will only get fewer layers as level increases */
1150 uint32_t level_layer_count =
1151 MIN2(layer_count, aux_layers - base_layer);
1152
1153 for (uint32_t a = 0; a < level_layer_count; a++) {
1154 uint32_t array_layer = base_layer + a;
1155 if (image->samples == 1) {
1156 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1157 image->planes[plane].surface.isl.format,
1158 aspect, level, array_layer, resolve_op,
1159 final_fast_clear);
1160 } else {
1161 /* We only support fast-clear on the first layer so partial
1162 * resolves should not be used on other layers as they will use
1163 * the clear color stored in memory that is only valid for layer0.
1164 */
1165 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1166 array_layer != 0)
1167 continue;
1168
1169 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1170 image->planes[plane].surface.isl.format,
1171 aspect, array_layer, resolve_op,
1172 final_fast_clear);
1173 }
1174 }
1175 }
1176
1177 cmd_buffer->state.pending_pipe_bits |=
1178 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1179 }
1180
1181 /**
1182 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1183 */
1184 static VkResult
1185 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1186 struct anv_render_pass *pass,
1187 const VkRenderPassBeginInfo *begin)
1188 {
1189 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1190 struct anv_cmd_state *state = &cmd_buffer->state;
1191 struct anv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
1192
1193 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1194
1195 if (pass->attachment_count > 0) {
1196 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1197 pass->attachment_count *
1198 sizeof(state->attachments[0]),
1199 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1200 if (state->attachments == NULL) {
1201 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1202 return anv_batch_set_error(&cmd_buffer->batch,
1203 VK_ERROR_OUT_OF_HOST_MEMORY);
1204 }
1205 } else {
1206 state->attachments = NULL;
1207 }
1208
1209 /* Reserve one for the NULL state. */
1210 unsigned num_states = 1;
1211 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1212 if (vk_format_is_color(pass->attachments[i].format))
1213 num_states++;
1214
1215 if (need_input_attachment_state(&pass->attachments[i]))
1216 num_states++;
1217 }
1218
1219 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1220 state->render_pass_states =
1221 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1222 num_states * ss_stride, isl_dev->ss.align);
1223
1224 struct anv_state next_state = state->render_pass_states;
1225 next_state.alloc_size = isl_dev->ss.size;
1226
1227 state->null_surface_state = next_state;
1228 next_state.offset += ss_stride;
1229 next_state.map += ss_stride;
1230
1231 const VkRenderPassAttachmentBeginInfoKHR *begin_attachment =
1232 vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
1233
1234 if (begin && !begin_attachment)
1235 assert(pass->attachment_count == framebuffer->attachment_count);
1236
1237 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1238 if (vk_format_is_color(pass->attachments[i].format)) {
1239 state->attachments[i].color.state = next_state;
1240 next_state.offset += ss_stride;
1241 next_state.map += ss_stride;
1242 }
1243
1244 if (need_input_attachment_state(&pass->attachments[i])) {
1245 state->attachments[i].input.state = next_state;
1246 next_state.offset += ss_stride;
1247 next_state.map += ss_stride;
1248 }
1249
1250 if (begin_attachment && begin_attachment->attachmentCount != 0) {
1251 assert(begin_attachment->attachmentCount == pass->attachment_count);
1252 ANV_FROM_HANDLE(anv_image_view, iview, begin_attachment->pAttachments[i]);
1253 cmd_buffer->state.attachments[i].image_view = iview;
1254 } else if (framebuffer && i < framebuffer->attachment_count) {
1255 cmd_buffer->state.attachments[i].image_view = framebuffer->attachments[i];
1256 }
1257 }
1258 assert(next_state.offset == state->render_pass_states.offset +
1259 state->render_pass_states.alloc_size);
1260
1261 if (begin) {
1262 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1263 isl_extent3d(framebuffer->width,
1264 framebuffer->height,
1265 framebuffer->layers));
1266
1267 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1268 struct anv_render_pass_attachment *att = &pass->attachments[i];
1269 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1270 VkImageAspectFlags clear_aspects = 0;
1271 VkImageAspectFlags load_aspects = 0;
1272
1273 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1274 /* color attachment */
1275 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1276 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1277 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1278 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1279 }
1280 } else {
1281 /* depthstencil attachment */
1282 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1283 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1284 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1285 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1286 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1287 }
1288 }
1289 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1290 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1291 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1292 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1293 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1294 }
1295 }
1296 }
1297
1298 state->attachments[i].current_layout = att->initial_layout;
1299 state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
1300 state->attachments[i].pending_clear_aspects = clear_aspects;
1301 state->attachments[i].pending_load_aspects = load_aspects;
1302 if (clear_aspects)
1303 state->attachments[i].clear_value = begin->pClearValues[i];
1304
1305 struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
1306 anv_assert(iview->vk_format == att->format);
1307
1308 const uint32_t num_layers = iview->planes[0].isl.array_len;
1309 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1310
1311 union isl_color_value clear_color = { .u32 = { 0, } };
1312 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1313 anv_assert(iview->n_planes == 1);
1314 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1315 color_attachment_compute_aux_usage(cmd_buffer->device,
1316 state, i, begin->renderArea,
1317 &clear_color);
1318
1319 anv_image_fill_surface_state(cmd_buffer->device,
1320 iview->image,
1321 VK_IMAGE_ASPECT_COLOR_BIT,
1322 &iview->planes[0].isl,
1323 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1324 state->attachments[i].aux_usage,
1325 &clear_color,
1326 0,
1327 &state->attachments[i].color,
1328 NULL);
1329
1330 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1331 } else {
1332 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1333 state, i,
1334 begin->renderArea);
1335 }
1336
1337 if (need_input_attachment_state(&pass->attachments[i])) {
1338 anv_image_fill_surface_state(cmd_buffer->device,
1339 iview->image,
1340 VK_IMAGE_ASPECT_COLOR_BIT,
1341 &iview->planes[0].isl,
1342 ISL_SURF_USAGE_TEXTURE_BIT,
1343 state->attachments[i].input_aux_usage,
1344 &clear_color,
1345 0,
1346 &state->attachments[i].input,
1347 NULL);
1348
1349 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1350 }
1351 }
1352 }
1353
1354 return VK_SUCCESS;
1355 }
1356
1357 VkResult
1358 genX(BeginCommandBuffer)(
1359 VkCommandBuffer commandBuffer,
1360 const VkCommandBufferBeginInfo* pBeginInfo)
1361 {
1362 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1363
1364 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1365 * command buffer's state. Otherwise, we must *reset* its state. In both
1366 * cases we reset it.
1367 *
1368 * From the Vulkan 1.0 spec:
1369 *
1370 * If a command buffer is in the executable state and the command buffer
1371 * was allocated from a command pool with the
1372 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1373 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1374 * as if vkResetCommandBuffer had been called with
1375 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1376 * the command buffer in the recording state.
1377 */
1378 anv_cmd_buffer_reset(cmd_buffer);
1379
1380 cmd_buffer->usage_flags = pBeginInfo->flags;
1381
1382 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1383 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1384
1385 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1386
1387 /* We sometimes store vertex data in the dynamic state buffer for blorp
1388 * operations and our dynamic state stream may re-use data from previous
1389 * command buffers. In order to prevent stale cache data, we flush the VF
1390 * cache. We could do this on every blorp call but that's not really
1391 * needed as all of the data will get written by the CPU prior to the GPU
1392 * executing anything. The chances are fairly high that they will use
1393 * blorp at least once per primary command buffer so it shouldn't be
1394 * wasted.
1395 */
1396 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
1397 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1398
1399 /* We send an "Indirect State Pointers Disable" packet at
1400 * EndCommandBuffer, so all push contant packets are ignored during a
1401 * context restore. Documentation says after that command, we need to
1402 * emit push constants again before any rendering operation. So we
1403 * flag them dirty here to make sure they get emitted.
1404 */
1405 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1406
1407 VkResult result = VK_SUCCESS;
1408 if (cmd_buffer->usage_flags &
1409 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1410 assert(pBeginInfo->pInheritanceInfo);
1411 cmd_buffer->state.pass =
1412 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1413 cmd_buffer->state.subpass =
1414 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1415
1416 /* This is optional in the inheritance info. */
1417 cmd_buffer->state.framebuffer =
1418 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1419
1420 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1421 cmd_buffer->state.pass, NULL);
1422
1423 /* Record that HiZ is enabled if we can. */
1424 if (cmd_buffer->state.framebuffer) {
1425 const struct anv_image_view * const iview =
1426 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1427
1428 if (iview) {
1429 VkImageLayout layout =
1430 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1431
1432 enum isl_aux_usage aux_usage =
1433 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1434 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1435
1436 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1437 }
1438 }
1439
1440 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1441 }
1442
1443 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1444 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1445 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1446 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1447
1448 /* If secondary buffer supports conditional rendering
1449 * we should emit commands as if conditional rendering is enabled.
1450 */
1451 cmd_buffer->state.conditional_render_enabled =
1452 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1453 }
1454 #endif
1455
1456 return result;
1457 }
1458
1459 /* From the PRM, Volume 2a:
1460 *
1461 * "Indirect State Pointers Disable
1462 *
1463 * At the completion of the post-sync operation associated with this pipe
1464 * control packet, the indirect state pointers in the hardware are
1465 * considered invalid; the indirect pointers are not saved in the context.
1466 * If any new indirect state commands are executed in the command stream
1467 * while the pipe control is pending, the new indirect state commands are
1468 * preserved.
1469 *
1470 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1471 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1472 * commands are only considered as Indirect State Pointers. Once ISP is
1473 * issued in a context, SW must initialize by programming push constant
1474 * commands for all the shaders (at least to zero length) before attempting
1475 * any rendering operation for the same context."
1476 *
1477 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1478 * even though they point to a BO that has been already unreferenced at
1479 * the end of the previous batch buffer. This has been fine so far since
1480 * we are protected by these scratch page (every address not covered by
1481 * a BO should be pointing to the scratch page). But on CNL, it is
1482 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1483 * instruction.
1484 *
1485 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1486 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1487 * context restore, so the mentioned hang doesn't happen. However,
1488 * software must program push constant commands for all stages prior to
1489 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1490 *
1491 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1492 * constants have been loaded into the EUs prior to disable the push constants
1493 * so that it doesn't hang a previous 3DPRIMITIVE.
1494 */
1495 static void
1496 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1497 {
1498 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1499 pc.StallAtPixelScoreboard = true;
1500 pc.CommandStreamerStallEnable = true;
1501 }
1502 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1503 pc.IndirectStatePointersDisable = true;
1504 pc.CommandStreamerStallEnable = true;
1505 }
1506 }
1507
1508 VkResult
1509 genX(EndCommandBuffer)(
1510 VkCommandBuffer commandBuffer)
1511 {
1512 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1513
1514 if (anv_batch_has_error(&cmd_buffer->batch))
1515 return cmd_buffer->batch.status;
1516
1517 /* We want every command buffer to start with the PMA fix in a known state,
1518 * so we disable it at the end of the command buffer.
1519 */
1520 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1521
1522 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1523
1524 emit_isp_disable(cmd_buffer);
1525
1526 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1527
1528 return VK_SUCCESS;
1529 }
1530
1531 void
1532 genX(CmdExecuteCommands)(
1533 VkCommandBuffer commandBuffer,
1534 uint32_t commandBufferCount,
1535 const VkCommandBuffer* pCmdBuffers)
1536 {
1537 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1538
1539 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1540
1541 if (anv_batch_has_error(&primary->batch))
1542 return;
1543
1544 /* The secondary command buffers will assume that the PMA fix is disabled
1545 * when they begin executing. Make sure this is true.
1546 */
1547 genX(cmd_buffer_enable_pma_fix)(primary, false);
1548
1549 /* The secondary command buffer doesn't know which textures etc. have been
1550 * flushed prior to their execution. Apply those flushes now.
1551 */
1552 genX(cmd_buffer_apply_pipe_flushes)(primary);
1553
1554 for (uint32_t i = 0; i < commandBufferCount; i++) {
1555 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1556
1557 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1558 assert(!anv_batch_has_error(&secondary->batch));
1559
1560 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1561 if (secondary->state.conditional_render_enabled) {
1562 if (!primary->state.conditional_render_enabled) {
1563 /* Secondary buffer is constructed as if it will be executed
1564 * with conditional rendering, we should satisfy this dependency
1565 * regardless of conditional rendering being enabled in primary.
1566 */
1567 struct gen_mi_builder b;
1568 gen_mi_builder_init(&b, &primary->batch);
1569 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
1570 gen_mi_imm(UINT64_MAX));
1571 }
1572 }
1573 #endif
1574
1575 if (secondary->usage_flags &
1576 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1577 /* If we're continuing a render pass from the primary, we need to
1578 * copy the surface states for the current subpass into the storage
1579 * we allocated for them in BeginCommandBuffer.
1580 */
1581 struct anv_bo *ss_bo =
1582 primary->device->surface_state_pool.block_pool.bo;
1583 struct anv_state src_state = primary->state.render_pass_states;
1584 struct anv_state dst_state = secondary->state.render_pass_states;
1585 assert(src_state.alloc_size == dst_state.alloc_size);
1586
1587 genX(cmd_buffer_so_memcpy)(primary,
1588 (struct anv_address) {
1589 .bo = ss_bo,
1590 .offset = dst_state.offset,
1591 },
1592 (struct anv_address) {
1593 .bo = ss_bo,
1594 .offset = src_state.offset,
1595 },
1596 src_state.alloc_size);
1597 }
1598
1599 anv_cmd_buffer_add_secondary(primary, secondary);
1600 }
1601
1602 /* The secondary may have selected a different pipeline (3D or compute) and
1603 * may have changed the current L3$ configuration. Reset our tracking
1604 * variables to invalid values to ensure that we re-emit these in the case
1605 * where we do any draws or compute dispatches from the primary after the
1606 * secondary has returned.
1607 */
1608 primary->state.current_pipeline = UINT32_MAX;
1609 primary->state.current_l3_config = NULL;
1610 primary->state.current_hash_scale = 0;
1611
1612 /* Each of the secondary command buffers will use its own state base
1613 * address. We need to re-emit state base address for the primary after
1614 * all of the secondaries are done.
1615 *
1616 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1617 * address calls?
1618 */
1619 genX(cmd_buffer_emit_state_base_address)(primary);
1620 }
1621
1622 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1623 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1624 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1625
1626 /**
1627 * Program the hardware to use the specified L3 configuration.
1628 */
1629 void
1630 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1631 const struct gen_l3_config *cfg)
1632 {
1633 assert(cfg);
1634 if (cfg == cmd_buffer->state.current_l3_config)
1635 return;
1636
1637 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1638 intel_logd("L3 config transition: ");
1639 gen_dump_l3_config(cfg, stderr);
1640 }
1641
1642 UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM];
1643
1644 /* According to the hardware docs, the L3 partitioning can only be changed
1645 * while the pipeline is completely drained and the caches are flushed,
1646 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1647 */
1648 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1649 pc.DCFlushEnable = true;
1650 pc.PostSyncOperation = NoWrite;
1651 pc.CommandStreamerStallEnable = true;
1652 }
1653
1654 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1655 * invalidation of the relevant caches. Note that because RO invalidation
1656 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1657 * command is processed by the CS) we cannot combine it with the previous
1658 * stalling flush as the hardware documentation suggests, because that
1659 * would cause the CS to stall on previous rendering *after* RO
1660 * invalidation and wouldn't prevent the RO caches from being polluted by
1661 * concurrent rendering before the stall completes. This intentionally
1662 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1663 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1664 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1665 * already guarantee that there is no concurrent GPGPU kernel execution
1666 * (see SKL HSD 2132585).
1667 */
1668 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1669 pc.TextureCacheInvalidationEnable = true;
1670 pc.ConstantCacheInvalidationEnable = true;
1671 pc.InstructionCacheInvalidateEnable = true;
1672 pc.StateCacheInvalidationEnable = true;
1673 pc.PostSyncOperation = NoWrite;
1674 }
1675
1676 /* Now send a third stalling flush to make sure that invalidation is
1677 * complete when the L3 configuration registers are modified.
1678 */
1679 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1680 pc.DCFlushEnable = true;
1681 pc.PostSyncOperation = NoWrite;
1682 pc.CommandStreamerStallEnable = true;
1683 }
1684
1685 #if GEN_GEN >= 8
1686
1687 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1688
1689 #if GEN_GEN >= 12
1690 #define L3_ALLOCATION_REG GENX(L3ALLOC)
1691 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
1692 #else
1693 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
1694 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
1695 #endif
1696
1697 uint32_t l3cr;
1698 anv_pack_struct(&l3cr, L3_ALLOCATION_REG,
1699 #if GEN_GEN < 12
1700 .SLMEnable = has_slm,
1701 #endif
1702 #if GEN_GEN == 11
1703 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1704 * in L3CNTLREG register. The default setting of the bit is not the
1705 * desirable behavior.
1706 */
1707 .ErrorDetectionBehaviorControl = true,
1708 .UseFullWays = true,
1709 #endif
1710 .URBAllocation = cfg->n[GEN_L3P_URB],
1711 .ROAllocation = cfg->n[GEN_L3P_RO],
1712 .DCAllocation = cfg->n[GEN_L3P_DC],
1713 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1714
1715 /* Set up the L3 partitioning. */
1716 emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr);
1717
1718 #else
1719
1720 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1721 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1722 cfg->n[GEN_L3P_ALL];
1723 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1724 cfg->n[GEN_L3P_ALL];
1725 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1726 cfg->n[GEN_L3P_ALL];
1727
1728 assert(!cfg->n[GEN_L3P_ALL]);
1729
1730 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1731 * the matching space on the remaining banks has to be allocated to a
1732 * client (URB for all validated configurations) set to the
1733 * lower-bandwidth 2-bank address hashing mode.
1734 */
1735 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1736 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1737 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1738
1739 /* Minimum number of ways that can be allocated to the URB. */
1740 const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1741 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1742
1743 uint32_t l3sqcr1, l3cr2, l3cr3;
1744 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1745 .ConvertDC_UC = !has_dc,
1746 .ConvertIS_UC = !has_is,
1747 .ConvertC_UC = !has_c,
1748 .ConvertT_UC = !has_t);
1749 l3sqcr1 |=
1750 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1751 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1752 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1753
1754 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1755 .SLMEnable = has_slm,
1756 .URBLowBandwidth = urb_low_bw,
1757 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1758 #if !GEN_IS_HASWELL
1759 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1760 #endif
1761 .ROAllocation = cfg->n[GEN_L3P_RO],
1762 .DCAllocation = cfg->n[GEN_L3P_DC]);
1763
1764 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1765 .ISAllocation = cfg->n[GEN_L3P_IS],
1766 .ISLowBandwidth = 0,
1767 .CAllocation = cfg->n[GEN_L3P_C],
1768 .CLowBandwidth = 0,
1769 .TAllocation = cfg->n[GEN_L3P_T],
1770 .TLowBandwidth = 0);
1771
1772 /* Set up the L3 partitioning. */
1773 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1774 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1775 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1776
1777 #if GEN_IS_HASWELL
1778 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1779 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1780 * them disabled to avoid crashing the system hard.
1781 */
1782 uint32_t scratch1, chicken3;
1783 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1784 .L3AtomicDisable = !has_dc);
1785 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1786 .L3AtomicDisableMask = true,
1787 .L3AtomicDisable = !has_dc);
1788 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1789 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1790 }
1791 #endif
1792
1793 #endif
1794
1795 cmd_buffer->state.current_l3_config = cfg;
1796 }
1797
1798 void
1799 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1800 {
1801 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1802
1803 /* Flushes are pipelined while invalidations are handled immediately.
1804 * Therefore, if we're flushing anything then we need to schedule a stall
1805 * before any invalidations can happen.
1806 */
1807 if (bits & ANV_PIPE_FLUSH_BITS)
1808 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1809
1810 /* If we're going to do an invalidate and we have a pending CS stall that
1811 * has yet to be resolved, we do the CS stall now.
1812 */
1813 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1814 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1815 bits |= ANV_PIPE_CS_STALL_BIT;
1816 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1817 }
1818
1819 if (GEN_GEN >= 12 &&
1820 ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) ||
1821 (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) {
1822 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
1823 * Enable):
1824 *
1825 * Unified Cache (Tile Cache Disabled):
1826 *
1827 * When the Color and Depth (Z) streams are enabled to be cached in
1828 * the DC space of L2, Software must use "Render Target Cache Flush
1829 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
1830 * Flush" for getting the color and depth (Z) write data to be
1831 * globally observable. In this mode of operation it is not required
1832 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
1833 */
1834 bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
1835 }
1836
1837 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1838 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1839 #if GEN_GEN >= 12
1840 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
1841 #endif
1842 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1843 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1844 pipe.RenderTargetCacheFlushEnable =
1845 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1846
1847 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1848 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1849 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1850
1851 /*
1852 * According to the Broadwell documentation, any PIPE_CONTROL with the
1853 * "Command Streamer Stall" bit set must also have another bit set,
1854 * with five different options:
1855 *
1856 * - Render Target Cache Flush
1857 * - Depth Cache Flush
1858 * - Stall at Pixel Scoreboard
1859 * - Post-Sync Operation
1860 * - Depth Stall
1861 * - DC Flush Enable
1862 *
1863 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1864 * mesa and it seems to work fine. The choice is fairly arbitrary.
1865 */
1866 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1867 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1868 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1869 pipe.StallAtPixelScoreboard = true;
1870 }
1871
1872 /* If a render target flush was emitted, then we can toggle off the bit
1873 * saying that render target writes are ongoing.
1874 */
1875 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1876 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
1877
1878 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1879 }
1880
1881 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1882 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1883 *
1884 * "If the VF Cache Invalidation Enable is set to a 1 in a
1885 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
1886 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
1887 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
1888 * a 1."
1889 *
1890 * This appears to hang Broadwell, so we restrict it to just gen9.
1891 */
1892 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
1893 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
1894
1895 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1896 pipe.StateCacheInvalidationEnable =
1897 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1898 pipe.ConstantCacheInvalidationEnable =
1899 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1900 pipe.VFCacheInvalidationEnable =
1901 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1902 pipe.TextureCacheInvalidationEnable =
1903 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1904 pipe.InstructionCacheInvalidateEnable =
1905 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1906
1907 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1908 *
1909 * "When VF Cache Invalidate is set “Post Sync Operation” must be
1910 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
1911 * “Write Timestamp”.
1912 */
1913 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
1914 pipe.PostSyncOperation = WriteImmediateData;
1915 pipe.Address =
1916 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
1917 }
1918 }
1919
1920 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1921 }
1922
1923 cmd_buffer->state.pending_pipe_bits = bits;
1924 }
1925
1926 void genX(CmdPipelineBarrier)(
1927 VkCommandBuffer commandBuffer,
1928 VkPipelineStageFlags srcStageMask,
1929 VkPipelineStageFlags destStageMask,
1930 VkBool32 byRegion,
1931 uint32_t memoryBarrierCount,
1932 const VkMemoryBarrier* pMemoryBarriers,
1933 uint32_t bufferMemoryBarrierCount,
1934 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1935 uint32_t imageMemoryBarrierCount,
1936 const VkImageMemoryBarrier* pImageMemoryBarriers)
1937 {
1938 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1939
1940 /* XXX: Right now, we're really dumb and just flush whatever categories
1941 * the app asks for. One of these days we may make this a bit better
1942 * but right now that's all the hardware allows for in most areas.
1943 */
1944 VkAccessFlags src_flags = 0;
1945 VkAccessFlags dst_flags = 0;
1946
1947 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1948 src_flags |= pMemoryBarriers[i].srcAccessMask;
1949 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1950 }
1951
1952 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1953 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1954 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1955 }
1956
1957 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1958 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1959 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1960 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1961 const VkImageSubresourceRange *range =
1962 &pImageMemoryBarriers[i].subresourceRange;
1963
1964 uint32_t base_layer, layer_count;
1965 if (image->type == VK_IMAGE_TYPE_3D) {
1966 base_layer = 0;
1967 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
1968 } else {
1969 base_layer = range->baseArrayLayer;
1970 layer_count = anv_get_layerCount(image, range);
1971 }
1972
1973 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1974 transition_depth_buffer(cmd_buffer, image,
1975 pImageMemoryBarriers[i].oldLayout,
1976 pImageMemoryBarriers[i].newLayout);
1977 }
1978
1979 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
1980 transition_stencil_buffer(cmd_buffer, image,
1981 range->baseMipLevel,
1982 anv_get_levelCount(image, range),
1983 base_layer, layer_count,
1984 pImageMemoryBarriers[i].oldLayout,
1985 pImageMemoryBarriers[i].newLayout);
1986 }
1987
1988 if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1989 VkImageAspectFlags color_aspects =
1990 anv_image_expand_aspects(image, range->aspectMask);
1991 uint32_t aspect_bit;
1992 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1993 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1994 range->baseMipLevel,
1995 anv_get_levelCount(image, range),
1996 base_layer, layer_count,
1997 pImageMemoryBarriers[i].oldLayout,
1998 pImageMemoryBarriers[i].newLayout);
1999 }
2000 }
2001 }
2002
2003 cmd_buffer->state.pending_pipe_bits |=
2004 anv_pipe_flush_bits_for_access_flags(src_flags) |
2005 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
2006 }
2007
2008 static void
2009 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2010 {
2011 VkShaderStageFlags stages =
2012 cmd_buffer->state.gfx.base.pipeline->active_stages;
2013
2014 /* In order to avoid thrash, we assume that vertex and fragment stages
2015 * always exist. In the rare case where one is missing *and* the other
2016 * uses push concstants, this may be suboptimal. However, avoiding stalls
2017 * seems more important.
2018 */
2019 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
2020
2021 if (stages == cmd_buffer->state.push_constant_stages)
2022 return;
2023
2024 #if GEN_GEN >= 8
2025 const unsigned push_constant_kb = 32;
2026 #elif GEN_IS_HASWELL
2027 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
2028 #else
2029 const unsigned push_constant_kb = 16;
2030 #endif
2031
2032 const unsigned num_stages =
2033 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2034 unsigned size_per_stage = push_constant_kb / num_stages;
2035
2036 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2037 * units of 2KB. Incidentally, these are the same platforms that have
2038 * 32KB worth of push constant space.
2039 */
2040 if (push_constant_kb == 32)
2041 size_per_stage &= ~1u;
2042
2043 uint32_t kb_used = 0;
2044 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2045 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2046 anv_batch_emit(&cmd_buffer->batch,
2047 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2048 alloc._3DCommandSubOpcode = 18 + i;
2049 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2050 alloc.ConstantBufferSize = push_size;
2051 }
2052 kb_used += push_size;
2053 }
2054
2055 anv_batch_emit(&cmd_buffer->batch,
2056 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2057 alloc.ConstantBufferOffset = kb_used;
2058 alloc.ConstantBufferSize = push_constant_kb - kb_used;
2059 }
2060
2061 cmd_buffer->state.push_constant_stages = stages;
2062
2063 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2064 *
2065 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2066 * the next 3DPRIMITIVE command after programming the
2067 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2068 *
2069 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2070 * pipeline setup, we need to dirty push constants.
2071 */
2072 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2073 }
2074
2075 static struct anv_address
2076 anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
2077 struct anv_descriptor_set *set)
2078 {
2079 if (set->pool) {
2080 /* This is a normal descriptor set */
2081 return (struct anv_address) {
2082 .bo = set->pool->bo,
2083 .offset = set->desc_mem.offset,
2084 };
2085 } else {
2086 /* This is a push descriptor set. We have to flag it as used on the GPU
2087 * so that the next time we push descriptors, we grab a new memory.
2088 */
2089 struct anv_push_descriptor_set *push_set =
2090 (struct anv_push_descriptor_set *)set;
2091 push_set->set_used_on_gpu = true;
2092
2093 return (struct anv_address) {
2094 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
2095 .offset = set->desc_mem.offset,
2096 };
2097 }
2098 }
2099
2100 static VkResult
2101 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2102 gl_shader_stage stage,
2103 struct anv_state *bt_state)
2104 {
2105 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2106 struct anv_cmd_pipeline_state *pipe_state;
2107 struct anv_pipeline *pipeline;
2108 uint32_t state_offset;
2109
2110 switch (stage) {
2111 case MESA_SHADER_COMPUTE:
2112 pipe_state = &cmd_buffer->state.compute.base;
2113 break;
2114 default:
2115 pipe_state = &cmd_buffer->state.gfx.base;
2116 break;
2117 }
2118 pipeline = pipe_state->pipeline;
2119
2120 if (!anv_pipeline_has_stage(pipeline, stage)) {
2121 *bt_state = (struct anv_state) { 0, };
2122 return VK_SUCCESS;
2123 }
2124
2125 struct anv_shader_bin *bin = pipeline->shaders[stage];
2126 struct anv_pipeline_bind_map *map = &bin->bind_map;
2127 if (map->surface_count == 0) {
2128 *bt_state = (struct anv_state) { 0, };
2129 return VK_SUCCESS;
2130 }
2131
2132 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2133 map->surface_count,
2134 &state_offset);
2135 uint32_t *bt_map = bt_state->map;
2136
2137 if (bt_state->map == NULL)
2138 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2139
2140 /* We only need to emit relocs if we're not using softpin. If we are using
2141 * softpin then we always keep all user-allocated memory objects resident.
2142 */
2143 const bool need_client_mem_relocs =
2144 !cmd_buffer->device->instance->physicalDevice.use_softpin;
2145
2146 for (uint32_t s = 0; s < map->surface_count; s++) {
2147 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2148
2149 struct anv_state surface_state;
2150
2151 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
2152 /* Color attachment binding */
2153 assert(stage == MESA_SHADER_FRAGMENT);
2154 if (binding->index < subpass->color_count) {
2155 const unsigned att =
2156 subpass->color_attachments[binding->index].attachment;
2157
2158 /* From the Vulkan 1.0.46 spec:
2159 *
2160 * "If any color or depth/stencil attachments are
2161 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2162 * attachments."
2163 */
2164 if (att == VK_ATTACHMENT_UNUSED) {
2165 surface_state = cmd_buffer->state.null_surface_state;
2166 } else {
2167 surface_state = cmd_buffer->state.attachments[att].color.state;
2168 }
2169 } else {
2170 surface_state = cmd_buffer->state.null_surface_state;
2171 }
2172
2173 bt_map[s] = surface_state.offset + state_offset;
2174 continue;
2175 } else if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
2176 struct anv_state surface_state =
2177 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2178
2179 struct anv_address constant_data = {
2180 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2181 .offset = pipeline->shaders[stage]->constant_data.offset,
2182 };
2183 unsigned constant_data_size =
2184 pipeline->shaders[stage]->constant_data_size;
2185
2186 const enum isl_format format =
2187 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2188 anv_fill_buffer_surface_state(cmd_buffer->device,
2189 surface_state, format,
2190 constant_data, constant_data_size, 1);
2191
2192 bt_map[s] = surface_state.offset + state_offset;
2193 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2194 continue;
2195 } else if (binding->set == ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS) {
2196 /* This is always the first binding for compute shaders */
2197 assert(stage == MESA_SHADER_COMPUTE && s == 0);
2198 if (!get_cs_prog_data(pipeline)->uses_num_work_groups)
2199 continue;
2200
2201 struct anv_state surface_state =
2202 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2203
2204 const enum isl_format format =
2205 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2206 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2207 format,
2208 cmd_buffer->state.compute.num_workgroups,
2209 12, 1);
2210 bt_map[s] = surface_state.offset + state_offset;
2211 if (need_client_mem_relocs) {
2212 add_surface_reloc(cmd_buffer, surface_state,
2213 cmd_buffer->state.compute.num_workgroups);
2214 }
2215 continue;
2216 } else if (binding->set == ANV_DESCRIPTOR_SET_DESCRIPTORS) {
2217 /* This is a descriptor set buffer so the set index is actually
2218 * given by binding->binding. (Yes, that's confusing.)
2219 */
2220 struct anv_descriptor_set *set =
2221 pipe_state->descriptors[binding->index];
2222 assert(set->desc_mem.alloc_size);
2223 assert(set->desc_surface_state.alloc_size);
2224 bt_map[s] = set->desc_surface_state.offset + state_offset;
2225 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2226 anv_descriptor_set_address(cmd_buffer, set));
2227 continue;
2228 }
2229
2230 const struct anv_descriptor *desc =
2231 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2232
2233 switch (desc->type) {
2234 case VK_DESCRIPTOR_TYPE_SAMPLER:
2235 /* Nothing for us to do here */
2236 continue;
2237
2238 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2239 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2240 struct anv_surface_state sstate =
2241 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2242 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2243 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2244 surface_state = sstate.state;
2245 assert(surface_state.alloc_size);
2246 if (need_client_mem_relocs)
2247 add_surface_state_relocs(cmd_buffer, sstate);
2248 break;
2249 }
2250 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2251 assert(stage == MESA_SHADER_FRAGMENT);
2252 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2253 /* For depth and stencil input attachments, we treat it like any
2254 * old texture that a user may have bound.
2255 */
2256 assert(desc->image_view->n_planes == 1);
2257 struct anv_surface_state sstate =
2258 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2259 desc->image_view->planes[0].general_sampler_surface_state :
2260 desc->image_view->planes[0].optimal_sampler_surface_state;
2261 surface_state = sstate.state;
2262 assert(surface_state.alloc_size);
2263 if (need_client_mem_relocs)
2264 add_surface_state_relocs(cmd_buffer, sstate);
2265 } else {
2266 /* For color input attachments, we create the surface state at
2267 * vkBeginRenderPass time so that we can include aux and clear
2268 * color information.
2269 */
2270 assert(binding->input_attachment_index < subpass->input_count);
2271 const unsigned subpass_att = binding->input_attachment_index;
2272 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2273 surface_state = cmd_buffer->state.attachments[att].input.state;
2274 }
2275 break;
2276
2277 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2278 struct anv_surface_state sstate = (binding->write_only)
2279 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2280 : desc->image_view->planes[binding->plane].storage_surface_state;
2281 surface_state = sstate.state;
2282 assert(surface_state.alloc_size);
2283 if (need_client_mem_relocs)
2284 add_surface_state_relocs(cmd_buffer, sstate);
2285 break;
2286 }
2287
2288 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2289 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2290 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2291 surface_state = desc->buffer_view->surface_state;
2292 assert(surface_state.alloc_size);
2293 if (need_client_mem_relocs) {
2294 add_surface_reloc(cmd_buffer, surface_state,
2295 desc->buffer_view->address);
2296 }
2297 break;
2298
2299 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2300 /* If the shader never does any UBO pulls (this is a fairly common
2301 * case) then we don't need to fill out those binding table entries.
2302 * The real cost savings here is that we don't have to build the
2303 * surface state for them which is surprisingly expensive when it's
2304 * on the hot-path.
2305 */
2306 if (!bin->prog_data->has_ubo_pull)
2307 continue;
2308 /* Fall through */
2309
2310 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2311 /* Compute the offset within the buffer */
2312 uint32_t dynamic_offset =
2313 pipe_state->dynamic_offsets[binding->dynamic_offset_index];
2314 uint64_t offset = desc->offset + dynamic_offset;
2315 /* Clamp to the buffer size */
2316 offset = MIN2(offset, desc->buffer->size);
2317 /* Clamp the range to the buffer size */
2318 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2319
2320 struct anv_address address =
2321 anv_address_add(desc->buffer->address, offset);
2322
2323 surface_state =
2324 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2325 enum isl_format format =
2326 anv_isl_format_for_descriptor_type(desc->type);
2327
2328 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2329 format, address, range, 1);
2330 if (need_client_mem_relocs)
2331 add_surface_reloc(cmd_buffer, surface_state, address);
2332 break;
2333 }
2334
2335 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2336 surface_state = (binding->write_only)
2337 ? desc->buffer_view->writeonly_storage_surface_state
2338 : desc->buffer_view->storage_surface_state;
2339 assert(surface_state.alloc_size);
2340 if (need_client_mem_relocs) {
2341 add_surface_reloc(cmd_buffer, surface_state,
2342 desc->buffer_view->address);
2343 }
2344 break;
2345
2346 default:
2347 assert(!"Invalid descriptor type");
2348 continue;
2349 }
2350
2351 bt_map[s] = surface_state.offset + state_offset;
2352 }
2353
2354 return VK_SUCCESS;
2355 }
2356
2357 static VkResult
2358 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2359 gl_shader_stage stage,
2360 struct anv_state *state)
2361 {
2362 struct anv_cmd_pipeline_state *pipe_state =
2363 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2364 &cmd_buffer->state.gfx.base;
2365 struct anv_pipeline *pipeline = pipe_state->pipeline;
2366
2367 if (!anv_pipeline_has_stage(pipeline, stage)) {
2368 *state = (struct anv_state) { 0, };
2369 return VK_SUCCESS;
2370 }
2371
2372 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2373 if (map->sampler_count == 0) {
2374 *state = (struct anv_state) { 0, };
2375 return VK_SUCCESS;
2376 }
2377
2378 uint32_t size = map->sampler_count * 16;
2379 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2380
2381 if (state->map == NULL)
2382 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2383
2384 for (uint32_t s = 0; s < map->sampler_count; s++) {
2385 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2386 const struct anv_descriptor *desc =
2387 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2388
2389 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2390 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2391 continue;
2392
2393 struct anv_sampler *sampler = desc->sampler;
2394
2395 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2396 * happens to be zero.
2397 */
2398 if (sampler == NULL)
2399 continue;
2400
2401 memcpy(state->map + (s * 16),
2402 sampler->state[binding->plane], sizeof(sampler->state[0]));
2403 }
2404
2405 return VK_SUCCESS;
2406 }
2407
2408 static uint32_t
2409 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
2410 {
2411 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2412
2413 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2414 pipeline->active_stages;
2415
2416 VkResult result = VK_SUCCESS;
2417 anv_foreach_stage(s, dirty) {
2418 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2419 if (result != VK_SUCCESS)
2420 break;
2421 result = emit_binding_table(cmd_buffer, s,
2422 &cmd_buffer->state.binding_tables[s]);
2423 if (result != VK_SUCCESS)
2424 break;
2425 }
2426
2427 if (result != VK_SUCCESS) {
2428 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2429
2430 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2431 if (result != VK_SUCCESS)
2432 return 0;
2433
2434 /* Re-emit state base addresses so we get the new surface state base
2435 * address before we start emitting binding tables etc.
2436 */
2437 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2438
2439 /* Re-emit all active binding tables */
2440 dirty |= pipeline->active_stages;
2441 anv_foreach_stage(s, dirty) {
2442 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2443 if (result != VK_SUCCESS) {
2444 anv_batch_set_error(&cmd_buffer->batch, result);
2445 return 0;
2446 }
2447 result = emit_binding_table(cmd_buffer, s,
2448 &cmd_buffer->state.binding_tables[s]);
2449 if (result != VK_SUCCESS) {
2450 anv_batch_set_error(&cmd_buffer->batch, result);
2451 return 0;
2452 }
2453 }
2454 }
2455
2456 cmd_buffer->state.descriptors_dirty &= ~dirty;
2457
2458 return dirty;
2459 }
2460
2461 static void
2462 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2463 uint32_t stages)
2464 {
2465 static const uint32_t sampler_state_opcodes[] = {
2466 [MESA_SHADER_VERTEX] = 43,
2467 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2468 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2469 [MESA_SHADER_GEOMETRY] = 46,
2470 [MESA_SHADER_FRAGMENT] = 47,
2471 [MESA_SHADER_COMPUTE] = 0,
2472 };
2473
2474 static const uint32_t binding_table_opcodes[] = {
2475 [MESA_SHADER_VERTEX] = 38,
2476 [MESA_SHADER_TESS_CTRL] = 39,
2477 [MESA_SHADER_TESS_EVAL] = 40,
2478 [MESA_SHADER_GEOMETRY] = 41,
2479 [MESA_SHADER_FRAGMENT] = 42,
2480 [MESA_SHADER_COMPUTE] = 0,
2481 };
2482
2483 anv_foreach_stage(s, stages) {
2484 assert(s < ARRAY_SIZE(binding_table_opcodes));
2485 assert(binding_table_opcodes[s] > 0);
2486
2487 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2488 anv_batch_emit(&cmd_buffer->batch,
2489 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2490 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2491 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2492 }
2493 }
2494
2495 /* Always emit binding table pointers if we're asked to, since on SKL
2496 * this is what flushes push constants. */
2497 anv_batch_emit(&cmd_buffer->batch,
2498 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2499 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2500 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2501 }
2502 }
2503 }
2504
2505 static void
2506 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2507 VkShaderStageFlags dirty_stages)
2508 {
2509 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2510 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2511
2512 static const uint32_t push_constant_opcodes[] = {
2513 [MESA_SHADER_VERTEX] = 21,
2514 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2515 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2516 [MESA_SHADER_GEOMETRY] = 22,
2517 [MESA_SHADER_FRAGMENT] = 23,
2518 [MESA_SHADER_COMPUTE] = 0,
2519 };
2520
2521 VkShaderStageFlags flushed = 0;
2522
2523 anv_foreach_stage(stage, dirty_stages) {
2524 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2525 assert(push_constant_opcodes[stage] > 0);
2526
2527 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2528 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2529
2530 if (anv_pipeline_has_stage(pipeline, stage)) {
2531 const struct anv_pipeline_bind_map *bind_map =
2532 &pipeline->shaders[stage]->bind_map;
2533
2534 for (unsigned i = 0; i < 4; i++) {
2535 const struct anv_push_range *range = &bind_map->push_ranges[i];
2536 if (range->length == 0)
2537 continue;
2538
2539 struct anv_address addr;
2540 switch (range->set) {
2541 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2542 /* This is a descriptor set buffer so the set index is
2543 * actually given by binding->binding. (Yes, that's
2544 * confusing.)
2545 */
2546 struct anv_descriptor_set *set =
2547 gfx_state->base.descriptors[range->index];
2548 addr = anv_descriptor_set_address(cmd_buffer, set);
2549 break;
2550 }
2551
2552 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
2553 struct anv_state state =
2554 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2555 addr = (struct anv_address) {
2556 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2557 .offset = state.offset,
2558 };
2559 break;
2560 }
2561
2562 default: {
2563 assert(range->set < MAX_SETS);
2564 struct anv_descriptor_set *set =
2565 gfx_state->base.descriptors[range->set];
2566 const struct anv_descriptor *desc =
2567 &set->descriptors[range->index];
2568
2569 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2570 addr = desc->buffer_view->address;
2571 } else {
2572 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2573 uint32_t dynamic_offset =
2574 gfx_state->base.dynamic_offsets[range->dynamic_offset_index];
2575 addr = anv_address_add(desc->buffer->address,
2576 desc->offset + dynamic_offset);
2577 }
2578 }
2579 }
2580
2581 c.ConstantBody.ReadLength[i] = range->length;
2582 c.ConstantBody.Buffer[i] =
2583 anv_address_add(addr, range->start * 32);
2584 }
2585 }
2586 }
2587
2588 flushed |= mesa_to_vk_shader_stage(stage);
2589 }
2590
2591 cmd_buffer->state.push_constants_dirty &= ~flushed;
2592 }
2593
2594 #if GEN_GEN >= 12
2595 void
2596 genX(cmd_buffer_aux_map_state)(struct anv_cmd_buffer *cmd_buffer)
2597 {
2598 void *aux_map_ctx = cmd_buffer->device->aux_map_ctx;
2599 if (!aux_map_ctx)
2600 return;
2601 uint32_t aux_map_state_num = gen_aux_map_get_state_num(aux_map_ctx);
2602 if (cmd_buffer->state.last_aux_map_state != aux_map_state_num) {
2603 /* If the aux-map state number increased, then we need to rewrite the
2604 * register. Rewriting the register is used to both set the aux-map
2605 * translation table address, and also to invalidate any previously
2606 * cached translations.
2607 */
2608 uint64_t base_addr = gen_aux_map_get_base(aux_map_ctx);
2609 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2610 lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num);
2611 lri.DataDWord = base_addr & 0xffffffff;
2612 }
2613 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2614 lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num) + 4;
2615 lri.DataDWord = base_addr >> 32;
2616 }
2617 cmd_buffer->state.last_aux_map_state = aux_map_state_num;
2618 }
2619 }
2620 #endif
2621
2622 void
2623 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2624 {
2625 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2626 uint32_t *p;
2627
2628 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2629 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
2630 vb_emit |= pipeline->vb_used;
2631
2632 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2633
2634 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2635
2636 genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
2637
2638 genX(flush_pipeline_select_3d)(cmd_buffer);
2639
2640 #if GEN_GEN >= 12
2641 genX(cmd_buffer_aux_map_state)(cmd_buffer);
2642 #endif
2643
2644 if (vb_emit) {
2645 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2646 const uint32_t num_dwords = 1 + num_buffers * 4;
2647
2648 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2649 GENX(3DSTATE_VERTEX_BUFFERS));
2650 uint32_t vb, i = 0;
2651 for_each_bit(vb, vb_emit) {
2652 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2653 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2654
2655 struct GENX(VERTEX_BUFFER_STATE) state = {
2656 .VertexBufferIndex = vb,
2657
2658 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
2659 #if GEN_GEN <= 7
2660 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
2661 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
2662 #endif
2663
2664 .AddressModifyEnable = true,
2665 .BufferPitch = pipeline->vb[vb].stride,
2666 .BufferStartingAddress = anv_address_add(buffer->address, offset),
2667
2668 #if GEN_GEN >= 8
2669 .BufferSize = buffer->size - offset
2670 #else
2671 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
2672 #endif
2673 };
2674
2675 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2676 i++;
2677 }
2678 }
2679
2680 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2681
2682 #if GEN_GEN >= 8
2683 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
2684 /* We don't need any per-buffer dirty tracking because you're not
2685 * allowed to bind different XFB buffers while XFB is enabled.
2686 */
2687 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
2688 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
2689 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
2690 #if GEN_GEN < 12
2691 sob.SOBufferIndex = idx;
2692 #else
2693 sob._3DCommandOpcode = 0;
2694 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
2695 #endif
2696
2697 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
2698 sob.SOBufferEnable = true;
2699 sob.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
2700 sob.StreamOffsetWriteEnable = false;
2701 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
2702 xfb->offset);
2703 /* Size is in DWords - 1 */
2704 sob.SurfaceSize = xfb->size / 4 - 1;
2705 }
2706 }
2707 }
2708
2709 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
2710 if (GEN_GEN >= 10)
2711 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2712 }
2713 #endif
2714
2715 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2716 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2717
2718 /* The exact descriptor layout is pulled from the pipeline, so we need
2719 * to re-emit binding tables on every pipeline change.
2720 */
2721 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2722
2723 /* If the pipeline changed, we may need to re-allocate push constant
2724 * space in the URB.
2725 */
2726 cmd_buffer_alloc_push_constants(cmd_buffer);
2727 }
2728
2729 #if GEN_GEN <= 7
2730 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2731 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2732 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2733 *
2734 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2735 * stall needs to be sent just prior to any 3DSTATE_VS,
2736 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2737 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2738 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2739 * PIPE_CONTROL needs to be sent before any combination of VS
2740 * associated 3DSTATE."
2741 */
2742 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2743 pc.DepthStallEnable = true;
2744 pc.PostSyncOperation = WriteImmediateData;
2745 pc.Address =
2746 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
2747 }
2748 }
2749 #endif
2750
2751 /* Render targets live in the same binding table as fragment descriptors */
2752 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2753 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2754
2755 /* We emit the binding tables and sampler tables first, then emit push
2756 * constants and then finally emit binding table and sampler table
2757 * pointers. It has to happen in this order, since emitting the binding
2758 * tables may change the push constants (in case of storage images). After
2759 * emitting push constants, on SKL+ we have to emit the corresponding
2760 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2761 */
2762 uint32_t dirty = 0;
2763 if (cmd_buffer->state.descriptors_dirty)
2764 dirty = flush_descriptor_sets(cmd_buffer);
2765
2766 if (dirty || cmd_buffer->state.push_constants_dirty) {
2767 /* Because we're pushing UBOs, we have to push whenever either
2768 * descriptors or push constants is dirty.
2769 */
2770 dirty |= cmd_buffer->state.push_constants_dirty;
2771 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2772 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2773 }
2774
2775 if (dirty)
2776 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2777
2778 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2779 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2780
2781 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2782 ANV_CMD_DIRTY_PIPELINE)) {
2783 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2784 pipeline->depth_clamp_enable);
2785 }
2786
2787 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
2788 ANV_CMD_DIRTY_RENDER_TARGETS))
2789 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2790
2791 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2792
2793 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2794 }
2795
2796 static void
2797 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2798 struct anv_address addr,
2799 uint32_t size, uint32_t index)
2800 {
2801 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2802 GENX(3DSTATE_VERTEX_BUFFERS));
2803
2804 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2805 &(struct GENX(VERTEX_BUFFER_STATE)) {
2806 .VertexBufferIndex = index,
2807 .AddressModifyEnable = true,
2808 .BufferPitch = 0,
2809 .MOCS = anv_mocs_for_bo(cmd_buffer->device, addr.bo),
2810 #if (GEN_GEN >= 8)
2811 .BufferStartingAddress = addr,
2812 .BufferSize = size
2813 #else
2814 .BufferStartingAddress = addr,
2815 .EndAddress = anv_address_add(addr, size),
2816 #endif
2817 });
2818 }
2819
2820 static void
2821 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2822 struct anv_address addr)
2823 {
2824 emit_vertex_bo(cmd_buffer, addr, 8, ANV_SVGS_VB_INDEX);
2825 }
2826
2827 static void
2828 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2829 uint32_t base_vertex, uint32_t base_instance)
2830 {
2831 struct anv_state id_state =
2832 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2833
2834 ((uint32_t *)id_state.map)[0] = base_vertex;
2835 ((uint32_t *)id_state.map)[1] = base_instance;
2836
2837 struct anv_address addr = {
2838 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2839 .offset = id_state.offset,
2840 };
2841
2842 emit_base_vertex_instance_bo(cmd_buffer, addr);
2843 }
2844
2845 static void
2846 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2847 {
2848 struct anv_state state =
2849 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2850
2851 ((uint32_t *)state.map)[0] = draw_index;
2852
2853 struct anv_address addr = {
2854 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2855 .offset = state.offset,
2856 };
2857
2858 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
2859 }
2860
2861 void genX(CmdDraw)(
2862 VkCommandBuffer commandBuffer,
2863 uint32_t vertexCount,
2864 uint32_t instanceCount,
2865 uint32_t firstVertex,
2866 uint32_t firstInstance)
2867 {
2868 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2869 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2870 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2871
2872 if (anv_batch_has_error(&cmd_buffer->batch))
2873 return;
2874
2875 genX(cmd_buffer_flush_state)(cmd_buffer);
2876
2877 if (cmd_buffer->state.conditional_render_enabled)
2878 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
2879
2880 if (vs_prog_data->uses_firstvertex ||
2881 vs_prog_data->uses_baseinstance)
2882 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2883 if (vs_prog_data->uses_drawid)
2884 emit_draw_index(cmd_buffer, 0);
2885
2886 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2887 * different views. We need to multiply instanceCount by the view count.
2888 */
2889 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2890
2891 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2892 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
2893 prim.VertexAccessType = SEQUENTIAL;
2894 prim.PrimitiveTopologyType = pipeline->topology;
2895 prim.VertexCountPerInstance = vertexCount;
2896 prim.StartVertexLocation = firstVertex;
2897 prim.InstanceCount = instanceCount;
2898 prim.StartInstanceLocation = firstInstance;
2899 prim.BaseVertexLocation = 0;
2900 }
2901 }
2902
2903 void genX(CmdDrawIndexed)(
2904 VkCommandBuffer commandBuffer,
2905 uint32_t indexCount,
2906 uint32_t instanceCount,
2907 uint32_t firstIndex,
2908 int32_t vertexOffset,
2909 uint32_t firstInstance)
2910 {
2911 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2912 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2913 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2914
2915 if (anv_batch_has_error(&cmd_buffer->batch))
2916 return;
2917
2918 genX(cmd_buffer_flush_state)(cmd_buffer);
2919
2920 if (cmd_buffer->state.conditional_render_enabled)
2921 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
2922
2923 if (vs_prog_data->uses_firstvertex ||
2924 vs_prog_data->uses_baseinstance)
2925 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2926 if (vs_prog_data->uses_drawid)
2927 emit_draw_index(cmd_buffer, 0);
2928
2929 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2930 * different views. We need to multiply instanceCount by the view count.
2931 */
2932 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2933
2934 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2935 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
2936 prim.VertexAccessType = RANDOM;
2937 prim.PrimitiveTopologyType = pipeline->topology;
2938 prim.VertexCountPerInstance = indexCount;
2939 prim.StartVertexLocation = firstIndex;
2940 prim.InstanceCount = instanceCount;
2941 prim.StartInstanceLocation = firstInstance;
2942 prim.BaseVertexLocation = vertexOffset;
2943 }
2944 }
2945
2946 /* Auto-Draw / Indirect Registers */
2947 #define GEN7_3DPRIM_END_OFFSET 0x2420
2948 #define GEN7_3DPRIM_START_VERTEX 0x2430
2949 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2950 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2951 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2952 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2953
2954 void genX(CmdDrawIndirectByteCountEXT)(
2955 VkCommandBuffer commandBuffer,
2956 uint32_t instanceCount,
2957 uint32_t firstInstance,
2958 VkBuffer counterBuffer,
2959 VkDeviceSize counterBufferOffset,
2960 uint32_t counterOffset,
2961 uint32_t vertexStride)
2962 {
2963 #if GEN_IS_HASWELL || GEN_GEN >= 8
2964 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2965 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
2966 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2967 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2968
2969 /* firstVertex is always zero for this draw function */
2970 const uint32_t firstVertex = 0;
2971
2972 if (anv_batch_has_error(&cmd_buffer->batch))
2973 return;
2974
2975 genX(cmd_buffer_flush_state)(cmd_buffer);
2976
2977 if (vs_prog_data->uses_firstvertex ||
2978 vs_prog_data->uses_baseinstance)
2979 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2980 if (vs_prog_data->uses_drawid)
2981 emit_draw_index(cmd_buffer, 0);
2982
2983 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2984 * different views. We need to multiply instanceCount by the view count.
2985 */
2986 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2987
2988 struct gen_mi_builder b;
2989 gen_mi_builder_init(&b, &cmd_buffer->batch);
2990 struct gen_mi_value count =
2991 gen_mi_mem32(anv_address_add(counter_buffer->address,
2992 counterBufferOffset));
2993 if (counterOffset)
2994 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
2995 count = gen_mi_udiv32_imm(&b, count, vertexStride);
2996 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
2997
2998 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
2999 gen_mi_imm(firstVertex));
3000 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
3001 gen_mi_imm(instanceCount));
3002 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3003 gen_mi_imm(firstInstance));
3004 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3005
3006 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3007 prim.IndirectParameterEnable = true;
3008 prim.VertexAccessType = SEQUENTIAL;
3009 prim.PrimitiveTopologyType = pipeline->topology;
3010 }
3011 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
3012 }
3013
3014 static void
3015 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
3016 struct anv_address addr,
3017 bool indexed)
3018 {
3019 struct gen_mi_builder b;
3020 gen_mi_builder_init(&b, &cmd_buffer->batch);
3021
3022 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
3023 gen_mi_mem32(anv_address_add(addr, 0)));
3024
3025 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
3026 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
3027 if (view_count > 1) {
3028 #if GEN_IS_HASWELL || GEN_GEN >= 8
3029 instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
3030 #else
3031 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3032 "MI_MATH is not supported on Ivy Bridge");
3033 #endif
3034 }
3035 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
3036
3037 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3038 gen_mi_mem32(anv_address_add(addr, 8)));
3039
3040 if (indexed) {
3041 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
3042 gen_mi_mem32(anv_address_add(addr, 12)));
3043 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3044 gen_mi_mem32(anv_address_add(addr, 16)));
3045 } else {
3046 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3047 gen_mi_mem32(anv_address_add(addr, 12)));
3048 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3049 }
3050 }
3051
3052 void genX(CmdDrawIndirect)(
3053 VkCommandBuffer commandBuffer,
3054 VkBuffer _buffer,
3055 VkDeviceSize offset,
3056 uint32_t drawCount,
3057 uint32_t stride)
3058 {
3059 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3060 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3061 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3062 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3063
3064 if (anv_batch_has_error(&cmd_buffer->batch))
3065 return;
3066
3067 genX(cmd_buffer_flush_state)(cmd_buffer);
3068
3069 if (cmd_buffer->state.conditional_render_enabled)
3070 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3071
3072 for (uint32_t i = 0; i < drawCount; i++) {
3073 struct anv_address draw = anv_address_add(buffer->address, offset);
3074
3075 if (vs_prog_data->uses_firstvertex ||
3076 vs_prog_data->uses_baseinstance)
3077 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3078 if (vs_prog_data->uses_drawid)
3079 emit_draw_index(cmd_buffer, i);
3080
3081 load_indirect_parameters(cmd_buffer, draw, false);
3082
3083 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3084 prim.IndirectParameterEnable = true;
3085 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3086 prim.VertexAccessType = SEQUENTIAL;
3087 prim.PrimitiveTopologyType = pipeline->topology;
3088 }
3089
3090 offset += stride;
3091 }
3092 }
3093
3094 void genX(CmdDrawIndexedIndirect)(
3095 VkCommandBuffer commandBuffer,
3096 VkBuffer _buffer,
3097 VkDeviceSize offset,
3098 uint32_t drawCount,
3099 uint32_t stride)
3100 {
3101 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3102 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3103 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3104 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3105
3106 if (anv_batch_has_error(&cmd_buffer->batch))
3107 return;
3108
3109 genX(cmd_buffer_flush_state)(cmd_buffer);
3110
3111 if (cmd_buffer->state.conditional_render_enabled)
3112 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3113
3114 for (uint32_t i = 0; i < drawCount; i++) {
3115 struct anv_address draw = anv_address_add(buffer->address, offset);
3116
3117 /* TODO: We need to stomp base vertex to 0 somehow */
3118 if (vs_prog_data->uses_firstvertex ||
3119 vs_prog_data->uses_baseinstance)
3120 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3121 if (vs_prog_data->uses_drawid)
3122 emit_draw_index(cmd_buffer, i);
3123
3124 load_indirect_parameters(cmd_buffer, draw, true);
3125
3126 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3127 prim.IndirectParameterEnable = true;
3128 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3129 prim.VertexAccessType = RANDOM;
3130 prim.PrimitiveTopologyType = pipeline->topology;
3131 }
3132
3133 offset += stride;
3134 }
3135 }
3136
3137 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3138
3139 static void
3140 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3141 struct anv_address count_address,
3142 const bool conditional_render_enabled)
3143 {
3144 struct gen_mi_builder b;
3145 gen_mi_builder_init(&b, &cmd_buffer->batch);
3146
3147 if (conditional_render_enabled) {
3148 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3149 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
3150 gen_mi_mem32(count_address));
3151 #endif
3152 } else {
3153 /* Upload the current draw count from the draw parameters buffer to
3154 * MI_PREDICATE_SRC0.
3155 */
3156 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
3157 gen_mi_mem32(count_address));
3158
3159 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
3160 }
3161 }
3162
3163 static void
3164 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3165 uint32_t draw_index)
3166 {
3167 struct gen_mi_builder b;
3168 gen_mi_builder_init(&b, &cmd_buffer->batch);
3169
3170 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3171 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
3172
3173 if (draw_index == 0) {
3174 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3175 mip.LoadOperation = LOAD_LOADINV;
3176 mip.CombineOperation = COMBINE_SET;
3177 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3178 }
3179 } else {
3180 /* While draw_index < draw_count the predicate's result will be
3181 * (draw_index == draw_count) ^ TRUE = TRUE
3182 * When draw_index == draw_count the result is
3183 * (TRUE) ^ TRUE = FALSE
3184 * After this all results will be:
3185 * (FALSE) ^ FALSE = FALSE
3186 */
3187 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3188 mip.LoadOperation = LOAD_LOAD;
3189 mip.CombineOperation = COMBINE_XOR;
3190 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3191 }
3192 }
3193 }
3194
3195 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3196 static void
3197 emit_draw_count_predicate_with_conditional_render(
3198 struct anv_cmd_buffer *cmd_buffer,
3199 uint32_t draw_index)
3200 {
3201 struct gen_mi_builder b;
3202 gen_mi_builder_init(&b, &cmd_buffer->batch);
3203
3204 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
3205 gen_mi_reg64(TMP_DRAW_COUNT_REG));
3206 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
3207
3208 #if GEN_GEN >= 8
3209 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
3210 #else
3211 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3212 * so we emit MI_PREDICATE to set it.
3213 */
3214
3215 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
3216 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3217
3218 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3219 mip.LoadOperation = LOAD_LOADINV;
3220 mip.CombineOperation = COMBINE_SET;
3221 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3222 }
3223 #endif
3224 }
3225 #endif
3226
3227 void genX(CmdDrawIndirectCountKHR)(
3228 VkCommandBuffer commandBuffer,
3229 VkBuffer _buffer,
3230 VkDeviceSize offset,
3231 VkBuffer _countBuffer,
3232 VkDeviceSize countBufferOffset,
3233 uint32_t maxDrawCount,
3234 uint32_t stride)
3235 {
3236 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3237 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3238 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3239 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3240 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3241 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3242
3243 if (anv_batch_has_error(&cmd_buffer->batch))
3244 return;
3245
3246 genX(cmd_buffer_flush_state)(cmd_buffer);
3247
3248 struct anv_address count_address =
3249 anv_address_add(count_buffer->address, countBufferOffset);
3250
3251 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3252 cmd_state->conditional_render_enabled);
3253
3254 for (uint32_t i = 0; i < maxDrawCount; i++) {
3255 struct anv_address draw = anv_address_add(buffer->address, offset);
3256
3257 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3258 if (cmd_state->conditional_render_enabled) {
3259 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3260 } else {
3261 emit_draw_count_predicate(cmd_buffer, i);
3262 }
3263 #else
3264 emit_draw_count_predicate(cmd_buffer, i);
3265 #endif
3266
3267 if (vs_prog_data->uses_firstvertex ||
3268 vs_prog_data->uses_baseinstance)
3269 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3270 if (vs_prog_data->uses_drawid)
3271 emit_draw_index(cmd_buffer, i);
3272
3273 load_indirect_parameters(cmd_buffer, draw, false);
3274
3275 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3276 prim.IndirectParameterEnable = true;
3277 prim.PredicateEnable = true;
3278 prim.VertexAccessType = SEQUENTIAL;
3279 prim.PrimitiveTopologyType = pipeline->topology;
3280 }
3281
3282 offset += stride;
3283 }
3284 }
3285
3286 void genX(CmdDrawIndexedIndirectCountKHR)(
3287 VkCommandBuffer commandBuffer,
3288 VkBuffer _buffer,
3289 VkDeviceSize offset,
3290 VkBuffer _countBuffer,
3291 VkDeviceSize countBufferOffset,
3292 uint32_t maxDrawCount,
3293 uint32_t stride)
3294 {
3295 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3296 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3297 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3298 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3299 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3300 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3301
3302 if (anv_batch_has_error(&cmd_buffer->batch))
3303 return;
3304
3305 genX(cmd_buffer_flush_state)(cmd_buffer);
3306
3307 struct anv_address count_address =
3308 anv_address_add(count_buffer->address, countBufferOffset);
3309
3310 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3311 cmd_state->conditional_render_enabled);
3312
3313 for (uint32_t i = 0; i < maxDrawCount; i++) {
3314 struct anv_address draw = anv_address_add(buffer->address, offset);
3315
3316 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3317 if (cmd_state->conditional_render_enabled) {
3318 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3319 } else {
3320 emit_draw_count_predicate(cmd_buffer, i);
3321 }
3322 #else
3323 emit_draw_count_predicate(cmd_buffer, i);
3324 #endif
3325
3326 /* TODO: We need to stomp base vertex to 0 somehow */
3327 if (vs_prog_data->uses_firstvertex ||
3328 vs_prog_data->uses_baseinstance)
3329 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3330 if (vs_prog_data->uses_drawid)
3331 emit_draw_index(cmd_buffer, i);
3332
3333 load_indirect_parameters(cmd_buffer, draw, true);
3334
3335 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3336 prim.IndirectParameterEnable = true;
3337 prim.PredicateEnable = true;
3338 prim.VertexAccessType = RANDOM;
3339 prim.PrimitiveTopologyType = pipeline->topology;
3340 }
3341
3342 offset += stride;
3343 }
3344 }
3345
3346 void genX(CmdBeginTransformFeedbackEXT)(
3347 VkCommandBuffer commandBuffer,
3348 uint32_t firstCounterBuffer,
3349 uint32_t counterBufferCount,
3350 const VkBuffer* pCounterBuffers,
3351 const VkDeviceSize* pCounterBufferOffsets)
3352 {
3353 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3354
3355 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3356 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3357 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3358
3359 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3360 *
3361 * "Ssoftware must ensure that no HW stream output operations can be in
3362 * process or otherwise pending at the point that the MI_LOAD/STORE
3363 * commands are processed. This will likely require a pipeline flush."
3364 */
3365 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3366 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3367
3368 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3369 /* If we have a counter buffer, this is a resume so we need to load the
3370 * value into the streamout offset register. Otherwise, this is a begin
3371 * and we need to reset it to zero.
3372 */
3373 if (pCounterBuffers &&
3374 idx >= firstCounterBuffer &&
3375 idx - firstCounterBuffer < counterBufferCount &&
3376 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
3377 uint32_t cb_idx = idx - firstCounterBuffer;
3378 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3379 uint64_t offset = pCounterBufferOffsets ?
3380 pCounterBufferOffsets[cb_idx] : 0;
3381
3382 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3383 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3384 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
3385 offset);
3386 }
3387 } else {
3388 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
3389 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3390 lri.DataDWord = 0;
3391 }
3392 }
3393 }
3394
3395 cmd_buffer->state.xfb_enabled = true;
3396 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3397 }
3398
3399 void genX(CmdEndTransformFeedbackEXT)(
3400 VkCommandBuffer commandBuffer,
3401 uint32_t firstCounterBuffer,
3402 uint32_t counterBufferCount,
3403 const VkBuffer* pCounterBuffers,
3404 const VkDeviceSize* pCounterBufferOffsets)
3405 {
3406 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3407
3408 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3409 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3410 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3411
3412 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3413 *
3414 * "Ssoftware must ensure that no HW stream output operations can be in
3415 * process or otherwise pending at the point that the MI_LOAD/STORE
3416 * commands are processed. This will likely require a pipeline flush."
3417 */
3418 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3419 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3420
3421 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
3422 unsigned idx = firstCounterBuffer + cb_idx;
3423
3424 /* If we have a counter buffer, this is a resume so we need to load the
3425 * value into the streamout offset register. Otherwise, this is a begin
3426 * and we need to reset it to zero.
3427 */
3428 if (pCounterBuffers &&
3429 cb_idx < counterBufferCount &&
3430 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
3431 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3432 uint64_t offset = pCounterBufferOffsets ?
3433 pCounterBufferOffsets[cb_idx] : 0;
3434
3435 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
3436 srm.MemoryAddress = anv_address_add(counter_buffer->address,
3437 offset);
3438 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3439 }
3440 }
3441 }
3442
3443 cmd_buffer->state.xfb_enabled = false;
3444 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3445 }
3446
3447 static VkResult
3448 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
3449 {
3450 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3451 struct anv_state surfaces = { 0, }, samplers = { 0, };
3452 VkResult result;
3453
3454 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3455 if (result != VK_SUCCESS) {
3456 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
3457
3458 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
3459 if (result != VK_SUCCESS)
3460 return result;
3461
3462 /* Re-emit state base addresses so we get the new surface state base
3463 * address before we start emitting binding tables etc.
3464 */
3465 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
3466
3467 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3468 if (result != VK_SUCCESS) {
3469 anv_batch_set_error(&cmd_buffer->batch, result);
3470 return result;
3471 }
3472 }
3473
3474 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
3475 if (result != VK_SUCCESS) {
3476 anv_batch_set_error(&cmd_buffer->batch, result);
3477 return result;
3478 }
3479
3480 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
3481 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
3482 .BindingTablePointer = surfaces.offset,
3483 .SamplerStatePointer = samplers.offset,
3484 };
3485 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
3486
3487 struct anv_state state =
3488 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
3489 pipeline->interface_descriptor_data,
3490 GENX(INTERFACE_DESCRIPTOR_DATA_length),
3491 64);
3492
3493 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3494 anv_batch_emit(&cmd_buffer->batch,
3495 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
3496 mid.InterfaceDescriptorTotalLength = size;
3497 mid.InterfaceDescriptorDataStartAddress = state.offset;
3498 }
3499
3500 return VK_SUCCESS;
3501 }
3502
3503 void
3504 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
3505 {
3506 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3507 VkResult result;
3508
3509 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
3510
3511 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
3512
3513 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
3514
3515 #if GEN_GEN >= 12
3516 genX(cmd_buffer_aux_map_state)(cmd_buffer);
3517 #endif
3518
3519 if (cmd_buffer->state.compute.pipeline_dirty) {
3520 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
3521 *
3522 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
3523 * the only bits that are changed are scoreboard related: Scoreboard
3524 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
3525 * these scoreboard related states, a MEDIA_STATE_FLUSH is
3526 * sufficient."
3527 */
3528 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3529 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3530
3531 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3532 }
3533
3534 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
3535 cmd_buffer->state.compute.pipeline_dirty) {
3536 /* FIXME: figure out descriptors for gen7 */
3537 result = flush_compute_descriptor_set(cmd_buffer);
3538 if (result != VK_SUCCESS)
3539 return;
3540
3541 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3542 }
3543
3544 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
3545 struct anv_state push_state =
3546 anv_cmd_buffer_cs_push_constants(cmd_buffer);
3547
3548 if (push_state.alloc_size) {
3549 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
3550 curbe.CURBETotalDataLength = push_state.alloc_size;
3551 curbe.CURBEDataStartAddress = push_state.offset;
3552 }
3553 }
3554
3555 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3556 }
3557
3558 cmd_buffer->state.compute.pipeline_dirty = false;
3559
3560 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3561 }
3562
3563 #if GEN_GEN == 7
3564
3565 static VkResult
3566 verify_cmd_parser(const struct anv_device *device,
3567 int required_version,
3568 const char *function)
3569 {
3570 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
3571 return vk_errorf(device->instance, device->instance,
3572 VK_ERROR_FEATURE_NOT_PRESENT,
3573 "cmd parser version %d is required for %s",
3574 required_version, function);
3575 } else {
3576 return VK_SUCCESS;
3577 }
3578 }
3579
3580 #endif
3581
3582 static void
3583 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
3584 uint32_t baseGroupX,
3585 uint32_t baseGroupY,
3586 uint32_t baseGroupZ)
3587 {
3588 if (anv_batch_has_error(&cmd_buffer->batch))
3589 return;
3590
3591 struct anv_push_constants *push =
3592 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
3593 if (push->base_work_group_id[0] != baseGroupX ||
3594 push->base_work_group_id[1] != baseGroupY ||
3595 push->base_work_group_id[2] != baseGroupZ) {
3596 push->base_work_group_id[0] = baseGroupX;
3597 push->base_work_group_id[1] = baseGroupY;
3598 push->base_work_group_id[2] = baseGroupZ;
3599
3600 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3601 }
3602 }
3603
3604 void genX(CmdDispatch)(
3605 VkCommandBuffer commandBuffer,
3606 uint32_t x,
3607 uint32_t y,
3608 uint32_t z)
3609 {
3610 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
3611 }
3612
3613 void genX(CmdDispatchBase)(
3614 VkCommandBuffer commandBuffer,
3615 uint32_t baseGroupX,
3616 uint32_t baseGroupY,
3617 uint32_t baseGroupZ,
3618 uint32_t groupCountX,
3619 uint32_t groupCountY,
3620 uint32_t groupCountZ)
3621 {
3622 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3623 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3624 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3625
3626 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
3627 baseGroupY, baseGroupZ);
3628
3629 if (anv_batch_has_error(&cmd_buffer->batch))
3630 return;
3631
3632 if (prog_data->uses_num_work_groups) {
3633 struct anv_state state =
3634 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
3635 uint32_t *sizes = state.map;
3636 sizes[0] = groupCountX;
3637 sizes[1] = groupCountY;
3638 sizes[2] = groupCountZ;
3639 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
3640 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3641 .offset = state.offset,
3642 };
3643 }
3644
3645 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3646
3647 if (cmd_buffer->state.conditional_render_enabled)
3648 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3649
3650 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
3651 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3652 ggw.SIMDSize = prog_data->simd_size / 16;
3653 ggw.ThreadDepthCounterMaximum = 0;
3654 ggw.ThreadHeightCounterMaximum = 0;
3655 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3656 ggw.ThreadGroupIDXDimension = groupCountX;
3657 ggw.ThreadGroupIDYDimension = groupCountY;
3658 ggw.ThreadGroupIDZDimension = groupCountZ;
3659 ggw.RightExecutionMask = pipeline->cs_right_mask;
3660 ggw.BottomExecutionMask = 0xffffffff;
3661 }
3662
3663 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
3664 }
3665
3666 #define GPGPU_DISPATCHDIMX 0x2500
3667 #define GPGPU_DISPATCHDIMY 0x2504
3668 #define GPGPU_DISPATCHDIMZ 0x2508
3669
3670 void genX(CmdDispatchIndirect)(
3671 VkCommandBuffer commandBuffer,
3672 VkBuffer _buffer,
3673 VkDeviceSize offset)
3674 {
3675 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3676 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3677 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3678 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3679 struct anv_address addr = anv_address_add(buffer->address, offset);
3680 struct anv_batch *batch = &cmd_buffer->batch;
3681
3682 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
3683
3684 #if GEN_GEN == 7
3685 /* Linux 4.4 added command parser version 5 which allows the GPGPU
3686 * indirect dispatch registers to be written.
3687 */
3688 if (verify_cmd_parser(cmd_buffer->device, 5,
3689 "vkCmdDispatchIndirect") != VK_SUCCESS)
3690 return;
3691 #endif
3692
3693 if (prog_data->uses_num_work_groups)
3694 cmd_buffer->state.compute.num_workgroups = addr;
3695
3696 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3697
3698 struct gen_mi_builder b;
3699 gen_mi_builder_init(&b, &cmd_buffer->batch);
3700
3701 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
3702 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
3703 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
3704
3705 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
3706 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
3707 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
3708
3709 #if GEN_GEN <= 7
3710 /* predicate = (compute_dispatch_indirect_x_size == 0); */
3711 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
3712 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3713 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3714 mip.LoadOperation = LOAD_LOAD;
3715 mip.CombineOperation = COMBINE_SET;
3716 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3717 }
3718
3719 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
3720 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
3721 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3722 mip.LoadOperation = LOAD_LOAD;
3723 mip.CombineOperation = COMBINE_OR;
3724 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3725 }
3726
3727 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
3728 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
3729 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3730 mip.LoadOperation = LOAD_LOAD;
3731 mip.CombineOperation = COMBINE_OR;
3732 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3733 }
3734
3735 /* predicate = !predicate; */
3736 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3737 mip.LoadOperation = LOAD_LOADINV;
3738 mip.CombineOperation = COMBINE_OR;
3739 mip.CompareOperation = COMPARE_FALSE;
3740 }
3741
3742 #if GEN_IS_HASWELL
3743 if (cmd_buffer->state.conditional_render_enabled) {
3744 /* predicate &= !(conditional_rendering_predicate == 0); */
3745 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
3746 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
3747 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3748 mip.LoadOperation = LOAD_LOADINV;
3749 mip.CombineOperation = COMBINE_AND;
3750 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3751 }
3752 }
3753 #endif
3754
3755 #else /* GEN_GEN > 7 */
3756 if (cmd_buffer->state.conditional_render_enabled)
3757 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3758 #endif
3759
3760 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
3761 ggw.IndirectParameterEnable = true;
3762 ggw.PredicateEnable = GEN_GEN <= 7 ||
3763 cmd_buffer->state.conditional_render_enabled;
3764 ggw.SIMDSize = prog_data->simd_size / 16;
3765 ggw.ThreadDepthCounterMaximum = 0;
3766 ggw.ThreadHeightCounterMaximum = 0;
3767 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3768 ggw.RightExecutionMask = pipeline->cs_right_mask;
3769 ggw.BottomExecutionMask = 0xffffffff;
3770 }
3771
3772 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
3773 }
3774
3775 static void
3776 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
3777 uint32_t pipeline)
3778 {
3779 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
3780
3781 if (cmd_buffer->state.current_pipeline == pipeline)
3782 return;
3783
3784 #if GEN_GEN >= 8 && GEN_GEN < 10
3785 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
3786 *
3787 * Software must clear the COLOR_CALC_STATE Valid field in
3788 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
3789 * with Pipeline Select set to GPGPU.
3790 *
3791 * The internal hardware docs recommend the same workaround for Gen9
3792 * hardware too.
3793 */
3794 if (pipeline == GPGPU)
3795 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
3796 #endif
3797
3798 #if GEN_GEN == 9
3799 if (pipeline == _3D) {
3800 /* There is a mid-object preemption workaround which requires you to
3801 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
3802 * even without preemption, we have issues with geometry flickering when
3803 * GPGPU and 3D are back-to-back and this seems to fix it. We don't
3804 * really know why.
3805 */
3806 const uint32_t subslices =
3807 MAX2(cmd_buffer->device->instance->physicalDevice.subslice_total, 1);
3808 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
3809 vfe.MaximumNumberofThreads =
3810 devinfo->max_cs_threads * subslices - 1;
3811 vfe.NumberofURBEntries = 2;
3812 vfe.URBEntryAllocationSize = 2;
3813 }
3814 }
3815 #endif
3816
3817 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
3818 * PIPELINE_SELECT [DevBWR+]":
3819 *
3820 * Project: DEVSNB+
3821 *
3822 * Software must ensure all the write caches are flushed through a
3823 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
3824 * command to invalidate read only caches prior to programming
3825 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
3826 */
3827 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3828 pc.RenderTargetCacheFlushEnable = true;
3829 pc.DepthCacheFlushEnable = true;
3830 pc.DCFlushEnable = true;
3831 pc.PostSyncOperation = NoWrite;
3832 pc.CommandStreamerStallEnable = true;
3833 #if GEN_GEN >= 12
3834 pc.TileCacheFlushEnable = true;
3835 #endif
3836 }
3837
3838 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3839 pc.TextureCacheInvalidationEnable = true;
3840 pc.ConstantCacheInvalidationEnable = true;
3841 pc.StateCacheInvalidationEnable = true;
3842 pc.InstructionCacheInvalidateEnable = true;
3843 pc.PostSyncOperation = NoWrite;
3844 #if GEN_GEN >= 12
3845 pc.TileCacheFlushEnable = true;
3846 #endif
3847 }
3848
3849 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
3850 #if GEN_GEN >= 9
3851 ps.MaskBits = 3;
3852 #endif
3853 ps.PipelineSelection = pipeline;
3854 }
3855
3856 #if GEN_GEN == 9
3857 if (devinfo->is_geminilake) {
3858 /* Project: DevGLK
3859 *
3860 * "This chicken bit works around a hardware issue with barrier logic
3861 * encountered when switching between GPGPU and 3D pipelines. To
3862 * workaround the issue, this mode bit should be set after a pipeline
3863 * is selected."
3864 */
3865 uint32_t scec;
3866 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
3867 .GLKBarrierMode =
3868 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
3869 : GLK_BARRIER_MODE_3D_HULL,
3870 .GLKBarrierModeMask = 1);
3871 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
3872 }
3873 #endif
3874
3875 cmd_buffer->state.current_pipeline = pipeline;
3876 }
3877
3878 void
3879 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
3880 {
3881 genX(flush_pipeline_select)(cmd_buffer, _3D);
3882 }
3883
3884 void
3885 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
3886 {
3887 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
3888 }
3889
3890 void
3891 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
3892 {
3893 if (GEN_GEN >= 8)
3894 return;
3895
3896 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
3897 *
3898 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
3899 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
3900 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
3901 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
3902 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
3903 * Depth Flush Bit set, followed by another pipelined depth stall
3904 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
3905 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
3906 * via a preceding MI_FLUSH)."
3907 */
3908 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3909 pipe.DepthStallEnable = true;
3910 }
3911 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3912 pipe.DepthCacheFlushEnable = true;
3913 #if GEN_GEN >= 12
3914 pipe.TileCacheFlushEnable = true;
3915 #endif
3916 }
3917 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3918 pipe.DepthStallEnable = true;
3919 }
3920 }
3921
3922 /**
3923 * Update the pixel hashing modes that determine the balancing of PS threads
3924 * across subslices and slices.
3925 *
3926 * \param width Width bound of the rendering area (already scaled down if \p
3927 * scale is greater than 1).
3928 * \param height Height bound of the rendering area (already scaled down if \p
3929 * scale is greater than 1).
3930 * \param scale The number of framebuffer samples that could potentially be
3931 * affected by an individual channel of the PS thread. This is
3932 * typically one for single-sampled rendering, but for operations
3933 * like CCS resolves and fast clears a single PS invocation may
3934 * update a huge number of pixels, in which case a finer
3935 * balancing is desirable in order to maximally utilize the
3936 * bandwidth available. UINT_MAX can be used as shorthand for
3937 * "finest hashing mode available".
3938 */
3939 void
3940 genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
3941 unsigned width, unsigned height,
3942 unsigned scale)
3943 {
3944 #if GEN_GEN == 9
3945 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
3946 const unsigned slice_hashing[] = {
3947 /* Because all Gen9 platforms with more than one slice require
3948 * three-way subslice hashing, a single "normal" 16x16 slice hashing
3949 * block is guaranteed to suffer from substantial imbalance, with one
3950 * subslice receiving twice as much work as the other two in the
3951 * slice.
3952 *
3953 * The performance impact of that would be particularly severe when
3954 * three-way hashing is also in use for slice balancing (which is the
3955 * case for all Gen9 GT4 platforms), because one of the slices
3956 * receives one every three 16x16 blocks in either direction, which
3957 * is roughly the periodicity of the underlying subslice imbalance
3958 * pattern ("roughly" because in reality the hardware's
3959 * implementation of three-way hashing doesn't do exact modulo 3
3960 * arithmetic, which somewhat decreases the magnitude of this effect
3961 * in practice). This leads to a systematic subslice imbalance
3962 * within that slice regardless of the size of the primitive. The
3963 * 32x32 hashing mode guarantees that the subslice imbalance within a
3964 * single slice hashing block is minimal, largely eliminating this
3965 * effect.
3966 */
3967 _32x32,
3968 /* Finest slice hashing mode available. */
3969 NORMAL
3970 };
3971 const unsigned subslice_hashing[] = {
3972 /* 16x16 would provide a slight cache locality benefit especially
3973 * visible in the sampler L1 cache efficiency of low-bandwidth
3974 * non-LLC platforms, but it comes at the cost of greater subslice
3975 * imbalance for primitives of dimensions approximately intermediate
3976 * between 16x4 and 16x16.
3977 */
3978 _16x4,
3979 /* Finest subslice hashing mode available. */
3980 _8x4
3981 };
3982 /* Dimensions of the smallest hashing block of a given hashing mode. If
3983 * the rendering area is smaller than this there can't possibly be any
3984 * benefit from switching to this mode, so we optimize out the
3985 * transition.
3986 */
3987 const unsigned min_size[][2] = {
3988 { 16, 4 },
3989 { 8, 4 }
3990 };
3991 const unsigned idx = scale > 1;
3992
3993 if (cmd_buffer->state.current_hash_scale != scale &&
3994 (width > min_size[idx][0] || height > min_size[idx][1])) {
3995 uint32_t gt_mode;
3996
3997 anv_pack_struct(&gt_mode, GENX(GT_MODE),
3998 .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0),
3999 .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0),
4000 .SubsliceHashing = subslice_hashing[idx],
4001 .SubsliceHashingMask = -1);
4002
4003 cmd_buffer->state.pending_pipe_bits |=
4004 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
4005 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4006
4007 emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode);
4008
4009 cmd_buffer->state.current_hash_scale = scale;
4010 }
4011 #endif
4012 }
4013
4014 static void
4015 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
4016 {
4017 struct anv_device *device = cmd_buffer->device;
4018 const struct anv_image_view *iview =
4019 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
4020 const struct anv_image *image = iview ? iview->image : NULL;
4021
4022 /* FIXME: Width and Height are wrong */
4023
4024 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
4025
4026 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
4027 device->isl_dev.ds.size / 4);
4028 if (dw == NULL)
4029 return;
4030
4031 struct isl_depth_stencil_hiz_emit_info info = { };
4032
4033 if (iview)
4034 info.view = &iview->planes[0].isl;
4035
4036 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4037 uint32_t depth_plane =
4038 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
4039 const struct anv_surface *surface = &image->planes[depth_plane].surface;
4040
4041 info.depth_surf = &surface->isl;
4042
4043 info.depth_address =
4044 anv_batch_emit_reloc(&cmd_buffer->batch,
4045 dw + device->isl_dev.ds.depth_offset / 4,
4046 image->planes[depth_plane].address.bo,
4047 image->planes[depth_plane].address.offset +
4048 surface->offset);
4049 info.mocs =
4050 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
4051
4052 const uint32_t ds =
4053 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
4054 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
4055 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
4056 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
4057
4058 info.hiz_address =
4059 anv_batch_emit_reloc(&cmd_buffer->batch,
4060 dw + device->isl_dev.ds.hiz_offset / 4,
4061 image->planes[depth_plane].address.bo,
4062 image->planes[depth_plane].address.offset +
4063 image->planes[depth_plane].aux_surface.offset);
4064
4065 info.depth_clear_value = ANV_HZ_FC_VAL;
4066 }
4067 }
4068
4069 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
4070 uint32_t stencil_plane =
4071 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
4072 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
4073
4074 info.stencil_surf = &surface->isl;
4075
4076 info.stencil_address =
4077 anv_batch_emit_reloc(&cmd_buffer->batch,
4078 dw + device->isl_dev.ds.stencil_offset / 4,
4079 image->planes[stencil_plane].address.bo,
4080 image->planes[stencil_plane].address.offset +
4081 surface->offset);
4082 info.mocs =
4083 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
4084 }
4085
4086 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
4087
4088 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
4089 }
4090
4091 /**
4092 * This ANDs the view mask of the current subpass with the pending clear
4093 * views in the attachment to get the mask of views active in the subpass
4094 * that still need to be cleared.
4095 */
4096 static inline uint32_t
4097 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
4098 const struct anv_attachment_state *att_state)
4099 {
4100 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
4101 }
4102
4103 static inline bool
4104 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
4105 const struct anv_attachment_state *att_state)
4106 {
4107 if (!cmd_state->subpass->view_mask)
4108 return true;
4109
4110 uint32_t pending_clear_mask =
4111 get_multiview_subpass_clear_mask(cmd_state, att_state);
4112
4113 return pending_clear_mask & 1;
4114 }
4115
4116 static inline bool
4117 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
4118 uint32_t att_idx)
4119 {
4120 const uint32_t last_subpass_idx =
4121 cmd_state->pass->attachments[att_idx].last_subpass_idx;
4122 const struct anv_subpass *last_subpass =
4123 &cmd_state->pass->subpasses[last_subpass_idx];
4124 return last_subpass == cmd_state->subpass;
4125 }
4126
4127 static void
4128 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
4129 uint32_t subpass_id)
4130 {
4131 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4132 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
4133 cmd_state->subpass = subpass;
4134
4135 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
4136
4137 /* Our implementation of VK_KHR_multiview uses instancing to draw the
4138 * different views. If the client asks for instancing, we need to use the
4139 * Instance Data Step Rate to ensure that we repeat the client's
4140 * per-instance data once for each view. Since this bit is in
4141 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
4142 * of each subpass.
4143 */
4144 if (GEN_GEN == 7)
4145 cmd_buffer->state.gfx.vb_dirty |= ~0;
4146
4147 /* It is possible to start a render pass with an old pipeline. Because the
4148 * render pass and subpass index are both baked into the pipeline, this is
4149 * highly unlikely. In order to do so, it requires that you have a render
4150 * pass with a single subpass and that you use that render pass twice
4151 * back-to-back and use the same pipeline at the start of the second render
4152 * pass as at the end of the first. In order to avoid unpredictable issues
4153 * with this edge case, we just dirty the pipeline at the start of every
4154 * subpass.
4155 */
4156 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
4157
4158 /* Accumulate any subpass flushes that need to happen before the subpass */
4159 cmd_buffer->state.pending_pipe_bits |=
4160 cmd_buffer->state.pass->subpass_flushes[subpass_id];
4161
4162 VkRect2D render_area = cmd_buffer->state.render_area;
4163 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4164
4165 bool is_multiview = subpass->view_mask != 0;
4166
4167 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4168 const uint32_t a = subpass->attachments[i].attachment;
4169 if (a == VK_ATTACHMENT_UNUSED)
4170 continue;
4171
4172 assert(a < cmd_state->pass->attachment_count);
4173 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4174
4175 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
4176 const struct anv_image *image = iview->image;
4177
4178 /* A resolve is necessary before use as an input attachment if the clear
4179 * color or auxiliary buffer usage isn't supported by the sampler.
4180 */
4181 const bool input_needs_resolve =
4182 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
4183 att_state->input_aux_usage != att_state->aux_usage;
4184
4185 VkImageLayout target_layout, target_stencil_layout;
4186 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
4187 !input_needs_resolve) {
4188 /* Layout transitions before the final only help to enable sampling
4189 * as an input attachment. If the input attachment supports sampling
4190 * using the auxiliary surface, we can skip such transitions by
4191 * making the target layout one that is CCS-aware.
4192 */
4193 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
4194 } else {
4195 target_layout = subpass->attachments[i].layout;
4196 target_stencil_layout = subpass->attachments[i].stencil_layout;
4197 }
4198
4199 uint32_t base_layer, layer_count;
4200 if (image->type == VK_IMAGE_TYPE_3D) {
4201 base_layer = 0;
4202 layer_count = anv_minify(iview->image->extent.depth,
4203 iview->planes[0].isl.base_level);
4204 } else {
4205 base_layer = iview->planes[0].isl.base_array_layer;
4206 layer_count = fb->layers;
4207 }
4208
4209 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4210 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4211 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4212 iview->planes[0].isl.base_level, 1,
4213 base_layer, layer_count,
4214 att_state->current_layout, target_layout);
4215 }
4216
4217 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4218 transition_depth_buffer(cmd_buffer, image,
4219 att_state->current_layout, target_layout);
4220 att_state->aux_usage =
4221 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
4222 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
4223 }
4224
4225 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4226 transition_stencil_buffer(cmd_buffer, image,
4227 iview->planes[0].isl.base_level, 1,
4228 base_layer, layer_count,
4229 att_state->current_stencil_layout,
4230 target_stencil_layout);
4231 }
4232 att_state->current_layout = target_layout;
4233 att_state->current_stencil_layout = target_stencil_layout;
4234
4235 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
4236 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4237
4238 /* Multi-planar images are not supported as attachments */
4239 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4240 assert(image->n_planes == 1);
4241
4242 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
4243 uint32_t clear_layer_count = fb->layers;
4244
4245 if (att_state->fast_clear &&
4246 do_first_layer_clear(cmd_state, att_state)) {
4247 /* We only support fast-clears on the first layer */
4248 assert(iview->planes[0].isl.base_level == 0);
4249 assert(iview->planes[0].isl.base_array_layer == 0);
4250
4251 union isl_color_value clear_color = {};
4252 anv_clear_color_from_att_state(&clear_color, att_state, iview);
4253 if (iview->image->samples == 1) {
4254 anv_image_ccs_op(cmd_buffer, image,
4255 iview->planes[0].isl.format,
4256 VK_IMAGE_ASPECT_COLOR_BIT,
4257 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
4258 &clear_color,
4259 false);
4260 } else {
4261 anv_image_mcs_op(cmd_buffer, image,
4262 iview->planes[0].isl.format,
4263 VK_IMAGE_ASPECT_COLOR_BIT,
4264 0, 1, ISL_AUX_OP_FAST_CLEAR,
4265 &clear_color,
4266 false);
4267 }
4268 base_clear_layer++;
4269 clear_layer_count--;
4270 if (is_multiview)
4271 att_state->pending_clear_views &= ~1;
4272
4273 if (att_state->clear_color_is_zero) {
4274 /* This image has the auxiliary buffer enabled. We can mark the
4275 * subresource as not needing a resolve because the clear color
4276 * will match what's in every RENDER_SURFACE_STATE object when
4277 * it's being used for sampling.
4278 */
4279 set_image_fast_clear_state(cmd_buffer, iview->image,
4280 VK_IMAGE_ASPECT_COLOR_BIT,
4281 ANV_FAST_CLEAR_DEFAULT_VALUE);
4282 } else {
4283 set_image_fast_clear_state(cmd_buffer, iview->image,
4284 VK_IMAGE_ASPECT_COLOR_BIT,
4285 ANV_FAST_CLEAR_ANY);
4286 }
4287 }
4288
4289 /* From the VkFramebufferCreateInfo spec:
4290 *
4291 * "If the render pass uses multiview, then layers must be one and each
4292 * attachment requires a number of layers that is greater than the
4293 * maximum bit index set in the view mask in the subpasses in which it
4294 * is used."
4295 *
4296 * So if multiview is active we ignore the number of layers in the
4297 * framebuffer and instead we honor the view mask from the subpass.
4298 */
4299 if (is_multiview) {
4300 assert(image->n_planes == 1);
4301 uint32_t pending_clear_mask =
4302 get_multiview_subpass_clear_mask(cmd_state, att_state);
4303
4304 uint32_t layer_idx;
4305 for_each_bit(layer_idx, pending_clear_mask) {
4306 uint32_t layer =
4307 iview->planes[0].isl.base_array_layer + layer_idx;
4308
4309 anv_image_clear_color(cmd_buffer, image,
4310 VK_IMAGE_ASPECT_COLOR_BIT,
4311 att_state->aux_usage,
4312 iview->planes[0].isl.format,
4313 iview->planes[0].isl.swizzle,
4314 iview->planes[0].isl.base_level,
4315 layer, 1,
4316 render_area,
4317 vk_to_isl_color(att_state->clear_value.color));
4318 }
4319
4320 att_state->pending_clear_views &= ~pending_clear_mask;
4321 } else if (clear_layer_count > 0) {
4322 assert(image->n_planes == 1);
4323 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4324 att_state->aux_usage,
4325 iview->planes[0].isl.format,
4326 iview->planes[0].isl.swizzle,
4327 iview->planes[0].isl.base_level,
4328 base_clear_layer, clear_layer_count,
4329 render_area,
4330 vk_to_isl_color(att_state->clear_value.color));
4331 }
4332 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
4333 VK_IMAGE_ASPECT_STENCIL_BIT)) {
4334 if (att_state->fast_clear && !is_multiview) {
4335 /* We currently only support HiZ for single-layer images */
4336 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4337 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
4338 assert(iview->planes[0].isl.base_level == 0);
4339 assert(iview->planes[0].isl.base_array_layer == 0);
4340 assert(fb->layers == 1);
4341 }
4342
4343 anv_image_hiz_clear(cmd_buffer, image,
4344 att_state->pending_clear_aspects,
4345 iview->planes[0].isl.base_level,
4346 iview->planes[0].isl.base_array_layer,
4347 fb->layers, render_area,
4348 att_state->clear_value.depthStencil.stencil);
4349 } else if (is_multiview) {
4350 uint32_t pending_clear_mask =
4351 get_multiview_subpass_clear_mask(cmd_state, att_state);
4352
4353 uint32_t layer_idx;
4354 for_each_bit(layer_idx, pending_clear_mask) {
4355 uint32_t layer =
4356 iview->planes[0].isl.base_array_layer + layer_idx;
4357
4358 anv_image_clear_depth_stencil(cmd_buffer, image,
4359 att_state->pending_clear_aspects,
4360 att_state->aux_usage,
4361 iview->planes[0].isl.base_level,
4362 layer, 1,
4363 render_area,
4364 att_state->clear_value.depthStencil.depth,
4365 att_state->clear_value.depthStencil.stencil);
4366 }
4367
4368 att_state->pending_clear_views &= ~pending_clear_mask;
4369 } else {
4370 anv_image_clear_depth_stencil(cmd_buffer, image,
4371 att_state->pending_clear_aspects,
4372 att_state->aux_usage,
4373 iview->planes[0].isl.base_level,
4374 iview->planes[0].isl.base_array_layer,
4375 fb->layers, render_area,
4376 att_state->clear_value.depthStencil.depth,
4377 att_state->clear_value.depthStencil.stencil);
4378 }
4379 } else {
4380 assert(att_state->pending_clear_aspects == 0);
4381 }
4382
4383 if (GEN_GEN < 10 &&
4384 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
4385 image->planes[0].aux_surface.isl.size_B > 0 &&
4386 iview->planes[0].isl.base_level == 0 &&
4387 iview->planes[0].isl.base_array_layer == 0) {
4388 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
4389 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
4390 image, VK_IMAGE_ASPECT_COLOR_BIT,
4391 false /* copy to ss */);
4392 }
4393
4394 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
4395 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
4396 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
4397 image, VK_IMAGE_ASPECT_COLOR_BIT,
4398 false /* copy to ss */);
4399 }
4400 }
4401
4402 if (subpass->attachments[i].usage ==
4403 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
4404 /* We assume that if we're starting a subpass, we're going to do some
4405 * rendering so we may end up with compressed data.
4406 */
4407 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
4408 VK_IMAGE_ASPECT_COLOR_BIT,
4409 att_state->aux_usage,
4410 iview->planes[0].isl.base_level,
4411 iview->planes[0].isl.base_array_layer,
4412 fb->layers);
4413 } else if (subpass->attachments[i].usage ==
4414 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
4415 /* We may be writing depth or stencil so we need to mark the surface.
4416 * Unfortunately, there's no way to know at this point whether the
4417 * depth or stencil tests used will actually write to the surface.
4418 *
4419 * Even though stencil may be plane 1, it always shares a base_level
4420 * with depth.
4421 */
4422 const struct isl_view *ds_view = &iview->planes[0].isl;
4423 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
4424 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
4425 VK_IMAGE_ASPECT_DEPTH_BIT,
4426 att_state->aux_usage,
4427 ds_view->base_level,
4428 ds_view->base_array_layer,
4429 fb->layers);
4430 }
4431 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
4432 /* Even though stencil may be plane 1, it always shares a
4433 * base_level with depth.
4434 */
4435 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
4436 VK_IMAGE_ASPECT_STENCIL_BIT,
4437 ISL_AUX_USAGE_NONE,
4438 ds_view->base_level,
4439 ds_view->base_array_layer,
4440 fb->layers);
4441 }
4442 }
4443
4444 /* If multiview is enabled, then we are only done clearing when we no
4445 * longer have pending layers to clear, or when we have processed the
4446 * last subpass that uses this attachment.
4447 */
4448 if (!is_multiview ||
4449 att_state->pending_clear_views == 0 ||
4450 current_subpass_is_last_for_attachment(cmd_state, a)) {
4451 att_state->pending_clear_aspects = 0;
4452 }
4453
4454 att_state->pending_load_aspects = 0;
4455 }
4456
4457 cmd_buffer_emit_depth_stencil(cmd_buffer);
4458
4459 #if GEN_GEN >= 11
4460 /* The PIPE_CONTROL command description says:
4461 *
4462 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
4463 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
4464 * Target Cache Flush by enabling this bit. When render target flush
4465 * is set due to new association of BTI, PS Scoreboard Stall bit must
4466 * be set in this packet."
4467 */
4468 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4469 pc.RenderTargetCacheFlushEnable = true;
4470 pc.StallAtPixelScoreboard = true;
4471 #if GEN_GEN >= 12
4472 pc.TileCacheFlushEnable = true;
4473 #endif
4474 }
4475 #endif
4476 }
4477
4478 static enum blorp_filter
4479 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
4480 {
4481 switch (vk_mode) {
4482 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
4483 return BLORP_FILTER_SAMPLE_0;
4484 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
4485 return BLORP_FILTER_AVERAGE;
4486 case VK_RESOLVE_MODE_MIN_BIT_KHR:
4487 return BLORP_FILTER_MIN_SAMPLE;
4488 case VK_RESOLVE_MODE_MAX_BIT_KHR:
4489 return BLORP_FILTER_MAX_SAMPLE;
4490 default:
4491 return BLORP_FILTER_NONE;
4492 }
4493 }
4494
4495 static void
4496 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
4497 {
4498 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4499 struct anv_subpass *subpass = cmd_state->subpass;
4500 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
4501 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4502
4503 if (subpass->has_color_resolve) {
4504 /* We are about to do some MSAA resolves. We need to flush so that the
4505 * result of writes to the MSAA color attachments show up in the sampler
4506 * when we blit to the single-sampled resolve target.
4507 */
4508 cmd_buffer->state.pending_pipe_bits |=
4509 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
4510 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
4511
4512 for (uint32_t i = 0; i < subpass->color_count; ++i) {
4513 uint32_t src_att = subpass->color_attachments[i].attachment;
4514 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
4515
4516 if (dst_att == VK_ATTACHMENT_UNUSED)
4517 continue;
4518
4519 assert(src_att < cmd_buffer->state.pass->attachment_count);
4520 assert(dst_att < cmd_buffer->state.pass->attachment_count);
4521
4522 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
4523 /* From the Vulkan 1.0 spec:
4524 *
4525 * If the first use of an attachment in a render pass is as a
4526 * resolve attachment, then the loadOp is effectively ignored
4527 * as the resolve is guaranteed to overwrite all pixels in the
4528 * render area.
4529 */
4530 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
4531 }
4532
4533 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
4534 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
4535
4536 const VkRect2D render_area = cmd_buffer->state.render_area;
4537
4538 enum isl_aux_usage src_aux_usage =
4539 cmd_buffer->state.attachments[src_att].aux_usage;
4540 enum isl_aux_usage dst_aux_usage =
4541 cmd_buffer->state.attachments[dst_att].aux_usage;
4542
4543 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
4544 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
4545
4546 anv_image_msaa_resolve(cmd_buffer,
4547 src_iview->image, src_aux_usage,
4548 src_iview->planes[0].isl.base_level,
4549 src_iview->planes[0].isl.base_array_layer,
4550 dst_iview->image, dst_aux_usage,
4551 dst_iview->planes[0].isl.base_level,
4552 dst_iview->planes[0].isl.base_array_layer,
4553 VK_IMAGE_ASPECT_COLOR_BIT,
4554 render_area.offset.x, render_area.offset.y,
4555 render_area.offset.x, render_area.offset.y,
4556 render_area.extent.width,
4557 render_area.extent.height,
4558 fb->layers, BLORP_FILTER_NONE);
4559 }
4560 }
4561
4562 if (subpass->ds_resolve_attachment) {
4563 /* We are about to do some MSAA resolves. We need to flush so that the
4564 * result of writes to the MSAA depth attachments show up in the sampler
4565 * when we blit to the single-sampled resolve target.
4566 */
4567 cmd_buffer->state.pending_pipe_bits |=
4568 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
4569 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
4570
4571 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
4572 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
4573
4574 assert(src_att < cmd_buffer->state.pass->attachment_count);
4575 assert(dst_att < cmd_buffer->state.pass->attachment_count);
4576
4577 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
4578 /* From the Vulkan 1.0 spec:
4579 *
4580 * If the first use of an attachment in a render pass is as a
4581 * resolve attachment, then the loadOp is effectively ignored
4582 * as the resolve is guaranteed to overwrite all pixels in the
4583 * render area.
4584 */
4585 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
4586 }
4587
4588 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
4589 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
4590
4591 const VkRect2D render_area = cmd_buffer->state.render_area;
4592
4593 struct anv_attachment_state *src_state =
4594 &cmd_state->attachments[src_att];
4595 struct anv_attachment_state *dst_state =
4596 &cmd_state->attachments[dst_att];
4597
4598 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
4599 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
4600
4601 /* MSAA resolves sample from the source attachment. Transition the
4602 * depth attachment first to get rid of any HiZ that we may not be
4603 * able to handle.
4604 */
4605 transition_depth_buffer(cmd_buffer, src_iview->image,
4606 src_state->current_layout,
4607 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
4608 src_state->aux_usage =
4609 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
4610 VK_IMAGE_ASPECT_DEPTH_BIT,
4611 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
4612 src_state->current_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
4613
4614 /* MSAA resolves write to the resolve attachment as if it were any
4615 * other transfer op. Transition the resolve attachment accordingly.
4616 */
4617 VkImageLayout dst_initial_layout = dst_state->current_layout;
4618
4619 /* If our render area is the entire size of the image, we're going to
4620 * blow it all away so we can claim the initial layout is UNDEFINED
4621 * and we'll get a HiZ ambiguate instead of a resolve.
4622 */
4623 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
4624 render_area.offset.x == 0 && render_area.offset.y == 0 &&
4625 render_area.extent.width == dst_iview->extent.width &&
4626 render_area.extent.height == dst_iview->extent.height)
4627 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
4628
4629 transition_depth_buffer(cmd_buffer, dst_iview->image,
4630 dst_initial_layout,
4631 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
4632 dst_state->aux_usage =
4633 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
4634 VK_IMAGE_ASPECT_DEPTH_BIT,
4635 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
4636 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
4637
4638 enum blorp_filter filter =
4639 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
4640
4641 anv_image_msaa_resolve(cmd_buffer,
4642 src_iview->image, src_state->aux_usage,
4643 src_iview->planes[0].isl.base_level,
4644 src_iview->planes[0].isl.base_array_layer,
4645 dst_iview->image, dst_state->aux_usage,
4646 dst_iview->planes[0].isl.base_level,
4647 dst_iview->planes[0].isl.base_array_layer,
4648 VK_IMAGE_ASPECT_DEPTH_BIT,
4649 render_area.offset.x, render_area.offset.y,
4650 render_area.offset.x, render_area.offset.y,
4651 render_area.extent.width,
4652 render_area.extent.height,
4653 fb->layers, filter);
4654 }
4655
4656 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
4657 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
4658
4659 src_state->current_stencil_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
4660 dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
4661
4662 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
4663 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
4664
4665 enum blorp_filter filter =
4666 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
4667
4668 anv_image_msaa_resolve(cmd_buffer,
4669 src_iview->image, src_aux_usage,
4670 src_iview->planes[0].isl.base_level,
4671 src_iview->planes[0].isl.base_array_layer,
4672 dst_iview->image, dst_aux_usage,
4673 dst_iview->planes[0].isl.base_level,
4674 dst_iview->planes[0].isl.base_array_layer,
4675 VK_IMAGE_ASPECT_STENCIL_BIT,
4676 render_area.offset.x, render_area.offset.y,
4677 render_area.offset.x, render_area.offset.y,
4678 render_area.extent.width,
4679 render_area.extent.height,
4680 fb->layers, filter);
4681 }
4682 }
4683
4684 #if GEN_GEN == 7
4685 /* On gen7, we have to store a texturable version of the stencil buffer in
4686 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
4687 * forth at strategic points. Stencil writes are only allowed in following
4688 * layouts:
4689 *
4690 * - VK_IMAGE_LAYOUT_GENERAL
4691 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
4692 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
4693 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
4694 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
4695 *
4696 * For general, we have no nice opportunity to transition so we do the copy
4697 * to the shadow unconditionally at the end of the subpass. For transfer
4698 * destinations, we can update it as part of the transfer op. For the other
4699 * layouts, we delay the copy until a transition into some other layout.
4700 */
4701 if (subpass->depth_stencil_attachment) {
4702 uint32_t a = subpass->depth_stencil_attachment->attachment;
4703 assert(a != VK_ATTACHMENT_UNUSED);
4704
4705 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4706 struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
4707 const struct anv_image *image = iview->image;
4708
4709 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4710 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
4711 VK_IMAGE_ASPECT_STENCIL_BIT);
4712
4713 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
4714 att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
4715 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
4716 anv_image_copy_to_shadow(cmd_buffer, image,
4717 VK_IMAGE_ASPECT_STENCIL_BIT,
4718 iview->planes[plane].isl.base_level, 1,
4719 iview->planes[plane].isl.base_array_layer,
4720 fb->layers);
4721 }
4722 }
4723 }
4724 #endif /* GEN_GEN == 7 */
4725
4726 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4727 const uint32_t a = subpass->attachments[i].attachment;
4728 if (a == VK_ATTACHMENT_UNUSED)
4729 continue;
4730
4731 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
4732 continue;
4733
4734 assert(a < cmd_state->pass->attachment_count);
4735 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4736 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
4737 const struct anv_image *image = iview->image;
4738
4739 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
4740 image->vk_format != iview->vk_format) {
4741 enum anv_fast_clear_type fast_clear_type =
4742 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
4743 image, VK_IMAGE_ASPECT_COLOR_BIT,
4744 att_state->current_layout);
4745
4746 /* If any clear color was used, flush it down the aux surfaces. If we
4747 * don't do it now using the view's format we might use the clear
4748 * color incorrectly in the following resolves (for example with an
4749 * SRGB view & a UNORM image).
4750 */
4751 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
4752 anv_perf_warn(cmd_buffer->device->instance, iview,
4753 "Doing a partial resolve to get rid of clear color at the "
4754 "end of a renderpass due to an image/view format mismatch");
4755
4756 uint32_t base_layer, layer_count;
4757 if (image->type == VK_IMAGE_TYPE_3D) {
4758 base_layer = 0;
4759 layer_count = anv_minify(iview->image->extent.depth,
4760 iview->planes[0].isl.base_level);
4761 } else {
4762 base_layer = iview->planes[0].isl.base_array_layer;
4763 layer_count = fb->layers;
4764 }
4765
4766 for (uint32_t a = 0; a < layer_count; a++) {
4767 uint32_t array_layer = base_layer + a;
4768 if (image->samples == 1) {
4769 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
4770 iview->planes[0].isl.format,
4771 VK_IMAGE_ASPECT_COLOR_BIT,
4772 iview->planes[0].isl.base_level,
4773 array_layer,
4774 ISL_AUX_OP_PARTIAL_RESOLVE,
4775 ANV_FAST_CLEAR_NONE);
4776 } else {
4777 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
4778 iview->planes[0].isl.format,
4779 VK_IMAGE_ASPECT_COLOR_BIT,
4780 base_layer,
4781 ISL_AUX_OP_PARTIAL_RESOLVE,
4782 ANV_FAST_CLEAR_NONE);
4783 }
4784 }
4785 }
4786 }
4787
4788 /* Transition the image into the final layout for this render pass */
4789 VkImageLayout target_layout =
4790 cmd_state->pass->attachments[a].final_layout;
4791 VkImageLayout target_stencil_layout =
4792 cmd_state->pass->attachments[a].stencil_final_layout;
4793
4794 uint32_t base_layer, layer_count;
4795 if (image->type == VK_IMAGE_TYPE_3D) {
4796 base_layer = 0;
4797 layer_count = anv_minify(iview->image->extent.depth,
4798 iview->planes[0].isl.base_level);
4799 } else {
4800 base_layer = iview->planes[0].isl.base_array_layer;
4801 layer_count = fb->layers;
4802 }
4803
4804 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4805 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4806 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4807 iview->planes[0].isl.base_level, 1,
4808 base_layer, layer_count,
4809 att_state->current_layout, target_layout);
4810 }
4811
4812 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4813 transition_depth_buffer(cmd_buffer, image,
4814 att_state->current_layout, target_layout);
4815 }
4816
4817 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4818 transition_stencil_buffer(cmd_buffer, image,
4819 iview->planes[0].isl.base_level, 1,
4820 base_layer, layer_count,
4821 att_state->current_stencil_layout,
4822 target_stencil_layout);
4823 }
4824 }
4825
4826 /* Accumulate any subpass flushes that need to happen after the subpass.
4827 * Yes, they do get accumulated twice in the NextSubpass case but since
4828 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
4829 * ORing the bits in twice so it's harmless.
4830 */
4831 cmd_buffer->state.pending_pipe_bits |=
4832 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
4833 }
4834
4835 void genX(CmdBeginRenderPass)(
4836 VkCommandBuffer commandBuffer,
4837 const VkRenderPassBeginInfo* pRenderPassBegin,
4838 VkSubpassContents contents)
4839 {
4840 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4841 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
4842 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
4843
4844 cmd_buffer->state.framebuffer = framebuffer;
4845 cmd_buffer->state.pass = pass;
4846 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
4847 VkResult result =
4848 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
4849
4850 /* If we failed to setup the attachments we should not try to go further */
4851 if (result != VK_SUCCESS) {
4852 assert(anv_batch_has_error(&cmd_buffer->batch));
4853 return;
4854 }
4855
4856 genX(flush_pipeline_select_3d)(cmd_buffer);
4857
4858 cmd_buffer_begin_subpass(cmd_buffer, 0);
4859 }
4860
4861 void genX(CmdBeginRenderPass2KHR)(
4862 VkCommandBuffer commandBuffer,
4863 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
4864 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
4865 {
4866 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
4867 pSubpassBeginInfo->contents);
4868 }
4869
4870 void genX(CmdNextSubpass)(
4871 VkCommandBuffer commandBuffer,
4872 VkSubpassContents contents)
4873 {
4874 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4875
4876 if (anv_batch_has_error(&cmd_buffer->batch))
4877 return;
4878
4879 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
4880
4881 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
4882 cmd_buffer_end_subpass(cmd_buffer);
4883 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
4884 }
4885
4886 void genX(CmdNextSubpass2KHR)(
4887 VkCommandBuffer commandBuffer,
4888 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
4889 const VkSubpassEndInfoKHR* pSubpassEndInfo)
4890 {
4891 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
4892 }
4893
4894 void genX(CmdEndRenderPass)(
4895 VkCommandBuffer commandBuffer)
4896 {
4897 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4898
4899 if (anv_batch_has_error(&cmd_buffer->batch))
4900 return;
4901
4902 cmd_buffer_end_subpass(cmd_buffer);
4903
4904 cmd_buffer->state.hiz_enabled = false;
4905
4906 #ifndef NDEBUG
4907 anv_dump_add_attachments(cmd_buffer);
4908 #endif
4909
4910 /* Remove references to render pass specific state. This enables us to
4911 * detect whether or not we're in a renderpass.
4912 */
4913 cmd_buffer->state.framebuffer = NULL;
4914 cmd_buffer->state.pass = NULL;
4915 cmd_buffer->state.subpass = NULL;
4916 }
4917
4918 void genX(CmdEndRenderPass2KHR)(
4919 VkCommandBuffer commandBuffer,
4920 const VkSubpassEndInfoKHR* pSubpassEndInfo)
4921 {
4922 genX(CmdEndRenderPass)(commandBuffer);
4923 }
4924
4925 void
4926 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
4927 {
4928 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4929 struct gen_mi_builder b;
4930 gen_mi_builder_init(&b, &cmd_buffer->batch);
4931
4932 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
4933 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
4934 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
4935
4936 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
4937 mip.LoadOperation = LOAD_LOADINV;
4938 mip.CombineOperation = COMBINE_SET;
4939 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4940 }
4941 #endif
4942 }
4943
4944 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4945 void genX(CmdBeginConditionalRenderingEXT)(
4946 VkCommandBuffer commandBuffer,
4947 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
4948 {
4949 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4950 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
4951 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4952 struct anv_address value_address =
4953 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
4954
4955 const bool isInverted = pConditionalRenderingBegin->flags &
4956 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
4957
4958 cmd_state->conditional_render_enabled = true;
4959
4960 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4961
4962 struct gen_mi_builder b;
4963 gen_mi_builder_init(&b, &cmd_buffer->batch);
4964
4965 /* Section 19.4 of the Vulkan 1.1.85 spec says:
4966 *
4967 * If the value of the predicate in buffer memory changes
4968 * while conditional rendering is active, the rendering commands
4969 * may be discarded in an implementation-dependent way.
4970 * Some implementations may latch the value of the predicate
4971 * upon beginning conditional rendering while others
4972 * may read it before every rendering command.
4973 *
4974 * So it's perfectly fine to read a value from the buffer once.
4975 */
4976 struct gen_mi_value value = gen_mi_mem32(value_address);
4977
4978 /* Precompute predicate result, it is necessary to support secondary
4979 * command buffers since it is unknown if conditional rendering is
4980 * inverted when populating them.
4981 */
4982 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
4983 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
4984 gen_mi_ult(&b, gen_mi_imm(0), value));
4985 }
4986
4987 void genX(CmdEndConditionalRenderingEXT)(
4988 VkCommandBuffer commandBuffer)
4989 {
4990 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4991 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4992
4993 cmd_state->conditional_render_enabled = false;
4994 }
4995 #endif
4996
4997 /* Set of stage bits for which are pipelined, i.e. they get queued by the
4998 * command streamer for later execution.
4999 */
5000 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5001 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
5002 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
5003 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
5004 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
5005 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
5006 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
5007 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
5008 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
5009 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
5010 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
5011 VK_PIPELINE_STAGE_TRANSFER_BIT | \
5012 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
5013 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
5014 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
5015
5016 void genX(CmdSetEvent)(
5017 VkCommandBuffer commandBuffer,
5018 VkEvent _event,
5019 VkPipelineStageFlags stageMask)
5020 {
5021 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5022 ANV_FROM_HANDLE(anv_event, event, _event);
5023
5024 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5025 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5026 pc.StallAtPixelScoreboard = true;
5027 pc.CommandStreamerStallEnable = true;
5028 }
5029
5030 pc.DestinationAddressType = DAT_PPGTT,
5031 pc.PostSyncOperation = WriteImmediateData,
5032 pc.Address = (struct anv_address) {
5033 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5034 event->state.offset
5035 };
5036 pc.ImmediateData = VK_EVENT_SET;
5037 }
5038 }
5039
5040 void genX(CmdResetEvent)(
5041 VkCommandBuffer commandBuffer,
5042 VkEvent _event,
5043 VkPipelineStageFlags stageMask)
5044 {
5045 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5046 ANV_FROM_HANDLE(anv_event, event, _event);
5047
5048 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5049 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5050 pc.StallAtPixelScoreboard = true;
5051 pc.CommandStreamerStallEnable = true;
5052 }
5053
5054 pc.DestinationAddressType = DAT_PPGTT;
5055 pc.PostSyncOperation = WriteImmediateData;
5056 pc.Address = (struct anv_address) {
5057 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5058 event->state.offset
5059 };
5060 pc.ImmediateData = VK_EVENT_RESET;
5061 }
5062 }
5063
5064 void genX(CmdWaitEvents)(
5065 VkCommandBuffer commandBuffer,
5066 uint32_t eventCount,
5067 const VkEvent* pEvents,
5068 VkPipelineStageFlags srcStageMask,
5069 VkPipelineStageFlags destStageMask,
5070 uint32_t memoryBarrierCount,
5071 const VkMemoryBarrier* pMemoryBarriers,
5072 uint32_t bufferMemoryBarrierCount,
5073 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
5074 uint32_t imageMemoryBarrierCount,
5075 const VkImageMemoryBarrier* pImageMemoryBarriers)
5076 {
5077 #if GEN_GEN >= 8
5078 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5079
5080 for (uint32_t i = 0; i < eventCount; i++) {
5081 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
5082
5083 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
5084 sem.WaitMode = PollingMode,
5085 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
5086 sem.SemaphoreDataDword = VK_EVENT_SET,
5087 sem.SemaphoreAddress = (struct anv_address) {
5088 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5089 event->state.offset
5090 };
5091 }
5092 }
5093 #else
5094 anv_finishme("Implement events on gen7");
5095 #endif
5096
5097 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
5098 false, /* byRegion */
5099 memoryBarrierCount, pMemoryBarriers,
5100 bufferMemoryBarrierCount, pBufferMemoryBarriers,
5101 imageMemoryBarrierCount, pImageMemoryBarriers);
5102 }
5103
5104 VkResult genX(CmdSetPerformanceOverrideINTEL)(
5105 VkCommandBuffer commandBuffer,
5106 const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
5107 {
5108 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5109
5110 switch (pOverrideInfo->type) {
5111 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
5112 uint32_t dw;
5113
5114 #if GEN_GEN >= 9
5115 anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2),
5116 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5117 .MediaInstructionDisable = pOverrideInfo->enable,
5118 ._3DRenderingInstructionDisableMask = true,
5119 .MediaInstructionDisableMask = true);
5120 emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw);
5121 #else
5122 anv_pack_struct(&dw, GENX(INSTPM),
5123 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5124 .MediaInstructionDisable = pOverrideInfo->enable,
5125 ._3DRenderingInstructionDisableMask = true,
5126 .MediaInstructionDisableMask = true);
5127 emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw);
5128 #endif
5129 break;
5130 }
5131
5132 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
5133 if (pOverrideInfo->enable) {
5134 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5135 cmd_buffer->state.pending_pipe_bits |=
5136 ANV_PIPE_FLUSH_BITS |
5137 ANV_PIPE_INVALIDATE_BITS;
5138 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5139 }
5140 break;
5141
5142 default:
5143 unreachable("Invalid override");
5144 }
5145
5146 return VK_SUCCESS;
5147 }
5148
5149 VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
5150 VkCommandBuffer commandBuffer,
5151 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
5152 {
5153 /* TODO: Waiting on the register to write, might depend on generation. */
5154
5155 return VK_SUCCESS;
5156 }