anv: Move INTERFACE_DESCRIPTOR_DATA setup to the pipeline
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28
29 #include "common/gen_l3_config.h"
30 #include "genxml/gen_macros.h"
31 #include "genxml/genX_pack.h"
32
33 static void
34 emit_lrm(struct anv_batch *batch,
35 uint32_t reg, struct anv_bo *bo, uint32_t offset)
36 {
37 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
38 lrm.RegisterAddress = reg;
39 lrm.MemoryAddress = (struct anv_address) { bo, offset };
40 }
41 }
42
43 static void
44 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
45 {
46 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
47 lri.RegisterOffset = reg;
48 lri.DataDWord = imm;
49 }
50 }
51
52 void
53 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
54 {
55 struct anv_device *device = cmd_buffer->device;
56
57 /* XXX: Do we need this on more than just BDW? */
58 #if (GEN_GEN >= 8)
59 /* Emit a render target cache flush.
60 *
61 * This isn't documented anywhere in the PRM. However, it seems to be
62 * necessary prior to changing the surface state base adress. Without
63 * this, we get GPU hangs when using multi-level command buffers which
64 * clear depth, reset state base address, and then go render stuff.
65 */
66 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
67 pc.RenderTargetCacheFlushEnable = true;
68 }
69 #endif
70
71 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
72 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
73 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
74 sba.GeneralStateBaseAddressModifyEnable = true;
75
76 sba.SurfaceStateBaseAddress =
77 anv_cmd_buffer_surface_base_address(cmd_buffer);
78 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
79 sba.SurfaceStateBaseAddressModifyEnable = true;
80
81 sba.DynamicStateBaseAddress =
82 (struct anv_address) { &device->dynamic_state_block_pool.bo, 0 };
83 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
84 sba.DynamicStateBaseAddressModifyEnable = true;
85
86 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
87 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
88 sba.IndirectObjectBaseAddressModifyEnable = true;
89
90 sba.InstructionBaseAddress =
91 (struct anv_address) { &device->instruction_block_pool.bo, 0 };
92 sba.InstructionMemoryObjectControlState = GENX(MOCS);
93 sba.InstructionBaseAddressModifyEnable = true;
94
95 # if (GEN_GEN >= 8)
96 /* Broadwell requires that we specify a buffer size for a bunch of
97 * these fields. However, since we will be growing the BO's live, we
98 * just set them all to the maximum.
99 */
100 sba.GeneralStateBufferSize = 0xfffff;
101 sba.GeneralStateBufferSizeModifyEnable = true;
102 sba.DynamicStateBufferSize = 0xfffff;
103 sba.DynamicStateBufferSizeModifyEnable = true;
104 sba.IndirectObjectBufferSize = 0xfffff;
105 sba.IndirectObjectBufferSizeModifyEnable = true;
106 sba.InstructionBufferSize = 0xfffff;
107 sba.InstructionBuffersizeModifyEnable = true;
108 # endif
109 }
110
111 /* After re-setting the surface state base address, we have to do some
112 * cache flusing so that the sampler engine will pick up the new
113 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
114 * Shared Function > 3D Sampler > State > State Caching (page 96):
115 *
116 * Coherency with system memory in the state cache, like the texture
117 * cache is handled partially by software. It is expected that the
118 * command stream or shader will issue Cache Flush operation or
119 * Cache_Flush sampler message to ensure that the L1 cache remains
120 * coherent with system memory.
121 *
122 * [...]
123 *
124 * Whenever the value of the Dynamic_State_Base_Addr,
125 * Surface_State_Base_Addr are altered, the L1 state cache must be
126 * invalidated to ensure the new surface or sampler state is fetched
127 * from system memory.
128 *
129 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
130 * which, according the PIPE_CONTROL instruction documentation in the
131 * Broadwell PRM:
132 *
133 * Setting this bit is independent of any other bit in this packet.
134 * This bit controls the invalidation of the L1 and L2 state caches
135 * at the top of the pipe i.e. at the parsing time.
136 *
137 * Unfortunately, experimentation seems to indicate that state cache
138 * invalidation through a PIPE_CONTROL does nothing whatsoever in
139 * regards to surface state and binding tables. In stead, it seems that
140 * invalidating the texture cache is what is actually needed.
141 *
142 * XXX: As far as we have been able to determine through
143 * experimentation, shows that flush the texture cache appears to be
144 * sufficient. The theory here is that all of the sampling/rendering
145 * units cache the binding table in the texture cache. However, we have
146 * yet to be able to actually confirm this.
147 */
148 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
149 pc.TextureCacheInvalidationEnable = true;
150 }
151 }
152
153 VkResult
154 genX(BeginCommandBuffer)(
155 VkCommandBuffer commandBuffer,
156 const VkCommandBufferBeginInfo* pBeginInfo)
157 {
158 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
159
160 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
161 * command buffer's state. Otherwise, we must *reset* its state. In both
162 * cases we reset it.
163 *
164 * From the Vulkan 1.0 spec:
165 *
166 * If a command buffer is in the executable state and the command buffer
167 * was allocated from a command pool with the
168 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
169 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
170 * as if vkResetCommandBuffer had been called with
171 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
172 * the command buffer in the recording state.
173 */
174 anv_cmd_buffer_reset(cmd_buffer);
175
176 cmd_buffer->usage_flags = pBeginInfo->flags;
177
178 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
179 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
180
181 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
182
183 if (cmd_buffer->usage_flags &
184 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
185 cmd_buffer->state.framebuffer =
186 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
187 cmd_buffer->state.pass =
188 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
189 cmd_buffer->state.subpass =
190 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
191
192 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
193 }
194
195 return VK_SUCCESS;
196 }
197
198 VkResult
199 genX(EndCommandBuffer)(
200 VkCommandBuffer commandBuffer)
201 {
202 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
203
204 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
205
206 return VK_SUCCESS;
207 }
208
209 void
210 genX(CmdExecuteCommands)(
211 VkCommandBuffer commandBuffer,
212 uint32_t commandBufferCount,
213 const VkCommandBuffer* pCmdBuffers)
214 {
215 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
216
217 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
218
219 for (uint32_t i = 0; i < commandBufferCount; i++) {
220 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
221
222 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
223
224 anv_cmd_buffer_add_secondary(primary, secondary);
225 }
226
227 /* Each of the secondary command buffers will use its own state base
228 * address. We need to re-emit state base address for the primary after
229 * all of the secondaries are done.
230 *
231 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
232 * address calls?
233 */
234 genX(cmd_buffer_emit_state_base_address)(primary);
235 }
236
237 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
238 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
239 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
240
241 /**
242 * Program the hardware to use the specified L3 configuration.
243 */
244 void
245 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
246 const struct gen_l3_config *cfg)
247 {
248 assert(cfg);
249 if (cfg == cmd_buffer->state.current_l3_config)
250 return;
251
252 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
253 fprintf(stderr, "L3 config transition: ");
254 gen_dump_l3_config(cfg, stderr);
255 }
256
257 const bool has_slm = cfg->n[GEN_L3P_SLM];
258
259 /* According to the hardware docs, the L3 partitioning can only be changed
260 * while the pipeline is completely drained and the caches are flushed,
261 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
262 */
263 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
264 pc.DCFlushEnable = true;
265 pc.PostSyncOperation = NoWrite;
266 pc.CommandStreamerStallEnable = true;
267 }
268
269 /* ...followed by a second pipelined PIPE_CONTROL that initiates
270 * invalidation of the relevant caches. Note that because RO invalidation
271 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
272 * command is processed by the CS) we cannot combine it with the previous
273 * stalling flush as the hardware documentation suggests, because that
274 * would cause the CS to stall on previous rendering *after* RO
275 * invalidation and wouldn't prevent the RO caches from being polluted by
276 * concurrent rendering before the stall completes. This intentionally
277 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
278 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
279 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
280 * already guarantee that there is no concurrent GPGPU kernel execution
281 * (see SKL HSD 2132585).
282 */
283 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
284 pc.TextureCacheInvalidationEnable = true;
285 pc.ConstantCacheInvalidationEnable = true;
286 pc.InstructionCacheInvalidateEnable = true;
287 pc.StateCacheInvalidationEnable = true;
288 pc.PostSyncOperation = NoWrite;
289 }
290
291 /* Now send a third stalling flush to make sure that invalidation is
292 * complete when the L3 configuration registers are modified.
293 */
294 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
295 pc.DCFlushEnable = true;
296 pc.PostSyncOperation = NoWrite;
297 pc.CommandStreamerStallEnable = true;
298 }
299
300 #if GEN_GEN >= 8
301
302 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
303
304 uint32_t l3cr;
305 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
306 .SLMEnable = has_slm,
307 .URBAllocation = cfg->n[GEN_L3P_URB],
308 .ROAllocation = cfg->n[GEN_L3P_RO],
309 .DCAllocation = cfg->n[GEN_L3P_DC],
310 .AllAllocation = cfg->n[GEN_L3P_ALL]);
311
312 /* Set up the L3 partitioning. */
313 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
314
315 #else
316
317 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
318 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
319 cfg->n[GEN_L3P_ALL];
320 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
321 cfg->n[GEN_L3P_ALL];
322 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
323 cfg->n[GEN_L3P_ALL];
324
325 assert(!cfg->n[GEN_L3P_ALL]);
326
327 /* When enabled SLM only uses a portion of the L3 on half of the banks,
328 * the matching space on the remaining banks has to be allocated to a
329 * client (URB for all validated configurations) set to the
330 * lower-bandwidth 2-bank address hashing mode.
331 */
332 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
333 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
334 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
335
336 /* Minimum number of ways that can be allocated to the URB. */
337 const unsigned n0_urb = (devinfo->is_baytrail ? 32 : 0);
338 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
339
340 uint32_t l3sqcr1, l3cr2, l3cr3;
341 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
342 .ConvertDC_UC = !has_dc,
343 .ConvertIS_UC = !has_is,
344 .ConvertC_UC = !has_c,
345 .ConvertT_UC = !has_t);
346 l3sqcr1 |=
347 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
348 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
349 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
350
351 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
352 .SLMEnable = has_slm,
353 .URBLowBandwidth = urb_low_bw,
354 .URBAllocation = cfg->n[GEN_L3P_URB],
355 #if !GEN_IS_HASWELL
356 .ALLAllocation = cfg->n[GEN_L3P_ALL],
357 #endif
358 .ROAllocation = cfg->n[GEN_L3P_RO],
359 .DCAllocation = cfg->n[GEN_L3P_DC]);
360
361 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
362 .ISAllocation = cfg->n[GEN_L3P_IS],
363 .ISLowBandwidth = 0,
364 .CAllocation = cfg->n[GEN_L3P_C],
365 .CLowBandwidth = 0,
366 .TAllocation = cfg->n[GEN_L3P_T],
367 .TLowBandwidth = 0);
368
369 /* Set up the L3 partitioning. */
370 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
371 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
372 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
373
374 #if GEN_IS_HASWELL
375 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
376 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
377 * them disabled to avoid crashing the system hard.
378 */
379 uint32_t scratch1, chicken3;
380 anv_pack_struct(&scratch1, GENX(SCRATCH1),
381 .L3AtomicDisable = !has_dc);
382 anv_pack_struct(&chicken3, GENX(CHICKEN3),
383 .L3AtomicDisableMask = true,
384 .L3AtomicDisable = !has_dc);
385 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
386 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
387 }
388 #endif
389
390 #endif
391
392 cmd_buffer->state.current_l3_config = cfg;
393 }
394
395 void
396 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
397 {
398 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
399
400 /* Flushes are pipelined while invalidations are handled immediately.
401 * Therefore, if we're flushing anything then we need to schedule a stall
402 * before any invalidations can happen.
403 */
404 if (bits & ANV_PIPE_FLUSH_BITS)
405 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
406
407 /* If we're going to do an invalidate and we have a pending CS stall that
408 * has yet to be resolved, we do the CS stall now.
409 */
410 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
411 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
412 bits |= ANV_PIPE_CS_STALL_BIT;
413 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
414 }
415
416 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
417 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
418 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
419 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
420 pipe.RenderTargetCacheFlushEnable =
421 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
422
423 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
424 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
425 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
426
427 /*
428 * According to the Broadwell documentation, any PIPE_CONTROL with the
429 * "Command Streamer Stall" bit set must also have another bit set,
430 * with five different options:
431 *
432 * - Render Target Cache Flush
433 * - Depth Cache Flush
434 * - Stall at Pixel Scoreboard
435 * - Post-Sync Operation
436 * - Depth Stall
437 * - DC Flush Enable
438 *
439 * I chose "Stall at Pixel Scoreboard" since that's what we use in
440 * mesa and it seems to work fine. The choice is fairly arbitrary.
441 */
442 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
443 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
444 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
445 pipe.StallAtPixelScoreboard = true;
446 }
447
448 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
449 }
450
451 if (bits & ANV_PIPE_INVALIDATE_BITS) {
452 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
453 pipe.StateCacheInvalidationEnable =
454 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
455 pipe.ConstantCacheInvalidationEnable =
456 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
457 pipe.VFCacheInvalidationEnable =
458 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
459 pipe.TextureCacheInvalidationEnable =
460 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
461 pipe.InstructionCacheInvalidateEnable =
462 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
463 }
464
465 bits &= ~ANV_PIPE_INVALIDATE_BITS;
466 }
467
468 cmd_buffer->state.pending_pipe_bits = bits;
469 }
470
471 void genX(CmdPipelineBarrier)(
472 VkCommandBuffer commandBuffer,
473 VkPipelineStageFlags srcStageMask,
474 VkPipelineStageFlags destStageMask,
475 VkBool32 byRegion,
476 uint32_t memoryBarrierCount,
477 const VkMemoryBarrier* pMemoryBarriers,
478 uint32_t bufferMemoryBarrierCount,
479 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
480 uint32_t imageMemoryBarrierCount,
481 const VkImageMemoryBarrier* pImageMemoryBarriers)
482 {
483 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
484 uint32_t b;
485
486 /* XXX: Right now, we're really dumb and just flush whatever categories
487 * the app asks for. One of these days we may make this a bit better
488 * but right now that's all the hardware allows for in most areas.
489 */
490 VkAccessFlags src_flags = 0;
491 VkAccessFlags dst_flags = 0;
492
493 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
494 src_flags |= pMemoryBarriers[i].srcAccessMask;
495 dst_flags |= pMemoryBarriers[i].dstAccessMask;
496 }
497
498 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
499 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
500 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
501 }
502
503 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
504 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
505 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
506 }
507
508 enum anv_pipe_bits pipe_bits = 0;
509
510 for_each_bit(b, src_flags) {
511 switch ((VkAccessFlagBits)(1 << b)) {
512 case VK_ACCESS_SHADER_WRITE_BIT:
513 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
514 break;
515 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
516 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
517 break;
518 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
519 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
520 break;
521 case VK_ACCESS_TRANSFER_WRITE_BIT:
522 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
523 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
524 break;
525 default:
526 break; /* Nothing to do */
527 }
528 }
529
530 for_each_bit(b, dst_flags) {
531 switch ((VkAccessFlagBits)(1 << b)) {
532 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
533 case VK_ACCESS_INDEX_READ_BIT:
534 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
535 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
536 break;
537 case VK_ACCESS_UNIFORM_READ_BIT:
538 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
539 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
540 break;
541 case VK_ACCESS_SHADER_READ_BIT:
542 case VK_ACCESS_COLOR_ATTACHMENT_READ_BIT:
543 case VK_ACCESS_TRANSFER_READ_BIT:
544 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
545 break;
546 default:
547 break; /* Nothing to do */
548 }
549 }
550
551 cmd_buffer->state.pending_pipe_bits |= pipe_bits;
552 }
553
554 static void
555 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
556 {
557 VkShaderStageFlags stages = cmd_buffer->state.pipeline->active_stages;
558
559 /* In order to avoid thrash, we assume that vertex and fragment stages
560 * always exist. In the rare case where one is missing *and* the other
561 * uses push concstants, this may be suboptimal. However, avoiding stalls
562 * seems more important.
563 */
564 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
565
566 if (stages == cmd_buffer->state.push_constant_stages)
567 return;
568
569 #if GEN_GEN >= 8
570 const unsigned push_constant_kb = 32;
571 #elif GEN_IS_HASWELL
572 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
573 #else
574 const unsigned push_constant_kb = 16;
575 #endif
576
577 const unsigned num_stages =
578 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
579 unsigned size_per_stage = push_constant_kb / num_stages;
580
581 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
582 * units of 2KB. Incidentally, these are the same platforms that have
583 * 32KB worth of push constant space.
584 */
585 if (push_constant_kb == 32)
586 size_per_stage &= ~1u;
587
588 uint32_t kb_used = 0;
589 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
590 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
591 anv_batch_emit(&cmd_buffer->batch,
592 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
593 alloc._3DCommandSubOpcode = 18 + i;
594 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
595 alloc.ConstantBufferSize = push_size;
596 }
597 kb_used += push_size;
598 }
599
600 anv_batch_emit(&cmd_buffer->batch,
601 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
602 alloc.ConstantBufferOffset = kb_used;
603 alloc.ConstantBufferSize = push_constant_kb - kb_used;
604 }
605
606 cmd_buffer->state.push_constant_stages = stages;
607
608 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
609 *
610 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
611 * the next 3DPRIMITIVE command after programming the
612 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
613 *
614 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
615 * pipeline setup, we need to dirty push constants.
616 */
617 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
618 }
619
620 static void
621 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
622 struct anv_state state, struct anv_bo *bo,
623 uint32_t offset)
624 {
625 /* The address goes in SURFACE_STATE dword 1 for gens < 8 and dwords 8 and
626 * 9 for gen8+. We only write the first dword for gen8+ here and rely on
627 * the initial state to set the high bits to 0. */
628
629 const uint32_t dword = GEN_GEN < 8 ? 1 : 8;
630
631 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
632 state.offset + dword * 4, bo, offset);
633 }
634
635 static struct anv_state
636 alloc_null_surface_state(struct anv_cmd_buffer *cmd_buffer,
637 struct anv_framebuffer *fb)
638 {
639 struct anv_state state =
640 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
641
642 struct GENX(RENDER_SURFACE_STATE) null_ss = {
643 .SurfaceType = SURFTYPE_NULL,
644 .SurfaceArray = fb->layers > 0,
645 .SurfaceFormat = ISL_FORMAT_R8G8B8A8_UNORM,
646 #if GEN_GEN >= 8
647 .TileMode = YMAJOR,
648 #else
649 .TiledSurface = true,
650 #endif
651 .Width = fb->width - 1,
652 .Height = fb->height - 1,
653 .Depth = fb->layers - 1,
654 .RenderTargetViewExtent = fb->layers - 1,
655 };
656
657 GENX(RENDER_SURFACE_STATE_pack)(NULL, state.map, &null_ss);
658
659 if (!cmd_buffer->device->info.has_llc)
660 anv_state_clflush(state);
661
662 return state;
663 }
664
665
666 static VkResult
667 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
668 gl_shader_stage stage,
669 struct anv_state *bt_state)
670 {
671 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
672 struct anv_subpass *subpass = cmd_buffer->state.subpass;
673 struct anv_pipeline *pipeline;
674 uint32_t bias, state_offset;
675
676 switch (stage) {
677 case MESA_SHADER_COMPUTE:
678 pipeline = cmd_buffer->state.compute_pipeline;
679 bias = 1;
680 break;
681 default:
682 pipeline = cmd_buffer->state.pipeline;
683 bias = 0;
684 break;
685 }
686
687 if (!anv_pipeline_has_stage(pipeline, stage)) {
688 *bt_state = (struct anv_state) { 0, };
689 return VK_SUCCESS;
690 }
691
692 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
693 if (bias + map->surface_count == 0) {
694 *bt_state = (struct anv_state) { 0, };
695 return VK_SUCCESS;
696 }
697
698 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
699 bias + map->surface_count,
700 &state_offset);
701 uint32_t *bt_map = bt_state->map;
702
703 if (bt_state->map == NULL)
704 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
705
706 if (stage == MESA_SHADER_COMPUTE &&
707 get_cs_prog_data(cmd_buffer->state.compute_pipeline)->uses_num_work_groups) {
708 struct anv_bo *bo = cmd_buffer->state.num_workgroups_bo;
709 uint32_t bo_offset = cmd_buffer->state.num_workgroups_offset;
710
711 struct anv_state surface_state;
712 surface_state =
713 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
714
715 const enum isl_format format =
716 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
717 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
718 format, bo_offset, 12, 1);
719
720 bt_map[0] = surface_state.offset + state_offset;
721 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
722 }
723
724 if (map->surface_count == 0)
725 goto out;
726
727 if (map->image_count > 0) {
728 VkResult result =
729 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
730 if (result != VK_SUCCESS)
731 return result;
732
733 cmd_buffer->state.push_constants_dirty |= 1 << stage;
734 }
735
736 uint32_t image = 0;
737 for (uint32_t s = 0; s < map->surface_count; s++) {
738 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
739
740 struct anv_state surface_state;
741 struct anv_bo *bo;
742 uint32_t bo_offset;
743
744 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
745 /* Color attachment binding */
746 assert(stage == MESA_SHADER_FRAGMENT);
747 assert(binding->binding == 0);
748 if (binding->index < subpass->color_count) {
749 const struct anv_image_view *iview =
750 fb->attachments[subpass->color_attachments[binding->index]];
751
752 assert(iview->color_rt_surface_state.alloc_size);
753 surface_state = iview->color_rt_surface_state;
754 add_surface_state_reloc(cmd_buffer, iview->color_rt_surface_state,
755 iview->bo, iview->offset);
756 } else {
757 /* Null render target */
758 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
759 surface_state = alloc_null_surface_state(cmd_buffer, fb);
760 }
761
762 bt_map[bias + s] = surface_state.offset + state_offset;
763 continue;
764 }
765
766 struct anv_descriptor_set *set =
767 cmd_buffer->state.descriptors[binding->set];
768 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
769 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
770
771 switch (desc->type) {
772 case VK_DESCRIPTOR_TYPE_SAMPLER:
773 /* Nothing for us to do here */
774 continue;
775
776 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
777 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
778 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
779 surface_state = desc->image_view->sampler_surface_state;
780 assert(surface_state.alloc_size);
781 bo = desc->image_view->bo;
782 bo_offset = desc->image_view->offset;
783 break;
784
785 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
786 surface_state = desc->image_view->storage_surface_state;
787 assert(surface_state.alloc_size);
788 bo = desc->image_view->bo;
789 bo_offset = desc->image_view->offset;
790
791 struct brw_image_param *image_param =
792 &cmd_buffer->state.push_constants[stage]->images[image++];
793
794 *image_param = desc->image_view->storage_image_param;
795 image_param->surface_idx = bias + s;
796 break;
797 }
798
799 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
800 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
801 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
802 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
803 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
804 surface_state = desc->buffer_view->surface_state;
805 assert(surface_state.alloc_size);
806 bo = desc->buffer_view->bo;
807 bo_offset = desc->buffer_view->offset;
808 break;
809
810 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
811 surface_state = desc->buffer_view->storage_surface_state;
812 assert(surface_state.alloc_size);
813 bo = desc->buffer_view->bo;
814 bo_offset = desc->buffer_view->offset;
815
816 struct brw_image_param *image_param =
817 &cmd_buffer->state.push_constants[stage]->images[image++];
818
819 *image_param = desc->buffer_view->storage_image_param;
820 image_param->surface_idx = bias + s;
821 break;
822
823 default:
824 assert(!"Invalid descriptor type");
825 continue;
826 }
827
828 bt_map[bias + s] = surface_state.offset + state_offset;
829 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
830 }
831 assert(image == map->image_count);
832
833 out:
834 if (!cmd_buffer->device->info.has_llc)
835 anv_state_clflush(*bt_state);
836
837 return VK_SUCCESS;
838 }
839
840 static VkResult
841 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
842 gl_shader_stage stage,
843 struct anv_state *state)
844 {
845 struct anv_pipeline *pipeline;
846
847 if (stage == MESA_SHADER_COMPUTE)
848 pipeline = cmd_buffer->state.compute_pipeline;
849 else
850 pipeline = cmd_buffer->state.pipeline;
851
852 if (!anv_pipeline_has_stage(pipeline, stage)) {
853 *state = (struct anv_state) { 0, };
854 return VK_SUCCESS;
855 }
856
857 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
858 if (map->sampler_count == 0) {
859 *state = (struct anv_state) { 0, };
860 return VK_SUCCESS;
861 }
862
863 uint32_t size = map->sampler_count * 16;
864 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
865
866 if (state->map == NULL)
867 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
868
869 for (uint32_t s = 0; s < map->sampler_count; s++) {
870 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
871 struct anv_descriptor_set *set =
872 cmd_buffer->state.descriptors[binding->set];
873 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
874 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
875
876 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
877 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
878 continue;
879
880 struct anv_sampler *sampler = desc->sampler;
881
882 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
883 * happens to be zero.
884 */
885 if (sampler == NULL)
886 continue;
887
888 memcpy(state->map + (s * 16),
889 sampler->state, sizeof(sampler->state));
890 }
891
892 if (!cmd_buffer->device->info.has_llc)
893 anv_state_clflush(*state);
894
895 return VK_SUCCESS;
896 }
897
898 static uint32_t
899 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
900 {
901 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
902 cmd_buffer->state.pipeline->active_stages;
903
904 VkResult result = VK_SUCCESS;
905 anv_foreach_stage(s, dirty) {
906 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
907 if (result != VK_SUCCESS)
908 break;
909 result = emit_binding_table(cmd_buffer, s,
910 &cmd_buffer->state.binding_tables[s]);
911 if (result != VK_SUCCESS)
912 break;
913 }
914
915 if (result != VK_SUCCESS) {
916 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
917
918 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
919 assert(result == VK_SUCCESS);
920
921 /* Re-emit state base addresses so we get the new surface state base
922 * address before we start emitting binding tables etc.
923 */
924 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
925
926 /* Re-emit all active binding tables */
927 dirty |= cmd_buffer->state.pipeline->active_stages;
928 anv_foreach_stage(s, dirty) {
929 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
930 if (result != VK_SUCCESS)
931 return result;
932 result = emit_binding_table(cmd_buffer, s,
933 &cmd_buffer->state.binding_tables[s]);
934 if (result != VK_SUCCESS)
935 return result;
936 }
937 }
938
939 cmd_buffer->state.descriptors_dirty &= ~dirty;
940
941 return dirty;
942 }
943
944 static void
945 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
946 uint32_t stages)
947 {
948 static const uint32_t sampler_state_opcodes[] = {
949 [MESA_SHADER_VERTEX] = 43,
950 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
951 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
952 [MESA_SHADER_GEOMETRY] = 46,
953 [MESA_SHADER_FRAGMENT] = 47,
954 [MESA_SHADER_COMPUTE] = 0,
955 };
956
957 static const uint32_t binding_table_opcodes[] = {
958 [MESA_SHADER_VERTEX] = 38,
959 [MESA_SHADER_TESS_CTRL] = 39,
960 [MESA_SHADER_TESS_EVAL] = 40,
961 [MESA_SHADER_GEOMETRY] = 41,
962 [MESA_SHADER_FRAGMENT] = 42,
963 [MESA_SHADER_COMPUTE] = 0,
964 };
965
966 anv_foreach_stage(s, stages) {
967 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
968 anv_batch_emit(&cmd_buffer->batch,
969 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
970 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
971 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
972 }
973 }
974
975 /* Always emit binding table pointers if we're asked to, since on SKL
976 * this is what flushes push constants. */
977 anv_batch_emit(&cmd_buffer->batch,
978 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
979 btp._3DCommandSubOpcode = binding_table_opcodes[s];
980 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
981 }
982 }
983 }
984
985 static uint32_t
986 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer)
987 {
988 static const uint32_t push_constant_opcodes[] = {
989 [MESA_SHADER_VERTEX] = 21,
990 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
991 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
992 [MESA_SHADER_GEOMETRY] = 22,
993 [MESA_SHADER_FRAGMENT] = 23,
994 [MESA_SHADER_COMPUTE] = 0,
995 };
996
997 VkShaderStageFlags flushed = 0;
998
999 anv_foreach_stage(stage, cmd_buffer->state.push_constants_dirty) {
1000 if (stage == MESA_SHADER_COMPUTE)
1001 continue;
1002
1003 struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage);
1004
1005 if (state.offset == 0) {
1006 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c)
1007 c._3DCommandSubOpcode = push_constant_opcodes[stage];
1008 } else {
1009 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
1010 c._3DCommandSubOpcode = push_constant_opcodes[stage],
1011 c.ConstantBody = (struct GENX(3DSTATE_CONSTANT_BODY)) {
1012 #if GEN_GEN >= 9
1013 .PointerToConstantBuffer2 = { &cmd_buffer->device->dynamic_state_block_pool.bo, state.offset },
1014 .ConstantBuffer2ReadLength = DIV_ROUND_UP(state.alloc_size, 32),
1015 #else
1016 .PointerToConstantBuffer0 = { .offset = state.offset },
1017 .ConstantBuffer0ReadLength = DIV_ROUND_UP(state.alloc_size, 32),
1018 #endif
1019 };
1020 }
1021 }
1022
1023 flushed |= mesa_to_vk_shader_stage(stage);
1024 }
1025
1026 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_ALL_GRAPHICS;
1027
1028 return flushed;
1029 }
1030
1031 void
1032 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
1033 {
1034 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1035 uint32_t *p;
1036
1037 uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used;
1038
1039 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
1040
1041 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
1042
1043 genX(flush_pipeline_select_3d)(cmd_buffer);
1044
1045 if (vb_emit) {
1046 const uint32_t num_buffers = __builtin_popcount(vb_emit);
1047 const uint32_t num_dwords = 1 + num_buffers * 4;
1048
1049 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
1050 GENX(3DSTATE_VERTEX_BUFFERS));
1051 uint32_t vb, i = 0;
1052 for_each_bit(vb, vb_emit) {
1053 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
1054 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
1055
1056 struct GENX(VERTEX_BUFFER_STATE) state = {
1057 .VertexBufferIndex = vb,
1058
1059 #if GEN_GEN >= 8
1060 .MemoryObjectControlState = GENX(MOCS),
1061 #else
1062 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
1063 .InstanceDataStepRate = 1,
1064 .VertexBufferMemoryObjectControlState = GENX(MOCS),
1065 #endif
1066
1067 .AddressModifyEnable = true,
1068 .BufferPitch = pipeline->binding_stride[vb],
1069 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
1070
1071 #if GEN_GEN >= 8
1072 .BufferSize = buffer->size - offset
1073 #else
1074 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
1075 #endif
1076 };
1077
1078 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
1079 i++;
1080 }
1081 }
1082
1083 cmd_buffer->state.vb_dirty &= ~vb_emit;
1084
1085 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_PIPELINE) {
1086 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
1087
1088 /* The exact descriptor layout is pulled from the pipeline, so we need
1089 * to re-emit binding tables on every pipeline change.
1090 */
1091 cmd_buffer->state.descriptors_dirty |=
1092 cmd_buffer->state.pipeline->active_stages;
1093
1094 /* If the pipeline changed, we may need to re-allocate push constant
1095 * space in the URB.
1096 */
1097 cmd_buffer_alloc_push_constants(cmd_buffer);
1098 }
1099
1100 #if GEN_GEN <= 7
1101 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
1102 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
1103 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
1104 *
1105 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
1106 * stall needs to be sent just prior to any 3DSTATE_VS,
1107 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
1108 * 3DSTATE_BINDING_TABLE_POINTER_VS,
1109 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
1110 * PIPE_CONTROL needs to be sent before any combination of VS
1111 * associated 3DSTATE."
1112 */
1113 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1114 pc.DepthStallEnable = true;
1115 pc.PostSyncOperation = WriteImmediateData;
1116 pc.Address =
1117 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
1118 }
1119 }
1120 #endif
1121
1122 /* Render targets live in the same binding table as fragment descriptors */
1123 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
1124 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
1125
1126 /* We emit the binding tables and sampler tables first, then emit push
1127 * constants and then finally emit binding table and sampler table
1128 * pointers. It has to happen in this order, since emitting the binding
1129 * tables may change the push constants (in case of storage images). After
1130 * emitting push constants, on SKL+ we have to emit the corresponding
1131 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
1132 */
1133 uint32_t dirty = 0;
1134 if (cmd_buffer->state.descriptors_dirty)
1135 dirty = flush_descriptor_sets(cmd_buffer);
1136
1137 if (cmd_buffer->state.push_constants_dirty) {
1138 #if GEN_GEN >= 9
1139 /* On Sky Lake and later, the binding table pointers commands are
1140 * what actually flush the changes to push constant state so we need
1141 * to dirty them so they get re-emitted below.
1142 */
1143 dirty |= cmd_buffer_flush_push_constants(cmd_buffer);
1144 #else
1145 cmd_buffer_flush_push_constants(cmd_buffer);
1146 #endif
1147 }
1148
1149 if (dirty)
1150 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
1151
1152 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
1153 gen8_cmd_buffer_emit_viewport(cmd_buffer);
1154
1155 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
1156 ANV_CMD_DIRTY_PIPELINE)) {
1157 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
1158 pipeline->depth_clamp_enable);
1159 }
1160
1161 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
1162 gen7_cmd_buffer_emit_scissor(cmd_buffer);
1163
1164 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
1165
1166 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1167 }
1168
1169 static void
1170 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
1171 struct anv_bo *bo, uint32_t offset)
1172 {
1173 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
1174 GENX(3DSTATE_VERTEX_BUFFERS));
1175
1176 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
1177 &(struct GENX(VERTEX_BUFFER_STATE)) {
1178 .VertexBufferIndex = 32, /* Reserved for this */
1179 .AddressModifyEnable = true,
1180 .BufferPitch = 0,
1181 #if (GEN_GEN >= 8)
1182 .MemoryObjectControlState = GENX(MOCS),
1183 .BufferStartingAddress = { bo, offset },
1184 .BufferSize = 8
1185 #else
1186 .VertexBufferMemoryObjectControlState = GENX(MOCS),
1187 .BufferStartingAddress = { bo, offset },
1188 .EndAddress = { bo, offset + 8 },
1189 #endif
1190 });
1191 }
1192
1193 static void
1194 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
1195 uint32_t base_vertex, uint32_t base_instance)
1196 {
1197 struct anv_state id_state =
1198 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
1199
1200 ((uint32_t *)id_state.map)[0] = base_vertex;
1201 ((uint32_t *)id_state.map)[1] = base_instance;
1202
1203 if (!cmd_buffer->device->info.has_llc)
1204 anv_state_clflush(id_state);
1205
1206 emit_base_vertex_instance_bo(cmd_buffer,
1207 &cmd_buffer->device->dynamic_state_block_pool.bo, id_state.offset);
1208 }
1209
1210 void genX(CmdDraw)(
1211 VkCommandBuffer commandBuffer,
1212 uint32_t vertexCount,
1213 uint32_t instanceCount,
1214 uint32_t firstVertex,
1215 uint32_t firstInstance)
1216 {
1217 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1218 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1219 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1220
1221 genX(cmd_buffer_flush_state)(cmd_buffer);
1222
1223 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1224 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
1225
1226 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1227 prim.VertexAccessType = SEQUENTIAL;
1228 prim.PrimitiveTopologyType = pipeline->topology;
1229 prim.VertexCountPerInstance = vertexCount;
1230 prim.StartVertexLocation = firstVertex;
1231 prim.InstanceCount = instanceCount;
1232 prim.StartInstanceLocation = firstInstance;
1233 prim.BaseVertexLocation = 0;
1234 }
1235 }
1236
1237 void genX(CmdDrawIndexed)(
1238 VkCommandBuffer commandBuffer,
1239 uint32_t indexCount,
1240 uint32_t instanceCount,
1241 uint32_t firstIndex,
1242 int32_t vertexOffset,
1243 uint32_t firstInstance)
1244 {
1245 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1246 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1247 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1248
1249 genX(cmd_buffer_flush_state)(cmd_buffer);
1250
1251 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1252 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
1253
1254 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1255 prim.VertexAccessType = RANDOM;
1256 prim.PrimitiveTopologyType = pipeline->topology;
1257 prim.VertexCountPerInstance = indexCount;
1258 prim.StartVertexLocation = firstIndex;
1259 prim.InstanceCount = instanceCount;
1260 prim.StartInstanceLocation = firstInstance;
1261 prim.BaseVertexLocation = vertexOffset;
1262 }
1263 }
1264
1265 /* Auto-Draw / Indirect Registers */
1266 #define GEN7_3DPRIM_END_OFFSET 0x2420
1267 #define GEN7_3DPRIM_START_VERTEX 0x2430
1268 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
1269 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
1270 #define GEN7_3DPRIM_START_INSTANCE 0x243C
1271 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
1272
1273 void genX(CmdDrawIndirect)(
1274 VkCommandBuffer commandBuffer,
1275 VkBuffer _buffer,
1276 VkDeviceSize offset,
1277 uint32_t drawCount,
1278 uint32_t stride)
1279 {
1280 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1281 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1282 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1283 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1284 struct anv_bo *bo = buffer->bo;
1285 uint32_t bo_offset = buffer->offset + offset;
1286
1287 genX(cmd_buffer_flush_state)(cmd_buffer);
1288
1289 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1290 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
1291
1292 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
1293 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
1294 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
1295 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
1296 emit_lri(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, 0);
1297
1298 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1299 prim.IndirectParameterEnable = true;
1300 prim.VertexAccessType = SEQUENTIAL;
1301 prim.PrimitiveTopologyType = pipeline->topology;
1302 }
1303 }
1304
1305 void genX(CmdDrawIndexedIndirect)(
1306 VkCommandBuffer commandBuffer,
1307 VkBuffer _buffer,
1308 VkDeviceSize offset,
1309 uint32_t drawCount,
1310 uint32_t stride)
1311 {
1312 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1313 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1314 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
1315 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1316 struct anv_bo *bo = buffer->bo;
1317 uint32_t bo_offset = buffer->offset + offset;
1318
1319 genX(cmd_buffer_flush_state)(cmd_buffer);
1320
1321 /* TODO: We need to stomp base vertex to 0 somehow */
1322 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1323 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
1324
1325 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
1326 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
1327 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
1328 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
1329 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
1330
1331 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
1332 prim.IndirectParameterEnable = true;
1333 prim.VertexAccessType = RANDOM;
1334 prim.PrimitiveTopologyType = pipeline->topology;
1335 }
1336 }
1337
1338 static VkResult
1339 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
1340 {
1341 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1342 struct anv_state surfaces = { 0, }, samplers = { 0, };
1343 VkResult result;
1344
1345 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
1346 if (result != VK_SUCCESS)
1347 return result;
1348 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
1349 if (result != VK_SUCCESS)
1350 return result;
1351
1352 struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer);
1353
1354 if (push_state.alloc_size) {
1355 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
1356 curbe.CURBETotalDataLength = push_state.alloc_size;
1357 curbe.CURBEDataStartAddress = push_state.offset;
1358 }
1359 }
1360
1361 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
1362 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
1363 .BindingTablePointer = surfaces.offset,
1364 .SamplerStatePointer = samplers.offset,
1365 };
1366 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
1367
1368 struct anv_state state =
1369 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
1370 pipeline->interface_descriptor_data,
1371 GENX(INTERFACE_DESCRIPTOR_DATA_length),
1372 64);
1373
1374 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
1375 anv_batch_emit(&cmd_buffer->batch,
1376 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
1377 mid.InterfaceDescriptorTotalLength = size;
1378 mid.InterfaceDescriptorDataStartAddress = state.offset;
1379 }
1380
1381 return VK_SUCCESS;
1382 }
1383
1384 void
1385 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
1386 {
1387 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1388 MAYBE_UNUSED VkResult result;
1389
1390 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
1391
1392 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
1393
1394 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
1395
1396 if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)
1397 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
1398
1399 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
1400 (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
1401 /* FIXME: figure out descriptors for gen7 */
1402 result = flush_compute_descriptor_set(cmd_buffer);
1403 assert(result == VK_SUCCESS);
1404 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
1405 }
1406
1407 cmd_buffer->state.compute_dirty = 0;
1408
1409 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1410 }
1411
1412 #if GEN_GEN == 7
1413
1414 static bool
1415 verify_cmd_parser(const struct anv_device *device,
1416 int required_version,
1417 const char *function)
1418 {
1419 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
1420 vk_errorf(VK_ERROR_FEATURE_NOT_PRESENT,
1421 "cmd parser version %d is required for %s",
1422 required_version, function);
1423 return false;
1424 } else {
1425 return true;
1426 }
1427 }
1428
1429 #endif
1430
1431 void genX(CmdDispatch)(
1432 VkCommandBuffer commandBuffer,
1433 uint32_t x,
1434 uint32_t y,
1435 uint32_t z)
1436 {
1437 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1438 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1439 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
1440
1441 if (prog_data->uses_num_work_groups) {
1442 struct anv_state state =
1443 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
1444 uint32_t *sizes = state.map;
1445 sizes[0] = x;
1446 sizes[1] = y;
1447 sizes[2] = z;
1448 if (!cmd_buffer->device->info.has_llc)
1449 anv_state_clflush(state);
1450 cmd_buffer->state.num_workgroups_offset = state.offset;
1451 cmd_buffer->state.num_workgroups_bo =
1452 &cmd_buffer->device->dynamic_state_block_pool.bo;
1453 }
1454
1455 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
1456
1457 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
1458 ggw.SIMDSize = prog_data->simd_size / 16;
1459 ggw.ThreadDepthCounterMaximum = 0;
1460 ggw.ThreadHeightCounterMaximum = 0;
1461 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
1462 ggw.ThreadGroupIDXDimension = x;
1463 ggw.ThreadGroupIDYDimension = y;
1464 ggw.ThreadGroupIDZDimension = z;
1465 ggw.RightExecutionMask = pipeline->cs_right_mask;
1466 ggw.BottomExecutionMask = 0xffffffff;
1467 }
1468
1469 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
1470 }
1471
1472 #define GPGPU_DISPATCHDIMX 0x2500
1473 #define GPGPU_DISPATCHDIMY 0x2504
1474 #define GPGPU_DISPATCHDIMZ 0x2508
1475
1476 #define MI_PREDICATE_SRC0 0x2400
1477 #define MI_PREDICATE_SRC1 0x2408
1478
1479 void genX(CmdDispatchIndirect)(
1480 VkCommandBuffer commandBuffer,
1481 VkBuffer _buffer,
1482 VkDeviceSize offset)
1483 {
1484 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1485 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1486 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1487 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
1488 struct anv_bo *bo = buffer->bo;
1489 uint32_t bo_offset = buffer->offset + offset;
1490 struct anv_batch *batch = &cmd_buffer->batch;
1491
1492 #if GEN_GEN == 7
1493 /* Linux 4.4 added command parser version 5 which allows the GPGPU
1494 * indirect dispatch registers to be written.
1495 */
1496 if (!verify_cmd_parser(cmd_buffer->device, 5, "vkCmdDispatchIndirect"))
1497 return;
1498 #endif
1499
1500 if (prog_data->uses_num_work_groups) {
1501 cmd_buffer->state.num_workgroups_offset = bo_offset;
1502 cmd_buffer->state.num_workgroups_bo = bo;
1503 }
1504
1505 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
1506
1507 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
1508 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
1509 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
1510
1511 #if GEN_GEN <= 7
1512 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
1513 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
1514 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
1515 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
1516
1517 /* Load compute_dispatch_indirect_x_size into SRC0 */
1518 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
1519
1520 /* predicate = (compute_dispatch_indirect_x_size == 0); */
1521 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
1522 mip.LoadOperation = LOAD_LOAD;
1523 mip.CombineOperation = COMBINE_SET;
1524 mip.CompareOperation = COMPARE_SRCS_EQUAL;
1525 }
1526
1527 /* Load compute_dispatch_indirect_y_size into SRC0 */
1528 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
1529
1530 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
1531 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
1532 mip.LoadOperation = LOAD_LOAD;
1533 mip.CombineOperation = COMBINE_OR;
1534 mip.CompareOperation = COMPARE_SRCS_EQUAL;
1535 }
1536
1537 /* Load compute_dispatch_indirect_z_size into SRC0 */
1538 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
1539
1540 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
1541 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
1542 mip.LoadOperation = LOAD_LOAD;
1543 mip.CombineOperation = COMBINE_OR;
1544 mip.CompareOperation = COMPARE_SRCS_EQUAL;
1545 }
1546
1547 /* predicate = !predicate; */
1548 #define COMPARE_FALSE 1
1549 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
1550 mip.LoadOperation = LOAD_LOADINV;
1551 mip.CombineOperation = COMBINE_OR;
1552 mip.CompareOperation = COMPARE_FALSE;
1553 }
1554 #endif
1555
1556 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
1557 ggw.IndirectParameterEnable = true;
1558 ggw.PredicateEnable = GEN_GEN <= 7;
1559 ggw.SIMDSize = prog_data->simd_size / 16;
1560 ggw.ThreadDepthCounterMaximum = 0;
1561 ggw.ThreadHeightCounterMaximum = 0;
1562 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
1563 ggw.RightExecutionMask = pipeline->cs_right_mask;
1564 ggw.BottomExecutionMask = 0xffffffff;
1565 }
1566
1567 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
1568 }
1569
1570 static void
1571 flush_pipeline_before_pipeline_select(struct anv_cmd_buffer *cmd_buffer,
1572 uint32_t pipeline)
1573 {
1574 #if GEN_GEN >= 8 && GEN_GEN < 10
1575 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
1576 *
1577 * Software must clear the COLOR_CALC_STATE Valid field in
1578 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
1579 * with Pipeline Select set to GPGPU.
1580 *
1581 * The internal hardware docs recommend the same workaround for Gen9
1582 * hardware too.
1583 */
1584 if (pipeline == GPGPU)
1585 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
1586 #elif GEN_GEN <= 7
1587 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
1588 * PIPELINE_SELECT [DevBWR+]":
1589 *
1590 * Project: DEVSNB+
1591 *
1592 * Software must ensure all the write caches are flushed through a
1593 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
1594 * command to invalidate read only caches prior to programming
1595 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
1596 */
1597 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1598 pc.RenderTargetCacheFlushEnable = true;
1599 pc.DepthCacheFlushEnable = true;
1600 pc.DCFlushEnable = true;
1601 pc.PostSyncOperation = NoWrite;
1602 pc.CommandStreamerStallEnable = true;
1603 }
1604
1605 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1606 pc.TextureCacheInvalidationEnable = true;
1607 pc.ConstantCacheInvalidationEnable = true;
1608 pc.StateCacheInvalidationEnable = true;
1609 pc.InstructionCacheInvalidateEnable = true;
1610 pc.PostSyncOperation = NoWrite;
1611 }
1612 #endif
1613 }
1614
1615 void
1616 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
1617 {
1618 if (cmd_buffer->state.current_pipeline != _3D) {
1619 flush_pipeline_before_pipeline_select(cmd_buffer, _3D);
1620
1621 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
1622 #if GEN_GEN >= 9
1623 ps.MaskBits = 3;
1624 #endif
1625 ps.PipelineSelection = _3D;
1626 }
1627
1628 cmd_buffer->state.current_pipeline = _3D;
1629 }
1630 }
1631
1632 void
1633 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
1634 {
1635 if (cmd_buffer->state.current_pipeline != GPGPU) {
1636 flush_pipeline_before_pipeline_select(cmd_buffer, GPGPU);
1637
1638 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
1639 #if GEN_GEN >= 9
1640 ps.MaskBits = 3;
1641 #endif
1642 ps.PipelineSelection = GPGPU;
1643 }
1644
1645 cmd_buffer->state.current_pipeline = GPGPU;
1646 }
1647 }
1648
1649 static void
1650 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
1651 {
1652 struct anv_device *device = cmd_buffer->device;
1653 const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
1654 const struct anv_image_view *iview =
1655 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1656 const struct anv_image *image = iview ? iview->image : NULL;
1657 const bool has_depth = image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
1658 const bool has_hiz = image != NULL && anv_image_has_hiz(image);
1659 const bool has_stencil =
1660 image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
1661
1662 /* FIXME: Implement the PMA stall W/A */
1663 /* FIXME: Width and Height are wrong */
1664
1665 /* Emit 3DSTATE_DEPTH_BUFFER */
1666 if (has_depth) {
1667 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER), db) {
1668 db.SurfaceType = SURFTYPE_2D;
1669 db.DepthWriteEnable = true;
1670 db.StencilWriteEnable = has_stencil;
1671
1672 if (cmd_buffer->state.pass->subpass_count == 1) {
1673 db.HierarchicalDepthBufferEnable = has_hiz;
1674 } else {
1675 anv_finishme("Multiple-subpass HiZ not implemented");
1676 }
1677
1678 db.SurfaceFormat = isl_surf_get_depth_format(&device->isl_dev,
1679 &image->depth_surface.isl);
1680
1681 db.SurfaceBaseAddress = (struct anv_address) {
1682 .bo = image->bo,
1683 .offset = image->offset + image->depth_surface.offset,
1684 };
1685 db.DepthBufferObjectControlState = GENX(MOCS);
1686
1687 db.SurfacePitch = image->depth_surface.isl.row_pitch - 1;
1688 db.Height = image->extent.height - 1;
1689 db.Width = image->extent.width - 1;
1690 db.LOD = iview->isl.base_level;
1691 db.Depth = image->array_size - 1; /* FIXME: 3-D */
1692 db.MinimumArrayElement = iview->isl.base_array_layer;
1693
1694 #if GEN_GEN >= 8
1695 db.SurfaceQPitch =
1696 isl_surf_get_array_pitch_el_rows(&image->depth_surface.isl) >> 2;
1697 #endif
1698 db.RenderTargetViewExtent = 1 - 1;
1699 }
1700 } else {
1701 /* Even when no depth buffer is present, the hardware requires that
1702 * 3DSTATE_DEPTH_BUFFER be programmed correctly. The Broadwell PRM says:
1703 *
1704 * If a null depth buffer is bound, the driver must instead bind depth as:
1705 * 3DSTATE_DEPTH.SurfaceType = SURFTYPE_2D
1706 * 3DSTATE_DEPTH.Width = 1
1707 * 3DSTATE_DEPTH.Height = 1
1708 * 3DSTATE_DEPTH.SuraceFormat = D16_UNORM
1709 * 3DSTATE_DEPTH.SurfaceBaseAddress = 0
1710 * 3DSTATE_DEPTH.HierarchicalDepthBufferEnable = 0
1711 * 3DSTATE_WM_DEPTH_STENCIL.DepthTestEnable = 0
1712 * 3DSTATE_WM_DEPTH_STENCIL.DepthBufferWriteEnable = 0
1713 *
1714 * The PRM is wrong, though. The width and height must be programmed to
1715 * actual framebuffer's width and height, even when neither depth buffer
1716 * nor stencil buffer is present. Also, D16_UNORM is not allowed to
1717 * be combined with a stencil buffer so we use D32_FLOAT instead.
1718 */
1719 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER), db) {
1720 db.SurfaceType = SURFTYPE_2D;
1721 db.SurfaceFormat = D32_FLOAT;
1722 db.Width = fb->width - 1;
1723 db.Height = fb->height - 1;
1724 db.StencilWriteEnable = has_stencil;
1725 }
1726 }
1727
1728 if (has_hiz) {
1729 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HIER_DEPTH_BUFFER), hdb) {
1730 hdb.HierarchicalDepthBufferObjectControlState = GENX(MOCS);
1731 hdb.SurfacePitch = image->hiz_surface.isl.row_pitch - 1;
1732 hdb.SurfaceBaseAddress = (struct anv_address) {
1733 .bo = image->bo,
1734 .offset = image->offset + image->hiz_surface.offset,
1735 };
1736 #if GEN_GEN >= 8
1737 /* From the SKL PRM Vol2a:
1738 *
1739 * The interpretation of this field is dependent on Surface Type
1740 * as follows:
1741 * - SURFTYPE_1D: distance in pixels between array slices
1742 * - SURFTYPE_2D/CUBE: distance in rows between array slices
1743 * - SURFTYPE_3D: distance in rows between R - slices
1744 */
1745 hdb.SurfaceQPitch =
1746 image->hiz_surface.isl.dim == ISL_SURF_DIM_1D ?
1747 isl_surf_get_array_pitch_el(&image->hiz_surface.isl) >> 2 :
1748 isl_surf_get_array_pitch_el_rows(&image->hiz_surface.isl) >> 2;
1749 #endif
1750 }
1751 } else {
1752 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HIER_DEPTH_BUFFER), hdb);
1753 }
1754
1755 /* Emit 3DSTATE_STENCIL_BUFFER */
1756 if (has_stencil) {
1757 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER), sb) {
1758 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1759 sb.StencilBufferEnable = true;
1760 #endif
1761 sb.StencilBufferObjectControlState = GENX(MOCS);
1762
1763 sb.SurfacePitch = image->stencil_surface.isl.row_pitch - 1;
1764
1765 #if GEN_GEN >= 8
1766 sb.SurfaceQPitch = isl_surf_get_array_pitch_el_rows(&image->stencil_surface.isl) >> 2;
1767 #endif
1768 sb.SurfaceBaseAddress = (struct anv_address) {
1769 .bo = image->bo,
1770 .offset = image->offset + image->stencil_surface.offset,
1771 };
1772 }
1773 } else {
1774 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER), sb);
1775 }
1776
1777 /* From the IVB PRM Vol2P1, 11.5.5.4 3DSTATE_CLEAR_PARAMS:
1778 *
1779 * 3DSTATE_CLEAR_PARAMS must always be programmed in the along with
1780 * the other Depth/Stencil state commands(i.e. 3DSTATE_DEPTH_BUFFER,
1781 * 3DSTATE_STENCIL_BUFFER, or 3DSTATE_HIER_DEPTH_BUFFER)
1782 *
1783 * Testing also shows that some variant of this restriction may exist HSW+.
1784 * On BDW+, it is not possible to emit 2 of these packets consecutively when
1785 * both have DepthClearValueValid set. An analysis of such state programming
1786 * on SKL showed that the GPU doesn't register the latter packet's clear
1787 * value.
1788 */
1789 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CLEAR_PARAMS), cp) {
1790 if (has_hiz) {
1791 cp.DepthClearValueValid = true;
1792 const uint32_t ds =
1793 cmd_buffer->state.subpass->depth_stencil_attachment;
1794 cp.DepthClearValue =
1795 cmd_buffer->state.attachments[ds].clear_value.depthStencil.depth;
1796 }
1797 }
1798 }
1799
1800 static void
1801 genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
1802 struct anv_subpass *subpass)
1803 {
1804 cmd_buffer->state.subpass = subpass;
1805
1806 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1807
1808 cmd_buffer_emit_depth_stencil(cmd_buffer);
1809 genX(cmd_buffer_emit_hz_op)(cmd_buffer, BLORP_HIZ_OP_HIZ_RESOLVE);
1810 genX(cmd_buffer_emit_hz_op)(cmd_buffer, BLORP_HIZ_OP_DEPTH_CLEAR);
1811
1812 anv_cmd_buffer_clear_subpass(cmd_buffer);
1813 }
1814
1815 void genX(CmdBeginRenderPass)(
1816 VkCommandBuffer commandBuffer,
1817 const VkRenderPassBeginInfo* pRenderPassBegin,
1818 VkSubpassContents contents)
1819 {
1820 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1821 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
1822 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
1823
1824 cmd_buffer->state.framebuffer = framebuffer;
1825 cmd_buffer->state.pass = pass;
1826 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
1827 anv_cmd_state_setup_attachments(cmd_buffer, pRenderPassBegin);
1828
1829 genX(flush_pipeline_select_3d)(cmd_buffer);
1830
1831 genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
1832 }
1833
1834 void genX(CmdNextSubpass)(
1835 VkCommandBuffer commandBuffer,
1836 VkSubpassContents contents)
1837 {
1838 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1839
1840 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1841
1842 anv_cmd_buffer_resolve_subpass(cmd_buffer);
1843 genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
1844 }
1845
1846 void genX(CmdEndRenderPass)(
1847 VkCommandBuffer commandBuffer)
1848 {
1849 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1850
1851 genX(cmd_buffer_emit_hz_op)(cmd_buffer, BLORP_HIZ_OP_DEPTH_RESOLVE);
1852 anv_cmd_buffer_resolve_subpass(cmd_buffer);
1853
1854 #ifndef NDEBUG
1855 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
1856 #endif
1857 }
1858
1859 static void
1860 emit_ps_depth_count(struct anv_cmd_buffer *cmd_buffer,
1861 struct anv_bo *bo, uint32_t offset)
1862 {
1863 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1864 pc.DestinationAddressType = DAT_PPGTT;
1865 pc.PostSyncOperation = WritePSDepthCount;
1866 pc.DepthStallEnable = true;
1867 pc.Address = (struct anv_address) { bo, offset };
1868
1869 if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
1870 pc.CommandStreamerStallEnable = true;
1871 }
1872 }
1873
1874 static void
1875 emit_query_availability(struct anv_cmd_buffer *cmd_buffer,
1876 struct anv_bo *bo, uint32_t offset)
1877 {
1878 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1879 pc.DestinationAddressType = DAT_PPGTT;
1880 pc.PostSyncOperation = WriteImmediateData;
1881 pc.Address = (struct anv_address) { bo, offset };
1882 pc.ImmediateData = 1;
1883 }
1884 }
1885
1886 void genX(CmdBeginQuery)(
1887 VkCommandBuffer commandBuffer,
1888 VkQueryPool queryPool,
1889 uint32_t query,
1890 VkQueryControlFlags flags)
1891 {
1892 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1893 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
1894
1895 /* Workaround: When meta uses the pipeline with the VS disabled, it seems
1896 * that the pipelining of the depth write breaks. What we see is that
1897 * samples from the render pass clear leaks into the first query
1898 * immediately after the clear. Doing a pipecontrol with a post-sync
1899 * operation and DepthStallEnable seems to work around the issue.
1900 */
1901 if (cmd_buffer->state.need_query_wa) {
1902 cmd_buffer->state.need_query_wa = false;
1903 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1904 pc.DepthCacheFlushEnable = true;
1905 pc.DepthStallEnable = true;
1906 }
1907 }
1908
1909 switch (pool->type) {
1910 case VK_QUERY_TYPE_OCCLUSION:
1911 emit_ps_depth_count(cmd_buffer, &pool->bo,
1912 query * sizeof(struct anv_query_pool_slot));
1913 break;
1914
1915 case VK_QUERY_TYPE_PIPELINE_STATISTICS:
1916 default:
1917 unreachable("");
1918 }
1919 }
1920
1921 void genX(CmdEndQuery)(
1922 VkCommandBuffer commandBuffer,
1923 VkQueryPool queryPool,
1924 uint32_t query)
1925 {
1926 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1927 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
1928
1929 switch (pool->type) {
1930 case VK_QUERY_TYPE_OCCLUSION:
1931 emit_ps_depth_count(cmd_buffer, &pool->bo,
1932 query * sizeof(struct anv_query_pool_slot) + 8);
1933
1934 emit_query_availability(cmd_buffer, &pool->bo,
1935 query * sizeof(struct anv_query_pool_slot) + 16);
1936 break;
1937
1938 case VK_QUERY_TYPE_PIPELINE_STATISTICS:
1939 default:
1940 unreachable("");
1941 }
1942 }
1943
1944 #define TIMESTAMP 0x2358
1945
1946 void genX(CmdWriteTimestamp)(
1947 VkCommandBuffer commandBuffer,
1948 VkPipelineStageFlagBits pipelineStage,
1949 VkQueryPool queryPool,
1950 uint32_t query)
1951 {
1952 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1953 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
1954 uint32_t offset = query * sizeof(struct anv_query_pool_slot);
1955
1956 assert(pool->type == VK_QUERY_TYPE_TIMESTAMP);
1957
1958 switch (pipelineStage) {
1959 case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
1960 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
1961 srm.RegisterAddress = TIMESTAMP;
1962 srm.MemoryAddress = (struct anv_address) { &pool->bo, offset };
1963 }
1964 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
1965 srm.RegisterAddress = TIMESTAMP + 4;
1966 srm.MemoryAddress = (struct anv_address) { &pool->bo, offset + 4 };
1967 }
1968 break;
1969
1970 default:
1971 /* Everything else is bottom-of-pipe */
1972 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1973 pc.DestinationAddressType = DAT_PPGTT;
1974 pc.PostSyncOperation = WriteTimestamp;
1975 pc.Address = (struct anv_address) { &pool->bo, offset };
1976
1977 if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
1978 pc.CommandStreamerStallEnable = true;
1979 }
1980 break;
1981 }
1982
1983 emit_query_availability(cmd_buffer, &pool->bo, query + 16);
1984 }
1985
1986 #if GEN_GEN > 7 || GEN_IS_HASWELL
1987
1988 #define alu_opcode(v) __gen_uint((v), 20, 31)
1989 #define alu_operand1(v) __gen_uint((v), 10, 19)
1990 #define alu_operand2(v) __gen_uint((v), 0, 9)
1991 #define alu(opcode, operand1, operand2) \
1992 alu_opcode(opcode) | alu_operand1(operand1) | alu_operand2(operand2)
1993
1994 #define OPCODE_NOOP 0x000
1995 #define OPCODE_LOAD 0x080
1996 #define OPCODE_LOADINV 0x480
1997 #define OPCODE_LOAD0 0x081
1998 #define OPCODE_LOAD1 0x481
1999 #define OPCODE_ADD 0x100
2000 #define OPCODE_SUB 0x101
2001 #define OPCODE_AND 0x102
2002 #define OPCODE_OR 0x103
2003 #define OPCODE_XOR 0x104
2004 #define OPCODE_STORE 0x180
2005 #define OPCODE_STOREINV 0x580
2006
2007 #define OPERAND_R0 0x00
2008 #define OPERAND_R1 0x01
2009 #define OPERAND_R2 0x02
2010 #define OPERAND_R3 0x03
2011 #define OPERAND_R4 0x04
2012 #define OPERAND_SRCA 0x20
2013 #define OPERAND_SRCB 0x21
2014 #define OPERAND_ACCU 0x31
2015 #define OPERAND_ZF 0x32
2016 #define OPERAND_CF 0x33
2017
2018 #define CS_GPR(n) (0x2600 + (n) * 8)
2019
2020 static void
2021 emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
2022 struct anv_bo *bo, uint32_t offset)
2023 {
2024 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
2025 lrm.RegisterAddress = reg,
2026 lrm.MemoryAddress = (struct anv_address) { bo, offset };
2027 }
2028 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
2029 lrm.RegisterAddress = reg + 4;
2030 lrm.MemoryAddress = (struct anv_address) { bo, offset + 4 };
2031 }
2032 }
2033
2034 static void
2035 store_query_result(struct anv_batch *batch, uint32_t reg,
2036 struct anv_bo *bo, uint32_t offset, VkQueryResultFlags flags)
2037 {
2038 anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
2039 srm.RegisterAddress = reg;
2040 srm.MemoryAddress = (struct anv_address) { bo, offset };
2041 }
2042
2043 if (flags & VK_QUERY_RESULT_64_BIT) {
2044 anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
2045 srm.RegisterAddress = reg + 4;
2046 srm.MemoryAddress = (struct anv_address) { bo, offset + 4 };
2047 }
2048 }
2049 }
2050
2051 void genX(CmdCopyQueryPoolResults)(
2052 VkCommandBuffer commandBuffer,
2053 VkQueryPool queryPool,
2054 uint32_t firstQuery,
2055 uint32_t queryCount,
2056 VkBuffer destBuffer,
2057 VkDeviceSize destOffset,
2058 VkDeviceSize destStride,
2059 VkQueryResultFlags flags)
2060 {
2061 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2062 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
2063 ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
2064 uint32_t slot_offset, dst_offset;
2065
2066 if (flags & VK_QUERY_RESULT_WAIT_BIT) {
2067 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2068 pc.CommandStreamerStallEnable = true;
2069 pc.StallAtPixelScoreboard = true;
2070 }
2071 }
2072
2073 dst_offset = buffer->offset + destOffset;
2074 for (uint32_t i = 0; i < queryCount; i++) {
2075
2076 slot_offset = (firstQuery + i) * sizeof(struct anv_query_pool_slot);
2077 switch (pool->type) {
2078 case VK_QUERY_TYPE_OCCLUSION:
2079 emit_load_alu_reg_u64(&cmd_buffer->batch,
2080 CS_GPR(0), &pool->bo, slot_offset);
2081 emit_load_alu_reg_u64(&cmd_buffer->batch,
2082 CS_GPR(1), &pool->bo, slot_offset + 8);
2083
2084 /* FIXME: We need to clamp the result for 32 bit. */
2085
2086 uint32_t *dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
2087 dw[1] = alu(OPCODE_LOAD, OPERAND_SRCA, OPERAND_R1);
2088 dw[2] = alu(OPCODE_LOAD, OPERAND_SRCB, OPERAND_R0);
2089 dw[3] = alu(OPCODE_SUB, 0, 0);
2090 dw[4] = alu(OPCODE_STORE, OPERAND_R2, OPERAND_ACCU);
2091 break;
2092
2093 case VK_QUERY_TYPE_TIMESTAMP:
2094 emit_load_alu_reg_u64(&cmd_buffer->batch,
2095 CS_GPR(2), &pool->bo, slot_offset);
2096 break;
2097
2098 default:
2099 unreachable("unhandled query type");
2100 }
2101
2102 store_query_result(&cmd_buffer->batch,
2103 CS_GPR(2), buffer->bo, dst_offset, flags);
2104
2105 if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
2106 emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0),
2107 &pool->bo, slot_offset + 16);
2108 if (flags & VK_QUERY_RESULT_64_BIT)
2109 store_query_result(&cmd_buffer->batch,
2110 CS_GPR(0), buffer->bo, dst_offset + 8, flags);
2111 else
2112 store_query_result(&cmd_buffer->batch,
2113 CS_GPR(0), buffer->bo, dst_offset + 4, flags);
2114 }
2115
2116 dst_offset += destStride;
2117 }
2118 }
2119
2120 #else
2121 void genX(CmdCopyQueryPoolResults)(
2122 VkCommandBuffer commandBuffer,
2123 VkQueryPool queryPool,
2124 uint32_t firstQuery,
2125 uint32_t queryCount,
2126 VkBuffer destBuffer,
2127 VkDeviceSize destOffset,
2128 VkDeviceSize destStride,
2129 VkQueryResultFlags flags)
2130 {
2131 anv_finishme("Queries not yet supported on Ivy Bridge");
2132 }
2133 #endif