anv: Do an end-of-pipe sync before updating AUX table entries
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 #include "util/fast_idiv_by_const.h"
31
32 #include "common/gen_aux_map.h"
33 #include "common/gen_l3_config.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
36
37 /* We reserve GPR 14 and 15 for conditional rendering */
38 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
39 #define __gen_get_batch_dwords anv_batch_emit_dwords
40 #define __gen_address_offset anv_address_add
41 #include "common/gen_mi_builder.h"
42
43 static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
44 uint32_t pipeline);
45
46 static void
47 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
48 {
49 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
50 lri.RegisterOffset = reg;
51 lri.DataDWord = imm;
52 }
53 }
54
55 void
56 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
57 {
58 struct anv_device *device = cmd_buffer->device;
59 UNUSED const struct gen_device_info *devinfo = &device->info;
60 uint32_t mocs = device->isl_dev.mocs.internal;
61
62 /* If we are emitting a new state base address we probably need to re-emit
63 * binding tables.
64 */
65 cmd_buffer->state.descriptors_dirty |= ~0;
66
67 /* Emit a render target cache flush.
68 *
69 * This isn't documented anywhere in the PRM. However, it seems to be
70 * necessary prior to changing the surface state base adress. Without
71 * this, we get GPU hangs when using multi-level command buffers which
72 * clear depth, reset state base address, and then go render stuff.
73 */
74 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
75 pc.DCFlushEnable = true;
76 pc.RenderTargetCacheFlushEnable = true;
77 pc.CommandStreamerStallEnable = true;
78 #if GEN_GEN >= 12
79 pc.TileCacheFlushEnable = true;
80 #endif
81 #if GEN_GEN == 12
82 /* GEN:BUG:1606662791:
83 *
84 * Software must program PIPE_CONTROL command with "HDC Pipeline
85 * Flush" prior to programming of the below two non-pipeline state :
86 * * STATE_BASE_ADDRESS
87 * * 3DSTATE_BINDING_TABLE_POOL_ALLOC
88 */
89 if (devinfo->revision == 0 /* A0 */)
90 pc.HDCPipelineFlushEnable = true;
91 #endif
92 }
93
94 #if GEN_GEN == 12
95 /* GEN:BUG:1607854226:
96 *
97 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
98 * mode by putting the pipeline temporarily in 3D mode.
99 */
100 uint32_t gen12_wa_pipeline = cmd_buffer->state.current_pipeline;
101 genX(flush_pipeline_select_3d)(cmd_buffer);
102 #endif
103
104 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
105 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
106 sba.GeneralStateMOCS = mocs;
107 sba.GeneralStateBaseAddressModifyEnable = true;
108
109 sba.StatelessDataPortAccessMOCS = mocs;
110
111 sba.SurfaceStateBaseAddress =
112 anv_cmd_buffer_surface_base_address(cmd_buffer);
113 sba.SurfaceStateMOCS = mocs;
114 sba.SurfaceStateBaseAddressModifyEnable = true;
115
116 sba.DynamicStateBaseAddress =
117 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
118 sba.DynamicStateMOCS = mocs;
119 sba.DynamicStateBaseAddressModifyEnable = true;
120
121 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
122 sba.IndirectObjectMOCS = mocs;
123 sba.IndirectObjectBaseAddressModifyEnable = true;
124
125 sba.InstructionBaseAddress =
126 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
127 sba.InstructionMOCS = mocs;
128 sba.InstructionBaseAddressModifyEnable = true;
129
130 # if (GEN_GEN >= 8)
131 /* Broadwell requires that we specify a buffer size for a bunch of
132 * these fields. However, since we will be growing the BO's live, we
133 * just set them all to the maximum.
134 */
135 sba.GeneralStateBufferSize = 0xfffff;
136 sba.IndirectObjectBufferSize = 0xfffff;
137 if (device->physical->use_softpin) {
138 /* With softpin, we use fixed addresses so we actually know how big
139 * our base addresses are.
140 */
141 sba.DynamicStateBufferSize = DYNAMIC_STATE_POOL_SIZE / 4096;
142 sba.InstructionBufferSize = INSTRUCTION_STATE_POOL_SIZE / 4096;
143 } else {
144 sba.DynamicStateBufferSize = 0xfffff;
145 sba.InstructionBufferSize = 0xfffff;
146 }
147 sba.GeneralStateBufferSizeModifyEnable = true;
148 sba.IndirectObjectBufferSizeModifyEnable = true;
149 sba.DynamicStateBufferSizeModifyEnable = true;
150 sba.InstructionBuffersizeModifyEnable = true;
151 # else
152 /* On gen7, we have upper bounds instead. According to the docs,
153 * setting an upper bound of zero means that no bounds checking is
154 * performed so, in theory, we should be able to leave them zero.
155 * However, border color is broken and the GPU bounds-checks anyway.
156 * To avoid this and other potential problems, we may as well set it
157 * for everything.
158 */
159 sba.GeneralStateAccessUpperBound =
160 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
161 sba.GeneralStateAccessUpperBoundModifyEnable = true;
162 sba.DynamicStateAccessUpperBound =
163 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
164 sba.DynamicStateAccessUpperBoundModifyEnable = true;
165 sba.InstructionAccessUpperBound =
166 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
167 sba.InstructionAccessUpperBoundModifyEnable = true;
168 # endif
169 # if (GEN_GEN >= 9)
170 if (cmd_buffer->device->physical->use_softpin) {
171 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
172 .bo = device->surface_state_pool.block_pool.bo,
173 .offset = 0,
174 };
175 sba.BindlessSurfaceStateSize = (1 << 20) - 1;
176 } else {
177 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
178 sba.BindlessSurfaceStateSize = 0;
179 }
180 sba.BindlessSurfaceStateMOCS = mocs;
181 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
182 # endif
183 # if (GEN_GEN >= 10)
184 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
185 sba.BindlessSamplerStateMOCS = mocs;
186 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
187 sba.BindlessSamplerStateBufferSize = 0;
188 # endif
189 }
190
191 #if GEN_GEN == 12
192 /* GEN:BUG:1607854226:
193 *
194 * Put the pipeline back into its current mode.
195 */
196 if (gen12_wa_pipeline != UINT32_MAX)
197 genX(flush_pipeline_select)(cmd_buffer, gen12_wa_pipeline);
198 #endif
199
200 /* After re-setting the surface state base address, we have to do some
201 * cache flusing so that the sampler engine will pick up the new
202 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
203 * Shared Function > 3D Sampler > State > State Caching (page 96):
204 *
205 * Coherency with system memory in the state cache, like the texture
206 * cache is handled partially by software. It is expected that the
207 * command stream or shader will issue Cache Flush operation or
208 * Cache_Flush sampler message to ensure that the L1 cache remains
209 * coherent with system memory.
210 *
211 * [...]
212 *
213 * Whenever the value of the Dynamic_State_Base_Addr,
214 * Surface_State_Base_Addr are altered, the L1 state cache must be
215 * invalidated to ensure the new surface or sampler state is fetched
216 * from system memory.
217 *
218 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
219 * which, according the PIPE_CONTROL instruction documentation in the
220 * Broadwell PRM:
221 *
222 * Setting this bit is independent of any other bit in this packet.
223 * This bit controls the invalidation of the L1 and L2 state caches
224 * at the top of the pipe i.e. at the parsing time.
225 *
226 * Unfortunately, experimentation seems to indicate that state cache
227 * invalidation through a PIPE_CONTROL does nothing whatsoever in
228 * regards to surface state and binding tables. In stead, it seems that
229 * invalidating the texture cache is what is actually needed.
230 *
231 * XXX: As far as we have been able to determine through
232 * experimentation, shows that flush the texture cache appears to be
233 * sufficient. The theory here is that all of the sampling/rendering
234 * units cache the binding table in the texture cache. However, we have
235 * yet to be able to actually confirm this.
236 */
237 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
238 pc.TextureCacheInvalidationEnable = true;
239 pc.ConstantCacheInvalidationEnable = true;
240 pc.StateCacheInvalidationEnable = true;
241 }
242 }
243
244 static void
245 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
246 struct anv_state state, struct anv_address addr)
247 {
248 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
249
250 VkResult result =
251 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
252 state.offset + isl_dev->ss.addr_offset,
253 addr.bo, addr.offset, NULL);
254 if (result != VK_SUCCESS)
255 anv_batch_set_error(&cmd_buffer->batch, result);
256 }
257
258 static void
259 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
260 struct anv_surface_state state)
261 {
262 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
263
264 assert(!anv_address_is_null(state.address));
265 add_surface_reloc(cmd_buffer, state.state, state.address);
266
267 if (!anv_address_is_null(state.aux_address)) {
268 VkResult result =
269 anv_reloc_list_add(&cmd_buffer->surface_relocs,
270 &cmd_buffer->pool->alloc,
271 state.state.offset + isl_dev->ss.aux_addr_offset,
272 state.aux_address.bo,
273 state.aux_address.offset,
274 NULL);
275 if (result != VK_SUCCESS)
276 anv_batch_set_error(&cmd_buffer->batch, result);
277 }
278
279 if (!anv_address_is_null(state.clear_address)) {
280 VkResult result =
281 anv_reloc_list_add(&cmd_buffer->surface_relocs,
282 &cmd_buffer->pool->alloc,
283 state.state.offset +
284 isl_dev->ss.clear_color_state_offset,
285 state.clear_address.bo,
286 state.clear_address.offset,
287 NULL);
288 if (result != VK_SUCCESS)
289 anv_batch_set_error(&cmd_buffer->batch, result);
290 }
291 }
292
293 static void
294 color_attachment_compute_aux_usage(struct anv_device * device,
295 struct anv_cmd_state * cmd_state,
296 uint32_t att, VkRect2D render_area,
297 union isl_color_value *fast_clear_color)
298 {
299 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
300 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
301
302 assert(iview->n_planes == 1);
303
304 if (iview->planes[0].isl.base_array_layer >=
305 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
306 iview->planes[0].isl.base_level)) {
307 /* There is no aux buffer which corresponds to the level and layer(s)
308 * being accessed.
309 */
310 att_state->aux_usage = ISL_AUX_USAGE_NONE;
311 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
312 att_state->fast_clear = false;
313 return;
314 }
315
316 att_state->aux_usage =
317 anv_layout_to_aux_usage(&device->info, iview->image,
318 VK_IMAGE_ASPECT_COLOR_BIT,
319 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
320 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
321
322 /* If we don't have aux, then we should have returned early in the layer
323 * check above. If we got here, we must have something.
324 */
325 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
326
327 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
328 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
329 att_state->input_aux_usage = att_state->aux_usage;
330 } else {
331 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
332 *
333 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
334 * setting is only allowed if Surface Format supported for Fast
335 * Clear. In addition, if the surface is bound to the sampling
336 * engine, Surface Format must be supported for Render Target
337 * Compression for surfaces bound to the sampling engine."
338 *
339 * In other words, we can only sample from a fast-cleared image if it
340 * also supports color compression.
341 */
342 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format) &&
343 isl_format_supports_ccs_d(&device->info, iview->planes[0].isl.format)) {
344 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
345
346 /* While fast-clear resolves and partial resolves are fairly cheap in the
347 * case where you render to most of the pixels, full resolves are not
348 * because they potentially involve reading and writing the entire
349 * framebuffer. If we can't texture with CCS_E, we should leave it off and
350 * limit ourselves to fast clears.
351 */
352 if (cmd_state->pass->attachments[att].first_subpass_layout ==
353 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
354 anv_perf_warn(device, iview->image,
355 "Not temporarily enabling CCS_E.");
356 }
357 } else {
358 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
359 }
360 }
361
362 assert(iview->image->planes[0].aux_surface.isl.usage &
363 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
364
365 union isl_color_value clear_color = {};
366 anv_clear_color_from_att_state(&clear_color, att_state, iview);
367
368 att_state->clear_color_is_zero_one =
369 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
370 att_state->clear_color_is_zero =
371 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
372
373 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
374 /* Start by getting the fast clear type. We use the first subpass
375 * layout here because we don't want to fast-clear if the first subpass
376 * to use the attachment can't handle fast-clears.
377 */
378 enum anv_fast_clear_type fast_clear_type =
379 anv_layout_to_fast_clear_type(&device->info, iview->image,
380 VK_IMAGE_ASPECT_COLOR_BIT,
381 cmd_state->pass->attachments[att].first_subpass_layout);
382 switch (fast_clear_type) {
383 case ANV_FAST_CLEAR_NONE:
384 att_state->fast_clear = false;
385 break;
386 case ANV_FAST_CLEAR_DEFAULT_VALUE:
387 att_state->fast_clear = att_state->clear_color_is_zero;
388 break;
389 case ANV_FAST_CLEAR_ANY:
390 att_state->fast_clear = true;
391 break;
392 }
393
394 /* Potentially, we could do partial fast-clears but doing so has crazy
395 * alignment restrictions. It's easier to just restrict to full size
396 * fast clears for now.
397 */
398 if (render_area.offset.x != 0 ||
399 render_area.offset.y != 0 ||
400 render_area.extent.width != iview->extent.width ||
401 render_area.extent.height != iview->extent.height)
402 att_state->fast_clear = false;
403
404 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
405 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
406 att_state->fast_clear = false;
407
408 /* We only allow fast clears to the first slice of an image (level 0,
409 * layer 0) and only for the entire slice. This guarantees us that, at
410 * any given time, there is only one clear color on any given image at
411 * any given time. At the time of our testing (Jan 17, 2018), there
412 * were no known applications which would benefit from fast-clearing
413 * more than just the first slice.
414 */
415 if (att_state->fast_clear &&
416 (iview->planes[0].isl.base_level > 0 ||
417 iview->planes[0].isl.base_array_layer > 0)) {
418 anv_perf_warn(device, iview->image,
419 "Rendering with multi-lod or multi-layer framebuffer "
420 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
421 "baseArrayLayer > 0. Not fast clearing.");
422 att_state->fast_clear = false;
423 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
424 anv_perf_warn(device, iview->image,
425 "Rendering to a multi-layer framebuffer with "
426 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
427 }
428
429 if (att_state->fast_clear)
430 *fast_clear_color = clear_color;
431 } else {
432 att_state->fast_clear = false;
433 }
434 }
435
436 static void
437 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
438 struct anv_cmd_state *cmd_state,
439 uint32_t att, VkRect2D render_area)
440 {
441 struct anv_render_pass_attachment *pass_att =
442 &cmd_state->pass->attachments[att];
443 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
444 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
445
446 /* These will be initialized after the first subpass transition. */
447 att_state->aux_usage = ISL_AUX_USAGE_NONE;
448 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
449
450 /* This is unused for depth/stencil but valgrind complains if it
451 * isn't initialized
452 */
453 att_state->clear_color_is_zero_one = false;
454
455 if (GEN_GEN == 7) {
456 /* We don't do any HiZ or depth fast-clears on gen7 yet */
457 att_state->fast_clear = false;
458 return;
459 }
460
461 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
462 /* If we're just clearing stencil, we can always HiZ clear */
463 att_state->fast_clear = true;
464 return;
465 }
466
467 /* Default to false for now */
468 att_state->fast_clear = false;
469
470 /* We must have depth in order to have HiZ */
471 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
472 return;
473
474 const enum isl_aux_usage first_subpass_aux_usage =
475 anv_layout_to_aux_usage(&device->info, iview->image,
476 VK_IMAGE_ASPECT_DEPTH_BIT,
477 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
478 pass_att->first_subpass_layout);
479 if (!blorp_can_hiz_clear_depth(&device->info,
480 &iview->image->planes[0].surface.isl,
481 first_subpass_aux_usage,
482 iview->planes[0].isl.base_level,
483 iview->planes[0].isl.base_array_layer,
484 render_area.offset.x,
485 render_area.offset.y,
486 render_area.offset.x +
487 render_area.extent.width,
488 render_area.offset.y +
489 render_area.extent.height))
490 return;
491
492 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
493 return;
494
495 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
496 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
497 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
498 * only supports returning 0.0f. Gens prior to gen8 do not support this
499 * feature at all.
500 */
501 return;
502 }
503
504 /* If we got here, then we can fast clear */
505 att_state->fast_clear = true;
506 }
507
508 static bool
509 need_input_attachment_state(const struct anv_render_pass_attachment *att)
510 {
511 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
512 return false;
513
514 /* We only allocate input attachment states for color surfaces. Compression
515 * is not yet enabled for depth textures and stencil doesn't allow
516 * compression so we can just use the texture surface state from the view.
517 */
518 return vk_format_is_color(att->format);
519 }
520
521 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
522 * the initial layout is undefined, the HiZ buffer and depth buffer will
523 * represent the same data at the end of this operation.
524 */
525 static void
526 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
527 const struct anv_image *image,
528 VkImageLayout initial_layout,
529 VkImageLayout final_layout)
530 {
531 uint32_t depth_plane =
532 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
533 if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE)
534 return;
535
536 const enum isl_aux_state initial_state =
537 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
538 VK_IMAGE_ASPECT_DEPTH_BIT,
539 initial_layout);
540 const enum isl_aux_state final_state =
541 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
542 VK_IMAGE_ASPECT_DEPTH_BIT,
543 final_layout);
544
545 const bool initial_depth_valid =
546 isl_aux_state_has_valid_primary(initial_state);
547 const bool initial_hiz_valid =
548 isl_aux_state_has_valid_aux(initial_state);
549 const bool final_needs_depth =
550 isl_aux_state_has_valid_primary(final_state);
551 const bool final_needs_hiz =
552 isl_aux_state_has_valid_aux(final_state);
553
554 /* Getting into the pass-through state for Depth is tricky and involves
555 * both a resolve and an ambiguate. We don't handle that state right now
556 * as anv_layout_to_aux_state never returns it.
557 */
558 assert(final_state != ISL_AUX_STATE_PASS_THROUGH);
559
560 if (final_needs_depth && !initial_depth_valid) {
561 assert(initial_hiz_valid);
562 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
563 0, 0, 1, ISL_AUX_OP_FULL_RESOLVE);
564 } else if (final_needs_hiz && !initial_hiz_valid) {
565 assert(initial_depth_valid);
566 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
567 0, 0, 1, ISL_AUX_OP_AMBIGUATE);
568 }
569 }
570
571 static inline bool
572 vk_image_layout_stencil_write_optimal(VkImageLayout layout)
573 {
574 return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
575 layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
576 layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
577 }
578
579 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
580 * the initial layout is undefined, the HiZ buffer and depth buffer will
581 * represent the same data at the end of this operation.
582 */
583 static void
584 transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
585 const struct anv_image *image,
586 uint32_t base_level, uint32_t level_count,
587 uint32_t base_layer, uint32_t layer_count,
588 VkImageLayout initial_layout,
589 VkImageLayout final_layout)
590 {
591 #if GEN_GEN == 7
592 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
593 VK_IMAGE_ASPECT_STENCIL_BIT);
594
595 /* On gen7, we have to store a texturable version of the stencil buffer in
596 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
597 * forth at strategic points. Stencil writes are only allowed in following
598 * layouts:
599 *
600 * - VK_IMAGE_LAYOUT_GENERAL
601 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
602 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
603 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
604 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
605 *
606 * For general, we have no nice opportunity to transition so we do the copy
607 * to the shadow unconditionally at the end of the subpass. For transfer
608 * destinations, we can update it as part of the transfer op. For the other
609 * layouts, we delay the copy until a transition into some other layout.
610 */
611 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
612 vk_image_layout_stencil_write_optimal(initial_layout) &&
613 !vk_image_layout_stencil_write_optimal(final_layout)) {
614 anv_image_copy_to_shadow(cmd_buffer, image,
615 VK_IMAGE_ASPECT_STENCIL_BIT,
616 base_level, level_count,
617 base_layer, layer_count);
618 }
619 #endif /* GEN_GEN == 7 */
620 }
621
622 #define MI_PREDICATE_SRC0 0x2400
623 #define MI_PREDICATE_SRC1 0x2408
624 #define MI_PREDICATE_RESULT 0x2418
625
626 static void
627 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
628 const struct anv_image *image,
629 VkImageAspectFlagBits aspect,
630 uint32_t level,
631 uint32_t base_layer, uint32_t layer_count,
632 bool compressed)
633 {
634 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
635
636 /* We only have compression tracking for CCS_E */
637 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
638 return;
639
640 for (uint32_t a = 0; a < layer_count; a++) {
641 uint32_t layer = base_layer + a;
642 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
643 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
644 image, aspect,
645 level, layer);
646 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
647 }
648 }
649 }
650
651 static void
652 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
653 const struct anv_image *image,
654 VkImageAspectFlagBits aspect,
655 enum anv_fast_clear_type fast_clear)
656 {
657 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
658 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
659 image, aspect);
660 sdi.ImmediateData = fast_clear;
661 }
662
663 /* Whenever we have fast-clear, we consider that slice to be compressed.
664 * This makes building predicates much easier.
665 */
666 if (fast_clear != ANV_FAST_CLEAR_NONE)
667 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
668 }
669
670 /* This is only really practical on haswell and above because it requires
671 * MI math in order to get it correct.
672 */
673 #if GEN_GEN >= 8 || GEN_IS_HASWELL
674 static void
675 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
676 const struct anv_image *image,
677 VkImageAspectFlagBits aspect,
678 uint32_t level, uint32_t array_layer,
679 enum isl_aux_op resolve_op,
680 enum anv_fast_clear_type fast_clear_supported)
681 {
682 struct gen_mi_builder b;
683 gen_mi_builder_init(&b, &cmd_buffer->batch);
684
685 const struct gen_mi_value fast_clear_type =
686 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
687 image, aspect));
688
689 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
690 /* In this case, we're doing a full resolve which means we want the
691 * resolve to happen if any compression (including fast-clears) is
692 * present.
693 *
694 * In order to simplify the logic a bit, we make the assumption that,
695 * if the first slice has been fast-cleared, it is also marked as
696 * compressed. See also set_image_fast_clear_state.
697 */
698 const struct gen_mi_value compression_state =
699 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
700 image, aspect,
701 level, array_layer));
702 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
703 compression_state);
704 gen_mi_store(&b, compression_state, gen_mi_imm(0));
705
706 if (level == 0 && array_layer == 0) {
707 /* If the predicate is true, we want to write 0 to the fast clear type
708 * and, if it's false, leave it alone. We can do this by writing
709 *
710 * clear_type = clear_type & ~predicate;
711 */
712 struct gen_mi_value new_fast_clear_type =
713 gen_mi_iand(&b, fast_clear_type,
714 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
715 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
716 }
717 } else if (level == 0 && array_layer == 0) {
718 /* In this case, we are doing a partial resolve to get rid of fast-clear
719 * colors. We don't care about the compression state but we do care
720 * about how much fast clear is allowed by the final layout.
721 */
722 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
723 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
724
725 /* We need to compute (fast_clear_supported < image->fast_clear) */
726 struct gen_mi_value pred =
727 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
728 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
729 gen_mi_value_ref(&b, pred));
730
731 /* If the predicate is true, we want to write 0 to the fast clear type
732 * and, if it's false, leave it alone. We can do this by writing
733 *
734 * clear_type = clear_type & ~predicate;
735 */
736 struct gen_mi_value new_fast_clear_type =
737 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
738 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
739 } else {
740 /* In this case, we're trying to do a partial resolve on a slice that
741 * doesn't have clear color. There's nothing to do.
742 */
743 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
744 return;
745 }
746
747 /* Set src1 to 0 and use a != condition */
748 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
749
750 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
751 mip.LoadOperation = LOAD_LOADINV;
752 mip.CombineOperation = COMBINE_SET;
753 mip.CompareOperation = COMPARE_SRCS_EQUAL;
754 }
755 }
756 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
757
758 #if GEN_GEN <= 8
759 static void
760 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
761 const struct anv_image *image,
762 VkImageAspectFlagBits aspect,
763 uint32_t level, uint32_t array_layer,
764 enum isl_aux_op resolve_op,
765 enum anv_fast_clear_type fast_clear_supported)
766 {
767 struct gen_mi_builder b;
768 gen_mi_builder_init(&b, &cmd_buffer->batch);
769
770 struct gen_mi_value fast_clear_type_mem =
771 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
772 image, aspect));
773
774 /* This only works for partial resolves and only when the clear color is
775 * all or nothing. On the upside, this emits less command streamer code
776 * and works on Ivybridge and Bay Trail.
777 */
778 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
779 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
780
781 /* We don't support fast clears on anything other than the first slice. */
782 if (level > 0 || array_layer > 0)
783 return;
784
785 /* On gen8, we don't have a concept of default clear colors because we
786 * can't sample from CCS surfaces. It's enough to just load the fast clear
787 * state into the predicate register.
788 */
789 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
790 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
791 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
792
793 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
794 mip.LoadOperation = LOAD_LOADINV;
795 mip.CombineOperation = COMBINE_SET;
796 mip.CompareOperation = COMPARE_SRCS_EQUAL;
797 }
798 }
799 #endif /* GEN_GEN <= 8 */
800
801 static void
802 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
803 const struct anv_image *image,
804 enum isl_format format,
805 VkImageAspectFlagBits aspect,
806 uint32_t level, uint32_t array_layer,
807 enum isl_aux_op resolve_op,
808 enum anv_fast_clear_type fast_clear_supported)
809 {
810 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
811
812 #if GEN_GEN >= 9
813 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
814 aspect, level, array_layer,
815 resolve_op, fast_clear_supported);
816 #else /* GEN_GEN <= 8 */
817 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
818 aspect, level, array_layer,
819 resolve_op, fast_clear_supported);
820 #endif
821
822 /* CCS_D only supports full resolves and BLORP will assert on us if we try
823 * to do a partial resolve on a CCS_D surface.
824 */
825 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
826 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D)
827 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
828
829 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
830 array_layer, 1, resolve_op, NULL, true);
831 }
832
833 static void
834 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
835 const struct anv_image *image,
836 enum isl_format format,
837 VkImageAspectFlagBits aspect,
838 uint32_t array_layer,
839 enum isl_aux_op resolve_op,
840 enum anv_fast_clear_type fast_clear_supported)
841 {
842 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
843 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
844
845 #if GEN_GEN >= 8 || GEN_IS_HASWELL
846 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
847 aspect, 0, array_layer,
848 resolve_op, fast_clear_supported);
849
850 anv_image_mcs_op(cmd_buffer, image, format, aspect,
851 array_layer, 1, resolve_op, NULL, true);
852 #else
853 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
854 #endif
855 }
856
857 void
858 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
859 const struct anv_image *image,
860 VkImageAspectFlagBits aspect,
861 enum isl_aux_usage aux_usage,
862 uint32_t level,
863 uint32_t base_layer,
864 uint32_t layer_count)
865 {
866 /* The aspect must be exactly one of the image aspects. */
867 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
868
869 /* The only compression types with more than just fast-clears are MCS,
870 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
871 * track the current fast-clear and compression state. This leaves us
872 * with just MCS and CCS_E.
873 */
874 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
875 aux_usage != ISL_AUX_USAGE_MCS)
876 return;
877
878 set_image_compressed_bit(cmd_buffer, image, aspect,
879 level, base_layer, layer_count, true);
880 }
881
882 static void
883 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
884 const struct anv_image *image,
885 VkImageAspectFlagBits aspect)
886 {
887 assert(cmd_buffer && image);
888 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
889
890 set_image_fast_clear_state(cmd_buffer, image, aspect,
891 ANV_FAST_CLEAR_NONE);
892
893 /* Initialize the struct fields that are accessed for fast-clears so that
894 * the HW restrictions on the field values are satisfied.
895 */
896 struct anv_address addr =
897 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
898
899 if (GEN_GEN >= 9) {
900 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
901 const unsigned num_dwords = GEN_GEN >= 10 ?
902 isl_dev->ss.clear_color_state_size / 4 :
903 isl_dev->ss.clear_value_size / 4;
904 for (unsigned i = 0; i < num_dwords; i++) {
905 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
906 sdi.Address = addr;
907 sdi.Address.offset += i * 4;
908 sdi.ImmediateData = 0;
909 }
910 }
911 } else {
912 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
913 sdi.Address = addr;
914 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
915 /* Pre-SKL, the dword containing the clear values also contains
916 * other fields, so we need to initialize those fields to match the
917 * values that would be in a color attachment.
918 */
919 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
920 ISL_CHANNEL_SELECT_GREEN << 22 |
921 ISL_CHANNEL_SELECT_BLUE << 19 |
922 ISL_CHANNEL_SELECT_ALPHA << 16;
923 } else if (GEN_GEN == 7) {
924 /* On IVB, the dword containing the clear values also contains
925 * other fields that must be zero or can be zero.
926 */
927 sdi.ImmediateData = 0;
928 }
929 }
930 }
931 }
932
933 /* Copy the fast-clear value dword(s) between a surface state object and an
934 * image's fast clear state buffer.
935 */
936 static void
937 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
938 struct anv_state surface_state,
939 const struct anv_image *image,
940 VkImageAspectFlagBits aspect,
941 bool copy_from_surface_state)
942 {
943 assert(cmd_buffer && image);
944 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
945
946 struct anv_address ss_clear_addr = {
947 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
948 .offset = surface_state.offset +
949 cmd_buffer->device->isl_dev.ss.clear_value_offset,
950 };
951 const struct anv_address entry_addr =
952 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
953 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
954
955 #if GEN_GEN == 7
956 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
957 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
958 * in-flight when they are issued even if the memory touched is not
959 * currently active for rendering. The weird bit is that it is not the
960 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
961 * rendering hangs such that the next stalling command after the
962 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
963 *
964 * It is unclear exactly why this hang occurs. Both MI commands come with
965 * warnings about the 3D pipeline but that doesn't seem to fully explain
966 * it. My (Jason's) best theory is that it has something to do with the
967 * fact that we're using a GPU state register as our temporary and that
968 * something with reading/writing it is causing problems.
969 *
970 * In order to work around this issue, we emit a PIPE_CONTROL with the
971 * command streamer stall bit set.
972 */
973 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
974 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
975 #endif
976
977 struct gen_mi_builder b;
978 gen_mi_builder_init(&b, &cmd_buffer->batch);
979
980 if (copy_from_surface_state) {
981 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
982 } else {
983 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
984
985 /* Updating a surface state object may require that the state cache be
986 * invalidated. From the SKL PRM, Shared Functions -> State -> State
987 * Caching:
988 *
989 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
990 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
991 * modified [...], the L1 state cache must be invalidated to ensure
992 * the new surface or sampler state is fetched from system memory.
993 *
994 * In testing, SKL doesn't actually seem to need this, but HSW does.
995 */
996 cmd_buffer->state.pending_pipe_bits |=
997 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
998 }
999 }
1000
1001 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
1002
1003 #if GEN_GEN == 12
1004 static void
1005 anv_image_init_aux_tt(struct anv_cmd_buffer *cmd_buffer,
1006 const struct anv_image *image,
1007 VkImageAspectFlagBits aspect,
1008 uint32_t base_level, uint32_t level_count,
1009 uint32_t base_layer, uint32_t layer_count)
1010 {
1011 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1012
1013 uint64_t base_address =
1014 anv_address_physical(image->planes[plane].address);
1015
1016 const struct isl_surf *isl_surf = &image->planes[plane].surface.isl;
1017 uint64_t format_bits = gen_aux_map_format_bits_for_isl_surf(isl_surf);
1018
1019 /* We're about to live-update the AUX-TT. We really don't want anyone else
1020 * trying to read it while we're doing this. We could probably get away
1021 * with not having this stall in some cases if we were really careful but
1022 * it's better to play it safe. Full stall the GPU.
1023 */
1024 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_END_OF_PIPE_SYNC_BIT;
1025 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1026
1027 struct gen_mi_builder b;
1028 gen_mi_builder_init(&b, &cmd_buffer->batch);
1029
1030 for (uint32_t a = 0; a < layer_count; a++) {
1031 const uint32_t layer = base_layer + a;
1032
1033 uint64_t start_offset_B = UINT64_MAX, end_offset_B = 0;
1034 for (uint32_t l = 0; l < level_count; l++) {
1035 const uint32_t level = base_level + l;
1036
1037 uint32_t logical_array_layer, logical_z_offset_px;
1038 if (image->type == VK_IMAGE_TYPE_3D) {
1039 logical_array_layer = 0;
1040
1041 /* If the given miplevel does not have this layer, then any higher
1042 * miplevels won't either because miplevels only get smaller the
1043 * higher the LOD.
1044 */
1045 assert(layer < image->extent.depth);
1046 if (layer >= anv_minify(image->extent.depth, level))
1047 break;
1048 logical_z_offset_px = layer;
1049 } else {
1050 assert(layer < image->array_size);
1051 logical_array_layer = layer;
1052 logical_z_offset_px = 0;
1053 }
1054
1055 uint32_t slice_start_offset_B, slice_end_offset_B;
1056 isl_surf_get_image_range_B_tile(isl_surf, level,
1057 logical_array_layer,
1058 logical_z_offset_px,
1059 &slice_start_offset_B,
1060 &slice_end_offset_B);
1061
1062 start_offset_B = MIN2(start_offset_B, slice_start_offset_B);
1063 end_offset_B = MAX2(end_offset_B, slice_end_offset_B);
1064 }
1065
1066 /* Aux operates 64K at a time */
1067 start_offset_B = align_down_u64(start_offset_B, 64 * 1024);
1068 end_offset_B = align_u64(end_offset_B, 64 * 1024);
1069
1070 for (uint64_t offset = start_offset_B;
1071 offset < end_offset_B; offset += 64 * 1024) {
1072 uint64_t address = base_address + offset;
1073
1074 uint64_t aux_entry_addr64, *aux_entry_map;
1075 aux_entry_map = gen_aux_map_get_entry(cmd_buffer->device->aux_map_ctx,
1076 address, &aux_entry_addr64);
1077
1078 assert(cmd_buffer->device->physical->use_softpin);
1079 struct anv_address aux_entry_address = {
1080 .bo = NULL,
1081 .offset = aux_entry_addr64,
1082 };
1083
1084 const uint64_t old_aux_entry = READ_ONCE(*aux_entry_map);
1085 uint64_t new_aux_entry =
1086 (old_aux_entry & GEN_AUX_MAP_ADDRESS_MASK) | format_bits;
1087
1088 if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage))
1089 new_aux_entry |= GEN_AUX_MAP_ENTRY_VALID_BIT;
1090
1091 gen_mi_store(&b, gen_mi_mem64(aux_entry_address),
1092 gen_mi_imm(new_aux_entry));
1093 }
1094 }
1095
1096 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1097 }
1098 #endif /* GEN_GEN == 12 */
1099
1100 /**
1101 * @brief Transitions a color buffer from one layout to another.
1102 *
1103 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
1104 * more information.
1105 *
1106 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
1107 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
1108 * this represents the maximum layers to transition at each
1109 * specified miplevel.
1110 */
1111 static void
1112 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
1113 const struct anv_image *image,
1114 VkImageAspectFlagBits aspect,
1115 const uint32_t base_level, uint32_t level_count,
1116 uint32_t base_layer, uint32_t layer_count,
1117 VkImageLayout initial_layout,
1118 VkImageLayout final_layout)
1119 {
1120 struct anv_device *device = cmd_buffer->device;
1121 const struct gen_device_info *devinfo = &device->info;
1122 /* Validate the inputs. */
1123 assert(cmd_buffer);
1124 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1125 /* These values aren't supported for simplicity's sake. */
1126 assert(level_count != VK_REMAINING_MIP_LEVELS &&
1127 layer_count != VK_REMAINING_ARRAY_LAYERS);
1128 /* Ensure the subresource range is valid. */
1129 UNUSED uint64_t last_level_num = base_level + level_count;
1130 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
1131 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
1132 assert((uint64_t)base_layer + layer_count <= image_layers);
1133 assert(last_level_num <= image->levels);
1134 /* The spec disallows these final layouts. */
1135 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
1136 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
1137
1138 /* No work is necessary if the layout stays the same or if this subresource
1139 * range lacks auxiliary data.
1140 */
1141 if (initial_layout == final_layout)
1142 return;
1143
1144 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1145
1146 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1147 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
1148 /* This surface is a linear compressed image with a tiled shadow surface
1149 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
1150 * we need to ensure the shadow copy is up-to-date.
1151 */
1152 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1153 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
1154 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1155 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
1156 assert(plane == 0);
1157 anv_image_copy_to_shadow(cmd_buffer, image,
1158 VK_IMAGE_ASPECT_COLOR_BIT,
1159 base_level, level_count,
1160 base_layer, layer_count);
1161 }
1162
1163 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
1164 return;
1165
1166 assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR);
1167
1168 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
1169 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
1170 #if GEN_GEN == 12
1171 if (device->physical->has_implicit_ccs && devinfo->has_aux_map) {
1172 anv_image_init_aux_tt(cmd_buffer, image, aspect,
1173 base_level, level_count,
1174 base_layer, layer_count);
1175 }
1176 #else
1177 assert(!(device->physical->has_implicit_ccs && devinfo->has_aux_map));
1178 #endif
1179
1180 /* A subresource in the undefined layout may have been aliased and
1181 * populated with any arrangement of bits. Therefore, we must initialize
1182 * the related aux buffer and clear buffer entry with desirable values.
1183 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
1184 * images with VK_IMAGE_TILING_OPTIMAL.
1185 *
1186 * Initialize the relevant clear buffer entries.
1187 */
1188 if (base_level == 0 && base_layer == 0)
1189 init_fast_clear_color(cmd_buffer, image, aspect);
1190
1191 /* Initialize the aux buffers to enable correct rendering. In order to
1192 * ensure that things such as storage images work correctly, aux buffers
1193 * need to be initialized to valid data.
1194 *
1195 * Having an aux buffer with invalid data is a problem for two reasons:
1196 *
1197 * 1) Having an invalid value in the buffer can confuse the hardware.
1198 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1199 * invalid and leads to the hardware doing strange things. It
1200 * doesn't hang as far as we can tell but rendering corruption can
1201 * occur.
1202 *
1203 * 2) If this transition is into the GENERAL layout and we then use the
1204 * image as a storage image, then we must have the aux buffer in the
1205 * pass-through state so that, if we then go to texture from the
1206 * image, we get the results of our storage image writes and not the
1207 * fast clear color or other random data.
1208 *
1209 * For CCS both of the problems above are real demonstrable issues. In
1210 * that case, the only thing we can do is to perform an ambiguate to
1211 * transition the aux surface into the pass-through state.
1212 *
1213 * For MCS, (2) is never an issue because we don't support multisampled
1214 * storage images. In theory, issue (1) is a problem with MCS but we've
1215 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1216 * theory, be interpreted as something but we don't know that all bit
1217 * patterns are actually valid. For 2x and 8x, you could easily end up
1218 * with the MCS referring to an invalid plane because not all bits of
1219 * the MCS value are actually used. Even though we've never seen issues
1220 * in the wild, it's best to play it safe and initialize the MCS. We
1221 * can use a fast-clear for MCS because we only ever touch from render
1222 * and texture (no image load store).
1223 */
1224 if (image->samples == 1) {
1225 for (uint32_t l = 0; l < level_count; l++) {
1226 const uint32_t level = base_level + l;
1227
1228 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1229 if (base_layer >= aux_layers)
1230 break; /* We will only get fewer layers as level increases */
1231 uint32_t level_layer_count =
1232 MIN2(layer_count, aux_layers - base_layer);
1233
1234 anv_image_ccs_op(cmd_buffer, image,
1235 image->planes[plane].surface.isl.format,
1236 aspect, level, base_layer, level_layer_count,
1237 ISL_AUX_OP_AMBIGUATE, NULL, false);
1238
1239 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1240 set_image_compressed_bit(cmd_buffer, image, aspect,
1241 level, base_layer, level_layer_count,
1242 false);
1243 }
1244 }
1245 } else {
1246 if (image->samples == 4 || image->samples == 16) {
1247 anv_perf_warn(cmd_buffer->device, image,
1248 "Doing a potentially unnecessary fast-clear to "
1249 "define an MCS buffer.");
1250 }
1251
1252 assert(base_level == 0 && level_count == 1);
1253 anv_image_mcs_op(cmd_buffer, image,
1254 image->planes[plane].surface.isl.format,
1255 aspect, base_layer, layer_count,
1256 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1257 }
1258 return;
1259 }
1260
1261 const enum isl_aux_usage initial_aux_usage =
1262 anv_layout_to_aux_usage(devinfo, image, aspect, 0, initial_layout);
1263 const enum isl_aux_usage final_aux_usage =
1264 anv_layout_to_aux_usage(devinfo, image, aspect, 0, final_layout);
1265
1266 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1267 * We can handle transitions between CCS_D/E to and from NONE. What we
1268 * don't yet handle is switching between CCS_E and CCS_D within a given
1269 * image. Doing so in a performant way requires more detailed aux state
1270 * tracking such as what is done in i965. For now, just assume that we
1271 * only have one type of compression.
1272 */
1273 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1274 final_aux_usage == ISL_AUX_USAGE_NONE ||
1275 initial_aux_usage == final_aux_usage);
1276
1277 /* If initial aux usage is NONE, there is nothing to resolve */
1278 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1279 return;
1280
1281 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1282
1283 /* If the initial layout supports more fast clear than the final layout
1284 * then we need at least a partial resolve.
1285 */
1286 const enum anv_fast_clear_type initial_fast_clear =
1287 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1288 const enum anv_fast_clear_type final_fast_clear =
1289 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1290 if (final_fast_clear < initial_fast_clear)
1291 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1292
1293 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1294 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1295 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1296
1297 if (resolve_op == ISL_AUX_OP_NONE)
1298 return;
1299
1300 /* Perform a resolve to synchronize data between the main and aux buffer.
1301 * Before we begin, we must satisfy the cache flushing requirement specified
1302 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1303 *
1304 * Any transition from any value in {Clear, Render, Resolve} to a
1305 * different value in {Clear, Render, Resolve} requires end of pipe
1306 * synchronization.
1307 *
1308 * We perform a flush of the write cache before and after the clear and
1309 * resolve operations to meet this requirement.
1310 *
1311 * Unlike other drawing, fast clear operations are not properly
1312 * synchronized. The first PIPE_CONTROL here likely ensures that the
1313 * contents of the previous render or clear hit the render target before we
1314 * resolve and the second likely ensures that the resolve is complete before
1315 * we do any more rendering or clearing.
1316 */
1317 cmd_buffer->state.pending_pipe_bits |=
1318 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT;
1319
1320 for (uint32_t l = 0; l < level_count; l++) {
1321 uint32_t level = base_level + l;
1322
1323 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1324 if (base_layer >= aux_layers)
1325 break; /* We will only get fewer layers as level increases */
1326 uint32_t level_layer_count =
1327 MIN2(layer_count, aux_layers - base_layer);
1328
1329 for (uint32_t a = 0; a < level_layer_count; a++) {
1330 uint32_t array_layer = base_layer + a;
1331 if (image->samples == 1) {
1332 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1333 image->planes[plane].surface.isl.format,
1334 aspect, level, array_layer, resolve_op,
1335 final_fast_clear);
1336 } else {
1337 /* We only support fast-clear on the first layer so partial
1338 * resolves should not be used on other layers as they will use
1339 * the clear color stored in memory that is only valid for layer0.
1340 */
1341 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1342 array_layer != 0)
1343 continue;
1344
1345 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1346 image->planes[plane].surface.isl.format,
1347 aspect, array_layer, resolve_op,
1348 final_fast_clear);
1349 }
1350 }
1351 }
1352
1353 cmd_buffer->state.pending_pipe_bits |=
1354 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT;
1355 }
1356
1357 /**
1358 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1359 */
1360 static VkResult
1361 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1362 struct anv_render_pass *pass,
1363 const VkRenderPassBeginInfo *begin)
1364 {
1365 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1366 struct anv_cmd_state *state = &cmd_buffer->state;
1367 struct anv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
1368
1369 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1370
1371 if (pass->attachment_count > 0) {
1372 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1373 pass->attachment_count *
1374 sizeof(state->attachments[0]),
1375 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1376 if (state->attachments == NULL) {
1377 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1378 return anv_batch_set_error(&cmd_buffer->batch,
1379 VK_ERROR_OUT_OF_HOST_MEMORY);
1380 }
1381 } else {
1382 state->attachments = NULL;
1383 }
1384
1385 /* Reserve one for the NULL state. */
1386 unsigned num_states = 1;
1387 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1388 if (vk_format_is_color(pass->attachments[i].format))
1389 num_states++;
1390
1391 if (need_input_attachment_state(&pass->attachments[i]))
1392 num_states++;
1393 }
1394
1395 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1396 state->render_pass_states =
1397 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1398 num_states * ss_stride, isl_dev->ss.align);
1399
1400 struct anv_state next_state = state->render_pass_states;
1401 next_state.alloc_size = isl_dev->ss.size;
1402
1403 state->null_surface_state = next_state;
1404 next_state.offset += ss_stride;
1405 next_state.map += ss_stride;
1406
1407 const VkRenderPassAttachmentBeginInfoKHR *begin_attachment =
1408 vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
1409
1410 if (begin && !begin_attachment)
1411 assert(pass->attachment_count == framebuffer->attachment_count);
1412
1413 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1414 if (vk_format_is_color(pass->attachments[i].format)) {
1415 state->attachments[i].color.state = next_state;
1416 next_state.offset += ss_stride;
1417 next_state.map += ss_stride;
1418 }
1419
1420 if (need_input_attachment_state(&pass->attachments[i])) {
1421 state->attachments[i].input.state = next_state;
1422 next_state.offset += ss_stride;
1423 next_state.map += ss_stride;
1424 }
1425
1426 if (begin_attachment && begin_attachment->attachmentCount != 0) {
1427 assert(begin_attachment->attachmentCount == pass->attachment_count);
1428 ANV_FROM_HANDLE(anv_image_view, iview, begin_attachment->pAttachments[i]);
1429 cmd_buffer->state.attachments[i].image_view = iview;
1430 } else if (framebuffer && i < framebuffer->attachment_count) {
1431 cmd_buffer->state.attachments[i].image_view = framebuffer->attachments[i];
1432 }
1433 }
1434 assert(next_state.offset == state->render_pass_states.offset +
1435 state->render_pass_states.alloc_size);
1436
1437 if (begin) {
1438 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1439 isl_extent3d(framebuffer->width,
1440 framebuffer->height,
1441 framebuffer->layers));
1442
1443 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1444 struct anv_render_pass_attachment *att = &pass->attachments[i];
1445 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1446 VkImageAspectFlags clear_aspects = 0;
1447 VkImageAspectFlags load_aspects = 0;
1448
1449 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1450 /* color attachment */
1451 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1452 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1453 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1454 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1455 }
1456 } else {
1457 /* depthstencil attachment */
1458 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1459 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1460 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1461 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1462 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1463 }
1464 }
1465 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1466 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1467 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1468 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1469 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1470 }
1471 }
1472 }
1473
1474 state->attachments[i].current_layout = att->initial_layout;
1475 state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
1476 state->attachments[i].pending_clear_aspects = clear_aspects;
1477 state->attachments[i].pending_load_aspects = load_aspects;
1478 if (clear_aspects)
1479 state->attachments[i].clear_value = begin->pClearValues[i];
1480
1481 struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
1482 anv_assert(iview->vk_format == att->format);
1483
1484 const uint32_t num_layers = iview->planes[0].isl.array_len;
1485 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1486
1487 union isl_color_value clear_color = { .u32 = { 0, } };
1488 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1489 anv_assert(iview->n_planes == 1);
1490 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1491 color_attachment_compute_aux_usage(cmd_buffer->device,
1492 state, i, begin->renderArea,
1493 &clear_color);
1494
1495 anv_image_fill_surface_state(cmd_buffer->device,
1496 iview->image,
1497 VK_IMAGE_ASPECT_COLOR_BIT,
1498 &iview->planes[0].isl,
1499 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1500 state->attachments[i].aux_usage,
1501 &clear_color,
1502 0,
1503 &state->attachments[i].color,
1504 NULL);
1505
1506 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1507 } else {
1508 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1509 state, i,
1510 begin->renderArea);
1511 }
1512
1513 if (need_input_attachment_state(&pass->attachments[i])) {
1514 anv_image_fill_surface_state(cmd_buffer->device,
1515 iview->image,
1516 VK_IMAGE_ASPECT_COLOR_BIT,
1517 &iview->planes[0].isl,
1518 ISL_SURF_USAGE_TEXTURE_BIT,
1519 state->attachments[i].input_aux_usage,
1520 &clear_color,
1521 0,
1522 &state->attachments[i].input,
1523 NULL);
1524
1525 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1526 }
1527 }
1528 }
1529
1530 return VK_SUCCESS;
1531 }
1532
1533 VkResult
1534 genX(BeginCommandBuffer)(
1535 VkCommandBuffer commandBuffer,
1536 const VkCommandBufferBeginInfo* pBeginInfo)
1537 {
1538 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1539
1540 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1541 * command buffer's state. Otherwise, we must *reset* its state. In both
1542 * cases we reset it.
1543 *
1544 * From the Vulkan 1.0 spec:
1545 *
1546 * If a command buffer is in the executable state and the command buffer
1547 * was allocated from a command pool with the
1548 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1549 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1550 * as if vkResetCommandBuffer had been called with
1551 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1552 * the command buffer in the recording state.
1553 */
1554 anv_cmd_buffer_reset(cmd_buffer);
1555
1556 cmd_buffer->usage_flags = pBeginInfo->flags;
1557
1558 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1559 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1560
1561 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1562
1563 /* We sometimes store vertex data in the dynamic state buffer for blorp
1564 * operations and our dynamic state stream may re-use data from previous
1565 * command buffers. In order to prevent stale cache data, we flush the VF
1566 * cache. We could do this on every blorp call but that's not really
1567 * needed as all of the data will get written by the CPU prior to the GPU
1568 * executing anything. The chances are fairly high that they will use
1569 * blorp at least once per primary command buffer so it shouldn't be
1570 * wasted.
1571 *
1572 * There is also a workaround on gen8 which requires us to invalidate the
1573 * VF cache occasionally. It's easier if we can assume we start with a
1574 * fresh cache (See also genX(cmd_buffer_set_binding_for_gen8_vb_flush).)
1575 */
1576 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1577
1578 /* Re-emit the aux table register in every command buffer. This way we're
1579 * ensured that we have the table even if this command buffer doesn't
1580 * initialize any images.
1581 */
1582 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1583
1584 /* We send an "Indirect State Pointers Disable" packet at
1585 * EndCommandBuffer, so all push contant packets are ignored during a
1586 * context restore. Documentation says after that command, we need to
1587 * emit push constants again before any rendering operation. So we
1588 * flag them dirty here to make sure they get emitted.
1589 */
1590 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1591
1592 VkResult result = VK_SUCCESS;
1593 if (cmd_buffer->usage_flags &
1594 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1595 assert(pBeginInfo->pInheritanceInfo);
1596 cmd_buffer->state.pass =
1597 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1598 cmd_buffer->state.subpass =
1599 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1600
1601 /* This is optional in the inheritance info. */
1602 cmd_buffer->state.framebuffer =
1603 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1604
1605 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1606 cmd_buffer->state.pass, NULL);
1607
1608 /* Record that HiZ is enabled if we can. */
1609 if (cmd_buffer->state.framebuffer) {
1610 const struct anv_image_view * const iview =
1611 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1612
1613 if (iview) {
1614 VkImageLayout layout =
1615 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1616
1617 enum isl_aux_usage aux_usage =
1618 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1619 VK_IMAGE_ASPECT_DEPTH_BIT,
1620 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
1621 layout);
1622
1623 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1624 }
1625 }
1626
1627 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1628 }
1629
1630 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1631 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1632 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1633 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1634
1635 /* If secondary buffer supports conditional rendering
1636 * we should emit commands as if conditional rendering is enabled.
1637 */
1638 cmd_buffer->state.conditional_render_enabled =
1639 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1640 }
1641 #endif
1642
1643 return result;
1644 }
1645
1646 /* From the PRM, Volume 2a:
1647 *
1648 * "Indirect State Pointers Disable
1649 *
1650 * At the completion of the post-sync operation associated with this pipe
1651 * control packet, the indirect state pointers in the hardware are
1652 * considered invalid; the indirect pointers are not saved in the context.
1653 * If any new indirect state commands are executed in the command stream
1654 * while the pipe control is pending, the new indirect state commands are
1655 * preserved.
1656 *
1657 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1658 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1659 * commands are only considered as Indirect State Pointers. Once ISP is
1660 * issued in a context, SW must initialize by programming push constant
1661 * commands for all the shaders (at least to zero length) before attempting
1662 * any rendering operation for the same context."
1663 *
1664 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1665 * even though they point to a BO that has been already unreferenced at
1666 * the end of the previous batch buffer. This has been fine so far since
1667 * we are protected by these scratch page (every address not covered by
1668 * a BO should be pointing to the scratch page). But on CNL, it is
1669 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1670 * instruction.
1671 *
1672 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1673 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1674 * context restore, so the mentioned hang doesn't happen. However,
1675 * software must program push constant commands for all stages prior to
1676 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1677 *
1678 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1679 * constants have been loaded into the EUs prior to disable the push constants
1680 * so that it doesn't hang a previous 3DPRIMITIVE.
1681 */
1682 static void
1683 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1684 {
1685 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1686 pc.StallAtPixelScoreboard = true;
1687 pc.CommandStreamerStallEnable = true;
1688 }
1689 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1690 pc.IndirectStatePointersDisable = true;
1691 pc.CommandStreamerStallEnable = true;
1692 }
1693 }
1694
1695 VkResult
1696 genX(EndCommandBuffer)(
1697 VkCommandBuffer commandBuffer)
1698 {
1699 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1700
1701 if (anv_batch_has_error(&cmd_buffer->batch))
1702 return cmd_buffer->batch.status;
1703
1704 /* We want every command buffer to start with the PMA fix in a known state,
1705 * so we disable it at the end of the command buffer.
1706 */
1707 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1708
1709 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1710
1711 emit_isp_disable(cmd_buffer);
1712
1713 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1714
1715 return VK_SUCCESS;
1716 }
1717
1718 void
1719 genX(CmdExecuteCommands)(
1720 VkCommandBuffer commandBuffer,
1721 uint32_t commandBufferCount,
1722 const VkCommandBuffer* pCmdBuffers)
1723 {
1724 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1725
1726 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1727
1728 if (anv_batch_has_error(&primary->batch))
1729 return;
1730
1731 /* The secondary command buffers will assume that the PMA fix is disabled
1732 * when they begin executing. Make sure this is true.
1733 */
1734 genX(cmd_buffer_enable_pma_fix)(primary, false);
1735
1736 /* The secondary command buffer doesn't know which textures etc. have been
1737 * flushed prior to their execution. Apply those flushes now.
1738 */
1739 genX(cmd_buffer_apply_pipe_flushes)(primary);
1740
1741 for (uint32_t i = 0; i < commandBufferCount; i++) {
1742 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1743
1744 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1745 assert(!anv_batch_has_error(&secondary->batch));
1746
1747 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1748 if (secondary->state.conditional_render_enabled) {
1749 if (!primary->state.conditional_render_enabled) {
1750 /* Secondary buffer is constructed as if it will be executed
1751 * with conditional rendering, we should satisfy this dependency
1752 * regardless of conditional rendering being enabled in primary.
1753 */
1754 struct gen_mi_builder b;
1755 gen_mi_builder_init(&b, &primary->batch);
1756 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
1757 gen_mi_imm(UINT64_MAX));
1758 }
1759 }
1760 #endif
1761
1762 if (secondary->usage_flags &
1763 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1764 /* If we're continuing a render pass from the primary, we need to
1765 * copy the surface states for the current subpass into the storage
1766 * we allocated for them in BeginCommandBuffer.
1767 */
1768 struct anv_bo *ss_bo =
1769 primary->device->surface_state_pool.block_pool.bo;
1770 struct anv_state src_state = primary->state.render_pass_states;
1771 struct anv_state dst_state = secondary->state.render_pass_states;
1772 assert(src_state.alloc_size == dst_state.alloc_size);
1773
1774 genX(cmd_buffer_so_memcpy)(primary,
1775 (struct anv_address) {
1776 .bo = ss_bo,
1777 .offset = dst_state.offset,
1778 },
1779 (struct anv_address) {
1780 .bo = ss_bo,
1781 .offset = src_state.offset,
1782 },
1783 src_state.alloc_size);
1784 }
1785
1786 anv_cmd_buffer_add_secondary(primary, secondary);
1787 }
1788
1789 /* The secondary isn't counted in our VF cache tracking so we need to
1790 * invalidate the whole thing.
1791 */
1792 if (GEN_GEN >= 8 && GEN_GEN <= 9) {
1793 primary->state.pending_pipe_bits |=
1794 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1795 }
1796
1797 /* The secondary may have selected a different pipeline (3D or compute) and
1798 * may have changed the current L3$ configuration. Reset our tracking
1799 * variables to invalid values to ensure that we re-emit these in the case
1800 * where we do any draws or compute dispatches from the primary after the
1801 * secondary has returned.
1802 */
1803 primary->state.current_pipeline = UINT32_MAX;
1804 primary->state.current_l3_config = NULL;
1805 primary->state.current_hash_scale = 0;
1806
1807 /* Each of the secondary command buffers will use its own state base
1808 * address. We need to re-emit state base address for the primary after
1809 * all of the secondaries are done.
1810 *
1811 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1812 * address calls?
1813 */
1814 genX(cmd_buffer_emit_state_base_address)(primary);
1815 }
1816
1817 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1818 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1819 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1820
1821 /**
1822 * Program the hardware to use the specified L3 configuration.
1823 */
1824 void
1825 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1826 const struct gen_l3_config *cfg)
1827 {
1828 assert(cfg);
1829 if (cfg == cmd_buffer->state.current_l3_config)
1830 return;
1831
1832 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1833 intel_logd("L3 config transition: ");
1834 gen_dump_l3_config(cfg, stderr);
1835 }
1836
1837 UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM];
1838
1839 /* According to the hardware docs, the L3 partitioning can only be changed
1840 * while the pipeline is completely drained and the caches are flushed,
1841 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1842 */
1843 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1844 pc.DCFlushEnable = true;
1845 pc.PostSyncOperation = NoWrite;
1846 pc.CommandStreamerStallEnable = true;
1847 }
1848
1849 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1850 * invalidation of the relevant caches. Note that because RO invalidation
1851 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1852 * command is processed by the CS) we cannot combine it with the previous
1853 * stalling flush as the hardware documentation suggests, because that
1854 * would cause the CS to stall on previous rendering *after* RO
1855 * invalidation and wouldn't prevent the RO caches from being polluted by
1856 * concurrent rendering before the stall completes. This intentionally
1857 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1858 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1859 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1860 * already guarantee that there is no concurrent GPGPU kernel execution
1861 * (see SKL HSD 2132585).
1862 */
1863 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1864 pc.TextureCacheInvalidationEnable = true;
1865 pc.ConstantCacheInvalidationEnable = true;
1866 pc.InstructionCacheInvalidateEnable = true;
1867 pc.StateCacheInvalidationEnable = true;
1868 pc.PostSyncOperation = NoWrite;
1869 }
1870
1871 /* Now send a third stalling flush to make sure that invalidation is
1872 * complete when the L3 configuration registers are modified.
1873 */
1874 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1875 pc.DCFlushEnable = true;
1876 pc.PostSyncOperation = NoWrite;
1877 pc.CommandStreamerStallEnable = true;
1878 }
1879
1880 #if GEN_GEN >= 8
1881
1882 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1883
1884 #if GEN_GEN >= 12
1885 #define L3_ALLOCATION_REG GENX(L3ALLOC)
1886 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
1887 #else
1888 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
1889 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
1890 #endif
1891
1892 uint32_t l3cr;
1893 anv_pack_struct(&l3cr, L3_ALLOCATION_REG,
1894 #if GEN_GEN < 11
1895 .SLMEnable = has_slm,
1896 #endif
1897 #if GEN_GEN == 11
1898 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1899 * in L3CNTLREG register. The default setting of the bit is not the
1900 * desirable behavior.
1901 */
1902 .ErrorDetectionBehaviorControl = true,
1903 .UseFullWays = true,
1904 #endif
1905 .URBAllocation = cfg->n[GEN_L3P_URB],
1906 .ROAllocation = cfg->n[GEN_L3P_RO],
1907 .DCAllocation = cfg->n[GEN_L3P_DC],
1908 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1909
1910 /* Set up the L3 partitioning. */
1911 emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr);
1912
1913 #else
1914
1915 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1916 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1917 cfg->n[GEN_L3P_ALL];
1918 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1919 cfg->n[GEN_L3P_ALL];
1920 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1921 cfg->n[GEN_L3P_ALL];
1922
1923 assert(!cfg->n[GEN_L3P_ALL]);
1924
1925 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1926 * the matching space on the remaining banks has to be allocated to a
1927 * client (URB for all validated configurations) set to the
1928 * lower-bandwidth 2-bank address hashing mode.
1929 */
1930 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1931 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1932 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1933
1934 /* Minimum number of ways that can be allocated to the URB. */
1935 const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1936 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1937
1938 uint32_t l3sqcr1, l3cr2, l3cr3;
1939 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1940 .ConvertDC_UC = !has_dc,
1941 .ConvertIS_UC = !has_is,
1942 .ConvertC_UC = !has_c,
1943 .ConvertT_UC = !has_t);
1944 l3sqcr1 |=
1945 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1946 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1947 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1948
1949 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1950 .SLMEnable = has_slm,
1951 .URBLowBandwidth = urb_low_bw,
1952 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1953 #if !GEN_IS_HASWELL
1954 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1955 #endif
1956 .ROAllocation = cfg->n[GEN_L3P_RO],
1957 .DCAllocation = cfg->n[GEN_L3P_DC]);
1958
1959 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1960 .ISAllocation = cfg->n[GEN_L3P_IS],
1961 .ISLowBandwidth = 0,
1962 .CAllocation = cfg->n[GEN_L3P_C],
1963 .CLowBandwidth = 0,
1964 .TAllocation = cfg->n[GEN_L3P_T],
1965 .TLowBandwidth = 0);
1966
1967 /* Set up the L3 partitioning. */
1968 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1969 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1970 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1971
1972 #if GEN_IS_HASWELL
1973 if (cmd_buffer->device->physical->cmd_parser_version >= 4) {
1974 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1975 * them disabled to avoid crashing the system hard.
1976 */
1977 uint32_t scratch1, chicken3;
1978 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1979 .L3AtomicDisable = !has_dc);
1980 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1981 .L3AtomicDisableMask = true,
1982 .L3AtomicDisable = !has_dc);
1983 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1984 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1985 }
1986 #endif
1987
1988 #endif
1989
1990 cmd_buffer->state.current_l3_config = cfg;
1991 }
1992
1993 void
1994 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1995 {
1996 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1997 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1998
1999 if (cmd_buffer->device->physical->always_flush_cache)
2000 bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
2001
2002 /*
2003 * From Sandybridge PRM, volume 2, "1.7.2 End-of-Pipe Synchronization":
2004 *
2005 * Write synchronization is a special case of end-of-pipe
2006 * synchronization that requires that the render cache and/or depth
2007 * related caches are flushed to memory, where the data will become
2008 * globally visible. This type of synchronization is required prior to
2009 * SW (CPU) actually reading the result data from memory, or initiating
2010 * an operation that will use as a read surface (such as a texture
2011 * surface) a previous render target and/or depth/stencil buffer
2012 *
2013 *
2014 * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
2015 *
2016 * Exercising the write cache flush bits (Render Target Cache Flush
2017 * Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only
2018 * ensures the write caches are flushed and doesn't guarantee the data
2019 * is globally visible.
2020 *
2021 * SW can track the completion of the end-of-pipe-synchronization by
2022 * using "Notify Enable" and "PostSync Operation - Write Immediate
2023 * Data" in the PIPE_CONTROL command.
2024 *
2025 * In other words, flushes are pipelined while invalidations are handled
2026 * immediately. Therefore, if we're flushing anything then we need to
2027 * schedule an end-of-pipe sync before any invalidations can happen.
2028 */
2029 if (bits & ANV_PIPE_FLUSH_BITS)
2030 bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2031
2032
2033 /* HSD 1209978178: docs say that before programming the aux table:
2034 *
2035 * "Driver must ensure that the engine is IDLE but ensure it doesn't
2036 * add extra flushes in the case it knows that the engine is already
2037 * IDLE."
2038 */
2039 if (GEN_GEN == 12 && ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2040 bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2041
2042 /* If we're going to do an invalidate and we have a pending end-of-pipe
2043 * sync that has yet to be resolved, we do the end-of-pipe sync now.
2044 */
2045 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
2046 (bits & ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT)) {
2047 bits |= ANV_PIPE_END_OF_PIPE_SYNC_BIT;
2048 bits &= ~ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2049 }
2050
2051 if (GEN_GEN >= 12 &&
2052 ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) ||
2053 (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) {
2054 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
2055 * Enable):
2056 *
2057 * Unified Cache (Tile Cache Disabled):
2058 *
2059 * When the Color and Depth (Z) streams are enabled to be cached in
2060 * the DC space of L2, Software must use "Render Target Cache Flush
2061 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
2062 * Flush" for getting the color and depth (Z) write data to be
2063 * globally observable. In this mode of operation it is not required
2064 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
2065 */
2066 bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2067 }
2068
2069 /* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which
2070 * invalidates the instruction cache
2071 */
2072 if (GEN_GEN == 12 && (bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT))
2073 bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2074
2075 if ((GEN_GEN >= 8 && GEN_GEN <= 9) &&
2076 (bits & ANV_PIPE_CS_STALL_BIT) &&
2077 (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
2078 /* If we are doing a VF cache invalidate AND a CS stall (it must be
2079 * both) then we can reset our vertex cache tracking.
2080 */
2081 memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
2082 sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
2083 memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
2084 sizeof(cmd_buffer->state.gfx.ib_dirty_range));
2085 }
2086
2087 /* Project: SKL / Argument: LRI Post Sync Operation [23]
2088 *
2089 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
2090 * programmed prior to programming a PIPECONTROL command with "LRI
2091 * Post Sync Operation" in GPGPU mode of operation (i.e when
2092 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
2093 *
2094 * The same text exists a few rows below for Post Sync Op.
2095 *
2096 * On Gen12 this is GEN:BUG:1607156449.
2097 */
2098 if (bits & ANV_PIPE_POST_SYNC_BIT) {
2099 if ((GEN_GEN == 9 || (GEN_GEN == 12 && devinfo->revision == 0 /* A0 */)) &&
2100 cmd_buffer->state.current_pipeline == GPGPU)
2101 bits |= ANV_PIPE_CS_STALL_BIT;
2102 bits &= ~ANV_PIPE_POST_SYNC_BIT;
2103 }
2104
2105 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT |
2106 ANV_PIPE_END_OF_PIPE_SYNC_BIT)) {
2107 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2108 #if GEN_GEN >= 12
2109 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2110 #endif
2111 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2112 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2113 pipe.RenderTargetCacheFlushEnable =
2114 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2115
2116 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
2117 * be set with any PIPE_CONTROL with Depth Flush Enable bit set.
2118 */
2119 #if GEN_GEN >= 12
2120 pipe.DepthStallEnable =
2121 pipe.DepthCacheFlushEnable || (bits & ANV_PIPE_DEPTH_STALL_BIT);
2122 #else
2123 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
2124 #endif
2125
2126 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
2127 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2128
2129 /* From Sandybridge PRM, volume 2, "1.7.3.1 Writing a Value to Memory":
2130 *
2131 * "The most common action to perform upon reaching a
2132 * synchronization point is to write a value out to memory. An
2133 * immediate value (included with the synchronization command) may
2134 * be written."
2135 *
2136 *
2137 * From Broadwell PRM, volume 7, "End-of-Pipe Synchronization":
2138 *
2139 * "In case the data flushed out by the render engine is to be
2140 * read back in to the render engine in coherent manner, then the
2141 * render engine has to wait for the fence completion before
2142 * accessing the flushed data. This can be achieved by following
2143 * means on various products: PIPE_CONTROL command with CS Stall
2144 * and the required write caches flushed with Post-Sync-Operation
2145 * as Write Immediate Data.
2146 *
2147 * Example:
2148 * - Workload-1 (3D/GPGPU/MEDIA)
2149 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
2150 * Immediate Data, Required Write Cache Flush bits set)
2151 * - Workload-2 (Can use the data produce or output by
2152 * Workload-1)
2153 */
2154 if (bits & ANV_PIPE_END_OF_PIPE_SYNC_BIT) {
2155 pipe.CommandStreamerStallEnable = true;
2156 pipe.PostSyncOperation = WriteImmediateData;
2157 pipe.Address = (struct anv_address) {
2158 .bo = cmd_buffer->device->workaround_bo,
2159 .offset = 0
2160 };
2161 }
2162
2163 /*
2164 * According to the Broadwell documentation, any PIPE_CONTROL with the
2165 * "Command Streamer Stall" bit set must also have another bit set,
2166 * with five different options:
2167 *
2168 * - Render Target Cache Flush
2169 * - Depth Cache Flush
2170 * - Stall at Pixel Scoreboard
2171 * - Post-Sync Operation
2172 * - Depth Stall
2173 * - DC Flush Enable
2174 *
2175 * I chose "Stall at Pixel Scoreboard" since that's what we use in
2176 * mesa and it seems to work fine. The choice is fairly arbitrary.
2177 */
2178 if (pipe.CommandStreamerStallEnable &&
2179 !pipe.RenderTargetCacheFlushEnable &&
2180 !pipe.DepthCacheFlushEnable &&
2181 !pipe.StallAtPixelScoreboard &&
2182 !pipe.PostSyncOperation &&
2183 !pipe.DepthStallEnable &&
2184 !pipe.DCFlushEnable)
2185 pipe.StallAtPixelScoreboard = true;
2186 }
2187
2188 /* If a render target flush was emitted, then we can toggle off the bit
2189 * saying that render target writes are ongoing.
2190 */
2191 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
2192 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
2193
2194 if (GEN_IS_HASWELL) {
2195 /* Haswell needs addition work-arounds:
2196 *
2197 * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
2198 *
2199 * Option 1:
2200 * PIPE_CONTROL command with the CS Stall and the required write
2201 * caches flushed with Post-SyncOperation as Write Immediate Data
2202 * followed by eight dummy MI_STORE_DATA_IMM (write to scratch
2203 * spce) commands.
2204 *
2205 * Example:
2206 * - Workload-1
2207 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
2208 * Immediate Data, Required Write Cache Flush bits set)
2209 * - MI_STORE_DATA_IMM (8 times) (Dummy data, Scratch Address)
2210 * - Workload-2 (Can use the data produce or output by
2211 * Workload-1)
2212 *
2213 * Unfortunately, both the PRMs and the internal docs are a bit
2214 * out-of-date in this regard. What the windows driver does (and
2215 * this appears to actually work) is to emit a register read from the
2216 * memory address written by the pipe control above.
2217 *
2218 * What register we load into doesn't matter. We choose an indirect
2219 * rendering register because we know it always exists and it's one
2220 * of the first registers the command parser allows us to write. If
2221 * you don't have command parser support in your kernel (pre-4.2),
2222 * this will get turned into MI_NOOP and you won't get the
2223 * workaround. Unfortunately, there's just not much we can do in
2224 * that case. This register is perfectly safe to write since we
2225 * always re-load all of the indirect draw registers right before
2226 * 3DPRIMITIVE when needed anyway.
2227 */
2228 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
2229 lrm.RegisterAddress = 0x243C; /* GEN7_3DPRIM_START_INSTANCE */
2230 lrm.MemoryAddress = (struct anv_address) {
2231 .bo = cmd_buffer->device->workaround_bo,
2232 .offset = 0
2233 };
2234 }
2235 }
2236
2237 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT |
2238 ANV_PIPE_END_OF_PIPE_SYNC_BIT);
2239 }
2240
2241 if (bits & ANV_PIPE_INVALIDATE_BITS) {
2242 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2243 *
2244 * "If the VF Cache Invalidation Enable is set to a 1 in a
2245 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
2246 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
2247 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
2248 * a 1."
2249 *
2250 * This appears to hang Broadwell, so we restrict it to just gen9.
2251 */
2252 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
2253 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
2254
2255 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2256 pipe.StateCacheInvalidationEnable =
2257 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
2258 pipe.ConstantCacheInvalidationEnable =
2259 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2260 pipe.VFCacheInvalidationEnable =
2261 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2262 pipe.TextureCacheInvalidationEnable =
2263 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2264 pipe.InstructionCacheInvalidateEnable =
2265 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
2266
2267 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2268 *
2269 * "When VF Cache Invalidate is set “Post Sync Operation” must be
2270 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
2271 * “Write Timestamp”.
2272 */
2273 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
2274 pipe.PostSyncOperation = WriteImmediateData;
2275 pipe.Address =
2276 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
2277 }
2278 }
2279
2280 #if GEN_GEN == 12
2281 if ((bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT) &&
2282 cmd_buffer->device->info.has_aux_map) {
2283 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2284 lri.RegisterOffset = GENX(GFX_CCS_AUX_INV_num);
2285 lri.DataDWord = 1;
2286 }
2287 }
2288 #endif
2289
2290 bits &= ~ANV_PIPE_INVALIDATE_BITS;
2291 }
2292
2293 cmd_buffer->state.pending_pipe_bits = bits;
2294 }
2295
2296 void genX(CmdPipelineBarrier)(
2297 VkCommandBuffer commandBuffer,
2298 VkPipelineStageFlags srcStageMask,
2299 VkPipelineStageFlags destStageMask,
2300 VkBool32 byRegion,
2301 uint32_t memoryBarrierCount,
2302 const VkMemoryBarrier* pMemoryBarriers,
2303 uint32_t bufferMemoryBarrierCount,
2304 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
2305 uint32_t imageMemoryBarrierCount,
2306 const VkImageMemoryBarrier* pImageMemoryBarriers)
2307 {
2308 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2309
2310 /* XXX: Right now, we're really dumb and just flush whatever categories
2311 * the app asks for. One of these days we may make this a bit better
2312 * but right now that's all the hardware allows for in most areas.
2313 */
2314 VkAccessFlags src_flags = 0;
2315 VkAccessFlags dst_flags = 0;
2316
2317 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
2318 src_flags |= pMemoryBarriers[i].srcAccessMask;
2319 dst_flags |= pMemoryBarriers[i].dstAccessMask;
2320 }
2321
2322 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
2323 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
2324 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
2325 }
2326
2327 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
2328 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
2329 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
2330 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
2331 const VkImageSubresourceRange *range =
2332 &pImageMemoryBarriers[i].subresourceRange;
2333
2334 uint32_t base_layer, layer_count;
2335 if (image->type == VK_IMAGE_TYPE_3D) {
2336 base_layer = 0;
2337 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
2338 } else {
2339 base_layer = range->baseArrayLayer;
2340 layer_count = anv_get_layerCount(image, range);
2341 }
2342
2343 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
2344 transition_depth_buffer(cmd_buffer, image,
2345 pImageMemoryBarriers[i].oldLayout,
2346 pImageMemoryBarriers[i].newLayout);
2347 }
2348
2349 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
2350 transition_stencil_buffer(cmd_buffer, image,
2351 range->baseMipLevel,
2352 anv_get_levelCount(image, range),
2353 base_layer, layer_count,
2354 pImageMemoryBarriers[i].oldLayout,
2355 pImageMemoryBarriers[i].newLayout);
2356 }
2357
2358 if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2359 VkImageAspectFlags color_aspects =
2360 anv_image_expand_aspects(image, range->aspectMask);
2361 uint32_t aspect_bit;
2362 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
2363 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
2364 range->baseMipLevel,
2365 anv_get_levelCount(image, range),
2366 base_layer, layer_count,
2367 pImageMemoryBarriers[i].oldLayout,
2368 pImageMemoryBarriers[i].newLayout);
2369 }
2370 }
2371 }
2372
2373 cmd_buffer->state.pending_pipe_bits |=
2374 anv_pipe_flush_bits_for_access_flags(src_flags) |
2375 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
2376 }
2377
2378 static void
2379 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2380 {
2381 VkShaderStageFlags stages =
2382 cmd_buffer->state.gfx.pipeline->active_stages;
2383
2384 /* In order to avoid thrash, we assume that vertex and fragment stages
2385 * always exist. In the rare case where one is missing *and* the other
2386 * uses push concstants, this may be suboptimal. However, avoiding stalls
2387 * seems more important.
2388 */
2389 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
2390
2391 if (stages == cmd_buffer->state.push_constant_stages)
2392 return;
2393
2394 #if GEN_GEN >= 8
2395 const unsigned push_constant_kb = 32;
2396 #elif GEN_IS_HASWELL
2397 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
2398 #else
2399 const unsigned push_constant_kb = 16;
2400 #endif
2401
2402 const unsigned num_stages =
2403 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2404 unsigned size_per_stage = push_constant_kb / num_stages;
2405
2406 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2407 * units of 2KB. Incidentally, these are the same platforms that have
2408 * 32KB worth of push constant space.
2409 */
2410 if (push_constant_kb == 32)
2411 size_per_stage &= ~1u;
2412
2413 uint32_t kb_used = 0;
2414 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2415 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2416 anv_batch_emit(&cmd_buffer->batch,
2417 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2418 alloc._3DCommandSubOpcode = 18 + i;
2419 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2420 alloc.ConstantBufferSize = push_size;
2421 }
2422 kb_used += push_size;
2423 }
2424
2425 anv_batch_emit(&cmd_buffer->batch,
2426 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2427 alloc.ConstantBufferOffset = kb_used;
2428 alloc.ConstantBufferSize = push_constant_kb - kb_used;
2429 }
2430
2431 cmd_buffer->state.push_constant_stages = stages;
2432
2433 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2434 *
2435 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2436 * the next 3DPRIMITIVE command after programming the
2437 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2438 *
2439 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2440 * pipeline setup, we need to dirty push constants.
2441 */
2442 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2443 }
2444
2445 static struct anv_address
2446 anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
2447 struct anv_descriptor_set *set)
2448 {
2449 if (set->pool) {
2450 /* This is a normal descriptor set */
2451 return (struct anv_address) {
2452 .bo = set->pool->bo,
2453 .offset = set->desc_mem.offset,
2454 };
2455 } else {
2456 /* This is a push descriptor set. We have to flag it as used on the GPU
2457 * so that the next time we push descriptors, we grab a new memory.
2458 */
2459 struct anv_push_descriptor_set *push_set =
2460 (struct anv_push_descriptor_set *)set;
2461 push_set->set_used_on_gpu = true;
2462
2463 return (struct anv_address) {
2464 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
2465 .offset = set->desc_mem.offset,
2466 };
2467 }
2468 }
2469
2470 static VkResult
2471 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2472 struct anv_cmd_pipeline_state *pipe_state,
2473 struct anv_shader_bin *shader,
2474 struct anv_state *bt_state)
2475 {
2476 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2477 uint32_t state_offset;
2478
2479 struct anv_pipeline_bind_map *map = &shader->bind_map;
2480 if (map->surface_count == 0) {
2481 *bt_state = (struct anv_state) { 0, };
2482 return VK_SUCCESS;
2483 }
2484
2485 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2486 map->surface_count,
2487 &state_offset);
2488 uint32_t *bt_map = bt_state->map;
2489
2490 if (bt_state->map == NULL)
2491 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2492
2493 /* We only need to emit relocs if we're not using softpin. If we are using
2494 * softpin then we always keep all user-allocated memory objects resident.
2495 */
2496 const bool need_client_mem_relocs =
2497 !cmd_buffer->device->physical->use_softpin;
2498
2499 for (uint32_t s = 0; s < map->surface_count; s++) {
2500 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2501
2502 struct anv_state surface_state;
2503
2504 switch (binding->set) {
2505 case ANV_DESCRIPTOR_SET_NULL:
2506 bt_map[s] = 0;
2507 break;
2508
2509 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
2510 /* Color attachment binding */
2511 assert(shader->stage == MESA_SHADER_FRAGMENT);
2512 if (binding->index < subpass->color_count) {
2513 const unsigned att =
2514 subpass->color_attachments[binding->index].attachment;
2515
2516 /* From the Vulkan 1.0.46 spec:
2517 *
2518 * "If any color or depth/stencil attachments are
2519 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2520 * attachments."
2521 */
2522 if (att == VK_ATTACHMENT_UNUSED) {
2523 surface_state = cmd_buffer->state.null_surface_state;
2524 } else {
2525 surface_state = cmd_buffer->state.attachments[att].color.state;
2526 }
2527 } else {
2528 surface_state = cmd_buffer->state.null_surface_state;
2529 }
2530
2531 bt_map[s] = surface_state.offset + state_offset;
2532 break;
2533
2534 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
2535 struct anv_state surface_state =
2536 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2537
2538 struct anv_address constant_data = {
2539 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2540 .offset = shader->constant_data.offset,
2541 };
2542 unsigned constant_data_size = shader->constant_data_size;
2543
2544 const enum isl_format format =
2545 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2546 anv_fill_buffer_surface_state(cmd_buffer->device,
2547 surface_state, format,
2548 constant_data, constant_data_size, 1);
2549
2550 bt_map[s] = surface_state.offset + state_offset;
2551 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2552 break;
2553 }
2554
2555 case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
2556 /* This is always the first binding for compute shaders */
2557 assert(shader->stage == MESA_SHADER_COMPUTE && s == 0);
2558
2559 struct anv_state surface_state =
2560 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2561
2562 const enum isl_format format =
2563 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2564 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2565 format,
2566 cmd_buffer->state.compute.num_workgroups,
2567 12, 1);
2568 bt_map[s] = surface_state.offset + state_offset;
2569 if (need_client_mem_relocs) {
2570 add_surface_reloc(cmd_buffer, surface_state,
2571 cmd_buffer->state.compute.num_workgroups);
2572 }
2573 break;
2574 }
2575
2576 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2577 /* This is a descriptor set buffer so the set index is actually
2578 * given by binding->binding. (Yes, that's confusing.)
2579 */
2580 struct anv_descriptor_set *set =
2581 pipe_state->descriptors[binding->index];
2582 assert(set->desc_mem.alloc_size);
2583 assert(set->desc_surface_state.alloc_size);
2584 bt_map[s] = set->desc_surface_state.offset + state_offset;
2585 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2586 anv_descriptor_set_address(cmd_buffer, set));
2587 break;
2588 }
2589
2590 default: {
2591 assert(binding->set < MAX_SETS);
2592 const struct anv_descriptor *desc =
2593 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2594
2595 switch (desc->type) {
2596 case VK_DESCRIPTOR_TYPE_SAMPLER:
2597 /* Nothing for us to do here */
2598 continue;
2599
2600 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2601 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2602 struct anv_surface_state sstate =
2603 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2604 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2605 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2606 surface_state = sstate.state;
2607 assert(surface_state.alloc_size);
2608 if (need_client_mem_relocs)
2609 add_surface_state_relocs(cmd_buffer, sstate);
2610 break;
2611 }
2612 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2613 assert(shader->stage == MESA_SHADER_FRAGMENT);
2614 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2615 /* For depth and stencil input attachments, we treat it like any
2616 * old texture that a user may have bound.
2617 */
2618 assert(desc->image_view->n_planes == 1);
2619 struct anv_surface_state sstate =
2620 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2621 desc->image_view->planes[0].general_sampler_surface_state :
2622 desc->image_view->planes[0].optimal_sampler_surface_state;
2623 surface_state = sstate.state;
2624 assert(surface_state.alloc_size);
2625 if (need_client_mem_relocs)
2626 add_surface_state_relocs(cmd_buffer, sstate);
2627 } else {
2628 /* For color input attachments, we create the surface state at
2629 * vkBeginRenderPass time so that we can include aux and clear
2630 * color information.
2631 */
2632 assert(binding->input_attachment_index < subpass->input_count);
2633 const unsigned subpass_att = binding->input_attachment_index;
2634 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2635 surface_state = cmd_buffer->state.attachments[att].input.state;
2636 }
2637 break;
2638
2639 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2640 struct anv_surface_state sstate = (binding->write_only)
2641 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2642 : desc->image_view->planes[binding->plane].storage_surface_state;
2643 surface_state = sstate.state;
2644 assert(surface_state.alloc_size);
2645 if (need_client_mem_relocs)
2646 add_surface_state_relocs(cmd_buffer, sstate);
2647 break;
2648 }
2649
2650 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2651 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2652 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2653 surface_state = desc->buffer_view->surface_state;
2654 assert(surface_state.alloc_size);
2655 if (need_client_mem_relocs) {
2656 add_surface_reloc(cmd_buffer, surface_state,
2657 desc->buffer_view->address);
2658 }
2659 break;
2660
2661 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2662 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2663 /* Compute the offset within the buffer */
2664 struct anv_push_constants *push =
2665 &cmd_buffer->state.push_constants[shader->stage];
2666
2667 uint32_t dynamic_offset =
2668 push->dynamic_offsets[binding->dynamic_offset_index];
2669 uint64_t offset = desc->offset + dynamic_offset;
2670 /* Clamp to the buffer size */
2671 offset = MIN2(offset, desc->buffer->size);
2672 /* Clamp the range to the buffer size */
2673 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2674
2675 /* Align the range for consistency */
2676 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC)
2677 range = align_u32(range, ANV_UBO_BOUNDS_CHECK_ALIGNMENT);
2678
2679 struct anv_address address =
2680 anv_address_add(desc->buffer->address, offset);
2681
2682 surface_state =
2683 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2684 enum isl_format format =
2685 anv_isl_format_for_descriptor_type(desc->type);
2686
2687 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2688 format, address, range, 1);
2689 if (need_client_mem_relocs)
2690 add_surface_reloc(cmd_buffer, surface_state, address);
2691 break;
2692 }
2693
2694 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2695 surface_state = (binding->write_only)
2696 ? desc->buffer_view->writeonly_storage_surface_state
2697 : desc->buffer_view->storage_surface_state;
2698 assert(surface_state.alloc_size);
2699 if (need_client_mem_relocs) {
2700 add_surface_reloc(cmd_buffer, surface_state,
2701 desc->buffer_view->address);
2702 }
2703 break;
2704
2705 default:
2706 assert(!"Invalid descriptor type");
2707 continue;
2708 }
2709 bt_map[s] = surface_state.offset + state_offset;
2710 break;
2711 }
2712 }
2713 }
2714
2715 return VK_SUCCESS;
2716 }
2717
2718 static VkResult
2719 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2720 struct anv_cmd_pipeline_state *pipe_state,
2721 struct anv_shader_bin *shader,
2722 struct anv_state *state)
2723 {
2724 struct anv_pipeline_bind_map *map = &shader->bind_map;
2725 if (map->sampler_count == 0) {
2726 *state = (struct anv_state) { 0, };
2727 return VK_SUCCESS;
2728 }
2729
2730 uint32_t size = map->sampler_count * 16;
2731 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2732
2733 if (state->map == NULL)
2734 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2735
2736 for (uint32_t s = 0; s < map->sampler_count; s++) {
2737 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2738 const struct anv_descriptor *desc =
2739 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2740
2741 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2742 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2743 continue;
2744
2745 struct anv_sampler *sampler = desc->sampler;
2746
2747 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2748 * happens to be zero.
2749 */
2750 if (sampler == NULL)
2751 continue;
2752
2753 memcpy(state->map + (s * 16),
2754 sampler->state[binding->plane], sizeof(sampler->state[0]));
2755 }
2756
2757 return VK_SUCCESS;
2758 }
2759
2760 static uint32_t
2761 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer,
2762 struct anv_cmd_pipeline_state *pipe_state,
2763 struct anv_shader_bin **shaders,
2764 uint32_t num_shaders)
2765 {
2766 const VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty;
2767 VkShaderStageFlags flushed = 0;
2768
2769 VkResult result = VK_SUCCESS;
2770 for (uint32_t i = 0; i < num_shaders; i++) {
2771 if (!shaders[i])
2772 continue;
2773
2774 gl_shader_stage stage = shaders[i]->stage;
2775 VkShaderStageFlags vk_stage = mesa_to_vk_shader_stage(stage);
2776 if ((vk_stage & dirty) == 0)
2777 continue;
2778
2779 result = emit_samplers(cmd_buffer, pipe_state, shaders[i],
2780 &cmd_buffer->state.samplers[stage]);
2781 if (result != VK_SUCCESS)
2782 break;
2783 result = emit_binding_table(cmd_buffer, pipe_state, shaders[i],
2784 &cmd_buffer->state.binding_tables[stage]);
2785 if (result != VK_SUCCESS)
2786 break;
2787
2788 flushed |= vk_stage;
2789 }
2790
2791 if (result != VK_SUCCESS) {
2792 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2793
2794 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2795 if (result != VK_SUCCESS)
2796 return 0;
2797
2798 /* Re-emit state base addresses so we get the new surface state base
2799 * address before we start emitting binding tables etc.
2800 */
2801 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2802
2803 /* Re-emit all active binding tables */
2804 flushed = 0;
2805
2806 for (uint32_t i = 0; i < num_shaders; i++) {
2807 if (!shaders[i])
2808 continue;
2809
2810 gl_shader_stage stage = shaders[i]->stage;
2811
2812 result = emit_samplers(cmd_buffer, pipe_state, shaders[i],
2813 &cmd_buffer->state.samplers[stage]);
2814 if (result != VK_SUCCESS) {
2815 anv_batch_set_error(&cmd_buffer->batch, result);
2816 return 0;
2817 }
2818 result = emit_binding_table(cmd_buffer, pipe_state, shaders[i],
2819 &cmd_buffer->state.binding_tables[stage]);
2820 if (result != VK_SUCCESS) {
2821 anv_batch_set_error(&cmd_buffer->batch, result);
2822 return 0;
2823 }
2824
2825 flushed |= mesa_to_vk_shader_stage(stage);
2826 }
2827 }
2828
2829 cmd_buffer->state.descriptors_dirty &= ~flushed;
2830
2831 return flushed;
2832 }
2833
2834 static void
2835 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2836 uint32_t stages)
2837 {
2838 static const uint32_t sampler_state_opcodes[] = {
2839 [MESA_SHADER_VERTEX] = 43,
2840 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2841 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2842 [MESA_SHADER_GEOMETRY] = 46,
2843 [MESA_SHADER_FRAGMENT] = 47,
2844 [MESA_SHADER_COMPUTE] = 0,
2845 };
2846
2847 static const uint32_t binding_table_opcodes[] = {
2848 [MESA_SHADER_VERTEX] = 38,
2849 [MESA_SHADER_TESS_CTRL] = 39,
2850 [MESA_SHADER_TESS_EVAL] = 40,
2851 [MESA_SHADER_GEOMETRY] = 41,
2852 [MESA_SHADER_FRAGMENT] = 42,
2853 [MESA_SHADER_COMPUTE] = 0,
2854 };
2855
2856 anv_foreach_stage(s, stages) {
2857 assert(s < ARRAY_SIZE(binding_table_opcodes));
2858 assert(binding_table_opcodes[s] > 0);
2859
2860 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2861 anv_batch_emit(&cmd_buffer->batch,
2862 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2863 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2864 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2865 }
2866 }
2867
2868 /* Always emit binding table pointers if we're asked to, since on SKL
2869 * this is what flushes push constants. */
2870 anv_batch_emit(&cmd_buffer->batch,
2871 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2872 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2873 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2874 }
2875 }
2876 }
2877
2878 static struct anv_address
2879 get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
2880 gl_shader_stage stage,
2881 const struct anv_push_range *range)
2882 {
2883 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2884 switch (range->set) {
2885 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2886 /* This is a descriptor set buffer so the set index is
2887 * actually given by binding->binding. (Yes, that's
2888 * confusing.)
2889 */
2890 struct anv_descriptor_set *set =
2891 gfx_state->base.descriptors[range->index];
2892 return anv_descriptor_set_address(cmd_buffer, set);
2893 }
2894
2895 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
2896 struct anv_state state =
2897 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2898 return (struct anv_address) {
2899 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2900 .offset = state.offset,
2901 };
2902 }
2903
2904 default: {
2905 assert(range->set < MAX_SETS);
2906 struct anv_descriptor_set *set =
2907 gfx_state->base.descriptors[range->set];
2908 const struct anv_descriptor *desc =
2909 &set->descriptors[range->index];
2910
2911 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2912 return desc->buffer_view->address;
2913 } else {
2914 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2915 struct anv_push_constants *push =
2916 &cmd_buffer->state.push_constants[stage];
2917 uint32_t dynamic_offset =
2918 push->dynamic_offsets[range->dynamic_offset_index];
2919 return anv_address_add(desc->buffer->address,
2920 desc->offset + dynamic_offset);
2921 }
2922 }
2923 }
2924 }
2925
2926
2927 /** Returns the size in bytes of the bound buffer
2928 *
2929 * The range is relative to the start of the buffer, not the start of the
2930 * range. The returned range may be smaller than
2931 *
2932 * (range->start + range->length) * 32;
2933 */
2934 static uint32_t
2935 get_push_range_bound_size(struct anv_cmd_buffer *cmd_buffer,
2936 gl_shader_stage stage,
2937 const struct anv_push_range *range)
2938 {
2939 assert(stage != MESA_SHADER_COMPUTE);
2940 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2941 switch (range->set) {
2942 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2943 struct anv_descriptor_set *set =
2944 gfx_state->base.descriptors[range->index];
2945 assert(range->start * 32 < set->desc_mem.alloc_size);
2946 assert((range->start + range->length) * 32 <= set->desc_mem.alloc_size);
2947 return set->desc_mem.alloc_size;
2948 }
2949
2950 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
2951 return (range->start + range->length) * 32;
2952
2953 default: {
2954 assert(range->set < MAX_SETS);
2955 struct anv_descriptor_set *set =
2956 gfx_state->base.descriptors[range->set];
2957 const struct anv_descriptor *desc =
2958 &set->descriptors[range->index];
2959
2960 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2961 return desc->buffer_view->range;
2962 } else {
2963 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2964 /* Compute the offset within the buffer */
2965 struct anv_push_constants *push =
2966 &cmd_buffer->state.push_constants[stage];
2967 uint32_t dynamic_offset =
2968 push->dynamic_offsets[range->dynamic_offset_index];
2969 uint64_t offset = desc->offset + dynamic_offset;
2970 /* Clamp to the buffer size */
2971 offset = MIN2(offset, desc->buffer->size);
2972 /* Clamp the range to the buffer size */
2973 uint32_t bound_range = MIN2(desc->range, desc->buffer->size - offset);
2974
2975 /* Align the range for consistency */
2976 bound_range = align_u32(bound_range, ANV_UBO_BOUNDS_CHECK_ALIGNMENT);
2977
2978 return bound_range;
2979 }
2980 }
2981 }
2982 }
2983
2984 static void
2985 cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
2986 gl_shader_stage stage,
2987 struct anv_address *buffers,
2988 unsigned buffer_count)
2989 {
2990 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2991 const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
2992
2993 static const uint32_t push_constant_opcodes[] = {
2994 [MESA_SHADER_VERTEX] = 21,
2995 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2996 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2997 [MESA_SHADER_GEOMETRY] = 22,
2998 [MESA_SHADER_FRAGMENT] = 23,
2999 [MESA_SHADER_COMPUTE] = 0,
3000 };
3001
3002 assert(stage < ARRAY_SIZE(push_constant_opcodes));
3003 assert(push_constant_opcodes[stage] > 0);
3004
3005 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
3006 c._3DCommandSubOpcode = push_constant_opcodes[stage];
3007
3008 if (anv_pipeline_has_stage(pipeline, stage)) {
3009 const struct anv_pipeline_bind_map *bind_map =
3010 &pipeline->shaders[stage]->bind_map;
3011
3012 #if GEN_GEN >= 12
3013 c.MOCS = cmd_buffer->device->isl_dev.mocs.internal;
3014 #endif
3015
3016 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3017 /* The Skylake PRM contains the following restriction:
3018 *
3019 * "The driver must ensure The following case does not occur
3020 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3021 * buffer 3 read length equal to zero committed followed by a
3022 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3023 * zero committed."
3024 *
3025 * To avoid this, we program the buffers in the highest slots.
3026 * This way, slot 0 is only used if slot 3 is also used.
3027 */
3028 assert(buffer_count <= 4);
3029 const unsigned shift = 4 - buffer_count;
3030 for (unsigned i = 0; i < buffer_count; i++) {
3031 const struct anv_push_range *range = &bind_map->push_ranges[i];
3032
3033 /* At this point we only have non-empty ranges */
3034 assert(range->length > 0);
3035
3036 /* For Ivy Bridge, make sure we only set the first range (actual
3037 * push constants)
3038 */
3039 assert((GEN_GEN >= 8 || GEN_IS_HASWELL) || i == 0);
3040
3041 c.ConstantBody.ReadLength[i + shift] = range->length;
3042 c.ConstantBody.Buffer[i + shift] =
3043 anv_address_add(buffers[i], range->start * 32);
3044 }
3045 #else
3046 /* For Ivy Bridge, push constants are relative to dynamic state
3047 * base address and we only ever push actual push constants.
3048 */
3049 if (bind_map->push_ranges[0].length > 0) {
3050 assert(buffer_count == 1);
3051 assert(bind_map->push_ranges[0].set ==
3052 ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
3053 assert(buffers[0].bo ==
3054 cmd_buffer->device->dynamic_state_pool.block_pool.bo);
3055 c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
3056 c.ConstantBody.Buffer[0].bo = NULL;
3057 c.ConstantBody.Buffer[0].offset = buffers[0].offset;
3058 }
3059 assert(bind_map->push_ranges[1].length == 0);
3060 assert(bind_map->push_ranges[2].length == 0);
3061 assert(bind_map->push_ranges[3].length == 0);
3062 #endif
3063 }
3064 }
3065 }
3066
3067 #if GEN_GEN >= 12
3068 static void
3069 cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
3070 uint32_t shader_mask,
3071 struct anv_address *buffers,
3072 uint32_t buffer_count)
3073 {
3074 if (buffer_count == 0) {
3075 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
3076 c.ShaderUpdateEnable = shader_mask;
3077 c.MOCS = cmd_buffer->device->isl_dev.mocs.internal;
3078 }
3079 return;
3080 }
3081
3082 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3083 const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
3084
3085 static const uint32_t push_constant_opcodes[] = {
3086 [MESA_SHADER_VERTEX] = 21,
3087 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3088 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3089 [MESA_SHADER_GEOMETRY] = 22,
3090 [MESA_SHADER_FRAGMENT] = 23,
3091 [MESA_SHADER_COMPUTE] = 0,
3092 };
3093
3094 gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
3095 assert(stage < ARRAY_SIZE(push_constant_opcodes));
3096 assert(push_constant_opcodes[stage] > 0);
3097
3098 const struct anv_pipeline_bind_map *bind_map =
3099 &pipeline->shaders[stage]->bind_map;
3100
3101 uint32_t *dw;
3102 const uint32_t buffer_mask = (1 << buffer_count) - 1;
3103 const uint32_t num_dwords = 2 + 2 * buffer_count;
3104
3105 dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3106 GENX(3DSTATE_CONSTANT_ALL),
3107 .ShaderUpdateEnable = shader_mask,
3108 .PointerBufferMask = buffer_mask,
3109 .MOCS = cmd_buffer->device->isl_dev.mocs.internal);
3110
3111 for (int i = 0; i < buffer_count; i++) {
3112 const struct anv_push_range *range = &bind_map->push_ranges[i];
3113 GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
3114 &cmd_buffer->batch, dw + 2 + i * 2,
3115 &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
3116 .PointerToConstantBuffer =
3117 anv_address_add(buffers[i], range->start * 32),
3118 .ConstantBufferReadLength = range->length,
3119 });
3120 }
3121 }
3122 #endif
3123
3124 static void
3125 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
3126 VkShaderStageFlags dirty_stages)
3127 {
3128 VkShaderStageFlags flushed = 0;
3129 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3130 const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
3131
3132 #if GEN_GEN >= 12
3133 uint32_t nobuffer_stages = 0;
3134 #endif
3135
3136 anv_foreach_stage(stage, dirty_stages) {
3137 unsigned buffer_count = 0;
3138 flushed |= mesa_to_vk_shader_stage(stage);
3139 UNUSED uint32_t max_push_range = 0;
3140
3141 struct anv_address buffers[4] = {};
3142 if (anv_pipeline_has_stage(pipeline, stage)) {
3143 const struct anv_pipeline_bind_map *bind_map =
3144 &pipeline->shaders[stage]->bind_map;
3145 struct anv_push_constants *push =
3146 &cmd_buffer->state.push_constants[stage];
3147
3148 if (cmd_buffer->device->robust_buffer_access) {
3149 for (unsigned i = 0; i < 4; i++) {
3150 const struct anv_push_range *range = &bind_map->push_ranges[i];
3151 if (range->length == 0) {
3152 push->push_ubo_sizes[i] = 0;
3153 } else {
3154 push->push_ubo_sizes[i] =
3155 get_push_range_bound_size(cmd_buffer, stage, range);
3156 }
3157 cmd_buffer->state.push_constants_dirty |=
3158 mesa_to_vk_shader_stage(stage);
3159 }
3160 }
3161
3162 /* We have to gather buffer addresses as a second step because the
3163 * loop above puts data into the push constant area and the call to
3164 * get_push_range_address is what locks our push constants and copies
3165 * them into the actual GPU buffer. If we did the two loops at the
3166 * same time, we'd risk only having some of the sizes in the push
3167 * constant buffer when we did the copy.
3168 */
3169 for (unsigned i = 0; i < 4; i++) {
3170 const struct anv_push_range *range = &bind_map->push_ranges[i];
3171 if (range->length == 0)
3172 break;
3173
3174 buffers[i] = get_push_range_address(cmd_buffer, stage, range);
3175 max_push_range = MAX2(max_push_range, range->length);
3176 buffer_count++;
3177 }
3178
3179 /* We have at most 4 buffers but they should be tightly packed */
3180 for (unsigned i = buffer_count; i < 4; i++)
3181 assert(bind_map->push_ranges[i].length == 0);
3182 }
3183
3184 #if GEN_GEN >= 12
3185 /* If this stage doesn't have any push constants, emit it later in a
3186 * single CONSTANT_ALL packet.
3187 */
3188 if (buffer_count == 0) {
3189 nobuffer_stages |= 1 << stage;
3190 continue;
3191 }
3192
3193 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
3194 * contains only 5 bits, so we can only use it for buffers smaller than
3195 * 32.
3196 */
3197 if (max_push_range < 32) {
3198 cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
3199 buffers, buffer_count);
3200 continue;
3201 }
3202 #endif
3203
3204 cmd_buffer_emit_push_constant(cmd_buffer, stage, buffers, buffer_count);
3205 }
3206
3207 #if GEN_GEN >= 12
3208 if (nobuffer_stages)
3209 cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, NULL, 0);
3210 #endif
3211
3212 cmd_buffer->state.push_constants_dirty &= ~flushed;
3213 }
3214
3215 void
3216 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
3217 {
3218 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3219 uint32_t *p;
3220
3221 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
3222 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
3223 vb_emit |= pipeline->vb_used;
3224
3225 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
3226
3227 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config);
3228
3229 genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
3230
3231 genX(flush_pipeline_select_3d)(cmd_buffer);
3232
3233 if (vb_emit) {
3234 const uint32_t num_buffers = __builtin_popcount(vb_emit);
3235 const uint32_t num_dwords = 1 + num_buffers * 4;
3236
3237 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3238 GENX(3DSTATE_VERTEX_BUFFERS));
3239 uint32_t vb, i = 0;
3240 for_each_bit(vb, vb_emit) {
3241 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
3242 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
3243
3244 struct GENX(VERTEX_BUFFER_STATE) state = {
3245 .VertexBufferIndex = vb,
3246
3247 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
3248 #if GEN_GEN <= 7
3249 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
3250 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
3251 #endif
3252
3253 .AddressModifyEnable = true,
3254 .BufferPitch = pipeline->vb[vb].stride,
3255 .BufferStartingAddress = anv_address_add(buffer->address, offset),
3256
3257 #if GEN_GEN >= 8
3258 .BufferSize = buffer->size - offset
3259 #else
3260 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
3261 #endif
3262 };
3263
3264 #if GEN_GEN >= 8 && GEN_GEN <= 9
3265 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, vb,
3266 state.BufferStartingAddress,
3267 state.BufferSize);
3268 #endif
3269
3270 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
3271 i++;
3272 }
3273 }
3274
3275 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
3276
3277 #if GEN_GEN >= 8
3278 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
3279 /* We don't need any per-buffer dirty tracking because you're not
3280 * allowed to bind different XFB buffers while XFB is enabled.
3281 */
3282 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3283 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
3284 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
3285 #if GEN_GEN < 12
3286 sob.SOBufferIndex = idx;
3287 #else
3288 sob._3DCommandOpcode = 0;
3289 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
3290 #endif
3291
3292 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
3293 sob.SOBufferEnable = true;
3294 sob.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
3295 sob.StreamOffsetWriteEnable = false;
3296 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
3297 xfb->offset);
3298 /* Size is in DWords - 1 */
3299 sob.SurfaceSize = xfb->size / 4 - 1;
3300 }
3301 }
3302 }
3303
3304 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
3305 if (GEN_GEN >= 10)
3306 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3307 }
3308 #endif
3309
3310 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
3311 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch);
3312
3313 /* If the pipeline changed, we may need to re-allocate push constant
3314 * space in the URB.
3315 */
3316 cmd_buffer_alloc_push_constants(cmd_buffer);
3317 }
3318
3319 #if GEN_GEN <= 7
3320 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
3321 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
3322 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
3323 *
3324 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
3325 * stall needs to be sent just prior to any 3DSTATE_VS,
3326 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
3327 * 3DSTATE_BINDING_TABLE_POINTER_VS,
3328 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
3329 * PIPE_CONTROL needs to be sent before any combination of VS
3330 * associated 3DSTATE."
3331 */
3332 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3333 pc.DepthStallEnable = true;
3334 pc.PostSyncOperation = WriteImmediateData;
3335 pc.Address =
3336 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
3337 }
3338 }
3339 #endif
3340
3341 /* Render targets live in the same binding table as fragment descriptors */
3342 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
3343 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
3344
3345 /* We emit the binding tables and sampler tables first, then emit push
3346 * constants and then finally emit binding table and sampler table
3347 * pointers. It has to happen in this order, since emitting the binding
3348 * tables may change the push constants (in case of storage images). After
3349 * emitting push constants, on SKL+ we have to emit the corresponding
3350 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
3351 */
3352 uint32_t dirty = 0;
3353 if (cmd_buffer->state.descriptors_dirty) {
3354 dirty = flush_descriptor_sets(cmd_buffer,
3355 &cmd_buffer->state.gfx.base,
3356 pipeline->shaders,
3357 ARRAY_SIZE(pipeline->shaders));
3358 }
3359
3360 if (dirty || cmd_buffer->state.push_constants_dirty) {
3361 /* Because we're pushing UBOs, we have to push whenever either
3362 * descriptors or push constants is dirty.
3363 */
3364 dirty |= cmd_buffer->state.push_constants_dirty;
3365 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
3366 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
3367 }
3368
3369 if (dirty)
3370 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
3371
3372 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
3373 gen8_cmd_buffer_emit_viewport(cmd_buffer);
3374
3375 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
3376 ANV_CMD_DIRTY_PIPELINE)) {
3377 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
3378 pipeline->depth_clamp_enable);
3379 }
3380
3381 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
3382 ANV_CMD_DIRTY_RENDER_TARGETS))
3383 gen7_cmd_buffer_emit_scissor(cmd_buffer);
3384
3385 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
3386 }
3387
3388 static void
3389 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
3390 struct anv_address addr,
3391 uint32_t size, uint32_t index)
3392 {
3393 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
3394 GENX(3DSTATE_VERTEX_BUFFERS));
3395
3396 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
3397 &(struct GENX(VERTEX_BUFFER_STATE)) {
3398 .VertexBufferIndex = index,
3399 .AddressModifyEnable = true,
3400 .BufferPitch = 0,
3401 .MOCS = addr.bo ? anv_mocs_for_bo(cmd_buffer->device, addr.bo) : 0,
3402 .NullVertexBuffer = size == 0,
3403 #if (GEN_GEN >= 8)
3404 .BufferStartingAddress = addr,
3405 .BufferSize = size
3406 #else
3407 .BufferStartingAddress = addr,
3408 .EndAddress = anv_address_add(addr, size),
3409 #endif
3410 });
3411
3412 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer,
3413 index, addr, size);
3414 }
3415
3416 static void
3417 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
3418 struct anv_address addr)
3419 {
3420 emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
3421 }
3422
3423 static void
3424 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
3425 uint32_t base_vertex, uint32_t base_instance)
3426 {
3427 if (base_vertex == 0 && base_instance == 0) {
3428 emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
3429 } else {
3430 struct anv_state id_state =
3431 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
3432
3433 ((uint32_t *)id_state.map)[0] = base_vertex;
3434 ((uint32_t *)id_state.map)[1] = base_instance;
3435
3436 struct anv_address addr = {
3437 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3438 .offset = id_state.offset,
3439 };
3440
3441 emit_base_vertex_instance_bo(cmd_buffer, addr);
3442 }
3443 }
3444
3445 static void
3446 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
3447 {
3448 struct anv_state state =
3449 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
3450
3451 ((uint32_t *)state.map)[0] = draw_index;
3452
3453 struct anv_address addr = {
3454 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3455 .offset = state.offset,
3456 };
3457
3458 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
3459 }
3460
3461 static void
3462 update_dirty_vbs_for_gen8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
3463 uint32_t access_type)
3464 {
3465 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3466 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3467
3468 uint64_t vb_used = pipeline->vb_used;
3469 if (vs_prog_data->uses_firstvertex ||
3470 vs_prog_data->uses_baseinstance)
3471 vb_used |= 1ull << ANV_SVGS_VB_INDEX;
3472 if (vs_prog_data->uses_drawid)
3473 vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
3474
3475 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(cmd_buffer,
3476 access_type == RANDOM,
3477 vb_used);
3478 }
3479
3480 void genX(CmdDraw)(
3481 VkCommandBuffer commandBuffer,
3482 uint32_t vertexCount,
3483 uint32_t instanceCount,
3484 uint32_t firstVertex,
3485 uint32_t firstInstance)
3486 {
3487 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3488 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3489 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3490
3491 if (anv_batch_has_error(&cmd_buffer->batch))
3492 return;
3493
3494 genX(cmd_buffer_flush_state)(cmd_buffer);
3495
3496 if (cmd_buffer->state.conditional_render_enabled)
3497 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3498
3499 if (vs_prog_data->uses_firstvertex ||
3500 vs_prog_data->uses_baseinstance)
3501 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3502 if (vs_prog_data->uses_drawid)
3503 emit_draw_index(cmd_buffer, 0);
3504
3505 /* Emitting draw index or vertex index BOs may result in needing
3506 * additional VF cache flushes.
3507 */
3508 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3509
3510 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3511 * different views. We need to multiply instanceCount by the view count.
3512 */
3513 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3514
3515 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3516 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3517 prim.VertexAccessType = SEQUENTIAL;
3518 prim.PrimitiveTopologyType = pipeline->topology;
3519 prim.VertexCountPerInstance = vertexCount;
3520 prim.StartVertexLocation = firstVertex;
3521 prim.InstanceCount = instanceCount;
3522 prim.StartInstanceLocation = firstInstance;
3523 prim.BaseVertexLocation = 0;
3524 }
3525
3526 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3527 }
3528
3529 void genX(CmdDrawIndexed)(
3530 VkCommandBuffer commandBuffer,
3531 uint32_t indexCount,
3532 uint32_t instanceCount,
3533 uint32_t firstIndex,
3534 int32_t vertexOffset,
3535 uint32_t firstInstance)
3536 {
3537 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3538 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3539 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3540
3541 if (anv_batch_has_error(&cmd_buffer->batch))
3542 return;
3543
3544 genX(cmd_buffer_flush_state)(cmd_buffer);
3545
3546 if (cmd_buffer->state.conditional_render_enabled)
3547 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3548
3549 if (vs_prog_data->uses_firstvertex ||
3550 vs_prog_data->uses_baseinstance)
3551 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
3552 if (vs_prog_data->uses_drawid)
3553 emit_draw_index(cmd_buffer, 0);
3554
3555 /* Emitting draw index or vertex index BOs may result in needing
3556 * additional VF cache flushes.
3557 */
3558 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3559
3560 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3561 * different views. We need to multiply instanceCount by the view count.
3562 */
3563 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3564
3565 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3566 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3567 prim.VertexAccessType = RANDOM;
3568 prim.PrimitiveTopologyType = pipeline->topology;
3569 prim.VertexCountPerInstance = indexCount;
3570 prim.StartVertexLocation = firstIndex;
3571 prim.InstanceCount = instanceCount;
3572 prim.StartInstanceLocation = firstInstance;
3573 prim.BaseVertexLocation = vertexOffset;
3574 }
3575
3576 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3577 }
3578
3579 /* Auto-Draw / Indirect Registers */
3580 #define GEN7_3DPRIM_END_OFFSET 0x2420
3581 #define GEN7_3DPRIM_START_VERTEX 0x2430
3582 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
3583 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
3584 #define GEN7_3DPRIM_START_INSTANCE 0x243C
3585 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
3586
3587 void genX(CmdDrawIndirectByteCountEXT)(
3588 VkCommandBuffer commandBuffer,
3589 uint32_t instanceCount,
3590 uint32_t firstInstance,
3591 VkBuffer counterBuffer,
3592 VkDeviceSize counterBufferOffset,
3593 uint32_t counterOffset,
3594 uint32_t vertexStride)
3595 {
3596 #if GEN_IS_HASWELL || GEN_GEN >= 8
3597 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3598 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
3599 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3600 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3601
3602 /* firstVertex is always zero for this draw function */
3603 const uint32_t firstVertex = 0;
3604
3605 if (anv_batch_has_error(&cmd_buffer->batch))
3606 return;
3607
3608 genX(cmd_buffer_flush_state)(cmd_buffer);
3609
3610 if (vs_prog_data->uses_firstvertex ||
3611 vs_prog_data->uses_baseinstance)
3612 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3613 if (vs_prog_data->uses_drawid)
3614 emit_draw_index(cmd_buffer, 0);
3615
3616 /* Emitting draw index or vertex index BOs may result in needing
3617 * additional VF cache flushes.
3618 */
3619 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3620
3621 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3622 * different views. We need to multiply instanceCount by the view count.
3623 */
3624 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3625
3626 struct gen_mi_builder b;
3627 gen_mi_builder_init(&b, &cmd_buffer->batch);
3628 struct gen_mi_value count =
3629 gen_mi_mem32(anv_address_add(counter_buffer->address,
3630 counterBufferOffset));
3631 if (counterOffset)
3632 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
3633 count = gen_mi_udiv32_imm(&b, count, vertexStride);
3634 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
3635
3636 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3637 gen_mi_imm(firstVertex));
3638 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
3639 gen_mi_imm(instanceCount));
3640 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3641 gen_mi_imm(firstInstance));
3642 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3643
3644 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3645 prim.IndirectParameterEnable = true;
3646 prim.VertexAccessType = SEQUENTIAL;
3647 prim.PrimitiveTopologyType = pipeline->topology;
3648 }
3649
3650 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3651 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
3652 }
3653
3654 static void
3655 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
3656 struct anv_address addr,
3657 bool indexed)
3658 {
3659 struct gen_mi_builder b;
3660 gen_mi_builder_init(&b, &cmd_buffer->batch);
3661
3662 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
3663 gen_mi_mem32(anv_address_add(addr, 0)));
3664
3665 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
3666 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
3667 if (view_count > 1) {
3668 #if GEN_IS_HASWELL || GEN_GEN >= 8
3669 instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
3670 #else
3671 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3672 "MI_MATH is not supported on Ivy Bridge");
3673 #endif
3674 }
3675 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
3676
3677 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3678 gen_mi_mem32(anv_address_add(addr, 8)));
3679
3680 if (indexed) {
3681 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
3682 gen_mi_mem32(anv_address_add(addr, 12)));
3683 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3684 gen_mi_mem32(anv_address_add(addr, 16)));
3685 } else {
3686 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3687 gen_mi_mem32(anv_address_add(addr, 12)));
3688 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3689 }
3690 }
3691
3692 void genX(CmdDrawIndirect)(
3693 VkCommandBuffer commandBuffer,
3694 VkBuffer _buffer,
3695 VkDeviceSize offset,
3696 uint32_t drawCount,
3697 uint32_t stride)
3698 {
3699 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3700 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3701 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3702 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3703
3704 if (anv_batch_has_error(&cmd_buffer->batch))
3705 return;
3706
3707 genX(cmd_buffer_flush_state)(cmd_buffer);
3708
3709 if (cmd_buffer->state.conditional_render_enabled)
3710 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3711
3712 for (uint32_t i = 0; i < drawCount; i++) {
3713 struct anv_address draw = anv_address_add(buffer->address, offset);
3714
3715 if (vs_prog_data->uses_firstvertex ||
3716 vs_prog_data->uses_baseinstance)
3717 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3718 if (vs_prog_data->uses_drawid)
3719 emit_draw_index(cmd_buffer, i);
3720
3721 /* Emitting draw index or vertex index BOs may result in needing
3722 * additional VF cache flushes.
3723 */
3724 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3725
3726 load_indirect_parameters(cmd_buffer, draw, false);
3727
3728 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3729 prim.IndirectParameterEnable = true;
3730 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3731 prim.VertexAccessType = SEQUENTIAL;
3732 prim.PrimitiveTopologyType = pipeline->topology;
3733 }
3734
3735 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3736
3737 offset += stride;
3738 }
3739 }
3740
3741 void genX(CmdDrawIndexedIndirect)(
3742 VkCommandBuffer commandBuffer,
3743 VkBuffer _buffer,
3744 VkDeviceSize offset,
3745 uint32_t drawCount,
3746 uint32_t stride)
3747 {
3748 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3749 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3750 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3751 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3752
3753 if (anv_batch_has_error(&cmd_buffer->batch))
3754 return;
3755
3756 genX(cmd_buffer_flush_state)(cmd_buffer);
3757
3758 if (cmd_buffer->state.conditional_render_enabled)
3759 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3760
3761 for (uint32_t i = 0; i < drawCount; i++) {
3762 struct anv_address draw = anv_address_add(buffer->address, offset);
3763
3764 /* TODO: We need to stomp base vertex to 0 somehow */
3765 if (vs_prog_data->uses_firstvertex ||
3766 vs_prog_data->uses_baseinstance)
3767 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3768 if (vs_prog_data->uses_drawid)
3769 emit_draw_index(cmd_buffer, i);
3770
3771 /* Emitting draw index or vertex index BOs may result in needing
3772 * additional VF cache flushes.
3773 */
3774 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3775
3776 load_indirect_parameters(cmd_buffer, draw, true);
3777
3778 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3779 prim.IndirectParameterEnable = true;
3780 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3781 prim.VertexAccessType = RANDOM;
3782 prim.PrimitiveTopologyType = pipeline->topology;
3783 }
3784
3785 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3786
3787 offset += stride;
3788 }
3789 }
3790
3791 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3792
3793 static void
3794 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3795 struct anv_address count_address,
3796 const bool conditional_render_enabled)
3797 {
3798 struct gen_mi_builder b;
3799 gen_mi_builder_init(&b, &cmd_buffer->batch);
3800
3801 if (conditional_render_enabled) {
3802 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3803 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
3804 gen_mi_mem32(count_address));
3805 #endif
3806 } else {
3807 /* Upload the current draw count from the draw parameters buffer to
3808 * MI_PREDICATE_SRC0.
3809 */
3810 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
3811 gen_mi_mem32(count_address));
3812
3813 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
3814 }
3815 }
3816
3817 static void
3818 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3819 uint32_t draw_index)
3820 {
3821 struct gen_mi_builder b;
3822 gen_mi_builder_init(&b, &cmd_buffer->batch);
3823
3824 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3825 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
3826
3827 if (draw_index == 0) {
3828 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3829 mip.LoadOperation = LOAD_LOADINV;
3830 mip.CombineOperation = COMBINE_SET;
3831 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3832 }
3833 } else {
3834 /* While draw_index < draw_count the predicate's result will be
3835 * (draw_index == draw_count) ^ TRUE = TRUE
3836 * When draw_index == draw_count the result is
3837 * (TRUE) ^ TRUE = FALSE
3838 * After this all results will be:
3839 * (FALSE) ^ FALSE = FALSE
3840 */
3841 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3842 mip.LoadOperation = LOAD_LOAD;
3843 mip.CombineOperation = COMBINE_XOR;
3844 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3845 }
3846 }
3847 }
3848
3849 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3850 static void
3851 emit_draw_count_predicate_with_conditional_render(
3852 struct anv_cmd_buffer *cmd_buffer,
3853 uint32_t draw_index)
3854 {
3855 struct gen_mi_builder b;
3856 gen_mi_builder_init(&b, &cmd_buffer->batch);
3857
3858 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
3859 gen_mi_reg64(TMP_DRAW_COUNT_REG));
3860 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
3861
3862 #if GEN_GEN >= 8
3863 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
3864 #else
3865 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3866 * so we emit MI_PREDICATE to set it.
3867 */
3868
3869 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
3870 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3871
3872 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3873 mip.LoadOperation = LOAD_LOADINV;
3874 mip.CombineOperation = COMBINE_SET;
3875 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3876 }
3877 #endif
3878 }
3879 #endif
3880
3881 void genX(CmdDrawIndirectCount)(
3882 VkCommandBuffer commandBuffer,
3883 VkBuffer _buffer,
3884 VkDeviceSize offset,
3885 VkBuffer _countBuffer,
3886 VkDeviceSize countBufferOffset,
3887 uint32_t maxDrawCount,
3888 uint32_t stride)
3889 {
3890 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3891 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3892 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3893 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3894 struct anv_graphics_pipeline *pipeline = cmd_state->gfx.pipeline;
3895 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3896
3897 if (anv_batch_has_error(&cmd_buffer->batch))
3898 return;
3899
3900 genX(cmd_buffer_flush_state)(cmd_buffer);
3901
3902 struct anv_address count_address =
3903 anv_address_add(count_buffer->address, countBufferOffset);
3904
3905 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3906 cmd_state->conditional_render_enabled);
3907
3908 for (uint32_t i = 0; i < maxDrawCount; i++) {
3909 struct anv_address draw = anv_address_add(buffer->address, offset);
3910
3911 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3912 if (cmd_state->conditional_render_enabled) {
3913 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3914 } else {
3915 emit_draw_count_predicate(cmd_buffer, i);
3916 }
3917 #else
3918 emit_draw_count_predicate(cmd_buffer, i);
3919 #endif
3920
3921 if (vs_prog_data->uses_firstvertex ||
3922 vs_prog_data->uses_baseinstance)
3923 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3924 if (vs_prog_data->uses_drawid)
3925 emit_draw_index(cmd_buffer, i);
3926
3927 /* Emitting draw index or vertex index BOs may result in needing
3928 * additional VF cache flushes.
3929 */
3930 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3931
3932 load_indirect_parameters(cmd_buffer, draw, false);
3933
3934 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3935 prim.IndirectParameterEnable = true;
3936 prim.PredicateEnable = true;
3937 prim.VertexAccessType = SEQUENTIAL;
3938 prim.PrimitiveTopologyType = pipeline->topology;
3939 }
3940
3941 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3942
3943 offset += stride;
3944 }
3945 }
3946
3947 void genX(CmdDrawIndexedIndirectCount)(
3948 VkCommandBuffer commandBuffer,
3949 VkBuffer _buffer,
3950 VkDeviceSize offset,
3951 VkBuffer _countBuffer,
3952 VkDeviceSize countBufferOffset,
3953 uint32_t maxDrawCount,
3954 uint32_t stride)
3955 {
3956 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3957 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3958 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3959 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3960 struct anv_graphics_pipeline *pipeline = cmd_state->gfx.pipeline;
3961 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3962
3963 if (anv_batch_has_error(&cmd_buffer->batch))
3964 return;
3965
3966 genX(cmd_buffer_flush_state)(cmd_buffer);
3967
3968 struct anv_address count_address =
3969 anv_address_add(count_buffer->address, countBufferOffset);
3970
3971 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3972 cmd_state->conditional_render_enabled);
3973
3974 for (uint32_t i = 0; i < maxDrawCount; i++) {
3975 struct anv_address draw = anv_address_add(buffer->address, offset);
3976
3977 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3978 if (cmd_state->conditional_render_enabled) {
3979 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3980 } else {
3981 emit_draw_count_predicate(cmd_buffer, i);
3982 }
3983 #else
3984 emit_draw_count_predicate(cmd_buffer, i);
3985 #endif
3986
3987 /* TODO: We need to stomp base vertex to 0 somehow */
3988 if (vs_prog_data->uses_firstvertex ||
3989 vs_prog_data->uses_baseinstance)
3990 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3991 if (vs_prog_data->uses_drawid)
3992 emit_draw_index(cmd_buffer, i);
3993
3994 /* Emitting draw index or vertex index BOs may result in needing
3995 * additional VF cache flushes.
3996 */
3997 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3998
3999 load_indirect_parameters(cmd_buffer, draw, true);
4000
4001 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4002 prim.IndirectParameterEnable = true;
4003 prim.PredicateEnable = true;
4004 prim.VertexAccessType = RANDOM;
4005 prim.PrimitiveTopologyType = pipeline->topology;
4006 }
4007
4008 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
4009
4010 offset += stride;
4011 }
4012 }
4013
4014 void genX(CmdBeginTransformFeedbackEXT)(
4015 VkCommandBuffer commandBuffer,
4016 uint32_t firstCounterBuffer,
4017 uint32_t counterBufferCount,
4018 const VkBuffer* pCounterBuffers,
4019 const VkDeviceSize* pCounterBufferOffsets)
4020 {
4021 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4022
4023 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
4024 assert(counterBufferCount <= MAX_XFB_BUFFERS);
4025 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
4026
4027 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
4028 *
4029 * "Ssoftware must ensure that no HW stream output operations can be in
4030 * process or otherwise pending at the point that the MI_LOAD/STORE
4031 * commands are processed. This will likely require a pipeline flush."
4032 */
4033 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4034 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4035
4036 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
4037 /* If we have a counter buffer, this is a resume so we need to load the
4038 * value into the streamout offset register. Otherwise, this is a begin
4039 * and we need to reset it to zero.
4040 */
4041 if (pCounterBuffers &&
4042 idx >= firstCounterBuffer &&
4043 idx - firstCounterBuffer < counterBufferCount &&
4044 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
4045 uint32_t cb_idx = idx - firstCounterBuffer;
4046 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
4047 uint64_t offset = pCounterBufferOffsets ?
4048 pCounterBufferOffsets[cb_idx] : 0;
4049
4050 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4051 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4052 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
4053 offset);
4054 }
4055 } else {
4056 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4057 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4058 lri.DataDWord = 0;
4059 }
4060 }
4061 }
4062
4063 cmd_buffer->state.xfb_enabled = true;
4064 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
4065 }
4066
4067 void genX(CmdEndTransformFeedbackEXT)(
4068 VkCommandBuffer commandBuffer,
4069 uint32_t firstCounterBuffer,
4070 uint32_t counterBufferCount,
4071 const VkBuffer* pCounterBuffers,
4072 const VkDeviceSize* pCounterBufferOffsets)
4073 {
4074 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4075
4076 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
4077 assert(counterBufferCount <= MAX_XFB_BUFFERS);
4078 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
4079
4080 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
4081 *
4082 * "Ssoftware must ensure that no HW stream output operations can be in
4083 * process or otherwise pending at the point that the MI_LOAD/STORE
4084 * commands are processed. This will likely require a pipeline flush."
4085 */
4086 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4087 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4088
4089 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
4090 unsigned idx = firstCounterBuffer + cb_idx;
4091
4092 /* If we have a counter buffer, this is a resume so we need to load the
4093 * value into the streamout offset register. Otherwise, this is a begin
4094 * and we need to reset it to zero.
4095 */
4096 if (pCounterBuffers &&
4097 cb_idx < counterBufferCount &&
4098 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
4099 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
4100 uint64_t offset = pCounterBufferOffsets ?
4101 pCounterBufferOffsets[cb_idx] : 0;
4102
4103 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4104 srm.MemoryAddress = anv_address_add(counter_buffer->address,
4105 offset);
4106 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4107 }
4108 }
4109 }
4110
4111 cmd_buffer->state.xfb_enabled = false;
4112 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
4113 }
4114
4115 void
4116 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
4117 {
4118 struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline;
4119
4120 assert(pipeline->cs);
4121
4122 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config);
4123
4124 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
4125
4126 if (cmd_buffer->state.compute.pipeline_dirty) {
4127 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
4128 *
4129 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4130 * the only bits that are changed are scoreboard related: Scoreboard
4131 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4132 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4133 * sufficient."
4134 */
4135 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
4136 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4137
4138 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch);
4139
4140 /* The workgroup size of the pipeline affects our push constant layout
4141 * so flag push constants as dirty if we change the pipeline.
4142 */
4143 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4144 }
4145
4146 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
4147 cmd_buffer->state.compute.pipeline_dirty) {
4148 flush_descriptor_sets(cmd_buffer,
4149 &cmd_buffer->state.compute.base,
4150 &pipeline->cs, 1);
4151
4152 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4153 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
4154 .BindingTablePointer =
4155 cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
4156 .SamplerStatePointer =
4157 cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
4158 };
4159 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
4160
4161 struct anv_state state =
4162 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
4163 pipeline->interface_descriptor_data,
4164 GENX(INTERFACE_DESCRIPTOR_DATA_length),
4165 64);
4166
4167 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4168 anv_batch_emit(&cmd_buffer->batch,
4169 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
4170 mid.InterfaceDescriptorTotalLength = size;
4171 mid.InterfaceDescriptorDataStartAddress = state.offset;
4172 }
4173 }
4174
4175 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
4176 struct anv_state push_state =
4177 anv_cmd_buffer_cs_push_constants(cmd_buffer);
4178
4179 if (push_state.alloc_size) {
4180 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4181 curbe.CURBETotalDataLength = push_state.alloc_size;
4182 curbe.CURBEDataStartAddress = push_state.offset;
4183 }
4184 }
4185
4186 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
4187 }
4188
4189 cmd_buffer->state.compute.pipeline_dirty = false;
4190
4191 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4192 }
4193
4194 #if GEN_GEN == 7
4195
4196 static VkResult
4197 verify_cmd_parser(const struct anv_device *device,
4198 int required_version,
4199 const char *function)
4200 {
4201 if (device->physical->cmd_parser_version < required_version) {
4202 return vk_errorf(device, device->physical,
4203 VK_ERROR_FEATURE_NOT_PRESENT,
4204 "cmd parser version %d is required for %s",
4205 required_version, function);
4206 } else {
4207 return VK_SUCCESS;
4208 }
4209 }
4210
4211 #endif
4212
4213 static void
4214 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
4215 uint32_t baseGroupX,
4216 uint32_t baseGroupY,
4217 uint32_t baseGroupZ)
4218 {
4219 if (anv_batch_has_error(&cmd_buffer->batch))
4220 return;
4221
4222 struct anv_push_constants *push =
4223 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
4224 if (push->cs.base_work_group_id[0] != baseGroupX ||
4225 push->cs.base_work_group_id[1] != baseGroupY ||
4226 push->cs.base_work_group_id[2] != baseGroupZ) {
4227 push->cs.base_work_group_id[0] = baseGroupX;
4228 push->cs.base_work_group_id[1] = baseGroupY;
4229 push->cs.base_work_group_id[2] = baseGroupZ;
4230
4231 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4232 }
4233 }
4234
4235 void genX(CmdDispatch)(
4236 VkCommandBuffer commandBuffer,
4237 uint32_t x,
4238 uint32_t y,
4239 uint32_t z)
4240 {
4241 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
4242 }
4243
4244 void genX(CmdDispatchBase)(
4245 VkCommandBuffer commandBuffer,
4246 uint32_t baseGroupX,
4247 uint32_t baseGroupY,
4248 uint32_t baseGroupZ,
4249 uint32_t groupCountX,
4250 uint32_t groupCountY,
4251 uint32_t groupCountZ)
4252 {
4253 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4254 struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline;
4255 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4256
4257 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
4258 baseGroupY, baseGroupZ);
4259
4260 if (anv_batch_has_error(&cmd_buffer->batch))
4261 return;
4262
4263 if (prog_data->uses_num_work_groups) {
4264 struct anv_state state =
4265 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
4266 uint32_t *sizes = state.map;
4267 sizes[0] = groupCountX;
4268 sizes[1] = groupCountY;
4269 sizes[2] = groupCountZ;
4270 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
4271 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
4272 .offset = state.offset,
4273 };
4274
4275 /* The num_workgroups buffer goes in the binding table */
4276 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4277 }
4278
4279 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4280
4281 if (cmd_buffer->state.conditional_render_enabled)
4282 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4283
4284 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
4285 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
4286 ggw.SIMDSize = prog_data->simd_size / 16;
4287 ggw.ThreadDepthCounterMaximum = 0;
4288 ggw.ThreadHeightCounterMaximum = 0;
4289 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4290 ggw.ThreadGroupIDXDimension = groupCountX;
4291 ggw.ThreadGroupIDYDimension = groupCountY;
4292 ggw.ThreadGroupIDZDimension = groupCountZ;
4293 ggw.RightExecutionMask = pipeline->cs_right_mask;
4294 ggw.BottomExecutionMask = 0xffffffff;
4295 }
4296
4297 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
4298 }
4299
4300 #define GPGPU_DISPATCHDIMX 0x2500
4301 #define GPGPU_DISPATCHDIMY 0x2504
4302 #define GPGPU_DISPATCHDIMZ 0x2508
4303
4304 void genX(CmdDispatchIndirect)(
4305 VkCommandBuffer commandBuffer,
4306 VkBuffer _buffer,
4307 VkDeviceSize offset)
4308 {
4309 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4310 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4311 struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline;
4312 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4313 struct anv_address addr = anv_address_add(buffer->address, offset);
4314 struct anv_batch *batch = &cmd_buffer->batch;
4315
4316 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
4317
4318 #if GEN_GEN == 7
4319 /* Linux 4.4 added command parser version 5 which allows the GPGPU
4320 * indirect dispatch registers to be written.
4321 */
4322 if (verify_cmd_parser(cmd_buffer->device, 5,
4323 "vkCmdDispatchIndirect") != VK_SUCCESS)
4324 return;
4325 #endif
4326
4327 if (prog_data->uses_num_work_groups) {
4328 cmd_buffer->state.compute.num_workgroups = addr;
4329
4330 /* The num_workgroups buffer goes in the binding table */
4331 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4332 }
4333
4334 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4335
4336 struct gen_mi_builder b;
4337 gen_mi_builder_init(&b, &cmd_buffer->batch);
4338
4339 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
4340 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
4341 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
4342
4343 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
4344 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
4345 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
4346
4347 #if GEN_GEN <= 7
4348 /* predicate = (compute_dispatch_indirect_x_size == 0); */
4349 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
4350 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
4351 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4352 mip.LoadOperation = LOAD_LOAD;
4353 mip.CombineOperation = COMBINE_SET;
4354 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4355 }
4356
4357 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
4358 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
4359 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4360 mip.LoadOperation = LOAD_LOAD;
4361 mip.CombineOperation = COMBINE_OR;
4362 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4363 }
4364
4365 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
4366 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
4367 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4368 mip.LoadOperation = LOAD_LOAD;
4369 mip.CombineOperation = COMBINE_OR;
4370 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4371 }
4372
4373 /* predicate = !predicate; */
4374 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4375 mip.LoadOperation = LOAD_LOADINV;
4376 mip.CombineOperation = COMBINE_OR;
4377 mip.CompareOperation = COMPARE_FALSE;
4378 }
4379
4380 #if GEN_IS_HASWELL
4381 if (cmd_buffer->state.conditional_render_enabled) {
4382 /* predicate &= !(conditional_rendering_predicate == 0); */
4383 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
4384 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
4385 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4386 mip.LoadOperation = LOAD_LOADINV;
4387 mip.CombineOperation = COMBINE_AND;
4388 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4389 }
4390 }
4391 #endif
4392
4393 #else /* GEN_GEN > 7 */
4394 if (cmd_buffer->state.conditional_render_enabled)
4395 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4396 #endif
4397
4398 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
4399 ggw.IndirectParameterEnable = true;
4400 ggw.PredicateEnable = GEN_GEN <= 7 ||
4401 cmd_buffer->state.conditional_render_enabled;
4402 ggw.SIMDSize = prog_data->simd_size / 16;
4403 ggw.ThreadDepthCounterMaximum = 0;
4404 ggw.ThreadHeightCounterMaximum = 0;
4405 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4406 ggw.RightExecutionMask = pipeline->cs_right_mask;
4407 ggw.BottomExecutionMask = 0xffffffff;
4408 }
4409
4410 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
4411 }
4412
4413 static void
4414 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
4415 uint32_t pipeline)
4416 {
4417 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4418
4419 if (cmd_buffer->state.current_pipeline == pipeline)
4420 return;
4421
4422 #if GEN_GEN >= 8 && GEN_GEN < 10
4423 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
4424 *
4425 * Software must clear the COLOR_CALC_STATE Valid field in
4426 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
4427 * with Pipeline Select set to GPGPU.
4428 *
4429 * The internal hardware docs recommend the same workaround for Gen9
4430 * hardware too.
4431 */
4432 if (pipeline == GPGPU)
4433 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
4434 #endif
4435
4436 #if GEN_GEN == 9
4437 if (pipeline == _3D) {
4438 /* There is a mid-object preemption workaround which requires you to
4439 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
4440 * even without preemption, we have issues with geometry flickering when
4441 * GPGPU and 3D are back-to-back and this seems to fix it. We don't
4442 * really know why.
4443 */
4444 const uint32_t subslices =
4445 MAX2(cmd_buffer->device->physical->subslice_total, 1);
4446 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
4447 vfe.MaximumNumberofThreads =
4448 devinfo->max_cs_threads * subslices - 1;
4449 vfe.NumberofURBEntries = 2;
4450 vfe.URBEntryAllocationSize = 2;
4451 }
4452
4453 /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
4454 * invalid. Set the compute pipeline to dirty to force a re-emit of the
4455 * pipeline in case we get back-to-back dispatch calls with the same
4456 * pipeline and a PIPELINE_SELECT in between.
4457 */
4458 cmd_buffer->state.compute.pipeline_dirty = true;
4459 }
4460 #endif
4461
4462 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
4463 * PIPELINE_SELECT [DevBWR+]":
4464 *
4465 * Project: DEVSNB+
4466 *
4467 * Software must ensure all the write caches are flushed through a
4468 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
4469 * command to invalidate read only caches prior to programming
4470 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
4471 */
4472 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4473 pc.RenderTargetCacheFlushEnable = true;
4474 pc.DepthCacheFlushEnable = true;
4475 pc.DCFlushEnable = true;
4476 pc.PostSyncOperation = NoWrite;
4477 pc.CommandStreamerStallEnable = true;
4478 #if GEN_GEN >= 12
4479 pc.TileCacheFlushEnable = true;
4480
4481 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must be
4482 * set with any PIPE_CONTROL with Depth Flush Enable bit set.
4483 */
4484 pc.DepthStallEnable = true;
4485 #endif
4486 }
4487
4488 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4489 pc.TextureCacheInvalidationEnable = true;
4490 pc.ConstantCacheInvalidationEnable = true;
4491 pc.StateCacheInvalidationEnable = true;
4492 pc.InstructionCacheInvalidateEnable = true;
4493 pc.PostSyncOperation = NoWrite;
4494 #if GEN_GEN >= 12
4495 pc.TileCacheFlushEnable = true;
4496 #endif
4497 }
4498
4499 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
4500 #if GEN_GEN >= 9
4501 ps.MaskBits = 3;
4502 #endif
4503 ps.PipelineSelection = pipeline;
4504 }
4505
4506 #if GEN_GEN == 9
4507 if (devinfo->is_geminilake) {
4508 /* Project: DevGLK
4509 *
4510 * "This chicken bit works around a hardware issue with barrier logic
4511 * encountered when switching between GPGPU and 3D pipelines. To
4512 * workaround the issue, this mode bit should be set after a pipeline
4513 * is selected."
4514 */
4515 uint32_t scec;
4516 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
4517 .GLKBarrierMode =
4518 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
4519 : GLK_BARRIER_MODE_3D_HULL,
4520 .GLKBarrierModeMask = 1);
4521 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
4522 }
4523 #endif
4524
4525 cmd_buffer->state.current_pipeline = pipeline;
4526 }
4527
4528 void
4529 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
4530 {
4531 genX(flush_pipeline_select)(cmd_buffer, _3D);
4532 }
4533
4534 void
4535 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
4536 {
4537 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
4538 }
4539
4540 void
4541 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
4542 {
4543 if (GEN_GEN >= 8)
4544 return;
4545
4546 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
4547 *
4548 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
4549 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
4550 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
4551 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
4552 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
4553 * Depth Flush Bit set, followed by another pipelined depth stall
4554 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
4555 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
4556 * via a preceding MI_FLUSH)."
4557 */
4558 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4559 pipe.DepthStallEnable = true;
4560 }
4561 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4562 pipe.DepthCacheFlushEnable = true;
4563 #if GEN_GEN >= 12
4564 pipe.TileCacheFlushEnable = true;
4565 #endif
4566 }
4567 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4568 pipe.DepthStallEnable = true;
4569 }
4570 }
4571
4572 /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
4573 *
4574 * "The VF cache needs to be invalidated before binding and then using
4575 * Vertex Buffers that overlap with any previously bound Vertex Buffer
4576 * (at a 64B granularity) since the last invalidation. A VF cache
4577 * invalidate is performed by setting the "VF Cache Invalidation Enable"
4578 * bit in PIPE_CONTROL."
4579 *
4580 * This is implemented by carefully tracking all vertex and index buffer
4581 * bindings and flushing if the cache ever ends up with a range in the cache
4582 * that would exceed 4 GiB. This is implemented in three parts:
4583 *
4584 * 1. genX(cmd_buffer_set_binding_for_gen8_vb_flush)() which must be called
4585 * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
4586 * tracking code of the new binding. If this new binding would cause
4587 * the cache to have a too-large range on the next draw call, a pipeline
4588 * stall and VF cache invalidate are added to pending_pipeline_bits.
4589 *
4590 * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
4591 * empty whenever we emit a VF invalidate.
4592 *
4593 * 3. genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)() must be called
4594 * after every 3DPRIMITIVE and copies the bound range into the dirty
4595 * range for each used buffer. This has to be a separate step because
4596 * we don't always re-bind all buffers and so 1. can't know which
4597 * buffers are actually bound.
4598 */
4599 void
4600 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4601 int vb_index,
4602 struct anv_address vb_address,
4603 uint32_t vb_size)
4604 {
4605 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4606 !cmd_buffer->device->physical->use_softpin)
4607 return;
4608
4609 struct anv_vb_cache_range *bound, *dirty;
4610 if (vb_index == -1) {
4611 bound = &cmd_buffer->state.gfx.ib_bound_range;
4612 dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4613 } else {
4614 assert(vb_index >= 0);
4615 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4616 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4617 bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
4618 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
4619 }
4620
4621 if (vb_size == 0) {
4622 bound->start = 0;
4623 bound->end = 0;
4624 return;
4625 }
4626
4627 assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED));
4628 bound->start = gen_48b_address(anv_address_physical(vb_address));
4629 bound->end = bound->start + vb_size;
4630 assert(bound->end > bound->start); /* No overflow */
4631
4632 /* Align everything to a cache line */
4633 bound->start &= ~(64ull - 1ull);
4634 bound->end = align_u64(bound->end, 64);
4635
4636 /* Compute the dirty range */
4637 dirty->start = MIN2(dirty->start, bound->start);
4638 dirty->end = MAX2(dirty->end, bound->end);
4639
4640 /* If our range is larger than 32 bits, we have to flush */
4641 assert(bound->end - bound->start <= (1ull << 32));
4642 if (dirty->end - dirty->start > (1ull << 32)) {
4643 cmd_buffer->state.pending_pipe_bits |=
4644 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
4645 }
4646 }
4647
4648 void
4649 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4650 uint32_t access_type,
4651 uint64_t vb_used)
4652 {
4653 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4654 !cmd_buffer->device->physical->use_softpin)
4655 return;
4656
4657 if (access_type == RANDOM) {
4658 /* We have an index buffer */
4659 struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
4660 struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4661
4662 if (bound->end > bound->start) {
4663 dirty->start = MIN2(dirty->start, bound->start);
4664 dirty->end = MAX2(dirty->end, bound->end);
4665 }
4666 }
4667
4668 uint64_t mask = vb_used;
4669 while (mask) {
4670 int i = u_bit_scan64(&mask);
4671 assert(i >= 0);
4672 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4673 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4674
4675 struct anv_vb_cache_range *bound, *dirty;
4676 bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
4677 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
4678
4679 if (bound->end > bound->start) {
4680 dirty->start = MIN2(dirty->start, bound->start);
4681 dirty->end = MAX2(dirty->end, bound->end);
4682 }
4683 }
4684 }
4685
4686 /**
4687 * Update the pixel hashing modes that determine the balancing of PS threads
4688 * across subslices and slices.
4689 *
4690 * \param width Width bound of the rendering area (already scaled down if \p
4691 * scale is greater than 1).
4692 * \param height Height bound of the rendering area (already scaled down if \p
4693 * scale is greater than 1).
4694 * \param scale The number of framebuffer samples that could potentially be
4695 * affected by an individual channel of the PS thread. This is
4696 * typically one for single-sampled rendering, but for operations
4697 * like CCS resolves and fast clears a single PS invocation may
4698 * update a huge number of pixels, in which case a finer
4699 * balancing is desirable in order to maximally utilize the
4700 * bandwidth available. UINT_MAX can be used as shorthand for
4701 * "finest hashing mode available".
4702 */
4703 void
4704 genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
4705 unsigned width, unsigned height,
4706 unsigned scale)
4707 {
4708 #if GEN_GEN == 9
4709 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4710 const unsigned slice_hashing[] = {
4711 /* Because all Gen9 platforms with more than one slice require
4712 * three-way subslice hashing, a single "normal" 16x16 slice hashing
4713 * block is guaranteed to suffer from substantial imbalance, with one
4714 * subslice receiving twice as much work as the other two in the
4715 * slice.
4716 *
4717 * The performance impact of that would be particularly severe when
4718 * three-way hashing is also in use for slice balancing (which is the
4719 * case for all Gen9 GT4 platforms), because one of the slices
4720 * receives one every three 16x16 blocks in either direction, which
4721 * is roughly the periodicity of the underlying subslice imbalance
4722 * pattern ("roughly" because in reality the hardware's
4723 * implementation of three-way hashing doesn't do exact modulo 3
4724 * arithmetic, which somewhat decreases the magnitude of this effect
4725 * in practice). This leads to a systematic subslice imbalance
4726 * within that slice regardless of the size of the primitive. The
4727 * 32x32 hashing mode guarantees that the subslice imbalance within a
4728 * single slice hashing block is minimal, largely eliminating this
4729 * effect.
4730 */
4731 _32x32,
4732 /* Finest slice hashing mode available. */
4733 NORMAL
4734 };
4735 const unsigned subslice_hashing[] = {
4736 /* 16x16 would provide a slight cache locality benefit especially
4737 * visible in the sampler L1 cache efficiency of low-bandwidth
4738 * non-LLC platforms, but it comes at the cost of greater subslice
4739 * imbalance for primitives of dimensions approximately intermediate
4740 * between 16x4 and 16x16.
4741 */
4742 _16x4,
4743 /* Finest subslice hashing mode available. */
4744 _8x4
4745 };
4746 /* Dimensions of the smallest hashing block of a given hashing mode. If
4747 * the rendering area is smaller than this there can't possibly be any
4748 * benefit from switching to this mode, so we optimize out the
4749 * transition.
4750 */
4751 const unsigned min_size[][2] = {
4752 { 16, 4 },
4753 { 8, 4 }
4754 };
4755 const unsigned idx = scale > 1;
4756
4757 if (cmd_buffer->state.current_hash_scale != scale &&
4758 (width > min_size[idx][0] || height > min_size[idx][1])) {
4759 uint32_t gt_mode;
4760
4761 anv_pack_struct(&gt_mode, GENX(GT_MODE),
4762 .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0),
4763 .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0),
4764 .SubsliceHashing = subslice_hashing[idx],
4765 .SubsliceHashingMask = -1);
4766
4767 cmd_buffer->state.pending_pipe_bits |=
4768 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
4769 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4770
4771 emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode);
4772
4773 cmd_buffer->state.current_hash_scale = scale;
4774 }
4775 #endif
4776 }
4777
4778 static void
4779 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
4780 {
4781 struct anv_device *device = cmd_buffer->device;
4782 const struct anv_image_view *iview =
4783 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
4784 const struct anv_image *image = iview ? iview->image : NULL;
4785
4786 /* FIXME: Width and Height are wrong */
4787
4788 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
4789
4790 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
4791 device->isl_dev.ds.size / 4);
4792 if (dw == NULL)
4793 return;
4794
4795 struct isl_depth_stencil_hiz_emit_info info = { };
4796
4797 if (iview)
4798 info.view = &iview->planes[0].isl;
4799
4800 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4801 uint32_t depth_plane =
4802 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
4803 const struct anv_surface *surface = &image->planes[depth_plane].surface;
4804
4805 info.depth_surf = &surface->isl;
4806
4807 info.depth_address =
4808 anv_batch_emit_reloc(&cmd_buffer->batch,
4809 dw + device->isl_dev.ds.depth_offset / 4,
4810 image->planes[depth_plane].address.bo,
4811 image->planes[depth_plane].address.offset +
4812 surface->offset);
4813 info.mocs =
4814 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
4815
4816 const uint32_t ds =
4817 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
4818 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
4819 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
4820 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
4821
4822 info.hiz_address =
4823 anv_batch_emit_reloc(&cmd_buffer->batch,
4824 dw + device->isl_dev.ds.hiz_offset / 4,
4825 image->planes[depth_plane].address.bo,
4826 image->planes[depth_plane].address.offset +
4827 image->planes[depth_plane].aux_surface.offset);
4828
4829 info.depth_clear_value = ANV_HZ_FC_VAL;
4830 }
4831 }
4832
4833 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
4834 uint32_t stencil_plane =
4835 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
4836 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
4837
4838 info.stencil_surf = &surface->isl;
4839
4840 info.stencil_address =
4841 anv_batch_emit_reloc(&cmd_buffer->batch,
4842 dw + device->isl_dev.ds.stencil_offset / 4,
4843 image->planes[stencil_plane].address.bo,
4844 image->planes[stencil_plane].address.offset +
4845 surface->offset);
4846 info.mocs =
4847 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
4848 }
4849
4850 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
4851
4852 if (GEN_GEN >= 12) {
4853 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
4854 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4855
4856 /* GEN:BUG:1408224581
4857 *
4858 * Workaround: Gen12LP Astep only An additional pipe control with
4859 * post-sync = store dword operation would be required.( w/a is to
4860 * have an additional pipe control after the stencil state whenever
4861 * the surface state bits of this state is changing).
4862 */
4863 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4864 pc.PostSyncOperation = WriteImmediateData;
4865 pc.Address =
4866 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
4867 }
4868 }
4869 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
4870 }
4871
4872 /**
4873 * This ANDs the view mask of the current subpass with the pending clear
4874 * views in the attachment to get the mask of views active in the subpass
4875 * that still need to be cleared.
4876 */
4877 static inline uint32_t
4878 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
4879 const struct anv_attachment_state *att_state)
4880 {
4881 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
4882 }
4883
4884 static inline bool
4885 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
4886 const struct anv_attachment_state *att_state)
4887 {
4888 if (!cmd_state->subpass->view_mask)
4889 return true;
4890
4891 uint32_t pending_clear_mask =
4892 get_multiview_subpass_clear_mask(cmd_state, att_state);
4893
4894 return pending_clear_mask & 1;
4895 }
4896
4897 static inline bool
4898 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
4899 uint32_t att_idx)
4900 {
4901 const uint32_t last_subpass_idx =
4902 cmd_state->pass->attachments[att_idx].last_subpass_idx;
4903 const struct anv_subpass *last_subpass =
4904 &cmd_state->pass->subpasses[last_subpass_idx];
4905 return last_subpass == cmd_state->subpass;
4906 }
4907
4908 static void
4909 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
4910 uint32_t subpass_id)
4911 {
4912 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4913 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
4914 cmd_state->subpass = subpass;
4915
4916 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
4917
4918 /* Our implementation of VK_KHR_multiview uses instancing to draw the
4919 * different views. If the client asks for instancing, we need to use the
4920 * Instance Data Step Rate to ensure that we repeat the client's
4921 * per-instance data once for each view. Since this bit is in
4922 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
4923 * of each subpass.
4924 */
4925 if (GEN_GEN == 7)
4926 cmd_buffer->state.gfx.vb_dirty |= ~0;
4927
4928 /* It is possible to start a render pass with an old pipeline. Because the
4929 * render pass and subpass index are both baked into the pipeline, this is
4930 * highly unlikely. In order to do so, it requires that you have a render
4931 * pass with a single subpass and that you use that render pass twice
4932 * back-to-back and use the same pipeline at the start of the second render
4933 * pass as at the end of the first. In order to avoid unpredictable issues
4934 * with this edge case, we just dirty the pipeline at the start of every
4935 * subpass.
4936 */
4937 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
4938
4939 /* Accumulate any subpass flushes that need to happen before the subpass */
4940 cmd_buffer->state.pending_pipe_bits |=
4941 cmd_buffer->state.pass->subpass_flushes[subpass_id];
4942
4943 VkRect2D render_area = cmd_buffer->state.render_area;
4944 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4945
4946 bool is_multiview = subpass->view_mask != 0;
4947
4948 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4949 const uint32_t a = subpass->attachments[i].attachment;
4950 if (a == VK_ATTACHMENT_UNUSED)
4951 continue;
4952
4953 assert(a < cmd_state->pass->attachment_count);
4954 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4955
4956 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
4957 const struct anv_image *image = iview->image;
4958
4959 /* A resolve is necessary before use as an input attachment if the clear
4960 * color or auxiliary buffer usage isn't supported by the sampler.
4961 */
4962 const bool input_needs_resolve =
4963 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
4964 att_state->input_aux_usage != att_state->aux_usage;
4965
4966 VkImageLayout target_layout;
4967 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
4968 !input_needs_resolve) {
4969 /* Layout transitions before the final only help to enable sampling
4970 * as an input attachment. If the input attachment supports sampling
4971 * using the auxiliary surface, we can skip such transitions by
4972 * making the target layout one that is CCS-aware.
4973 */
4974 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
4975 } else {
4976 target_layout = subpass->attachments[i].layout;
4977 }
4978
4979 VkImageLayout target_stencil_layout =
4980 subpass->attachments[i].stencil_layout;
4981
4982 uint32_t base_layer, layer_count;
4983 if (image->type == VK_IMAGE_TYPE_3D) {
4984 base_layer = 0;
4985 layer_count = anv_minify(iview->image->extent.depth,
4986 iview->planes[0].isl.base_level);
4987 } else {
4988 base_layer = iview->planes[0].isl.base_array_layer;
4989 layer_count = fb->layers;
4990 }
4991
4992 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4993 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4994 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4995 iview->planes[0].isl.base_level, 1,
4996 base_layer, layer_count,
4997 att_state->current_layout, target_layout);
4998 }
4999
5000 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5001 transition_depth_buffer(cmd_buffer, image,
5002 att_state->current_layout, target_layout);
5003 att_state->aux_usage =
5004 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
5005 VK_IMAGE_ASPECT_DEPTH_BIT,
5006 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
5007 target_layout);
5008 }
5009
5010 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5011 transition_stencil_buffer(cmd_buffer, image,
5012 iview->planes[0].isl.base_level, 1,
5013 base_layer, layer_count,
5014 att_state->current_stencil_layout,
5015 target_stencil_layout);
5016 }
5017 att_state->current_layout = target_layout;
5018 att_state->current_stencil_layout = target_stencil_layout;
5019
5020 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
5021 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5022
5023 /* Multi-planar images are not supported as attachments */
5024 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5025 assert(image->n_planes == 1);
5026
5027 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
5028 uint32_t clear_layer_count = fb->layers;
5029
5030 if (att_state->fast_clear &&
5031 do_first_layer_clear(cmd_state, att_state)) {
5032 /* We only support fast-clears on the first layer */
5033 assert(iview->planes[0].isl.base_level == 0);
5034 assert(iview->planes[0].isl.base_array_layer == 0);
5035
5036 union isl_color_value clear_color = {};
5037 anv_clear_color_from_att_state(&clear_color, att_state, iview);
5038 if (iview->image->samples == 1) {
5039 anv_image_ccs_op(cmd_buffer, image,
5040 iview->planes[0].isl.format,
5041 VK_IMAGE_ASPECT_COLOR_BIT,
5042 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
5043 &clear_color,
5044 false);
5045 } else {
5046 anv_image_mcs_op(cmd_buffer, image,
5047 iview->planes[0].isl.format,
5048 VK_IMAGE_ASPECT_COLOR_BIT,
5049 0, 1, ISL_AUX_OP_FAST_CLEAR,
5050 &clear_color,
5051 false);
5052 }
5053 base_clear_layer++;
5054 clear_layer_count--;
5055 if (is_multiview)
5056 att_state->pending_clear_views &= ~1;
5057
5058 if (att_state->clear_color_is_zero) {
5059 /* This image has the auxiliary buffer enabled. We can mark the
5060 * subresource as not needing a resolve because the clear color
5061 * will match what's in every RENDER_SURFACE_STATE object when
5062 * it's being used for sampling.
5063 */
5064 set_image_fast_clear_state(cmd_buffer, iview->image,
5065 VK_IMAGE_ASPECT_COLOR_BIT,
5066 ANV_FAST_CLEAR_DEFAULT_VALUE);
5067 } else {
5068 set_image_fast_clear_state(cmd_buffer, iview->image,
5069 VK_IMAGE_ASPECT_COLOR_BIT,
5070 ANV_FAST_CLEAR_ANY);
5071 }
5072 }
5073
5074 /* From the VkFramebufferCreateInfo spec:
5075 *
5076 * "If the render pass uses multiview, then layers must be one and each
5077 * attachment requires a number of layers that is greater than the
5078 * maximum bit index set in the view mask in the subpasses in which it
5079 * is used."
5080 *
5081 * So if multiview is active we ignore the number of layers in the
5082 * framebuffer and instead we honor the view mask from the subpass.
5083 */
5084 if (is_multiview) {
5085 assert(image->n_planes == 1);
5086 uint32_t pending_clear_mask =
5087 get_multiview_subpass_clear_mask(cmd_state, att_state);
5088
5089 uint32_t layer_idx;
5090 for_each_bit(layer_idx, pending_clear_mask) {
5091 uint32_t layer =
5092 iview->planes[0].isl.base_array_layer + layer_idx;
5093
5094 anv_image_clear_color(cmd_buffer, image,
5095 VK_IMAGE_ASPECT_COLOR_BIT,
5096 att_state->aux_usage,
5097 iview->planes[0].isl.format,
5098 iview->planes[0].isl.swizzle,
5099 iview->planes[0].isl.base_level,
5100 layer, 1,
5101 render_area,
5102 vk_to_isl_color(att_state->clear_value.color));
5103 }
5104
5105 att_state->pending_clear_views &= ~pending_clear_mask;
5106 } else if (clear_layer_count > 0) {
5107 assert(image->n_planes == 1);
5108 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5109 att_state->aux_usage,
5110 iview->planes[0].isl.format,
5111 iview->planes[0].isl.swizzle,
5112 iview->planes[0].isl.base_level,
5113 base_clear_layer, clear_layer_count,
5114 render_area,
5115 vk_to_isl_color(att_state->clear_value.color));
5116 }
5117 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
5118 VK_IMAGE_ASPECT_STENCIL_BIT)) {
5119 if (att_state->fast_clear && !is_multiview) {
5120 /* We currently only support HiZ for single-layer images */
5121 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5122 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
5123 assert(iview->planes[0].isl.base_level == 0);
5124 assert(iview->planes[0].isl.base_array_layer == 0);
5125 assert(fb->layers == 1);
5126 }
5127
5128 anv_image_hiz_clear(cmd_buffer, image,
5129 att_state->pending_clear_aspects,
5130 iview->planes[0].isl.base_level,
5131 iview->planes[0].isl.base_array_layer,
5132 fb->layers, render_area,
5133 att_state->clear_value.depthStencil.stencil);
5134 } else if (is_multiview) {
5135 uint32_t pending_clear_mask =
5136 get_multiview_subpass_clear_mask(cmd_state, att_state);
5137
5138 uint32_t layer_idx;
5139 for_each_bit(layer_idx, pending_clear_mask) {
5140 uint32_t layer =
5141 iview->planes[0].isl.base_array_layer + layer_idx;
5142
5143 anv_image_clear_depth_stencil(cmd_buffer, image,
5144 att_state->pending_clear_aspects,
5145 att_state->aux_usage,
5146 iview->planes[0].isl.base_level,
5147 layer, 1,
5148 render_area,
5149 att_state->clear_value.depthStencil.depth,
5150 att_state->clear_value.depthStencil.stencil);
5151 }
5152
5153 att_state->pending_clear_views &= ~pending_clear_mask;
5154 } else {
5155 anv_image_clear_depth_stencil(cmd_buffer, image,
5156 att_state->pending_clear_aspects,
5157 att_state->aux_usage,
5158 iview->planes[0].isl.base_level,
5159 iview->planes[0].isl.base_array_layer,
5160 fb->layers, render_area,
5161 att_state->clear_value.depthStencil.depth,
5162 att_state->clear_value.depthStencil.stencil);
5163 }
5164 } else {
5165 assert(att_state->pending_clear_aspects == 0);
5166 }
5167
5168 if (GEN_GEN < 10 &&
5169 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5170 image->planes[0].aux_usage != ISL_AUX_USAGE_NONE &&
5171 iview->planes[0].isl.base_level == 0 &&
5172 iview->planes[0].isl.base_array_layer == 0) {
5173 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
5174 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
5175 image, VK_IMAGE_ASPECT_COLOR_BIT,
5176 false /* copy to ss */);
5177 }
5178
5179 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
5180 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
5181 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
5182 image, VK_IMAGE_ASPECT_COLOR_BIT,
5183 false /* copy to ss */);
5184 }
5185 }
5186
5187 if (subpass->attachments[i].usage ==
5188 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
5189 /* We assume that if we're starting a subpass, we're going to do some
5190 * rendering so we may end up with compressed data.
5191 */
5192 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
5193 VK_IMAGE_ASPECT_COLOR_BIT,
5194 att_state->aux_usage,
5195 iview->planes[0].isl.base_level,
5196 iview->planes[0].isl.base_array_layer,
5197 fb->layers);
5198 } else if (subpass->attachments[i].usage ==
5199 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
5200 /* We may be writing depth or stencil so we need to mark the surface.
5201 * Unfortunately, there's no way to know at this point whether the
5202 * depth or stencil tests used will actually write to the surface.
5203 *
5204 * Even though stencil may be plane 1, it always shares a base_level
5205 * with depth.
5206 */
5207 const struct isl_view *ds_view = &iview->planes[0].isl;
5208 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
5209 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5210 VK_IMAGE_ASPECT_DEPTH_BIT,
5211 att_state->aux_usage,
5212 ds_view->base_level,
5213 ds_view->base_array_layer,
5214 fb->layers);
5215 }
5216 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
5217 /* Even though stencil may be plane 1, it always shares a
5218 * base_level with depth.
5219 */
5220 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
5221 VK_IMAGE_ASPECT_STENCIL_BIT,
5222 ISL_AUX_USAGE_NONE,
5223 ds_view->base_level,
5224 ds_view->base_array_layer,
5225 fb->layers);
5226 }
5227 }
5228
5229 /* If multiview is enabled, then we are only done clearing when we no
5230 * longer have pending layers to clear, or when we have processed the
5231 * last subpass that uses this attachment.
5232 */
5233 if (!is_multiview ||
5234 att_state->pending_clear_views == 0 ||
5235 current_subpass_is_last_for_attachment(cmd_state, a)) {
5236 att_state->pending_clear_aspects = 0;
5237 }
5238
5239 att_state->pending_load_aspects = 0;
5240 }
5241
5242 #if GEN_GEN >= 11
5243 /* The PIPE_CONTROL command description says:
5244 *
5245 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
5246 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
5247 * Target Cache Flush by enabling this bit. When render target flush
5248 * is set due to new association of BTI, PS Scoreboard Stall bit must
5249 * be set in this packet."
5250 */
5251 cmd_buffer->state.pending_pipe_bits |=
5252 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
5253 ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
5254 #endif
5255
5256 #if GEN_GEN == 12
5257 /* GEN:BUG:14010455700
5258 *
5259 * ISL will change some CHICKEN registers depending on the depth surface
5260 * format, along with emitting the depth and stencil packets. In that case,
5261 * we want to do a depth flush and stall, so the pipeline is not using these
5262 * settings while we change the registers.
5263 */
5264 cmd_buffer->state.pending_pipe_bits |=
5265 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT |
5266 ANV_PIPE_DEPTH_STALL_BIT |
5267 ANV_PIPE_END_OF_PIPE_SYNC_BIT;
5268 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5269 #endif
5270
5271 cmd_buffer_emit_depth_stencil(cmd_buffer);
5272 }
5273
5274 static enum blorp_filter
5275 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
5276 {
5277 switch (vk_mode) {
5278 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
5279 return BLORP_FILTER_SAMPLE_0;
5280 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
5281 return BLORP_FILTER_AVERAGE;
5282 case VK_RESOLVE_MODE_MIN_BIT_KHR:
5283 return BLORP_FILTER_MIN_SAMPLE;
5284 case VK_RESOLVE_MODE_MAX_BIT_KHR:
5285 return BLORP_FILTER_MAX_SAMPLE;
5286 default:
5287 return BLORP_FILTER_NONE;
5288 }
5289 }
5290
5291 static void
5292 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
5293 {
5294 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5295 struct anv_subpass *subpass = cmd_state->subpass;
5296 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
5297 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
5298
5299 if (subpass->has_color_resolve) {
5300 /* We are about to do some MSAA resolves. We need to flush so that the
5301 * result of writes to the MSAA color attachments show up in the sampler
5302 * when we blit to the single-sampled resolve target.
5303 */
5304 cmd_buffer->state.pending_pipe_bits |=
5305 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5306 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
5307
5308 for (uint32_t i = 0; i < subpass->color_count; ++i) {
5309 uint32_t src_att = subpass->color_attachments[i].attachment;
5310 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
5311
5312 if (dst_att == VK_ATTACHMENT_UNUSED)
5313 continue;
5314
5315 assert(src_att < cmd_buffer->state.pass->attachment_count);
5316 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5317
5318 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5319 /* From the Vulkan 1.0 spec:
5320 *
5321 * If the first use of an attachment in a render pass is as a
5322 * resolve attachment, then the loadOp is effectively ignored
5323 * as the resolve is guaranteed to overwrite all pixels in the
5324 * render area.
5325 */
5326 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5327 }
5328
5329 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5330 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5331
5332 const VkRect2D render_area = cmd_buffer->state.render_area;
5333
5334 enum isl_aux_usage src_aux_usage =
5335 cmd_buffer->state.attachments[src_att].aux_usage;
5336 enum isl_aux_usage dst_aux_usage =
5337 cmd_buffer->state.attachments[dst_att].aux_usage;
5338
5339 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
5340 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
5341
5342 anv_image_msaa_resolve(cmd_buffer,
5343 src_iview->image, src_aux_usage,
5344 src_iview->planes[0].isl.base_level,
5345 src_iview->planes[0].isl.base_array_layer,
5346 dst_iview->image, dst_aux_usage,
5347 dst_iview->planes[0].isl.base_level,
5348 dst_iview->planes[0].isl.base_array_layer,
5349 VK_IMAGE_ASPECT_COLOR_BIT,
5350 render_area.offset.x, render_area.offset.y,
5351 render_area.offset.x, render_area.offset.y,
5352 render_area.extent.width,
5353 render_area.extent.height,
5354 fb->layers, BLORP_FILTER_NONE);
5355 }
5356 }
5357
5358 if (subpass->ds_resolve_attachment) {
5359 /* We are about to do some MSAA resolves. We need to flush so that the
5360 * result of writes to the MSAA depth attachments show up in the sampler
5361 * when we blit to the single-sampled resolve target.
5362 */
5363 cmd_buffer->state.pending_pipe_bits |=
5364 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5365 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
5366
5367 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
5368 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
5369
5370 assert(src_att < cmd_buffer->state.pass->attachment_count);
5371 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5372
5373 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5374 /* From the Vulkan 1.0 spec:
5375 *
5376 * If the first use of an attachment in a render pass is as a
5377 * resolve attachment, then the loadOp is effectively ignored
5378 * as the resolve is guaranteed to overwrite all pixels in the
5379 * render area.
5380 */
5381 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5382 }
5383
5384 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5385 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5386
5387 const VkRect2D render_area = cmd_buffer->state.render_area;
5388
5389 struct anv_attachment_state *src_state =
5390 &cmd_state->attachments[src_att];
5391 struct anv_attachment_state *dst_state =
5392 &cmd_state->attachments[dst_att];
5393
5394 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
5395 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5396
5397 /* MSAA resolves sample from the source attachment. Transition the
5398 * depth attachment first to get rid of any HiZ that we may not be
5399 * able to handle.
5400 */
5401 transition_depth_buffer(cmd_buffer, src_iview->image,
5402 src_state->current_layout,
5403 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5404 src_state->aux_usage =
5405 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
5406 VK_IMAGE_ASPECT_DEPTH_BIT,
5407 VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
5408 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5409 src_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5410
5411 /* MSAA resolves write to the resolve attachment as if it were any
5412 * other transfer op. Transition the resolve attachment accordingly.
5413 */
5414 VkImageLayout dst_initial_layout = dst_state->current_layout;
5415
5416 /* If our render area is the entire size of the image, we're going to
5417 * blow it all away so we can claim the initial layout is UNDEFINED
5418 * and we'll get a HiZ ambiguate instead of a resolve.
5419 */
5420 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
5421 render_area.offset.x == 0 && render_area.offset.y == 0 &&
5422 render_area.extent.width == dst_iview->extent.width &&
5423 render_area.extent.height == dst_iview->extent.height)
5424 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5425
5426 transition_depth_buffer(cmd_buffer, dst_iview->image,
5427 dst_initial_layout,
5428 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5429 dst_state->aux_usage =
5430 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
5431 VK_IMAGE_ASPECT_DEPTH_BIT,
5432 VK_IMAGE_USAGE_TRANSFER_DST_BIT,
5433 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5434 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5435
5436 enum blorp_filter filter =
5437 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
5438
5439 anv_image_msaa_resolve(cmd_buffer,
5440 src_iview->image, src_state->aux_usage,
5441 src_iview->planes[0].isl.base_level,
5442 src_iview->planes[0].isl.base_array_layer,
5443 dst_iview->image, dst_state->aux_usage,
5444 dst_iview->planes[0].isl.base_level,
5445 dst_iview->planes[0].isl.base_array_layer,
5446 VK_IMAGE_ASPECT_DEPTH_BIT,
5447 render_area.offset.x, render_area.offset.y,
5448 render_area.offset.x, render_area.offset.y,
5449 render_area.extent.width,
5450 render_area.extent.height,
5451 fb->layers, filter);
5452 }
5453
5454 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
5455 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5456
5457 src_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5458 dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5459
5460 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
5461 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
5462
5463 enum blorp_filter filter =
5464 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
5465
5466 anv_image_msaa_resolve(cmd_buffer,
5467 src_iview->image, src_aux_usage,
5468 src_iview->planes[0].isl.base_level,
5469 src_iview->planes[0].isl.base_array_layer,
5470 dst_iview->image, dst_aux_usage,
5471 dst_iview->planes[0].isl.base_level,
5472 dst_iview->planes[0].isl.base_array_layer,
5473 VK_IMAGE_ASPECT_STENCIL_BIT,
5474 render_area.offset.x, render_area.offset.y,
5475 render_area.offset.x, render_area.offset.y,
5476 render_area.extent.width,
5477 render_area.extent.height,
5478 fb->layers, filter);
5479 }
5480 }
5481
5482 #if GEN_GEN == 7
5483 /* On gen7, we have to store a texturable version of the stencil buffer in
5484 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
5485 * forth at strategic points. Stencil writes are only allowed in following
5486 * layouts:
5487 *
5488 * - VK_IMAGE_LAYOUT_GENERAL
5489 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
5490 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
5491 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
5492 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
5493 *
5494 * For general, we have no nice opportunity to transition so we do the copy
5495 * to the shadow unconditionally at the end of the subpass. For transfer
5496 * destinations, we can update it as part of the transfer op. For the other
5497 * layouts, we delay the copy until a transition into some other layout.
5498 */
5499 if (subpass->depth_stencil_attachment) {
5500 uint32_t a = subpass->depth_stencil_attachment->attachment;
5501 assert(a != VK_ATTACHMENT_UNUSED);
5502
5503 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5504 struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
5505 const struct anv_image *image = iview->image;
5506
5507 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5508 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
5509 VK_IMAGE_ASPECT_STENCIL_BIT);
5510
5511 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
5512 att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
5513 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
5514 anv_image_copy_to_shadow(cmd_buffer, image,
5515 VK_IMAGE_ASPECT_STENCIL_BIT,
5516 iview->planes[plane].isl.base_level, 1,
5517 iview->planes[plane].isl.base_array_layer,
5518 fb->layers);
5519 }
5520 }
5521 }
5522 #endif /* GEN_GEN == 7 */
5523
5524 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
5525 const uint32_t a = subpass->attachments[i].attachment;
5526 if (a == VK_ATTACHMENT_UNUSED)
5527 continue;
5528
5529 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
5530 continue;
5531
5532 assert(a < cmd_state->pass->attachment_count);
5533 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5534 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
5535 const struct anv_image *image = iview->image;
5536
5537 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5538 image->vk_format != iview->vk_format) {
5539 enum anv_fast_clear_type fast_clear_type =
5540 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
5541 image, VK_IMAGE_ASPECT_COLOR_BIT,
5542 att_state->current_layout);
5543
5544 /* If any clear color was used, flush it down the aux surfaces. If we
5545 * don't do it now using the view's format we might use the clear
5546 * color incorrectly in the following resolves (for example with an
5547 * SRGB view & a UNORM image).
5548 */
5549 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
5550 anv_perf_warn(cmd_buffer->device, iview,
5551 "Doing a partial resolve to get rid of clear color at the "
5552 "end of a renderpass due to an image/view format mismatch");
5553
5554 uint32_t base_layer, layer_count;
5555 if (image->type == VK_IMAGE_TYPE_3D) {
5556 base_layer = 0;
5557 layer_count = anv_minify(iview->image->extent.depth,
5558 iview->planes[0].isl.base_level);
5559 } else {
5560 base_layer = iview->planes[0].isl.base_array_layer;
5561 layer_count = fb->layers;
5562 }
5563
5564 for (uint32_t a = 0; a < layer_count; a++) {
5565 uint32_t array_layer = base_layer + a;
5566 if (image->samples == 1) {
5567 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
5568 iview->planes[0].isl.format,
5569 VK_IMAGE_ASPECT_COLOR_BIT,
5570 iview->planes[0].isl.base_level,
5571 array_layer,
5572 ISL_AUX_OP_PARTIAL_RESOLVE,
5573 ANV_FAST_CLEAR_NONE);
5574 } else {
5575 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
5576 iview->planes[0].isl.format,
5577 VK_IMAGE_ASPECT_COLOR_BIT,
5578 base_layer,
5579 ISL_AUX_OP_PARTIAL_RESOLVE,
5580 ANV_FAST_CLEAR_NONE);
5581 }
5582 }
5583 }
5584 }
5585
5586 /* Transition the image into the final layout for this render pass */
5587 VkImageLayout target_layout =
5588 cmd_state->pass->attachments[a].final_layout;
5589 VkImageLayout target_stencil_layout =
5590 cmd_state->pass->attachments[a].stencil_final_layout;
5591
5592 uint32_t base_layer, layer_count;
5593 if (image->type == VK_IMAGE_TYPE_3D) {
5594 base_layer = 0;
5595 layer_count = anv_minify(iview->image->extent.depth,
5596 iview->planes[0].isl.base_level);
5597 } else {
5598 base_layer = iview->planes[0].isl.base_array_layer;
5599 layer_count = fb->layers;
5600 }
5601
5602 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
5603 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5604 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5605 iview->planes[0].isl.base_level, 1,
5606 base_layer, layer_count,
5607 att_state->current_layout, target_layout);
5608 }
5609
5610 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5611 transition_depth_buffer(cmd_buffer, image,
5612 att_state->current_layout, target_layout);
5613 }
5614
5615 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5616 transition_stencil_buffer(cmd_buffer, image,
5617 iview->planes[0].isl.base_level, 1,
5618 base_layer, layer_count,
5619 att_state->current_stencil_layout,
5620 target_stencil_layout);
5621 }
5622 }
5623
5624 /* Accumulate any subpass flushes that need to happen after the subpass.
5625 * Yes, they do get accumulated twice in the NextSubpass case but since
5626 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
5627 * ORing the bits in twice so it's harmless.
5628 */
5629 cmd_buffer->state.pending_pipe_bits |=
5630 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
5631 }
5632
5633 void genX(CmdBeginRenderPass)(
5634 VkCommandBuffer commandBuffer,
5635 const VkRenderPassBeginInfo* pRenderPassBegin,
5636 VkSubpassContents contents)
5637 {
5638 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5639 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
5640 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
5641
5642 cmd_buffer->state.framebuffer = framebuffer;
5643 cmd_buffer->state.pass = pass;
5644 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
5645 VkResult result =
5646 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
5647
5648 /* If we failed to setup the attachments we should not try to go further */
5649 if (result != VK_SUCCESS) {
5650 assert(anv_batch_has_error(&cmd_buffer->batch));
5651 return;
5652 }
5653
5654 genX(flush_pipeline_select_3d)(cmd_buffer);
5655
5656 cmd_buffer_begin_subpass(cmd_buffer, 0);
5657 }
5658
5659 void genX(CmdBeginRenderPass2)(
5660 VkCommandBuffer commandBuffer,
5661 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
5662 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
5663 {
5664 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
5665 pSubpassBeginInfo->contents);
5666 }
5667
5668 void genX(CmdNextSubpass)(
5669 VkCommandBuffer commandBuffer,
5670 VkSubpassContents contents)
5671 {
5672 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5673
5674 if (anv_batch_has_error(&cmd_buffer->batch))
5675 return;
5676
5677 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
5678
5679 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
5680 cmd_buffer_end_subpass(cmd_buffer);
5681 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
5682 }
5683
5684 void genX(CmdNextSubpass2)(
5685 VkCommandBuffer commandBuffer,
5686 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
5687 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5688 {
5689 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
5690 }
5691
5692 void genX(CmdEndRenderPass)(
5693 VkCommandBuffer commandBuffer)
5694 {
5695 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5696
5697 if (anv_batch_has_error(&cmd_buffer->batch))
5698 return;
5699
5700 cmd_buffer_end_subpass(cmd_buffer);
5701
5702 cmd_buffer->state.hiz_enabled = false;
5703
5704 #ifndef NDEBUG
5705 anv_dump_add_attachments(cmd_buffer);
5706 #endif
5707
5708 /* Remove references to render pass specific state. This enables us to
5709 * detect whether or not we're in a renderpass.
5710 */
5711 cmd_buffer->state.framebuffer = NULL;
5712 cmd_buffer->state.pass = NULL;
5713 cmd_buffer->state.subpass = NULL;
5714 }
5715
5716 void genX(CmdEndRenderPass2)(
5717 VkCommandBuffer commandBuffer,
5718 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5719 {
5720 genX(CmdEndRenderPass)(commandBuffer);
5721 }
5722
5723 void
5724 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
5725 {
5726 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5727 struct gen_mi_builder b;
5728 gen_mi_builder_init(&b, &cmd_buffer->batch);
5729
5730 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
5731 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
5732 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
5733
5734 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
5735 mip.LoadOperation = LOAD_LOADINV;
5736 mip.CombineOperation = COMBINE_SET;
5737 mip.CompareOperation = COMPARE_SRCS_EQUAL;
5738 }
5739 #endif
5740 }
5741
5742 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5743 void genX(CmdBeginConditionalRenderingEXT)(
5744 VkCommandBuffer commandBuffer,
5745 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
5746 {
5747 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5748 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
5749 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5750 struct anv_address value_address =
5751 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
5752
5753 const bool isInverted = pConditionalRenderingBegin->flags &
5754 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
5755
5756 cmd_state->conditional_render_enabled = true;
5757
5758 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5759
5760 struct gen_mi_builder b;
5761 gen_mi_builder_init(&b, &cmd_buffer->batch);
5762
5763 /* Section 19.4 of the Vulkan 1.1.85 spec says:
5764 *
5765 * If the value of the predicate in buffer memory changes
5766 * while conditional rendering is active, the rendering commands
5767 * may be discarded in an implementation-dependent way.
5768 * Some implementations may latch the value of the predicate
5769 * upon beginning conditional rendering while others
5770 * may read it before every rendering command.
5771 *
5772 * So it's perfectly fine to read a value from the buffer once.
5773 */
5774 struct gen_mi_value value = gen_mi_mem32(value_address);
5775
5776 /* Precompute predicate result, it is necessary to support secondary
5777 * command buffers since it is unknown if conditional rendering is
5778 * inverted when populating them.
5779 */
5780 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
5781 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
5782 gen_mi_ult(&b, gen_mi_imm(0), value));
5783 }
5784
5785 void genX(CmdEndConditionalRenderingEXT)(
5786 VkCommandBuffer commandBuffer)
5787 {
5788 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5789 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5790
5791 cmd_state->conditional_render_enabled = false;
5792 }
5793 #endif
5794
5795 /* Set of stage bits for which are pipelined, i.e. they get queued by the
5796 * command streamer for later execution.
5797 */
5798 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5799 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
5800 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
5801 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
5802 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
5803 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
5804 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
5805 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
5806 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
5807 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
5808 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
5809 VK_PIPELINE_STAGE_TRANSFER_BIT | \
5810 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
5811 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
5812 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
5813
5814 void genX(CmdSetEvent)(
5815 VkCommandBuffer commandBuffer,
5816 VkEvent _event,
5817 VkPipelineStageFlags stageMask)
5818 {
5819 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5820 ANV_FROM_HANDLE(anv_event, event, _event);
5821
5822 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5823 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5824
5825 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5826 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5827 pc.StallAtPixelScoreboard = true;
5828 pc.CommandStreamerStallEnable = true;
5829 }
5830
5831 pc.DestinationAddressType = DAT_PPGTT,
5832 pc.PostSyncOperation = WriteImmediateData,
5833 pc.Address = (struct anv_address) {
5834 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5835 event->state.offset
5836 };
5837 pc.ImmediateData = VK_EVENT_SET;
5838 }
5839 }
5840
5841 void genX(CmdResetEvent)(
5842 VkCommandBuffer commandBuffer,
5843 VkEvent _event,
5844 VkPipelineStageFlags stageMask)
5845 {
5846 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5847 ANV_FROM_HANDLE(anv_event, event, _event);
5848
5849 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5850 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5851
5852 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5853 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5854 pc.StallAtPixelScoreboard = true;
5855 pc.CommandStreamerStallEnable = true;
5856 }
5857
5858 pc.DestinationAddressType = DAT_PPGTT;
5859 pc.PostSyncOperation = WriteImmediateData;
5860 pc.Address = (struct anv_address) {
5861 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5862 event->state.offset
5863 };
5864 pc.ImmediateData = VK_EVENT_RESET;
5865 }
5866 }
5867
5868 void genX(CmdWaitEvents)(
5869 VkCommandBuffer commandBuffer,
5870 uint32_t eventCount,
5871 const VkEvent* pEvents,
5872 VkPipelineStageFlags srcStageMask,
5873 VkPipelineStageFlags destStageMask,
5874 uint32_t memoryBarrierCount,
5875 const VkMemoryBarrier* pMemoryBarriers,
5876 uint32_t bufferMemoryBarrierCount,
5877 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
5878 uint32_t imageMemoryBarrierCount,
5879 const VkImageMemoryBarrier* pImageMemoryBarriers)
5880 {
5881 #if GEN_GEN >= 8
5882 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5883
5884 for (uint32_t i = 0; i < eventCount; i++) {
5885 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
5886
5887 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
5888 sem.WaitMode = PollingMode,
5889 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
5890 sem.SemaphoreDataDword = VK_EVENT_SET,
5891 sem.SemaphoreAddress = (struct anv_address) {
5892 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5893 event->state.offset
5894 };
5895 }
5896 }
5897 #else
5898 anv_finishme("Implement events on gen7");
5899 #endif
5900
5901 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
5902 false, /* byRegion */
5903 memoryBarrierCount, pMemoryBarriers,
5904 bufferMemoryBarrierCount, pBufferMemoryBarriers,
5905 imageMemoryBarrierCount, pImageMemoryBarriers);
5906 }
5907
5908 VkResult genX(CmdSetPerformanceOverrideINTEL)(
5909 VkCommandBuffer commandBuffer,
5910 const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
5911 {
5912 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5913
5914 switch (pOverrideInfo->type) {
5915 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
5916 uint32_t dw;
5917
5918 #if GEN_GEN >= 9
5919 anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2),
5920 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5921 .MediaInstructionDisable = pOverrideInfo->enable,
5922 ._3DRenderingInstructionDisableMask = true,
5923 .MediaInstructionDisableMask = true);
5924 emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw);
5925 #else
5926 anv_pack_struct(&dw, GENX(INSTPM),
5927 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5928 .MediaInstructionDisable = pOverrideInfo->enable,
5929 ._3DRenderingInstructionDisableMask = true,
5930 .MediaInstructionDisableMask = true);
5931 emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw);
5932 #endif
5933 break;
5934 }
5935
5936 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
5937 if (pOverrideInfo->enable) {
5938 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5939 cmd_buffer->state.pending_pipe_bits |=
5940 ANV_PIPE_FLUSH_BITS |
5941 ANV_PIPE_INVALIDATE_BITS;
5942 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5943 }
5944 break;
5945
5946 default:
5947 unreachable("Invalid override");
5948 }
5949
5950 return VK_SUCCESS;
5951 }
5952
5953 VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
5954 VkCommandBuffer commandBuffer,
5955 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
5956 {
5957 /* TODO: Waiting on the register to write, might depend on generation. */
5958
5959 return VK_SUCCESS;
5960 }