2 * Copyright © 2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
27 #include "anv_private.h"
28 #include "vk_format_info.h"
30 #include "util/fast_idiv_by_const.h"
32 #include "common/gen_aux_map.h"
33 #include "common/gen_l3_config.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
37 /* We reserve GPR 14 and 15 for conditional rendering */
38 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
39 #define __gen_get_batch_dwords anv_batch_emit_dwords
40 #define __gen_address_offset anv_address_add
41 #include "common/gen_mi_builder.h"
44 emit_lri(struct anv_batch
*batch
, uint32_t reg
, uint32_t imm
)
46 anv_batch_emit(batch
, GENX(MI_LOAD_REGISTER_IMM
), lri
) {
47 lri
.RegisterOffset
= reg
;
53 genX(cmd_buffer_emit_state_base_address
)(struct anv_cmd_buffer
*cmd_buffer
)
55 struct anv_device
*device
= cmd_buffer
->device
;
56 uint32_t mocs
= device
->isl_dev
.mocs
.internal
;
58 /* If we are emitting a new state base address we probably need to re-emit
61 cmd_buffer
->state
.descriptors_dirty
|= ~0;
63 /* Emit a render target cache flush.
65 * This isn't documented anywhere in the PRM. However, it seems to be
66 * necessary prior to changing the surface state base adress. Without
67 * this, we get GPU hangs when using multi-level command buffers which
68 * clear depth, reset state base address, and then go render stuff.
70 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pc
) {
71 pc
.DCFlushEnable
= true;
72 pc
.RenderTargetCacheFlushEnable
= true;
73 pc
.CommandStreamerStallEnable
= true;
75 pc
.TileCacheFlushEnable
= true;
79 anv_batch_emit(&cmd_buffer
->batch
, GENX(STATE_BASE_ADDRESS
), sba
) {
80 sba
.GeneralStateBaseAddress
= (struct anv_address
) { NULL
, 0 };
81 sba
.GeneralStateMOCS
= mocs
;
82 sba
.GeneralStateBaseAddressModifyEnable
= true;
84 sba
.StatelessDataPortAccessMOCS
= mocs
;
86 sba
.SurfaceStateBaseAddress
=
87 anv_cmd_buffer_surface_base_address(cmd_buffer
);
88 sba
.SurfaceStateMOCS
= mocs
;
89 sba
.SurfaceStateBaseAddressModifyEnable
= true;
91 sba
.DynamicStateBaseAddress
=
92 (struct anv_address
) { device
->dynamic_state_pool
.block_pool
.bo
, 0 };
93 sba
.DynamicStateMOCS
= mocs
;
94 sba
.DynamicStateBaseAddressModifyEnable
= true;
96 sba
.IndirectObjectBaseAddress
= (struct anv_address
) { NULL
, 0 };
97 sba
.IndirectObjectMOCS
= mocs
;
98 sba
.IndirectObjectBaseAddressModifyEnable
= true;
100 sba
.InstructionBaseAddress
=
101 (struct anv_address
) { device
->instruction_state_pool
.block_pool
.bo
, 0 };
102 sba
.InstructionMOCS
= mocs
;
103 sba
.InstructionBaseAddressModifyEnable
= true;
106 /* Broadwell requires that we specify a buffer size for a bunch of
107 * these fields. However, since we will be growing the BO's live, we
108 * just set them all to the maximum.
110 sba
.GeneralStateBufferSize
= 0xfffff;
111 sba
.GeneralStateBufferSizeModifyEnable
= true;
112 sba
.DynamicStateBufferSize
= 0xfffff;
113 sba
.DynamicStateBufferSizeModifyEnable
= true;
114 sba
.IndirectObjectBufferSize
= 0xfffff;
115 sba
.IndirectObjectBufferSizeModifyEnable
= true;
116 sba
.InstructionBufferSize
= 0xfffff;
117 sba
.InstructionBuffersizeModifyEnable
= true;
119 /* On gen7, we have upper bounds instead. According to the docs,
120 * setting an upper bound of zero means that no bounds checking is
121 * performed so, in theory, we should be able to leave them zero.
122 * However, border color is broken and the GPU bounds-checks anyway.
123 * To avoid this and other potential problems, we may as well set it
126 sba
.GeneralStateAccessUpperBound
=
127 (struct anv_address
) { .bo
= NULL
, .offset
= 0xfffff000 };
128 sba
.GeneralStateAccessUpperBoundModifyEnable
= true;
129 sba
.DynamicStateAccessUpperBound
=
130 (struct anv_address
) { .bo
= NULL
, .offset
= 0xfffff000 };
131 sba
.DynamicStateAccessUpperBoundModifyEnable
= true;
132 sba
.InstructionAccessUpperBound
=
133 (struct anv_address
) { .bo
= NULL
, .offset
= 0xfffff000 };
134 sba
.InstructionAccessUpperBoundModifyEnable
= true;
137 if (cmd_buffer
->device
->instance
->physicalDevice
.use_softpin
) {
138 sba
.BindlessSurfaceStateBaseAddress
= (struct anv_address
) {
139 .bo
= device
->surface_state_pool
.block_pool
.bo
,
142 sba
.BindlessSurfaceStateSize
= (1 << 20) - 1;
144 sba
.BindlessSurfaceStateBaseAddress
= ANV_NULL_ADDRESS
;
145 sba
.BindlessSurfaceStateSize
= 0;
147 sba
.BindlessSurfaceStateMOCS
= mocs
;
148 sba
.BindlessSurfaceStateBaseAddressModifyEnable
= true;
151 sba
.BindlessSamplerStateBaseAddress
= (struct anv_address
) { NULL
, 0 };
152 sba
.BindlessSamplerStateMOCS
= mocs
;
153 sba
.BindlessSamplerStateBaseAddressModifyEnable
= true;
154 sba
.BindlessSamplerStateBufferSize
= 0;
158 /* After re-setting the surface state base address, we have to do some
159 * cache flusing so that the sampler engine will pick up the new
160 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
161 * Shared Function > 3D Sampler > State > State Caching (page 96):
163 * Coherency with system memory in the state cache, like the texture
164 * cache is handled partially by software. It is expected that the
165 * command stream or shader will issue Cache Flush operation or
166 * Cache_Flush sampler message to ensure that the L1 cache remains
167 * coherent with system memory.
171 * Whenever the value of the Dynamic_State_Base_Addr,
172 * Surface_State_Base_Addr are altered, the L1 state cache must be
173 * invalidated to ensure the new surface or sampler state is fetched
174 * from system memory.
176 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
177 * which, according the PIPE_CONTROL instruction documentation in the
180 * Setting this bit is independent of any other bit in this packet.
181 * This bit controls the invalidation of the L1 and L2 state caches
182 * at the top of the pipe i.e. at the parsing time.
184 * Unfortunately, experimentation seems to indicate that state cache
185 * invalidation through a PIPE_CONTROL does nothing whatsoever in
186 * regards to surface state and binding tables. In stead, it seems that
187 * invalidating the texture cache is what is actually needed.
189 * XXX: As far as we have been able to determine through
190 * experimentation, shows that flush the texture cache appears to be
191 * sufficient. The theory here is that all of the sampling/rendering
192 * units cache the binding table in the texture cache. However, we have
193 * yet to be able to actually confirm this.
195 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pc
) {
196 pc
.TextureCacheInvalidationEnable
= true;
197 pc
.ConstantCacheInvalidationEnable
= true;
198 pc
.StateCacheInvalidationEnable
= true;
203 add_surface_reloc(struct anv_cmd_buffer
*cmd_buffer
,
204 struct anv_state state
, struct anv_address addr
)
206 const struct isl_device
*isl_dev
= &cmd_buffer
->device
->isl_dev
;
209 anv_reloc_list_add(&cmd_buffer
->surface_relocs
, &cmd_buffer
->pool
->alloc
,
210 state
.offset
+ isl_dev
->ss
.addr_offset
,
211 addr
.bo
, addr
.offset
, NULL
);
212 if (result
!= VK_SUCCESS
)
213 anv_batch_set_error(&cmd_buffer
->batch
, result
);
217 add_surface_state_relocs(struct anv_cmd_buffer
*cmd_buffer
,
218 struct anv_surface_state state
)
220 const struct isl_device
*isl_dev
= &cmd_buffer
->device
->isl_dev
;
222 assert(!anv_address_is_null(state
.address
));
223 add_surface_reloc(cmd_buffer
, state
.state
, state
.address
);
225 if (!anv_address_is_null(state
.aux_address
)) {
227 anv_reloc_list_add(&cmd_buffer
->surface_relocs
,
228 &cmd_buffer
->pool
->alloc
,
229 state
.state
.offset
+ isl_dev
->ss
.aux_addr_offset
,
230 state
.aux_address
.bo
,
231 state
.aux_address
.offset
,
233 if (result
!= VK_SUCCESS
)
234 anv_batch_set_error(&cmd_buffer
->batch
, result
);
237 if (!anv_address_is_null(state
.clear_address
)) {
239 anv_reloc_list_add(&cmd_buffer
->surface_relocs
,
240 &cmd_buffer
->pool
->alloc
,
242 isl_dev
->ss
.clear_color_state_offset
,
243 state
.clear_address
.bo
,
244 state
.clear_address
.offset
,
246 if (result
!= VK_SUCCESS
)
247 anv_batch_set_error(&cmd_buffer
->batch
, result
);
252 color_attachment_compute_aux_usage(struct anv_device
* device
,
253 struct anv_cmd_state
* cmd_state
,
254 uint32_t att
, VkRect2D render_area
,
255 union isl_color_value
*fast_clear_color
)
257 struct anv_attachment_state
*att_state
= &cmd_state
->attachments
[att
];
258 struct anv_image_view
*iview
= cmd_state
->attachments
[att
].image_view
;
260 assert(iview
->n_planes
== 1);
262 if (iview
->planes
[0].isl
.base_array_layer
>=
263 anv_image_aux_layers(iview
->image
, VK_IMAGE_ASPECT_COLOR_BIT
,
264 iview
->planes
[0].isl
.base_level
)) {
265 /* There is no aux buffer which corresponds to the level and layer(s)
268 att_state
->aux_usage
= ISL_AUX_USAGE_NONE
;
269 att_state
->input_aux_usage
= ISL_AUX_USAGE_NONE
;
270 att_state
->fast_clear
= false;
274 att_state
->aux_usage
=
275 anv_layout_to_aux_usage(&device
->info
, iview
->image
,
276 VK_IMAGE_ASPECT_COLOR_BIT
,
277 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
);
279 /* If we don't have aux, then we should have returned early in the layer
280 * check above. If we got here, we must have something.
282 assert(att_state
->aux_usage
!= ISL_AUX_USAGE_NONE
);
284 if (att_state
->aux_usage
== ISL_AUX_USAGE_CCS_E
||
285 att_state
->aux_usage
== ISL_AUX_USAGE_MCS
) {
286 att_state
->input_aux_usage
= att_state
->aux_usage
;
288 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
290 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
291 * setting is only allowed if Surface Format supported for Fast
292 * Clear. In addition, if the surface is bound to the sampling
293 * engine, Surface Format must be supported for Render Target
294 * Compression for surfaces bound to the sampling engine."
296 * In other words, we can only sample from a fast-cleared image if it
297 * also supports color compression.
299 if (isl_format_supports_ccs_e(&device
->info
, iview
->planes
[0].isl
.format
) &&
300 isl_format_supports_ccs_d(&device
->info
, iview
->planes
[0].isl
.format
)) {
301 att_state
->input_aux_usage
= ISL_AUX_USAGE_CCS_D
;
303 /* While fast-clear resolves and partial resolves are fairly cheap in the
304 * case where you render to most of the pixels, full resolves are not
305 * because they potentially involve reading and writing the entire
306 * framebuffer. If we can't texture with CCS_E, we should leave it off and
307 * limit ourselves to fast clears.
309 if (cmd_state
->pass
->attachments
[att
].first_subpass_layout
==
310 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
) {
311 anv_perf_warn(device
->instance
, iview
->image
,
312 "Not temporarily enabling CCS_E.");
315 att_state
->input_aux_usage
= ISL_AUX_USAGE_NONE
;
319 assert(iview
->image
->planes
[0].aux_surface
.isl
.usage
&
320 (ISL_SURF_USAGE_CCS_BIT
| ISL_SURF_USAGE_MCS_BIT
));
322 union isl_color_value clear_color
= {};
323 anv_clear_color_from_att_state(&clear_color
, att_state
, iview
);
325 att_state
->clear_color_is_zero_one
=
326 isl_color_value_is_zero_one(clear_color
, iview
->planes
[0].isl
.format
);
327 att_state
->clear_color_is_zero
=
328 isl_color_value_is_zero(clear_color
, iview
->planes
[0].isl
.format
);
330 if (att_state
->pending_clear_aspects
== VK_IMAGE_ASPECT_COLOR_BIT
) {
331 /* Start by getting the fast clear type. We use the first subpass
332 * layout here because we don't want to fast-clear if the first subpass
333 * to use the attachment can't handle fast-clears.
335 enum anv_fast_clear_type fast_clear_type
=
336 anv_layout_to_fast_clear_type(&device
->info
, iview
->image
,
337 VK_IMAGE_ASPECT_COLOR_BIT
,
338 cmd_state
->pass
->attachments
[att
].first_subpass_layout
);
339 switch (fast_clear_type
) {
340 case ANV_FAST_CLEAR_NONE
:
341 att_state
->fast_clear
= false;
343 case ANV_FAST_CLEAR_DEFAULT_VALUE
:
344 att_state
->fast_clear
= att_state
->clear_color_is_zero
;
346 case ANV_FAST_CLEAR_ANY
:
347 att_state
->fast_clear
= true;
351 /* Potentially, we could do partial fast-clears but doing so has crazy
352 * alignment restrictions. It's easier to just restrict to full size
353 * fast clears for now.
355 if (render_area
.offset
.x
!= 0 ||
356 render_area
.offset
.y
!= 0 ||
357 render_area
.extent
.width
!= iview
->extent
.width
||
358 render_area
.extent
.height
!= iview
->extent
.height
)
359 att_state
->fast_clear
= false;
361 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
362 if (GEN_GEN
<= 8 && !att_state
->clear_color_is_zero_one
)
363 att_state
->fast_clear
= false;
365 /* We only allow fast clears to the first slice of an image (level 0,
366 * layer 0) and only for the entire slice. This guarantees us that, at
367 * any given time, there is only one clear color on any given image at
368 * any given time. At the time of our testing (Jan 17, 2018), there
369 * were no known applications which would benefit from fast-clearing
370 * more than just the first slice.
372 if (att_state
->fast_clear
&&
373 (iview
->planes
[0].isl
.base_level
> 0 ||
374 iview
->planes
[0].isl
.base_array_layer
> 0)) {
375 anv_perf_warn(device
->instance
, iview
->image
,
376 "Rendering with multi-lod or multi-layer framebuffer "
377 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
378 "baseArrayLayer > 0. Not fast clearing.");
379 att_state
->fast_clear
= false;
380 } else if (att_state
->fast_clear
&& cmd_state
->framebuffer
->layers
> 1) {
381 anv_perf_warn(device
->instance
, iview
->image
,
382 "Rendering to a multi-layer framebuffer with "
383 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
386 if (att_state
->fast_clear
)
387 *fast_clear_color
= clear_color
;
389 att_state
->fast_clear
= false;
394 depth_stencil_attachment_compute_aux_usage(struct anv_device
*device
,
395 struct anv_cmd_state
*cmd_state
,
396 uint32_t att
, VkRect2D render_area
)
398 struct anv_render_pass_attachment
*pass_att
=
399 &cmd_state
->pass
->attachments
[att
];
400 struct anv_attachment_state
*att_state
= &cmd_state
->attachments
[att
];
401 struct anv_image_view
*iview
= cmd_state
->attachments
[att
].image_view
;
403 /* These will be initialized after the first subpass transition. */
404 att_state
->aux_usage
= ISL_AUX_USAGE_NONE
;
405 att_state
->input_aux_usage
= ISL_AUX_USAGE_NONE
;
408 /* We don't do any HiZ or depth fast-clears on gen7 yet */
409 att_state
->fast_clear
= false;
413 if (!(att_state
->pending_clear_aspects
& VK_IMAGE_ASPECT_DEPTH_BIT
)) {
414 /* If we're just clearing stencil, we can always HiZ clear */
415 att_state
->fast_clear
= true;
419 /* Default to false for now */
420 att_state
->fast_clear
= false;
422 /* We must have depth in order to have HiZ */
423 if (!(iview
->image
->aspects
& VK_IMAGE_ASPECT_DEPTH_BIT
))
426 const enum isl_aux_usage first_subpass_aux_usage
=
427 anv_layout_to_aux_usage(&device
->info
, iview
->image
,
428 VK_IMAGE_ASPECT_DEPTH_BIT
,
429 pass_att
->first_subpass_layout
);
430 if (!blorp_can_hiz_clear_depth(&device
->info
,
431 &iview
->image
->planes
[0].surface
.isl
,
432 first_subpass_aux_usage
,
433 iview
->planes
[0].isl
.base_level
,
434 iview
->planes
[0].isl
.base_array_layer
,
435 render_area
.offset
.x
,
436 render_area
.offset
.y
,
437 render_area
.offset
.x
+
438 render_area
.extent
.width
,
439 render_area
.offset
.y
+
440 render_area
.extent
.height
))
443 if (att_state
->clear_value
.depthStencil
.depth
!= ANV_HZ_FC_VAL
)
446 if (GEN_GEN
== 8 && anv_can_sample_with_hiz(&device
->info
, iview
->image
)) {
447 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
448 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
449 * only supports returning 0.0f. Gens prior to gen8 do not support this
455 /* If we got here, then we can fast clear */
456 att_state
->fast_clear
= true;
460 need_input_attachment_state(const struct anv_render_pass_attachment
*att
)
462 if (!(att
->usage
& VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT
))
465 /* We only allocate input attachment states for color surfaces. Compression
466 * is not yet enabled for depth textures and stencil doesn't allow
467 * compression so we can just use the texture surface state from the view.
469 return vk_format_is_color(att
->format
);
472 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
473 * the initial layout is undefined, the HiZ buffer and depth buffer will
474 * represent the same data at the end of this operation.
477 transition_depth_buffer(struct anv_cmd_buffer
*cmd_buffer
,
478 const struct anv_image
*image
,
479 VkImageLayout initial_layout
,
480 VkImageLayout final_layout
)
482 const bool hiz_enabled
= ISL_AUX_USAGE_HIZ
==
483 anv_layout_to_aux_usage(&cmd_buffer
->device
->info
, image
,
484 VK_IMAGE_ASPECT_DEPTH_BIT
, initial_layout
);
485 const bool enable_hiz
= ISL_AUX_USAGE_HIZ
==
486 anv_layout_to_aux_usage(&cmd_buffer
->device
->info
, image
,
487 VK_IMAGE_ASPECT_DEPTH_BIT
, final_layout
);
489 enum isl_aux_op hiz_op
;
490 if (hiz_enabled
&& !enable_hiz
) {
491 hiz_op
= ISL_AUX_OP_FULL_RESOLVE
;
492 } else if (!hiz_enabled
&& enable_hiz
) {
493 hiz_op
= ISL_AUX_OP_AMBIGUATE
;
495 assert(hiz_enabled
== enable_hiz
);
496 /* If the same buffer will be used, no resolves are necessary. */
497 hiz_op
= ISL_AUX_OP_NONE
;
500 if (hiz_op
!= ISL_AUX_OP_NONE
)
501 anv_image_hiz_op(cmd_buffer
, image
, VK_IMAGE_ASPECT_DEPTH_BIT
,
506 vk_image_layout_stencil_write_optimal(VkImageLayout layout
)
508 return layout
== VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
||
509 layout
== VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
||
510 layout
== VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
;
513 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
514 * the initial layout is undefined, the HiZ buffer and depth buffer will
515 * represent the same data at the end of this operation.
518 transition_stencil_buffer(struct anv_cmd_buffer
*cmd_buffer
,
519 const struct anv_image
*image
,
520 uint32_t base_level
, uint32_t level_count
,
521 uint32_t base_layer
, uint32_t layer_count
,
522 VkImageLayout initial_layout
,
523 VkImageLayout final_layout
)
526 uint32_t plane
= anv_image_aspect_to_plane(image
->aspects
,
527 VK_IMAGE_ASPECT_STENCIL_BIT
);
529 /* On gen7, we have to store a texturable version of the stencil buffer in
530 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
531 * forth at strategic points. Stencil writes are only allowed in following
534 * - VK_IMAGE_LAYOUT_GENERAL
535 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
536 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
537 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
538 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
540 * For general, we have no nice opportunity to transition so we do the copy
541 * to the shadow unconditionally at the end of the subpass. For transfer
542 * destinations, we can update it as part of the transfer op. For the other
543 * layouts, we delay the copy until a transition into some other layout.
545 if (image
->planes
[plane
].shadow_surface
.isl
.size_B
> 0 &&
546 vk_image_layout_stencil_write_optimal(initial_layout
) &&
547 !vk_image_layout_stencil_write_optimal(final_layout
)) {
548 anv_image_copy_to_shadow(cmd_buffer
, image
,
549 VK_IMAGE_ASPECT_STENCIL_BIT
,
550 base_level
, level_count
,
551 base_layer
, layer_count
);
553 #endif /* GEN_GEN == 7 */
556 #define MI_PREDICATE_SRC0 0x2400
557 #define MI_PREDICATE_SRC1 0x2408
558 #define MI_PREDICATE_RESULT 0x2418
561 set_image_compressed_bit(struct anv_cmd_buffer
*cmd_buffer
,
562 const struct anv_image
*image
,
563 VkImageAspectFlagBits aspect
,
565 uint32_t base_layer
, uint32_t layer_count
,
568 uint32_t plane
= anv_image_aspect_to_plane(image
->aspects
, aspect
);
570 /* We only have compression tracking for CCS_E */
571 if (image
->planes
[plane
].aux_usage
!= ISL_AUX_USAGE_CCS_E
)
574 for (uint32_t a
= 0; a
< layer_count
; a
++) {
575 uint32_t layer
= base_layer
+ a
;
576 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_STORE_DATA_IMM
), sdi
) {
577 sdi
.Address
= anv_image_get_compression_state_addr(cmd_buffer
->device
,
580 sdi
.ImmediateData
= compressed
? UINT32_MAX
: 0;
586 set_image_fast_clear_state(struct anv_cmd_buffer
*cmd_buffer
,
587 const struct anv_image
*image
,
588 VkImageAspectFlagBits aspect
,
589 enum anv_fast_clear_type fast_clear
)
591 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_STORE_DATA_IMM
), sdi
) {
592 sdi
.Address
= anv_image_get_fast_clear_type_addr(cmd_buffer
->device
,
594 sdi
.ImmediateData
= fast_clear
;
597 /* Whenever we have fast-clear, we consider that slice to be compressed.
598 * This makes building predicates much easier.
600 if (fast_clear
!= ANV_FAST_CLEAR_NONE
)
601 set_image_compressed_bit(cmd_buffer
, image
, aspect
, 0, 0, 1, true);
604 /* This is only really practical on haswell and above because it requires
605 * MI math in order to get it correct.
607 #if GEN_GEN >= 8 || GEN_IS_HASWELL
609 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer
*cmd_buffer
,
610 const struct anv_image
*image
,
611 VkImageAspectFlagBits aspect
,
612 uint32_t level
, uint32_t array_layer
,
613 enum isl_aux_op resolve_op
,
614 enum anv_fast_clear_type fast_clear_supported
)
616 struct gen_mi_builder b
;
617 gen_mi_builder_init(&b
, &cmd_buffer
->batch
);
619 const struct gen_mi_value fast_clear_type
=
620 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer
->device
,
623 if (resolve_op
== ISL_AUX_OP_FULL_RESOLVE
) {
624 /* In this case, we're doing a full resolve which means we want the
625 * resolve to happen if any compression (including fast-clears) is
628 * In order to simplify the logic a bit, we make the assumption that,
629 * if the first slice has been fast-cleared, it is also marked as
630 * compressed. See also set_image_fast_clear_state.
632 const struct gen_mi_value compression_state
=
633 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer
->device
,
635 level
, array_layer
));
636 gen_mi_store(&b
, gen_mi_reg64(MI_PREDICATE_SRC0
),
638 gen_mi_store(&b
, compression_state
, gen_mi_imm(0));
640 if (level
== 0 && array_layer
== 0) {
641 /* If the predicate is true, we want to write 0 to the fast clear type
642 * and, if it's false, leave it alone. We can do this by writing
644 * clear_type = clear_type & ~predicate;
646 struct gen_mi_value new_fast_clear_type
=
647 gen_mi_iand(&b
, fast_clear_type
,
648 gen_mi_inot(&b
, gen_mi_reg64(MI_PREDICATE_SRC0
)));
649 gen_mi_store(&b
, fast_clear_type
, new_fast_clear_type
);
651 } else if (level
== 0 && array_layer
== 0) {
652 /* In this case, we are doing a partial resolve to get rid of fast-clear
653 * colors. We don't care about the compression state but we do care
654 * about how much fast clear is allowed by the final layout.
656 assert(resolve_op
== ISL_AUX_OP_PARTIAL_RESOLVE
);
657 assert(fast_clear_supported
< ANV_FAST_CLEAR_ANY
);
659 /* We need to compute (fast_clear_supported < image->fast_clear) */
660 struct gen_mi_value pred
=
661 gen_mi_ult(&b
, gen_mi_imm(fast_clear_supported
), fast_clear_type
);
662 gen_mi_store(&b
, gen_mi_reg64(MI_PREDICATE_SRC0
),
663 gen_mi_value_ref(&b
, pred
));
665 /* If the predicate is true, we want to write 0 to the fast clear type
666 * and, if it's false, leave it alone. We can do this by writing
668 * clear_type = clear_type & ~predicate;
670 struct gen_mi_value new_fast_clear_type
=
671 gen_mi_iand(&b
, fast_clear_type
, gen_mi_inot(&b
, pred
));
672 gen_mi_store(&b
, fast_clear_type
, new_fast_clear_type
);
674 /* In this case, we're trying to do a partial resolve on a slice that
675 * doesn't have clear color. There's nothing to do.
677 assert(resolve_op
== ISL_AUX_OP_PARTIAL_RESOLVE
);
681 /* Set src1 to 0 and use a != condition */
682 gen_mi_store(&b
, gen_mi_reg64(MI_PREDICATE_SRC1
), gen_mi_imm(0));
684 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_PREDICATE
), mip
) {
685 mip
.LoadOperation
= LOAD_LOADINV
;
686 mip
.CombineOperation
= COMBINE_SET
;
687 mip
.CompareOperation
= COMPARE_SRCS_EQUAL
;
690 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
694 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer
*cmd_buffer
,
695 const struct anv_image
*image
,
696 VkImageAspectFlagBits aspect
,
697 uint32_t level
, uint32_t array_layer
,
698 enum isl_aux_op resolve_op
,
699 enum anv_fast_clear_type fast_clear_supported
)
701 struct gen_mi_builder b
;
702 gen_mi_builder_init(&b
, &cmd_buffer
->batch
);
704 struct gen_mi_value fast_clear_type_mem
=
705 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer
->device
,
708 /* This only works for partial resolves and only when the clear color is
709 * all or nothing. On the upside, this emits less command streamer code
710 * and works on Ivybridge and Bay Trail.
712 assert(resolve_op
== ISL_AUX_OP_PARTIAL_RESOLVE
);
713 assert(fast_clear_supported
!= ANV_FAST_CLEAR_ANY
);
715 /* We don't support fast clears on anything other than the first slice. */
716 if (level
> 0 || array_layer
> 0)
719 /* On gen8, we don't have a concept of default clear colors because we
720 * can't sample from CCS surfaces. It's enough to just load the fast clear
721 * state into the predicate register.
723 gen_mi_store(&b
, gen_mi_reg64(MI_PREDICATE_SRC0
), fast_clear_type_mem
);
724 gen_mi_store(&b
, gen_mi_reg64(MI_PREDICATE_SRC1
), gen_mi_imm(0));
725 gen_mi_store(&b
, fast_clear_type_mem
, gen_mi_imm(0));
727 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_PREDICATE
), mip
) {
728 mip
.LoadOperation
= LOAD_LOADINV
;
729 mip
.CombineOperation
= COMBINE_SET
;
730 mip
.CompareOperation
= COMPARE_SRCS_EQUAL
;
733 #endif /* GEN_GEN <= 8 */
736 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer
*cmd_buffer
,
737 const struct anv_image
*image
,
738 enum isl_format format
,
739 VkImageAspectFlagBits aspect
,
740 uint32_t level
, uint32_t array_layer
,
741 enum isl_aux_op resolve_op
,
742 enum anv_fast_clear_type fast_clear_supported
)
744 const uint32_t plane
= anv_image_aspect_to_plane(image
->aspects
, aspect
);
747 anv_cmd_compute_resolve_predicate(cmd_buffer
, image
,
748 aspect
, level
, array_layer
,
749 resolve_op
, fast_clear_supported
);
750 #else /* GEN_GEN <= 8 */
751 anv_cmd_simple_resolve_predicate(cmd_buffer
, image
,
752 aspect
, level
, array_layer
,
753 resolve_op
, fast_clear_supported
);
756 /* CCS_D only supports full resolves and BLORP will assert on us if we try
757 * to do a partial resolve on a CCS_D surface.
759 if (resolve_op
== ISL_AUX_OP_PARTIAL_RESOLVE
&&
760 image
->planes
[plane
].aux_usage
== ISL_AUX_USAGE_NONE
)
761 resolve_op
= ISL_AUX_OP_FULL_RESOLVE
;
763 anv_image_ccs_op(cmd_buffer
, image
, format
, aspect
, level
,
764 array_layer
, 1, resolve_op
, NULL
, true);
768 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer
*cmd_buffer
,
769 const struct anv_image
*image
,
770 enum isl_format format
,
771 VkImageAspectFlagBits aspect
,
772 uint32_t array_layer
,
773 enum isl_aux_op resolve_op
,
774 enum anv_fast_clear_type fast_clear_supported
)
776 assert(aspect
== VK_IMAGE_ASPECT_COLOR_BIT
);
777 assert(resolve_op
== ISL_AUX_OP_PARTIAL_RESOLVE
);
779 #if GEN_GEN >= 8 || GEN_IS_HASWELL
780 anv_cmd_compute_resolve_predicate(cmd_buffer
, image
,
781 aspect
, 0, array_layer
,
782 resolve_op
, fast_clear_supported
);
784 anv_image_mcs_op(cmd_buffer
, image
, format
, aspect
,
785 array_layer
, 1, resolve_op
, NULL
, true);
787 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
792 genX(cmd_buffer_mark_image_written
)(struct anv_cmd_buffer
*cmd_buffer
,
793 const struct anv_image
*image
,
794 VkImageAspectFlagBits aspect
,
795 enum isl_aux_usage aux_usage
,
798 uint32_t layer_count
)
800 /* The aspect must be exactly one of the image aspects. */
801 assert(util_bitcount(aspect
) == 1 && (aspect
& image
->aspects
));
803 /* The only compression types with more than just fast-clears are MCS,
804 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
805 * track the current fast-clear and compression state. This leaves us
806 * with just MCS and CCS_E.
808 if (aux_usage
!= ISL_AUX_USAGE_CCS_E
&&
809 aux_usage
!= ISL_AUX_USAGE_MCS
)
812 set_image_compressed_bit(cmd_buffer
, image
, aspect
,
813 level
, base_layer
, layer_count
, true);
817 init_fast_clear_color(struct anv_cmd_buffer
*cmd_buffer
,
818 const struct anv_image
*image
,
819 VkImageAspectFlagBits aspect
)
821 assert(cmd_buffer
&& image
);
822 assert(image
->aspects
& VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV
);
824 set_image_fast_clear_state(cmd_buffer
, image
, aspect
,
825 ANV_FAST_CLEAR_NONE
);
827 /* Initialize the struct fields that are accessed for fast-clears so that
828 * the HW restrictions on the field values are satisfied.
830 struct anv_address addr
=
831 anv_image_get_clear_color_addr(cmd_buffer
->device
, image
, aspect
);
834 const struct isl_device
*isl_dev
= &cmd_buffer
->device
->isl_dev
;
835 const unsigned num_dwords
= GEN_GEN
>= 10 ?
836 isl_dev
->ss
.clear_color_state_size
/ 4 :
837 isl_dev
->ss
.clear_value_size
/ 4;
838 for (unsigned i
= 0; i
< num_dwords
; i
++) {
839 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_STORE_DATA_IMM
), sdi
) {
841 sdi
.Address
.offset
+= i
* 4;
842 sdi
.ImmediateData
= 0;
846 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_STORE_DATA_IMM
), sdi
) {
848 if (GEN_GEN
>= 8 || GEN_IS_HASWELL
) {
849 /* Pre-SKL, the dword containing the clear values also contains
850 * other fields, so we need to initialize those fields to match the
851 * values that would be in a color attachment.
853 sdi
.ImmediateData
= ISL_CHANNEL_SELECT_RED
<< 25 |
854 ISL_CHANNEL_SELECT_GREEN
<< 22 |
855 ISL_CHANNEL_SELECT_BLUE
<< 19 |
856 ISL_CHANNEL_SELECT_ALPHA
<< 16;
857 } else if (GEN_GEN
== 7) {
858 /* On IVB, the dword containing the clear values also contains
859 * other fields that must be zero or can be zero.
861 sdi
.ImmediateData
= 0;
867 /* Copy the fast-clear value dword(s) between a surface state object and an
868 * image's fast clear state buffer.
871 genX(copy_fast_clear_dwords
)(struct anv_cmd_buffer
*cmd_buffer
,
872 struct anv_state surface_state
,
873 const struct anv_image
*image
,
874 VkImageAspectFlagBits aspect
,
875 bool copy_from_surface_state
)
877 assert(cmd_buffer
&& image
);
878 assert(image
->aspects
& VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV
);
880 struct anv_address ss_clear_addr
= {
881 .bo
= cmd_buffer
->device
->surface_state_pool
.block_pool
.bo
,
882 .offset
= surface_state
.offset
+
883 cmd_buffer
->device
->isl_dev
.ss
.clear_value_offset
,
885 const struct anv_address entry_addr
=
886 anv_image_get_clear_color_addr(cmd_buffer
->device
, image
, aspect
);
887 unsigned copy_size
= cmd_buffer
->device
->isl_dev
.ss
.clear_value_size
;
890 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
891 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
892 * in-flight when they are issued even if the memory touched is not
893 * currently active for rendering. The weird bit is that it is not the
894 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
895 * rendering hangs such that the next stalling command after the
896 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
898 * It is unclear exactly why this hang occurs. Both MI commands come with
899 * warnings about the 3D pipeline but that doesn't seem to fully explain
900 * it. My (Jason's) best theory is that it has something to do with the
901 * fact that we're using a GPU state register as our temporary and that
902 * something with reading/writing it is causing problems.
904 * In order to work around this issue, we emit a PIPE_CONTROL with the
905 * command streamer stall bit set.
907 cmd_buffer
->state
.pending_pipe_bits
|= ANV_PIPE_CS_STALL_BIT
;
908 genX(cmd_buffer_apply_pipe_flushes
)(cmd_buffer
);
911 struct gen_mi_builder b
;
912 gen_mi_builder_init(&b
, &cmd_buffer
->batch
);
914 if (copy_from_surface_state
) {
915 gen_mi_memcpy(&b
, entry_addr
, ss_clear_addr
, copy_size
);
917 gen_mi_memcpy(&b
, ss_clear_addr
, entry_addr
, copy_size
);
919 /* Updating a surface state object may require that the state cache be
920 * invalidated. From the SKL PRM, Shared Functions -> State -> State
923 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
924 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
925 * modified [...], the L1 state cache must be invalidated to ensure
926 * the new surface or sampler state is fetched from system memory.
928 * In testing, SKL doesn't actually seem to need this, but HSW does.
930 cmd_buffer
->state
.pending_pipe_bits
|=
931 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT
;
936 * @brief Transitions a color buffer from one layout to another.
938 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
941 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
942 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
943 * this represents the maximum layers to transition at each
944 * specified miplevel.
947 transition_color_buffer(struct anv_cmd_buffer
*cmd_buffer
,
948 const struct anv_image
*image
,
949 VkImageAspectFlagBits aspect
,
950 const uint32_t base_level
, uint32_t level_count
,
951 uint32_t base_layer
, uint32_t layer_count
,
952 VkImageLayout initial_layout
,
953 VkImageLayout final_layout
)
955 const struct gen_device_info
*devinfo
= &cmd_buffer
->device
->info
;
956 /* Validate the inputs. */
958 assert(image
&& image
->aspects
& VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV
);
959 /* These values aren't supported for simplicity's sake. */
960 assert(level_count
!= VK_REMAINING_MIP_LEVELS
&&
961 layer_count
!= VK_REMAINING_ARRAY_LAYERS
);
962 /* Ensure the subresource range is valid. */
963 UNUSED
uint64_t last_level_num
= base_level
+ level_count
;
964 const uint32_t max_depth
= anv_minify(image
->extent
.depth
, base_level
);
965 UNUSED
const uint32_t image_layers
= MAX2(image
->array_size
, max_depth
);
966 assert((uint64_t)base_layer
+ layer_count
<= image_layers
);
967 assert(last_level_num
<= image
->levels
);
968 /* The spec disallows these final layouts. */
969 assert(final_layout
!= VK_IMAGE_LAYOUT_UNDEFINED
&&
970 final_layout
!= VK_IMAGE_LAYOUT_PREINITIALIZED
);
972 /* No work is necessary if the layout stays the same or if this subresource
973 * range lacks auxiliary data.
975 if (initial_layout
== final_layout
)
978 uint32_t plane
= anv_image_aspect_to_plane(image
->aspects
, aspect
);
980 if (image
->planes
[plane
].shadow_surface
.isl
.size_B
> 0 &&
981 final_layout
== VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
) {
982 /* This surface is a linear compressed image with a tiled shadow surface
983 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
984 * we need to ensure the shadow copy is up-to-date.
986 assert(image
->aspects
== VK_IMAGE_ASPECT_COLOR_BIT
);
987 assert(image
->planes
[plane
].surface
.isl
.tiling
== ISL_TILING_LINEAR
);
988 assert(image
->planes
[plane
].shadow_surface
.isl
.tiling
!= ISL_TILING_LINEAR
);
989 assert(isl_format_is_compressed(image
->planes
[plane
].surface
.isl
.format
));
991 anv_image_copy_to_shadow(cmd_buffer
, image
,
992 VK_IMAGE_ASPECT_COLOR_BIT
,
993 base_level
, level_count
,
994 base_layer
, layer_count
);
997 if (base_layer
>= anv_image_aux_layers(image
, aspect
, base_level
))
1000 assert(image
->tiling
== VK_IMAGE_TILING_OPTIMAL
);
1002 if (initial_layout
== VK_IMAGE_LAYOUT_UNDEFINED
||
1003 initial_layout
== VK_IMAGE_LAYOUT_PREINITIALIZED
) {
1004 /* A subresource in the undefined layout may have been aliased and
1005 * populated with any arrangement of bits. Therefore, we must initialize
1006 * the related aux buffer and clear buffer entry with desirable values.
1007 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
1008 * images with VK_IMAGE_TILING_OPTIMAL.
1010 * Initialize the relevant clear buffer entries.
1012 if (base_level
== 0 && base_layer
== 0)
1013 init_fast_clear_color(cmd_buffer
, image
, aspect
);
1015 /* Initialize the aux buffers to enable correct rendering. In order to
1016 * ensure that things such as storage images work correctly, aux buffers
1017 * need to be initialized to valid data.
1019 * Having an aux buffer with invalid data is a problem for two reasons:
1021 * 1) Having an invalid value in the buffer can confuse the hardware.
1022 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1023 * invalid and leads to the hardware doing strange things. It
1024 * doesn't hang as far as we can tell but rendering corruption can
1027 * 2) If this transition is into the GENERAL layout and we then use the
1028 * image as a storage image, then we must have the aux buffer in the
1029 * pass-through state so that, if we then go to texture from the
1030 * image, we get the results of our storage image writes and not the
1031 * fast clear color or other random data.
1033 * For CCS both of the problems above are real demonstrable issues. In
1034 * that case, the only thing we can do is to perform an ambiguate to
1035 * transition the aux surface into the pass-through state.
1037 * For MCS, (2) is never an issue because we don't support multisampled
1038 * storage images. In theory, issue (1) is a problem with MCS but we've
1039 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1040 * theory, be interpreted as something but we don't know that all bit
1041 * patterns are actually valid. For 2x and 8x, you could easily end up
1042 * with the MCS referring to an invalid plane because not all bits of
1043 * the MCS value are actually used. Even though we've never seen issues
1044 * in the wild, it's best to play it safe and initialize the MCS. We
1045 * can use a fast-clear for MCS because we only ever touch from render
1046 * and texture (no image load store).
1048 if (image
->samples
== 1) {
1049 for (uint32_t l
= 0; l
< level_count
; l
++) {
1050 const uint32_t level
= base_level
+ l
;
1052 uint32_t aux_layers
= anv_image_aux_layers(image
, aspect
, level
);
1053 if (base_layer
>= aux_layers
)
1054 break; /* We will only get fewer layers as level increases */
1055 uint32_t level_layer_count
=
1056 MIN2(layer_count
, aux_layers
- base_layer
);
1058 anv_image_ccs_op(cmd_buffer
, image
,
1059 image
->planes
[plane
].surface
.isl
.format
,
1060 aspect
, level
, base_layer
, level_layer_count
,
1061 ISL_AUX_OP_AMBIGUATE
, NULL
, false);
1063 if (image
->planes
[plane
].aux_usage
== ISL_AUX_USAGE_CCS_E
) {
1064 set_image_compressed_bit(cmd_buffer
, image
, aspect
,
1065 level
, base_layer
, level_layer_count
,
1070 if (image
->samples
== 4 || image
->samples
== 16) {
1071 anv_perf_warn(cmd_buffer
->device
->instance
, image
,
1072 "Doing a potentially unnecessary fast-clear to "
1073 "define an MCS buffer.");
1076 assert(base_level
== 0 && level_count
== 1);
1077 anv_image_mcs_op(cmd_buffer
, image
,
1078 image
->planes
[plane
].surface
.isl
.format
,
1079 aspect
, base_layer
, layer_count
,
1080 ISL_AUX_OP_FAST_CLEAR
, NULL
, false);
1085 const enum isl_aux_usage initial_aux_usage
=
1086 anv_layout_to_aux_usage(devinfo
, image
, aspect
, initial_layout
);
1087 const enum isl_aux_usage final_aux_usage
=
1088 anv_layout_to_aux_usage(devinfo
, image
, aspect
, final_layout
);
1090 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1091 * We can handle transitions between CCS_D/E to and from NONE. What we
1092 * don't yet handle is switching between CCS_E and CCS_D within a given
1093 * image. Doing so in a performant way requires more detailed aux state
1094 * tracking such as what is done in i965. For now, just assume that we
1095 * only have one type of compression.
1097 assert(initial_aux_usage
== ISL_AUX_USAGE_NONE
||
1098 final_aux_usage
== ISL_AUX_USAGE_NONE
||
1099 initial_aux_usage
== final_aux_usage
);
1101 /* If initial aux usage is NONE, there is nothing to resolve */
1102 if (initial_aux_usage
== ISL_AUX_USAGE_NONE
)
1105 enum isl_aux_op resolve_op
= ISL_AUX_OP_NONE
;
1107 /* If the initial layout supports more fast clear than the final layout
1108 * then we need at least a partial resolve.
1110 const enum anv_fast_clear_type initial_fast_clear
=
1111 anv_layout_to_fast_clear_type(devinfo
, image
, aspect
, initial_layout
);
1112 const enum anv_fast_clear_type final_fast_clear
=
1113 anv_layout_to_fast_clear_type(devinfo
, image
, aspect
, final_layout
);
1114 if (final_fast_clear
< initial_fast_clear
)
1115 resolve_op
= ISL_AUX_OP_PARTIAL_RESOLVE
;
1117 if (initial_aux_usage
== ISL_AUX_USAGE_CCS_E
&&
1118 final_aux_usage
!= ISL_AUX_USAGE_CCS_E
)
1119 resolve_op
= ISL_AUX_OP_FULL_RESOLVE
;
1121 if (resolve_op
== ISL_AUX_OP_NONE
)
1124 /* Perform a resolve to synchronize data between the main and aux buffer.
1125 * Before we begin, we must satisfy the cache flushing requirement specified
1126 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1128 * Any transition from any value in {Clear, Render, Resolve} to a
1129 * different value in {Clear, Render, Resolve} requires end of pipe
1132 * We perform a flush of the write cache before and after the clear and
1133 * resolve operations to meet this requirement.
1135 * Unlike other drawing, fast clear operations are not properly
1136 * synchronized. The first PIPE_CONTROL here likely ensures that the
1137 * contents of the previous render or clear hit the render target before we
1138 * resolve and the second likely ensures that the resolve is complete before
1139 * we do any more rendering or clearing.
1141 cmd_buffer
->state
.pending_pipe_bits
|=
1142 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT
| ANV_PIPE_CS_STALL_BIT
;
1144 for (uint32_t l
= 0; l
< level_count
; l
++) {
1145 uint32_t level
= base_level
+ l
;
1147 uint32_t aux_layers
= anv_image_aux_layers(image
, aspect
, level
);
1148 if (base_layer
>= aux_layers
)
1149 break; /* We will only get fewer layers as level increases */
1150 uint32_t level_layer_count
=
1151 MIN2(layer_count
, aux_layers
- base_layer
);
1153 for (uint32_t a
= 0; a
< level_layer_count
; a
++) {
1154 uint32_t array_layer
= base_layer
+ a
;
1155 if (image
->samples
== 1) {
1156 anv_cmd_predicated_ccs_resolve(cmd_buffer
, image
,
1157 image
->planes
[plane
].surface
.isl
.format
,
1158 aspect
, level
, array_layer
, resolve_op
,
1161 /* We only support fast-clear on the first layer so partial
1162 * resolves should not be used on other layers as they will use
1163 * the clear color stored in memory that is only valid for layer0.
1165 if (resolve_op
== ISL_AUX_OP_PARTIAL_RESOLVE
&&
1169 anv_cmd_predicated_mcs_resolve(cmd_buffer
, image
,
1170 image
->planes
[plane
].surface
.isl
.format
,
1171 aspect
, array_layer
, resolve_op
,
1177 cmd_buffer
->state
.pending_pipe_bits
|=
1178 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT
| ANV_PIPE_CS_STALL_BIT
;
1182 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1185 genX(cmd_buffer_setup_attachments
)(struct anv_cmd_buffer
*cmd_buffer
,
1186 struct anv_render_pass
*pass
,
1187 const VkRenderPassBeginInfo
*begin
)
1189 const struct isl_device
*isl_dev
= &cmd_buffer
->device
->isl_dev
;
1190 struct anv_cmd_state
*state
= &cmd_buffer
->state
;
1191 struct anv_framebuffer
*framebuffer
= cmd_buffer
->state
.framebuffer
;
1193 vk_free(&cmd_buffer
->pool
->alloc
, state
->attachments
);
1195 if (pass
->attachment_count
> 0) {
1196 state
->attachments
= vk_alloc(&cmd_buffer
->pool
->alloc
,
1197 pass
->attachment_count
*
1198 sizeof(state
->attachments
[0]),
1199 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT
);
1200 if (state
->attachments
== NULL
) {
1201 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1202 return anv_batch_set_error(&cmd_buffer
->batch
,
1203 VK_ERROR_OUT_OF_HOST_MEMORY
);
1206 state
->attachments
= NULL
;
1209 /* Reserve one for the NULL state. */
1210 unsigned num_states
= 1;
1211 for (uint32_t i
= 0; i
< pass
->attachment_count
; ++i
) {
1212 if (vk_format_is_color(pass
->attachments
[i
].format
))
1215 if (need_input_attachment_state(&pass
->attachments
[i
]))
1219 const uint32_t ss_stride
= align_u32(isl_dev
->ss
.size
, isl_dev
->ss
.align
);
1220 state
->render_pass_states
=
1221 anv_state_stream_alloc(&cmd_buffer
->surface_state_stream
,
1222 num_states
* ss_stride
, isl_dev
->ss
.align
);
1224 struct anv_state next_state
= state
->render_pass_states
;
1225 next_state
.alloc_size
= isl_dev
->ss
.size
;
1227 state
->null_surface_state
= next_state
;
1228 next_state
.offset
+= ss_stride
;
1229 next_state
.map
+= ss_stride
;
1231 const VkRenderPassAttachmentBeginInfoKHR
*begin_attachment
=
1232 vk_find_struct_const(begin
, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR
);
1234 if (begin
&& !begin_attachment
)
1235 assert(pass
->attachment_count
== framebuffer
->attachment_count
);
1237 for (uint32_t i
= 0; i
< pass
->attachment_count
; ++i
) {
1238 if (vk_format_is_color(pass
->attachments
[i
].format
)) {
1239 state
->attachments
[i
].color
.state
= next_state
;
1240 next_state
.offset
+= ss_stride
;
1241 next_state
.map
+= ss_stride
;
1244 if (need_input_attachment_state(&pass
->attachments
[i
])) {
1245 state
->attachments
[i
].input
.state
= next_state
;
1246 next_state
.offset
+= ss_stride
;
1247 next_state
.map
+= ss_stride
;
1250 if (begin_attachment
&& begin_attachment
->attachmentCount
!= 0) {
1251 assert(begin_attachment
->attachmentCount
== pass
->attachment_count
);
1252 ANV_FROM_HANDLE(anv_image_view
, iview
, begin_attachment
->pAttachments
[i
]);
1253 cmd_buffer
->state
.attachments
[i
].image_view
= iview
;
1254 } else if (framebuffer
&& i
< framebuffer
->attachment_count
) {
1255 cmd_buffer
->state
.attachments
[i
].image_view
= framebuffer
->attachments
[i
];
1258 assert(next_state
.offset
== state
->render_pass_states
.offset
+
1259 state
->render_pass_states
.alloc_size
);
1262 isl_null_fill_state(isl_dev
, state
->null_surface_state
.map
,
1263 isl_extent3d(framebuffer
->width
,
1264 framebuffer
->height
,
1265 framebuffer
->layers
));
1267 for (uint32_t i
= 0; i
< pass
->attachment_count
; ++i
) {
1268 struct anv_render_pass_attachment
*att
= &pass
->attachments
[i
];
1269 VkImageAspectFlags att_aspects
= vk_format_aspects(att
->format
);
1270 VkImageAspectFlags clear_aspects
= 0;
1271 VkImageAspectFlags load_aspects
= 0;
1273 if (att_aspects
& VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV
) {
1274 /* color attachment */
1275 if (att
->load_op
== VK_ATTACHMENT_LOAD_OP_CLEAR
) {
1276 clear_aspects
|= VK_IMAGE_ASPECT_COLOR_BIT
;
1277 } else if (att
->load_op
== VK_ATTACHMENT_LOAD_OP_LOAD
) {
1278 load_aspects
|= VK_IMAGE_ASPECT_COLOR_BIT
;
1281 /* depthstencil attachment */
1282 if (att_aspects
& VK_IMAGE_ASPECT_DEPTH_BIT
) {
1283 if (att
->load_op
== VK_ATTACHMENT_LOAD_OP_CLEAR
) {
1284 clear_aspects
|= VK_IMAGE_ASPECT_DEPTH_BIT
;
1285 } else if (att
->load_op
== VK_ATTACHMENT_LOAD_OP_LOAD
) {
1286 load_aspects
|= VK_IMAGE_ASPECT_DEPTH_BIT
;
1289 if (att_aspects
& VK_IMAGE_ASPECT_STENCIL_BIT
) {
1290 if (att
->stencil_load_op
== VK_ATTACHMENT_LOAD_OP_CLEAR
) {
1291 clear_aspects
|= VK_IMAGE_ASPECT_STENCIL_BIT
;
1292 } else if (att
->stencil_load_op
== VK_ATTACHMENT_LOAD_OP_LOAD
) {
1293 load_aspects
|= VK_IMAGE_ASPECT_STENCIL_BIT
;
1298 state
->attachments
[i
].current_layout
= att
->initial_layout
;
1299 state
->attachments
[i
].current_stencil_layout
= att
->stencil_initial_layout
;
1300 state
->attachments
[i
].pending_clear_aspects
= clear_aspects
;
1301 state
->attachments
[i
].pending_load_aspects
= load_aspects
;
1303 state
->attachments
[i
].clear_value
= begin
->pClearValues
[i
];
1305 struct anv_image_view
*iview
= cmd_buffer
->state
.attachments
[i
].image_view
;
1306 anv_assert(iview
->vk_format
== att
->format
);
1308 const uint32_t num_layers
= iview
->planes
[0].isl
.array_len
;
1309 state
->attachments
[i
].pending_clear_views
= (1 << num_layers
) - 1;
1311 union isl_color_value clear_color
= { .u32
= { 0, } };
1312 if (att_aspects
& VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV
) {
1313 anv_assert(iview
->n_planes
== 1);
1314 assert(att_aspects
== VK_IMAGE_ASPECT_COLOR_BIT
);
1315 color_attachment_compute_aux_usage(cmd_buffer
->device
,
1316 state
, i
, begin
->renderArea
,
1319 anv_image_fill_surface_state(cmd_buffer
->device
,
1321 VK_IMAGE_ASPECT_COLOR_BIT
,
1322 &iview
->planes
[0].isl
,
1323 ISL_SURF_USAGE_RENDER_TARGET_BIT
,
1324 state
->attachments
[i
].aux_usage
,
1327 &state
->attachments
[i
].color
,
1330 add_surface_state_relocs(cmd_buffer
, state
->attachments
[i
].color
);
1332 depth_stencil_attachment_compute_aux_usage(cmd_buffer
->device
,
1337 if (need_input_attachment_state(&pass
->attachments
[i
])) {
1338 anv_image_fill_surface_state(cmd_buffer
->device
,
1340 VK_IMAGE_ASPECT_COLOR_BIT
,
1341 &iview
->planes
[0].isl
,
1342 ISL_SURF_USAGE_TEXTURE_BIT
,
1343 state
->attachments
[i
].input_aux_usage
,
1346 &state
->attachments
[i
].input
,
1349 add_surface_state_relocs(cmd_buffer
, state
->attachments
[i
].input
);
1358 genX(BeginCommandBuffer
)(
1359 VkCommandBuffer commandBuffer
,
1360 const VkCommandBufferBeginInfo
* pBeginInfo
)
1362 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
1364 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1365 * command buffer's state. Otherwise, we must *reset* its state. In both
1366 * cases we reset it.
1368 * From the Vulkan 1.0 spec:
1370 * If a command buffer is in the executable state and the command buffer
1371 * was allocated from a command pool with the
1372 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1373 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1374 * as if vkResetCommandBuffer had been called with
1375 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1376 * the command buffer in the recording state.
1378 anv_cmd_buffer_reset(cmd_buffer
);
1380 cmd_buffer
->usage_flags
= pBeginInfo
->flags
;
1382 assert(cmd_buffer
->level
== VK_COMMAND_BUFFER_LEVEL_SECONDARY
||
1383 !(cmd_buffer
->usage_flags
& VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT
));
1385 genX(cmd_buffer_emit_state_base_address
)(cmd_buffer
);
1387 /* We sometimes store vertex data in the dynamic state buffer for blorp
1388 * operations and our dynamic state stream may re-use data from previous
1389 * command buffers. In order to prevent stale cache data, we flush the VF
1390 * cache. We could do this on every blorp call but that's not really
1391 * needed as all of the data will get written by the CPU prior to the GPU
1392 * executing anything. The chances are fairly high that they will use
1393 * blorp at least once per primary command buffer so it shouldn't be
1396 if (cmd_buffer
->level
== VK_COMMAND_BUFFER_LEVEL_PRIMARY
)
1397 cmd_buffer
->state
.pending_pipe_bits
|= ANV_PIPE_VF_CACHE_INVALIDATE_BIT
;
1399 /* We send an "Indirect State Pointers Disable" packet at
1400 * EndCommandBuffer, so all push contant packets are ignored during a
1401 * context restore. Documentation says after that command, we need to
1402 * emit push constants again before any rendering operation. So we
1403 * flag them dirty here to make sure they get emitted.
1405 cmd_buffer
->state
.push_constants_dirty
|= VK_SHADER_STAGE_ALL_GRAPHICS
;
1407 VkResult result
= VK_SUCCESS
;
1408 if (cmd_buffer
->usage_flags
&
1409 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT
) {
1410 assert(pBeginInfo
->pInheritanceInfo
);
1411 cmd_buffer
->state
.pass
=
1412 anv_render_pass_from_handle(pBeginInfo
->pInheritanceInfo
->renderPass
);
1413 cmd_buffer
->state
.subpass
=
1414 &cmd_buffer
->state
.pass
->subpasses
[pBeginInfo
->pInheritanceInfo
->subpass
];
1416 /* This is optional in the inheritance info. */
1417 cmd_buffer
->state
.framebuffer
=
1418 anv_framebuffer_from_handle(pBeginInfo
->pInheritanceInfo
->framebuffer
);
1420 result
= genX(cmd_buffer_setup_attachments
)(cmd_buffer
,
1421 cmd_buffer
->state
.pass
, NULL
);
1423 /* Record that HiZ is enabled if we can. */
1424 if (cmd_buffer
->state
.framebuffer
) {
1425 const struct anv_image_view
* const iview
=
1426 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer
);
1429 VkImageLayout layout
=
1430 cmd_buffer
->state
.subpass
->depth_stencil_attachment
->layout
;
1432 enum isl_aux_usage aux_usage
=
1433 anv_layout_to_aux_usage(&cmd_buffer
->device
->info
, iview
->image
,
1434 VK_IMAGE_ASPECT_DEPTH_BIT
, layout
);
1436 cmd_buffer
->state
.hiz_enabled
= aux_usage
== ISL_AUX_USAGE_HIZ
;
1440 cmd_buffer
->state
.gfx
.dirty
|= ANV_CMD_DIRTY_RENDER_TARGETS
;
1443 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1444 if (cmd_buffer
->level
== VK_COMMAND_BUFFER_LEVEL_SECONDARY
) {
1445 const VkCommandBufferInheritanceConditionalRenderingInfoEXT
*conditional_rendering_info
=
1446 vk_find_struct_const(pBeginInfo
->pInheritanceInfo
->pNext
, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT
);
1448 /* If secondary buffer supports conditional rendering
1449 * we should emit commands as if conditional rendering is enabled.
1451 cmd_buffer
->state
.conditional_render_enabled
=
1452 conditional_rendering_info
&& conditional_rendering_info
->conditionalRenderingEnable
;
1459 /* From the PRM, Volume 2a:
1461 * "Indirect State Pointers Disable
1463 * At the completion of the post-sync operation associated with this pipe
1464 * control packet, the indirect state pointers in the hardware are
1465 * considered invalid; the indirect pointers are not saved in the context.
1466 * If any new indirect state commands are executed in the command stream
1467 * while the pipe control is pending, the new indirect state commands are
1470 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1471 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1472 * commands are only considered as Indirect State Pointers. Once ISP is
1473 * issued in a context, SW must initialize by programming push constant
1474 * commands for all the shaders (at least to zero length) before attempting
1475 * any rendering operation for the same context."
1477 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1478 * even though they point to a BO that has been already unreferenced at
1479 * the end of the previous batch buffer. This has been fine so far since
1480 * we are protected by these scratch page (every address not covered by
1481 * a BO should be pointing to the scratch page). But on CNL, it is
1482 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1485 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1486 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1487 * context restore, so the mentioned hang doesn't happen. However,
1488 * software must program push constant commands for all stages prior to
1489 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1491 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1492 * constants have been loaded into the EUs prior to disable the push constants
1493 * so that it doesn't hang a previous 3DPRIMITIVE.
1496 emit_isp_disable(struct anv_cmd_buffer
*cmd_buffer
)
1498 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pc
) {
1499 pc
.StallAtPixelScoreboard
= true;
1500 pc
.CommandStreamerStallEnable
= true;
1502 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pc
) {
1503 pc
.IndirectStatePointersDisable
= true;
1504 pc
.CommandStreamerStallEnable
= true;
1509 genX(EndCommandBuffer
)(
1510 VkCommandBuffer commandBuffer
)
1512 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
1514 if (anv_batch_has_error(&cmd_buffer
->batch
))
1515 return cmd_buffer
->batch
.status
;
1517 /* We want every command buffer to start with the PMA fix in a known state,
1518 * so we disable it at the end of the command buffer.
1520 genX(cmd_buffer_enable_pma_fix
)(cmd_buffer
, false);
1522 genX(cmd_buffer_apply_pipe_flushes
)(cmd_buffer
);
1524 emit_isp_disable(cmd_buffer
);
1526 anv_cmd_buffer_end_batch_buffer(cmd_buffer
);
1532 genX(CmdExecuteCommands
)(
1533 VkCommandBuffer commandBuffer
,
1534 uint32_t commandBufferCount
,
1535 const VkCommandBuffer
* pCmdBuffers
)
1537 ANV_FROM_HANDLE(anv_cmd_buffer
, primary
, commandBuffer
);
1539 assert(primary
->level
== VK_COMMAND_BUFFER_LEVEL_PRIMARY
);
1541 if (anv_batch_has_error(&primary
->batch
))
1544 /* The secondary command buffers will assume that the PMA fix is disabled
1545 * when they begin executing. Make sure this is true.
1547 genX(cmd_buffer_enable_pma_fix
)(primary
, false);
1549 /* The secondary command buffer doesn't know which textures etc. have been
1550 * flushed prior to their execution. Apply those flushes now.
1552 genX(cmd_buffer_apply_pipe_flushes
)(primary
);
1554 for (uint32_t i
= 0; i
< commandBufferCount
; i
++) {
1555 ANV_FROM_HANDLE(anv_cmd_buffer
, secondary
, pCmdBuffers
[i
]);
1557 assert(secondary
->level
== VK_COMMAND_BUFFER_LEVEL_SECONDARY
);
1558 assert(!anv_batch_has_error(&secondary
->batch
));
1560 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1561 if (secondary
->state
.conditional_render_enabled
) {
1562 if (!primary
->state
.conditional_render_enabled
) {
1563 /* Secondary buffer is constructed as if it will be executed
1564 * with conditional rendering, we should satisfy this dependency
1565 * regardless of conditional rendering being enabled in primary.
1567 struct gen_mi_builder b
;
1568 gen_mi_builder_init(&b
, &primary
->batch
);
1569 gen_mi_store(&b
, gen_mi_reg64(ANV_PREDICATE_RESULT_REG
),
1570 gen_mi_imm(UINT64_MAX
));
1575 if (secondary
->usage_flags
&
1576 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT
) {
1577 /* If we're continuing a render pass from the primary, we need to
1578 * copy the surface states for the current subpass into the storage
1579 * we allocated for them in BeginCommandBuffer.
1581 struct anv_bo
*ss_bo
=
1582 primary
->device
->surface_state_pool
.block_pool
.bo
;
1583 struct anv_state src_state
= primary
->state
.render_pass_states
;
1584 struct anv_state dst_state
= secondary
->state
.render_pass_states
;
1585 assert(src_state
.alloc_size
== dst_state
.alloc_size
);
1587 genX(cmd_buffer_so_memcpy
)(primary
,
1588 (struct anv_address
) {
1590 .offset
= dst_state
.offset
,
1592 (struct anv_address
) {
1594 .offset
= src_state
.offset
,
1596 src_state
.alloc_size
);
1599 anv_cmd_buffer_add_secondary(primary
, secondary
);
1602 /* The secondary may have selected a different pipeline (3D or compute) and
1603 * may have changed the current L3$ configuration. Reset our tracking
1604 * variables to invalid values to ensure that we re-emit these in the case
1605 * where we do any draws or compute dispatches from the primary after the
1606 * secondary has returned.
1608 primary
->state
.current_pipeline
= UINT32_MAX
;
1609 primary
->state
.current_l3_config
= NULL
;
1610 primary
->state
.current_hash_scale
= 0;
1612 /* Each of the secondary command buffers will use its own state base
1613 * address. We need to re-emit state base address for the primary after
1614 * all of the secondaries are done.
1616 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1619 genX(cmd_buffer_emit_state_base_address
)(primary
);
1622 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1623 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1624 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1627 * Program the hardware to use the specified L3 configuration.
1630 genX(cmd_buffer_config_l3
)(struct anv_cmd_buffer
*cmd_buffer
,
1631 const struct gen_l3_config
*cfg
)
1634 if (cfg
== cmd_buffer
->state
.current_l3_config
)
1637 if (unlikely(INTEL_DEBUG
& DEBUG_L3
)) {
1638 intel_logd("L3 config transition: ");
1639 gen_dump_l3_config(cfg
, stderr
);
1642 UNUSED
const bool has_slm
= cfg
->n
[GEN_L3P_SLM
];
1644 /* According to the hardware docs, the L3 partitioning can only be changed
1645 * while the pipeline is completely drained and the caches are flushed,
1646 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1648 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pc
) {
1649 pc
.DCFlushEnable
= true;
1650 pc
.PostSyncOperation
= NoWrite
;
1651 pc
.CommandStreamerStallEnable
= true;
1654 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1655 * invalidation of the relevant caches. Note that because RO invalidation
1656 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1657 * command is processed by the CS) we cannot combine it with the previous
1658 * stalling flush as the hardware documentation suggests, because that
1659 * would cause the CS to stall on previous rendering *after* RO
1660 * invalidation and wouldn't prevent the RO caches from being polluted by
1661 * concurrent rendering before the stall completes. This intentionally
1662 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1663 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1664 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1665 * already guarantee that there is no concurrent GPGPU kernel execution
1666 * (see SKL HSD 2132585).
1668 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pc
) {
1669 pc
.TextureCacheInvalidationEnable
= true;
1670 pc
.ConstantCacheInvalidationEnable
= true;
1671 pc
.InstructionCacheInvalidateEnable
= true;
1672 pc
.StateCacheInvalidationEnable
= true;
1673 pc
.PostSyncOperation
= NoWrite
;
1676 /* Now send a third stalling flush to make sure that invalidation is
1677 * complete when the L3 configuration registers are modified.
1679 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pc
) {
1680 pc
.DCFlushEnable
= true;
1681 pc
.PostSyncOperation
= NoWrite
;
1682 pc
.CommandStreamerStallEnable
= true;
1687 assert(!cfg
->n
[GEN_L3P_IS
] && !cfg
->n
[GEN_L3P_C
] && !cfg
->n
[GEN_L3P_T
]);
1690 #define L3_ALLOCATION_REG GENX(L3ALLOC)
1691 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
1693 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
1694 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
1698 anv_pack_struct(&l3cr
, L3_ALLOCATION_REG
,
1700 .SLMEnable
= has_slm
,
1703 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1704 * in L3CNTLREG register. The default setting of the bit is not the
1705 * desirable behavior.
1707 .ErrorDetectionBehaviorControl
= true,
1708 .UseFullWays
= true,
1710 .URBAllocation
= cfg
->n
[GEN_L3P_URB
],
1711 .ROAllocation
= cfg
->n
[GEN_L3P_RO
],
1712 .DCAllocation
= cfg
->n
[GEN_L3P_DC
],
1713 .AllAllocation
= cfg
->n
[GEN_L3P_ALL
]);
1715 /* Set up the L3 partitioning. */
1716 emit_lri(&cmd_buffer
->batch
, L3_ALLOCATION_REG_num
, l3cr
);
1720 const bool has_dc
= cfg
->n
[GEN_L3P_DC
] || cfg
->n
[GEN_L3P_ALL
];
1721 const bool has_is
= cfg
->n
[GEN_L3P_IS
] || cfg
->n
[GEN_L3P_RO
] ||
1722 cfg
->n
[GEN_L3P_ALL
];
1723 const bool has_c
= cfg
->n
[GEN_L3P_C
] || cfg
->n
[GEN_L3P_RO
] ||
1724 cfg
->n
[GEN_L3P_ALL
];
1725 const bool has_t
= cfg
->n
[GEN_L3P_T
] || cfg
->n
[GEN_L3P_RO
] ||
1726 cfg
->n
[GEN_L3P_ALL
];
1728 assert(!cfg
->n
[GEN_L3P_ALL
]);
1730 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1731 * the matching space on the remaining banks has to be allocated to a
1732 * client (URB for all validated configurations) set to the
1733 * lower-bandwidth 2-bank address hashing mode.
1735 const struct gen_device_info
*devinfo
= &cmd_buffer
->device
->info
;
1736 const bool urb_low_bw
= has_slm
&& !devinfo
->is_baytrail
;
1737 assert(!urb_low_bw
|| cfg
->n
[GEN_L3P_URB
] == cfg
->n
[GEN_L3P_SLM
]);
1739 /* Minimum number of ways that can be allocated to the URB. */
1740 const unsigned n0_urb
= devinfo
->is_baytrail
? 32 : 0;
1741 assert(cfg
->n
[GEN_L3P_URB
] >= n0_urb
);
1743 uint32_t l3sqcr1
, l3cr2
, l3cr3
;
1744 anv_pack_struct(&l3sqcr1
, GENX(L3SQCREG1
),
1745 .ConvertDC_UC
= !has_dc
,
1746 .ConvertIS_UC
= !has_is
,
1747 .ConvertC_UC
= !has_c
,
1748 .ConvertT_UC
= !has_t
);
1750 GEN_IS_HASWELL
? HSW_L3SQCREG1_SQGHPCI_DEFAULT
:
1751 devinfo
->is_baytrail
? VLV_L3SQCREG1_SQGHPCI_DEFAULT
:
1752 IVB_L3SQCREG1_SQGHPCI_DEFAULT
;
1754 anv_pack_struct(&l3cr2
, GENX(L3CNTLREG2
),
1755 .SLMEnable
= has_slm
,
1756 .URBLowBandwidth
= urb_low_bw
,
1757 .URBAllocation
= cfg
->n
[GEN_L3P_URB
] - n0_urb
,
1759 .ALLAllocation
= cfg
->n
[GEN_L3P_ALL
],
1761 .ROAllocation
= cfg
->n
[GEN_L3P_RO
],
1762 .DCAllocation
= cfg
->n
[GEN_L3P_DC
]);
1764 anv_pack_struct(&l3cr3
, GENX(L3CNTLREG3
),
1765 .ISAllocation
= cfg
->n
[GEN_L3P_IS
],
1766 .ISLowBandwidth
= 0,
1767 .CAllocation
= cfg
->n
[GEN_L3P_C
],
1769 .TAllocation
= cfg
->n
[GEN_L3P_T
],
1770 .TLowBandwidth
= 0);
1772 /* Set up the L3 partitioning. */
1773 emit_lri(&cmd_buffer
->batch
, GENX(L3SQCREG1_num
), l3sqcr1
);
1774 emit_lri(&cmd_buffer
->batch
, GENX(L3CNTLREG2_num
), l3cr2
);
1775 emit_lri(&cmd_buffer
->batch
, GENX(L3CNTLREG3_num
), l3cr3
);
1778 if (cmd_buffer
->device
->instance
->physicalDevice
.cmd_parser_version
>= 4) {
1779 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1780 * them disabled to avoid crashing the system hard.
1782 uint32_t scratch1
, chicken3
;
1783 anv_pack_struct(&scratch1
, GENX(SCRATCH1
),
1784 .L3AtomicDisable
= !has_dc
);
1785 anv_pack_struct(&chicken3
, GENX(CHICKEN3
),
1786 .L3AtomicDisableMask
= true,
1787 .L3AtomicDisable
= !has_dc
);
1788 emit_lri(&cmd_buffer
->batch
, GENX(SCRATCH1_num
), scratch1
);
1789 emit_lri(&cmd_buffer
->batch
, GENX(CHICKEN3_num
), chicken3
);
1795 cmd_buffer
->state
.current_l3_config
= cfg
;
1799 genX(cmd_buffer_apply_pipe_flushes
)(struct anv_cmd_buffer
*cmd_buffer
)
1801 enum anv_pipe_bits bits
= cmd_buffer
->state
.pending_pipe_bits
;
1803 /* Flushes are pipelined while invalidations are handled immediately.
1804 * Therefore, if we're flushing anything then we need to schedule a stall
1805 * before any invalidations can happen.
1807 if (bits
& ANV_PIPE_FLUSH_BITS
)
1808 bits
|= ANV_PIPE_NEEDS_CS_STALL_BIT
;
1810 /* If we're going to do an invalidate and we have a pending CS stall that
1811 * has yet to be resolved, we do the CS stall now.
1813 if ((bits
& ANV_PIPE_INVALIDATE_BITS
) &&
1814 (bits
& ANV_PIPE_NEEDS_CS_STALL_BIT
)) {
1815 bits
|= ANV_PIPE_CS_STALL_BIT
;
1816 bits
&= ~ANV_PIPE_NEEDS_CS_STALL_BIT
;
1819 if (GEN_GEN
>= 12 &&
1820 ((bits
& ANV_PIPE_DEPTH_CACHE_FLUSH_BIT
) ||
1821 (bits
& ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT
))) {
1822 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
1825 * Unified Cache (Tile Cache Disabled):
1827 * When the Color and Depth (Z) streams are enabled to be cached in
1828 * the DC space of L2, Software must use "Render Target Cache Flush
1829 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
1830 * Flush" for getting the color and depth (Z) write data to be
1831 * globally observable. In this mode of operation it is not required
1832 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
1834 bits
|= ANV_PIPE_TILE_CACHE_FLUSH_BIT
;
1837 if (bits
& (ANV_PIPE_FLUSH_BITS
| ANV_PIPE_CS_STALL_BIT
)) {
1838 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pipe
) {
1840 pipe
.TileCacheFlushEnable
= bits
& ANV_PIPE_TILE_CACHE_FLUSH_BIT
;
1842 pipe
.DepthCacheFlushEnable
= bits
& ANV_PIPE_DEPTH_CACHE_FLUSH_BIT
;
1843 pipe
.DCFlushEnable
= bits
& ANV_PIPE_DATA_CACHE_FLUSH_BIT
;
1844 pipe
.RenderTargetCacheFlushEnable
=
1845 bits
& ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT
;
1847 pipe
.DepthStallEnable
= bits
& ANV_PIPE_DEPTH_STALL_BIT
;
1848 pipe
.CommandStreamerStallEnable
= bits
& ANV_PIPE_CS_STALL_BIT
;
1849 pipe
.StallAtPixelScoreboard
= bits
& ANV_PIPE_STALL_AT_SCOREBOARD_BIT
;
1852 * According to the Broadwell documentation, any PIPE_CONTROL with the
1853 * "Command Streamer Stall" bit set must also have another bit set,
1854 * with five different options:
1856 * - Render Target Cache Flush
1857 * - Depth Cache Flush
1858 * - Stall at Pixel Scoreboard
1859 * - Post-Sync Operation
1863 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1864 * mesa and it seems to work fine. The choice is fairly arbitrary.
1866 if ((bits
& ANV_PIPE_CS_STALL_BIT
) &&
1867 !(bits
& (ANV_PIPE_FLUSH_BITS
| ANV_PIPE_DEPTH_STALL_BIT
|
1868 ANV_PIPE_STALL_AT_SCOREBOARD_BIT
)))
1869 pipe
.StallAtPixelScoreboard
= true;
1872 /* If a render target flush was emitted, then we can toggle off the bit
1873 * saying that render target writes are ongoing.
1875 if (bits
& ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT
)
1876 bits
&= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES
);
1878 bits
&= ~(ANV_PIPE_FLUSH_BITS
| ANV_PIPE_CS_STALL_BIT
);
1881 if (bits
& ANV_PIPE_INVALIDATE_BITS
) {
1882 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1884 * "If the VF Cache Invalidation Enable is set to a 1 in a
1885 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
1886 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
1887 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
1890 * This appears to hang Broadwell, so we restrict it to just gen9.
1892 if (GEN_GEN
== 9 && (bits
& ANV_PIPE_VF_CACHE_INVALIDATE_BIT
))
1893 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pipe
);
1895 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pipe
) {
1896 pipe
.StateCacheInvalidationEnable
=
1897 bits
& ANV_PIPE_STATE_CACHE_INVALIDATE_BIT
;
1898 pipe
.ConstantCacheInvalidationEnable
=
1899 bits
& ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT
;
1900 pipe
.VFCacheInvalidationEnable
=
1901 bits
& ANV_PIPE_VF_CACHE_INVALIDATE_BIT
;
1902 pipe
.TextureCacheInvalidationEnable
=
1903 bits
& ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT
;
1904 pipe
.InstructionCacheInvalidateEnable
=
1905 bits
& ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT
;
1907 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1909 * "When VF Cache Invalidate is set “Post Sync Operation” must be
1910 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
1911 * “Write Timestamp”.
1913 if (GEN_GEN
== 9 && pipe
.VFCacheInvalidationEnable
) {
1914 pipe
.PostSyncOperation
= WriteImmediateData
;
1916 (struct anv_address
) { cmd_buffer
->device
->workaround_bo
, 0 };
1920 bits
&= ~ANV_PIPE_INVALIDATE_BITS
;
1923 cmd_buffer
->state
.pending_pipe_bits
= bits
;
1926 void genX(CmdPipelineBarrier
)(
1927 VkCommandBuffer commandBuffer
,
1928 VkPipelineStageFlags srcStageMask
,
1929 VkPipelineStageFlags destStageMask
,
1931 uint32_t memoryBarrierCount
,
1932 const VkMemoryBarrier
* pMemoryBarriers
,
1933 uint32_t bufferMemoryBarrierCount
,
1934 const VkBufferMemoryBarrier
* pBufferMemoryBarriers
,
1935 uint32_t imageMemoryBarrierCount
,
1936 const VkImageMemoryBarrier
* pImageMemoryBarriers
)
1938 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
1940 /* XXX: Right now, we're really dumb and just flush whatever categories
1941 * the app asks for. One of these days we may make this a bit better
1942 * but right now that's all the hardware allows for in most areas.
1944 VkAccessFlags src_flags
= 0;
1945 VkAccessFlags dst_flags
= 0;
1947 for (uint32_t i
= 0; i
< memoryBarrierCount
; i
++) {
1948 src_flags
|= pMemoryBarriers
[i
].srcAccessMask
;
1949 dst_flags
|= pMemoryBarriers
[i
].dstAccessMask
;
1952 for (uint32_t i
= 0; i
< bufferMemoryBarrierCount
; i
++) {
1953 src_flags
|= pBufferMemoryBarriers
[i
].srcAccessMask
;
1954 dst_flags
|= pBufferMemoryBarriers
[i
].dstAccessMask
;
1957 for (uint32_t i
= 0; i
< imageMemoryBarrierCount
; i
++) {
1958 src_flags
|= pImageMemoryBarriers
[i
].srcAccessMask
;
1959 dst_flags
|= pImageMemoryBarriers
[i
].dstAccessMask
;
1960 ANV_FROM_HANDLE(anv_image
, image
, pImageMemoryBarriers
[i
].image
);
1961 const VkImageSubresourceRange
*range
=
1962 &pImageMemoryBarriers
[i
].subresourceRange
;
1964 uint32_t base_layer
, layer_count
;
1965 if (image
->type
== VK_IMAGE_TYPE_3D
) {
1967 layer_count
= anv_minify(image
->extent
.depth
, range
->baseMipLevel
);
1969 base_layer
= range
->baseArrayLayer
;
1970 layer_count
= anv_get_layerCount(image
, range
);
1973 if (range
->aspectMask
& VK_IMAGE_ASPECT_DEPTH_BIT
) {
1974 transition_depth_buffer(cmd_buffer
, image
,
1975 pImageMemoryBarriers
[i
].oldLayout
,
1976 pImageMemoryBarriers
[i
].newLayout
);
1979 if (range
->aspectMask
& VK_IMAGE_ASPECT_STENCIL_BIT
) {
1980 transition_stencil_buffer(cmd_buffer
, image
,
1981 range
->baseMipLevel
,
1982 anv_get_levelCount(image
, range
),
1983 base_layer
, layer_count
,
1984 pImageMemoryBarriers
[i
].oldLayout
,
1985 pImageMemoryBarriers
[i
].newLayout
);
1988 if (range
->aspectMask
& VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV
) {
1989 VkImageAspectFlags color_aspects
=
1990 anv_image_expand_aspects(image
, range
->aspectMask
);
1991 uint32_t aspect_bit
;
1992 anv_foreach_image_aspect_bit(aspect_bit
, image
, color_aspects
) {
1993 transition_color_buffer(cmd_buffer
, image
, 1UL << aspect_bit
,
1994 range
->baseMipLevel
,
1995 anv_get_levelCount(image
, range
),
1996 base_layer
, layer_count
,
1997 pImageMemoryBarriers
[i
].oldLayout
,
1998 pImageMemoryBarriers
[i
].newLayout
);
2003 cmd_buffer
->state
.pending_pipe_bits
|=
2004 anv_pipe_flush_bits_for_access_flags(src_flags
) |
2005 anv_pipe_invalidate_bits_for_access_flags(dst_flags
);
2009 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer
*cmd_buffer
)
2011 VkShaderStageFlags stages
=
2012 cmd_buffer
->state
.gfx
.base
.pipeline
->active_stages
;
2014 /* In order to avoid thrash, we assume that vertex and fragment stages
2015 * always exist. In the rare case where one is missing *and* the other
2016 * uses push concstants, this may be suboptimal. However, avoiding stalls
2017 * seems more important.
2019 stages
|= VK_SHADER_STAGE_FRAGMENT_BIT
| VK_SHADER_STAGE_VERTEX_BIT
;
2021 if (stages
== cmd_buffer
->state
.push_constant_stages
)
2025 const unsigned push_constant_kb
= 32;
2026 #elif GEN_IS_HASWELL
2027 const unsigned push_constant_kb
= cmd_buffer
->device
->info
.gt
== 3 ? 32 : 16;
2029 const unsigned push_constant_kb
= 16;
2032 const unsigned num_stages
=
2033 util_bitcount(stages
& VK_SHADER_STAGE_ALL_GRAPHICS
);
2034 unsigned size_per_stage
= push_constant_kb
/ num_stages
;
2036 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2037 * units of 2KB. Incidentally, these are the same platforms that have
2038 * 32KB worth of push constant space.
2040 if (push_constant_kb
== 32)
2041 size_per_stage
&= ~1u;
2043 uint32_t kb_used
= 0;
2044 for (int i
= MESA_SHADER_VERTEX
; i
< MESA_SHADER_FRAGMENT
; i
++) {
2045 unsigned push_size
= (stages
& (1 << i
)) ? size_per_stage
: 0;
2046 anv_batch_emit(&cmd_buffer
->batch
,
2047 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS
), alloc
) {
2048 alloc
._3DCommandSubOpcode
= 18 + i
;
2049 alloc
.ConstantBufferOffset
= (push_size
> 0) ? kb_used
: 0;
2050 alloc
.ConstantBufferSize
= push_size
;
2052 kb_used
+= push_size
;
2055 anv_batch_emit(&cmd_buffer
->batch
,
2056 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS
), alloc
) {
2057 alloc
.ConstantBufferOffset
= kb_used
;
2058 alloc
.ConstantBufferSize
= push_constant_kb
- kb_used
;
2061 cmd_buffer
->state
.push_constant_stages
= stages
;
2063 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2065 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2066 * the next 3DPRIMITIVE command after programming the
2067 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2069 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2070 * pipeline setup, we need to dirty push constants.
2072 cmd_buffer
->state
.push_constants_dirty
|= VK_SHADER_STAGE_ALL_GRAPHICS
;
2075 static struct anv_address
2076 anv_descriptor_set_address(struct anv_cmd_buffer
*cmd_buffer
,
2077 struct anv_descriptor_set
*set
)
2080 /* This is a normal descriptor set */
2081 return (struct anv_address
) {
2082 .bo
= set
->pool
->bo
,
2083 .offset
= set
->desc_mem
.offset
,
2086 /* This is a push descriptor set. We have to flag it as used on the GPU
2087 * so that the next time we push descriptors, we grab a new memory.
2089 struct anv_push_descriptor_set
*push_set
=
2090 (struct anv_push_descriptor_set
*)set
;
2091 push_set
->set_used_on_gpu
= true;
2093 return (struct anv_address
) {
2094 .bo
= cmd_buffer
->dynamic_state_stream
.state_pool
->block_pool
.bo
,
2095 .offset
= set
->desc_mem
.offset
,
2101 emit_binding_table(struct anv_cmd_buffer
*cmd_buffer
,
2102 gl_shader_stage stage
,
2103 struct anv_state
*bt_state
)
2105 struct anv_subpass
*subpass
= cmd_buffer
->state
.subpass
;
2106 struct anv_cmd_pipeline_state
*pipe_state
;
2107 struct anv_pipeline
*pipeline
;
2108 uint32_t state_offset
;
2111 case MESA_SHADER_COMPUTE
:
2112 pipe_state
= &cmd_buffer
->state
.compute
.base
;
2115 pipe_state
= &cmd_buffer
->state
.gfx
.base
;
2118 pipeline
= pipe_state
->pipeline
;
2120 if (!anv_pipeline_has_stage(pipeline
, stage
)) {
2121 *bt_state
= (struct anv_state
) { 0, };
2125 struct anv_pipeline_bind_map
*map
= &pipeline
->shaders
[stage
]->bind_map
;
2126 if (map
->surface_count
== 0) {
2127 *bt_state
= (struct anv_state
) { 0, };
2131 *bt_state
= anv_cmd_buffer_alloc_binding_table(cmd_buffer
,
2134 uint32_t *bt_map
= bt_state
->map
;
2136 if (bt_state
->map
== NULL
)
2137 return VK_ERROR_OUT_OF_DEVICE_MEMORY
;
2139 /* We only need to emit relocs if we're not using softpin. If we are using
2140 * softpin then we always keep all user-allocated memory objects resident.
2142 const bool need_client_mem_relocs
=
2143 !cmd_buffer
->device
->instance
->physicalDevice
.use_softpin
;
2145 for (uint32_t s
= 0; s
< map
->surface_count
; s
++) {
2146 struct anv_pipeline_binding
*binding
= &map
->surface_to_descriptor
[s
];
2148 struct anv_state surface_state
;
2150 switch (binding
->set
) {
2151 case ANV_DESCRIPTOR_SET_NULL
:
2155 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS
:
2156 /* Color attachment binding */
2157 assert(stage
== MESA_SHADER_FRAGMENT
);
2158 if (binding
->index
< subpass
->color_count
) {
2159 const unsigned att
=
2160 subpass
->color_attachments
[binding
->index
].attachment
;
2162 /* From the Vulkan 1.0.46 spec:
2164 * "If any color or depth/stencil attachments are
2165 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2168 if (att
== VK_ATTACHMENT_UNUSED
) {
2169 surface_state
= cmd_buffer
->state
.null_surface_state
;
2171 surface_state
= cmd_buffer
->state
.attachments
[att
].color
.state
;
2174 surface_state
= cmd_buffer
->state
.null_surface_state
;
2177 bt_map
[s
] = surface_state
.offset
+ state_offset
;
2180 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS
: {
2181 struct anv_state surface_state
=
2182 anv_cmd_buffer_alloc_surface_state(cmd_buffer
);
2184 struct anv_address constant_data
= {
2185 .bo
= pipeline
->device
->dynamic_state_pool
.block_pool
.bo
,
2186 .offset
= pipeline
->shaders
[stage
]->constant_data
.offset
,
2188 unsigned constant_data_size
=
2189 pipeline
->shaders
[stage
]->constant_data_size
;
2191 const enum isl_format format
=
2192 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER
);
2193 anv_fill_buffer_surface_state(cmd_buffer
->device
,
2194 surface_state
, format
,
2195 constant_data
, constant_data_size
, 1);
2197 bt_map
[s
] = surface_state
.offset
+ state_offset
;
2198 add_surface_reloc(cmd_buffer
, surface_state
, constant_data
);
2202 case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS
: {
2203 /* This is always the first binding for compute shaders */
2204 assert(stage
== MESA_SHADER_COMPUTE
&& s
== 0);
2206 struct anv_state surface_state
=
2207 anv_cmd_buffer_alloc_surface_state(cmd_buffer
);
2209 const enum isl_format format
=
2210 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER
);
2211 anv_fill_buffer_surface_state(cmd_buffer
->device
, surface_state
,
2213 cmd_buffer
->state
.compute
.num_workgroups
,
2215 bt_map
[s
] = surface_state
.offset
+ state_offset
;
2216 if (need_client_mem_relocs
) {
2217 add_surface_reloc(cmd_buffer
, surface_state
,
2218 cmd_buffer
->state
.compute
.num_workgroups
);
2223 case ANV_DESCRIPTOR_SET_DESCRIPTORS
: {
2224 /* This is a descriptor set buffer so the set index is actually
2225 * given by binding->binding. (Yes, that's confusing.)
2227 struct anv_descriptor_set
*set
=
2228 pipe_state
->descriptors
[binding
->index
];
2229 assert(set
->desc_mem
.alloc_size
);
2230 assert(set
->desc_surface_state
.alloc_size
);
2231 bt_map
[s
] = set
->desc_surface_state
.offset
+ state_offset
;
2232 add_surface_reloc(cmd_buffer
, set
->desc_surface_state
,
2233 anv_descriptor_set_address(cmd_buffer
, set
));
2238 assert(binding
->set
< MAX_SETS
);
2239 const struct anv_descriptor
*desc
=
2240 &pipe_state
->descriptors
[binding
->set
]->descriptors
[binding
->index
];
2242 switch (desc
->type
) {
2243 case VK_DESCRIPTOR_TYPE_SAMPLER
:
2244 /* Nothing for us to do here */
2247 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER
:
2248 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE
: {
2249 struct anv_surface_state sstate
=
2250 (desc
->layout
== VK_IMAGE_LAYOUT_GENERAL
) ?
2251 desc
->image_view
->planes
[binding
->plane
].general_sampler_surface_state
:
2252 desc
->image_view
->planes
[binding
->plane
].optimal_sampler_surface_state
;
2253 surface_state
= sstate
.state
;
2254 assert(surface_state
.alloc_size
);
2255 if (need_client_mem_relocs
)
2256 add_surface_state_relocs(cmd_buffer
, sstate
);
2259 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT
:
2260 assert(stage
== MESA_SHADER_FRAGMENT
);
2261 if ((desc
->image_view
->aspect_mask
& VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV
) == 0) {
2262 /* For depth and stencil input attachments, we treat it like any
2263 * old texture that a user may have bound.
2265 assert(desc
->image_view
->n_planes
== 1);
2266 struct anv_surface_state sstate
=
2267 (desc
->layout
== VK_IMAGE_LAYOUT_GENERAL
) ?
2268 desc
->image_view
->planes
[0].general_sampler_surface_state
:
2269 desc
->image_view
->planes
[0].optimal_sampler_surface_state
;
2270 surface_state
= sstate
.state
;
2271 assert(surface_state
.alloc_size
);
2272 if (need_client_mem_relocs
)
2273 add_surface_state_relocs(cmd_buffer
, sstate
);
2275 /* For color input attachments, we create the surface state at
2276 * vkBeginRenderPass time so that we can include aux and clear
2277 * color information.
2279 assert(binding
->input_attachment_index
< subpass
->input_count
);
2280 const unsigned subpass_att
= binding
->input_attachment_index
;
2281 const unsigned att
= subpass
->input_attachments
[subpass_att
].attachment
;
2282 surface_state
= cmd_buffer
->state
.attachments
[att
].input
.state
;
2286 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE
: {
2287 struct anv_surface_state sstate
= (binding
->write_only
)
2288 ? desc
->image_view
->planes
[binding
->plane
].writeonly_storage_surface_state
2289 : desc
->image_view
->planes
[binding
->plane
].storage_surface_state
;
2290 surface_state
= sstate
.state
;
2291 assert(surface_state
.alloc_size
);
2292 if (need_client_mem_relocs
)
2293 add_surface_state_relocs(cmd_buffer
, sstate
);
2297 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER
:
2298 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER
:
2299 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER
:
2300 surface_state
= desc
->buffer_view
->surface_state
;
2301 assert(surface_state
.alloc_size
);
2302 if (need_client_mem_relocs
) {
2303 add_surface_reloc(cmd_buffer
, surface_state
,
2304 desc
->buffer_view
->address
);
2308 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
:
2309 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
: {
2310 /* Compute the offset within the buffer */
2311 struct anv_push_constants
*push
=
2312 &cmd_buffer
->state
.push_constants
[stage
];
2314 uint32_t dynamic_offset
=
2315 push
->dynamic_offsets
[binding
->dynamic_offset_index
];
2316 uint64_t offset
= desc
->offset
+ dynamic_offset
;
2317 /* Clamp to the buffer size */
2318 offset
= MIN2(offset
, desc
->buffer
->size
);
2319 /* Clamp the range to the buffer size */
2320 uint32_t range
= MIN2(desc
->range
, desc
->buffer
->size
- offset
);
2322 struct anv_address address
=
2323 anv_address_add(desc
->buffer
->address
, offset
);
2326 anv_state_stream_alloc(&cmd_buffer
->surface_state_stream
, 64, 64);
2327 enum isl_format format
=
2328 anv_isl_format_for_descriptor_type(desc
->type
);
2330 anv_fill_buffer_surface_state(cmd_buffer
->device
, surface_state
,
2331 format
, address
, range
, 1);
2332 if (need_client_mem_relocs
)
2333 add_surface_reloc(cmd_buffer
, surface_state
, address
);
2337 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER
:
2338 surface_state
= (binding
->write_only
)
2339 ? desc
->buffer_view
->writeonly_storage_surface_state
2340 : desc
->buffer_view
->storage_surface_state
;
2341 assert(surface_state
.alloc_size
);
2342 if (need_client_mem_relocs
) {
2343 add_surface_reloc(cmd_buffer
, surface_state
,
2344 desc
->buffer_view
->address
);
2349 assert(!"Invalid descriptor type");
2352 bt_map
[s
] = surface_state
.offset
+ state_offset
;
2362 emit_samplers(struct anv_cmd_buffer
*cmd_buffer
,
2363 gl_shader_stage stage
,
2364 struct anv_state
*state
)
2366 struct anv_cmd_pipeline_state
*pipe_state
=
2367 stage
== MESA_SHADER_COMPUTE
? &cmd_buffer
->state
.compute
.base
:
2368 &cmd_buffer
->state
.gfx
.base
;
2369 struct anv_pipeline
*pipeline
= pipe_state
->pipeline
;
2371 if (!anv_pipeline_has_stage(pipeline
, stage
)) {
2372 *state
= (struct anv_state
) { 0, };
2376 struct anv_pipeline_bind_map
*map
= &pipeline
->shaders
[stage
]->bind_map
;
2377 if (map
->sampler_count
== 0) {
2378 *state
= (struct anv_state
) { 0, };
2382 uint32_t size
= map
->sampler_count
* 16;
2383 *state
= anv_cmd_buffer_alloc_dynamic_state(cmd_buffer
, size
, 32);
2385 if (state
->map
== NULL
)
2386 return VK_ERROR_OUT_OF_DEVICE_MEMORY
;
2388 for (uint32_t s
= 0; s
< map
->sampler_count
; s
++) {
2389 struct anv_pipeline_binding
*binding
= &map
->sampler_to_descriptor
[s
];
2390 const struct anv_descriptor
*desc
=
2391 &pipe_state
->descriptors
[binding
->set
]->descriptors
[binding
->index
];
2393 if (desc
->type
!= VK_DESCRIPTOR_TYPE_SAMPLER
&&
2394 desc
->type
!= VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER
)
2397 struct anv_sampler
*sampler
= desc
->sampler
;
2399 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2400 * happens to be zero.
2402 if (sampler
== NULL
)
2405 memcpy(state
->map
+ (s
* 16),
2406 sampler
->state
[binding
->plane
], sizeof(sampler
->state
[0]));
2413 flush_descriptor_sets(struct anv_cmd_buffer
*cmd_buffer
)
2415 struct anv_pipeline
*pipeline
= cmd_buffer
->state
.gfx
.base
.pipeline
;
2417 VkShaderStageFlags dirty
= cmd_buffer
->state
.descriptors_dirty
&
2418 pipeline
->active_stages
;
2420 VkResult result
= VK_SUCCESS
;
2421 anv_foreach_stage(s
, dirty
) {
2422 result
= emit_samplers(cmd_buffer
, s
, &cmd_buffer
->state
.samplers
[s
]);
2423 if (result
!= VK_SUCCESS
)
2425 result
= emit_binding_table(cmd_buffer
, s
,
2426 &cmd_buffer
->state
.binding_tables
[s
]);
2427 if (result
!= VK_SUCCESS
)
2431 if (result
!= VK_SUCCESS
) {
2432 assert(result
== VK_ERROR_OUT_OF_DEVICE_MEMORY
);
2434 result
= anv_cmd_buffer_new_binding_table_block(cmd_buffer
);
2435 if (result
!= VK_SUCCESS
)
2438 /* Re-emit state base addresses so we get the new surface state base
2439 * address before we start emitting binding tables etc.
2441 genX(cmd_buffer_emit_state_base_address
)(cmd_buffer
);
2443 /* Re-emit all active binding tables */
2444 dirty
|= pipeline
->active_stages
;
2445 anv_foreach_stage(s
, dirty
) {
2446 result
= emit_samplers(cmd_buffer
, s
, &cmd_buffer
->state
.samplers
[s
]);
2447 if (result
!= VK_SUCCESS
) {
2448 anv_batch_set_error(&cmd_buffer
->batch
, result
);
2451 result
= emit_binding_table(cmd_buffer
, s
,
2452 &cmd_buffer
->state
.binding_tables
[s
]);
2453 if (result
!= VK_SUCCESS
) {
2454 anv_batch_set_error(&cmd_buffer
->batch
, result
);
2460 cmd_buffer
->state
.descriptors_dirty
&= ~dirty
;
2466 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer
*cmd_buffer
,
2469 static const uint32_t sampler_state_opcodes
[] = {
2470 [MESA_SHADER_VERTEX
] = 43,
2471 [MESA_SHADER_TESS_CTRL
] = 44, /* HS */
2472 [MESA_SHADER_TESS_EVAL
] = 45, /* DS */
2473 [MESA_SHADER_GEOMETRY
] = 46,
2474 [MESA_SHADER_FRAGMENT
] = 47,
2475 [MESA_SHADER_COMPUTE
] = 0,
2478 static const uint32_t binding_table_opcodes
[] = {
2479 [MESA_SHADER_VERTEX
] = 38,
2480 [MESA_SHADER_TESS_CTRL
] = 39,
2481 [MESA_SHADER_TESS_EVAL
] = 40,
2482 [MESA_SHADER_GEOMETRY
] = 41,
2483 [MESA_SHADER_FRAGMENT
] = 42,
2484 [MESA_SHADER_COMPUTE
] = 0,
2487 anv_foreach_stage(s
, stages
) {
2488 assert(s
< ARRAY_SIZE(binding_table_opcodes
));
2489 assert(binding_table_opcodes
[s
] > 0);
2491 if (cmd_buffer
->state
.samplers
[s
].alloc_size
> 0) {
2492 anv_batch_emit(&cmd_buffer
->batch
,
2493 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS
), ssp
) {
2494 ssp
._3DCommandSubOpcode
= sampler_state_opcodes
[s
];
2495 ssp
.PointertoVSSamplerState
= cmd_buffer
->state
.samplers
[s
].offset
;
2499 /* Always emit binding table pointers if we're asked to, since on SKL
2500 * this is what flushes push constants. */
2501 anv_batch_emit(&cmd_buffer
->batch
,
2502 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS
), btp
) {
2503 btp
._3DCommandSubOpcode
= binding_table_opcodes
[s
];
2504 btp
.PointertoVSBindingTable
= cmd_buffer
->state
.binding_tables
[s
].offset
;
2510 cmd_buffer_flush_push_constants(struct anv_cmd_buffer
*cmd_buffer
,
2511 VkShaderStageFlags dirty_stages
)
2513 const struct anv_cmd_graphics_state
*gfx_state
= &cmd_buffer
->state
.gfx
;
2514 const struct anv_pipeline
*pipeline
= gfx_state
->base
.pipeline
;
2516 static const uint32_t push_constant_opcodes
[] = {
2517 [MESA_SHADER_VERTEX
] = 21,
2518 [MESA_SHADER_TESS_CTRL
] = 25, /* HS */
2519 [MESA_SHADER_TESS_EVAL
] = 26, /* DS */
2520 [MESA_SHADER_GEOMETRY
] = 22,
2521 [MESA_SHADER_FRAGMENT
] = 23,
2522 [MESA_SHADER_COMPUTE
] = 0,
2525 VkShaderStageFlags flushed
= 0;
2527 anv_foreach_stage(stage
, dirty_stages
) {
2528 assert(stage
< ARRAY_SIZE(push_constant_opcodes
));
2529 assert(push_constant_opcodes
[stage
] > 0);
2531 anv_batch_emit(&cmd_buffer
->batch
, GENX(3DSTATE_CONSTANT_VS
), c
) {
2532 c
._3DCommandSubOpcode
= push_constant_opcodes
[stage
];
2534 if (anv_pipeline_has_stage(pipeline
, stage
)) {
2535 const struct anv_pipeline_bind_map
*bind_map
=
2536 &pipeline
->shaders
[stage
]->bind_map
;
2538 for (unsigned i
= 0; i
< 4; i
++) {
2539 const struct anv_push_range
*range
= &bind_map
->push_ranges
[i
];
2540 if (range
->length
== 0)
2543 struct anv_address addr
;
2544 switch (range
->set
) {
2545 case ANV_DESCRIPTOR_SET_DESCRIPTORS
: {
2546 /* This is a descriptor set buffer so the set index is
2547 * actually given by binding->binding. (Yes, that's
2550 struct anv_descriptor_set
*set
=
2551 gfx_state
->base
.descriptors
[range
->index
];
2552 addr
= anv_descriptor_set_address(cmd_buffer
, set
);
2556 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS
: {
2557 struct anv_state state
=
2558 anv_cmd_buffer_push_constants(cmd_buffer
, stage
);
2559 addr
= (struct anv_address
) {
2560 .bo
= cmd_buffer
->device
->dynamic_state_pool
.block_pool
.bo
,
2561 .offset
= state
.offset
,
2567 assert(range
->set
< MAX_SETS
);
2568 struct anv_descriptor_set
*set
=
2569 gfx_state
->base
.descriptors
[range
->set
];
2570 const struct anv_descriptor
*desc
=
2571 &set
->descriptors
[range
->index
];
2573 if (desc
->type
== VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER
) {
2574 addr
= desc
->buffer_view
->address
;
2576 assert(desc
->type
== VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
);
2577 struct anv_push_constants
*push
=
2578 &cmd_buffer
->state
.push_constants
[stage
];
2579 uint32_t dynamic_offset
=
2580 push
->dynamic_offsets
[range
->dynamic_offset_index
];
2581 addr
= anv_address_add(desc
->buffer
->address
,
2582 desc
->offset
+ dynamic_offset
);
2587 c
.ConstantBody
.ReadLength
[i
] = range
->length
;
2588 c
.ConstantBody
.Buffer
[i
] =
2589 anv_address_add(addr
, range
->start
* 32);
2594 flushed
|= mesa_to_vk_shader_stage(stage
);
2597 cmd_buffer
->state
.push_constants_dirty
&= ~flushed
;
2602 genX(cmd_buffer_aux_map_state
)(struct anv_cmd_buffer
*cmd_buffer
)
2604 void *aux_map_ctx
= cmd_buffer
->device
->aux_map_ctx
;
2607 uint32_t aux_map_state_num
= gen_aux_map_get_state_num(aux_map_ctx
);
2608 if (cmd_buffer
->state
.last_aux_map_state
!= aux_map_state_num
) {
2609 /* If the aux-map state number increased, then we need to rewrite the
2610 * register. Rewriting the register is used to both set the aux-map
2611 * translation table address, and also to invalidate any previously
2612 * cached translations.
2614 uint64_t base_addr
= gen_aux_map_get_base(aux_map_ctx
);
2615 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_LOAD_REGISTER_IMM
), lri
) {
2616 lri
.RegisterOffset
= GENX(GFX_AUX_TABLE_BASE_ADDR_num
);
2617 lri
.DataDWord
= base_addr
& 0xffffffff;
2619 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_LOAD_REGISTER_IMM
), lri
) {
2620 lri
.RegisterOffset
= GENX(GFX_AUX_TABLE_BASE_ADDR_num
) + 4;
2621 lri
.DataDWord
= base_addr
>> 32;
2623 cmd_buffer
->state
.last_aux_map_state
= aux_map_state_num
;
2629 genX(cmd_buffer_flush_state
)(struct anv_cmd_buffer
*cmd_buffer
)
2631 struct anv_pipeline
*pipeline
= cmd_buffer
->state
.gfx
.base
.pipeline
;
2634 uint32_t vb_emit
= cmd_buffer
->state
.gfx
.vb_dirty
& pipeline
->vb_used
;
2635 if (cmd_buffer
->state
.gfx
.dirty
& ANV_CMD_DIRTY_PIPELINE
)
2636 vb_emit
|= pipeline
->vb_used
;
2638 assert((pipeline
->active_stages
& VK_SHADER_STAGE_COMPUTE_BIT
) == 0);
2640 genX(cmd_buffer_config_l3
)(cmd_buffer
, pipeline
->urb
.l3_config
);
2642 genX(cmd_buffer_emit_hashing_mode
)(cmd_buffer
, UINT_MAX
, UINT_MAX
, 1);
2644 genX(flush_pipeline_select_3d
)(cmd_buffer
);
2647 genX(cmd_buffer_aux_map_state
)(cmd_buffer
);
2651 const uint32_t num_buffers
= __builtin_popcount(vb_emit
);
2652 const uint32_t num_dwords
= 1 + num_buffers
* 4;
2654 p
= anv_batch_emitn(&cmd_buffer
->batch
, num_dwords
,
2655 GENX(3DSTATE_VERTEX_BUFFERS
));
2657 for_each_bit(vb
, vb_emit
) {
2658 struct anv_buffer
*buffer
= cmd_buffer
->state
.vertex_bindings
[vb
].buffer
;
2659 uint32_t offset
= cmd_buffer
->state
.vertex_bindings
[vb
].offset
;
2661 struct GENX(VERTEX_BUFFER_STATE
) state
= {
2662 .VertexBufferIndex
= vb
,
2664 .MOCS
= anv_mocs_for_bo(cmd_buffer
->device
, buffer
->address
.bo
),
2666 .BufferAccessType
= pipeline
->vb
[vb
].instanced
? INSTANCEDATA
: VERTEXDATA
,
2667 .InstanceDataStepRate
= pipeline
->vb
[vb
].instance_divisor
,
2670 .AddressModifyEnable
= true,
2671 .BufferPitch
= pipeline
->vb
[vb
].stride
,
2672 .BufferStartingAddress
= anv_address_add(buffer
->address
, offset
),
2675 .BufferSize
= buffer
->size
- offset
2677 .EndAddress
= anv_address_add(buffer
->address
, buffer
->size
- 1),
2681 GENX(VERTEX_BUFFER_STATE_pack
)(&cmd_buffer
->batch
, &p
[1 + i
* 4], &state
);
2686 cmd_buffer
->state
.gfx
.vb_dirty
&= ~vb_emit
;
2689 if (cmd_buffer
->state
.gfx
.dirty
& ANV_CMD_DIRTY_XFB_ENABLE
) {
2690 /* We don't need any per-buffer dirty tracking because you're not
2691 * allowed to bind different XFB buffers while XFB is enabled.
2693 for (unsigned idx
= 0; idx
< MAX_XFB_BUFFERS
; idx
++) {
2694 struct anv_xfb_binding
*xfb
= &cmd_buffer
->state
.xfb_bindings
[idx
];
2695 anv_batch_emit(&cmd_buffer
->batch
, GENX(3DSTATE_SO_BUFFER
), sob
) {
2697 sob
.SOBufferIndex
= idx
;
2699 sob
._3DCommandOpcode
= 0;
2700 sob
._3DCommandSubOpcode
= SO_BUFFER_INDEX_0_CMD
+ idx
;
2703 if (cmd_buffer
->state
.xfb_enabled
&& xfb
->buffer
&& xfb
->size
!= 0) {
2704 sob
.SOBufferEnable
= true;
2705 sob
.MOCS
= cmd_buffer
->device
->isl_dev
.mocs
.internal
,
2706 sob
.StreamOffsetWriteEnable
= false;
2707 sob
.SurfaceBaseAddress
= anv_address_add(xfb
->buffer
->address
,
2709 /* Size is in DWords - 1 */
2710 sob
.SurfaceSize
= xfb
->size
/ 4 - 1;
2715 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
2717 cmd_buffer
->state
.pending_pipe_bits
|= ANV_PIPE_CS_STALL_BIT
;
2721 if (cmd_buffer
->state
.gfx
.dirty
& ANV_CMD_DIRTY_PIPELINE
) {
2722 anv_batch_emit_batch(&cmd_buffer
->batch
, &pipeline
->batch
);
2724 /* If the pipeline changed, we may need to re-allocate push constant
2727 cmd_buffer_alloc_push_constants(cmd_buffer
);
2731 if (cmd_buffer
->state
.descriptors_dirty
& VK_SHADER_STAGE_VERTEX_BIT
||
2732 cmd_buffer
->state
.push_constants_dirty
& VK_SHADER_STAGE_VERTEX_BIT
) {
2733 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2735 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2736 * stall needs to be sent just prior to any 3DSTATE_VS,
2737 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2738 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2739 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2740 * PIPE_CONTROL needs to be sent before any combination of VS
2741 * associated 3DSTATE."
2743 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pc
) {
2744 pc
.DepthStallEnable
= true;
2745 pc
.PostSyncOperation
= WriteImmediateData
;
2747 (struct anv_address
) { cmd_buffer
->device
->workaround_bo
, 0 };
2752 /* Render targets live in the same binding table as fragment descriptors */
2753 if (cmd_buffer
->state
.gfx
.dirty
& ANV_CMD_DIRTY_RENDER_TARGETS
)
2754 cmd_buffer
->state
.descriptors_dirty
|= VK_SHADER_STAGE_FRAGMENT_BIT
;
2756 /* We emit the binding tables and sampler tables first, then emit push
2757 * constants and then finally emit binding table and sampler table
2758 * pointers. It has to happen in this order, since emitting the binding
2759 * tables may change the push constants (in case of storage images). After
2760 * emitting push constants, on SKL+ we have to emit the corresponding
2761 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2764 if (cmd_buffer
->state
.descriptors_dirty
)
2765 dirty
= flush_descriptor_sets(cmd_buffer
);
2767 if (dirty
|| cmd_buffer
->state
.push_constants_dirty
) {
2768 /* Because we're pushing UBOs, we have to push whenever either
2769 * descriptors or push constants is dirty.
2771 dirty
|= cmd_buffer
->state
.push_constants_dirty
;
2772 dirty
&= ANV_STAGE_MASK
& VK_SHADER_STAGE_ALL_GRAPHICS
;
2773 cmd_buffer_flush_push_constants(cmd_buffer
, dirty
);
2777 cmd_buffer_emit_descriptor_pointers(cmd_buffer
, dirty
);
2779 if (cmd_buffer
->state
.gfx
.dirty
& ANV_CMD_DIRTY_DYNAMIC_VIEWPORT
)
2780 gen8_cmd_buffer_emit_viewport(cmd_buffer
);
2782 if (cmd_buffer
->state
.gfx
.dirty
& (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT
|
2783 ANV_CMD_DIRTY_PIPELINE
)) {
2784 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer
,
2785 pipeline
->depth_clamp_enable
);
2788 if (cmd_buffer
->state
.gfx
.dirty
& (ANV_CMD_DIRTY_DYNAMIC_SCISSOR
|
2789 ANV_CMD_DIRTY_RENDER_TARGETS
))
2790 gen7_cmd_buffer_emit_scissor(cmd_buffer
);
2792 genX(cmd_buffer_flush_dynamic_state
)(cmd_buffer
);
2794 genX(cmd_buffer_apply_pipe_flushes
)(cmd_buffer
);
2798 emit_vertex_bo(struct anv_cmd_buffer
*cmd_buffer
,
2799 struct anv_address addr
,
2800 uint32_t size
, uint32_t index
)
2802 uint32_t *p
= anv_batch_emitn(&cmd_buffer
->batch
, 5,
2803 GENX(3DSTATE_VERTEX_BUFFERS
));
2805 GENX(VERTEX_BUFFER_STATE_pack
)(&cmd_buffer
->batch
, p
+ 1,
2806 &(struct GENX(VERTEX_BUFFER_STATE
)) {
2807 .VertexBufferIndex
= index
,
2808 .AddressModifyEnable
= true,
2810 .MOCS
= addr
.bo
? anv_mocs_for_bo(cmd_buffer
->device
, addr
.bo
) : 0,
2811 .NullVertexBuffer
= size
== 0,
2813 .BufferStartingAddress
= addr
,
2816 .BufferStartingAddress
= addr
,
2817 .EndAddress
= anv_address_add(addr
, size
),
2823 emit_base_vertex_instance_bo(struct anv_cmd_buffer
*cmd_buffer
,
2824 struct anv_address addr
)
2826 emit_vertex_bo(cmd_buffer
, addr
, addr
.bo
? 8 : 0, ANV_SVGS_VB_INDEX
);
2830 emit_base_vertex_instance(struct anv_cmd_buffer
*cmd_buffer
,
2831 uint32_t base_vertex
, uint32_t base_instance
)
2833 if (base_vertex
== 0 && base_instance
== 0) {
2834 emit_base_vertex_instance_bo(cmd_buffer
, ANV_NULL_ADDRESS
);
2836 struct anv_state id_state
=
2837 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer
, 8, 4);
2839 ((uint32_t *)id_state
.map
)[0] = base_vertex
;
2840 ((uint32_t *)id_state
.map
)[1] = base_instance
;
2842 struct anv_address addr
= {
2843 .bo
= cmd_buffer
->device
->dynamic_state_pool
.block_pool
.bo
,
2844 .offset
= id_state
.offset
,
2847 emit_base_vertex_instance_bo(cmd_buffer
, addr
);
2852 emit_draw_index(struct anv_cmd_buffer
*cmd_buffer
, uint32_t draw_index
)
2854 struct anv_state state
=
2855 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer
, 4, 4);
2857 ((uint32_t *)state
.map
)[0] = draw_index
;
2859 struct anv_address addr
= {
2860 .bo
= cmd_buffer
->device
->dynamic_state_pool
.block_pool
.bo
,
2861 .offset
= state
.offset
,
2864 emit_vertex_bo(cmd_buffer
, addr
, 4, ANV_DRAWID_VB_INDEX
);
2868 VkCommandBuffer commandBuffer
,
2869 uint32_t vertexCount
,
2870 uint32_t instanceCount
,
2871 uint32_t firstVertex
,
2872 uint32_t firstInstance
)
2874 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
2875 struct anv_pipeline
*pipeline
= cmd_buffer
->state
.gfx
.base
.pipeline
;
2876 const struct brw_vs_prog_data
*vs_prog_data
= get_vs_prog_data(pipeline
);
2878 if (anv_batch_has_error(&cmd_buffer
->batch
))
2881 genX(cmd_buffer_flush_state
)(cmd_buffer
);
2883 if (cmd_buffer
->state
.conditional_render_enabled
)
2884 genX(cmd_emit_conditional_render_predicate
)(cmd_buffer
);
2886 if (vs_prog_data
->uses_firstvertex
||
2887 vs_prog_data
->uses_baseinstance
)
2888 emit_base_vertex_instance(cmd_buffer
, firstVertex
, firstInstance
);
2889 if (vs_prog_data
->uses_drawid
)
2890 emit_draw_index(cmd_buffer
, 0);
2892 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2893 * different views. We need to multiply instanceCount by the view count.
2895 instanceCount
*= anv_subpass_view_count(cmd_buffer
->state
.subpass
);
2897 anv_batch_emit(&cmd_buffer
->batch
, GENX(3DPRIMITIVE
), prim
) {
2898 prim
.PredicateEnable
= cmd_buffer
->state
.conditional_render_enabled
;
2899 prim
.VertexAccessType
= SEQUENTIAL
;
2900 prim
.PrimitiveTopologyType
= pipeline
->topology
;
2901 prim
.VertexCountPerInstance
= vertexCount
;
2902 prim
.StartVertexLocation
= firstVertex
;
2903 prim
.InstanceCount
= instanceCount
;
2904 prim
.StartInstanceLocation
= firstInstance
;
2905 prim
.BaseVertexLocation
= 0;
2909 void genX(CmdDrawIndexed
)(
2910 VkCommandBuffer commandBuffer
,
2911 uint32_t indexCount
,
2912 uint32_t instanceCount
,
2913 uint32_t firstIndex
,
2914 int32_t vertexOffset
,
2915 uint32_t firstInstance
)
2917 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
2918 struct anv_pipeline
*pipeline
= cmd_buffer
->state
.gfx
.base
.pipeline
;
2919 const struct brw_vs_prog_data
*vs_prog_data
= get_vs_prog_data(pipeline
);
2921 if (anv_batch_has_error(&cmd_buffer
->batch
))
2924 genX(cmd_buffer_flush_state
)(cmd_buffer
);
2926 if (cmd_buffer
->state
.conditional_render_enabled
)
2927 genX(cmd_emit_conditional_render_predicate
)(cmd_buffer
);
2929 if (vs_prog_data
->uses_firstvertex
||
2930 vs_prog_data
->uses_baseinstance
)
2931 emit_base_vertex_instance(cmd_buffer
, vertexOffset
, firstInstance
);
2932 if (vs_prog_data
->uses_drawid
)
2933 emit_draw_index(cmd_buffer
, 0);
2935 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2936 * different views. We need to multiply instanceCount by the view count.
2938 instanceCount
*= anv_subpass_view_count(cmd_buffer
->state
.subpass
);
2940 anv_batch_emit(&cmd_buffer
->batch
, GENX(3DPRIMITIVE
), prim
) {
2941 prim
.PredicateEnable
= cmd_buffer
->state
.conditional_render_enabled
;
2942 prim
.VertexAccessType
= RANDOM
;
2943 prim
.PrimitiveTopologyType
= pipeline
->topology
;
2944 prim
.VertexCountPerInstance
= indexCount
;
2945 prim
.StartVertexLocation
= firstIndex
;
2946 prim
.InstanceCount
= instanceCount
;
2947 prim
.StartInstanceLocation
= firstInstance
;
2948 prim
.BaseVertexLocation
= vertexOffset
;
2952 /* Auto-Draw / Indirect Registers */
2953 #define GEN7_3DPRIM_END_OFFSET 0x2420
2954 #define GEN7_3DPRIM_START_VERTEX 0x2430
2955 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2956 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2957 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2958 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2960 void genX(CmdDrawIndirectByteCountEXT
)(
2961 VkCommandBuffer commandBuffer
,
2962 uint32_t instanceCount
,
2963 uint32_t firstInstance
,
2964 VkBuffer counterBuffer
,
2965 VkDeviceSize counterBufferOffset
,
2966 uint32_t counterOffset
,
2967 uint32_t vertexStride
)
2969 #if GEN_IS_HASWELL || GEN_GEN >= 8
2970 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
2971 ANV_FROM_HANDLE(anv_buffer
, counter_buffer
, counterBuffer
);
2972 struct anv_pipeline
*pipeline
= cmd_buffer
->state
.gfx
.base
.pipeline
;
2973 const struct brw_vs_prog_data
*vs_prog_data
= get_vs_prog_data(pipeline
);
2975 /* firstVertex is always zero for this draw function */
2976 const uint32_t firstVertex
= 0;
2978 if (anv_batch_has_error(&cmd_buffer
->batch
))
2981 genX(cmd_buffer_flush_state
)(cmd_buffer
);
2983 if (vs_prog_data
->uses_firstvertex
||
2984 vs_prog_data
->uses_baseinstance
)
2985 emit_base_vertex_instance(cmd_buffer
, firstVertex
, firstInstance
);
2986 if (vs_prog_data
->uses_drawid
)
2987 emit_draw_index(cmd_buffer
, 0);
2989 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2990 * different views. We need to multiply instanceCount by the view count.
2992 instanceCount
*= anv_subpass_view_count(cmd_buffer
->state
.subpass
);
2994 struct gen_mi_builder b
;
2995 gen_mi_builder_init(&b
, &cmd_buffer
->batch
);
2996 struct gen_mi_value count
=
2997 gen_mi_mem32(anv_address_add(counter_buffer
->address
,
2998 counterBufferOffset
));
3000 count
= gen_mi_isub(&b
, count
, gen_mi_imm(counterOffset
));
3001 count
= gen_mi_udiv32_imm(&b
, count
, vertexStride
);
3002 gen_mi_store(&b
, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT
), count
);
3004 gen_mi_store(&b
, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX
),
3005 gen_mi_imm(firstVertex
));
3006 gen_mi_store(&b
, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT
),
3007 gen_mi_imm(instanceCount
));
3008 gen_mi_store(&b
, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE
),
3009 gen_mi_imm(firstInstance
));
3010 gen_mi_store(&b
, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX
), gen_mi_imm(0));
3012 anv_batch_emit(&cmd_buffer
->batch
, GENX(3DPRIMITIVE
), prim
) {
3013 prim
.IndirectParameterEnable
= true;
3014 prim
.VertexAccessType
= SEQUENTIAL
;
3015 prim
.PrimitiveTopologyType
= pipeline
->topology
;
3017 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
3021 load_indirect_parameters(struct anv_cmd_buffer
*cmd_buffer
,
3022 struct anv_address addr
,
3025 struct gen_mi_builder b
;
3026 gen_mi_builder_init(&b
, &cmd_buffer
->batch
);
3028 gen_mi_store(&b
, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT
),
3029 gen_mi_mem32(anv_address_add(addr
, 0)));
3031 struct gen_mi_value instance_count
= gen_mi_mem32(anv_address_add(addr
, 4));
3032 unsigned view_count
= anv_subpass_view_count(cmd_buffer
->state
.subpass
);
3033 if (view_count
> 1) {
3034 #if GEN_IS_HASWELL || GEN_GEN >= 8
3035 instance_count
= gen_mi_imul_imm(&b
, instance_count
, view_count
);
3037 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3038 "MI_MATH is not supported on Ivy Bridge");
3041 gen_mi_store(&b
, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT
), instance_count
);
3043 gen_mi_store(&b
, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX
),
3044 gen_mi_mem32(anv_address_add(addr
, 8)));
3047 gen_mi_store(&b
, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX
),
3048 gen_mi_mem32(anv_address_add(addr
, 12)));
3049 gen_mi_store(&b
, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE
),
3050 gen_mi_mem32(anv_address_add(addr
, 16)));
3052 gen_mi_store(&b
, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE
),
3053 gen_mi_mem32(anv_address_add(addr
, 12)));
3054 gen_mi_store(&b
, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX
), gen_mi_imm(0));
3058 void genX(CmdDrawIndirect
)(
3059 VkCommandBuffer commandBuffer
,
3061 VkDeviceSize offset
,
3065 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
3066 ANV_FROM_HANDLE(anv_buffer
, buffer
, _buffer
);
3067 struct anv_pipeline
*pipeline
= cmd_buffer
->state
.gfx
.base
.pipeline
;
3068 const struct brw_vs_prog_data
*vs_prog_data
= get_vs_prog_data(pipeline
);
3070 if (anv_batch_has_error(&cmd_buffer
->batch
))
3073 genX(cmd_buffer_flush_state
)(cmd_buffer
);
3075 if (cmd_buffer
->state
.conditional_render_enabled
)
3076 genX(cmd_emit_conditional_render_predicate
)(cmd_buffer
);
3078 for (uint32_t i
= 0; i
< drawCount
; i
++) {
3079 struct anv_address draw
= anv_address_add(buffer
->address
, offset
);
3081 if (vs_prog_data
->uses_firstvertex
||
3082 vs_prog_data
->uses_baseinstance
)
3083 emit_base_vertex_instance_bo(cmd_buffer
, anv_address_add(draw
, 8));
3084 if (vs_prog_data
->uses_drawid
)
3085 emit_draw_index(cmd_buffer
, i
);
3087 load_indirect_parameters(cmd_buffer
, draw
, false);
3089 anv_batch_emit(&cmd_buffer
->batch
, GENX(3DPRIMITIVE
), prim
) {
3090 prim
.IndirectParameterEnable
= true;
3091 prim
.PredicateEnable
= cmd_buffer
->state
.conditional_render_enabled
;
3092 prim
.VertexAccessType
= SEQUENTIAL
;
3093 prim
.PrimitiveTopologyType
= pipeline
->topology
;
3100 void genX(CmdDrawIndexedIndirect
)(
3101 VkCommandBuffer commandBuffer
,
3103 VkDeviceSize offset
,
3107 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
3108 ANV_FROM_HANDLE(anv_buffer
, buffer
, _buffer
);
3109 struct anv_pipeline
*pipeline
= cmd_buffer
->state
.gfx
.base
.pipeline
;
3110 const struct brw_vs_prog_data
*vs_prog_data
= get_vs_prog_data(pipeline
);
3112 if (anv_batch_has_error(&cmd_buffer
->batch
))
3115 genX(cmd_buffer_flush_state
)(cmd_buffer
);
3117 if (cmd_buffer
->state
.conditional_render_enabled
)
3118 genX(cmd_emit_conditional_render_predicate
)(cmd_buffer
);
3120 for (uint32_t i
= 0; i
< drawCount
; i
++) {
3121 struct anv_address draw
= anv_address_add(buffer
->address
, offset
);
3123 /* TODO: We need to stomp base vertex to 0 somehow */
3124 if (vs_prog_data
->uses_firstvertex
||
3125 vs_prog_data
->uses_baseinstance
)
3126 emit_base_vertex_instance_bo(cmd_buffer
, anv_address_add(draw
, 12));
3127 if (vs_prog_data
->uses_drawid
)
3128 emit_draw_index(cmd_buffer
, i
);
3130 load_indirect_parameters(cmd_buffer
, draw
, true);
3132 anv_batch_emit(&cmd_buffer
->batch
, GENX(3DPRIMITIVE
), prim
) {
3133 prim
.IndirectParameterEnable
= true;
3134 prim
.PredicateEnable
= cmd_buffer
->state
.conditional_render_enabled
;
3135 prim
.VertexAccessType
= RANDOM
;
3136 prim
.PrimitiveTopologyType
= pipeline
->topology
;
3143 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3146 prepare_for_draw_count_predicate(struct anv_cmd_buffer
*cmd_buffer
,
3147 struct anv_address count_address
,
3148 const bool conditional_render_enabled
)
3150 struct gen_mi_builder b
;
3151 gen_mi_builder_init(&b
, &cmd_buffer
->batch
);
3153 if (conditional_render_enabled
) {
3154 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3155 gen_mi_store(&b
, gen_mi_reg64(TMP_DRAW_COUNT_REG
),
3156 gen_mi_mem32(count_address
));
3159 /* Upload the current draw count from the draw parameters buffer to
3160 * MI_PREDICATE_SRC0.
3162 gen_mi_store(&b
, gen_mi_reg64(MI_PREDICATE_SRC0
),
3163 gen_mi_mem32(count_address
));
3165 gen_mi_store(&b
, gen_mi_reg32(MI_PREDICATE_SRC1
+ 4), gen_mi_imm(0));
3170 emit_draw_count_predicate(struct anv_cmd_buffer
*cmd_buffer
,
3171 uint32_t draw_index
)
3173 struct gen_mi_builder b
;
3174 gen_mi_builder_init(&b
, &cmd_buffer
->batch
);
3176 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3177 gen_mi_store(&b
, gen_mi_reg32(MI_PREDICATE_SRC1
), gen_mi_imm(draw_index
));
3179 if (draw_index
== 0) {
3180 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_PREDICATE
), mip
) {
3181 mip
.LoadOperation
= LOAD_LOADINV
;
3182 mip
.CombineOperation
= COMBINE_SET
;
3183 mip
.CompareOperation
= COMPARE_SRCS_EQUAL
;
3186 /* While draw_index < draw_count the predicate's result will be
3187 * (draw_index == draw_count) ^ TRUE = TRUE
3188 * When draw_index == draw_count the result is
3189 * (TRUE) ^ TRUE = FALSE
3190 * After this all results will be:
3191 * (FALSE) ^ FALSE = FALSE
3193 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_PREDICATE
), mip
) {
3194 mip
.LoadOperation
= LOAD_LOAD
;
3195 mip
.CombineOperation
= COMBINE_XOR
;
3196 mip
.CompareOperation
= COMPARE_SRCS_EQUAL
;
3201 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3203 emit_draw_count_predicate_with_conditional_render(
3204 struct anv_cmd_buffer
*cmd_buffer
,
3205 uint32_t draw_index
)
3207 struct gen_mi_builder b
;
3208 gen_mi_builder_init(&b
, &cmd_buffer
->batch
);
3210 struct gen_mi_value pred
= gen_mi_ult(&b
, gen_mi_imm(draw_index
),
3211 gen_mi_reg64(TMP_DRAW_COUNT_REG
));
3212 pred
= gen_mi_iand(&b
, pred
, gen_mi_reg64(ANV_PREDICATE_RESULT_REG
));
3215 gen_mi_store(&b
, gen_mi_reg64(MI_PREDICATE_RESULT
), pred
);
3217 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3218 * so we emit MI_PREDICATE to set it.
3221 gen_mi_store(&b
, gen_mi_reg64(MI_PREDICATE_SRC0
), pred
);
3222 gen_mi_store(&b
, gen_mi_reg64(MI_PREDICATE_SRC1
), gen_mi_imm(0));
3224 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_PREDICATE
), mip
) {
3225 mip
.LoadOperation
= LOAD_LOADINV
;
3226 mip
.CombineOperation
= COMBINE_SET
;
3227 mip
.CompareOperation
= COMPARE_SRCS_EQUAL
;
3233 void genX(CmdDrawIndirectCountKHR
)(
3234 VkCommandBuffer commandBuffer
,
3236 VkDeviceSize offset
,
3237 VkBuffer _countBuffer
,
3238 VkDeviceSize countBufferOffset
,
3239 uint32_t maxDrawCount
,
3242 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
3243 ANV_FROM_HANDLE(anv_buffer
, buffer
, _buffer
);
3244 ANV_FROM_HANDLE(anv_buffer
, count_buffer
, _countBuffer
);
3245 struct anv_cmd_state
*cmd_state
= &cmd_buffer
->state
;
3246 struct anv_pipeline
*pipeline
= cmd_state
->gfx
.base
.pipeline
;
3247 const struct brw_vs_prog_data
*vs_prog_data
= get_vs_prog_data(pipeline
);
3249 if (anv_batch_has_error(&cmd_buffer
->batch
))
3252 genX(cmd_buffer_flush_state
)(cmd_buffer
);
3254 struct anv_address count_address
=
3255 anv_address_add(count_buffer
->address
, countBufferOffset
);
3257 prepare_for_draw_count_predicate(cmd_buffer
, count_address
,
3258 cmd_state
->conditional_render_enabled
);
3260 for (uint32_t i
= 0; i
< maxDrawCount
; i
++) {
3261 struct anv_address draw
= anv_address_add(buffer
->address
, offset
);
3263 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3264 if (cmd_state
->conditional_render_enabled
) {
3265 emit_draw_count_predicate_with_conditional_render(cmd_buffer
, i
);
3267 emit_draw_count_predicate(cmd_buffer
, i
);
3270 emit_draw_count_predicate(cmd_buffer
, i
);
3273 if (vs_prog_data
->uses_firstvertex
||
3274 vs_prog_data
->uses_baseinstance
)
3275 emit_base_vertex_instance_bo(cmd_buffer
, anv_address_add(draw
, 8));
3276 if (vs_prog_data
->uses_drawid
)
3277 emit_draw_index(cmd_buffer
, i
);
3279 load_indirect_parameters(cmd_buffer
, draw
, false);
3281 anv_batch_emit(&cmd_buffer
->batch
, GENX(3DPRIMITIVE
), prim
) {
3282 prim
.IndirectParameterEnable
= true;
3283 prim
.PredicateEnable
= true;
3284 prim
.VertexAccessType
= SEQUENTIAL
;
3285 prim
.PrimitiveTopologyType
= pipeline
->topology
;
3292 void genX(CmdDrawIndexedIndirectCountKHR
)(
3293 VkCommandBuffer commandBuffer
,
3295 VkDeviceSize offset
,
3296 VkBuffer _countBuffer
,
3297 VkDeviceSize countBufferOffset
,
3298 uint32_t maxDrawCount
,
3301 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
3302 ANV_FROM_HANDLE(anv_buffer
, buffer
, _buffer
);
3303 ANV_FROM_HANDLE(anv_buffer
, count_buffer
, _countBuffer
);
3304 struct anv_cmd_state
*cmd_state
= &cmd_buffer
->state
;
3305 struct anv_pipeline
*pipeline
= cmd_state
->gfx
.base
.pipeline
;
3306 const struct brw_vs_prog_data
*vs_prog_data
= get_vs_prog_data(pipeline
);
3308 if (anv_batch_has_error(&cmd_buffer
->batch
))
3311 genX(cmd_buffer_flush_state
)(cmd_buffer
);
3313 struct anv_address count_address
=
3314 anv_address_add(count_buffer
->address
, countBufferOffset
);
3316 prepare_for_draw_count_predicate(cmd_buffer
, count_address
,
3317 cmd_state
->conditional_render_enabled
);
3319 for (uint32_t i
= 0; i
< maxDrawCount
; i
++) {
3320 struct anv_address draw
= anv_address_add(buffer
->address
, offset
);
3322 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3323 if (cmd_state
->conditional_render_enabled
) {
3324 emit_draw_count_predicate_with_conditional_render(cmd_buffer
, i
);
3326 emit_draw_count_predicate(cmd_buffer
, i
);
3329 emit_draw_count_predicate(cmd_buffer
, i
);
3332 /* TODO: We need to stomp base vertex to 0 somehow */
3333 if (vs_prog_data
->uses_firstvertex
||
3334 vs_prog_data
->uses_baseinstance
)
3335 emit_base_vertex_instance_bo(cmd_buffer
, anv_address_add(draw
, 12));
3336 if (vs_prog_data
->uses_drawid
)
3337 emit_draw_index(cmd_buffer
, i
);
3339 load_indirect_parameters(cmd_buffer
, draw
, true);
3341 anv_batch_emit(&cmd_buffer
->batch
, GENX(3DPRIMITIVE
), prim
) {
3342 prim
.IndirectParameterEnable
= true;
3343 prim
.PredicateEnable
= true;
3344 prim
.VertexAccessType
= RANDOM
;
3345 prim
.PrimitiveTopologyType
= pipeline
->topology
;
3352 void genX(CmdBeginTransformFeedbackEXT
)(
3353 VkCommandBuffer commandBuffer
,
3354 uint32_t firstCounterBuffer
,
3355 uint32_t counterBufferCount
,
3356 const VkBuffer
* pCounterBuffers
,
3357 const VkDeviceSize
* pCounterBufferOffsets
)
3359 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
3361 assert(firstCounterBuffer
< MAX_XFB_BUFFERS
);
3362 assert(counterBufferCount
<= MAX_XFB_BUFFERS
);
3363 assert(firstCounterBuffer
+ counterBufferCount
<= MAX_XFB_BUFFERS
);
3365 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3367 * "Ssoftware must ensure that no HW stream output operations can be in
3368 * process or otherwise pending at the point that the MI_LOAD/STORE
3369 * commands are processed. This will likely require a pipeline flush."
3371 cmd_buffer
->state
.pending_pipe_bits
|= ANV_PIPE_CS_STALL_BIT
;
3372 genX(cmd_buffer_apply_pipe_flushes
)(cmd_buffer
);
3374 for (uint32_t idx
= 0; idx
< MAX_XFB_BUFFERS
; idx
++) {
3375 /* If we have a counter buffer, this is a resume so we need to load the
3376 * value into the streamout offset register. Otherwise, this is a begin
3377 * and we need to reset it to zero.
3379 if (pCounterBuffers
&&
3380 idx
>= firstCounterBuffer
&&
3381 idx
- firstCounterBuffer
< counterBufferCount
&&
3382 pCounterBuffers
[idx
- firstCounterBuffer
] != VK_NULL_HANDLE
) {
3383 uint32_t cb_idx
= idx
- firstCounterBuffer
;
3384 ANV_FROM_HANDLE(anv_buffer
, counter_buffer
, pCounterBuffers
[cb_idx
]);
3385 uint64_t offset
= pCounterBufferOffsets
?
3386 pCounterBufferOffsets
[cb_idx
] : 0;
3388 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_LOAD_REGISTER_MEM
), lrm
) {
3389 lrm
.RegisterAddress
= GENX(SO_WRITE_OFFSET0_num
) + idx
* 4;
3390 lrm
.MemoryAddress
= anv_address_add(counter_buffer
->address
,
3394 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_LOAD_REGISTER_IMM
), lri
) {
3395 lri
.RegisterOffset
= GENX(SO_WRITE_OFFSET0_num
) + idx
* 4;
3401 cmd_buffer
->state
.xfb_enabled
= true;
3402 cmd_buffer
->state
.gfx
.dirty
|= ANV_CMD_DIRTY_XFB_ENABLE
;
3405 void genX(CmdEndTransformFeedbackEXT
)(
3406 VkCommandBuffer commandBuffer
,
3407 uint32_t firstCounterBuffer
,
3408 uint32_t counterBufferCount
,
3409 const VkBuffer
* pCounterBuffers
,
3410 const VkDeviceSize
* pCounterBufferOffsets
)
3412 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
3414 assert(firstCounterBuffer
< MAX_XFB_BUFFERS
);
3415 assert(counterBufferCount
<= MAX_XFB_BUFFERS
);
3416 assert(firstCounterBuffer
+ counterBufferCount
<= MAX_XFB_BUFFERS
);
3418 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3420 * "Ssoftware must ensure that no HW stream output operations can be in
3421 * process or otherwise pending at the point that the MI_LOAD/STORE
3422 * commands are processed. This will likely require a pipeline flush."
3424 cmd_buffer
->state
.pending_pipe_bits
|= ANV_PIPE_CS_STALL_BIT
;
3425 genX(cmd_buffer_apply_pipe_flushes
)(cmd_buffer
);
3427 for (uint32_t cb_idx
= 0; cb_idx
< counterBufferCount
; cb_idx
++) {
3428 unsigned idx
= firstCounterBuffer
+ cb_idx
;
3430 /* If we have a counter buffer, this is a resume so we need to load the
3431 * value into the streamout offset register. Otherwise, this is a begin
3432 * and we need to reset it to zero.
3434 if (pCounterBuffers
&&
3435 cb_idx
< counterBufferCount
&&
3436 pCounterBuffers
[cb_idx
] != VK_NULL_HANDLE
) {
3437 ANV_FROM_HANDLE(anv_buffer
, counter_buffer
, pCounterBuffers
[cb_idx
]);
3438 uint64_t offset
= pCounterBufferOffsets
?
3439 pCounterBufferOffsets
[cb_idx
] : 0;
3441 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_STORE_REGISTER_MEM
), srm
) {
3442 srm
.MemoryAddress
= anv_address_add(counter_buffer
->address
,
3444 srm
.RegisterAddress
= GENX(SO_WRITE_OFFSET0_num
) + idx
* 4;
3449 cmd_buffer
->state
.xfb_enabled
= false;
3450 cmd_buffer
->state
.gfx
.dirty
|= ANV_CMD_DIRTY_XFB_ENABLE
;
3454 flush_compute_descriptor_set(struct anv_cmd_buffer
*cmd_buffer
)
3456 struct anv_pipeline
*pipeline
= cmd_buffer
->state
.compute
.base
.pipeline
;
3457 struct anv_state surfaces
= { 0, }, samplers
= { 0, };
3460 result
= emit_binding_table(cmd_buffer
, MESA_SHADER_COMPUTE
, &surfaces
);
3461 if (result
!= VK_SUCCESS
) {
3462 assert(result
== VK_ERROR_OUT_OF_DEVICE_MEMORY
);
3464 result
= anv_cmd_buffer_new_binding_table_block(cmd_buffer
);
3465 if (result
!= VK_SUCCESS
)
3468 /* Re-emit state base addresses so we get the new surface state base
3469 * address before we start emitting binding tables etc.
3471 genX(cmd_buffer_emit_state_base_address
)(cmd_buffer
);
3473 result
= emit_binding_table(cmd_buffer
, MESA_SHADER_COMPUTE
, &surfaces
);
3474 if (result
!= VK_SUCCESS
) {
3475 anv_batch_set_error(&cmd_buffer
->batch
, result
);
3480 result
= emit_samplers(cmd_buffer
, MESA_SHADER_COMPUTE
, &samplers
);
3481 if (result
!= VK_SUCCESS
) {
3482 anv_batch_set_error(&cmd_buffer
->batch
, result
);
3486 uint32_t iface_desc_data_dw
[GENX(INTERFACE_DESCRIPTOR_DATA_length
)];
3487 struct GENX(INTERFACE_DESCRIPTOR_DATA
) desc
= {
3488 .BindingTablePointer
= surfaces
.offset
,
3489 .SamplerStatePointer
= samplers
.offset
,
3491 GENX(INTERFACE_DESCRIPTOR_DATA_pack
)(NULL
, iface_desc_data_dw
, &desc
);
3493 struct anv_state state
=
3494 anv_cmd_buffer_merge_dynamic(cmd_buffer
, iface_desc_data_dw
,
3495 pipeline
->interface_descriptor_data
,
3496 GENX(INTERFACE_DESCRIPTOR_DATA_length
),
3499 uint32_t size
= GENX(INTERFACE_DESCRIPTOR_DATA_length
) * sizeof(uint32_t);
3500 anv_batch_emit(&cmd_buffer
->batch
,
3501 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD
), mid
) {
3502 mid
.InterfaceDescriptorTotalLength
= size
;
3503 mid
.InterfaceDescriptorDataStartAddress
= state
.offset
;
3510 genX(cmd_buffer_flush_compute_state
)(struct anv_cmd_buffer
*cmd_buffer
)
3512 struct anv_pipeline
*pipeline
= cmd_buffer
->state
.compute
.base
.pipeline
;
3515 assert(pipeline
->active_stages
== VK_SHADER_STAGE_COMPUTE_BIT
);
3517 genX(cmd_buffer_config_l3
)(cmd_buffer
, pipeline
->urb
.l3_config
);
3519 genX(flush_pipeline_select_gpgpu
)(cmd_buffer
);
3522 genX(cmd_buffer_aux_map_state
)(cmd_buffer
);
3525 if (cmd_buffer
->state
.compute
.pipeline_dirty
) {
3526 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
3528 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
3529 * the only bits that are changed are scoreboard related: Scoreboard
3530 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
3531 * these scoreboard related states, a MEDIA_STATE_FLUSH is
3534 cmd_buffer
->state
.pending_pipe_bits
|= ANV_PIPE_CS_STALL_BIT
;
3535 genX(cmd_buffer_apply_pipe_flushes
)(cmd_buffer
);
3537 anv_batch_emit_batch(&cmd_buffer
->batch
, &pipeline
->batch
);
3539 /* The workgroup size of the pipeline affects our push constant layout
3540 * so flag push constants as dirty if we change the pipeline.
3542 cmd_buffer
->state
.push_constants_dirty
|= VK_SHADER_STAGE_COMPUTE_BIT
;
3545 if ((cmd_buffer
->state
.descriptors_dirty
& VK_SHADER_STAGE_COMPUTE_BIT
) ||
3546 cmd_buffer
->state
.compute
.pipeline_dirty
) {
3547 /* FIXME: figure out descriptors for gen7 */
3548 result
= flush_compute_descriptor_set(cmd_buffer
);
3549 if (result
!= VK_SUCCESS
)
3552 cmd_buffer
->state
.descriptors_dirty
&= ~VK_SHADER_STAGE_COMPUTE_BIT
;
3555 if (cmd_buffer
->state
.push_constants_dirty
& VK_SHADER_STAGE_COMPUTE_BIT
) {
3556 struct anv_state push_state
=
3557 anv_cmd_buffer_cs_push_constants(cmd_buffer
);
3559 if (push_state
.alloc_size
) {
3560 anv_batch_emit(&cmd_buffer
->batch
, GENX(MEDIA_CURBE_LOAD
), curbe
) {
3561 curbe
.CURBETotalDataLength
= push_state
.alloc_size
;
3562 curbe
.CURBEDataStartAddress
= push_state
.offset
;
3566 cmd_buffer
->state
.push_constants_dirty
&= ~VK_SHADER_STAGE_COMPUTE_BIT
;
3569 cmd_buffer
->state
.compute
.pipeline_dirty
= false;
3571 genX(cmd_buffer_apply_pipe_flushes
)(cmd_buffer
);
3577 verify_cmd_parser(const struct anv_device
*device
,
3578 int required_version
,
3579 const char *function
)
3581 if (device
->instance
->physicalDevice
.cmd_parser_version
< required_version
) {
3582 return vk_errorf(device
->instance
, device
->instance
,
3583 VK_ERROR_FEATURE_NOT_PRESENT
,
3584 "cmd parser version %d is required for %s",
3585 required_version
, function
);
3594 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer
*cmd_buffer
,
3595 uint32_t baseGroupX
,
3596 uint32_t baseGroupY
,
3597 uint32_t baseGroupZ
)
3599 if (anv_batch_has_error(&cmd_buffer
->batch
))
3602 struct anv_push_constants
*push
=
3603 &cmd_buffer
->state
.push_constants
[MESA_SHADER_COMPUTE
];
3604 if (push
->cs
.base_work_group_id
[0] != baseGroupX
||
3605 push
->cs
.base_work_group_id
[1] != baseGroupY
||
3606 push
->cs
.base_work_group_id
[2] != baseGroupZ
) {
3607 push
->cs
.base_work_group_id
[0] = baseGroupX
;
3608 push
->cs
.base_work_group_id
[1] = baseGroupY
;
3609 push
->cs
.base_work_group_id
[2] = baseGroupZ
;
3611 cmd_buffer
->state
.push_constants_dirty
|= VK_SHADER_STAGE_COMPUTE_BIT
;
3615 void genX(CmdDispatch
)(
3616 VkCommandBuffer commandBuffer
,
3621 genX(CmdDispatchBase
)(commandBuffer
, 0, 0, 0, x
, y
, z
);
3624 void genX(CmdDispatchBase
)(
3625 VkCommandBuffer commandBuffer
,
3626 uint32_t baseGroupX
,
3627 uint32_t baseGroupY
,
3628 uint32_t baseGroupZ
,
3629 uint32_t groupCountX
,
3630 uint32_t groupCountY
,
3631 uint32_t groupCountZ
)
3633 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
3634 struct anv_pipeline
*pipeline
= cmd_buffer
->state
.compute
.base
.pipeline
;
3635 const struct brw_cs_prog_data
*prog_data
= get_cs_prog_data(pipeline
);
3637 anv_cmd_buffer_push_base_group_id(cmd_buffer
, baseGroupX
,
3638 baseGroupY
, baseGroupZ
);
3640 if (anv_batch_has_error(&cmd_buffer
->batch
))
3643 if (prog_data
->uses_num_work_groups
) {
3644 struct anv_state state
=
3645 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer
, 12, 4);
3646 uint32_t *sizes
= state
.map
;
3647 sizes
[0] = groupCountX
;
3648 sizes
[1] = groupCountY
;
3649 sizes
[2] = groupCountZ
;
3650 cmd_buffer
->state
.compute
.num_workgroups
= (struct anv_address
) {
3651 .bo
= cmd_buffer
->device
->dynamic_state_pool
.block_pool
.bo
,
3652 .offset
= state
.offset
,
3656 genX(cmd_buffer_flush_compute_state
)(cmd_buffer
);
3658 if (cmd_buffer
->state
.conditional_render_enabled
)
3659 genX(cmd_emit_conditional_render_predicate
)(cmd_buffer
);
3661 anv_batch_emit(&cmd_buffer
->batch
, GENX(GPGPU_WALKER
), ggw
) {
3662 ggw
.PredicateEnable
= cmd_buffer
->state
.conditional_render_enabled
;
3663 ggw
.SIMDSize
= prog_data
->simd_size
/ 16;
3664 ggw
.ThreadDepthCounterMaximum
= 0;
3665 ggw
.ThreadHeightCounterMaximum
= 0;
3666 ggw
.ThreadWidthCounterMaximum
= prog_data
->threads
- 1;
3667 ggw
.ThreadGroupIDXDimension
= groupCountX
;
3668 ggw
.ThreadGroupIDYDimension
= groupCountY
;
3669 ggw
.ThreadGroupIDZDimension
= groupCountZ
;
3670 ggw
.RightExecutionMask
= pipeline
->cs_right_mask
;
3671 ggw
.BottomExecutionMask
= 0xffffffff;
3674 anv_batch_emit(&cmd_buffer
->batch
, GENX(MEDIA_STATE_FLUSH
), msf
);
3677 #define GPGPU_DISPATCHDIMX 0x2500
3678 #define GPGPU_DISPATCHDIMY 0x2504
3679 #define GPGPU_DISPATCHDIMZ 0x2508
3681 void genX(CmdDispatchIndirect
)(
3682 VkCommandBuffer commandBuffer
,
3684 VkDeviceSize offset
)
3686 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
3687 ANV_FROM_HANDLE(anv_buffer
, buffer
, _buffer
);
3688 struct anv_pipeline
*pipeline
= cmd_buffer
->state
.compute
.base
.pipeline
;
3689 const struct brw_cs_prog_data
*prog_data
= get_cs_prog_data(pipeline
);
3690 struct anv_address addr
= anv_address_add(buffer
->address
, offset
);
3691 struct anv_batch
*batch
= &cmd_buffer
->batch
;
3693 anv_cmd_buffer_push_base_group_id(cmd_buffer
, 0, 0, 0);
3696 /* Linux 4.4 added command parser version 5 which allows the GPGPU
3697 * indirect dispatch registers to be written.
3699 if (verify_cmd_parser(cmd_buffer
->device
, 5,
3700 "vkCmdDispatchIndirect") != VK_SUCCESS
)
3704 if (prog_data
->uses_num_work_groups
)
3705 cmd_buffer
->state
.compute
.num_workgroups
= addr
;
3707 genX(cmd_buffer_flush_compute_state
)(cmd_buffer
);
3709 struct gen_mi_builder b
;
3710 gen_mi_builder_init(&b
, &cmd_buffer
->batch
);
3712 struct gen_mi_value size_x
= gen_mi_mem32(anv_address_add(addr
, 0));
3713 struct gen_mi_value size_y
= gen_mi_mem32(anv_address_add(addr
, 4));
3714 struct gen_mi_value size_z
= gen_mi_mem32(anv_address_add(addr
, 8));
3716 gen_mi_store(&b
, gen_mi_reg32(GPGPU_DISPATCHDIMX
), size_x
);
3717 gen_mi_store(&b
, gen_mi_reg32(GPGPU_DISPATCHDIMY
), size_y
);
3718 gen_mi_store(&b
, gen_mi_reg32(GPGPU_DISPATCHDIMZ
), size_z
);
3721 /* predicate = (compute_dispatch_indirect_x_size == 0); */
3722 gen_mi_store(&b
, gen_mi_reg64(MI_PREDICATE_SRC0
), size_x
);
3723 gen_mi_store(&b
, gen_mi_reg64(MI_PREDICATE_SRC1
), gen_mi_imm(0));
3724 anv_batch_emit(batch
, GENX(MI_PREDICATE
), mip
) {
3725 mip
.LoadOperation
= LOAD_LOAD
;
3726 mip
.CombineOperation
= COMBINE_SET
;
3727 mip
.CompareOperation
= COMPARE_SRCS_EQUAL
;
3730 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
3731 gen_mi_store(&b
, gen_mi_reg32(MI_PREDICATE_SRC0
), size_y
);
3732 anv_batch_emit(batch
, GENX(MI_PREDICATE
), mip
) {
3733 mip
.LoadOperation
= LOAD_LOAD
;
3734 mip
.CombineOperation
= COMBINE_OR
;
3735 mip
.CompareOperation
= COMPARE_SRCS_EQUAL
;
3738 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
3739 gen_mi_store(&b
, gen_mi_reg32(MI_PREDICATE_SRC0
), size_z
);
3740 anv_batch_emit(batch
, GENX(MI_PREDICATE
), mip
) {
3741 mip
.LoadOperation
= LOAD_LOAD
;
3742 mip
.CombineOperation
= COMBINE_OR
;
3743 mip
.CompareOperation
= COMPARE_SRCS_EQUAL
;
3746 /* predicate = !predicate; */
3747 anv_batch_emit(batch
, GENX(MI_PREDICATE
), mip
) {
3748 mip
.LoadOperation
= LOAD_LOADINV
;
3749 mip
.CombineOperation
= COMBINE_OR
;
3750 mip
.CompareOperation
= COMPARE_FALSE
;
3754 if (cmd_buffer
->state
.conditional_render_enabled
) {
3755 /* predicate &= !(conditional_rendering_predicate == 0); */
3756 gen_mi_store(&b
, gen_mi_reg32(MI_PREDICATE_SRC0
),
3757 gen_mi_reg32(ANV_PREDICATE_RESULT_REG
));
3758 anv_batch_emit(batch
, GENX(MI_PREDICATE
), mip
) {
3759 mip
.LoadOperation
= LOAD_LOADINV
;
3760 mip
.CombineOperation
= COMBINE_AND
;
3761 mip
.CompareOperation
= COMPARE_SRCS_EQUAL
;
3766 #else /* GEN_GEN > 7 */
3767 if (cmd_buffer
->state
.conditional_render_enabled
)
3768 genX(cmd_emit_conditional_render_predicate
)(cmd_buffer
);
3771 anv_batch_emit(batch
, GENX(GPGPU_WALKER
), ggw
) {
3772 ggw
.IndirectParameterEnable
= true;
3773 ggw
.PredicateEnable
= GEN_GEN
<= 7 ||
3774 cmd_buffer
->state
.conditional_render_enabled
;
3775 ggw
.SIMDSize
= prog_data
->simd_size
/ 16;
3776 ggw
.ThreadDepthCounterMaximum
= 0;
3777 ggw
.ThreadHeightCounterMaximum
= 0;
3778 ggw
.ThreadWidthCounterMaximum
= prog_data
->threads
- 1;
3779 ggw
.RightExecutionMask
= pipeline
->cs_right_mask
;
3780 ggw
.BottomExecutionMask
= 0xffffffff;
3783 anv_batch_emit(batch
, GENX(MEDIA_STATE_FLUSH
), msf
);
3787 genX(flush_pipeline_select
)(struct anv_cmd_buffer
*cmd_buffer
,
3790 UNUSED
const struct gen_device_info
*devinfo
= &cmd_buffer
->device
->info
;
3792 if (cmd_buffer
->state
.current_pipeline
== pipeline
)
3795 #if GEN_GEN >= 8 && GEN_GEN < 10
3796 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
3798 * Software must clear the COLOR_CALC_STATE Valid field in
3799 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
3800 * with Pipeline Select set to GPGPU.
3802 * The internal hardware docs recommend the same workaround for Gen9
3805 if (pipeline
== GPGPU
)
3806 anv_batch_emit(&cmd_buffer
->batch
, GENX(3DSTATE_CC_STATE_POINTERS
), t
);
3810 if (pipeline
== _3D
) {
3811 /* There is a mid-object preemption workaround which requires you to
3812 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
3813 * even without preemption, we have issues with geometry flickering when
3814 * GPGPU and 3D are back-to-back and this seems to fix it. We don't
3817 const uint32_t subslices
=
3818 MAX2(cmd_buffer
->device
->instance
->physicalDevice
.subslice_total
, 1);
3819 anv_batch_emit(&cmd_buffer
->batch
, GENX(MEDIA_VFE_STATE
), vfe
) {
3820 vfe
.MaximumNumberofThreads
=
3821 devinfo
->max_cs_threads
* subslices
- 1;
3822 vfe
.NumberofURBEntries
= 2;
3823 vfe
.URBEntryAllocationSize
= 2;
3828 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
3829 * PIPELINE_SELECT [DevBWR+]":
3833 * Software must ensure all the write caches are flushed through a
3834 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
3835 * command to invalidate read only caches prior to programming
3836 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
3838 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pc
) {
3839 pc
.RenderTargetCacheFlushEnable
= true;
3840 pc
.DepthCacheFlushEnable
= true;
3841 pc
.DCFlushEnable
= true;
3842 pc
.PostSyncOperation
= NoWrite
;
3843 pc
.CommandStreamerStallEnable
= true;
3845 pc
.TileCacheFlushEnable
= true;
3849 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pc
) {
3850 pc
.TextureCacheInvalidationEnable
= true;
3851 pc
.ConstantCacheInvalidationEnable
= true;
3852 pc
.StateCacheInvalidationEnable
= true;
3853 pc
.InstructionCacheInvalidateEnable
= true;
3854 pc
.PostSyncOperation
= NoWrite
;
3856 pc
.TileCacheFlushEnable
= true;
3860 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPELINE_SELECT
), ps
) {
3864 ps
.PipelineSelection
= pipeline
;
3868 if (devinfo
->is_geminilake
) {
3871 * "This chicken bit works around a hardware issue with barrier logic
3872 * encountered when switching between GPGPU and 3D pipelines. To
3873 * workaround the issue, this mode bit should be set after a pipeline
3877 anv_pack_struct(&scec
, GENX(SLICE_COMMON_ECO_CHICKEN1
),
3879 pipeline
== GPGPU
? GLK_BARRIER_MODE_GPGPU
3880 : GLK_BARRIER_MODE_3D_HULL
,
3881 .GLKBarrierModeMask
= 1);
3882 emit_lri(&cmd_buffer
->batch
, GENX(SLICE_COMMON_ECO_CHICKEN1_num
), scec
);
3886 cmd_buffer
->state
.current_pipeline
= pipeline
;
3890 genX(flush_pipeline_select_3d
)(struct anv_cmd_buffer
*cmd_buffer
)
3892 genX(flush_pipeline_select
)(cmd_buffer
, _3D
);
3896 genX(flush_pipeline_select_gpgpu
)(struct anv_cmd_buffer
*cmd_buffer
)
3898 genX(flush_pipeline_select
)(cmd_buffer
, GPGPU
);
3902 genX(cmd_buffer_emit_gen7_depth_flush
)(struct anv_cmd_buffer
*cmd_buffer
)
3907 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
3909 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
3910 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
3911 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
3912 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
3913 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
3914 * Depth Flush Bit set, followed by another pipelined depth stall
3915 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
3916 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
3917 * via a preceding MI_FLUSH)."
3919 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pipe
) {
3920 pipe
.DepthStallEnable
= true;
3922 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pipe
) {
3923 pipe
.DepthCacheFlushEnable
= true;
3925 pipe
.TileCacheFlushEnable
= true;
3928 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pipe
) {
3929 pipe
.DepthStallEnable
= true;
3934 * Update the pixel hashing modes that determine the balancing of PS threads
3935 * across subslices and slices.
3937 * \param width Width bound of the rendering area (already scaled down if \p
3938 * scale is greater than 1).
3939 * \param height Height bound of the rendering area (already scaled down if \p
3940 * scale is greater than 1).
3941 * \param scale The number of framebuffer samples that could potentially be
3942 * affected by an individual channel of the PS thread. This is
3943 * typically one for single-sampled rendering, but for operations
3944 * like CCS resolves and fast clears a single PS invocation may
3945 * update a huge number of pixels, in which case a finer
3946 * balancing is desirable in order to maximally utilize the
3947 * bandwidth available. UINT_MAX can be used as shorthand for
3948 * "finest hashing mode available".
3951 genX(cmd_buffer_emit_hashing_mode
)(struct anv_cmd_buffer
*cmd_buffer
,
3952 unsigned width
, unsigned height
,
3956 const struct gen_device_info
*devinfo
= &cmd_buffer
->device
->info
;
3957 const unsigned slice_hashing
[] = {
3958 /* Because all Gen9 platforms with more than one slice require
3959 * three-way subslice hashing, a single "normal" 16x16 slice hashing
3960 * block is guaranteed to suffer from substantial imbalance, with one
3961 * subslice receiving twice as much work as the other two in the
3964 * The performance impact of that would be particularly severe when
3965 * three-way hashing is also in use for slice balancing (which is the
3966 * case for all Gen9 GT4 platforms), because one of the slices
3967 * receives one every three 16x16 blocks in either direction, which
3968 * is roughly the periodicity of the underlying subslice imbalance
3969 * pattern ("roughly" because in reality the hardware's
3970 * implementation of three-way hashing doesn't do exact modulo 3
3971 * arithmetic, which somewhat decreases the magnitude of this effect
3972 * in practice). This leads to a systematic subslice imbalance
3973 * within that slice regardless of the size of the primitive. The
3974 * 32x32 hashing mode guarantees that the subslice imbalance within a
3975 * single slice hashing block is minimal, largely eliminating this
3979 /* Finest slice hashing mode available. */
3982 const unsigned subslice_hashing
[] = {
3983 /* 16x16 would provide a slight cache locality benefit especially
3984 * visible in the sampler L1 cache efficiency of low-bandwidth
3985 * non-LLC platforms, but it comes at the cost of greater subslice
3986 * imbalance for primitives of dimensions approximately intermediate
3987 * between 16x4 and 16x16.
3990 /* Finest subslice hashing mode available. */
3993 /* Dimensions of the smallest hashing block of a given hashing mode. If
3994 * the rendering area is smaller than this there can't possibly be any
3995 * benefit from switching to this mode, so we optimize out the
3998 const unsigned min_size
[][2] = {
4002 const unsigned idx
= scale
> 1;
4004 if (cmd_buffer
->state
.current_hash_scale
!= scale
&&
4005 (width
> min_size
[idx
][0] || height
> min_size
[idx
][1])) {
4008 anv_pack_struct(>_mode
, GENX(GT_MODE
),
4009 .SliceHashing
= (devinfo
->num_slices
> 1 ? slice_hashing
[idx
] : 0),
4010 .SliceHashingMask
= (devinfo
->num_slices
> 1 ? -1 : 0),
4011 .SubsliceHashing
= subslice_hashing
[idx
],
4012 .SubsliceHashingMask
= -1);
4014 cmd_buffer
->state
.pending_pipe_bits
|=
4015 ANV_PIPE_CS_STALL_BIT
| ANV_PIPE_STALL_AT_SCOREBOARD_BIT
;
4016 genX(cmd_buffer_apply_pipe_flushes
)(cmd_buffer
);
4018 emit_lri(&cmd_buffer
->batch
, GENX(GT_MODE_num
), gt_mode
);
4020 cmd_buffer
->state
.current_hash_scale
= scale
;
4026 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer
*cmd_buffer
)
4028 struct anv_device
*device
= cmd_buffer
->device
;
4029 const struct anv_image_view
*iview
=
4030 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer
);
4031 const struct anv_image
*image
= iview
? iview
->image
: NULL
;
4033 /* FIXME: Width and Height are wrong */
4035 genX(cmd_buffer_emit_gen7_depth_flush
)(cmd_buffer
);
4037 uint32_t *dw
= anv_batch_emit_dwords(&cmd_buffer
->batch
,
4038 device
->isl_dev
.ds
.size
/ 4);
4042 struct isl_depth_stencil_hiz_emit_info info
= { };
4045 info
.view
= &iview
->planes
[0].isl
;
4047 if (image
&& (image
->aspects
& VK_IMAGE_ASPECT_DEPTH_BIT
)) {
4048 uint32_t depth_plane
=
4049 anv_image_aspect_to_plane(image
->aspects
, VK_IMAGE_ASPECT_DEPTH_BIT
);
4050 const struct anv_surface
*surface
= &image
->planes
[depth_plane
].surface
;
4052 info
.depth_surf
= &surface
->isl
;
4054 info
.depth_address
=
4055 anv_batch_emit_reloc(&cmd_buffer
->batch
,
4056 dw
+ device
->isl_dev
.ds
.depth_offset
/ 4,
4057 image
->planes
[depth_plane
].address
.bo
,
4058 image
->planes
[depth_plane
].address
.offset
+
4061 anv_mocs_for_bo(device
, image
->planes
[depth_plane
].address
.bo
);
4064 cmd_buffer
->state
.subpass
->depth_stencil_attachment
->attachment
;
4065 info
.hiz_usage
= cmd_buffer
->state
.attachments
[ds
].aux_usage
;
4066 if (info
.hiz_usage
== ISL_AUX_USAGE_HIZ
) {
4067 info
.hiz_surf
= &image
->planes
[depth_plane
].aux_surface
.isl
;
4070 anv_batch_emit_reloc(&cmd_buffer
->batch
,
4071 dw
+ device
->isl_dev
.ds
.hiz_offset
/ 4,
4072 image
->planes
[depth_plane
].address
.bo
,
4073 image
->planes
[depth_plane
].address
.offset
+
4074 image
->planes
[depth_plane
].aux_surface
.offset
);
4076 info
.depth_clear_value
= ANV_HZ_FC_VAL
;
4080 if (image
&& (image
->aspects
& VK_IMAGE_ASPECT_STENCIL_BIT
)) {
4081 uint32_t stencil_plane
=
4082 anv_image_aspect_to_plane(image
->aspects
, VK_IMAGE_ASPECT_STENCIL_BIT
);
4083 const struct anv_surface
*surface
= &image
->planes
[stencil_plane
].surface
;
4085 info
.stencil_surf
= &surface
->isl
;
4087 info
.stencil_address
=
4088 anv_batch_emit_reloc(&cmd_buffer
->batch
,
4089 dw
+ device
->isl_dev
.ds
.stencil_offset
/ 4,
4090 image
->planes
[stencil_plane
].address
.bo
,
4091 image
->planes
[stencil_plane
].address
.offset
+
4094 anv_mocs_for_bo(device
, image
->planes
[stencil_plane
].address
.bo
);
4097 isl_emit_depth_stencil_hiz_s(&device
->isl_dev
, dw
, &info
);
4099 if (GEN_GEN
>= 12) {
4100 /* GEN:BUG:1408224581
4102 * Workaround: Gen12LP Astep only An additional pipe control with
4103 * post-sync = store dword operation would be required.( w/a is to
4104 * have an additional pipe control after the stencil state whenever
4105 * the surface state bits of this state is changing).
4107 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pc
) {
4108 pc
.PostSyncOperation
= WriteImmediateData
;
4110 (struct anv_address
) { cmd_buffer
->device
->workaround_bo
, 0 };
4113 cmd_buffer
->state
.hiz_enabled
= info
.hiz_usage
== ISL_AUX_USAGE_HIZ
;
4117 * This ANDs the view mask of the current subpass with the pending clear
4118 * views in the attachment to get the mask of views active in the subpass
4119 * that still need to be cleared.
4121 static inline uint32_t
4122 get_multiview_subpass_clear_mask(const struct anv_cmd_state
*cmd_state
,
4123 const struct anv_attachment_state
*att_state
)
4125 return cmd_state
->subpass
->view_mask
& att_state
->pending_clear_views
;
4129 do_first_layer_clear(const struct anv_cmd_state
*cmd_state
,
4130 const struct anv_attachment_state
*att_state
)
4132 if (!cmd_state
->subpass
->view_mask
)
4135 uint32_t pending_clear_mask
=
4136 get_multiview_subpass_clear_mask(cmd_state
, att_state
);
4138 return pending_clear_mask
& 1;
4142 current_subpass_is_last_for_attachment(const struct anv_cmd_state
*cmd_state
,
4145 const uint32_t last_subpass_idx
=
4146 cmd_state
->pass
->attachments
[att_idx
].last_subpass_idx
;
4147 const struct anv_subpass
*last_subpass
=
4148 &cmd_state
->pass
->subpasses
[last_subpass_idx
];
4149 return last_subpass
== cmd_state
->subpass
;
4153 cmd_buffer_begin_subpass(struct anv_cmd_buffer
*cmd_buffer
,
4154 uint32_t subpass_id
)
4156 struct anv_cmd_state
*cmd_state
= &cmd_buffer
->state
;
4157 struct anv_subpass
*subpass
= &cmd_state
->pass
->subpasses
[subpass_id
];
4158 cmd_state
->subpass
= subpass
;
4160 cmd_buffer
->state
.gfx
.dirty
|= ANV_CMD_DIRTY_RENDER_TARGETS
;
4162 /* Our implementation of VK_KHR_multiview uses instancing to draw the
4163 * different views. If the client asks for instancing, we need to use the
4164 * Instance Data Step Rate to ensure that we repeat the client's
4165 * per-instance data once for each view. Since this bit is in
4166 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
4170 cmd_buffer
->state
.gfx
.vb_dirty
|= ~0;
4172 /* It is possible to start a render pass with an old pipeline. Because the
4173 * render pass and subpass index are both baked into the pipeline, this is
4174 * highly unlikely. In order to do so, it requires that you have a render
4175 * pass with a single subpass and that you use that render pass twice
4176 * back-to-back and use the same pipeline at the start of the second render
4177 * pass as at the end of the first. In order to avoid unpredictable issues
4178 * with this edge case, we just dirty the pipeline at the start of every
4181 cmd_buffer
->state
.gfx
.dirty
|= ANV_CMD_DIRTY_PIPELINE
;
4183 /* Accumulate any subpass flushes that need to happen before the subpass */
4184 cmd_buffer
->state
.pending_pipe_bits
|=
4185 cmd_buffer
->state
.pass
->subpass_flushes
[subpass_id
];
4187 VkRect2D render_area
= cmd_buffer
->state
.render_area
;
4188 struct anv_framebuffer
*fb
= cmd_buffer
->state
.framebuffer
;
4190 bool is_multiview
= subpass
->view_mask
!= 0;
4192 for (uint32_t i
= 0; i
< subpass
->attachment_count
; ++i
) {
4193 const uint32_t a
= subpass
->attachments
[i
].attachment
;
4194 if (a
== VK_ATTACHMENT_UNUSED
)
4197 assert(a
< cmd_state
->pass
->attachment_count
);
4198 struct anv_attachment_state
*att_state
= &cmd_state
->attachments
[a
];
4200 struct anv_image_view
*iview
= cmd_state
->attachments
[a
].image_view
;
4201 const struct anv_image
*image
= iview
->image
;
4203 /* A resolve is necessary before use as an input attachment if the clear
4204 * color or auxiliary buffer usage isn't supported by the sampler.
4206 const bool input_needs_resolve
=
4207 (att_state
->fast_clear
&& !att_state
->clear_color_is_zero_one
) ||
4208 att_state
->input_aux_usage
!= att_state
->aux_usage
;
4210 VkImageLayout target_layout
, target_stencil_layout
;
4211 if (iview
->aspect_mask
& VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV
&&
4212 !input_needs_resolve
) {
4213 /* Layout transitions before the final only help to enable sampling
4214 * as an input attachment. If the input attachment supports sampling
4215 * using the auxiliary surface, we can skip such transitions by
4216 * making the target layout one that is CCS-aware.
4218 target_layout
= VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
;
4220 target_layout
= subpass
->attachments
[i
].layout
;
4221 target_stencil_layout
= subpass
->attachments
[i
].stencil_layout
;
4224 uint32_t base_layer
, layer_count
;
4225 if (image
->type
== VK_IMAGE_TYPE_3D
) {
4227 layer_count
= anv_minify(iview
->image
->extent
.depth
,
4228 iview
->planes
[0].isl
.base_level
);
4230 base_layer
= iview
->planes
[0].isl
.base_array_layer
;
4231 layer_count
= fb
->layers
;
4234 if (image
->aspects
& VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV
) {
4235 assert(image
->aspects
== VK_IMAGE_ASPECT_COLOR_BIT
);
4236 transition_color_buffer(cmd_buffer
, image
, VK_IMAGE_ASPECT_COLOR_BIT
,
4237 iview
->planes
[0].isl
.base_level
, 1,
4238 base_layer
, layer_count
,
4239 att_state
->current_layout
, target_layout
);
4242 if (image
->aspects
& VK_IMAGE_ASPECT_DEPTH_BIT
) {
4243 transition_depth_buffer(cmd_buffer
, image
,
4244 att_state
->current_layout
, target_layout
);
4245 att_state
->aux_usage
=
4246 anv_layout_to_aux_usage(&cmd_buffer
->device
->info
, image
,
4247 VK_IMAGE_ASPECT_DEPTH_BIT
, target_layout
);
4250 if (image
->aspects
& VK_IMAGE_ASPECT_STENCIL_BIT
) {
4251 transition_stencil_buffer(cmd_buffer
, image
,
4252 iview
->planes
[0].isl
.base_level
, 1,
4253 base_layer
, layer_count
,
4254 att_state
->current_stencil_layout
,
4255 target_stencil_layout
);
4257 att_state
->current_layout
= target_layout
;
4258 att_state
->current_stencil_layout
= target_stencil_layout
;
4260 if (att_state
->pending_clear_aspects
& VK_IMAGE_ASPECT_COLOR_BIT
) {
4261 assert(att_state
->pending_clear_aspects
== VK_IMAGE_ASPECT_COLOR_BIT
);
4263 /* Multi-planar images are not supported as attachments */
4264 assert(image
->aspects
== VK_IMAGE_ASPECT_COLOR_BIT
);
4265 assert(image
->n_planes
== 1);
4267 uint32_t base_clear_layer
= iview
->planes
[0].isl
.base_array_layer
;
4268 uint32_t clear_layer_count
= fb
->layers
;
4270 if (att_state
->fast_clear
&&
4271 do_first_layer_clear(cmd_state
, att_state
)) {
4272 /* We only support fast-clears on the first layer */
4273 assert(iview
->planes
[0].isl
.base_level
== 0);
4274 assert(iview
->planes
[0].isl
.base_array_layer
== 0);
4276 union isl_color_value clear_color
= {};
4277 anv_clear_color_from_att_state(&clear_color
, att_state
, iview
);
4278 if (iview
->image
->samples
== 1) {
4279 anv_image_ccs_op(cmd_buffer
, image
,
4280 iview
->planes
[0].isl
.format
,
4281 VK_IMAGE_ASPECT_COLOR_BIT
,
4282 0, 0, 1, ISL_AUX_OP_FAST_CLEAR
,
4286 anv_image_mcs_op(cmd_buffer
, image
,
4287 iview
->planes
[0].isl
.format
,
4288 VK_IMAGE_ASPECT_COLOR_BIT
,
4289 0, 1, ISL_AUX_OP_FAST_CLEAR
,
4294 clear_layer_count
--;
4296 att_state
->pending_clear_views
&= ~1;
4298 if (att_state
->clear_color_is_zero
) {
4299 /* This image has the auxiliary buffer enabled. We can mark the
4300 * subresource as not needing a resolve because the clear color
4301 * will match what's in every RENDER_SURFACE_STATE object when
4302 * it's being used for sampling.
4304 set_image_fast_clear_state(cmd_buffer
, iview
->image
,
4305 VK_IMAGE_ASPECT_COLOR_BIT
,
4306 ANV_FAST_CLEAR_DEFAULT_VALUE
);
4308 set_image_fast_clear_state(cmd_buffer
, iview
->image
,
4309 VK_IMAGE_ASPECT_COLOR_BIT
,
4310 ANV_FAST_CLEAR_ANY
);
4314 /* From the VkFramebufferCreateInfo spec:
4316 * "If the render pass uses multiview, then layers must be one and each
4317 * attachment requires a number of layers that is greater than the
4318 * maximum bit index set in the view mask in the subpasses in which it
4321 * So if multiview is active we ignore the number of layers in the
4322 * framebuffer and instead we honor the view mask from the subpass.
4325 assert(image
->n_planes
== 1);
4326 uint32_t pending_clear_mask
=
4327 get_multiview_subpass_clear_mask(cmd_state
, att_state
);
4330 for_each_bit(layer_idx
, pending_clear_mask
) {
4332 iview
->planes
[0].isl
.base_array_layer
+ layer_idx
;
4334 anv_image_clear_color(cmd_buffer
, image
,
4335 VK_IMAGE_ASPECT_COLOR_BIT
,
4336 att_state
->aux_usage
,
4337 iview
->planes
[0].isl
.format
,
4338 iview
->planes
[0].isl
.swizzle
,
4339 iview
->planes
[0].isl
.base_level
,
4342 vk_to_isl_color(att_state
->clear_value
.color
));
4345 att_state
->pending_clear_views
&= ~pending_clear_mask
;
4346 } else if (clear_layer_count
> 0) {
4347 assert(image
->n_planes
== 1);
4348 anv_image_clear_color(cmd_buffer
, image
, VK_IMAGE_ASPECT_COLOR_BIT
,
4349 att_state
->aux_usage
,
4350 iview
->planes
[0].isl
.format
,
4351 iview
->planes
[0].isl
.swizzle
,
4352 iview
->planes
[0].isl
.base_level
,
4353 base_clear_layer
, clear_layer_count
,
4355 vk_to_isl_color(att_state
->clear_value
.color
));
4357 } else if (att_state
->pending_clear_aspects
& (VK_IMAGE_ASPECT_DEPTH_BIT
|
4358 VK_IMAGE_ASPECT_STENCIL_BIT
)) {
4359 if (att_state
->fast_clear
&& !is_multiview
) {
4360 /* We currently only support HiZ for single-layer images */
4361 if (att_state
->pending_clear_aspects
& VK_IMAGE_ASPECT_DEPTH_BIT
) {
4362 assert(iview
->image
->planes
[0].aux_usage
== ISL_AUX_USAGE_HIZ
);
4363 assert(iview
->planes
[0].isl
.base_level
== 0);
4364 assert(iview
->planes
[0].isl
.base_array_layer
== 0);
4365 assert(fb
->layers
== 1);
4368 anv_image_hiz_clear(cmd_buffer
, image
,
4369 att_state
->pending_clear_aspects
,
4370 iview
->planes
[0].isl
.base_level
,
4371 iview
->planes
[0].isl
.base_array_layer
,
4372 fb
->layers
, render_area
,
4373 att_state
->clear_value
.depthStencil
.stencil
);
4374 } else if (is_multiview
) {
4375 uint32_t pending_clear_mask
=
4376 get_multiview_subpass_clear_mask(cmd_state
, att_state
);
4379 for_each_bit(layer_idx
, pending_clear_mask
) {
4381 iview
->planes
[0].isl
.base_array_layer
+ layer_idx
;
4383 anv_image_clear_depth_stencil(cmd_buffer
, image
,
4384 att_state
->pending_clear_aspects
,
4385 att_state
->aux_usage
,
4386 iview
->planes
[0].isl
.base_level
,
4389 att_state
->clear_value
.depthStencil
.depth
,
4390 att_state
->clear_value
.depthStencil
.stencil
);
4393 att_state
->pending_clear_views
&= ~pending_clear_mask
;
4395 anv_image_clear_depth_stencil(cmd_buffer
, image
,
4396 att_state
->pending_clear_aspects
,
4397 att_state
->aux_usage
,
4398 iview
->planes
[0].isl
.base_level
,
4399 iview
->planes
[0].isl
.base_array_layer
,
4400 fb
->layers
, render_area
,
4401 att_state
->clear_value
.depthStencil
.depth
,
4402 att_state
->clear_value
.depthStencil
.stencil
);
4405 assert(att_state
->pending_clear_aspects
== 0);
4409 (att_state
->pending_load_aspects
& VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV
) &&
4410 image
->planes
[0].aux_surface
.isl
.size_B
> 0 &&
4411 iview
->planes
[0].isl
.base_level
== 0 &&
4412 iview
->planes
[0].isl
.base_array_layer
== 0) {
4413 if (att_state
->aux_usage
!= ISL_AUX_USAGE_NONE
) {
4414 genX(copy_fast_clear_dwords
)(cmd_buffer
, att_state
->color
.state
,
4415 image
, VK_IMAGE_ASPECT_COLOR_BIT
,
4416 false /* copy to ss */);
4419 if (need_input_attachment_state(&cmd_state
->pass
->attachments
[a
]) &&
4420 att_state
->input_aux_usage
!= ISL_AUX_USAGE_NONE
) {
4421 genX(copy_fast_clear_dwords
)(cmd_buffer
, att_state
->input
.state
,
4422 image
, VK_IMAGE_ASPECT_COLOR_BIT
,
4423 false /* copy to ss */);
4427 if (subpass
->attachments
[i
].usage
==
4428 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
) {
4429 /* We assume that if we're starting a subpass, we're going to do some
4430 * rendering so we may end up with compressed data.
4432 genX(cmd_buffer_mark_image_written
)(cmd_buffer
, iview
->image
,
4433 VK_IMAGE_ASPECT_COLOR_BIT
,
4434 att_state
->aux_usage
,
4435 iview
->planes
[0].isl
.base_level
,
4436 iview
->planes
[0].isl
.base_array_layer
,
4438 } else if (subpass
->attachments
[i
].usage
==
4439 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
) {
4440 /* We may be writing depth or stencil so we need to mark the surface.
4441 * Unfortunately, there's no way to know at this point whether the
4442 * depth or stencil tests used will actually write to the surface.
4444 * Even though stencil may be plane 1, it always shares a base_level
4447 const struct isl_view
*ds_view
= &iview
->planes
[0].isl
;
4448 if (iview
->aspect_mask
& VK_IMAGE_ASPECT_DEPTH_BIT
) {
4449 genX(cmd_buffer_mark_image_written
)(cmd_buffer
, image
,
4450 VK_IMAGE_ASPECT_DEPTH_BIT
,
4451 att_state
->aux_usage
,
4452 ds_view
->base_level
,
4453 ds_view
->base_array_layer
,
4456 if (iview
->aspect_mask
& VK_IMAGE_ASPECT_STENCIL_BIT
) {
4457 /* Even though stencil may be plane 1, it always shares a
4458 * base_level with depth.
4460 genX(cmd_buffer_mark_image_written
)(cmd_buffer
, image
,
4461 VK_IMAGE_ASPECT_STENCIL_BIT
,
4463 ds_view
->base_level
,
4464 ds_view
->base_array_layer
,
4469 /* If multiview is enabled, then we are only done clearing when we no
4470 * longer have pending layers to clear, or when we have processed the
4471 * last subpass that uses this attachment.
4473 if (!is_multiview
||
4474 att_state
->pending_clear_views
== 0 ||
4475 current_subpass_is_last_for_attachment(cmd_state
, a
)) {
4476 att_state
->pending_clear_aspects
= 0;
4479 att_state
->pending_load_aspects
= 0;
4482 cmd_buffer_emit_depth_stencil(cmd_buffer
);
4485 /* The PIPE_CONTROL command description says:
4487 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
4488 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
4489 * Target Cache Flush by enabling this bit. When render target flush
4490 * is set due to new association of BTI, PS Scoreboard Stall bit must
4491 * be set in this packet."
4493 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pc
) {
4494 pc
.RenderTargetCacheFlushEnable
= true;
4495 pc
.StallAtPixelScoreboard
= true;
4497 pc
.TileCacheFlushEnable
= true;
4503 static enum blorp_filter
4504 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode
)
4507 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR
:
4508 return BLORP_FILTER_SAMPLE_0
;
4509 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR
:
4510 return BLORP_FILTER_AVERAGE
;
4511 case VK_RESOLVE_MODE_MIN_BIT_KHR
:
4512 return BLORP_FILTER_MIN_SAMPLE
;
4513 case VK_RESOLVE_MODE_MAX_BIT_KHR
:
4514 return BLORP_FILTER_MAX_SAMPLE
;
4516 return BLORP_FILTER_NONE
;
4521 cmd_buffer_end_subpass(struct anv_cmd_buffer
*cmd_buffer
)
4523 struct anv_cmd_state
*cmd_state
= &cmd_buffer
->state
;
4524 struct anv_subpass
*subpass
= cmd_state
->subpass
;
4525 uint32_t subpass_id
= anv_get_subpass_id(&cmd_buffer
->state
);
4526 struct anv_framebuffer
*fb
= cmd_buffer
->state
.framebuffer
;
4528 if (subpass
->has_color_resolve
) {
4529 /* We are about to do some MSAA resolves. We need to flush so that the
4530 * result of writes to the MSAA color attachments show up in the sampler
4531 * when we blit to the single-sampled resolve target.
4533 cmd_buffer
->state
.pending_pipe_bits
|=
4534 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT
|
4535 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT
;
4537 for (uint32_t i
= 0; i
< subpass
->color_count
; ++i
) {
4538 uint32_t src_att
= subpass
->color_attachments
[i
].attachment
;
4539 uint32_t dst_att
= subpass
->resolve_attachments
[i
].attachment
;
4541 if (dst_att
== VK_ATTACHMENT_UNUSED
)
4544 assert(src_att
< cmd_buffer
->state
.pass
->attachment_count
);
4545 assert(dst_att
< cmd_buffer
->state
.pass
->attachment_count
);
4547 if (cmd_buffer
->state
.attachments
[dst_att
].pending_clear_aspects
) {
4548 /* From the Vulkan 1.0 spec:
4550 * If the first use of an attachment in a render pass is as a
4551 * resolve attachment, then the loadOp is effectively ignored
4552 * as the resolve is guaranteed to overwrite all pixels in the
4555 cmd_buffer
->state
.attachments
[dst_att
].pending_clear_aspects
= 0;
4558 struct anv_image_view
*src_iview
= cmd_state
->attachments
[src_att
].image_view
;
4559 struct anv_image_view
*dst_iview
= cmd_state
->attachments
[dst_att
].image_view
;
4561 const VkRect2D render_area
= cmd_buffer
->state
.render_area
;
4563 enum isl_aux_usage src_aux_usage
=
4564 cmd_buffer
->state
.attachments
[src_att
].aux_usage
;
4565 enum isl_aux_usage dst_aux_usage
=
4566 cmd_buffer
->state
.attachments
[dst_att
].aux_usage
;
4568 assert(src_iview
->aspect_mask
== VK_IMAGE_ASPECT_COLOR_BIT
&&
4569 dst_iview
->aspect_mask
== VK_IMAGE_ASPECT_COLOR_BIT
);
4571 anv_image_msaa_resolve(cmd_buffer
,
4572 src_iview
->image
, src_aux_usage
,
4573 src_iview
->planes
[0].isl
.base_level
,
4574 src_iview
->planes
[0].isl
.base_array_layer
,
4575 dst_iview
->image
, dst_aux_usage
,
4576 dst_iview
->planes
[0].isl
.base_level
,
4577 dst_iview
->planes
[0].isl
.base_array_layer
,
4578 VK_IMAGE_ASPECT_COLOR_BIT
,
4579 render_area
.offset
.x
, render_area
.offset
.y
,
4580 render_area
.offset
.x
, render_area
.offset
.y
,
4581 render_area
.extent
.width
,
4582 render_area
.extent
.height
,
4583 fb
->layers
, BLORP_FILTER_NONE
);
4587 if (subpass
->ds_resolve_attachment
) {
4588 /* We are about to do some MSAA resolves. We need to flush so that the
4589 * result of writes to the MSAA depth attachments show up in the sampler
4590 * when we blit to the single-sampled resolve target.
4592 cmd_buffer
->state
.pending_pipe_bits
|=
4593 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT
|
4594 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT
;
4596 uint32_t src_att
= subpass
->depth_stencil_attachment
->attachment
;
4597 uint32_t dst_att
= subpass
->ds_resolve_attachment
->attachment
;
4599 assert(src_att
< cmd_buffer
->state
.pass
->attachment_count
);
4600 assert(dst_att
< cmd_buffer
->state
.pass
->attachment_count
);
4602 if (cmd_buffer
->state
.attachments
[dst_att
].pending_clear_aspects
) {
4603 /* From the Vulkan 1.0 spec:
4605 * If the first use of an attachment in a render pass is as a
4606 * resolve attachment, then the loadOp is effectively ignored
4607 * as the resolve is guaranteed to overwrite all pixels in the
4610 cmd_buffer
->state
.attachments
[dst_att
].pending_clear_aspects
= 0;
4613 struct anv_image_view
*src_iview
= cmd_state
->attachments
[src_att
].image_view
;
4614 struct anv_image_view
*dst_iview
= cmd_state
->attachments
[dst_att
].image_view
;
4616 const VkRect2D render_area
= cmd_buffer
->state
.render_area
;
4618 struct anv_attachment_state
*src_state
=
4619 &cmd_state
->attachments
[src_att
];
4620 struct anv_attachment_state
*dst_state
=
4621 &cmd_state
->attachments
[dst_att
];
4623 if ((src_iview
->image
->aspects
& VK_IMAGE_ASPECT_DEPTH_BIT
) &&
4624 subpass
->depth_resolve_mode
!= VK_RESOLVE_MODE_NONE_KHR
) {
4626 /* MSAA resolves sample from the source attachment. Transition the
4627 * depth attachment first to get rid of any HiZ that we may not be
4630 transition_depth_buffer(cmd_buffer
, src_iview
->image
,
4631 src_state
->current_layout
,
4632 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
);
4633 src_state
->aux_usage
=
4634 anv_layout_to_aux_usage(&cmd_buffer
->device
->info
, src_iview
->image
,
4635 VK_IMAGE_ASPECT_DEPTH_BIT
,
4636 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
);
4637 src_state
->current_layout
= VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
;
4639 /* MSAA resolves write to the resolve attachment as if it were any
4640 * other transfer op. Transition the resolve attachment accordingly.
4642 VkImageLayout dst_initial_layout
= dst_state
->current_layout
;
4644 /* If our render area is the entire size of the image, we're going to
4645 * blow it all away so we can claim the initial layout is UNDEFINED
4646 * and we'll get a HiZ ambiguate instead of a resolve.
4648 if (dst_iview
->image
->type
!= VK_IMAGE_TYPE_3D
&&
4649 render_area
.offset
.x
== 0 && render_area
.offset
.y
== 0 &&
4650 render_area
.extent
.width
== dst_iview
->extent
.width
&&
4651 render_area
.extent
.height
== dst_iview
->extent
.height
)
4652 dst_initial_layout
= VK_IMAGE_LAYOUT_UNDEFINED
;
4654 transition_depth_buffer(cmd_buffer
, dst_iview
->image
,
4656 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
);
4657 dst_state
->aux_usage
=
4658 anv_layout_to_aux_usage(&cmd_buffer
->device
->info
, dst_iview
->image
,
4659 VK_IMAGE_ASPECT_DEPTH_BIT
,
4660 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
);
4661 dst_state
->current_layout
= VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
;
4663 enum blorp_filter filter
=
4664 vk_to_blorp_resolve_mode(subpass
->depth_resolve_mode
);
4666 anv_image_msaa_resolve(cmd_buffer
,
4667 src_iview
->image
, src_state
->aux_usage
,
4668 src_iview
->planes
[0].isl
.base_level
,
4669 src_iview
->planes
[0].isl
.base_array_layer
,
4670 dst_iview
->image
, dst_state
->aux_usage
,
4671 dst_iview
->planes
[0].isl
.base_level
,
4672 dst_iview
->planes
[0].isl
.base_array_layer
,
4673 VK_IMAGE_ASPECT_DEPTH_BIT
,
4674 render_area
.offset
.x
, render_area
.offset
.y
,
4675 render_area
.offset
.x
, render_area
.offset
.y
,
4676 render_area
.extent
.width
,
4677 render_area
.extent
.height
,
4678 fb
->layers
, filter
);
4681 if ((src_iview
->image
->aspects
& VK_IMAGE_ASPECT_STENCIL_BIT
) &&
4682 subpass
->stencil_resolve_mode
!= VK_RESOLVE_MODE_NONE_KHR
) {
4684 src_state
->current_stencil_layout
= VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
;
4685 dst_state
->current_stencil_layout
= VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
;
4687 enum isl_aux_usage src_aux_usage
= ISL_AUX_USAGE_NONE
;
4688 enum isl_aux_usage dst_aux_usage
= ISL_AUX_USAGE_NONE
;
4690 enum blorp_filter filter
=
4691 vk_to_blorp_resolve_mode(subpass
->stencil_resolve_mode
);
4693 anv_image_msaa_resolve(cmd_buffer
,
4694 src_iview
->image
, src_aux_usage
,
4695 src_iview
->planes
[0].isl
.base_level
,
4696 src_iview
->planes
[0].isl
.base_array_layer
,
4697 dst_iview
->image
, dst_aux_usage
,
4698 dst_iview
->planes
[0].isl
.base_level
,
4699 dst_iview
->planes
[0].isl
.base_array_layer
,
4700 VK_IMAGE_ASPECT_STENCIL_BIT
,
4701 render_area
.offset
.x
, render_area
.offset
.y
,
4702 render_area
.offset
.x
, render_area
.offset
.y
,
4703 render_area
.extent
.width
,
4704 render_area
.extent
.height
,
4705 fb
->layers
, filter
);
4710 /* On gen7, we have to store a texturable version of the stencil buffer in
4711 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
4712 * forth at strategic points. Stencil writes are only allowed in following
4715 * - VK_IMAGE_LAYOUT_GENERAL
4716 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
4717 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
4718 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
4719 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
4721 * For general, we have no nice opportunity to transition so we do the copy
4722 * to the shadow unconditionally at the end of the subpass. For transfer
4723 * destinations, we can update it as part of the transfer op. For the other
4724 * layouts, we delay the copy until a transition into some other layout.
4726 if (subpass
->depth_stencil_attachment
) {
4727 uint32_t a
= subpass
->depth_stencil_attachment
->attachment
;
4728 assert(a
!= VK_ATTACHMENT_UNUSED
);
4730 struct anv_attachment_state
*att_state
= &cmd_state
->attachments
[a
];
4731 struct anv_image_view
*iview
= cmd_state
->attachments
[a
].image_view
;;
4732 const struct anv_image
*image
= iview
->image
;
4734 if (image
->aspects
& VK_IMAGE_ASPECT_STENCIL_BIT
) {
4735 uint32_t plane
= anv_image_aspect_to_plane(image
->aspects
,
4736 VK_IMAGE_ASPECT_STENCIL_BIT
);
4738 if (image
->planes
[plane
].shadow_surface
.isl
.size_B
> 0 &&
4739 att_state
->current_stencil_layout
== VK_IMAGE_LAYOUT_GENERAL
) {
4740 assert(image
->aspects
& VK_IMAGE_ASPECT_STENCIL_BIT
);
4741 anv_image_copy_to_shadow(cmd_buffer
, image
,
4742 VK_IMAGE_ASPECT_STENCIL_BIT
,
4743 iview
->planes
[plane
].isl
.base_level
, 1,
4744 iview
->planes
[plane
].isl
.base_array_layer
,
4749 #endif /* GEN_GEN == 7 */
4751 for (uint32_t i
= 0; i
< subpass
->attachment_count
; ++i
) {
4752 const uint32_t a
= subpass
->attachments
[i
].attachment
;
4753 if (a
== VK_ATTACHMENT_UNUSED
)
4756 if (cmd_state
->pass
->attachments
[a
].last_subpass_idx
!= subpass_id
)
4759 assert(a
< cmd_state
->pass
->attachment_count
);
4760 struct anv_attachment_state
*att_state
= &cmd_state
->attachments
[a
];
4761 struct anv_image_view
*iview
= cmd_state
->attachments
[a
].image_view
;
4762 const struct anv_image
*image
= iview
->image
;
4764 if ((image
->aspects
& VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV
) &&
4765 image
->vk_format
!= iview
->vk_format
) {
4766 enum anv_fast_clear_type fast_clear_type
=
4767 anv_layout_to_fast_clear_type(&cmd_buffer
->device
->info
,
4768 image
, VK_IMAGE_ASPECT_COLOR_BIT
,
4769 att_state
->current_layout
);
4771 /* If any clear color was used, flush it down the aux surfaces. If we
4772 * don't do it now using the view's format we might use the clear
4773 * color incorrectly in the following resolves (for example with an
4774 * SRGB view & a UNORM image).
4776 if (fast_clear_type
!= ANV_FAST_CLEAR_NONE
) {
4777 anv_perf_warn(cmd_buffer
->device
->instance
, iview
,
4778 "Doing a partial resolve to get rid of clear color at the "
4779 "end of a renderpass due to an image/view format mismatch");
4781 uint32_t base_layer
, layer_count
;
4782 if (image
->type
== VK_IMAGE_TYPE_3D
) {
4784 layer_count
= anv_minify(iview
->image
->extent
.depth
,
4785 iview
->planes
[0].isl
.base_level
);
4787 base_layer
= iview
->planes
[0].isl
.base_array_layer
;
4788 layer_count
= fb
->layers
;
4791 for (uint32_t a
= 0; a
< layer_count
; a
++) {
4792 uint32_t array_layer
= base_layer
+ a
;
4793 if (image
->samples
== 1) {
4794 anv_cmd_predicated_ccs_resolve(cmd_buffer
, image
,
4795 iview
->planes
[0].isl
.format
,
4796 VK_IMAGE_ASPECT_COLOR_BIT
,
4797 iview
->planes
[0].isl
.base_level
,
4799 ISL_AUX_OP_PARTIAL_RESOLVE
,
4800 ANV_FAST_CLEAR_NONE
);
4802 anv_cmd_predicated_mcs_resolve(cmd_buffer
, image
,
4803 iview
->planes
[0].isl
.format
,
4804 VK_IMAGE_ASPECT_COLOR_BIT
,
4806 ISL_AUX_OP_PARTIAL_RESOLVE
,
4807 ANV_FAST_CLEAR_NONE
);
4813 /* Transition the image into the final layout for this render pass */
4814 VkImageLayout target_layout
=
4815 cmd_state
->pass
->attachments
[a
].final_layout
;
4816 VkImageLayout target_stencil_layout
=
4817 cmd_state
->pass
->attachments
[a
].stencil_final_layout
;
4819 uint32_t base_layer
, layer_count
;
4820 if (image
->type
== VK_IMAGE_TYPE_3D
) {
4822 layer_count
= anv_minify(iview
->image
->extent
.depth
,
4823 iview
->planes
[0].isl
.base_level
);
4825 base_layer
= iview
->planes
[0].isl
.base_array_layer
;
4826 layer_count
= fb
->layers
;
4829 if (image
->aspects
& VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV
) {
4830 assert(image
->aspects
== VK_IMAGE_ASPECT_COLOR_BIT
);
4831 transition_color_buffer(cmd_buffer
, image
, VK_IMAGE_ASPECT_COLOR_BIT
,
4832 iview
->planes
[0].isl
.base_level
, 1,
4833 base_layer
, layer_count
,
4834 att_state
->current_layout
, target_layout
);
4837 if (image
->aspects
& VK_IMAGE_ASPECT_DEPTH_BIT
) {
4838 transition_depth_buffer(cmd_buffer
, image
,
4839 att_state
->current_layout
, target_layout
);
4842 if (image
->aspects
& VK_IMAGE_ASPECT_STENCIL_BIT
) {
4843 transition_stencil_buffer(cmd_buffer
, image
,
4844 iview
->planes
[0].isl
.base_level
, 1,
4845 base_layer
, layer_count
,
4846 att_state
->current_stencil_layout
,
4847 target_stencil_layout
);
4851 /* Accumulate any subpass flushes that need to happen after the subpass.
4852 * Yes, they do get accumulated twice in the NextSubpass case but since
4853 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
4854 * ORing the bits in twice so it's harmless.
4856 cmd_buffer
->state
.pending_pipe_bits
|=
4857 cmd_buffer
->state
.pass
->subpass_flushes
[subpass_id
+ 1];
4860 void genX(CmdBeginRenderPass
)(
4861 VkCommandBuffer commandBuffer
,
4862 const VkRenderPassBeginInfo
* pRenderPassBegin
,
4863 VkSubpassContents contents
)
4865 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
4866 ANV_FROM_HANDLE(anv_render_pass
, pass
, pRenderPassBegin
->renderPass
);
4867 ANV_FROM_HANDLE(anv_framebuffer
, framebuffer
, pRenderPassBegin
->framebuffer
);
4869 cmd_buffer
->state
.framebuffer
= framebuffer
;
4870 cmd_buffer
->state
.pass
= pass
;
4871 cmd_buffer
->state
.render_area
= pRenderPassBegin
->renderArea
;
4873 genX(cmd_buffer_setup_attachments
)(cmd_buffer
, pass
, pRenderPassBegin
);
4875 /* If we failed to setup the attachments we should not try to go further */
4876 if (result
!= VK_SUCCESS
) {
4877 assert(anv_batch_has_error(&cmd_buffer
->batch
));
4881 genX(flush_pipeline_select_3d
)(cmd_buffer
);
4883 cmd_buffer_begin_subpass(cmd_buffer
, 0);
4886 void genX(CmdBeginRenderPass2KHR
)(
4887 VkCommandBuffer commandBuffer
,
4888 const VkRenderPassBeginInfo
* pRenderPassBeginInfo
,
4889 const VkSubpassBeginInfoKHR
* pSubpassBeginInfo
)
4891 genX(CmdBeginRenderPass
)(commandBuffer
, pRenderPassBeginInfo
,
4892 pSubpassBeginInfo
->contents
);
4895 void genX(CmdNextSubpass
)(
4896 VkCommandBuffer commandBuffer
,
4897 VkSubpassContents contents
)
4899 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
4901 if (anv_batch_has_error(&cmd_buffer
->batch
))
4904 assert(cmd_buffer
->level
== VK_COMMAND_BUFFER_LEVEL_PRIMARY
);
4906 uint32_t prev_subpass
= anv_get_subpass_id(&cmd_buffer
->state
);
4907 cmd_buffer_end_subpass(cmd_buffer
);
4908 cmd_buffer_begin_subpass(cmd_buffer
, prev_subpass
+ 1);
4911 void genX(CmdNextSubpass2KHR
)(
4912 VkCommandBuffer commandBuffer
,
4913 const VkSubpassBeginInfoKHR
* pSubpassBeginInfo
,
4914 const VkSubpassEndInfoKHR
* pSubpassEndInfo
)
4916 genX(CmdNextSubpass
)(commandBuffer
, pSubpassBeginInfo
->contents
);
4919 void genX(CmdEndRenderPass
)(
4920 VkCommandBuffer commandBuffer
)
4922 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
4924 if (anv_batch_has_error(&cmd_buffer
->batch
))
4927 cmd_buffer_end_subpass(cmd_buffer
);
4929 cmd_buffer
->state
.hiz_enabled
= false;
4932 anv_dump_add_attachments(cmd_buffer
);
4935 /* Remove references to render pass specific state. This enables us to
4936 * detect whether or not we're in a renderpass.
4938 cmd_buffer
->state
.framebuffer
= NULL
;
4939 cmd_buffer
->state
.pass
= NULL
;
4940 cmd_buffer
->state
.subpass
= NULL
;
4943 void genX(CmdEndRenderPass2KHR
)(
4944 VkCommandBuffer commandBuffer
,
4945 const VkSubpassEndInfoKHR
* pSubpassEndInfo
)
4947 genX(CmdEndRenderPass
)(commandBuffer
);
4951 genX(cmd_emit_conditional_render_predicate
)(struct anv_cmd_buffer
*cmd_buffer
)
4953 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4954 struct gen_mi_builder b
;
4955 gen_mi_builder_init(&b
, &cmd_buffer
->batch
);
4957 gen_mi_store(&b
, gen_mi_reg64(MI_PREDICATE_SRC0
),
4958 gen_mi_reg32(ANV_PREDICATE_RESULT_REG
));
4959 gen_mi_store(&b
, gen_mi_reg64(MI_PREDICATE_SRC1
), gen_mi_imm(0));
4961 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_PREDICATE
), mip
) {
4962 mip
.LoadOperation
= LOAD_LOADINV
;
4963 mip
.CombineOperation
= COMBINE_SET
;
4964 mip
.CompareOperation
= COMPARE_SRCS_EQUAL
;
4969 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4970 void genX(CmdBeginConditionalRenderingEXT
)(
4971 VkCommandBuffer commandBuffer
,
4972 const VkConditionalRenderingBeginInfoEXT
* pConditionalRenderingBegin
)
4974 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
4975 ANV_FROM_HANDLE(anv_buffer
, buffer
, pConditionalRenderingBegin
->buffer
);
4976 struct anv_cmd_state
*cmd_state
= &cmd_buffer
->state
;
4977 struct anv_address value_address
=
4978 anv_address_add(buffer
->address
, pConditionalRenderingBegin
->offset
);
4980 const bool isInverted
= pConditionalRenderingBegin
->flags
&
4981 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT
;
4983 cmd_state
->conditional_render_enabled
= true;
4985 genX(cmd_buffer_apply_pipe_flushes
)(cmd_buffer
);
4987 struct gen_mi_builder b
;
4988 gen_mi_builder_init(&b
, &cmd_buffer
->batch
);
4990 /* Section 19.4 of the Vulkan 1.1.85 spec says:
4992 * If the value of the predicate in buffer memory changes
4993 * while conditional rendering is active, the rendering commands
4994 * may be discarded in an implementation-dependent way.
4995 * Some implementations may latch the value of the predicate
4996 * upon beginning conditional rendering while others
4997 * may read it before every rendering command.
4999 * So it's perfectly fine to read a value from the buffer once.
5001 struct gen_mi_value value
= gen_mi_mem32(value_address
);
5003 /* Precompute predicate result, it is necessary to support secondary
5004 * command buffers since it is unknown if conditional rendering is
5005 * inverted when populating them.
5007 gen_mi_store(&b
, gen_mi_reg64(ANV_PREDICATE_RESULT_REG
),
5008 isInverted
? gen_mi_uge(&b
, gen_mi_imm(0), value
) :
5009 gen_mi_ult(&b
, gen_mi_imm(0), value
));
5012 void genX(CmdEndConditionalRenderingEXT
)(
5013 VkCommandBuffer commandBuffer
)
5015 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
5016 struct anv_cmd_state
*cmd_state
= &cmd_buffer
->state
;
5018 cmd_state
->conditional_render_enabled
= false;
5022 /* Set of stage bits for which are pipelined, i.e. they get queued by the
5023 * command streamer for later execution.
5025 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5026 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
5027 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
5028 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
5029 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
5030 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
5031 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
5032 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
5033 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
5034 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
5035 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
5036 VK_PIPELINE_STAGE_TRANSFER_BIT | \
5037 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
5038 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
5039 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
5041 void genX(CmdSetEvent
)(
5042 VkCommandBuffer commandBuffer
,
5044 VkPipelineStageFlags stageMask
)
5046 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
5047 ANV_FROM_HANDLE(anv_event
, event
, _event
);
5049 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pc
) {
5050 if (stageMask
& ANV_PIPELINE_STAGE_PIPELINED_BITS
) {
5051 pc
.StallAtPixelScoreboard
= true;
5052 pc
.CommandStreamerStallEnable
= true;
5055 pc
.DestinationAddressType
= DAT_PPGTT
,
5056 pc
.PostSyncOperation
= WriteImmediateData
,
5057 pc
.Address
= (struct anv_address
) {
5058 cmd_buffer
->device
->dynamic_state_pool
.block_pool
.bo
,
5061 pc
.ImmediateData
= VK_EVENT_SET
;
5065 void genX(CmdResetEvent
)(
5066 VkCommandBuffer commandBuffer
,
5068 VkPipelineStageFlags stageMask
)
5070 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
5071 ANV_FROM_HANDLE(anv_event
, event
, _event
);
5073 anv_batch_emit(&cmd_buffer
->batch
, GENX(PIPE_CONTROL
), pc
) {
5074 if (stageMask
& ANV_PIPELINE_STAGE_PIPELINED_BITS
) {
5075 pc
.StallAtPixelScoreboard
= true;
5076 pc
.CommandStreamerStallEnable
= true;
5079 pc
.DestinationAddressType
= DAT_PPGTT
;
5080 pc
.PostSyncOperation
= WriteImmediateData
;
5081 pc
.Address
= (struct anv_address
) {
5082 cmd_buffer
->device
->dynamic_state_pool
.block_pool
.bo
,
5085 pc
.ImmediateData
= VK_EVENT_RESET
;
5089 void genX(CmdWaitEvents
)(
5090 VkCommandBuffer commandBuffer
,
5091 uint32_t eventCount
,
5092 const VkEvent
* pEvents
,
5093 VkPipelineStageFlags srcStageMask
,
5094 VkPipelineStageFlags destStageMask
,
5095 uint32_t memoryBarrierCount
,
5096 const VkMemoryBarrier
* pMemoryBarriers
,
5097 uint32_t bufferMemoryBarrierCount
,
5098 const VkBufferMemoryBarrier
* pBufferMemoryBarriers
,
5099 uint32_t imageMemoryBarrierCount
,
5100 const VkImageMemoryBarrier
* pImageMemoryBarriers
)
5103 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
5105 for (uint32_t i
= 0; i
< eventCount
; i
++) {
5106 ANV_FROM_HANDLE(anv_event
, event
, pEvents
[i
]);
5108 anv_batch_emit(&cmd_buffer
->batch
, GENX(MI_SEMAPHORE_WAIT
), sem
) {
5109 sem
.WaitMode
= PollingMode
,
5110 sem
.CompareOperation
= COMPARE_SAD_EQUAL_SDD
,
5111 sem
.SemaphoreDataDword
= VK_EVENT_SET
,
5112 sem
.SemaphoreAddress
= (struct anv_address
) {
5113 cmd_buffer
->device
->dynamic_state_pool
.block_pool
.bo
,
5119 anv_finishme("Implement events on gen7");
5122 genX(CmdPipelineBarrier
)(commandBuffer
, srcStageMask
, destStageMask
,
5123 false, /* byRegion */
5124 memoryBarrierCount
, pMemoryBarriers
,
5125 bufferMemoryBarrierCount
, pBufferMemoryBarriers
,
5126 imageMemoryBarrierCount
, pImageMemoryBarriers
);
5129 VkResult
genX(CmdSetPerformanceOverrideINTEL
)(
5130 VkCommandBuffer commandBuffer
,
5131 const VkPerformanceOverrideInfoINTEL
* pOverrideInfo
)
5133 ANV_FROM_HANDLE(anv_cmd_buffer
, cmd_buffer
, commandBuffer
);
5135 switch (pOverrideInfo
->type
) {
5136 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL
: {
5140 anv_pack_struct(&dw
, GENX(CS_DEBUG_MODE2
),
5141 ._3DRenderingInstructionDisable
= pOverrideInfo
->enable
,
5142 .MediaInstructionDisable
= pOverrideInfo
->enable
,
5143 ._3DRenderingInstructionDisableMask
= true,
5144 .MediaInstructionDisableMask
= true);
5145 emit_lri(&cmd_buffer
->batch
, GENX(CS_DEBUG_MODE2_num
), dw
);
5147 anv_pack_struct(&dw
, GENX(INSTPM
),
5148 ._3DRenderingInstructionDisable
= pOverrideInfo
->enable
,
5149 .MediaInstructionDisable
= pOverrideInfo
->enable
,
5150 ._3DRenderingInstructionDisableMask
= true,
5151 .MediaInstructionDisableMask
= true);
5152 emit_lri(&cmd_buffer
->batch
, GENX(INSTPM_num
), dw
);
5157 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL
:
5158 if (pOverrideInfo
->enable
) {
5159 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5160 cmd_buffer
->state
.pending_pipe_bits
|=
5161 ANV_PIPE_FLUSH_BITS
|
5162 ANV_PIPE_INVALIDATE_BITS
;
5163 genX(cmd_buffer_apply_pipe_flushes
)(cmd_buffer
);
5168 unreachable("Invalid override");
5174 VkResult
genX(CmdSetPerformanceStreamMarkerINTEL
)(
5175 VkCommandBuffer commandBuffer
,
5176 const VkPerformanceStreamMarkerInfoINTEL
* pMarkerInfo
)
5178 /* TODO: Waiting on the register to write, might depend on generation. */