anv: Remove special allocation for anv_push_constants
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 #include "util/fast_idiv_by_const.h"
31
32 #include "common/gen_l3_config.h"
33 #include "genxml/gen_macros.h"
34 #include "genxml/genX_pack.h"
35
36 /* We reserve GPR 14 and 15 for conditional rendering */
37 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
38 #define __gen_get_batch_dwords anv_batch_emit_dwords
39 #define __gen_address_offset anv_address_add
40 #include "common/gen_mi_builder.h"
41
42 static void
43 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
44 {
45 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
46 lri.RegisterOffset = reg;
47 lri.DataDWord = imm;
48 }
49 }
50
51 void
52 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
53 {
54 struct anv_device *device = cmd_buffer->device;
55
56 /* If we are emitting a new state base address we probably need to re-emit
57 * binding tables.
58 */
59 cmd_buffer->state.descriptors_dirty |= ~0;
60
61 /* Emit a render target cache flush.
62 *
63 * This isn't documented anywhere in the PRM. However, it seems to be
64 * necessary prior to changing the surface state base adress. Without
65 * this, we get GPU hangs when using multi-level command buffers which
66 * clear depth, reset state base address, and then go render stuff.
67 */
68 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
69 pc.DCFlushEnable = true;
70 pc.RenderTargetCacheFlushEnable = true;
71 pc.CommandStreamerStallEnable = true;
72 }
73
74 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
75 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
76 sba.GeneralStateMOCS = GENX(MOCS);
77 sba.GeneralStateBaseAddressModifyEnable = true;
78
79 sba.SurfaceStateBaseAddress =
80 anv_cmd_buffer_surface_base_address(cmd_buffer);
81 sba.SurfaceStateMOCS = GENX(MOCS);
82 sba.SurfaceStateBaseAddressModifyEnable = true;
83
84 sba.DynamicStateBaseAddress =
85 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
86 sba.DynamicStateMOCS = GENX(MOCS);
87 sba.DynamicStateBaseAddressModifyEnable = true;
88
89 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
90 sba.IndirectObjectMOCS = GENX(MOCS);
91 sba.IndirectObjectBaseAddressModifyEnable = true;
92
93 sba.InstructionBaseAddress =
94 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
95 sba.InstructionMOCS = GENX(MOCS);
96 sba.InstructionBaseAddressModifyEnable = true;
97
98 # if (GEN_GEN >= 8)
99 /* Broadwell requires that we specify a buffer size for a bunch of
100 * these fields. However, since we will be growing the BO's live, we
101 * just set them all to the maximum.
102 */
103 sba.GeneralStateBufferSize = 0xfffff;
104 sba.GeneralStateBufferSizeModifyEnable = true;
105 sba.DynamicStateBufferSize = 0xfffff;
106 sba.DynamicStateBufferSizeModifyEnable = true;
107 sba.IndirectObjectBufferSize = 0xfffff;
108 sba.IndirectObjectBufferSizeModifyEnable = true;
109 sba.InstructionBufferSize = 0xfffff;
110 sba.InstructionBuffersizeModifyEnable = true;
111 # endif
112 # if (GEN_GEN >= 9)
113 if (cmd_buffer->device->instance->physicalDevice.use_softpin) {
114 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
115 .bo = device->surface_state_pool.block_pool.bo,
116 .offset = 0,
117 };
118 sba.BindlessSurfaceStateSize = (1 << 20) - 1;
119 } else {
120 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
121 sba.BindlessSurfaceStateSize = 0;
122 }
123 sba.BindlessSurfaceStateMOCS = GENX(MOCS);
124 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
125 # endif
126 # if (GEN_GEN >= 10)
127 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
128 sba.BindlessSamplerStateMOCS = GENX(MOCS);
129 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
130 sba.BindlessSamplerStateBufferSize = 0;
131 # endif
132 }
133
134 /* After re-setting the surface state base address, we have to do some
135 * cache flusing so that the sampler engine will pick up the new
136 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
137 * Shared Function > 3D Sampler > State > State Caching (page 96):
138 *
139 * Coherency with system memory in the state cache, like the texture
140 * cache is handled partially by software. It is expected that the
141 * command stream or shader will issue Cache Flush operation or
142 * Cache_Flush sampler message to ensure that the L1 cache remains
143 * coherent with system memory.
144 *
145 * [...]
146 *
147 * Whenever the value of the Dynamic_State_Base_Addr,
148 * Surface_State_Base_Addr are altered, the L1 state cache must be
149 * invalidated to ensure the new surface or sampler state is fetched
150 * from system memory.
151 *
152 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
153 * which, according the PIPE_CONTROL instruction documentation in the
154 * Broadwell PRM:
155 *
156 * Setting this bit is independent of any other bit in this packet.
157 * This bit controls the invalidation of the L1 and L2 state caches
158 * at the top of the pipe i.e. at the parsing time.
159 *
160 * Unfortunately, experimentation seems to indicate that state cache
161 * invalidation through a PIPE_CONTROL does nothing whatsoever in
162 * regards to surface state and binding tables. In stead, it seems that
163 * invalidating the texture cache is what is actually needed.
164 *
165 * XXX: As far as we have been able to determine through
166 * experimentation, shows that flush the texture cache appears to be
167 * sufficient. The theory here is that all of the sampling/rendering
168 * units cache the binding table in the texture cache. However, we have
169 * yet to be able to actually confirm this.
170 */
171 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
172 pc.TextureCacheInvalidationEnable = true;
173 pc.ConstantCacheInvalidationEnable = true;
174 pc.StateCacheInvalidationEnable = true;
175 }
176 }
177
178 static void
179 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
180 struct anv_state state, struct anv_address addr)
181 {
182 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
183
184 VkResult result =
185 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
186 state.offset + isl_dev->ss.addr_offset,
187 addr.bo, addr.offset);
188 if (result != VK_SUCCESS)
189 anv_batch_set_error(&cmd_buffer->batch, result);
190 }
191
192 static void
193 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
194 struct anv_surface_state state)
195 {
196 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
197
198 assert(!anv_address_is_null(state.address));
199 add_surface_reloc(cmd_buffer, state.state, state.address);
200
201 if (!anv_address_is_null(state.aux_address)) {
202 VkResult result =
203 anv_reloc_list_add(&cmd_buffer->surface_relocs,
204 &cmd_buffer->pool->alloc,
205 state.state.offset + isl_dev->ss.aux_addr_offset,
206 state.aux_address.bo, state.aux_address.offset);
207 if (result != VK_SUCCESS)
208 anv_batch_set_error(&cmd_buffer->batch, result);
209 }
210
211 if (!anv_address_is_null(state.clear_address)) {
212 VkResult result =
213 anv_reloc_list_add(&cmd_buffer->surface_relocs,
214 &cmd_buffer->pool->alloc,
215 state.state.offset +
216 isl_dev->ss.clear_color_state_offset,
217 state.clear_address.bo, state.clear_address.offset);
218 if (result != VK_SUCCESS)
219 anv_batch_set_error(&cmd_buffer->batch, result);
220 }
221 }
222
223 static void
224 color_attachment_compute_aux_usage(struct anv_device * device,
225 struct anv_cmd_state * cmd_state,
226 uint32_t att, VkRect2D render_area,
227 union isl_color_value *fast_clear_color)
228 {
229 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
230 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
231
232 assert(iview->n_planes == 1);
233
234 if (iview->planes[0].isl.base_array_layer >=
235 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
236 iview->planes[0].isl.base_level)) {
237 /* There is no aux buffer which corresponds to the level and layer(s)
238 * being accessed.
239 */
240 att_state->aux_usage = ISL_AUX_USAGE_NONE;
241 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
242 att_state->fast_clear = false;
243 return;
244 }
245
246 att_state->aux_usage =
247 anv_layout_to_aux_usage(&device->info, iview->image,
248 VK_IMAGE_ASPECT_COLOR_BIT,
249 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
250
251 /* If we don't have aux, then we should have returned early in the layer
252 * check above. If we got here, we must have something.
253 */
254 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
255
256 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
257 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
258 att_state->input_aux_usage = att_state->aux_usage;
259 } else {
260 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
261 *
262 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
263 * setting is only allowed if Surface Format supported for Fast
264 * Clear. In addition, if the surface is bound to the sampling
265 * engine, Surface Format must be supported for Render Target
266 * Compression for surfaces bound to the sampling engine."
267 *
268 * In other words, we can only sample from a fast-cleared image if it
269 * also supports color compression.
270 */
271 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
272 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
273
274 /* While fast-clear resolves and partial resolves are fairly cheap in the
275 * case where you render to most of the pixels, full resolves are not
276 * because they potentially involve reading and writing the entire
277 * framebuffer. If we can't texture with CCS_E, we should leave it off and
278 * limit ourselves to fast clears.
279 */
280 if (cmd_state->pass->attachments[att].first_subpass_layout ==
281 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
282 anv_perf_warn(device->instance, iview->image,
283 "Not temporarily enabling CCS_E.");
284 }
285 } else {
286 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
287 }
288 }
289
290 assert(iview->image->planes[0].aux_surface.isl.usage &
291 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
292
293 union isl_color_value clear_color = {};
294 anv_clear_color_from_att_state(&clear_color, att_state, iview);
295
296 att_state->clear_color_is_zero_one =
297 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
298 att_state->clear_color_is_zero =
299 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
300
301 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
302 /* Start by getting the fast clear type. We use the first subpass
303 * layout here because we don't want to fast-clear if the first subpass
304 * to use the attachment can't handle fast-clears.
305 */
306 enum anv_fast_clear_type fast_clear_type =
307 anv_layout_to_fast_clear_type(&device->info, iview->image,
308 VK_IMAGE_ASPECT_COLOR_BIT,
309 cmd_state->pass->attachments[att].first_subpass_layout);
310 switch (fast_clear_type) {
311 case ANV_FAST_CLEAR_NONE:
312 att_state->fast_clear = false;
313 break;
314 case ANV_FAST_CLEAR_DEFAULT_VALUE:
315 att_state->fast_clear = att_state->clear_color_is_zero;
316 break;
317 case ANV_FAST_CLEAR_ANY:
318 att_state->fast_clear = true;
319 break;
320 }
321
322 /* Potentially, we could do partial fast-clears but doing so has crazy
323 * alignment restrictions. It's easier to just restrict to full size
324 * fast clears for now.
325 */
326 if (render_area.offset.x != 0 ||
327 render_area.offset.y != 0 ||
328 render_area.extent.width != iview->extent.width ||
329 render_area.extent.height != iview->extent.height)
330 att_state->fast_clear = false;
331
332 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
333 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
334 att_state->fast_clear = false;
335
336 /* We only allow fast clears to the first slice of an image (level 0,
337 * layer 0) and only for the entire slice. This guarantees us that, at
338 * any given time, there is only one clear color on any given image at
339 * any given time. At the time of our testing (Jan 17, 2018), there
340 * were no known applications which would benefit from fast-clearing
341 * more than just the first slice.
342 */
343 if (att_state->fast_clear &&
344 (iview->planes[0].isl.base_level > 0 ||
345 iview->planes[0].isl.base_array_layer > 0)) {
346 anv_perf_warn(device->instance, iview->image,
347 "Rendering with multi-lod or multi-layer framebuffer "
348 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
349 "baseArrayLayer > 0. Not fast clearing.");
350 att_state->fast_clear = false;
351 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
352 anv_perf_warn(device->instance, iview->image,
353 "Rendering to a multi-layer framebuffer with "
354 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
355 }
356
357 if (att_state->fast_clear)
358 *fast_clear_color = clear_color;
359 } else {
360 att_state->fast_clear = false;
361 }
362 }
363
364 static void
365 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
366 struct anv_cmd_state *cmd_state,
367 uint32_t att, VkRect2D render_area)
368 {
369 struct anv_render_pass_attachment *pass_att =
370 &cmd_state->pass->attachments[att];
371 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
372 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
373
374 /* These will be initialized after the first subpass transition. */
375 att_state->aux_usage = ISL_AUX_USAGE_NONE;
376 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
377
378 if (GEN_GEN == 7) {
379 /* We don't do any HiZ or depth fast-clears on gen7 yet */
380 att_state->fast_clear = false;
381 return;
382 }
383
384 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
385 /* If we're just clearing stencil, we can always HiZ clear */
386 att_state->fast_clear = true;
387 return;
388 }
389
390 /* Default to false for now */
391 att_state->fast_clear = false;
392
393 /* We must have depth in order to have HiZ */
394 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
395 return;
396
397 const enum isl_aux_usage first_subpass_aux_usage =
398 anv_layout_to_aux_usage(&device->info, iview->image,
399 VK_IMAGE_ASPECT_DEPTH_BIT,
400 pass_att->first_subpass_layout);
401 if (first_subpass_aux_usage != ISL_AUX_USAGE_HIZ)
402 return;
403
404 if (!blorp_can_hiz_clear_depth(GEN_GEN,
405 iview->planes[0].isl.format,
406 iview->image->samples,
407 render_area.offset.x,
408 render_area.offset.y,
409 render_area.offset.x +
410 render_area.extent.width,
411 render_area.offset.y +
412 render_area.extent.height))
413 return;
414
415 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
416 return;
417
418 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
419 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
420 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
421 * only supports returning 0.0f. Gens prior to gen8 do not support this
422 * feature at all.
423 */
424 return;
425 }
426
427 /* If we got here, then we can fast clear */
428 att_state->fast_clear = true;
429 }
430
431 static bool
432 need_input_attachment_state(const struct anv_render_pass_attachment *att)
433 {
434 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
435 return false;
436
437 /* We only allocate input attachment states for color surfaces. Compression
438 * is not yet enabled for depth textures and stencil doesn't allow
439 * compression so we can just use the texture surface state from the view.
440 */
441 return vk_format_is_color(att->format);
442 }
443
444 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
445 * the initial layout is undefined, the HiZ buffer and depth buffer will
446 * represent the same data at the end of this operation.
447 */
448 static void
449 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
450 const struct anv_image *image,
451 VkImageLayout initial_layout,
452 VkImageLayout final_layout)
453 {
454 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
455 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
456 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
457 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
458 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
459 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
460
461 enum isl_aux_op hiz_op;
462 if (hiz_enabled && !enable_hiz) {
463 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
464 } else if (!hiz_enabled && enable_hiz) {
465 hiz_op = ISL_AUX_OP_AMBIGUATE;
466 } else {
467 assert(hiz_enabled == enable_hiz);
468 /* If the same buffer will be used, no resolves are necessary. */
469 hiz_op = ISL_AUX_OP_NONE;
470 }
471
472 if (hiz_op != ISL_AUX_OP_NONE)
473 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
474 0, 0, 1, hiz_op);
475 }
476
477 #define MI_PREDICATE_SRC0 0x2400
478 #define MI_PREDICATE_SRC1 0x2408
479 #define MI_PREDICATE_RESULT 0x2418
480
481 static void
482 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
483 const struct anv_image *image,
484 VkImageAspectFlagBits aspect,
485 uint32_t level,
486 uint32_t base_layer, uint32_t layer_count,
487 bool compressed)
488 {
489 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
490
491 /* We only have compression tracking for CCS_E */
492 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
493 return;
494
495 for (uint32_t a = 0; a < layer_count; a++) {
496 uint32_t layer = base_layer + a;
497 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
498 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
499 image, aspect,
500 level, layer);
501 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
502 }
503 }
504 }
505
506 static void
507 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
508 const struct anv_image *image,
509 VkImageAspectFlagBits aspect,
510 enum anv_fast_clear_type fast_clear)
511 {
512 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
513 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
514 image, aspect);
515 sdi.ImmediateData = fast_clear;
516 }
517
518 /* Whenever we have fast-clear, we consider that slice to be compressed.
519 * This makes building predicates much easier.
520 */
521 if (fast_clear != ANV_FAST_CLEAR_NONE)
522 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
523 }
524
525 #if GEN_IS_HASWELL || GEN_GEN >= 8
526 static inline uint32_t
527 mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
528 {
529 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
530 .ALUOpcode = opcode,
531 .Operand1 = operand1,
532 .Operand2 = operand2,
533 };
534
535 uint32_t dw;
536 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
537
538 return dw;
539 }
540 #endif
541
542 /* This is only really practical on haswell and above because it requires
543 * MI math in order to get it correct.
544 */
545 #if GEN_GEN >= 8 || GEN_IS_HASWELL
546 static void
547 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
548 const struct anv_image *image,
549 VkImageAspectFlagBits aspect,
550 uint32_t level, uint32_t array_layer,
551 enum isl_aux_op resolve_op,
552 enum anv_fast_clear_type fast_clear_supported)
553 {
554 struct gen_mi_builder b;
555 gen_mi_builder_init(&b, &cmd_buffer->batch);
556
557 const struct gen_mi_value fast_clear_type =
558 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
559 image, aspect));
560
561 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
562 /* In this case, we're doing a full resolve which means we want the
563 * resolve to happen if any compression (including fast-clears) is
564 * present.
565 *
566 * In order to simplify the logic a bit, we make the assumption that,
567 * if the first slice has been fast-cleared, it is also marked as
568 * compressed. See also set_image_fast_clear_state.
569 */
570 const struct gen_mi_value compression_state =
571 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
572 image, aspect,
573 level, array_layer));
574 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
575 compression_state);
576 gen_mi_store(&b, compression_state, gen_mi_imm(0));
577
578 if (level == 0 && array_layer == 0) {
579 /* If the predicate is true, we want to write 0 to the fast clear type
580 * and, if it's false, leave it alone. We can do this by writing
581 *
582 * clear_type = clear_type & ~predicate;
583 */
584 struct gen_mi_value new_fast_clear_type =
585 gen_mi_iand(&b, fast_clear_type,
586 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
587 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
588 }
589 } else if (level == 0 && array_layer == 0) {
590 /* In this case, we are doing a partial resolve to get rid of fast-clear
591 * colors. We don't care about the compression state but we do care
592 * about how much fast clear is allowed by the final layout.
593 */
594 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
595 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
596
597 /* We need to compute (fast_clear_supported < image->fast_clear) */
598 struct gen_mi_value pred =
599 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
600 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
601 gen_mi_value_ref(&b, pred));
602
603 /* If the predicate is true, we want to write 0 to the fast clear type
604 * and, if it's false, leave it alone. We can do this by writing
605 *
606 * clear_type = clear_type & ~predicate;
607 */
608 struct gen_mi_value new_fast_clear_type =
609 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
610 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
611 } else {
612 /* In this case, we're trying to do a partial resolve on a slice that
613 * doesn't have clear color. There's nothing to do.
614 */
615 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
616 return;
617 }
618
619 /* Set src1 to 0 and use a != condition */
620 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
621
622 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
623 mip.LoadOperation = LOAD_LOADINV;
624 mip.CombineOperation = COMBINE_SET;
625 mip.CompareOperation = COMPARE_SRCS_EQUAL;
626 }
627 }
628 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
629
630 #if GEN_GEN <= 8
631 static void
632 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
633 const struct anv_image *image,
634 VkImageAspectFlagBits aspect,
635 uint32_t level, uint32_t array_layer,
636 enum isl_aux_op resolve_op,
637 enum anv_fast_clear_type fast_clear_supported)
638 {
639 struct gen_mi_builder b;
640 gen_mi_builder_init(&b, &cmd_buffer->batch);
641
642 struct gen_mi_value fast_clear_type_mem =
643 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
644 image, aspect));
645
646 /* This only works for partial resolves and only when the clear color is
647 * all or nothing. On the upside, this emits less command streamer code
648 * and works on Ivybridge and Bay Trail.
649 */
650 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
651 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
652
653 /* We don't support fast clears on anything other than the first slice. */
654 if (level > 0 || array_layer > 0)
655 return;
656
657 /* On gen8, we don't have a concept of default clear colors because we
658 * can't sample from CCS surfaces. It's enough to just load the fast clear
659 * state into the predicate register.
660 */
661 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
662 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
663 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
664
665 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
666 mip.LoadOperation = LOAD_LOADINV;
667 mip.CombineOperation = COMBINE_SET;
668 mip.CompareOperation = COMPARE_SRCS_EQUAL;
669 }
670 }
671 #endif /* GEN_GEN <= 8 */
672
673 static void
674 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
675 const struct anv_image *image,
676 enum isl_format format,
677 VkImageAspectFlagBits aspect,
678 uint32_t level, uint32_t array_layer,
679 enum isl_aux_op resolve_op,
680 enum anv_fast_clear_type fast_clear_supported)
681 {
682 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
683
684 #if GEN_GEN >= 9
685 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
686 aspect, level, array_layer,
687 resolve_op, fast_clear_supported);
688 #else /* GEN_GEN <= 8 */
689 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
690 aspect, level, array_layer,
691 resolve_op, fast_clear_supported);
692 #endif
693
694 /* CCS_D only supports full resolves and BLORP will assert on us if we try
695 * to do a partial resolve on a CCS_D surface.
696 */
697 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
698 image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
699 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
700
701 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
702 array_layer, 1, resolve_op, NULL, true);
703 }
704
705 static void
706 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
707 const struct anv_image *image,
708 enum isl_format format,
709 VkImageAspectFlagBits aspect,
710 uint32_t array_layer,
711 enum isl_aux_op resolve_op,
712 enum anv_fast_clear_type fast_clear_supported)
713 {
714 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
715 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
716
717 #if GEN_GEN >= 8 || GEN_IS_HASWELL
718 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
719 aspect, 0, array_layer,
720 resolve_op, fast_clear_supported);
721
722 anv_image_mcs_op(cmd_buffer, image, format, aspect,
723 array_layer, 1, resolve_op, NULL, true);
724 #else
725 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
726 #endif
727 }
728
729 void
730 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
731 const struct anv_image *image,
732 VkImageAspectFlagBits aspect,
733 enum isl_aux_usage aux_usage,
734 uint32_t level,
735 uint32_t base_layer,
736 uint32_t layer_count)
737 {
738 /* The aspect must be exactly one of the image aspects. */
739 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
740
741 /* The only compression types with more than just fast-clears are MCS,
742 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
743 * track the current fast-clear and compression state. This leaves us
744 * with just MCS and CCS_E.
745 */
746 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
747 aux_usage != ISL_AUX_USAGE_MCS)
748 return;
749
750 set_image_compressed_bit(cmd_buffer, image, aspect,
751 level, base_layer, layer_count, true);
752 }
753
754 static void
755 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
756 const struct anv_image *image,
757 VkImageAspectFlagBits aspect)
758 {
759 assert(cmd_buffer && image);
760 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
761
762 set_image_fast_clear_state(cmd_buffer, image, aspect,
763 ANV_FAST_CLEAR_NONE);
764
765 /* The fast clear value dword(s) will be copied into a surface state object.
766 * Ensure that the restrictions of the fields in the dword(s) are followed.
767 *
768 * CCS buffers on SKL+ can have any value set for the clear colors.
769 */
770 if (image->samples == 1 && GEN_GEN >= 9)
771 return;
772
773 /* Other combinations of auxiliary buffers and platforms require specific
774 * values in the clear value dword(s).
775 */
776 struct anv_address addr =
777 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
778
779 if (GEN_GEN >= 9) {
780 for (unsigned i = 0; i < 4; i++) {
781 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
782 sdi.Address = addr;
783 sdi.Address.offset += i * 4;
784 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
785 assert(image->samples > 1);
786 sdi.ImmediateData = 0;
787 }
788 }
789 } else {
790 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
791 sdi.Address = addr;
792 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
793 /* Pre-SKL, the dword containing the clear values also contains
794 * other fields, so we need to initialize those fields to match the
795 * values that would be in a color attachment.
796 */
797 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
798 ISL_CHANNEL_SELECT_GREEN << 22 |
799 ISL_CHANNEL_SELECT_BLUE << 19 |
800 ISL_CHANNEL_SELECT_ALPHA << 16;
801 } else if (GEN_GEN == 7) {
802 /* On IVB, the dword containing the clear values also contains
803 * other fields that must be zero or can be zero.
804 */
805 sdi.ImmediateData = 0;
806 }
807 }
808 }
809 }
810
811 /* Copy the fast-clear value dword(s) between a surface state object and an
812 * image's fast clear state buffer.
813 */
814 static void
815 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
816 struct anv_state surface_state,
817 const struct anv_image *image,
818 VkImageAspectFlagBits aspect,
819 bool copy_from_surface_state)
820 {
821 assert(cmd_buffer && image);
822 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
823
824 struct anv_address ss_clear_addr = {
825 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
826 .offset = surface_state.offset +
827 cmd_buffer->device->isl_dev.ss.clear_value_offset,
828 };
829 const struct anv_address entry_addr =
830 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
831 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
832
833 #if GEN_GEN == 7
834 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
835 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
836 * in-flight when they are issued even if the memory touched is not
837 * currently active for rendering. The weird bit is that it is not the
838 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
839 * rendering hangs such that the next stalling command after the
840 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
841 *
842 * It is unclear exactly why this hang occurs. Both MI commands come with
843 * warnings about the 3D pipeline but that doesn't seem to fully explain
844 * it. My (Jason's) best theory is that it has something to do with the
845 * fact that we're using a GPU state register as our temporary and that
846 * something with reading/writing it is causing problems.
847 *
848 * In order to work around this issue, we emit a PIPE_CONTROL with the
849 * command streamer stall bit set.
850 */
851 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
852 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
853 #endif
854
855 struct gen_mi_builder b;
856 gen_mi_builder_init(&b, &cmd_buffer->batch);
857
858 if (copy_from_surface_state) {
859 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
860 } else {
861 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
862
863 /* Updating a surface state object may require that the state cache be
864 * invalidated. From the SKL PRM, Shared Functions -> State -> State
865 * Caching:
866 *
867 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
868 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
869 * modified [...], the L1 state cache must be invalidated to ensure
870 * the new surface or sampler state is fetched from system memory.
871 *
872 * In testing, SKL doesn't actually seem to need this, but HSW does.
873 */
874 cmd_buffer->state.pending_pipe_bits |=
875 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
876 }
877 }
878
879 /**
880 * @brief Transitions a color buffer from one layout to another.
881 *
882 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
883 * more information.
884 *
885 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
886 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
887 * this represents the maximum layers to transition at each
888 * specified miplevel.
889 */
890 static void
891 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
892 const struct anv_image *image,
893 VkImageAspectFlagBits aspect,
894 const uint32_t base_level, uint32_t level_count,
895 uint32_t base_layer, uint32_t layer_count,
896 VkImageLayout initial_layout,
897 VkImageLayout final_layout)
898 {
899 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
900 /* Validate the inputs. */
901 assert(cmd_buffer);
902 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
903 /* These values aren't supported for simplicity's sake. */
904 assert(level_count != VK_REMAINING_MIP_LEVELS &&
905 layer_count != VK_REMAINING_ARRAY_LAYERS);
906 /* Ensure the subresource range is valid. */
907 UNUSED uint64_t last_level_num = base_level + level_count;
908 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
909 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
910 assert((uint64_t)base_layer + layer_count <= image_layers);
911 assert(last_level_num <= image->levels);
912 /* The spec disallows these final layouts. */
913 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
914 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
915
916 /* No work is necessary if the layout stays the same or if this subresource
917 * range lacks auxiliary data.
918 */
919 if (initial_layout == final_layout)
920 return;
921
922 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
923
924 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
925 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
926 /* This surface is a linear compressed image with a tiled shadow surface
927 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
928 * we need to ensure the shadow copy is up-to-date.
929 */
930 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
931 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
932 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
933 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
934 assert(plane == 0);
935 anv_image_copy_to_shadow(cmd_buffer, image,
936 base_level, level_count,
937 base_layer, layer_count);
938 }
939
940 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
941 return;
942
943 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
944
945 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
946 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
947 /* A subresource in the undefined layout may have been aliased and
948 * populated with any arrangement of bits. Therefore, we must initialize
949 * the related aux buffer and clear buffer entry with desirable values.
950 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
951 * images with VK_IMAGE_TILING_OPTIMAL.
952 *
953 * Initialize the relevant clear buffer entries.
954 */
955 if (base_level == 0 && base_layer == 0)
956 init_fast_clear_color(cmd_buffer, image, aspect);
957
958 /* Initialize the aux buffers to enable correct rendering. In order to
959 * ensure that things such as storage images work correctly, aux buffers
960 * need to be initialized to valid data.
961 *
962 * Having an aux buffer with invalid data is a problem for two reasons:
963 *
964 * 1) Having an invalid value in the buffer can confuse the hardware.
965 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
966 * invalid and leads to the hardware doing strange things. It
967 * doesn't hang as far as we can tell but rendering corruption can
968 * occur.
969 *
970 * 2) If this transition is into the GENERAL layout and we then use the
971 * image as a storage image, then we must have the aux buffer in the
972 * pass-through state so that, if we then go to texture from the
973 * image, we get the results of our storage image writes and not the
974 * fast clear color or other random data.
975 *
976 * For CCS both of the problems above are real demonstrable issues. In
977 * that case, the only thing we can do is to perform an ambiguate to
978 * transition the aux surface into the pass-through state.
979 *
980 * For MCS, (2) is never an issue because we don't support multisampled
981 * storage images. In theory, issue (1) is a problem with MCS but we've
982 * never seen it in the wild. For 4x and 16x, all bit patters could, in
983 * theory, be interpreted as something but we don't know that all bit
984 * patterns are actually valid. For 2x and 8x, you could easily end up
985 * with the MCS referring to an invalid plane because not all bits of
986 * the MCS value are actually used. Even though we've never seen issues
987 * in the wild, it's best to play it safe and initialize the MCS. We
988 * can use a fast-clear for MCS because we only ever touch from render
989 * and texture (no image load store).
990 */
991 if (image->samples == 1) {
992 for (uint32_t l = 0; l < level_count; l++) {
993 const uint32_t level = base_level + l;
994
995 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
996 if (base_layer >= aux_layers)
997 break; /* We will only get fewer layers as level increases */
998 uint32_t level_layer_count =
999 MIN2(layer_count, aux_layers - base_layer);
1000
1001 anv_image_ccs_op(cmd_buffer, image,
1002 image->planes[plane].surface.isl.format,
1003 aspect, level, base_layer, level_layer_count,
1004 ISL_AUX_OP_AMBIGUATE, NULL, false);
1005
1006 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1007 set_image_compressed_bit(cmd_buffer, image, aspect,
1008 level, base_layer, level_layer_count,
1009 false);
1010 }
1011 }
1012 } else {
1013 if (image->samples == 4 || image->samples == 16) {
1014 anv_perf_warn(cmd_buffer->device->instance, image,
1015 "Doing a potentially unnecessary fast-clear to "
1016 "define an MCS buffer.");
1017 }
1018
1019 assert(base_level == 0 && level_count == 1);
1020 anv_image_mcs_op(cmd_buffer, image,
1021 image->planes[plane].surface.isl.format,
1022 aspect, base_layer, layer_count,
1023 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1024 }
1025 return;
1026 }
1027
1028 const enum isl_aux_usage initial_aux_usage =
1029 anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout);
1030 const enum isl_aux_usage final_aux_usage =
1031 anv_layout_to_aux_usage(devinfo, image, aspect, final_layout);
1032
1033 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1034 * We can handle transitions between CCS_D/E to and from NONE. What we
1035 * don't yet handle is switching between CCS_E and CCS_D within a given
1036 * image. Doing so in a performant way requires more detailed aux state
1037 * tracking such as what is done in i965. For now, just assume that we
1038 * only have one type of compression.
1039 */
1040 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1041 final_aux_usage == ISL_AUX_USAGE_NONE ||
1042 initial_aux_usage == final_aux_usage);
1043
1044 /* If initial aux usage is NONE, there is nothing to resolve */
1045 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1046 return;
1047
1048 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1049
1050 /* If the initial layout supports more fast clear than the final layout
1051 * then we need at least a partial resolve.
1052 */
1053 const enum anv_fast_clear_type initial_fast_clear =
1054 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1055 const enum anv_fast_clear_type final_fast_clear =
1056 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1057 if (final_fast_clear < initial_fast_clear)
1058 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1059
1060 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1061 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1062 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1063
1064 if (resolve_op == ISL_AUX_OP_NONE)
1065 return;
1066
1067 /* Perform a resolve to synchronize data between the main and aux buffer.
1068 * Before we begin, we must satisfy the cache flushing requirement specified
1069 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1070 *
1071 * Any transition from any value in {Clear, Render, Resolve} to a
1072 * different value in {Clear, Render, Resolve} requires end of pipe
1073 * synchronization.
1074 *
1075 * We perform a flush of the write cache before and after the clear and
1076 * resolve operations to meet this requirement.
1077 *
1078 * Unlike other drawing, fast clear operations are not properly
1079 * synchronized. The first PIPE_CONTROL here likely ensures that the
1080 * contents of the previous render or clear hit the render target before we
1081 * resolve and the second likely ensures that the resolve is complete before
1082 * we do any more rendering or clearing.
1083 */
1084 cmd_buffer->state.pending_pipe_bits |=
1085 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1086
1087 for (uint32_t l = 0; l < level_count; l++) {
1088 uint32_t level = base_level + l;
1089
1090 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1091 if (base_layer >= aux_layers)
1092 break; /* We will only get fewer layers as level increases */
1093 uint32_t level_layer_count =
1094 MIN2(layer_count, aux_layers - base_layer);
1095
1096 for (uint32_t a = 0; a < level_layer_count; a++) {
1097 uint32_t array_layer = base_layer + a;
1098 if (image->samples == 1) {
1099 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1100 image->planes[plane].surface.isl.format,
1101 aspect, level, array_layer, resolve_op,
1102 final_fast_clear);
1103 } else {
1104 /* We only support fast-clear on the first layer so partial
1105 * resolves should not be used on other layers as they will use
1106 * the clear color stored in memory that is only valid for layer0.
1107 */
1108 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1109 array_layer != 0)
1110 continue;
1111
1112 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1113 image->planes[plane].surface.isl.format,
1114 aspect, array_layer, resolve_op,
1115 final_fast_clear);
1116 }
1117 }
1118 }
1119
1120 cmd_buffer->state.pending_pipe_bits |=
1121 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1122 }
1123
1124 /**
1125 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1126 */
1127 static VkResult
1128 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1129 struct anv_render_pass *pass,
1130 const VkRenderPassBeginInfo *begin)
1131 {
1132 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1133 struct anv_cmd_state *state = &cmd_buffer->state;
1134
1135 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1136
1137 if (pass->attachment_count > 0) {
1138 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1139 pass->attachment_count *
1140 sizeof(state->attachments[0]),
1141 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1142 if (state->attachments == NULL) {
1143 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1144 return anv_batch_set_error(&cmd_buffer->batch,
1145 VK_ERROR_OUT_OF_HOST_MEMORY);
1146 }
1147 } else {
1148 state->attachments = NULL;
1149 }
1150
1151 /* Reserve one for the NULL state. */
1152 unsigned num_states = 1;
1153 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1154 if (vk_format_is_color(pass->attachments[i].format))
1155 num_states++;
1156
1157 if (need_input_attachment_state(&pass->attachments[i]))
1158 num_states++;
1159 }
1160
1161 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1162 state->render_pass_states =
1163 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1164 num_states * ss_stride, isl_dev->ss.align);
1165
1166 struct anv_state next_state = state->render_pass_states;
1167 next_state.alloc_size = isl_dev->ss.size;
1168
1169 state->null_surface_state = next_state;
1170 next_state.offset += ss_stride;
1171 next_state.map += ss_stride;
1172
1173 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1174 if (vk_format_is_color(pass->attachments[i].format)) {
1175 state->attachments[i].color.state = next_state;
1176 next_state.offset += ss_stride;
1177 next_state.map += ss_stride;
1178 }
1179
1180 if (need_input_attachment_state(&pass->attachments[i])) {
1181 state->attachments[i].input.state = next_state;
1182 next_state.offset += ss_stride;
1183 next_state.map += ss_stride;
1184 }
1185 }
1186 assert(next_state.offset == state->render_pass_states.offset +
1187 state->render_pass_states.alloc_size);
1188
1189 if (begin) {
1190 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
1191 assert(pass->attachment_count == framebuffer->attachment_count);
1192
1193 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1194 isl_extent3d(framebuffer->width,
1195 framebuffer->height,
1196 framebuffer->layers));
1197
1198 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1199 struct anv_render_pass_attachment *att = &pass->attachments[i];
1200 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1201 VkImageAspectFlags clear_aspects = 0;
1202 VkImageAspectFlags load_aspects = 0;
1203
1204 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1205 /* color attachment */
1206 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1207 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1208 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1209 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1210 }
1211 } else {
1212 /* depthstencil attachment */
1213 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1214 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1215 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1216 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1217 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1218 }
1219 }
1220 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1221 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1222 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1223 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1224 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1225 }
1226 }
1227 }
1228
1229 state->attachments[i].current_layout = att->initial_layout;
1230 state->attachments[i].pending_clear_aspects = clear_aspects;
1231 state->attachments[i].pending_load_aspects = load_aspects;
1232 if (clear_aspects)
1233 state->attachments[i].clear_value = begin->pClearValues[i];
1234
1235 struct anv_image_view *iview = framebuffer->attachments[i];
1236 anv_assert(iview->vk_format == att->format);
1237
1238 const uint32_t num_layers = iview->planes[0].isl.array_len;
1239 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1240
1241 union isl_color_value clear_color = { .u32 = { 0, } };
1242 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1243 anv_assert(iview->n_planes == 1);
1244 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1245 color_attachment_compute_aux_usage(cmd_buffer->device,
1246 state, i, begin->renderArea,
1247 &clear_color);
1248
1249 anv_image_fill_surface_state(cmd_buffer->device,
1250 iview->image,
1251 VK_IMAGE_ASPECT_COLOR_BIT,
1252 &iview->planes[0].isl,
1253 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1254 state->attachments[i].aux_usage,
1255 &clear_color,
1256 0,
1257 &state->attachments[i].color,
1258 NULL);
1259
1260 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1261 } else {
1262 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1263 state, i,
1264 begin->renderArea);
1265 }
1266
1267 if (need_input_attachment_state(&pass->attachments[i])) {
1268 anv_image_fill_surface_state(cmd_buffer->device,
1269 iview->image,
1270 VK_IMAGE_ASPECT_COLOR_BIT,
1271 &iview->planes[0].isl,
1272 ISL_SURF_USAGE_TEXTURE_BIT,
1273 state->attachments[i].input_aux_usage,
1274 &clear_color,
1275 0,
1276 &state->attachments[i].input,
1277 NULL);
1278
1279 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1280 }
1281 }
1282 }
1283
1284 return VK_SUCCESS;
1285 }
1286
1287 VkResult
1288 genX(BeginCommandBuffer)(
1289 VkCommandBuffer commandBuffer,
1290 const VkCommandBufferBeginInfo* pBeginInfo)
1291 {
1292 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1293
1294 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1295 * command buffer's state. Otherwise, we must *reset* its state. In both
1296 * cases we reset it.
1297 *
1298 * From the Vulkan 1.0 spec:
1299 *
1300 * If a command buffer is in the executable state and the command buffer
1301 * was allocated from a command pool with the
1302 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1303 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1304 * as if vkResetCommandBuffer had been called with
1305 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1306 * the command buffer in the recording state.
1307 */
1308 anv_cmd_buffer_reset(cmd_buffer);
1309
1310 cmd_buffer->usage_flags = pBeginInfo->flags;
1311
1312 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1313 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1314
1315 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1316
1317 /* We sometimes store vertex data in the dynamic state buffer for blorp
1318 * operations and our dynamic state stream may re-use data from previous
1319 * command buffers. In order to prevent stale cache data, we flush the VF
1320 * cache. We could do this on every blorp call but that's not really
1321 * needed as all of the data will get written by the CPU prior to the GPU
1322 * executing anything. The chances are fairly high that they will use
1323 * blorp at least once per primary command buffer so it shouldn't be
1324 * wasted.
1325 */
1326 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
1327 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1328
1329 /* We send an "Indirect State Pointers Disable" packet at
1330 * EndCommandBuffer, so all push contant packets are ignored during a
1331 * context restore. Documentation says after that command, we need to
1332 * emit push constants again before any rendering operation. So we
1333 * flag them dirty here to make sure they get emitted.
1334 */
1335 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1336
1337 VkResult result = VK_SUCCESS;
1338 if (cmd_buffer->usage_flags &
1339 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1340 assert(pBeginInfo->pInheritanceInfo);
1341 cmd_buffer->state.pass =
1342 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1343 cmd_buffer->state.subpass =
1344 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1345
1346 /* This is optional in the inheritance info. */
1347 cmd_buffer->state.framebuffer =
1348 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1349
1350 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1351 cmd_buffer->state.pass, NULL);
1352
1353 /* Record that HiZ is enabled if we can. */
1354 if (cmd_buffer->state.framebuffer) {
1355 const struct anv_image_view * const iview =
1356 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1357
1358 if (iview) {
1359 VkImageLayout layout =
1360 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1361
1362 enum isl_aux_usage aux_usage =
1363 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1364 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1365
1366 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1367 }
1368 }
1369
1370 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1371 }
1372
1373 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1374 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1375 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1376 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1377
1378 /* If secondary buffer supports conditional rendering
1379 * we should emit commands as if conditional rendering is enabled.
1380 */
1381 cmd_buffer->state.conditional_render_enabled =
1382 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1383 }
1384 #endif
1385
1386 return result;
1387 }
1388
1389 /* From the PRM, Volume 2a:
1390 *
1391 * "Indirect State Pointers Disable
1392 *
1393 * At the completion of the post-sync operation associated with this pipe
1394 * control packet, the indirect state pointers in the hardware are
1395 * considered invalid; the indirect pointers are not saved in the context.
1396 * If any new indirect state commands are executed in the command stream
1397 * while the pipe control is pending, the new indirect state commands are
1398 * preserved.
1399 *
1400 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1401 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1402 * commands are only considered as Indirect State Pointers. Once ISP is
1403 * issued in a context, SW must initialize by programming push constant
1404 * commands for all the shaders (at least to zero length) before attempting
1405 * any rendering operation for the same context."
1406 *
1407 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1408 * even though they point to a BO that has been already unreferenced at
1409 * the end of the previous batch buffer. This has been fine so far since
1410 * we are protected by these scratch page (every address not covered by
1411 * a BO should be pointing to the scratch page). But on CNL, it is
1412 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1413 * instruction.
1414 *
1415 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1416 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1417 * context restore, so the mentioned hang doesn't happen. However,
1418 * software must program push constant commands for all stages prior to
1419 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1420 *
1421 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1422 * constants have been loaded into the EUs prior to disable the push constants
1423 * so that it doesn't hang a previous 3DPRIMITIVE.
1424 */
1425 static void
1426 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1427 {
1428 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1429 pc.StallAtPixelScoreboard = true;
1430 pc.CommandStreamerStallEnable = true;
1431 }
1432 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1433 pc.IndirectStatePointersDisable = true;
1434 pc.CommandStreamerStallEnable = true;
1435 }
1436 }
1437
1438 VkResult
1439 genX(EndCommandBuffer)(
1440 VkCommandBuffer commandBuffer)
1441 {
1442 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1443
1444 if (anv_batch_has_error(&cmd_buffer->batch))
1445 return cmd_buffer->batch.status;
1446
1447 /* We want every command buffer to start with the PMA fix in a known state,
1448 * so we disable it at the end of the command buffer.
1449 */
1450 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1451
1452 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1453
1454 emit_isp_disable(cmd_buffer);
1455
1456 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1457
1458 return VK_SUCCESS;
1459 }
1460
1461 void
1462 genX(CmdExecuteCommands)(
1463 VkCommandBuffer commandBuffer,
1464 uint32_t commandBufferCount,
1465 const VkCommandBuffer* pCmdBuffers)
1466 {
1467 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1468
1469 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1470
1471 if (anv_batch_has_error(&primary->batch))
1472 return;
1473
1474 /* The secondary command buffers will assume that the PMA fix is disabled
1475 * when they begin executing. Make sure this is true.
1476 */
1477 genX(cmd_buffer_enable_pma_fix)(primary, false);
1478
1479 /* The secondary command buffer doesn't know which textures etc. have been
1480 * flushed prior to their execution. Apply those flushes now.
1481 */
1482 genX(cmd_buffer_apply_pipe_flushes)(primary);
1483
1484 for (uint32_t i = 0; i < commandBufferCount; i++) {
1485 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1486
1487 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1488 assert(!anv_batch_has_error(&secondary->batch));
1489
1490 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1491 if (secondary->state.conditional_render_enabled) {
1492 if (!primary->state.conditional_render_enabled) {
1493 /* Secondary buffer is constructed as if it will be executed
1494 * with conditional rendering, we should satisfy this dependency
1495 * regardless of conditional rendering being enabled in primary.
1496 */
1497 struct gen_mi_builder b;
1498 gen_mi_builder_init(&b, &primary->batch);
1499 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
1500 gen_mi_imm(UINT64_MAX));
1501 }
1502 }
1503 #endif
1504
1505 if (secondary->usage_flags &
1506 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1507 /* If we're continuing a render pass from the primary, we need to
1508 * copy the surface states for the current subpass into the storage
1509 * we allocated for them in BeginCommandBuffer.
1510 */
1511 struct anv_bo *ss_bo =
1512 primary->device->surface_state_pool.block_pool.bo;
1513 struct anv_state src_state = primary->state.render_pass_states;
1514 struct anv_state dst_state = secondary->state.render_pass_states;
1515 assert(src_state.alloc_size == dst_state.alloc_size);
1516
1517 genX(cmd_buffer_so_memcpy)(primary,
1518 (struct anv_address) {
1519 .bo = ss_bo,
1520 .offset = dst_state.offset,
1521 },
1522 (struct anv_address) {
1523 .bo = ss_bo,
1524 .offset = src_state.offset,
1525 },
1526 src_state.alloc_size);
1527 }
1528
1529 anv_cmd_buffer_add_secondary(primary, secondary);
1530 }
1531
1532 /* The secondary may have selected a different pipeline (3D or compute) and
1533 * may have changed the current L3$ configuration. Reset our tracking
1534 * variables to invalid values to ensure that we re-emit these in the case
1535 * where we do any draws or compute dispatches from the primary after the
1536 * secondary has returned.
1537 */
1538 primary->state.current_pipeline = UINT32_MAX;
1539 primary->state.current_l3_config = NULL;
1540
1541 /* Each of the secondary command buffers will use its own state base
1542 * address. We need to re-emit state base address for the primary after
1543 * all of the secondaries are done.
1544 *
1545 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1546 * address calls?
1547 */
1548 genX(cmd_buffer_emit_state_base_address)(primary);
1549 }
1550
1551 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1552 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1553 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1554
1555 /**
1556 * Program the hardware to use the specified L3 configuration.
1557 */
1558 void
1559 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1560 const struct gen_l3_config *cfg)
1561 {
1562 assert(cfg);
1563 if (cfg == cmd_buffer->state.current_l3_config)
1564 return;
1565
1566 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1567 intel_logd("L3 config transition: ");
1568 gen_dump_l3_config(cfg, stderr);
1569 }
1570
1571 const bool has_slm = cfg->n[GEN_L3P_SLM];
1572
1573 /* According to the hardware docs, the L3 partitioning can only be changed
1574 * while the pipeline is completely drained and the caches are flushed,
1575 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1576 */
1577 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1578 pc.DCFlushEnable = true;
1579 pc.PostSyncOperation = NoWrite;
1580 pc.CommandStreamerStallEnable = true;
1581 }
1582
1583 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1584 * invalidation of the relevant caches. Note that because RO invalidation
1585 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1586 * command is processed by the CS) we cannot combine it with the previous
1587 * stalling flush as the hardware documentation suggests, because that
1588 * would cause the CS to stall on previous rendering *after* RO
1589 * invalidation and wouldn't prevent the RO caches from being polluted by
1590 * concurrent rendering before the stall completes. This intentionally
1591 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1592 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1593 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1594 * already guarantee that there is no concurrent GPGPU kernel execution
1595 * (see SKL HSD 2132585).
1596 */
1597 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1598 pc.TextureCacheInvalidationEnable = true;
1599 pc.ConstantCacheInvalidationEnable = true;
1600 pc.InstructionCacheInvalidateEnable = true;
1601 pc.StateCacheInvalidationEnable = true;
1602 pc.PostSyncOperation = NoWrite;
1603 }
1604
1605 /* Now send a third stalling flush to make sure that invalidation is
1606 * complete when the L3 configuration registers are modified.
1607 */
1608 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1609 pc.DCFlushEnable = true;
1610 pc.PostSyncOperation = NoWrite;
1611 pc.CommandStreamerStallEnable = true;
1612 }
1613
1614 #if GEN_GEN >= 8
1615
1616 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1617
1618 uint32_t l3cr;
1619 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1620 .SLMEnable = has_slm,
1621 #if GEN_GEN == 11
1622 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1623 * in L3CNTLREG register. The default setting of the bit is not the
1624 * desirable behavior.
1625 */
1626 .ErrorDetectionBehaviorControl = true,
1627 .UseFullWays = true,
1628 #endif
1629 .URBAllocation = cfg->n[GEN_L3P_URB],
1630 .ROAllocation = cfg->n[GEN_L3P_RO],
1631 .DCAllocation = cfg->n[GEN_L3P_DC],
1632 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1633
1634 /* Set up the L3 partitioning. */
1635 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1636
1637 #else
1638
1639 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1640 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1641 cfg->n[GEN_L3P_ALL];
1642 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1643 cfg->n[GEN_L3P_ALL];
1644 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1645 cfg->n[GEN_L3P_ALL];
1646
1647 assert(!cfg->n[GEN_L3P_ALL]);
1648
1649 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1650 * the matching space on the remaining banks has to be allocated to a
1651 * client (URB for all validated configurations) set to the
1652 * lower-bandwidth 2-bank address hashing mode.
1653 */
1654 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1655 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1656 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1657
1658 /* Minimum number of ways that can be allocated to the URB. */
1659 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1660 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1661
1662 uint32_t l3sqcr1, l3cr2, l3cr3;
1663 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1664 .ConvertDC_UC = !has_dc,
1665 .ConvertIS_UC = !has_is,
1666 .ConvertC_UC = !has_c,
1667 .ConvertT_UC = !has_t);
1668 l3sqcr1 |=
1669 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1670 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1671 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1672
1673 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1674 .SLMEnable = has_slm,
1675 .URBLowBandwidth = urb_low_bw,
1676 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1677 #if !GEN_IS_HASWELL
1678 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1679 #endif
1680 .ROAllocation = cfg->n[GEN_L3P_RO],
1681 .DCAllocation = cfg->n[GEN_L3P_DC]);
1682
1683 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1684 .ISAllocation = cfg->n[GEN_L3P_IS],
1685 .ISLowBandwidth = 0,
1686 .CAllocation = cfg->n[GEN_L3P_C],
1687 .CLowBandwidth = 0,
1688 .TAllocation = cfg->n[GEN_L3P_T],
1689 .TLowBandwidth = 0);
1690
1691 /* Set up the L3 partitioning. */
1692 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1693 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1694 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1695
1696 #if GEN_IS_HASWELL
1697 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1698 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1699 * them disabled to avoid crashing the system hard.
1700 */
1701 uint32_t scratch1, chicken3;
1702 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1703 .L3AtomicDisable = !has_dc);
1704 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1705 .L3AtomicDisableMask = true,
1706 .L3AtomicDisable = !has_dc);
1707 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1708 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1709 }
1710 #endif
1711
1712 #endif
1713
1714 cmd_buffer->state.current_l3_config = cfg;
1715 }
1716
1717 void
1718 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1719 {
1720 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1721
1722 /* Flushes are pipelined while invalidations are handled immediately.
1723 * Therefore, if we're flushing anything then we need to schedule a stall
1724 * before any invalidations can happen.
1725 */
1726 if (bits & ANV_PIPE_FLUSH_BITS)
1727 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1728
1729 /* If we're going to do an invalidate and we have a pending CS stall that
1730 * has yet to be resolved, we do the CS stall now.
1731 */
1732 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1733 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1734 bits |= ANV_PIPE_CS_STALL_BIT;
1735 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1736 }
1737
1738 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1739 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1740 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1741 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1742 pipe.RenderTargetCacheFlushEnable =
1743 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1744
1745 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1746 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1747 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1748
1749 /*
1750 * According to the Broadwell documentation, any PIPE_CONTROL with the
1751 * "Command Streamer Stall" bit set must also have another bit set,
1752 * with five different options:
1753 *
1754 * - Render Target Cache Flush
1755 * - Depth Cache Flush
1756 * - Stall at Pixel Scoreboard
1757 * - Post-Sync Operation
1758 * - Depth Stall
1759 * - DC Flush Enable
1760 *
1761 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1762 * mesa and it seems to work fine. The choice is fairly arbitrary.
1763 */
1764 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1765 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1766 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1767 pipe.StallAtPixelScoreboard = true;
1768 }
1769
1770 /* If a render target flush was emitted, then we can toggle off the bit
1771 * saying that render target writes are ongoing.
1772 */
1773 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1774 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
1775
1776 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1777 }
1778
1779 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1780 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1781 *
1782 * "If the VF Cache Invalidation Enable is set to a 1 in a
1783 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
1784 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
1785 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
1786 * a 1."
1787 *
1788 * This appears to hang Broadwell, so we restrict it to just gen9.
1789 */
1790 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
1791 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
1792
1793 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1794 pipe.StateCacheInvalidationEnable =
1795 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1796 pipe.ConstantCacheInvalidationEnable =
1797 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1798 pipe.VFCacheInvalidationEnable =
1799 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1800 pipe.TextureCacheInvalidationEnable =
1801 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1802 pipe.InstructionCacheInvalidateEnable =
1803 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1804
1805 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1806 *
1807 * "When VF Cache Invalidate is set “Post Sync Operation” must be
1808 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
1809 * “Write Timestamp”.
1810 */
1811 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
1812 pipe.PostSyncOperation = WriteImmediateData;
1813 pipe.Address =
1814 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
1815 }
1816 }
1817
1818 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1819 }
1820
1821 cmd_buffer->state.pending_pipe_bits = bits;
1822 }
1823
1824 void genX(CmdPipelineBarrier)(
1825 VkCommandBuffer commandBuffer,
1826 VkPipelineStageFlags srcStageMask,
1827 VkPipelineStageFlags destStageMask,
1828 VkBool32 byRegion,
1829 uint32_t memoryBarrierCount,
1830 const VkMemoryBarrier* pMemoryBarriers,
1831 uint32_t bufferMemoryBarrierCount,
1832 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1833 uint32_t imageMemoryBarrierCount,
1834 const VkImageMemoryBarrier* pImageMemoryBarriers)
1835 {
1836 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1837
1838 /* XXX: Right now, we're really dumb and just flush whatever categories
1839 * the app asks for. One of these days we may make this a bit better
1840 * but right now that's all the hardware allows for in most areas.
1841 */
1842 VkAccessFlags src_flags = 0;
1843 VkAccessFlags dst_flags = 0;
1844
1845 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1846 src_flags |= pMemoryBarriers[i].srcAccessMask;
1847 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1848 }
1849
1850 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1851 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1852 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1853 }
1854
1855 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1856 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1857 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1858 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1859 const VkImageSubresourceRange *range =
1860 &pImageMemoryBarriers[i].subresourceRange;
1861
1862 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1863 transition_depth_buffer(cmd_buffer, image,
1864 pImageMemoryBarriers[i].oldLayout,
1865 pImageMemoryBarriers[i].newLayout);
1866 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1867 VkImageAspectFlags color_aspects =
1868 anv_image_expand_aspects(image, range->aspectMask);
1869 uint32_t aspect_bit;
1870
1871 uint32_t base_layer, layer_count;
1872 if (image->type == VK_IMAGE_TYPE_3D) {
1873 base_layer = 0;
1874 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
1875 } else {
1876 base_layer = range->baseArrayLayer;
1877 layer_count = anv_get_layerCount(image, range);
1878 }
1879
1880 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1881 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1882 range->baseMipLevel,
1883 anv_get_levelCount(image, range),
1884 base_layer, layer_count,
1885 pImageMemoryBarriers[i].oldLayout,
1886 pImageMemoryBarriers[i].newLayout);
1887 }
1888 }
1889 }
1890
1891 cmd_buffer->state.pending_pipe_bits |=
1892 anv_pipe_flush_bits_for_access_flags(src_flags) |
1893 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1894 }
1895
1896 static void
1897 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1898 {
1899 VkShaderStageFlags stages =
1900 cmd_buffer->state.gfx.base.pipeline->active_stages;
1901
1902 /* In order to avoid thrash, we assume that vertex and fragment stages
1903 * always exist. In the rare case where one is missing *and* the other
1904 * uses push concstants, this may be suboptimal. However, avoiding stalls
1905 * seems more important.
1906 */
1907 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1908
1909 if (stages == cmd_buffer->state.push_constant_stages)
1910 return;
1911
1912 #if GEN_GEN >= 8
1913 const unsigned push_constant_kb = 32;
1914 #elif GEN_IS_HASWELL
1915 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1916 #else
1917 const unsigned push_constant_kb = 16;
1918 #endif
1919
1920 const unsigned num_stages =
1921 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1922 unsigned size_per_stage = push_constant_kb / num_stages;
1923
1924 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1925 * units of 2KB. Incidentally, these are the same platforms that have
1926 * 32KB worth of push constant space.
1927 */
1928 if (push_constant_kb == 32)
1929 size_per_stage &= ~1u;
1930
1931 uint32_t kb_used = 0;
1932 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1933 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1934 anv_batch_emit(&cmd_buffer->batch,
1935 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1936 alloc._3DCommandSubOpcode = 18 + i;
1937 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1938 alloc.ConstantBufferSize = push_size;
1939 }
1940 kb_used += push_size;
1941 }
1942
1943 anv_batch_emit(&cmd_buffer->batch,
1944 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1945 alloc.ConstantBufferOffset = kb_used;
1946 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1947 }
1948
1949 cmd_buffer->state.push_constant_stages = stages;
1950
1951 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1952 *
1953 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1954 * the next 3DPRIMITIVE command after programming the
1955 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1956 *
1957 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1958 * pipeline setup, we need to dirty push constants.
1959 */
1960 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1961 }
1962
1963 static const struct anv_descriptor *
1964 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1965 const struct anv_pipeline_binding *binding)
1966 {
1967 assert(binding->set < MAX_SETS);
1968 const struct anv_descriptor_set *set =
1969 pipe_state->descriptors[binding->set];
1970 const uint32_t offset =
1971 set->layout->binding[binding->binding].descriptor_index;
1972 return &set->descriptors[offset + binding->index];
1973 }
1974
1975 static uint32_t
1976 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1977 const struct anv_pipeline_binding *binding)
1978 {
1979 assert(binding->set < MAX_SETS);
1980 const struct anv_descriptor_set *set =
1981 pipe_state->descriptors[binding->set];
1982
1983 uint32_t dynamic_offset_idx =
1984 pipe_state->layout->set[binding->set].dynamic_offset_start +
1985 set->layout->binding[binding->binding].dynamic_offset_index +
1986 binding->index;
1987
1988 return pipe_state->dynamic_offsets[dynamic_offset_idx];
1989 }
1990
1991 static struct anv_address
1992 anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
1993 struct anv_descriptor_set *set)
1994 {
1995 if (set->pool) {
1996 /* This is a normal descriptor set */
1997 return (struct anv_address) {
1998 .bo = &set->pool->bo,
1999 .offset = set->desc_mem.offset,
2000 };
2001 } else {
2002 /* This is a push descriptor set. We have to flag it as used on the GPU
2003 * so that the next time we push descriptors, we grab a new memory.
2004 */
2005 struct anv_push_descriptor_set *push_set =
2006 (struct anv_push_descriptor_set *)set;
2007 push_set->set_used_on_gpu = true;
2008
2009 return (struct anv_address) {
2010 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
2011 .offset = set->desc_mem.offset,
2012 };
2013 }
2014 }
2015
2016 static VkResult
2017 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2018 gl_shader_stage stage,
2019 struct anv_state *bt_state)
2020 {
2021 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2022 struct anv_cmd_pipeline_state *pipe_state;
2023 struct anv_pipeline *pipeline;
2024 uint32_t state_offset;
2025
2026 switch (stage) {
2027 case MESA_SHADER_COMPUTE:
2028 pipe_state = &cmd_buffer->state.compute.base;
2029 break;
2030 default:
2031 pipe_state = &cmd_buffer->state.gfx.base;
2032 break;
2033 }
2034 pipeline = pipe_state->pipeline;
2035
2036 if (!anv_pipeline_has_stage(pipeline, stage)) {
2037 *bt_state = (struct anv_state) { 0, };
2038 return VK_SUCCESS;
2039 }
2040
2041 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2042 if (map->surface_count == 0) {
2043 *bt_state = (struct anv_state) { 0, };
2044 return VK_SUCCESS;
2045 }
2046
2047 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2048 map->surface_count,
2049 &state_offset);
2050 uint32_t *bt_map = bt_state->map;
2051
2052 if (bt_state->map == NULL)
2053 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2054
2055 /* We only need to emit relocs if we're not using softpin. If we are using
2056 * softpin then we always keep all user-allocated memory objects resident.
2057 */
2058 const bool need_client_mem_relocs =
2059 !cmd_buffer->device->instance->physicalDevice.use_softpin;
2060
2061 for (uint32_t s = 0; s < map->surface_count; s++) {
2062 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2063
2064 struct anv_state surface_state;
2065
2066 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
2067 /* Color attachment binding */
2068 assert(stage == MESA_SHADER_FRAGMENT);
2069 assert(binding->binding == 0);
2070 if (binding->index < subpass->color_count) {
2071 const unsigned att =
2072 subpass->color_attachments[binding->index].attachment;
2073
2074 /* From the Vulkan 1.0.46 spec:
2075 *
2076 * "If any color or depth/stencil attachments are
2077 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2078 * attachments."
2079 */
2080 if (att == VK_ATTACHMENT_UNUSED) {
2081 surface_state = cmd_buffer->state.null_surface_state;
2082 } else {
2083 surface_state = cmd_buffer->state.attachments[att].color.state;
2084 }
2085 } else {
2086 surface_state = cmd_buffer->state.null_surface_state;
2087 }
2088
2089 bt_map[s] = surface_state.offset + state_offset;
2090 continue;
2091 } else if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
2092 struct anv_state surface_state =
2093 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2094
2095 struct anv_address constant_data = {
2096 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2097 .offset = pipeline->shaders[stage]->constant_data.offset,
2098 };
2099 unsigned constant_data_size =
2100 pipeline->shaders[stage]->constant_data_size;
2101
2102 const enum isl_format format =
2103 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2104 anv_fill_buffer_surface_state(cmd_buffer->device,
2105 surface_state, format,
2106 constant_data, constant_data_size, 1);
2107
2108 bt_map[s] = surface_state.offset + state_offset;
2109 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2110 continue;
2111 } else if (binding->set == ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS) {
2112 /* This is always the first binding for compute shaders */
2113 assert(stage == MESA_SHADER_COMPUTE && s == 0);
2114 if (!get_cs_prog_data(pipeline)->uses_num_work_groups)
2115 continue;
2116
2117 struct anv_state surface_state =
2118 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2119
2120 const enum isl_format format =
2121 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2122 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2123 format,
2124 cmd_buffer->state.compute.num_workgroups,
2125 12, 1);
2126 bt_map[s] = surface_state.offset + state_offset;
2127 if (need_client_mem_relocs) {
2128 add_surface_reloc(cmd_buffer, surface_state,
2129 cmd_buffer->state.compute.num_workgroups);
2130 }
2131 continue;
2132 } else if (binding->set == ANV_DESCRIPTOR_SET_DESCRIPTORS) {
2133 /* This is a descriptor set buffer so the set index is actually
2134 * given by binding->binding. (Yes, that's confusing.)
2135 */
2136 struct anv_descriptor_set *set =
2137 pipe_state->descriptors[binding->binding];
2138 assert(set->desc_mem.alloc_size);
2139 assert(set->desc_surface_state.alloc_size);
2140 bt_map[s] = set->desc_surface_state.offset + state_offset;
2141 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2142 anv_descriptor_set_address(cmd_buffer, set));
2143 continue;
2144 }
2145
2146 const struct anv_descriptor *desc =
2147 anv_descriptor_for_binding(pipe_state, binding);
2148
2149 switch (desc->type) {
2150 case VK_DESCRIPTOR_TYPE_SAMPLER:
2151 /* Nothing for us to do here */
2152 continue;
2153
2154 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2155 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2156 struct anv_surface_state sstate =
2157 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2158 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2159 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2160 surface_state = sstate.state;
2161 assert(surface_state.alloc_size);
2162 if (need_client_mem_relocs)
2163 add_surface_state_relocs(cmd_buffer, sstate);
2164 break;
2165 }
2166 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2167 assert(stage == MESA_SHADER_FRAGMENT);
2168 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2169 /* For depth and stencil input attachments, we treat it like any
2170 * old texture that a user may have bound.
2171 */
2172 struct anv_surface_state sstate =
2173 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2174 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2175 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2176 surface_state = sstate.state;
2177 assert(surface_state.alloc_size);
2178 if (need_client_mem_relocs)
2179 add_surface_state_relocs(cmd_buffer, sstate);
2180 } else {
2181 /* For color input attachments, we create the surface state at
2182 * vkBeginRenderPass time so that we can include aux and clear
2183 * color information.
2184 */
2185 assert(binding->input_attachment_index < subpass->input_count);
2186 const unsigned subpass_att = binding->input_attachment_index;
2187 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2188 surface_state = cmd_buffer->state.attachments[att].input.state;
2189 }
2190 break;
2191
2192 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2193 struct anv_surface_state sstate = (binding->write_only)
2194 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2195 : desc->image_view->planes[binding->plane].storage_surface_state;
2196 surface_state = sstate.state;
2197 assert(surface_state.alloc_size);
2198 if (need_client_mem_relocs)
2199 add_surface_state_relocs(cmd_buffer, sstate);
2200 break;
2201 }
2202
2203 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2204 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2205 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2206 surface_state = desc->buffer_view->surface_state;
2207 assert(surface_state.alloc_size);
2208 if (need_client_mem_relocs) {
2209 add_surface_reloc(cmd_buffer, surface_state,
2210 desc->buffer_view->address);
2211 }
2212 break;
2213
2214 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2215 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2216 /* Compute the offset within the buffer */
2217 uint32_t dynamic_offset =
2218 dynamic_offset_for_binding(pipe_state, binding);
2219 uint64_t offset = desc->offset + dynamic_offset;
2220 /* Clamp to the buffer size */
2221 offset = MIN2(offset, desc->buffer->size);
2222 /* Clamp the range to the buffer size */
2223 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2224
2225 struct anv_address address =
2226 anv_address_add(desc->buffer->address, offset);
2227
2228 surface_state =
2229 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2230 enum isl_format format =
2231 anv_isl_format_for_descriptor_type(desc->type);
2232
2233 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2234 format, address, range, 1);
2235 if (need_client_mem_relocs)
2236 add_surface_reloc(cmd_buffer, surface_state, address);
2237 break;
2238 }
2239
2240 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2241 surface_state = (binding->write_only)
2242 ? desc->buffer_view->writeonly_storage_surface_state
2243 : desc->buffer_view->storage_surface_state;
2244 assert(surface_state.alloc_size);
2245 if (need_client_mem_relocs) {
2246 add_surface_reloc(cmd_buffer, surface_state,
2247 desc->buffer_view->address);
2248 }
2249 break;
2250
2251 default:
2252 assert(!"Invalid descriptor type");
2253 continue;
2254 }
2255
2256 bt_map[s] = surface_state.offset + state_offset;
2257 }
2258
2259 #if GEN_GEN >= 11
2260 /* The PIPE_CONTROL command description says:
2261 *
2262 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
2263 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2264 * Target Cache Flush by enabling this bit. When render target flush
2265 * is set due to new association of BTI, PS Scoreboard Stall bit must
2266 * be set in this packet."
2267 *
2268 * FINISHME: Currently we shuffle around the surface states in the binding
2269 * table based on if they are getting used or not. So, we've to do below
2270 * pipe control flush for every binding table upload. Make changes so
2271 * that we do it only when we modify render target surface states.
2272 */
2273 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2274 pc.RenderTargetCacheFlushEnable = true;
2275 pc.StallAtPixelScoreboard = true;
2276 }
2277 #endif
2278
2279 return VK_SUCCESS;
2280 }
2281
2282 static VkResult
2283 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2284 gl_shader_stage stage,
2285 struct anv_state *state)
2286 {
2287 struct anv_cmd_pipeline_state *pipe_state =
2288 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2289 &cmd_buffer->state.gfx.base;
2290 struct anv_pipeline *pipeline = pipe_state->pipeline;
2291
2292 if (!anv_pipeline_has_stage(pipeline, stage)) {
2293 *state = (struct anv_state) { 0, };
2294 return VK_SUCCESS;
2295 }
2296
2297 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2298 if (map->sampler_count == 0) {
2299 *state = (struct anv_state) { 0, };
2300 return VK_SUCCESS;
2301 }
2302
2303 uint32_t size = map->sampler_count * 16;
2304 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2305
2306 if (state->map == NULL)
2307 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2308
2309 for (uint32_t s = 0; s < map->sampler_count; s++) {
2310 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2311 const struct anv_descriptor *desc =
2312 anv_descriptor_for_binding(pipe_state, binding);
2313
2314 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2315 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2316 continue;
2317
2318 struct anv_sampler *sampler = desc->sampler;
2319
2320 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2321 * happens to be zero.
2322 */
2323 if (sampler == NULL)
2324 continue;
2325
2326 memcpy(state->map + (s * 16),
2327 sampler->state[binding->plane], sizeof(sampler->state[0]));
2328 }
2329
2330 return VK_SUCCESS;
2331 }
2332
2333 static uint32_t
2334 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
2335 {
2336 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2337
2338 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2339 pipeline->active_stages;
2340
2341 VkResult result = VK_SUCCESS;
2342 anv_foreach_stage(s, dirty) {
2343 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2344 if (result != VK_SUCCESS)
2345 break;
2346 result = emit_binding_table(cmd_buffer, s,
2347 &cmd_buffer->state.binding_tables[s]);
2348 if (result != VK_SUCCESS)
2349 break;
2350 }
2351
2352 if (result != VK_SUCCESS) {
2353 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2354
2355 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2356 if (result != VK_SUCCESS)
2357 return 0;
2358
2359 /* Re-emit state base addresses so we get the new surface state base
2360 * address before we start emitting binding tables etc.
2361 */
2362 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2363
2364 /* Re-emit all active binding tables */
2365 dirty |= pipeline->active_stages;
2366 anv_foreach_stage(s, dirty) {
2367 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2368 if (result != VK_SUCCESS) {
2369 anv_batch_set_error(&cmd_buffer->batch, result);
2370 return 0;
2371 }
2372 result = emit_binding_table(cmd_buffer, s,
2373 &cmd_buffer->state.binding_tables[s]);
2374 if (result != VK_SUCCESS) {
2375 anv_batch_set_error(&cmd_buffer->batch, result);
2376 return 0;
2377 }
2378 }
2379 }
2380
2381 cmd_buffer->state.descriptors_dirty &= ~dirty;
2382
2383 return dirty;
2384 }
2385
2386 static void
2387 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2388 uint32_t stages)
2389 {
2390 static const uint32_t sampler_state_opcodes[] = {
2391 [MESA_SHADER_VERTEX] = 43,
2392 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2393 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2394 [MESA_SHADER_GEOMETRY] = 46,
2395 [MESA_SHADER_FRAGMENT] = 47,
2396 [MESA_SHADER_COMPUTE] = 0,
2397 };
2398
2399 static const uint32_t binding_table_opcodes[] = {
2400 [MESA_SHADER_VERTEX] = 38,
2401 [MESA_SHADER_TESS_CTRL] = 39,
2402 [MESA_SHADER_TESS_EVAL] = 40,
2403 [MESA_SHADER_GEOMETRY] = 41,
2404 [MESA_SHADER_FRAGMENT] = 42,
2405 [MESA_SHADER_COMPUTE] = 0,
2406 };
2407
2408 anv_foreach_stage(s, stages) {
2409 assert(s < ARRAY_SIZE(binding_table_opcodes));
2410 assert(binding_table_opcodes[s] > 0);
2411
2412 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2413 anv_batch_emit(&cmd_buffer->batch,
2414 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2415 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2416 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2417 }
2418 }
2419
2420 /* Always emit binding table pointers if we're asked to, since on SKL
2421 * this is what flushes push constants. */
2422 anv_batch_emit(&cmd_buffer->batch,
2423 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2424 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2425 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2426 }
2427 }
2428 }
2429
2430 static void
2431 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2432 VkShaderStageFlags dirty_stages)
2433 {
2434 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2435 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2436
2437 static const uint32_t push_constant_opcodes[] = {
2438 [MESA_SHADER_VERTEX] = 21,
2439 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2440 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2441 [MESA_SHADER_GEOMETRY] = 22,
2442 [MESA_SHADER_FRAGMENT] = 23,
2443 [MESA_SHADER_COMPUTE] = 0,
2444 };
2445
2446 VkShaderStageFlags flushed = 0;
2447
2448 anv_foreach_stage(stage, dirty_stages) {
2449 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2450 assert(push_constant_opcodes[stage] > 0);
2451
2452 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2453 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2454
2455 if (anv_pipeline_has_stage(pipeline, stage)) {
2456 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2457 const struct brw_stage_prog_data *prog_data =
2458 pipeline->shaders[stage]->prog_data;
2459 const struct anv_pipeline_bind_map *bind_map =
2460 &pipeline->shaders[stage]->bind_map;
2461
2462 /* The Skylake PRM contains the following restriction:
2463 *
2464 * "The driver must ensure The following case does not occur
2465 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2466 * buffer 3 read length equal to zero committed followed by a
2467 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2468 * zero committed."
2469 *
2470 * To avoid this, we program the buffers in the highest slots.
2471 * This way, slot 0 is only used if slot 3 is also used.
2472 */
2473 int n = 3;
2474
2475 for (int i = 3; i >= 0; i--) {
2476 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2477 if (range->length == 0)
2478 continue;
2479
2480 const unsigned surface =
2481 prog_data->binding_table.ubo_start + range->block;
2482
2483 assert(surface <= bind_map->surface_count);
2484 const struct anv_pipeline_binding *binding =
2485 &bind_map->surface_to_descriptor[surface];
2486
2487 struct anv_address read_addr;
2488 uint32_t read_len;
2489 if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
2490 struct anv_address constant_data = {
2491 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2492 .offset = pipeline->shaders[stage]->constant_data.offset,
2493 };
2494 unsigned constant_data_size =
2495 pipeline->shaders[stage]->constant_data_size;
2496
2497 read_len = MIN2(range->length,
2498 DIV_ROUND_UP(constant_data_size, 32) - range->start);
2499 read_addr = anv_address_add(constant_data,
2500 range->start * 32);
2501 } else if (binding->set == ANV_DESCRIPTOR_SET_DESCRIPTORS) {
2502 /* This is a descriptor set buffer so the set index is
2503 * actually given by binding->binding. (Yes, that's
2504 * confusing.)
2505 */
2506 struct anv_descriptor_set *set =
2507 gfx_state->base.descriptors[binding->binding];
2508 struct anv_address desc_buffer_addr =
2509 anv_descriptor_set_address(cmd_buffer, set);
2510 const unsigned desc_buffer_size = set->desc_mem.alloc_size;
2511
2512 read_len = MIN2(range->length,
2513 DIV_ROUND_UP(desc_buffer_size, 32) - range->start);
2514 read_addr = anv_address_add(desc_buffer_addr,
2515 range->start * 32);
2516 } else {
2517 const struct anv_descriptor *desc =
2518 anv_descriptor_for_binding(&gfx_state->base, binding);
2519
2520 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2521 read_len = MIN2(range->length,
2522 DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
2523 read_addr = anv_address_add(desc->buffer_view->address,
2524 range->start * 32);
2525 } else {
2526 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2527
2528 uint32_t dynamic_offset =
2529 dynamic_offset_for_binding(&gfx_state->base, binding);
2530 uint32_t buf_offset =
2531 MIN2(desc->offset + dynamic_offset, desc->buffer->size);
2532 uint32_t buf_range =
2533 MIN2(desc->range, desc->buffer->size - buf_offset);
2534
2535 read_len = MIN2(range->length,
2536 DIV_ROUND_UP(buf_range, 32) - range->start);
2537 read_addr = anv_address_add(desc->buffer->address,
2538 buf_offset + range->start * 32);
2539 }
2540 }
2541
2542 if (read_len > 0) {
2543 c.ConstantBody.Buffer[n] = read_addr;
2544 c.ConstantBody.ReadLength[n] = read_len;
2545 n--;
2546 }
2547 }
2548
2549 struct anv_state state =
2550 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2551
2552 if (state.alloc_size > 0) {
2553 c.ConstantBody.Buffer[n] = (struct anv_address) {
2554 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2555 .offset = state.offset,
2556 };
2557 c.ConstantBody.ReadLength[n] =
2558 DIV_ROUND_UP(state.alloc_size, 32);
2559 }
2560 #else
2561 /* For Ivy Bridge, the push constants packets have a different
2562 * rule that would require us to iterate in the other direction
2563 * and possibly mess around with dynamic state base address.
2564 * Don't bother; just emit regular push constants at n = 0.
2565 */
2566 struct anv_state state =
2567 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2568
2569 if (state.alloc_size > 0) {
2570 c.ConstantBody.Buffer[0].offset = state.offset,
2571 c.ConstantBody.ReadLength[0] =
2572 DIV_ROUND_UP(state.alloc_size, 32);
2573 }
2574 #endif
2575 }
2576 }
2577
2578 flushed |= mesa_to_vk_shader_stage(stage);
2579 }
2580
2581 cmd_buffer->state.push_constants_dirty &= ~flushed;
2582 }
2583
2584 void
2585 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2586 {
2587 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2588 uint32_t *p;
2589
2590 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2591 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
2592 vb_emit |= pipeline->vb_used;
2593
2594 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2595
2596 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2597
2598 genX(flush_pipeline_select_3d)(cmd_buffer);
2599
2600 if (vb_emit) {
2601 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2602 const uint32_t num_dwords = 1 + num_buffers * 4;
2603
2604 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2605 GENX(3DSTATE_VERTEX_BUFFERS));
2606 uint32_t vb, i = 0;
2607 for_each_bit(vb, vb_emit) {
2608 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2609 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2610
2611 struct GENX(VERTEX_BUFFER_STATE) state = {
2612 .VertexBufferIndex = vb,
2613
2614 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
2615 #if GEN_GEN <= 7
2616 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
2617 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
2618 #endif
2619
2620 .AddressModifyEnable = true,
2621 .BufferPitch = pipeline->vb[vb].stride,
2622 .BufferStartingAddress = anv_address_add(buffer->address, offset),
2623
2624 #if GEN_GEN >= 8
2625 .BufferSize = buffer->size - offset
2626 #else
2627 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
2628 #endif
2629 };
2630
2631 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2632 i++;
2633 }
2634 }
2635
2636 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2637
2638 #if GEN_GEN >= 8
2639 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
2640 /* We don't need any per-buffer dirty tracking because you're not
2641 * allowed to bind different XFB buffers while XFB is enabled.
2642 */
2643 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
2644 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
2645 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
2646 sob.SOBufferIndex = idx;
2647
2648 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
2649 sob.SOBufferEnable = true;
2650 sob.MOCS = cmd_buffer->device->default_mocs,
2651 sob.StreamOffsetWriteEnable = false;
2652 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
2653 xfb->offset);
2654 /* Size is in DWords - 1 */
2655 sob.SurfaceSize = xfb->size / 4 - 1;
2656 }
2657 }
2658 }
2659
2660 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
2661 if (GEN_GEN >= 10)
2662 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2663 }
2664 #endif
2665
2666 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2667 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2668
2669 /* The exact descriptor layout is pulled from the pipeline, so we need
2670 * to re-emit binding tables on every pipeline change.
2671 */
2672 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2673
2674 /* If the pipeline changed, we may need to re-allocate push constant
2675 * space in the URB.
2676 */
2677 cmd_buffer_alloc_push_constants(cmd_buffer);
2678 }
2679
2680 #if GEN_GEN <= 7
2681 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2682 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2683 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2684 *
2685 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2686 * stall needs to be sent just prior to any 3DSTATE_VS,
2687 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2688 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2689 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2690 * PIPE_CONTROL needs to be sent before any combination of VS
2691 * associated 3DSTATE."
2692 */
2693 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2694 pc.DepthStallEnable = true;
2695 pc.PostSyncOperation = WriteImmediateData;
2696 pc.Address =
2697 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2698 }
2699 }
2700 #endif
2701
2702 /* Render targets live in the same binding table as fragment descriptors */
2703 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2704 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2705
2706 /* We emit the binding tables and sampler tables first, then emit push
2707 * constants and then finally emit binding table and sampler table
2708 * pointers. It has to happen in this order, since emitting the binding
2709 * tables may change the push constants (in case of storage images). After
2710 * emitting push constants, on SKL+ we have to emit the corresponding
2711 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2712 */
2713 uint32_t dirty = 0;
2714 if (cmd_buffer->state.descriptors_dirty)
2715 dirty = flush_descriptor_sets(cmd_buffer);
2716
2717 if (dirty || cmd_buffer->state.push_constants_dirty) {
2718 /* Because we're pushing UBOs, we have to push whenever either
2719 * descriptors or push constants is dirty.
2720 */
2721 dirty |= cmd_buffer->state.push_constants_dirty;
2722 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2723 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2724 }
2725
2726 if (dirty)
2727 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2728
2729 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2730 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2731
2732 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2733 ANV_CMD_DIRTY_PIPELINE)) {
2734 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2735 pipeline->depth_clamp_enable);
2736 }
2737
2738 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
2739 ANV_CMD_DIRTY_RENDER_TARGETS))
2740 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2741
2742 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2743
2744 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2745 }
2746
2747 static void
2748 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2749 struct anv_address addr,
2750 uint32_t size, uint32_t index)
2751 {
2752 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2753 GENX(3DSTATE_VERTEX_BUFFERS));
2754
2755 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2756 &(struct GENX(VERTEX_BUFFER_STATE)) {
2757 .VertexBufferIndex = index,
2758 .AddressModifyEnable = true,
2759 .BufferPitch = 0,
2760 .MOCS = anv_mocs_for_bo(cmd_buffer->device, addr.bo),
2761 #if (GEN_GEN >= 8)
2762 .BufferStartingAddress = addr,
2763 .BufferSize = size
2764 #else
2765 .BufferStartingAddress = addr,
2766 .EndAddress = anv_address_add(addr, size),
2767 #endif
2768 });
2769 }
2770
2771 static void
2772 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2773 struct anv_address addr)
2774 {
2775 emit_vertex_bo(cmd_buffer, addr, 8, ANV_SVGS_VB_INDEX);
2776 }
2777
2778 static void
2779 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2780 uint32_t base_vertex, uint32_t base_instance)
2781 {
2782 struct anv_state id_state =
2783 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2784
2785 ((uint32_t *)id_state.map)[0] = base_vertex;
2786 ((uint32_t *)id_state.map)[1] = base_instance;
2787
2788 struct anv_address addr = {
2789 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2790 .offset = id_state.offset,
2791 };
2792
2793 emit_base_vertex_instance_bo(cmd_buffer, addr);
2794 }
2795
2796 static void
2797 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2798 {
2799 struct anv_state state =
2800 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2801
2802 ((uint32_t *)state.map)[0] = draw_index;
2803
2804 struct anv_address addr = {
2805 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2806 .offset = state.offset,
2807 };
2808
2809 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
2810 }
2811
2812 void genX(CmdDraw)(
2813 VkCommandBuffer commandBuffer,
2814 uint32_t vertexCount,
2815 uint32_t instanceCount,
2816 uint32_t firstVertex,
2817 uint32_t firstInstance)
2818 {
2819 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2820 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2821 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2822
2823 if (anv_batch_has_error(&cmd_buffer->batch))
2824 return;
2825
2826 genX(cmd_buffer_flush_state)(cmd_buffer);
2827
2828 if (cmd_buffer->state.conditional_render_enabled)
2829 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
2830
2831 if (vs_prog_data->uses_firstvertex ||
2832 vs_prog_data->uses_baseinstance)
2833 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2834 if (vs_prog_data->uses_drawid)
2835 emit_draw_index(cmd_buffer, 0);
2836
2837 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2838 * different views. We need to multiply instanceCount by the view count.
2839 */
2840 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2841
2842 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2843 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
2844 prim.VertexAccessType = SEQUENTIAL;
2845 prim.PrimitiveTopologyType = pipeline->topology;
2846 prim.VertexCountPerInstance = vertexCount;
2847 prim.StartVertexLocation = firstVertex;
2848 prim.InstanceCount = instanceCount;
2849 prim.StartInstanceLocation = firstInstance;
2850 prim.BaseVertexLocation = 0;
2851 }
2852 }
2853
2854 void genX(CmdDrawIndexed)(
2855 VkCommandBuffer commandBuffer,
2856 uint32_t indexCount,
2857 uint32_t instanceCount,
2858 uint32_t firstIndex,
2859 int32_t vertexOffset,
2860 uint32_t firstInstance)
2861 {
2862 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2863 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2864 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2865
2866 if (anv_batch_has_error(&cmd_buffer->batch))
2867 return;
2868
2869 genX(cmd_buffer_flush_state)(cmd_buffer);
2870
2871 if (cmd_buffer->state.conditional_render_enabled)
2872 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
2873
2874 if (vs_prog_data->uses_firstvertex ||
2875 vs_prog_data->uses_baseinstance)
2876 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2877 if (vs_prog_data->uses_drawid)
2878 emit_draw_index(cmd_buffer, 0);
2879
2880 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2881 * different views. We need to multiply instanceCount by the view count.
2882 */
2883 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2884
2885 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2886 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
2887 prim.VertexAccessType = RANDOM;
2888 prim.PrimitiveTopologyType = pipeline->topology;
2889 prim.VertexCountPerInstance = indexCount;
2890 prim.StartVertexLocation = firstIndex;
2891 prim.InstanceCount = instanceCount;
2892 prim.StartInstanceLocation = firstInstance;
2893 prim.BaseVertexLocation = vertexOffset;
2894 }
2895 }
2896
2897 /* Auto-Draw / Indirect Registers */
2898 #define GEN7_3DPRIM_END_OFFSET 0x2420
2899 #define GEN7_3DPRIM_START_VERTEX 0x2430
2900 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2901 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2902 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2903 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2904
2905 void genX(CmdDrawIndirectByteCountEXT)(
2906 VkCommandBuffer commandBuffer,
2907 uint32_t instanceCount,
2908 uint32_t firstInstance,
2909 VkBuffer counterBuffer,
2910 VkDeviceSize counterBufferOffset,
2911 uint32_t counterOffset,
2912 uint32_t vertexStride)
2913 {
2914 #if GEN_IS_HASWELL || GEN_GEN >= 8
2915 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2916 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
2917 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2918 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2919
2920 /* firstVertex is always zero for this draw function */
2921 const uint32_t firstVertex = 0;
2922
2923 if (anv_batch_has_error(&cmd_buffer->batch))
2924 return;
2925
2926 genX(cmd_buffer_flush_state)(cmd_buffer);
2927
2928 if (vs_prog_data->uses_firstvertex ||
2929 vs_prog_data->uses_baseinstance)
2930 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2931 if (vs_prog_data->uses_drawid)
2932 emit_draw_index(cmd_buffer, 0);
2933
2934 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2935 * different views. We need to multiply instanceCount by the view count.
2936 */
2937 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2938
2939 struct gen_mi_builder b;
2940 gen_mi_builder_init(&b, &cmd_buffer->batch);
2941 struct gen_mi_value count =
2942 gen_mi_mem32(anv_address_add(counter_buffer->address,
2943 counterBufferOffset));
2944 if (counterOffset)
2945 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
2946 count = gen_mi_udiv32_imm(&b, count, vertexStride);
2947 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
2948
2949 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
2950 gen_mi_imm(firstVertex));
2951 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
2952 gen_mi_imm(instanceCount));
2953 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
2954 gen_mi_imm(firstInstance));
2955 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
2956
2957 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2958 prim.IndirectParameterEnable = true;
2959 prim.VertexAccessType = SEQUENTIAL;
2960 prim.PrimitiveTopologyType = pipeline->topology;
2961 }
2962 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2963 }
2964
2965 static void
2966 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2967 struct anv_address addr,
2968 bool indexed)
2969 {
2970 struct gen_mi_builder b;
2971 gen_mi_builder_init(&b, &cmd_buffer->batch);
2972
2973 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
2974 gen_mi_mem32(anv_address_add(addr, 0)));
2975
2976 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
2977 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2978 if (view_count > 1) {
2979 #if GEN_IS_HASWELL || GEN_GEN >= 8
2980 instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
2981 #else
2982 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2983 "MI_MATH is not supported on Ivy Bridge");
2984 #endif
2985 }
2986 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
2987
2988 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
2989 gen_mi_mem32(anv_address_add(addr, 8)));
2990
2991 if (indexed) {
2992 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
2993 gen_mi_mem32(anv_address_add(addr, 12)));
2994 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
2995 gen_mi_mem32(anv_address_add(addr, 16)));
2996 } else {
2997 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
2998 gen_mi_mem32(anv_address_add(addr, 12)));
2999 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3000 }
3001 }
3002
3003 void genX(CmdDrawIndirect)(
3004 VkCommandBuffer commandBuffer,
3005 VkBuffer _buffer,
3006 VkDeviceSize offset,
3007 uint32_t drawCount,
3008 uint32_t stride)
3009 {
3010 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3011 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3012 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3013 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3014
3015 if (anv_batch_has_error(&cmd_buffer->batch))
3016 return;
3017
3018 genX(cmd_buffer_flush_state)(cmd_buffer);
3019
3020 if (cmd_buffer->state.conditional_render_enabled)
3021 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3022
3023 for (uint32_t i = 0; i < drawCount; i++) {
3024 struct anv_address draw = anv_address_add(buffer->address, offset);
3025
3026 if (vs_prog_data->uses_firstvertex ||
3027 vs_prog_data->uses_baseinstance)
3028 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3029 if (vs_prog_data->uses_drawid)
3030 emit_draw_index(cmd_buffer, i);
3031
3032 load_indirect_parameters(cmd_buffer, draw, false);
3033
3034 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3035 prim.IndirectParameterEnable = true;
3036 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3037 prim.VertexAccessType = SEQUENTIAL;
3038 prim.PrimitiveTopologyType = pipeline->topology;
3039 }
3040
3041 offset += stride;
3042 }
3043 }
3044
3045 void genX(CmdDrawIndexedIndirect)(
3046 VkCommandBuffer commandBuffer,
3047 VkBuffer _buffer,
3048 VkDeviceSize offset,
3049 uint32_t drawCount,
3050 uint32_t stride)
3051 {
3052 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3053 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3054 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3055 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3056
3057 if (anv_batch_has_error(&cmd_buffer->batch))
3058 return;
3059
3060 genX(cmd_buffer_flush_state)(cmd_buffer);
3061
3062 if (cmd_buffer->state.conditional_render_enabled)
3063 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3064
3065 for (uint32_t i = 0; i < drawCount; i++) {
3066 struct anv_address draw = anv_address_add(buffer->address, offset);
3067
3068 /* TODO: We need to stomp base vertex to 0 somehow */
3069 if (vs_prog_data->uses_firstvertex ||
3070 vs_prog_data->uses_baseinstance)
3071 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3072 if (vs_prog_data->uses_drawid)
3073 emit_draw_index(cmd_buffer, i);
3074
3075 load_indirect_parameters(cmd_buffer, draw, true);
3076
3077 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3078 prim.IndirectParameterEnable = true;
3079 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3080 prim.VertexAccessType = RANDOM;
3081 prim.PrimitiveTopologyType = pipeline->topology;
3082 }
3083
3084 offset += stride;
3085 }
3086 }
3087
3088 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3089
3090 static void
3091 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3092 struct anv_address count_address,
3093 const bool conditional_render_enabled)
3094 {
3095 struct gen_mi_builder b;
3096 gen_mi_builder_init(&b, &cmd_buffer->batch);
3097
3098 if (conditional_render_enabled) {
3099 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3100 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
3101 gen_mi_mem32(count_address));
3102 #endif
3103 } else {
3104 /* Upload the current draw count from the draw parameters buffer to
3105 * MI_PREDICATE_SRC0.
3106 */
3107 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
3108 gen_mi_mem32(count_address));
3109
3110 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
3111 }
3112 }
3113
3114 static void
3115 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3116 uint32_t draw_index)
3117 {
3118 struct gen_mi_builder b;
3119 gen_mi_builder_init(&b, &cmd_buffer->batch);
3120
3121 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3122 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
3123
3124 if (draw_index == 0) {
3125 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3126 mip.LoadOperation = LOAD_LOADINV;
3127 mip.CombineOperation = COMBINE_SET;
3128 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3129 }
3130 } else {
3131 /* While draw_index < draw_count the predicate's result will be
3132 * (draw_index == draw_count) ^ TRUE = TRUE
3133 * When draw_index == draw_count the result is
3134 * (TRUE) ^ TRUE = FALSE
3135 * After this all results will be:
3136 * (FALSE) ^ FALSE = FALSE
3137 */
3138 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3139 mip.LoadOperation = LOAD_LOAD;
3140 mip.CombineOperation = COMBINE_XOR;
3141 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3142 }
3143 }
3144 }
3145
3146 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3147 static void
3148 emit_draw_count_predicate_with_conditional_render(
3149 struct anv_cmd_buffer *cmd_buffer,
3150 uint32_t draw_index)
3151 {
3152 struct gen_mi_builder b;
3153 gen_mi_builder_init(&b, &cmd_buffer->batch);
3154
3155 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
3156 gen_mi_reg64(TMP_DRAW_COUNT_REG));
3157 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
3158
3159 #if GEN_GEN >= 8
3160 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
3161 #else
3162 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3163 * so we emit MI_PREDICATE to set it.
3164 */
3165
3166 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
3167 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3168
3169 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3170 mip.LoadOperation = LOAD_LOADINV;
3171 mip.CombineOperation = COMBINE_SET;
3172 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3173 }
3174 #endif
3175 }
3176 #endif
3177
3178 void genX(CmdDrawIndirectCountKHR)(
3179 VkCommandBuffer commandBuffer,
3180 VkBuffer _buffer,
3181 VkDeviceSize offset,
3182 VkBuffer _countBuffer,
3183 VkDeviceSize countBufferOffset,
3184 uint32_t maxDrawCount,
3185 uint32_t stride)
3186 {
3187 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3188 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3189 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3190 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3191 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3192 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3193
3194 if (anv_batch_has_error(&cmd_buffer->batch))
3195 return;
3196
3197 genX(cmd_buffer_flush_state)(cmd_buffer);
3198
3199 struct anv_address count_address =
3200 anv_address_add(count_buffer->address, countBufferOffset);
3201
3202 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3203 cmd_state->conditional_render_enabled);
3204
3205 for (uint32_t i = 0; i < maxDrawCount; i++) {
3206 struct anv_address draw = anv_address_add(buffer->address, offset);
3207
3208 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3209 if (cmd_state->conditional_render_enabled) {
3210 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3211 } else {
3212 emit_draw_count_predicate(cmd_buffer, i);
3213 }
3214 #else
3215 emit_draw_count_predicate(cmd_buffer, i);
3216 #endif
3217
3218 if (vs_prog_data->uses_firstvertex ||
3219 vs_prog_data->uses_baseinstance)
3220 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3221 if (vs_prog_data->uses_drawid)
3222 emit_draw_index(cmd_buffer, i);
3223
3224 load_indirect_parameters(cmd_buffer, draw, false);
3225
3226 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3227 prim.IndirectParameterEnable = true;
3228 prim.PredicateEnable = true;
3229 prim.VertexAccessType = SEQUENTIAL;
3230 prim.PrimitiveTopologyType = pipeline->topology;
3231 }
3232
3233 offset += stride;
3234 }
3235 }
3236
3237 void genX(CmdDrawIndexedIndirectCountKHR)(
3238 VkCommandBuffer commandBuffer,
3239 VkBuffer _buffer,
3240 VkDeviceSize offset,
3241 VkBuffer _countBuffer,
3242 VkDeviceSize countBufferOffset,
3243 uint32_t maxDrawCount,
3244 uint32_t stride)
3245 {
3246 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3247 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3248 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3249 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3250 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3251 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3252
3253 if (anv_batch_has_error(&cmd_buffer->batch))
3254 return;
3255
3256 genX(cmd_buffer_flush_state)(cmd_buffer);
3257
3258 struct anv_address count_address =
3259 anv_address_add(count_buffer->address, countBufferOffset);
3260
3261 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3262 cmd_state->conditional_render_enabled);
3263
3264 for (uint32_t i = 0; i < maxDrawCount; i++) {
3265 struct anv_address draw = anv_address_add(buffer->address, offset);
3266
3267 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3268 if (cmd_state->conditional_render_enabled) {
3269 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3270 } else {
3271 emit_draw_count_predicate(cmd_buffer, i);
3272 }
3273 #else
3274 emit_draw_count_predicate(cmd_buffer, i);
3275 #endif
3276
3277 /* TODO: We need to stomp base vertex to 0 somehow */
3278 if (vs_prog_data->uses_firstvertex ||
3279 vs_prog_data->uses_baseinstance)
3280 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3281 if (vs_prog_data->uses_drawid)
3282 emit_draw_index(cmd_buffer, i);
3283
3284 load_indirect_parameters(cmd_buffer, draw, true);
3285
3286 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3287 prim.IndirectParameterEnable = true;
3288 prim.PredicateEnable = true;
3289 prim.VertexAccessType = RANDOM;
3290 prim.PrimitiveTopologyType = pipeline->topology;
3291 }
3292
3293 offset += stride;
3294 }
3295 }
3296
3297 void genX(CmdBeginTransformFeedbackEXT)(
3298 VkCommandBuffer commandBuffer,
3299 uint32_t firstCounterBuffer,
3300 uint32_t counterBufferCount,
3301 const VkBuffer* pCounterBuffers,
3302 const VkDeviceSize* pCounterBufferOffsets)
3303 {
3304 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3305
3306 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3307 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3308 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3309
3310 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3311 *
3312 * "Ssoftware must ensure that no HW stream output operations can be in
3313 * process or otherwise pending at the point that the MI_LOAD/STORE
3314 * commands are processed. This will likely require a pipeline flush."
3315 */
3316 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3317 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3318
3319 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3320 /* If we have a counter buffer, this is a resume so we need to load the
3321 * value into the streamout offset register. Otherwise, this is a begin
3322 * and we need to reset it to zero.
3323 */
3324 if (pCounterBuffers &&
3325 idx >= firstCounterBuffer &&
3326 idx - firstCounterBuffer < counterBufferCount &&
3327 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
3328 uint32_t cb_idx = idx - firstCounterBuffer;
3329 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3330 uint64_t offset = pCounterBufferOffsets ?
3331 pCounterBufferOffsets[cb_idx] : 0;
3332
3333 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3334 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3335 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
3336 offset);
3337 }
3338 } else {
3339 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
3340 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3341 lri.DataDWord = 0;
3342 }
3343 }
3344 }
3345
3346 cmd_buffer->state.xfb_enabled = true;
3347 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3348 }
3349
3350 void genX(CmdEndTransformFeedbackEXT)(
3351 VkCommandBuffer commandBuffer,
3352 uint32_t firstCounterBuffer,
3353 uint32_t counterBufferCount,
3354 const VkBuffer* pCounterBuffers,
3355 const VkDeviceSize* pCounterBufferOffsets)
3356 {
3357 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3358
3359 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3360 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3361 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3362
3363 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3364 *
3365 * "Ssoftware must ensure that no HW stream output operations can be in
3366 * process or otherwise pending at the point that the MI_LOAD/STORE
3367 * commands are processed. This will likely require a pipeline flush."
3368 */
3369 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3370 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3371
3372 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
3373 unsigned idx = firstCounterBuffer + cb_idx;
3374
3375 /* If we have a counter buffer, this is a resume so we need to load the
3376 * value into the streamout offset register. Otherwise, this is a begin
3377 * and we need to reset it to zero.
3378 */
3379 if (pCounterBuffers &&
3380 cb_idx < counterBufferCount &&
3381 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
3382 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3383 uint64_t offset = pCounterBufferOffsets ?
3384 pCounterBufferOffsets[cb_idx] : 0;
3385
3386 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
3387 srm.MemoryAddress = anv_address_add(counter_buffer->address,
3388 offset);
3389 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3390 }
3391 }
3392 }
3393
3394 cmd_buffer->state.xfb_enabled = false;
3395 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3396 }
3397
3398 static VkResult
3399 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
3400 {
3401 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3402 struct anv_state surfaces = { 0, }, samplers = { 0, };
3403 VkResult result;
3404
3405 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3406 if (result != VK_SUCCESS) {
3407 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
3408
3409 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
3410 if (result != VK_SUCCESS)
3411 return result;
3412
3413 /* Re-emit state base addresses so we get the new surface state base
3414 * address before we start emitting binding tables etc.
3415 */
3416 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
3417
3418 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3419 if (result != VK_SUCCESS) {
3420 anv_batch_set_error(&cmd_buffer->batch, result);
3421 return result;
3422 }
3423 }
3424
3425 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
3426 if (result != VK_SUCCESS) {
3427 anv_batch_set_error(&cmd_buffer->batch, result);
3428 return result;
3429 }
3430
3431 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
3432 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
3433 .BindingTablePointer = surfaces.offset,
3434 .SamplerStatePointer = samplers.offset,
3435 };
3436 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
3437
3438 struct anv_state state =
3439 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
3440 pipeline->interface_descriptor_data,
3441 GENX(INTERFACE_DESCRIPTOR_DATA_length),
3442 64);
3443
3444 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3445 anv_batch_emit(&cmd_buffer->batch,
3446 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
3447 mid.InterfaceDescriptorTotalLength = size;
3448 mid.InterfaceDescriptorDataStartAddress = state.offset;
3449 }
3450
3451 return VK_SUCCESS;
3452 }
3453
3454 void
3455 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
3456 {
3457 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3458 MAYBE_UNUSED VkResult result;
3459
3460 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
3461
3462 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
3463
3464 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
3465
3466 if (cmd_buffer->state.compute.pipeline_dirty) {
3467 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
3468 *
3469 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
3470 * the only bits that are changed are scoreboard related: Scoreboard
3471 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
3472 * these scoreboard related states, a MEDIA_STATE_FLUSH is
3473 * sufficient."
3474 */
3475 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3476 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3477
3478 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3479 }
3480
3481 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
3482 cmd_buffer->state.compute.pipeline_dirty) {
3483 /* FIXME: figure out descriptors for gen7 */
3484 result = flush_compute_descriptor_set(cmd_buffer);
3485 if (result != VK_SUCCESS)
3486 return;
3487
3488 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3489 }
3490
3491 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
3492 struct anv_state push_state =
3493 anv_cmd_buffer_cs_push_constants(cmd_buffer);
3494
3495 if (push_state.alloc_size) {
3496 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
3497 curbe.CURBETotalDataLength = push_state.alloc_size;
3498 curbe.CURBEDataStartAddress = push_state.offset;
3499 }
3500 }
3501
3502 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3503 }
3504
3505 cmd_buffer->state.compute.pipeline_dirty = false;
3506
3507 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3508 }
3509
3510 #if GEN_GEN == 7
3511
3512 static VkResult
3513 verify_cmd_parser(const struct anv_device *device,
3514 int required_version,
3515 const char *function)
3516 {
3517 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
3518 return vk_errorf(device->instance, device->instance,
3519 VK_ERROR_FEATURE_NOT_PRESENT,
3520 "cmd parser version %d is required for %s",
3521 required_version, function);
3522 } else {
3523 return VK_SUCCESS;
3524 }
3525 }
3526
3527 #endif
3528
3529 static void
3530 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
3531 uint32_t baseGroupX,
3532 uint32_t baseGroupY,
3533 uint32_t baseGroupZ)
3534 {
3535 if (anv_batch_has_error(&cmd_buffer->batch))
3536 return;
3537
3538 struct anv_push_constants *push =
3539 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
3540 if (push->base_work_group_id[0] != baseGroupX ||
3541 push->base_work_group_id[1] != baseGroupY ||
3542 push->base_work_group_id[2] != baseGroupZ) {
3543 push->base_work_group_id[0] = baseGroupX;
3544 push->base_work_group_id[1] = baseGroupY;
3545 push->base_work_group_id[2] = baseGroupZ;
3546
3547 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3548 }
3549 }
3550
3551 void genX(CmdDispatch)(
3552 VkCommandBuffer commandBuffer,
3553 uint32_t x,
3554 uint32_t y,
3555 uint32_t z)
3556 {
3557 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
3558 }
3559
3560 void genX(CmdDispatchBase)(
3561 VkCommandBuffer commandBuffer,
3562 uint32_t baseGroupX,
3563 uint32_t baseGroupY,
3564 uint32_t baseGroupZ,
3565 uint32_t groupCountX,
3566 uint32_t groupCountY,
3567 uint32_t groupCountZ)
3568 {
3569 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3570 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3571 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3572
3573 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
3574 baseGroupY, baseGroupZ);
3575
3576 if (anv_batch_has_error(&cmd_buffer->batch))
3577 return;
3578
3579 if (prog_data->uses_num_work_groups) {
3580 struct anv_state state =
3581 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
3582 uint32_t *sizes = state.map;
3583 sizes[0] = groupCountX;
3584 sizes[1] = groupCountY;
3585 sizes[2] = groupCountZ;
3586 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
3587 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3588 .offset = state.offset,
3589 };
3590 }
3591
3592 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3593
3594 if (cmd_buffer->state.conditional_render_enabled)
3595 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3596
3597 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
3598 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3599 ggw.SIMDSize = prog_data->simd_size / 16;
3600 ggw.ThreadDepthCounterMaximum = 0;
3601 ggw.ThreadHeightCounterMaximum = 0;
3602 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3603 ggw.ThreadGroupIDXDimension = groupCountX;
3604 ggw.ThreadGroupIDYDimension = groupCountY;
3605 ggw.ThreadGroupIDZDimension = groupCountZ;
3606 ggw.RightExecutionMask = pipeline->cs_right_mask;
3607 ggw.BottomExecutionMask = 0xffffffff;
3608 }
3609
3610 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
3611 }
3612
3613 #define GPGPU_DISPATCHDIMX 0x2500
3614 #define GPGPU_DISPATCHDIMY 0x2504
3615 #define GPGPU_DISPATCHDIMZ 0x2508
3616
3617 void genX(CmdDispatchIndirect)(
3618 VkCommandBuffer commandBuffer,
3619 VkBuffer _buffer,
3620 VkDeviceSize offset)
3621 {
3622 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3623 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3624 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3625 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3626 struct anv_address addr = anv_address_add(buffer->address, offset);
3627 struct anv_batch *batch = &cmd_buffer->batch;
3628
3629 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
3630
3631 #if GEN_GEN == 7
3632 /* Linux 4.4 added command parser version 5 which allows the GPGPU
3633 * indirect dispatch registers to be written.
3634 */
3635 if (verify_cmd_parser(cmd_buffer->device, 5,
3636 "vkCmdDispatchIndirect") != VK_SUCCESS)
3637 return;
3638 #endif
3639
3640 if (prog_data->uses_num_work_groups)
3641 cmd_buffer->state.compute.num_workgroups = addr;
3642
3643 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3644
3645 struct gen_mi_builder b;
3646 gen_mi_builder_init(&b, &cmd_buffer->batch);
3647
3648 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
3649 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
3650 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
3651
3652 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
3653 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
3654 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
3655
3656 #if GEN_GEN <= 7
3657 /* predicate = (compute_dispatch_indirect_x_size == 0); */
3658 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
3659 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3660 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3661 mip.LoadOperation = LOAD_LOAD;
3662 mip.CombineOperation = COMBINE_SET;
3663 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3664 }
3665
3666 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
3667 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
3668 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3669 mip.LoadOperation = LOAD_LOAD;
3670 mip.CombineOperation = COMBINE_OR;
3671 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3672 }
3673
3674 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
3675 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
3676 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3677 mip.LoadOperation = LOAD_LOAD;
3678 mip.CombineOperation = COMBINE_OR;
3679 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3680 }
3681
3682 /* predicate = !predicate; */
3683 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3684 mip.LoadOperation = LOAD_LOADINV;
3685 mip.CombineOperation = COMBINE_OR;
3686 mip.CompareOperation = COMPARE_FALSE;
3687 }
3688
3689 #if GEN_IS_HASWELL
3690 if (cmd_buffer->state.conditional_render_enabled) {
3691 /* predicate &= !(conditional_rendering_predicate == 0); */
3692 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
3693 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
3694 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3695 mip.LoadOperation = LOAD_LOADINV;
3696 mip.CombineOperation = COMBINE_AND;
3697 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3698 }
3699 }
3700 #endif
3701
3702 #else /* GEN_GEN > 7 */
3703 if (cmd_buffer->state.conditional_render_enabled)
3704 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3705 #endif
3706
3707 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
3708 ggw.IndirectParameterEnable = true;
3709 ggw.PredicateEnable = GEN_GEN <= 7 ||
3710 cmd_buffer->state.conditional_render_enabled;
3711 ggw.SIMDSize = prog_data->simd_size / 16;
3712 ggw.ThreadDepthCounterMaximum = 0;
3713 ggw.ThreadHeightCounterMaximum = 0;
3714 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3715 ggw.RightExecutionMask = pipeline->cs_right_mask;
3716 ggw.BottomExecutionMask = 0xffffffff;
3717 }
3718
3719 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
3720 }
3721
3722 static void
3723 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
3724 uint32_t pipeline)
3725 {
3726 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
3727
3728 if (cmd_buffer->state.current_pipeline == pipeline)
3729 return;
3730
3731 #if GEN_GEN >= 8 && GEN_GEN < 10
3732 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
3733 *
3734 * Software must clear the COLOR_CALC_STATE Valid field in
3735 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
3736 * with Pipeline Select set to GPGPU.
3737 *
3738 * The internal hardware docs recommend the same workaround for Gen9
3739 * hardware too.
3740 */
3741 if (pipeline == GPGPU)
3742 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
3743 #endif
3744
3745 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
3746 * PIPELINE_SELECT [DevBWR+]":
3747 *
3748 * Project: DEVSNB+
3749 *
3750 * Software must ensure all the write caches are flushed through a
3751 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
3752 * command to invalidate read only caches prior to programming
3753 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
3754 */
3755 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3756 pc.RenderTargetCacheFlushEnable = true;
3757 pc.DepthCacheFlushEnable = true;
3758 pc.DCFlushEnable = true;
3759 pc.PostSyncOperation = NoWrite;
3760 pc.CommandStreamerStallEnable = true;
3761 }
3762
3763 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3764 pc.TextureCacheInvalidationEnable = true;
3765 pc.ConstantCacheInvalidationEnable = true;
3766 pc.StateCacheInvalidationEnable = true;
3767 pc.InstructionCacheInvalidateEnable = true;
3768 pc.PostSyncOperation = NoWrite;
3769 }
3770
3771 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
3772 #if GEN_GEN >= 9
3773 ps.MaskBits = 3;
3774 #endif
3775 ps.PipelineSelection = pipeline;
3776 }
3777
3778 #if GEN_GEN == 9
3779 if (devinfo->is_geminilake) {
3780 /* Project: DevGLK
3781 *
3782 * "This chicken bit works around a hardware issue with barrier logic
3783 * encountered when switching between GPGPU and 3D pipelines. To
3784 * workaround the issue, this mode bit should be set after a pipeline
3785 * is selected."
3786 */
3787 uint32_t scec;
3788 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
3789 .GLKBarrierMode =
3790 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
3791 : GLK_BARRIER_MODE_3D_HULL,
3792 .GLKBarrierModeMask = 1);
3793 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
3794 }
3795 #endif
3796
3797 cmd_buffer->state.current_pipeline = pipeline;
3798 }
3799
3800 void
3801 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
3802 {
3803 genX(flush_pipeline_select)(cmd_buffer, _3D);
3804 }
3805
3806 void
3807 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
3808 {
3809 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
3810 }
3811
3812 void
3813 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
3814 {
3815 if (GEN_GEN >= 8)
3816 return;
3817
3818 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
3819 *
3820 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
3821 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
3822 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
3823 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
3824 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
3825 * Depth Flush Bit set, followed by another pipelined depth stall
3826 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
3827 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
3828 * via a preceding MI_FLUSH)."
3829 */
3830 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3831 pipe.DepthStallEnable = true;
3832 }
3833 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3834 pipe.DepthCacheFlushEnable = true;
3835 }
3836 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3837 pipe.DepthStallEnable = true;
3838 }
3839 }
3840
3841 static void
3842 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
3843 {
3844 struct anv_device *device = cmd_buffer->device;
3845 const struct anv_image_view *iview =
3846 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
3847 const struct anv_image *image = iview ? iview->image : NULL;
3848
3849 /* FIXME: Width and Height are wrong */
3850
3851 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
3852
3853 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
3854 device->isl_dev.ds.size / 4);
3855 if (dw == NULL)
3856 return;
3857
3858 struct isl_depth_stencil_hiz_emit_info info = { };
3859
3860 if (iview)
3861 info.view = &iview->planes[0].isl;
3862
3863 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
3864 uint32_t depth_plane =
3865 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
3866 const struct anv_surface *surface = &image->planes[depth_plane].surface;
3867
3868 info.depth_surf = &surface->isl;
3869
3870 info.depth_address =
3871 anv_batch_emit_reloc(&cmd_buffer->batch,
3872 dw + device->isl_dev.ds.depth_offset / 4,
3873 image->planes[depth_plane].address.bo,
3874 image->planes[depth_plane].address.offset +
3875 surface->offset);
3876 info.mocs =
3877 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
3878
3879 const uint32_t ds =
3880 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
3881 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
3882 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
3883 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
3884
3885 info.hiz_address =
3886 anv_batch_emit_reloc(&cmd_buffer->batch,
3887 dw + device->isl_dev.ds.hiz_offset / 4,
3888 image->planes[depth_plane].address.bo,
3889 image->planes[depth_plane].address.offset +
3890 image->planes[depth_plane].aux_surface.offset);
3891
3892 info.depth_clear_value = ANV_HZ_FC_VAL;
3893 }
3894 }
3895
3896 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
3897 uint32_t stencil_plane =
3898 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
3899 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
3900
3901 info.stencil_surf = &surface->isl;
3902
3903 info.stencil_address =
3904 anv_batch_emit_reloc(&cmd_buffer->batch,
3905 dw + device->isl_dev.ds.stencil_offset / 4,
3906 image->planes[stencil_plane].address.bo,
3907 image->planes[stencil_plane].address.offset +
3908 surface->offset);
3909 info.mocs =
3910 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
3911 }
3912
3913 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
3914
3915 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
3916 }
3917
3918 /**
3919 * This ANDs the view mask of the current subpass with the pending clear
3920 * views in the attachment to get the mask of views active in the subpass
3921 * that still need to be cleared.
3922 */
3923 static inline uint32_t
3924 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
3925 const struct anv_attachment_state *att_state)
3926 {
3927 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
3928 }
3929
3930 static inline bool
3931 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
3932 const struct anv_attachment_state *att_state)
3933 {
3934 if (!cmd_state->subpass->view_mask)
3935 return true;
3936
3937 uint32_t pending_clear_mask =
3938 get_multiview_subpass_clear_mask(cmd_state, att_state);
3939
3940 return pending_clear_mask & 1;
3941 }
3942
3943 static inline bool
3944 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
3945 uint32_t att_idx)
3946 {
3947 const uint32_t last_subpass_idx =
3948 cmd_state->pass->attachments[att_idx].last_subpass_idx;
3949 const struct anv_subpass *last_subpass =
3950 &cmd_state->pass->subpasses[last_subpass_idx];
3951 return last_subpass == cmd_state->subpass;
3952 }
3953
3954 static void
3955 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
3956 uint32_t subpass_id)
3957 {
3958 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3959 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
3960 cmd_state->subpass = subpass;
3961
3962 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3963
3964 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3965 * different views. If the client asks for instancing, we need to use the
3966 * Instance Data Step Rate to ensure that we repeat the client's
3967 * per-instance data once for each view. Since this bit is in
3968 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3969 * of each subpass.
3970 */
3971 if (GEN_GEN == 7)
3972 cmd_buffer->state.gfx.vb_dirty |= ~0;
3973
3974 /* It is possible to start a render pass with an old pipeline. Because the
3975 * render pass and subpass index are both baked into the pipeline, this is
3976 * highly unlikely. In order to do so, it requires that you have a render
3977 * pass with a single subpass and that you use that render pass twice
3978 * back-to-back and use the same pipeline at the start of the second render
3979 * pass as at the end of the first. In order to avoid unpredictable issues
3980 * with this edge case, we just dirty the pipeline at the start of every
3981 * subpass.
3982 */
3983 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
3984
3985 /* Accumulate any subpass flushes that need to happen before the subpass */
3986 cmd_buffer->state.pending_pipe_bits |=
3987 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3988
3989 VkRect2D render_area = cmd_buffer->state.render_area;
3990 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3991
3992 bool is_multiview = subpass->view_mask != 0;
3993
3994 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3995 const uint32_t a = subpass->attachments[i].attachment;
3996 if (a == VK_ATTACHMENT_UNUSED)
3997 continue;
3998
3999 assert(a < cmd_state->pass->attachment_count);
4000 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4001
4002 struct anv_image_view *iview = fb->attachments[a];
4003 const struct anv_image *image = iview->image;
4004
4005 /* A resolve is necessary before use as an input attachment if the clear
4006 * color or auxiliary buffer usage isn't supported by the sampler.
4007 */
4008 const bool input_needs_resolve =
4009 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
4010 att_state->input_aux_usage != att_state->aux_usage;
4011
4012 VkImageLayout target_layout;
4013 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
4014 !input_needs_resolve) {
4015 /* Layout transitions before the final only help to enable sampling
4016 * as an input attachment. If the input attachment supports sampling
4017 * using the auxiliary surface, we can skip such transitions by
4018 * making the target layout one that is CCS-aware.
4019 */
4020 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
4021 } else {
4022 target_layout = subpass->attachments[i].layout;
4023 }
4024
4025 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4026 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4027
4028 uint32_t base_layer, layer_count;
4029 if (image->type == VK_IMAGE_TYPE_3D) {
4030 base_layer = 0;
4031 layer_count = anv_minify(iview->image->extent.depth,
4032 iview->planes[0].isl.base_level);
4033 } else {
4034 base_layer = iview->planes[0].isl.base_array_layer;
4035 layer_count = fb->layers;
4036 }
4037
4038 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4039 iview->planes[0].isl.base_level, 1,
4040 base_layer, layer_count,
4041 att_state->current_layout, target_layout);
4042 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4043 transition_depth_buffer(cmd_buffer, image,
4044 att_state->current_layout, target_layout);
4045 att_state->aux_usage =
4046 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
4047 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
4048 }
4049 att_state->current_layout = target_layout;
4050
4051 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
4052 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4053
4054 /* Multi-planar images are not supported as attachments */
4055 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4056 assert(image->n_planes == 1);
4057
4058 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
4059 uint32_t clear_layer_count = fb->layers;
4060
4061 if (att_state->fast_clear &&
4062 do_first_layer_clear(cmd_state, att_state)) {
4063 /* We only support fast-clears on the first layer */
4064 assert(iview->planes[0].isl.base_level == 0);
4065 assert(iview->planes[0].isl.base_array_layer == 0);
4066
4067 union isl_color_value clear_color = {};
4068 anv_clear_color_from_att_state(&clear_color, att_state, iview);
4069 if (iview->image->samples == 1) {
4070 anv_image_ccs_op(cmd_buffer, image,
4071 iview->planes[0].isl.format,
4072 VK_IMAGE_ASPECT_COLOR_BIT,
4073 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
4074 &clear_color,
4075 false);
4076 } else {
4077 anv_image_mcs_op(cmd_buffer, image,
4078 iview->planes[0].isl.format,
4079 VK_IMAGE_ASPECT_COLOR_BIT,
4080 0, 1, ISL_AUX_OP_FAST_CLEAR,
4081 &clear_color,
4082 false);
4083 }
4084 base_clear_layer++;
4085 clear_layer_count--;
4086 if (is_multiview)
4087 att_state->pending_clear_views &= ~1;
4088
4089 if (att_state->clear_color_is_zero) {
4090 /* This image has the auxiliary buffer enabled. We can mark the
4091 * subresource as not needing a resolve because the clear color
4092 * will match what's in every RENDER_SURFACE_STATE object when
4093 * it's being used for sampling.
4094 */
4095 set_image_fast_clear_state(cmd_buffer, iview->image,
4096 VK_IMAGE_ASPECT_COLOR_BIT,
4097 ANV_FAST_CLEAR_DEFAULT_VALUE);
4098 } else {
4099 set_image_fast_clear_state(cmd_buffer, iview->image,
4100 VK_IMAGE_ASPECT_COLOR_BIT,
4101 ANV_FAST_CLEAR_ANY);
4102 }
4103 }
4104
4105 /* From the VkFramebufferCreateInfo spec:
4106 *
4107 * "If the render pass uses multiview, then layers must be one and each
4108 * attachment requires a number of layers that is greater than the
4109 * maximum bit index set in the view mask in the subpasses in which it
4110 * is used."
4111 *
4112 * So if multiview is active we ignore the number of layers in the
4113 * framebuffer and instead we honor the view mask from the subpass.
4114 */
4115 if (is_multiview) {
4116 assert(image->n_planes == 1);
4117 uint32_t pending_clear_mask =
4118 get_multiview_subpass_clear_mask(cmd_state, att_state);
4119
4120 uint32_t layer_idx;
4121 for_each_bit(layer_idx, pending_clear_mask) {
4122 uint32_t layer =
4123 iview->planes[0].isl.base_array_layer + layer_idx;
4124
4125 anv_image_clear_color(cmd_buffer, image,
4126 VK_IMAGE_ASPECT_COLOR_BIT,
4127 att_state->aux_usage,
4128 iview->planes[0].isl.format,
4129 iview->planes[0].isl.swizzle,
4130 iview->planes[0].isl.base_level,
4131 layer, 1,
4132 render_area,
4133 vk_to_isl_color(att_state->clear_value.color));
4134 }
4135
4136 att_state->pending_clear_views &= ~pending_clear_mask;
4137 } else if (clear_layer_count > 0) {
4138 assert(image->n_planes == 1);
4139 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4140 att_state->aux_usage,
4141 iview->planes[0].isl.format,
4142 iview->planes[0].isl.swizzle,
4143 iview->planes[0].isl.base_level,
4144 base_clear_layer, clear_layer_count,
4145 render_area,
4146 vk_to_isl_color(att_state->clear_value.color));
4147 }
4148 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
4149 VK_IMAGE_ASPECT_STENCIL_BIT)) {
4150 if (att_state->fast_clear && !is_multiview) {
4151 /* We currently only support HiZ for single-layer images */
4152 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4153 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
4154 assert(iview->planes[0].isl.base_level == 0);
4155 assert(iview->planes[0].isl.base_array_layer == 0);
4156 assert(fb->layers == 1);
4157 }
4158
4159 anv_image_hiz_clear(cmd_buffer, image,
4160 att_state->pending_clear_aspects,
4161 iview->planes[0].isl.base_level,
4162 iview->planes[0].isl.base_array_layer,
4163 fb->layers, render_area,
4164 att_state->clear_value.depthStencil.stencil);
4165 } else if (is_multiview) {
4166 uint32_t pending_clear_mask =
4167 get_multiview_subpass_clear_mask(cmd_state, att_state);
4168
4169 uint32_t layer_idx;
4170 for_each_bit(layer_idx, pending_clear_mask) {
4171 uint32_t layer =
4172 iview->planes[0].isl.base_array_layer + layer_idx;
4173
4174 anv_image_clear_depth_stencil(cmd_buffer, image,
4175 att_state->pending_clear_aspects,
4176 att_state->aux_usage,
4177 iview->planes[0].isl.base_level,
4178 layer, 1,
4179 render_area,
4180 att_state->clear_value.depthStencil.depth,
4181 att_state->clear_value.depthStencil.stencil);
4182 }
4183
4184 att_state->pending_clear_views &= ~pending_clear_mask;
4185 } else {
4186 anv_image_clear_depth_stencil(cmd_buffer, image,
4187 att_state->pending_clear_aspects,
4188 att_state->aux_usage,
4189 iview->planes[0].isl.base_level,
4190 iview->planes[0].isl.base_array_layer,
4191 fb->layers, render_area,
4192 att_state->clear_value.depthStencil.depth,
4193 att_state->clear_value.depthStencil.stencil);
4194 }
4195 } else {
4196 assert(att_state->pending_clear_aspects == 0);
4197 }
4198
4199 if (GEN_GEN < 10 &&
4200 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
4201 image->planes[0].aux_surface.isl.size_B > 0 &&
4202 iview->planes[0].isl.base_level == 0 &&
4203 iview->planes[0].isl.base_array_layer == 0) {
4204 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
4205 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
4206 image, VK_IMAGE_ASPECT_COLOR_BIT,
4207 false /* copy to ss */);
4208 }
4209
4210 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
4211 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
4212 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
4213 image, VK_IMAGE_ASPECT_COLOR_BIT,
4214 false /* copy to ss */);
4215 }
4216 }
4217
4218 if (subpass->attachments[i].usage ==
4219 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
4220 /* We assume that if we're starting a subpass, we're going to do some
4221 * rendering so we may end up with compressed data.
4222 */
4223 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
4224 VK_IMAGE_ASPECT_COLOR_BIT,
4225 att_state->aux_usage,
4226 iview->planes[0].isl.base_level,
4227 iview->planes[0].isl.base_array_layer,
4228 fb->layers);
4229 } else if (subpass->attachments[i].usage ==
4230 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
4231 /* We may be writing depth or stencil so we need to mark the surface.
4232 * Unfortunately, there's no way to know at this point whether the
4233 * depth or stencil tests used will actually write to the surface.
4234 *
4235 * Even though stencil may be plane 1, it always shares a base_level
4236 * with depth.
4237 */
4238 const struct isl_view *ds_view = &iview->planes[0].isl;
4239 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
4240 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
4241 VK_IMAGE_ASPECT_DEPTH_BIT,
4242 att_state->aux_usage,
4243 ds_view->base_level,
4244 ds_view->base_array_layer,
4245 fb->layers);
4246 }
4247 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
4248 /* Even though stencil may be plane 1, it always shares a
4249 * base_level with depth.
4250 */
4251 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
4252 VK_IMAGE_ASPECT_STENCIL_BIT,
4253 ISL_AUX_USAGE_NONE,
4254 ds_view->base_level,
4255 ds_view->base_array_layer,
4256 fb->layers);
4257 }
4258 }
4259
4260 /* If multiview is enabled, then we are only done clearing when we no
4261 * longer have pending layers to clear, or when we have processed the
4262 * last subpass that uses this attachment.
4263 */
4264 if (!is_multiview ||
4265 att_state->pending_clear_views == 0 ||
4266 current_subpass_is_last_for_attachment(cmd_state, a)) {
4267 att_state->pending_clear_aspects = 0;
4268 }
4269
4270 att_state->pending_load_aspects = 0;
4271 }
4272
4273 cmd_buffer_emit_depth_stencil(cmd_buffer);
4274 }
4275
4276 static enum blorp_filter
4277 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
4278 {
4279 switch (vk_mode) {
4280 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
4281 return BLORP_FILTER_SAMPLE_0;
4282 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
4283 return BLORP_FILTER_AVERAGE;
4284 case VK_RESOLVE_MODE_MIN_BIT_KHR:
4285 return BLORP_FILTER_MIN_SAMPLE;
4286 case VK_RESOLVE_MODE_MAX_BIT_KHR:
4287 return BLORP_FILTER_MAX_SAMPLE;
4288 default:
4289 return BLORP_FILTER_NONE;
4290 }
4291 }
4292
4293 static void
4294 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
4295 {
4296 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4297 struct anv_subpass *subpass = cmd_state->subpass;
4298 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
4299 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4300
4301 if (subpass->has_color_resolve) {
4302 /* We are about to do some MSAA resolves. We need to flush so that the
4303 * result of writes to the MSAA color attachments show up in the sampler
4304 * when we blit to the single-sampled resolve target.
4305 */
4306 cmd_buffer->state.pending_pipe_bits |=
4307 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
4308 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
4309
4310 for (uint32_t i = 0; i < subpass->color_count; ++i) {
4311 uint32_t src_att = subpass->color_attachments[i].attachment;
4312 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
4313
4314 if (dst_att == VK_ATTACHMENT_UNUSED)
4315 continue;
4316
4317 assert(src_att < cmd_buffer->state.pass->attachment_count);
4318 assert(dst_att < cmd_buffer->state.pass->attachment_count);
4319
4320 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
4321 /* From the Vulkan 1.0 spec:
4322 *
4323 * If the first use of an attachment in a render pass is as a
4324 * resolve attachment, then the loadOp is effectively ignored
4325 * as the resolve is guaranteed to overwrite all pixels in the
4326 * render area.
4327 */
4328 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
4329 }
4330
4331 struct anv_image_view *src_iview = fb->attachments[src_att];
4332 struct anv_image_view *dst_iview = fb->attachments[dst_att];
4333
4334 const VkRect2D render_area = cmd_buffer->state.render_area;
4335
4336 enum isl_aux_usage src_aux_usage =
4337 cmd_buffer->state.attachments[src_att].aux_usage;
4338 enum isl_aux_usage dst_aux_usage =
4339 cmd_buffer->state.attachments[dst_att].aux_usage;
4340
4341 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
4342 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
4343
4344 anv_image_msaa_resolve(cmd_buffer,
4345 src_iview->image, src_aux_usage,
4346 src_iview->planes[0].isl.base_level,
4347 src_iview->planes[0].isl.base_array_layer,
4348 dst_iview->image, dst_aux_usage,
4349 dst_iview->planes[0].isl.base_level,
4350 dst_iview->planes[0].isl.base_array_layer,
4351 VK_IMAGE_ASPECT_COLOR_BIT,
4352 render_area.offset.x, render_area.offset.y,
4353 render_area.offset.x, render_area.offset.y,
4354 render_area.extent.width,
4355 render_area.extent.height,
4356 fb->layers, BLORP_FILTER_NONE);
4357 }
4358 }
4359
4360 if (subpass->ds_resolve_attachment) {
4361 /* We are about to do some MSAA resolves. We need to flush so that the
4362 * result of writes to the MSAA depth attachments show up in the sampler
4363 * when we blit to the single-sampled resolve target.
4364 */
4365 cmd_buffer->state.pending_pipe_bits |=
4366 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
4367 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
4368
4369 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
4370 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
4371
4372 assert(src_att < cmd_buffer->state.pass->attachment_count);
4373 assert(dst_att < cmd_buffer->state.pass->attachment_count);
4374
4375 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
4376 /* From the Vulkan 1.0 spec:
4377 *
4378 * If the first use of an attachment in a render pass is as a
4379 * resolve attachment, then the loadOp is effectively ignored
4380 * as the resolve is guaranteed to overwrite all pixels in the
4381 * render area.
4382 */
4383 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
4384 }
4385
4386 struct anv_image_view *src_iview = fb->attachments[src_att];
4387 struct anv_image_view *dst_iview = fb->attachments[dst_att];
4388
4389 const VkRect2D render_area = cmd_buffer->state.render_area;
4390
4391 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
4392 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
4393
4394 struct anv_attachment_state *src_state =
4395 &cmd_state->attachments[src_att];
4396 struct anv_attachment_state *dst_state =
4397 &cmd_state->attachments[dst_att];
4398
4399 /* MSAA resolves sample from the source attachment. Transition the
4400 * depth attachment first to get rid of any HiZ that we may not be
4401 * able to handle.
4402 */
4403 transition_depth_buffer(cmd_buffer, src_iview->image,
4404 src_state->current_layout,
4405 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
4406 src_state->aux_usage =
4407 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
4408 VK_IMAGE_ASPECT_DEPTH_BIT,
4409 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
4410 src_state->current_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
4411
4412 /* MSAA resolves write to the resolve attachment as if it were any
4413 * other transfer op. Transition the resolve attachment accordingly.
4414 */
4415 VkImageLayout dst_initial_layout = dst_state->current_layout;
4416
4417 /* If our render area is the entire size of the image, we're going to
4418 * blow it all away so we can claim the initial layout is UNDEFINED
4419 * and we'll get a HiZ ambiguate instead of a resolve.
4420 */
4421 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
4422 render_area.offset.x == 0 && render_area.offset.y == 0 &&
4423 render_area.extent.width == dst_iview->extent.width &&
4424 render_area.extent.height == dst_iview->extent.height)
4425 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
4426
4427 transition_depth_buffer(cmd_buffer, dst_iview->image,
4428 dst_initial_layout,
4429 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
4430 dst_state->aux_usage =
4431 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
4432 VK_IMAGE_ASPECT_DEPTH_BIT,
4433 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
4434 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
4435
4436 enum blorp_filter filter =
4437 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
4438
4439 anv_image_msaa_resolve(cmd_buffer,
4440 src_iview->image, src_state->aux_usage,
4441 src_iview->planes[0].isl.base_level,
4442 src_iview->planes[0].isl.base_array_layer,
4443 dst_iview->image, dst_state->aux_usage,
4444 dst_iview->planes[0].isl.base_level,
4445 dst_iview->planes[0].isl.base_array_layer,
4446 VK_IMAGE_ASPECT_DEPTH_BIT,
4447 render_area.offset.x, render_area.offset.y,
4448 render_area.offset.x, render_area.offset.y,
4449 render_area.extent.width,
4450 render_area.extent.height,
4451 fb->layers, filter);
4452 }
4453
4454 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
4455 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
4456
4457 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
4458 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
4459
4460 enum blorp_filter filter =
4461 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
4462
4463 anv_image_msaa_resolve(cmd_buffer,
4464 src_iview->image, src_aux_usage,
4465 src_iview->planes[0].isl.base_level,
4466 src_iview->planes[0].isl.base_array_layer,
4467 dst_iview->image, dst_aux_usage,
4468 dst_iview->planes[0].isl.base_level,
4469 dst_iview->planes[0].isl.base_array_layer,
4470 VK_IMAGE_ASPECT_STENCIL_BIT,
4471 render_area.offset.x, render_area.offset.y,
4472 render_area.offset.x, render_area.offset.y,
4473 render_area.extent.width,
4474 render_area.extent.height,
4475 fb->layers, filter);
4476 }
4477 }
4478
4479 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4480 const uint32_t a = subpass->attachments[i].attachment;
4481 if (a == VK_ATTACHMENT_UNUSED)
4482 continue;
4483
4484 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
4485 continue;
4486
4487 assert(a < cmd_state->pass->attachment_count);
4488 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4489 struct anv_image_view *iview = fb->attachments[a];
4490 const struct anv_image *image = iview->image;
4491
4492 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
4493 image->vk_format != iview->vk_format) {
4494 enum anv_fast_clear_type fast_clear_type =
4495 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
4496 image, VK_IMAGE_ASPECT_COLOR_BIT,
4497 att_state->current_layout);
4498
4499 /* If any clear color was used, flush it down the aux surfaces. If we
4500 * don't do it now using the view's format we might use the clear
4501 * color incorrectly in the following resolves (for example with an
4502 * SRGB view & a UNORM image).
4503 */
4504 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
4505 anv_perf_warn(cmd_buffer->device->instance, fb,
4506 "Doing a partial resolve to get rid of clear color at the "
4507 "end of a renderpass due to an image/view format mismatch");
4508
4509 uint32_t base_layer, layer_count;
4510 if (image->type == VK_IMAGE_TYPE_3D) {
4511 base_layer = 0;
4512 layer_count = anv_minify(iview->image->extent.depth,
4513 iview->planes[0].isl.base_level);
4514 } else {
4515 base_layer = iview->planes[0].isl.base_array_layer;
4516 layer_count = fb->layers;
4517 }
4518
4519 for (uint32_t a = 0; a < layer_count; a++) {
4520 uint32_t array_layer = base_layer + a;
4521 if (image->samples == 1) {
4522 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
4523 iview->planes[0].isl.format,
4524 VK_IMAGE_ASPECT_COLOR_BIT,
4525 iview->planes[0].isl.base_level,
4526 array_layer,
4527 ISL_AUX_OP_PARTIAL_RESOLVE,
4528 ANV_FAST_CLEAR_NONE);
4529 } else {
4530 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
4531 iview->planes[0].isl.format,
4532 VK_IMAGE_ASPECT_COLOR_BIT,
4533 base_layer,
4534 ISL_AUX_OP_PARTIAL_RESOLVE,
4535 ANV_FAST_CLEAR_NONE);
4536 }
4537 }
4538 }
4539 }
4540
4541 /* Transition the image into the final layout for this render pass */
4542 VkImageLayout target_layout =
4543 cmd_state->pass->attachments[a].final_layout;
4544
4545 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4546 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4547
4548 uint32_t base_layer, layer_count;
4549 if (image->type == VK_IMAGE_TYPE_3D) {
4550 base_layer = 0;
4551 layer_count = anv_minify(iview->image->extent.depth,
4552 iview->planes[0].isl.base_level);
4553 } else {
4554 base_layer = iview->planes[0].isl.base_array_layer;
4555 layer_count = fb->layers;
4556 }
4557
4558 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4559 iview->planes[0].isl.base_level, 1,
4560 base_layer, layer_count,
4561 att_state->current_layout, target_layout);
4562 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4563 transition_depth_buffer(cmd_buffer, image,
4564 att_state->current_layout, target_layout);
4565 }
4566 }
4567
4568 /* Accumulate any subpass flushes that need to happen after the subpass.
4569 * Yes, they do get accumulated twice in the NextSubpass case but since
4570 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
4571 * ORing the bits in twice so it's harmless.
4572 */
4573 cmd_buffer->state.pending_pipe_bits |=
4574 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
4575 }
4576
4577 void genX(CmdBeginRenderPass)(
4578 VkCommandBuffer commandBuffer,
4579 const VkRenderPassBeginInfo* pRenderPassBegin,
4580 VkSubpassContents contents)
4581 {
4582 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4583 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
4584 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
4585
4586 cmd_buffer->state.framebuffer = framebuffer;
4587 cmd_buffer->state.pass = pass;
4588 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
4589 VkResult result =
4590 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
4591
4592 /* If we failed to setup the attachments we should not try to go further */
4593 if (result != VK_SUCCESS) {
4594 assert(anv_batch_has_error(&cmd_buffer->batch));
4595 return;
4596 }
4597
4598 genX(flush_pipeline_select_3d)(cmd_buffer);
4599
4600 cmd_buffer_begin_subpass(cmd_buffer, 0);
4601 }
4602
4603 void genX(CmdBeginRenderPass2KHR)(
4604 VkCommandBuffer commandBuffer,
4605 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
4606 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
4607 {
4608 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
4609 pSubpassBeginInfo->contents);
4610 }
4611
4612 void genX(CmdNextSubpass)(
4613 VkCommandBuffer commandBuffer,
4614 VkSubpassContents contents)
4615 {
4616 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4617
4618 if (anv_batch_has_error(&cmd_buffer->batch))
4619 return;
4620
4621 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
4622
4623 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
4624 cmd_buffer_end_subpass(cmd_buffer);
4625 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
4626 }
4627
4628 void genX(CmdNextSubpass2KHR)(
4629 VkCommandBuffer commandBuffer,
4630 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
4631 const VkSubpassEndInfoKHR* pSubpassEndInfo)
4632 {
4633 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
4634 }
4635
4636 void genX(CmdEndRenderPass)(
4637 VkCommandBuffer commandBuffer)
4638 {
4639 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4640
4641 if (anv_batch_has_error(&cmd_buffer->batch))
4642 return;
4643
4644 cmd_buffer_end_subpass(cmd_buffer);
4645
4646 cmd_buffer->state.hiz_enabled = false;
4647
4648 #ifndef NDEBUG
4649 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
4650 #endif
4651
4652 /* Remove references to render pass specific state. This enables us to
4653 * detect whether or not we're in a renderpass.
4654 */
4655 cmd_buffer->state.framebuffer = NULL;
4656 cmd_buffer->state.pass = NULL;
4657 cmd_buffer->state.subpass = NULL;
4658 }
4659
4660 void genX(CmdEndRenderPass2KHR)(
4661 VkCommandBuffer commandBuffer,
4662 const VkSubpassEndInfoKHR* pSubpassEndInfo)
4663 {
4664 genX(CmdEndRenderPass)(commandBuffer);
4665 }
4666
4667 void
4668 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
4669 {
4670 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4671 struct gen_mi_builder b;
4672 gen_mi_builder_init(&b, &cmd_buffer->batch);
4673
4674 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
4675 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
4676 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
4677
4678 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
4679 mip.LoadOperation = LOAD_LOADINV;
4680 mip.CombineOperation = COMBINE_SET;
4681 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4682 }
4683 #endif
4684 }
4685
4686 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4687 void genX(CmdBeginConditionalRenderingEXT)(
4688 VkCommandBuffer commandBuffer,
4689 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
4690 {
4691 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4692 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
4693 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4694 struct anv_address value_address =
4695 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
4696
4697 const bool isInverted = pConditionalRenderingBegin->flags &
4698 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
4699
4700 cmd_state->conditional_render_enabled = true;
4701
4702 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4703
4704 struct gen_mi_builder b;
4705 gen_mi_builder_init(&b, &cmd_buffer->batch);
4706
4707 /* Section 19.4 of the Vulkan 1.1.85 spec says:
4708 *
4709 * If the value of the predicate in buffer memory changes
4710 * while conditional rendering is active, the rendering commands
4711 * may be discarded in an implementation-dependent way.
4712 * Some implementations may latch the value of the predicate
4713 * upon beginning conditional rendering while others
4714 * may read it before every rendering command.
4715 *
4716 * So it's perfectly fine to read a value from the buffer once.
4717 */
4718 struct gen_mi_value value = gen_mi_mem32(value_address);
4719
4720 /* Precompute predicate result, it is necessary to support secondary
4721 * command buffers since it is unknown if conditional rendering is
4722 * inverted when populating them.
4723 */
4724 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
4725 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
4726 gen_mi_ult(&b, gen_mi_imm(0), value));
4727 }
4728
4729 void genX(CmdEndConditionalRenderingEXT)(
4730 VkCommandBuffer commandBuffer)
4731 {
4732 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4733 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4734
4735 cmd_state->conditional_render_enabled = false;
4736 }
4737 #endif