anv: Remove some asserts.
[mesa.git] / src / intel / vulkan / genX_gpu_memcpy.c
1 /*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "anv_private.h"
25
26 #include "genxml/gen_macros.h"
27 #include "genxml/genX_pack.h"
28
29 #include "common/gen_l3_config.h"
30
31 /**
32 * This file implements some lightweight memcpy/memset operations on the GPU
33 * using a vertex buffer and streamout.
34 */
35
36 /**
37 * Returns the greatest common divisor of a and b that is a power of two.
38 */
39 static uint64_t
40 gcd_pow2_u64(uint64_t a, uint64_t b)
41 {
42 assert(a > 0 || b > 0);
43
44 unsigned a_log2 = ffsll(a) - 1;
45 unsigned b_log2 = ffsll(b) - 1;
46
47 /* If either a or b is 0, then a_log2 or b_log2 will be UINT_MAX in which
48 * case, the MIN2() will take the other one. If both are 0 then we will
49 * hit the assert above.
50 */
51 return 1 << MIN2(a_log2, b_log2);
52 }
53
54 void
55 genX(cmd_buffer_mi_memcpy)(struct anv_cmd_buffer *cmd_buffer,
56 struct anv_address dst, struct anv_address src,
57 uint32_t size)
58 {
59 /* This memcpy operates in units of dwords. */
60 assert(size % 4 == 0);
61 assert(dst.offset % 4 == 0);
62 assert(src.offset % 4 == 0);
63
64 #if GEN_GEN == 7
65 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
66 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
67 * in-flight when they are issued even if the memory touched is not
68 * currently active for rendering. The weird bit is that it is not the
69 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
70 * rendering hangs such that the next stalling command after the
71 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
72 *
73 * It is unclear exactly why this hang occurs. Both MI commands come with
74 * warnings about the 3D pipeline but that doesn't seem to fully explain
75 * it. My (Jason's) best theory is that it has something to do with the
76 * fact that we're using a GPU state register as our temporary and that
77 * something with reading/writing it is causing problems.
78 *
79 * In order to work around this issue, we emit a PIPE_CONTROL with the
80 * command streamer stall bit set.
81 */
82 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
83 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
84 #endif
85
86 for (uint32_t i = 0; i < size; i += 4) {
87 #if GEN_GEN >= 8
88 anv_batch_emit(&cmd_buffer->batch, GENX(MI_COPY_MEM_MEM), cp) {
89 cp.DestinationMemoryAddress = anv_address_add(dst, i);
90 cp.SourceMemoryAddress = anv_address_add(src, i);
91 }
92 #else
93 /* IVB does not have a general purpose register for command streamer
94 * commands. Therefore, we use an alternate temporary register.
95 */
96 #define TEMP_REG 0x2440 /* GEN7_3DPRIM_BASE_VERTEX */
97 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), load) {
98 load.RegisterAddress = TEMP_REG;
99 load.MemoryAddress = anv_address_add(src, i);
100 }
101 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), store) {
102 store.RegisterAddress = TEMP_REG;
103 store.MemoryAddress = anv_address_add(dst, i);
104 }
105 #undef TEMP_REG
106 #endif
107 }
108 return;
109 }
110
111 void
112 genX(cmd_buffer_mi_memset)(struct anv_cmd_buffer *cmd_buffer,
113 struct anv_address dst, uint32_t value,
114 uint32_t size)
115 {
116 /* This memset operates in units of dwords. */
117 assert(size % 4 == 0);
118 assert(dst.offset % 4 == 0);
119
120 for (uint32_t i = 0; i < size; i += 4) {
121 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
122 sdi.Address = anv_address_add(dst, i);
123 sdi.ImmediateData = value;
124 }
125 }
126 }
127
128 void
129 genX(cmd_buffer_so_memcpy)(struct anv_cmd_buffer *cmd_buffer,
130 struct anv_address dst, struct anv_address src,
131 uint32_t size)
132 {
133 if (size == 0)
134 return;
135
136 /* The maximum copy block size is 4 32-bit components at a time. */
137 assert(size % 4 == 0);
138 unsigned bs = gcd_pow2_u64(16, size);
139
140 enum isl_format format;
141 switch (bs) {
142 case 4: format = ISL_FORMAT_R32_UINT; break;
143 case 8: format = ISL_FORMAT_R32G32_UINT; break;
144 case 16: format = ISL_FORMAT_R32G32B32A32_UINT; break;
145 default:
146 unreachable("Invalid size");
147 }
148
149 if (!cmd_buffer->state.current_l3_config) {
150 const struct gen_l3_config *cfg =
151 gen_get_default_l3_config(&cmd_buffer->device->info);
152 genX(cmd_buffer_config_l3)(cmd_buffer, cfg);
153 }
154
155 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
156
157 genX(flush_pipeline_select_3d)(cmd_buffer);
158
159 uint32_t *dw;
160 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(3DSTATE_VERTEX_BUFFERS));
161 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, dw + 1,
162 &(struct GENX(VERTEX_BUFFER_STATE)) {
163 .VertexBufferIndex = 32, /* Reserved for this */
164 .AddressModifyEnable = true,
165 .BufferStartingAddress = src,
166 .BufferPitch = bs,
167 .MOCS = anv_mocs_for_bo(cmd_buffer->device, src.bo),
168 #if (GEN_GEN >= 8)
169 .BufferSize = size,
170 #else
171 .EndAddress = anv_address_add(src, size - 1),
172 #endif
173 });
174
175 dw = anv_batch_emitn(&cmd_buffer->batch, 3, GENX(3DSTATE_VERTEX_ELEMENTS));
176 GENX(VERTEX_ELEMENT_STATE_pack)(&cmd_buffer->batch, dw + 1,
177 &(struct GENX(VERTEX_ELEMENT_STATE)) {
178 .VertexBufferIndex = 32,
179 .Valid = true,
180 .SourceElementFormat = format,
181 .SourceElementOffset = 0,
182 .Component0Control = (bs >= 4) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
183 .Component1Control = (bs >= 8) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
184 .Component2Control = (bs >= 12) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
185 .Component3Control = (bs >= 16) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
186 });
187
188 #if GEN_GEN >= 8
189 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_SGVS), sgvs);
190 #endif
191
192 /* Disable all shader stages */
193 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VS), vs);
194 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HS), hs);
195 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_TE), te);
196 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DS), DS);
197 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_GS), gs);
198 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_PS), gs);
199
200 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SBE), sbe) {
201 sbe.VertexURBEntryReadOffset = 1;
202 sbe.NumberofSFOutputAttributes = 1;
203 sbe.VertexURBEntryReadLength = 1;
204 #if GEN_GEN >= 8
205 sbe.ForceVertexURBEntryReadLength = true;
206 sbe.ForceVertexURBEntryReadOffset = true;
207 #endif
208
209 #if GEN_GEN >= 9
210 for (unsigned i = 0; i < 32; i++)
211 sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
212 #endif
213 }
214
215 /* Emit URB setup. We tell it that the VS is active because we want it to
216 * allocate space for the VS. Even though one isn't run, we need VUEs to
217 * store the data that VF is going to pass to SOL.
218 */
219 const unsigned entry_size[4] = { DIV_ROUND_UP(32, 64), 1, 1, 1 };
220
221 genX(emit_urb_setup)(cmd_buffer->device, &cmd_buffer->batch,
222 cmd_buffer->state.current_l3_config,
223 VK_SHADER_STAGE_VERTEX_BIT, entry_size);
224
225 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
226 sob.SOBufferIndex = 0;
227 sob.MOCS = anv_mocs_for_bo(cmd_buffer->device, dst.bo),
228 sob.SurfaceBaseAddress = dst;
229
230 #if GEN_GEN >= 8
231 sob.SOBufferEnable = true;
232 sob.SurfaceSize = size / 4 - 1;
233 #else
234 sob.SurfacePitch = bs;
235 sob.SurfaceEndAddress = anv_address_add(dst, size);
236 #endif
237
238 #if GEN_GEN >= 8
239 /* As SOL writes out data, it updates the SO_WRITE_OFFSET registers with
240 * the end position of the stream. We need to reset this value to 0 at
241 * the beginning of the run or else SOL will start at the offset from
242 * the previous draw.
243 */
244 sob.StreamOffsetWriteEnable = true;
245 sob.StreamOffset = 0;
246 #endif
247 }
248
249 #if GEN_GEN <= 7
250 /* The hardware can do this for us on BDW+ (see above) */
251 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), load) {
252 load.RegisterOffset = GENX(SO_WRITE_OFFSET0_num);
253 load.DataDWord = 0;
254 }
255 #endif
256
257 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(3DSTATE_SO_DECL_LIST),
258 .StreamtoBufferSelects0 = (1 << 0),
259 .NumEntries0 = 1);
260 GENX(SO_DECL_ENTRY_pack)(&cmd_buffer->batch, dw + 3,
261 &(struct GENX(SO_DECL_ENTRY)) {
262 .Stream0Decl = {
263 .OutputBufferSlot = 0,
264 .RegisterIndex = 0,
265 .ComponentMask = (1 << (bs / 4)) - 1,
266 },
267 });
268
269 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STREAMOUT), so) {
270 so.SOFunctionEnable = true;
271 so.RenderingDisable = true;
272 so.Stream0VertexReadOffset = 0;
273 so.Stream0VertexReadLength = DIV_ROUND_UP(32, 64);
274 #if GEN_GEN >= 8
275 so.Buffer0SurfacePitch = bs;
276 #else
277 so.SOBufferEnable0 = true;
278 #endif
279 }
280
281 #if GEN_GEN >= 8
282 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
283 topo.PrimitiveTopologyType = _3DPRIM_POINTLIST;
284 }
285 #endif
286
287 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_STATISTICS), vf) {
288 vf.StatisticsEnable = false;
289 }
290
291 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
292 prim.VertexAccessType = SEQUENTIAL;
293 prim.PrimitiveTopologyType = _3DPRIM_POINTLIST;
294 prim.VertexCountPerInstance = size / bs;
295 prim.StartVertexLocation = 0;
296 prim.InstanceCount = 1;
297 prim.StartInstanceLocation = 0;
298 prim.BaseVertexLocation = 0;
299 }
300
301 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
302 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
303 }