anv/pipeline: Be smarter about depth/stencil state
[mesa.git] / src / intel / vulkan / genX_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "anv_private.h"
25
26 #include "genxml/gen_macros.h"
27 #include "genxml/genX_pack.h"
28
29 #include "common/gen_l3_config.h"
30 #include "common/gen_sample_positions.h"
31 #include "vk_format_info.h"
32
33 static uint32_t
34 vertex_element_comp_control(enum isl_format format, unsigned comp)
35 {
36 uint8_t bits;
37 switch (comp) {
38 case 0: bits = isl_format_layouts[format].channels.r.bits; break;
39 case 1: bits = isl_format_layouts[format].channels.g.bits; break;
40 case 2: bits = isl_format_layouts[format].channels.b.bits; break;
41 case 3: bits = isl_format_layouts[format].channels.a.bits; break;
42 default: unreachable("Invalid component");
43 }
44
45 /*
46 * Take in account hardware restrictions when dealing with 64-bit floats.
47 *
48 * From Broadwell spec, command reference structures, page 586:
49 * "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
50 * 64-bit components are stored * in the URB without any conversion. In
51 * this case, vertex elements must be written as 128 or 256 bits, with
52 * VFCOMP_STORE_0 being used to pad the output as required. E.g., if
53 * R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
54 * Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
55 * set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
56 * Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
57 * a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
58 * Component 3 to be specified as VFCOMP_STORE_0 in order to output a
59 * 256-bit vertex element."
60 */
61 if (bits) {
62 return VFCOMP_STORE_SRC;
63 } else if (comp >= 2 &&
64 !isl_format_layouts[format].channels.b.bits &&
65 isl_format_layouts[format].channels.r.type == ISL_RAW) {
66 /* When emitting 64-bit attributes, we need to write either 128 or 256
67 * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
68 * VFCOMP_STORE_0 to pad the written chunk */
69 return VFCOMP_NOSTORE;
70 } else if (comp < 3 ||
71 isl_format_layouts[format].channels.r.type == ISL_RAW) {
72 /* Note we need to pad with value 0, not 1, due hardware restrictions
73 * (see comment above) */
74 return VFCOMP_STORE_0;
75 } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
76 isl_format_layouts[format].channels.r.type == ISL_SINT) {
77 assert(comp == 3);
78 return VFCOMP_STORE_1_INT;
79 } else {
80 assert(comp == 3);
81 return VFCOMP_STORE_1_FP;
82 }
83 }
84
85 static void
86 emit_vertex_input(struct anv_pipeline *pipeline,
87 const VkPipelineVertexInputStateCreateInfo *info)
88 {
89 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
90
91 /* Pull inputs_read out of the VS prog data */
92 const uint64_t inputs_read = vs_prog_data->inputs_read;
93 const uint64_t double_inputs_read = vs_prog_data->double_inputs_read;
94 assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
95 const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
96 const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
97 const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
98 vs_prog_data->uses_instanceid ||
99 vs_prog_data->uses_basevertex ||
100 vs_prog_data->uses_baseinstance;
101
102 uint32_t elem_count = __builtin_popcount(elements) -
103 __builtin_popcount(elements_double) / 2;
104
105 const uint32_t total_elems =
106 elem_count + needs_svgs_elem + vs_prog_data->uses_drawid;
107 if (total_elems == 0)
108 return;
109
110 uint32_t *p;
111
112 const uint32_t num_dwords = 1 + total_elems * 2;
113 p = anv_batch_emitn(&pipeline->batch, num_dwords,
114 GENX(3DSTATE_VERTEX_ELEMENTS));
115 memset(p + 1, 0, (num_dwords - 1) * 4);
116
117 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
118 const VkVertexInputAttributeDescription *desc =
119 &info->pVertexAttributeDescriptions[i];
120 enum isl_format format = anv_get_isl_format(&pipeline->device->info,
121 desc->format,
122 VK_IMAGE_ASPECT_COLOR_BIT,
123 VK_IMAGE_TILING_LINEAR);
124
125 assert(desc->binding < MAX_VBS);
126
127 if ((elements & (1 << desc->location)) == 0)
128 continue; /* Binding unused */
129
130 uint32_t slot =
131 __builtin_popcount(elements & ((1 << desc->location) - 1)) -
132 DIV_ROUND_UP(__builtin_popcount(elements_double &
133 ((1 << desc->location) -1)), 2);
134
135 struct GENX(VERTEX_ELEMENT_STATE) element = {
136 .VertexBufferIndex = desc->binding,
137 .Valid = true,
138 .SourceElementFormat = format,
139 .EdgeFlagEnable = false,
140 .SourceElementOffset = desc->offset,
141 .Component0Control = vertex_element_comp_control(format, 0),
142 .Component1Control = vertex_element_comp_control(format, 1),
143 .Component2Control = vertex_element_comp_control(format, 2),
144 .Component3Control = vertex_element_comp_control(format, 3),
145 };
146 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
147
148 #if GEN_GEN >= 8
149 /* On Broadwell and later, we have a separate VF_INSTANCING packet
150 * that controls instancing. On Haswell and prior, that's part of
151 * VERTEX_BUFFER_STATE which we emit later.
152 */
153 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
154 vfi.InstancingEnable = pipeline->instancing_enable[desc->binding];
155 vfi.VertexElementIndex = slot;
156 /* Vulkan so far doesn't have an instance divisor, so
157 * this is always 1 (ignored if not instancing). */
158 vfi.InstanceDataStepRate = 1;
159 }
160 #endif
161 }
162
163 const uint32_t id_slot = elem_count;
164 if (needs_svgs_elem) {
165 /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
166 * "Within a VERTEX_ELEMENT_STATE structure, if a Component
167 * Control field is set to something other than VFCOMP_STORE_SRC,
168 * no higher-numbered Component Control fields may be set to
169 * VFCOMP_STORE_SRC"
170 *
171 * This means, that if we have BaseInstance, we need BaseVertex as
172 * well. Just do all or nothing.
173 */
174 uint32_t base_ctrl = (vs_prog_data->uses_basevertex ||
175 vs_prog_data->uses_baseinstance) ?
176 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
177
178 struct GENX(VERTEX_ELEMENT_STATE) element = {
179 .VertexBufferIndex = ANV_SVGS_VB_INDEX,
180 .Valid = true,
181 .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
182 .Component0Control = base_ctrl,
183 .Component1Control = base_ctrl,
184 #if GEN_GEN >= 8
185 .Component2Control = VFCOMP_STORE_0,
186 .Component3Control = VFCOMP_STORE_0,
187 #else
188 .Component2Control = VFCOMP_STORE_VID,
189 .Component3Control = VFCOMP_STORE_IID,
190 #endif
191 };
192 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
193 }
194
195 #if GEN_GEN >= 8
196 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) {
197 sgvs.VertexIDEnable = vs_prog_data->uses_vertexid;
198 sgvs.VertexIDComponentNumber = 2;
199 sgvs.VertexIDElementOffset = id_slot;
200 sgvs.InstanceIDEnable = vs_prog_data->uses_instanceid;
201 sgvs.InstanceIDComponentNumber = 3;
202 sgvs.InstanceIDElementOffset = id_slot;
203 }
204 #endif
205
206 const uint32_t drawid_slot = elem_count + needs_svgs_elem;
207 if (vs_prog_data->uses_drawid) {
208 struct GENX(VERTEX_ELEMENT_STATE) element = {
209 .VertexBufferIndex = ANV_DRAWID_VB_INDEX,
210 .Valid = true,
211 .SourceElementFormat = ISL_FORMAT_R32_UINT,
212 .Component0Control = VFCOMP_STORE_SRC,
213 .Component1Control = VFCOMP_STORE_0,
214 .Component2Control = VFCOMP_STORE_0,
215 .Component3Control = VFCOMP_STORE_0,
216 };
217 GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
218 &p[1 + drawid_slot * 2],
219 &element);
220
221 #if GEN_GEN >= 8
222 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
223 vfi.VertexElementIndex = drawid_slot;
224 }
225 #endif
226 }
227 }
228
229 void
230 genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
231 const struct gen_l3_config *l3_config,
232 VkShaderStageFlags active_stages,
233 const unsigned entry_size[4])
234 {
235 const struct gen_device_info *devinfo = &device->info;
236 #if GEN_IS_HASWELL
237 const unsigned push_constant_kb = devinfo->gt == 3 ? 32 : 16;
238 #else
239 const unsigned push_constant_kb = GEN_GEN >= 8 ? 32 : 16;
240 #endif
241
242 const unsigned urb_size_kb = gen_get_l3_config_urb_size(devinfo, l3_config);
243
244 unsigned entries[4];
245 unsigned start[4];
246 gen_get_urb_config(devinfo,
247 1024 * push_constant_kb, 1024 * urb_size_kb,
248 active_stages &
249 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
250 active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
251 entry_size, entries, start);
252
253 #if GEN_GEN == 7 && !GEN_IS_HASWELL
254 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
255 *
256 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
257 * needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
258 * 3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
259 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one PIPE_CONTROL
260 * needs to be sent before any combination of VS associated 3DSTATE."
261 */
262 anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
263 pc.DepthStallEnable = true;
264 pc.PostSyncOperation = WriteImmediateData;
265 pc.Address = (struct anv_address) { &device->workaround_bo, 0 };
266 }
267 #endif
268
269 for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
270 anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
271 urb._3DCommandSubOpcode += i;
272 urb.VSURBStartingAddress = start[i];
273 urb.VSURBEntryAllocationSize = entry_size[i] - 1;
274 urb.VSNumberofURBEntries = entries[i];
275 }
276 }
277 }
278
279 static inline void
280 emit_urb_setup(struct anv_pipeline *pipeline)
281 {
282 unsigned entry_size[4];
283 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
284 const struct brw_vue_prog_data *prog_data =
285 !anv_pipeline_has_stage(pipeline, i) ? NULL :
286 (const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
287
288 entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
289 }
290
291 genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
292 pipeline->urb.l3_config,
293 pipeline->active_stages, entry_size);
294 }
295
296 static void
297 emit_3dstate_sbe(struct anv_pipeline *pipeline)
298 {
299 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
300
301 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
302 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE), sbe);
303 #if GEN_GEN >= 8
304 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ), sbe);
305 #endif
306 return;
307 }
308
309 const struct brw_vue_map *fs_input_map =
310 &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
311
312 struct GENX(3DSTATE_SBE) sbe = {
313 GENX(3DSTATE_SBE_header),
314 .AttributeSwizzleEnable = true,
315 .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
316 .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
317 .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
318 };
319
320 #if GEN_GEN >= 9
321 for (unsigned i = 0; i < 32; i++)
322 sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
323 #endif
324
325 #if GEN_GEN >= 8
326 /* On Broadwell, they broke 3DSTATE_SBE into two packets */
327 struct GENX(3DSTATE_SBE_SWIZ) swiz = {
328 GENX(3DSTATE_SBE_SWIZ_header),
329 };
330 #else
331 # define swiz sbe
332 #endif
333
334 /* Skip the VUE header and position slots by default */
335 unsigned urb_entry_read_offset = 1;
336 int max_source_attr = 0;
337 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
338 int input_index = wm_prog_data->urb_setup[attr];
339
340 if (input_index < 0)
341 continue;
342
343 /* gl_Layer is stored in the VUE header */
344 if (attr == VARYING_SLOT_LAYER) {
345 urb_entry_read_offset = 0;
346 continue;
347 }
348
349 if (attr == VARYING_SLOT_PNTC) {
350 sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
351 continue;
352 }
353
354 const int slot = fs_input_map->varying_to_slot[attr];
355
356 if (input_index >= 16)
357 continue;
358
359 if (slot == -1) {
360 /* This attribute does not exist in the VUE--that means that the
361 * vertex shader did not write to it. It could be that it's a
362 * regular varying read by the fragment shader but not written by
363 * the vertex shader or it's gl_PrimitiveID. In the first case the
364 * value is undefined, in the second it needs to be
365 * gl_PrimitiveID.
366 */
367 swiz.Attribute[input_index].ConstantSource = PRIM_ID;
368 swiz.Attribute[input_index].ComponentOverrideX = true;
369 swiz.Attribute[input_index].ComponentOverrideY = true;
370 swiz.Attribute[input_index].ComponentOverrideZ = true;
371 swiz.Attribute[input_index].ComponentOverrideW = true;
372 } else {
373 /* We have to subtract two slots to accout for the URB entry output
374 * read offset in the VS and GS stages.
375 */
376 assert(slot >= 2);
377 const int source_attr = slot - 2 * urb_entry_read_offset;
378 max_source_attr = MAX2(max_source_attr, source_attr);
379 swiz.Attribute[input_index].SourceAttribute = source_attr;
380 }
381 }
382
383 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
384 sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
385 #if GEN_GEN >= 8
386 sbe.ForceVertexURBEntryReadOffset = true;
387 sbe.ForceVertexURBEntryReadLength = true;
388 #endif
389
390 uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
391 GENX(3DSTATE_SBE_length));
392 GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe);
393
394 #if GEN_GEN >= 8
395 dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length));
396 GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
397 #endif
398 }
399
400 static const uint32_t vk_to_gen_cullmode[] = {
401 [VK_CULL_MODE_NONE] = CULLMODE_NONE,
402 [VK_CULL_MODE_FRONT_BIT] = CULLMODE_FRONT,
403 [VK_CULL_MODE_BACK_BIT] = CULLMODE_BACK,
404 [VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH
405 };
406
407 static const uint32_t vk_to_gen_fillmode[] = {
408 [VK_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
409 [VK_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
410 [VK_POLYGON_MODE_POINT] = FILL_MODE_POINT,
411 };
412
413 static const uint32_t vk_to_gen_front_face[] = {
414 [VK_FRONT_FACE_COUNTER_CLOCKWISE] = 1,
415 [VK_FRONT_FACE_CLOCKWISE] = 0
416 };
417
418 static void
419 emit_rs_state(struct anv_pipeline *pipeline,
420 const VkPipelineRasterizationStateCreateInfo *rs_info,
421 const VkPipelineMultisampleStateCreateInfo *ms_info,
422 const struct anv_render_pass *pass,
423 const struct anv_subpass *subpass)
424 {
425 struct GENX(3DSTATE_SF) sf = {
426 GENX(3DSTATE_SF_header),
427 };
428
429 sf.ViewportTransformEnable = true;
430 sf.StatisticsEnable = true;
431 sf.TriangleStripListProvokingVertexSelect = 0;
432 sf.LineStripListProvokingVertexSelect = 0;
433 sf.TriangleFanProvokingVertexSelect = 1;
434
435 const struct brw_vue_prog_data *last_vue_prog_data =
436 anv_pipeline_get_last_vue_prog_data(pipeline);
437
438 if (last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
439 sf.PointWidthSource = Vertex;
440 } else {
441 sf.PointWidthSource = State;
442 sf.PointWidth = 1.0;
443 }
444
445 #if GEN_GEN >= 8
446 struct GENX(3DSTATE_RASTER) raster = {
447 GENX(3DSTATE_RASTER_header),
448 };
449 #else
450 # define raster sf
451 #endif
452
453 /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
454 * "Multisample Modes State".
455 */
456 #if GEN_GEN >= 8
457 raster.DXMultisampleRasterizationEnable = true;
458 /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
459 * computations. If we ever set this bit to a different value, they will
460 * need to be updated accordingly.
461 */
462 raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
463 raster.ForceMultisampling = false;
464 #else
465 raster.MultisampleRasterizationMode =
466 (ms_info && ms_info->rasterizationSamples > 1) ?
467 MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
468 #endif
469
470 raster.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
471 raster.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
472 raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
473 raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
474 raster.ScissorRectangleEnable = true;
475
476 #if GEN_GEN >= 9
477 /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
478 raster.ViewportZFarClipTestEnable = !pipeline->depth_clamp_enable;
479 raster.ViewportZNearClipTestEnable = !pipeline->depth_clamp_enable;
480 #elif GEN_GEN >= 8
481 raster.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
482 #endif
483
484 raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
485 raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
486 raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;
487
488 #if GEN_GEN == 7
489 /* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
490 * can get the depth offsets correct.
491 */
492 if (subpass->depth_stencil_attachment < pass->attachment_count) {
493 VkFormat vk_format =
494 pass->attachments[subpass->depth_stencil_attachment].format;
495 assert(vk_format_is_depth_or_stencil(vk_format));
496 if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
497 enum isl_format isl_format =
498 anv_get_isl_format(&pipeline->device->info, vk_format,
499 VK_IMAGE_ASPECT_DEPTH_BIT,
500 VK_IMAGE_TILING_OPTIMAL);
501 sf.DepthBufferSurfaceFormat =
502 isl_format_get_depth_format(isl_format, false);
503 }
504 }
505 #endif
506
507 #if GEN_GEN >= 8
508 GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
509 GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
510 #else
511 # undef raster
512 GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
513 #endif
514 }
515
516 static void
517 emit_ms_state(struct anv_pipeline *pipeline,
518 const VkPipelineMultisampleStateCreateInfo *info)
519 {
520 uint32_t samples = 1;
521 uint32_t log2_samples = 0;
522
523 /* From the Vulkan 1.0 spec:
524 * If pSampleMask is NULL, it is treated as if the mask has all bits
525 * enabled, i.e. no coverage is removed from fragments.
526 *
527 * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
528 */
529 #if GEN_GEN >= 8
530 uint32_t sample_mask = 0xffff;
531 #else
532 uint32_t sample_mask = 0xff;
533 #endif
534
535 if (info) {
536 samples = info->rasterizationSamples;
537 log2_samples = __builtin_ffs(samples) - 1;
538 }
539
540 if (info && info->pSampleMask)
541 sample_mask &= info->pSampleMask[0];
542
543 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
544 ms.NumberofMultisamples = log2_samples;
545
546 #if GEN_GEN >= 8
547 /* The PRM says that this bit is valid only for DX9:
548 *
549 * SW can choose to set this bit only for DX9 API. DX10/OGL API's
550 * should not have any effect by setting or not setting this bit.
551 */
552 ms.PixelPositionOffsetEnable = false;
553 ms.PixelLocation = CENTER;
554 #else
555 ms.PixelLocation = PIXLOC_CENTER;
556
557 switch (samples) {
558 case 1:
559 GEN_SAMPLE_POS_1X(ms.Sample);
560 break;
561 case 2:
562 GEN_SAMPLE_POS_2X(ms.Sample);
563 break;
564 case 4:
565 GEN_SAMPLE_POS_4X(ms.Sample);
566 break;
567 case 8:
568 GEN_SAMPLE_POS_8X(ms.Sample);
569 break;
570 default:
571 break;
572 }
573 #endif
574 }
575
576 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
577 sm.SampleMask = sample_mask;
578 }
579 }
580
581 static const uint32_t vk_to_gen_logic_op[] = {
582 [VK_LOGIC_OP_COPY] = LOGICOP_COPY,
583 [VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR,
584 [VK_LOGIC_OP_AND] = LOGICOP_AND,
585 [VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE,
586 [VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED,
587 [VK_LOGIC_OP_NO_OP] = LOGICOP_NOOP,
588 [VK_LOGIC_OP_XOR] = LOGICOP_XOR,
589 [VK_LOGIC_OP_OR] = LOGICOP_OR,
590 [VK_LOGIC_OP_NOR] = LOGICOP_NOR,
591 [VK_LOGIC_OP_EQUIVALENT] = LOGICOP_EQUIV,
592 [VK_LOGIC_OP_INVERT] = LOGICOP_INVERT,
593 [VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE,
594 [VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED,
595 [VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED,
596 [VK_LOGIC_OP_NAND] = LOGICOP_NAND,
597 [VK_LOGIC_OP_SET] = LOGICOP_SET,
598 };
599
600 static const uint32_t vk_to_gen_blend[] = {
601 [VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO,
602 [VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE,
603 [VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
604 [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
605 [VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR,
606 [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
607 [VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
608 [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
609 [VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA,
610 [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
611 [VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
612 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
613 [VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
614 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
615 [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
616 [VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
617 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
618 [VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
619 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
620 };
621
622 static const uint32_t vk_to_gen_blend_op[] = {
623 [VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
624 [VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
625 [VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
626 [VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
627 [VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
628 };
629
630 static const uint32_t vk_to_gen_compare_op[] = {
631 [VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER,
632 [VK_COMPARE_OP_LESS] = PREFILTEROPLESS,
633 [VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL,
634 [VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROPLEQUAL,
635 [VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER,
636 [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL,
637 [VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROPGEQUAL,
638 [VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS,
639 };
640
641 static const uint32_t vk_to_gen_stencil_op[] = {
642 [VK_STENCIL_OP_KEEP] = STENCILOP_KEEP,
643 [VK_STENCIL_OP_ZERO] = STENCILOP_ZERO,
644 [VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE,
645 [VK_STENCIL_OP_INCREMENT_AND_CLAMP] = STENCILOP_INCRSAT,
646 [VK_STENCIL_OP_DECREMENT_AND_CLAMP] = STENCILOP_DECRSAT,
647 [VK_STENCIL_OP_INVERT] = STENCILOP_INVERT,
648 [VK_STENCIL_OP_INCREMENT_AND_WRAP] = STENCILOP_INCR,
649 [VK_STENCIL_OP_DECREMENT_AND_WRAP] = STENCILOP_DECR,
650 };
651
652 /* This function sanitizes the VkStencilOpState by looking at the compare ops
653 * and trying to determine whether or not a given stencil op can ever actually
654 * occur. Stencil ops which can never occur are set to VK_STENCIL_OP_KEEP.
655 * This function returns true if, after sanitation, any of the stencil ops are
656 * set to something other than VK_STENCIL_OP_KEEP.
657 */
658 static bool
659 sanitize_stencil_face(VkStencilOpState *face,
660 VkCompareOp depthCompareOp)
661 {
662 /* If compareOp is ALWAYS then the stencil test will never fail and failOp
663 * will never happen. Set failOp to KEEP in this case.
664 */
665 if (face->compareOp == VK_COMPARE_OP_ALWAYS)
666 face->failOp = VK_STENCIL_OP_KEEP;
667
668 /* If compareOp is NEVER or depthCompareOp is NEVER then one of the depth
669 * or stencil tests will fail and passOp will never happen.
670 */
671 if (face->compareOp == VK_COMPARE_OP_NEVER ||
672 depthCompareOp == VK_COMPARE_OP_NEVER)
673 face->passOp = VK_STENCIL_OP_KEEP;
674
675 /* If compareOp is NEVER or depthCompareOp is ALWAYS then either the
676 * stencil test will fail or the depth test will pass. In either case,
677 * depthFailOp will never happen.
678 */
679 if (face->compareOp == VK_COMPARE_OP_NEVER ||
680 depthCompareOp == VK_COMPARE_OP_ALWAYS)
681 face->depthFailOp = VK_STENCIL_OP_KEEP;
682
683 return face->failOp != VK_STENCIL_OP_KEEP ||
684 face->depthFailOp != VK_STENCIL_OP_KEEP ||
685 face->passOp != VK_STENCIL_OP_KEEP;
686 }
687
688 /* Intel hardware is fairly sensitive to whether or not depth/stencil writes
689 * are enabled. In the presence of discards, it's fairly easy to get into the
690 * non-promoted case which means a fairly big performance hit. From the Iron
691 * Lake PRM, Vol 2, pt. 1, section 8.4.3.2, "Early Depth Test Cases":
692 *
693 * "Non-promoted depth (N) is active whenever the depth test can be done
694 * early but it cannot determine whether or not to write source depth to
695 * the depth buffer, therefore the depth write must be performed post pixel
696 * shader. This includes cases where the pixel shader can kill pixels,
697 * including via sampler chroma key, as well as cases where the alpha test
698 * function is enabled, which kills pixels based on a programmable alpha
699 * test. In this case, even if the depth test fails, the pixel cannot be
700 * killed if a stencil write is indicated. Whether or not the stencil write
701 * happens depends on whether or not the pixel is killed later. In these
702 * cases if stencil test fails and stencil writes are off, the pixels can
703 * also be killed early. If stencil writes are enabled, the pixels must be
704 * treated as Computed depth (described above)."
705 *
706 * The same thing as mentioned in the stencil case can happen in the depth
707 * case as well if it thinks it writes depth but, thanks to the depth test
708 * being GL_EQUAL, the write doesn't actually matter. A little extra work
709 * up-front to try and disable depth and stencil writes can make a big
710 * difference.
711 *
712 * Unfortunately, the way depth and stencil testing is specified, there are
713 * many case where, regardless of depth/stencil writes being enabled, nothing
714 * actually gets written due to some other bit of state being set. This
715 * function attempts to "sanitize" the depth stencil state and disable writes
716 * and sometimes even testing whenever possible.
717 */
718 static void
719 sanitize_ds_state(VkPipelineDepthStencilStateCreateInfo *state,
720 bool *stencilWriteEnable,
721 VkImageAspectFlags ds_aspects)
722 {
723 *stencilWriteEnable = state->stencilTestEnable;
724
725 /* If the depth test is disabled, we won't be writing anything. */
726 if (!state->depthTestEnable)
727 state->depthWriteEnable = false;
728
729 /* The Vulkan spec requires that if either depth or stencil is not present,
730 * the pipeline is to act as if the test silently passes.
731 */
732 if (!(ds_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
733 state->depthWriteEnable = false;
734 state->depthCompareOp = VK_COMPARE_OP_ALWAYS;
735 }
736
737 if (!(ds_aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
738 *stencilWriteEnable = false;
739 state->front.compareOp = VK_COMPARE_OP_ALWAYS;
740 state->back.compareOp = VK_COMPARE_OP_ALWAYS;
741 }
742
743 /* If the stencil test is enabled and always fails, then we will never get
744 * to the depth test so we can just disable the depth test entirely.
745 */
746 if (state->stencilTestEnable &&
747 state->front.compareOp == VK_COMPARE_OP_NEVER &&
748 state->back.compareOp == VK_COMPARE_OP_NEVER) {
749 state->depthTestEnable = false;
750 state->depthWriteEnable = false;
751 }
752
753 /* If depthCompareOp is EQUAL then the value we would be writing to the
754 * depth buffer is the same as the value that's already there so there's no
755 * point in writing it.
756 */
757 if (state->depthCompareOp == VK_COMPARE_OP_EQUAL)
758 state->depthWriteEnable = false;
759
760 /* If the stencil ops are such that we don't actually ever modify the
761 * stencil buffer, we should disable writes.
762 */
763 if (!sanitize_stencil_face(&state->front, state->depthCompareOp) &&
764 !sanitize_stencil_face(&state->back, state->depthCompareOp))
765 *stencilWriteEnable = false;
766
767 /* If the depth test always passes and we never write out depth, that's the
768 * same as if the depth test is disabled entirely.
769 */
770 if (state->depthCompareOp == VK_COMPARE_OP_ALWAYS &&
771 !state->depthWriteEnable)
772 state->depthTestEnable = false;
773
774 /* If the stencil test always passes and we never write out stencil, that's
775 * the same as if the stencil test is disabled entirely.
776 */
777 if (state->front.compareOp == VK_COMPARE_OP_ALWAYS &&
778 state->back.compareOp == VK_COMPARE_OP_ALWAYS &&
779 !*stencilWriteEnable)
780 state->stencilTestEnable = false;
781 }
782
783 static void
784 emit_ds_state(struct anv_pipeline *pipeline,
785 const VkPipelineDepthStencilStateCreateInfo *pCreateInfo,
786 const struct anv_render_pass *pass,
787 const struct anv_subpass *subpass)
788 {
789 #if GEN_GEN == 7
790 # define depth_stencil_dw pipeline->gen7.depth_stencil_state
791 #elif GEN_GEN == 8
792 # define depth_stencil_dw pipeline->gen8.wm_depth_stencil
793 #else
794 # define depth_stencil_dw pipeline->gen9.wm_depth_stencil
795 #endif
796
797 if (pCreateInfo == NULL) {
798 /* We're going to OR this together with the dynamic state. We need
799 * to make sure it's initialized to something useful.
800 */
801 pipeline->writes_stencil = false;
802 pipeline->writes_depth = false;
803 pipeline->depth_test_enable = false;
804 memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
805 return;
806 }
807
808 VkImageAspectFlags ds_aspects = 0;
809 if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
810 VkFormat depth_stencil_format =
811 pass->attachments[subpass->depth_stencil_attachment].format;
812 ds_aspects = vk_format_aspects(depth_stencil_format);
813 }
814
815 VkPipelineDepthStencilStateCreateInfo info = *pCreateInfo;
816 sanitize_ds_state(&info, &pipeline->writes_stencil, ds_aspects);
817 pipeline->writes_depth = info.depthWriteEnable;
818 pipeline->depth_test_enable = info.depthTestEnable;
819
820 /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
821
822 #if GEN_GEN <= 7
823 struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
824 #else
825 struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
826 #endif
827 .DepthTestEnable = info.depthTestEnable,
828 .DepthBufferWriteEnable = info.depthWriteEnable,
829 .DepthTestFunction = vk_to_gen_compare_op[info.depthCompareOp],
830 .DoubleSidedStencilEnable = true,
831
832 .StencilTestEnable = info.stencilTestEnable,
833 .StencilFailOp = vk_to_gen_stencil_op[info.front.failOp],
834 .StencilPassDepthPassOp = vk_to_gen_stencil_op[info.front.passOp],
835 .StencilPassDepthFailOp = vk_to_gen_stencil_op[info.front.depthFailOp],
836 .StencilTestFunction = vk_to_gen_compare_op[info.front.compareOp],
837 .BackfaceStencilFailOp = vk_to_gen_stencil_op[info.back.failOp],
838 .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info.back.passOp],
839 .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info.back.depthFailOp],
840 .BackfaceStencilTestFunction = vk_to_gen_compare_op[info.back.compareOp],
841 };
842
843 #if GEN_GEN <= 7
844 GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
845 #else
846 GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
847 #endif
848 }
849
850 static void
851 emit_cb_state(struct anv_pipeline *pipeline,
852 const VkPipelineColorBlendStateCreateInfo *info,
853 const VkPipelineMultisampleStateCreateInfo *ms_info)
854 {
855 struct anv_device *device = pipeline->device;
856
857 const uint32_t num_dwords = GENX(BLEND_STATE_length);
858 pipeline->blend_state =
859 anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
860
861 struct GENX(BLEND_STATE) blend_state = {
862 #if GEN_GEN >= 8
863 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
864 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
865 #else
866 /* Make sure it gets zeroed */
867 .Entry = { { 0, }, },
868 #endif
869 };
870
871 /* Default everything to disabled */
872 for (uint32_t i = 0; i < 8; i++) {
873 blend_state.Entry[i].WriteDisableAlpha = true;
874 blend_state.Entry[i].WriteDisableRed = true;
875 blend_state.Entry[i].WriteDisableGreen = true;
876 blend_state.Entry[i].WriteDisableBlue = true;
877 }
878
879 uint32_t surface_count = 0;
880 struct anv_pipeline_bind_map *map;
881 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
882 map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
883 surface_count = map->surface_count;
884 }
885
886 bool has_writeable_rt = false;
887 for (unsigned i = 0; i < surface_count; i++) {
888 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
889
890 /* All color attachments are at the beginning of the binding table */
891 if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
892 break;
893
894 /* We can have at most 8 attachments */
895 assert(i < 8);
896
897 if (binding->index >= info->attachmentCount)
898 continue;
899
900 assert(binding->binding == 0);
901 const VkPipelineColorBlendAttachmentState *a =
902 &info->pAttachments[binding->index];
903
904 blend_state.Entry[i] = (struct GENX(BLEND_STATE_ENTRY)) {
905 #if GEN_GEN < 8
906 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
907 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
908 #endif
909 .LogicOpEnable = info->logicOpEnable,
910 .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
911 .ColorBufferBlendEnable = a->blendEnable,
912 .ColorClampRange = COLORCLAMP_RTFORMAT,
913 .PreBlendColorClampEnable = true,
914 .PostBlendColorClampEnable = true,
915 .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
916 .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
917 .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
918 .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
919 .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
920 .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
921 .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
922 .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
923 .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
924 .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
925 };
926
927 if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
928 a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
929 a->colorBlendOp != a->alphaBlendOp) {
930 #if GEN_GEN >= 8
931 blend_state.IndependentAlphaBlendEnable = true;
932 #else
933 blend_state.Entry[i].IndependentAlphaBlendEnable = true;
934 #endif
935 }
936
937 if (a->colorWriteMask != 0)
938 has_writeable_rt = true;
939
940 /* Our hardware applies the blend factor prior to the blend function
941 * regardless of what function is used. Technically, this means the
942 * hardware can do MORE than GL or Vulkan specify. However, it also
943 * means that, for MIN and MAX, we have to stomp the blend factor to
944 * ONE to make it a no-op.
945 */
946 if (a->colorBlendOp == VK_BLEND_OP_MIN ||
947 a->colorBlendOp == VK_BLEND_OP_MAX) {
948 blend_state.Entry[i].SourceBlendFactor = BLENDFACTOR_ONE;
949 blend_state.Entry[i].DestinationBlendFactor = BLENDFACTOR_ONE;
950 }
951 if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
952 a->alphaBlendOp == VK_BLEND_OP_MAX) {
953 blend_state.Entry[i].SourceAlphaBlendFactor = BLENDFACTOR_ONE;
954 blend_state.Entry[i].DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
955 }
956 }
957
958 #if GEN_GEN >= 8
959 struct GENX(BLEND_STATE_ENTRY) *bs0 = &blend_state.Entry[0];
960 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
961 blend.AlphaToCoverageEnable = blend_state.AlphaToCoverageEnable;
962 blend.HasWriteableRT = has_writeable_rt;
963 blend.ColorBufferBlendEnable = bs0->ColorBufferBlendEnable;
964 blend.SourceAlphaBlendFactor = bs0->SourceAlphaBlendFactor;
965 blend.DestinationAlphaBlendFactor = bs0->DestinationAlphaBlendFactor;
966 blend.SourceBlendFactor = bs0->SourceBlendFactor;
967 blend.DestinationBlendFactor = bs0->DestinationBlendFactor;
968 blend.AlphaTestEnable = false;
969 blend.IndependentAlphaBlendEnable =
970 blend_state.IndependentAlphaBlendEnable;
971 }
972 #else
973 (void)has_writeable_rt;
974 #endif
975
976 GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
977 if (!device->info.has_llc)
978 anv_state_clflush(pipeline->blend_state);
979
980 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
981 bsp.BlendStatePointer = pipeline->blend_state.offset;
982 #if GEN_GEN >= 8
983 bsp.BlendStatePointerValid = true;
984 #endif
985 }
986 }
987
988 static void
989 emit_3dstate_clip(struct anv_pipeline *pipeline,
990 const VkPipelineViewportStateCreateInfo *vp_info,
991 const VkPipelineRasterizationStateCreateInfo *rs_info)
992 {
993 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
994 (void) wm_prog_data;
995 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
996 clip.ClipEnable = true;
997 clip.EarlyCullEnable = true;
998 clip.APIMode = APIMODE_D3D,
999 clip.ViewportXYClipTestEnable = true;
1000
1001 clip.ClipMode = CLIPMODE_NORMAL;
1002
1003 clip.TriangleStripListProvokingVertexSelect = 0;
1004 clip.LineStripListProvokingVertexSelect = 0;
1005 clip.TriangleFanProvokingVertexSelect = 1;
1006
1007 clip.MinimumPointWidth = 0.125;
1008 clip.MaximumPointWidth = 255.875;
1009 clip.MaximumVPIndex = (vp_info ? vp_info->viewportCount : 1) - 1;
1010
1011 #if GEN_GEN == 7
1012 clip.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
1013 clip.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
1014 clip.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
1015 const struct brw_vue_prog_data *last =
1016 anv_pipeline_get_last_vue_prog_data(pipeline);
1017 if (last) {
1018 clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
1019 clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
1020 }
1021 #else
1022 clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
1023 (wm_prog_data->barycentric_interp_modes & 0x38) != 0 : 0;
1024 #endif
1025 }
1026 }
1027
1028 static void
1029 emit_3dstate_streamout(struct anv_pipeline *pipeline,
1030 const VkPipelineRasterizationStateCreateInfo *rs_info)
1031 {
1032 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), so) {
1033 so.RenderingDisable = rs_info->rasterizerDiscardEnable;
1034 }
1035 }
1036
1037 static inline uint32_t
1038 get_sampler_count(const struct anv_shader_bin *bin)
1039 {
1040 return DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
1041 }
1042
1043 static inline uint32_t
1044 get_binding_table_entry_count(const struct anv_shader_bin *bin)
1045 {
1046 return DIV_ROUND_UP(bin->bind_map.surface_count, 32);
1047 }
1048
1049 static inline struct anv_address
1050 get_scratch_address(struct anv_pipeline *pipeline,
1051 gl_shader_stage stage,
1052 const struct anv_shader_bin *bin)
1053 {
1054 return (struct anv_address) {
1055 .bo = anv_scratch_pool_alloc(pipeline->device,
1056 &pipeline->device->scratch_pool,
1057 stage, bin->prog_data->total_scratch),
1058 .offset = 0,
1059 };
1060 }
1061
1062 static inline uint32_t
1063 get_scratch_space(const struct anv_shader_bin *bin)
1064 {
1065 return ffs(bin->prog_data->total_scratch / 2048);
1066 }
1067
1068 static inline uint32_t
1069 get_urb_output_offset()
1070 {
1071 /* Skip the VUE header and position slots */
1072 return 1;
1073 }
1074
1075 static inline uint32_t
1076 get_urb_output_length(const struct anv_shader_bin *bin)
1077 {
1078 const struct brw_vue_prog_data *prog_data =
1079 (const struct brw_vue_prog_data *)bin->prog_data;
1080
1081 return (prog_data->vue_map.num_slots + 1) / 2 - get_urb_output_offset();
1082 }
1083
1084 static void
1085 emit_3dstate_vs(struct anv_pipeline *pipeline)
1086 {
1087 const struct gen_device_info *devinfo = &pipeline->device->info;
1088 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1089 const struct anv_shader_bin *vs_bin =
1090 pipeline->shaders[MESA_SHADER_VERTEX];
1091
1092 assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
1093
1094 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
1095 vs.FunctionEnable = true;
1096 vs.StatisticsEnable = true;
1097 vs.KernelStartPointer = vs_bin->kernel.offset;
1098 #if GEN_GEN >= 8
1099 vs.SIMD8DispatchEnable =
1100 vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
1101 #endif
1102
1103 assert(!vs_prog_data->base.base.use_alt_mode);
1104 vs.SingleVertexDispatch = false;
1105 vs.VectorMaskEnable = false;
1106 vs.SamplerCount = get_sampler_count(vs_bin);
1107 vs.BindingTableEntryCount = get_binding_table_entry_count(vs_bin);
1108 vs.FloatingPointMode = IEEE754;
1109 vs.IllegalOpcodeExceptionEnable = false;
1110 vs.SoftwareExceptionEnable = false;
1111 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
1112 vs.VertexCacheDisable = false;
1113
1114 vs.VertexURBEntryReadLength = vs_prog_data->base.urb_read_length;
1115 vs.VertexURBEntryReadOffset = 0;
1116 vs.DispatchGRFStartRegisterForURBData =
1117 vs_prog_data->base.base.dispatch_grf_start_reg;
1118
1119 #if GEN_GEN >= 8
1120 vs.VertexURBEntryOutputReadOffset = get_urb_output_offset();
1121 vs.VertexURBEntryOutputLength = get_urb_output_length(vs_bin);
1122
1123 vs.UserClipDistanceClipTestEnableBitmask =
1124 vs_prog_data->base.clip_distance_mask;
1125 vs.UserClipDistanceCullTestEnableBitmask =
1126 vs_prog_data->base.cull_distance_mask;
1127 #endif
1128
1129 vs.PerThreadScratchSpace = get_scratch_space(vs_bin);
1130 vs.ScratchSpaceBasePointer =
1131 get_scratch_address(pipeline, MESA_SHADER_VERTEX, vs_bin);
1132 }
1133 }
1134
1135 static void
1136 emit_3dstate_hs_te_ds(struct anv_pipeline *pipeline)
1137 {
1138 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1139 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs);
1140 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te);
1141 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds);
1142 return;
1143 }
1144
1145 const struct gen_device_info *devinfo = &pipeline->device->info;
1146 const struct anv_shader_bin *tcs_bin =
1147 pipeline->shaders[MESA_SHADER_TESS_CTRL];
1148 const struct anv_shader_bin *tes_bin =
1149 pipeline->shaders[MESA_SHADER_TESS_EVAL];
1150
1151 const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
1152 const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
1153
1154 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs) {
1155 hs.FunctionEnable = true;
1156 hs.StatisticsEnable = true;
1157 hs.KernelStartPointer = tcs_bin->kernel.offset;
1158
1159 hs.SamplerCount = get_sampler_count(tcs_bin);
1160 hs.BindingTableEntryCount = get_binding_table_entry_count(tcs_bin);
1161 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
1162 hs.IncludeVertexHandles = true;
1163 hs.InstanceCount = tcs_prog_data->instances - 1;
1164
1165 hs.VertexURBEntryReadLength = 0;
1166 hs.VertexURBEntryReadOffset = 0;
1167 hs.DispatchGRFStartRegisterForURBData =
1168 tcs_prog_data->base.base.dispatch_grf_start_reg;
1169
1170 hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
1171 hs.ScratchSpaceBasePointer =
1172 get_scratch_address(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
1173 }
1174
1175 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te) {
1176 te.Partitioning = tes_prog_data->partitioning;
1177 te.OutputTopology = tes_prog_data->output_topology;
1178 te.TEDomain = tes_prog_data->domain;
1179 te.TEEnable = true;
1180 te.MaximumTessellationFactorOdd = 63.0;
1181 te.MaximumTessellationFactorNotOdd = 64.0;
1182 }
1183
1184 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds) {
1185 ds.FunctionEnable = true;
1186 ds.StatisticsEnable = true;
1187 ds.KernelStartPointer = tes_bin->kernel.offset;
1188
1189 ds.SamplerCount = get_sampler_count(tes_bin);
1190 ds.BindingTableEntryCount = get_binding_table_entry_count(tes_bin);
1191 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
1192
1193 ds.ComputeWCoordinateEnable =
1194 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
1195
1196 ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
1197 ds.PatchURBEntryReadOffset = 0;
1198 ds.DispatchGRFStartRegisterForURBData =
1199 tes_prog_data->base.base.dispatch_grf_start_reg;
1200
1201 #if GEN_GEN >= 8
1202 ds.VertexURBEntryOutputReadOffset = 1;
1203 ds.VertexURBEntryOutputLength =
1204 (tes_prog_data->base.vue_map.num_slots + 1) / 2 - 1;
1205
1206 ds.DispatchMode =
1207 tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
1208 DISPATCH_MODE_SIMD8_SINGLE_PATCH :
1209 DISPATCH_MODE_SIMD4X2;
1210
1211 ds.UserClipDistanceClipTestEnableBitmask =
1212 tes_prog_data->base.clip_distance_mask;
1213 ds.UserClipDistanceCullTestEnableBitmask =
1214 tes_prog_data->base.cull_distance_mask;
1215 #endif
1216
1217 ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
1218 ds.ScratchSpaceBasePointer =
1219 get_scratch_address(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
1220 }
1221 }
1222
1223 static void
1224 emit_3dstate_gs(struct anv_pipeline *pipeline)
1225 {
1226 const struct gen_device_info *devinfo = &pipeline->device->info;
1227 const struct anv_shader_bin *gs_bin =
1228 pipeline->shaders[MESA_SHADER_GEOMETRY];
1229
1230 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
1231 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
1232 return;
1233 }
1234
1235 const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
1236
1237 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
1238 gs.FunctionEnable = true;
1239 gs.StatisticsEnable = true;
1240 gs.KernelStartPointer = gs_bin->kernel.offset;
1241 gs.DispatchMode = gs_prog_data->base.dispatch_mode;
1242
1243 gs.SingleProgramFlow = false;
1244 gs.VectorMaskEnable = false;
1245 gs.SamplerCount = get_sampler_count(gs_bin);
1246 gs.BindingTableEntryCount = get_binding_table_entry_count(gs_bin);
1247 gs.IncludeVertexHandles = gs_prog_data->base.include_vue_handles;
1248 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
1249
1250 if (GEN_GEN == 8) {
1251 /* Broadwell is weird. It needs us to divide by 2. */
1252 gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
1253 } else {
1254 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
1255 }
1256
1257 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
1258 gs.OutputTopology = gs_prog_data->output_topology;
1259 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1260 gs.ControlDataFormat = gs_prog_data->control_data_format;
1261 gs.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords;
1262 gs.InstanceControl = MAX2(gs_prog_data->invocations, 1) - 1;
1263 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1264 gs.ReorderMode = TRAILING;
1265 #else
1266 gs.ReorderEnable = true;
1267 #endif
1268
1269 #if GEN_GEN >= 8
1270 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
1271 gs.StaticOutput = gs_prog_data->static_vertex_count >= 0;
1272 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
1273 gs_prog_data->static_vertex_count : 0;
1274 #endif
1275
1276 gs.VertexURBEntryReadOffset = 0;
1277 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1278 gs.DispatchGRFStartRegisterForURBData =
1279 gs_prog_data->base.base.dispatch_grf_start_reg;
1280
1281 #if GEN_GEN >= 8
1282 gs.VertexURBEntryOutputReadOffset = get_urb_output_offset();
1283 gs.VertexURBEntryOutputLength = get_urb_output_length(gs_bin);
1284
1285 gs.UserClipDistanceClipTestEnableBitmask =
1286 gs_prog_data->base.clip_distance_mask;
1287 gs.UserClipDistanceCullTestEnableBitmask =
1288 gs_prog_data->base.cull_distance_mask;
1289 #endif
1290
1291 gs.PerThreadScratchSpace = get_scratch_space(gs_bin);
1292 gs.ScratchSpaceBasePointer =
1293 get_scratch_address(pipeline, MESA_SHADER_GEOMETRY, gs_bin);
1294 }
1295 }
1296
1297 static inline bool
1298 has_color_buffer_write_enabled(const struct anv_pipeline *pipeline)
1299 {
1300 const struct anv_shader_bin *shader_bin =
1301 pipeline->shaders[MESA_SHADER_FRAGMENT];
1302 if (!shader_bin)
1303 return false;
1304
1305 const struct anv_pipeline_bind_map *bind_map = &shader_bin->bind_map;
1306 for (int i = 0; i < bind_map->surface_count; i++) {
1307 if (bind_map->surface_to_descriptor[i].set !=
1308 ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1309 continue;
1310 if (bind_map->surface_to_descriptor[i].index != UINT8_MAX)
1311 return true;
1312 }
1313
1314 return false;
1315 }
1316
1317 static void
1318 emit_3dstate_wm(struct anv_pipeline *pipeline, struct anv_subpass *subpass,
1319 const VkPipelineMultisampleStateCreateInfo *multisample)
1320 {
1321 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1322
1323 MAYBE_UNUSED uint32_t samples =
1324 multisample ? multisample->rasterizationSamples : 1;
1325
1326 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
1327 wm.StatisticsEnable = true;
1328 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1329 wm.LineAntialiasingRegionWidth = _10pixels;
1330 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1331
1332 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1333 if (wm_prog_data->early_fragment_tests) {
1334 wm.EarlyDepthStencilControl = EDSC_PREPS;
1335 } else if (wm_prog_data->has_side_effects) {
1336 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1337 } else {
1338 wm.EarlyDepthStencilControl = EDSC_NORMAL;
1339 }
1340
1341 wm.BarycentricInterpolationMode =
1342 wm_prog_data->barycentric_interp_modes;
1343
1344 #if GEN_GEN < 8
1345 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1346 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1347 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1348 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1349
1350 /* If the subpass has a depth or stencil self-dependency, then we
1351 * need to force the hardware to do the depth/stencil write *after*
1352 * fragment shader execution. Otherwise, the writes may hit memory
1353 * before we get around to fetching from the input attachment and we
1354 * may get the depth or stencil value from the current draw rather
1355 * than the previous one.
1356 */
1357 wm.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
1358 wm_prog_data->uses_kill;
1359
1360 if (wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
1361 wm_prog_data->has_side_effects ||
1362 wm.PixelShaderKillsPixel ||
1363 has_color_buffer_write_enabled(pipeline))
1364 wm.ThreadDispatchEnable = true;
1365
1366 if (samples > 1) {
1367 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1368 if (wm_prog_data->persample_dispatch) {
1369 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1370 } else {
1371 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1372 }
1373 } else {
1374 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1375 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1376 }
1377 #endif
1378 }
1379 }
1380 }
1381
1382 static inline bool
1383 is_dual_src_blend_factor(VkBlendFactor factor)
1384 {
1385 return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
1386 factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
1387 factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
1388 factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
1389 }
1390
1391 static void
1392 emit_3dstate_ps(struct anv_pipeline *pipeline,
1393 const VkPipelineColorBlendStateCreateInfo *blend)
1394 {
1395 MAYBE_UNUSED const struct gen_device_info *devinfo = &pipeline->device->info;
1396 const struct anv_shader_bin *fs_bin =
1397 pipeline->shaders[MESA_SHADER_FRAGMENT];
1398
1399 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1400 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1401 #if GEN_GEN == 7
1402 /* Even if no fragments are ever dispatched, gen7 hardware hangs if
1403 * we don't at least set the maximum number of threads.
1404 */
1405 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1406 #endif
1407 }
1408 return;
1409 }
1410
1411 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1412
1413 #if GEN_GEN < 8
1414 /* The hardware wedges if you have this bit set but don't turn on any dual
1415 * source blend factors.
1416 */
1417 bool dual_src_blend = false;
1418 if (wm_prog_data->dual_src_blend) {
1419 for (uint32_t i = 0; i < blend->attachmentCount; i++) {
1420 const VkPipelineColorBlendAttachmentState *bstate =
1421 &blend->pAttachments[i];
1422
1423 if (bstate->blendEnable &&
1424 (is_dual_src_blend_factor(bstate->srcColorBlendFactor) ||
1425 is_dual_src_blend_factor(bstate->dstColorBlendFactor) ||
1426 is_dual_src_blend_factor(bstate->srcAlphaBlendFactor) ||
1427 is_dual_src_blend_factor(bstate->dstAlphaBlendFactor))) {
1428 dual_src_blend = true;
1429 break;
1430 }
1431 }
1432 }
1433 #endif
1434
1435 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1436 ps.KernelStartPointer0 = fs_bin->kernel.offset;
1437 ps.KernelStartPointer1 = 0;
1438 ps.KernelStartPointer2 = fs_bin->kernel.offset +
1439 wm_prog_data->prog_offset_2;
1440 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1441 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1442 ps._32PixelDispatchEnable = false;
1443
1444 ps.SingleProgramFlow = false;
1445 ps.VectorMaskEnable = true;
1446 ps.SamplerCount = get_sampler_count(fs_bin);
1447 ps.BindingTableEntryCount = get_binding_table_entry_count(fs_bin);
1448 ps.PushConstantEnable = wm_prog_data->base.nr_params > 0;
1449 ps.PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ?
1450 POSOFFSET_SAMPLE: POSOFFSET_NONE;
1451 #if GEN_GEN < 8
1452 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
1453 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1454 ps.DualSourceBlendEnable = dual_src_blend;
1455 #endif
1456
1457 #if GEN_IS_HASWELL
1458 /* Haswell requires the sample mask to be set in this packet as well
1459 * as in 3DSTATE_SAMPLE_MASK; the values should match.
1460 */
1461 ps.SampleMask = 0xff;
1462 #endif
1463
1464 #if GEN_GEN >= 9
1465 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
1466 #elif GEN_GEN >= 8
1467 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
1468 #else
1469 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1470 #endif
1471
1472 ps.DispatchGRFStartRegisterForConstantSetupData0 =
1473 wm_prog_data->base.dispatch_grf_start_reg;
1474 ps.DispatchGRFStartRegisterForConstantSetupData1 = 0;
1475 ps.DispatchGRFStartRegisterForConstantSetupData2 =
1476 wm_prog_data->dispatch_grf_start_reg_2;
1477
1478 ps.PerThreadScratchSpace = get_scratch_space(fs_bin);
1479 ps.ScratchSpaceBasePointer =
1480 get_scratch_address(pipeline, MESA_SHADER_FRAGMENT, fs_bin);
1481 }
1482 }
1483
1484 #if GEN_GEN >= 8
1485 static void
1486 emit_3dstate_ps_extra(struct anv_pipeline *pipeline,
1487 struct anv_subpass *subpass)
1488 {
1489 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1490
1491 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1492 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps);
1493 return;
1494 }
1495
1496 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
1497 ps.PixelShaderValid = true;
1498 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
1499 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1500 ps.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
1501 ps.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1502 ps.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1503 ps.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1504
1505 /* If the subpass has a depth or stencil self-dependency, then we need
1506 * to force the hardware to do the depth/stencil write *after* fragment
1507 * shader execution. Otherwise, the writes may hit memory before we get
1508 * around to fetching from the input attachment and we may get the depth
1509 * or stencil value from the current draw rather than the previous one.
1510 */
1511 ps.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
1512 wm_prog_data->uses_kill;
1513
1514 /* The stricter cross-primitive coherency guarantees that the hardware
1515 * gives us with the "Accesses UAV" bit set for at least one shader stage
1516 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command are
1517 * redundant within the current image, atomic counter and SSBO GL APIs,
1518 * which all have very loose ordering and coherency requirements and
1519 * generally rely on the application to insert explicit barriers when a
1520 * shader invocation is expected to see the memory writes performed by the
1521 * invocations of some previous primitive. Regardless of the value of
1522 * "UAV coherency required", the "Accesses UAV" bits will implicitly cause
1523 * an in most cases useless DC flush when the lowermost stage with the bit
1524 * set finishes execution.
1525 *
1526 * It would be nice to disable it, but in some cases we can't because on
1527 * Gen8+ it also has an influence on rasterization via the PS UAV-only
1528 * signal (which could be set independently from the coherency mechanism
1529 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
1530 * determine whether the hardware skips execution of the fragment shader
1531 * or not via the ThreadDispatchEnable signal. However if we know that
1532 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
1533 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
1534 * difference so we may just disable it here.
1535 *
1536 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
1537 * take into account KillPixels when no depth or stencil writes are
1538 * enabled. In order for occlusion queries to work correctly with no
1539 * attachments, we need to force-enable here.
1540 */
1541 if ((wm_prog_data->has_side_effects || wm_prog_data->uses_kill) &&
1542 !has_color_buffer_write_enabled(pipeline))
1543 ps.PixelShaderHasUAV = true;
1544
1545 #if GEN_GEN >= 9
1546 ps.PixelShaderPullsBary = wm_prog_data->pulls_bary;
1547 ps.InputCoverageMaskState = wm_prog_data->uses_sample_mask ?
1548 ICMS_INNER_CONSERVATIVE : ICMS_NONE;
1549 #else
1550 ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1551 #endif
1552 }
1553 }
1554
1555 static void
1556 emit_3dstate_vf_topology(struct anv_pipeline *pipeline)
1557 {
1558 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
1559 vft.PrimitiveTopologyType = pipeline->topology;
1560 }
1561 }
1562 #endif
1563
1564 static void
1565 compute_kill_pixel(struct anv_pipeline *pipeline,
1566 const VkPipelineMultisampleStateCreateInfo *ms_info,
1567 const struct anv_subpass *subpass)
1568 {
1569 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1570 pipeline->kill_pixel = false;
1571 return;
1572 }
1573
1574 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1575
1576 /* This computes the KillPixel portion of the computation for whether or
1577 * not we want to enable the PMA fix on gen8. It's given by this chunk of
1578 * the giant formula:
1579 *
1580 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1581 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1582 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1583 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1584 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1585 *
1586 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
1587 * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
1588 * of an alpha test.
1589 */
1590 pipeline->kill_pixel =
1591 subpass->has_ds_self_dep || wm_prog_data->uses_kill ||
1592 wm_prog_data->uses_omask ||
1593 (ms_info && ms_info->alphaToCoverageEnable);
1594 }
1595
1596 static VkResult
1597 genX(graphics_pipeline_create)(
1598 VkDevice _device,
1599 struct anv_pipeline_cache * cache,
1600 const VkGraphicsPipelineCreateInfo* pCreateInfo,
1601 const VkAllocationCallbacks* pAllocator,
1602 VkPipeline* pPipeline)
1603 {
1604 ANV_FROM_HANDLE(anv_device, device, _device);
1605 ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
1606 struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1607 struct anv_pipeline *pipeline;
1608 VkResult result;
1609
1610 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1611
1612 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1613 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1614 if (pipeline == NULL)
1615 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1616
1617 result = anv_pipeline_init(pipeline, device, cache,
1618 pCreateInfo, pAllocator);
1619 if (result != VK_SUCCESS) {
1620 vk_free2(&device->alloc, pAllocator, pipeline);
1621 return result;
1622 }
1623
1624 assert(pCreateInfo->pVertexInputState);
1625 emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
1626 assert(pCreateInfo->pRasterizationState);
1627 emit_rs_state(pipeline, pCreateInfo->pRasterizationState,
1628 pCreateInfo->pMultisampleState, pass, subpass);
1629 emit_ms_state(pipeline, pCreateInfo->pMultisampleState);
1630 emit_ds_state(pipeline, pCreateInfo->pDepthStencilState, pass, subpass);
1631 emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
1632 pCreateInfo->pMultisampleState);
1633 compute_kill_pixel(pipeline, pCreateInfo->pMultisampleState, subpass);
1634
1635 emit_urb_setup(pipeline);
1636
1637 emit_3dstate_clip(pipeline, pCreateInfo->pViewportState,
1638 pCreateInfo->pRasterizationState);
1639 emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);
1640
1641 #if 0
1642 /* From gen7_vs_state.c */
1643
1644 /**
1645 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
1646 * Geometry > Geometry Shader > State:
1647 *
1648 * "Note: Because of corruption in IVB:GT2, software needs to flush the
1649 * whole fixed function pipeline when the GS enable changes value in
1650 * the 3DSTATE_GS."
1651 *
1652 * The hardware architects have clarified that in this context "flush the
1653 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
1654 * Stall" bit set.
1655 */
1656 if (!brw->is_haswell && !brw->is_baytrail)
1657 gen7_emit_vs_workaround_flush(brw);
1658 #endif
1659
1660 emit_3dstate_vs(pipeline);
1661 emit_3dstate_hs_te_ds(pipeline);
1662 emit_3dstate_gs(pipeline);
1663 emit_3dstate_sbe(pipeline);
1664 emit_3dstate_wm(pipeline, subpass, pCreateInfo->pMultisampleState);
1665 emit_3dstate_ps(pipeline, pCreateInfo->pColorBlendState);
1666 #if GEN_GEN >= 8
1667 emit_3dstate_ps_extra(pipeline, subpass);
1668 emit_3dstate_vf_topology(pipeline);
1669 #endif
1670
1671 *pPipeline = anv_pipeline_to_handle(pipeline);
1672
1673 return VK_SUCCESS;
1674 }
1675
1676 static VkResult
1677 compute_pipeline_create(
1678 VkDevice _device,
1679 struct anv_pipeline_cache * cache,
1680 const VkComputePipelineCreateInfo* pCreateInfo,
1681 const VkAllocationCallbacks* pAllocator,
1682 VkPipeline* pPipeline)
1683 {
1684 ANV_FROM_HANDLE(anv_device, device, _device);
1685 const struct anv_physical_device *physical_device =
1686 &device->instance->physicalDevice;
1687 const struct gen_device_info *devinfo = &physical_device->info;
1688 struct anv_pipeline *pipeline;
1689 VkResult result;
1690
1691 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
1692
1693 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1694 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1695 if (pipeline == NULL)
1696 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1697
1698 pipeline->device = device;
1699 pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
1700
1701 pipeline->blend_state.map = NULL;
1702
1703 result = anv_reloc_list_init(&pipeline->batch_relocs,
1704 pAllocator ? pAllocator : &device->alloc);
1705 if (result != VK_SUCCESS) {
1706 vk_free2(&device->alloc, pAllocator, pipeline);
1707 return result;
1708 }
1709 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1710 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1711 pipeline->batch.relocs = &pipeline->batch_relocs;
1712
1713 /* When we free the pipeline, we detect stages based on the NULL status
1714 * of various prog_data pointers. Make them NULL by default.
1715 */
1716 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1717
1718 pipeline->active_stages = 0;
1719
1720 pipeline->needs_data_cache = false;
1721
1722 assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
1723 ANV_FROM_HANDLE(anv_shader_module, module, pCreateInfo->stage.module);
1724 result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
1725 pCreateInfo->stage.pName,
1726 pCreateInfo->stage.pSpecializationInfo);
1727 if (result != VK_SUCCESS) {
1728 vk_free2(&device->alloc, pAllocator, pipeline);
1729 return result;
1730 }
1731
1732 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
1733
1734 anv_pipeline_setup_l3_config(pipeline, cs_prog_data->base.total_shared > 0);
1735
1736 uint32_t group_size = cs_prog_data->local_size[0] *
1737 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
1738 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
1739
1740 if (remainder > 0)
1741 pipeline->cs_right_mask = ~0u >> (32 - remainder);
1742 else
1743 pipeline->cs_right_mask = ~0u >> (32 - cs_prog_data->simd_size);
1744
1745 const uint32_t vfe_curbe_allocation =
1746 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
1747 cs_prog_data->push.cross_thread.regs, 2);
1748
1749 const uint32_t subslices = MAX2(physical_device->subslice_total, 1);
1750
1751 const struct anv_shader_bin *cs_bin =
1752 pipeline->shaders[MESA_SHADER_COMPUTE];
1753
1754 anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE), vfe) {
1755 #if GEN_GEN > 7
1756 vfe.StackSize = 0;
1757 #else
1758 vfe.GPGPUMode = true;
1759 #endif
1760 vfe.MaximumNumberofThreads =
1761 devinfo->max_cs_threads * subslices - 1;
1762 vfe.NumberofURBEntries = GEN_GEN <= 7 ? 0 : 2;
1763 vfe.ResetGatewayTimer = true;
1764 #if GEN_GEN <= 8
1765 vfe.BypassGatewayControl = true;
1766 #endif
1767 vfe.URBEntryAllocationSize = GEN_GEN <= 7 ? 0 : 2;
1768 vfe.CURBEAllocationSize = vfe_curbe_allocation;
1769
1770 vfe.PerThreadScratchSpace = get_scratch_space(cs_bin);
1771 vfe.ScratchSpaceBasePointer =
1772 get_scratch_address(pipeline, MESA_SHADER_COMPUTE, cs_bin);
1773 }
1774
1775 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
1776 .KernelStartPointer = cs_bin->kernel.offset,
1777
1778 .SamplerCount = get_sampler_count(cs_bin),
1779 .BindingTableEntryCount = get_binding_table_entry_count(cs_bin),
1780 .BarrierEnable = cs_prog_data->uses_barrier,
1781 .SharedLocalMemorySize =
1782 encode_slm_size(GEN_GEN, cs_prog_data->base.total_shared),
1783
1784 #if !GEN_IS_HASWELL
1785 .ConstantURBEntryReadOffset = 0,
1786 #endif
1787 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
1788 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1789 .CrossThreadConstantDataReadLength =
1790 cs_prog_data->push.cross_thread.regs,
1791 #endif
1792
1793 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
1794 };
1795 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
1796 pipeline->interface_descriptor_data,
1797 &desc);
1798
1799 *pPipeline = anv_pipeline_to_handle(pipeline);
1800
1801 return VK_SUCCESS;
1802 }
1803
1804 VkResult genX(CreateGraphicsPipelines)(
1805 VkDevice _device,
1806 VkPipelineCache pipelineCache,
1807 uint32_t count,
1808 const VkGraphicsPipelineCreateInfo* pCreateInfos,
1809 const VkAllocationCallbacks* pAllocator,
1810 VkPipeline* pPipelines)
1811 {
1812 ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
1813
1814 VkResult result = VK_SUCCESS;
1815
1816 unsigned i;
1817 for (i = 0; i < count; i++) {
1818 result = genX(graphics_pipeline_create)(_device,
1819 pipeline_cache,
1820 &pCreateInfos[i],
1821 pAllocator, &pPipelines[i]);
1822
1823 /* Bail out on the first error as it is not obvious what error should be
1824 * report upon 2 different failures. */
1825 if (result != VK_SUCCESS)
1826 break;
1827 }
1828
1829 for (; i < count; i++)
1830 pPipelines[i] = VK_NULL_HANDLE;
1831
1832 return result;
1833 }
1834
1835 VkResult genX(CreateComputePipelines)(
1836 VkDevice _device,
1837 VkPipelineCache pipelineCache,
1838 uint32_t count,
1839 const VkComputePipelineCreateInfo* pCreateInfos,
1840 const VkAllocationCallbacks* pAllocator,
1841 VkPipeline* pPipelines)
1842 {
1843 ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
1844
1845 VkResult result = VK_SUCCESS;
1846
1847 unsigned i;
1848 for (i = 0; i < count; i++) {
1849 result = compute_pipeline_create(_device, pipeline_cache,
1850 &pCreateInfos[i],
1851 pAllocator, &pPipelines[i]);
1852
1853 /* Bail out on the first error as it is not obvious what error should be
1854 * report upon 2 different failures. */
1855 if (result != VK_SUCCESS)
1856 break;
1857 }
1858
1859 for (; i < count; i++)
1860 pPipelines[i] = VK_NULL_HANDLE;
1861
1862 return result;
1863 }