anv/pipeline: Properly handle unset gl_Layer and gl_ViewportIndex
[mesa.git] / src / intel / vulkan / genX_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "anv_private.h"
25
26 #include "genxml/gen_macros.h"
27 #include "genxml/genX_pack.h"
28
29 #include "common/gen_l3_config.h"
30 #include "common/gen_sample_positions.h"
31 #include "vk_format_info.h"
32
33 static uint32_t
34 vertex_element_comp_control(enum isl_format format, unsigned comp)
35 {
36 uint8_t bits;
37 switch (comp) {
38 case 0: bits = isl_format_layouts[format].channels.r.bits; break;
39 case 1: bits = isl_format_layouts[format].channels.g.bits; break;
40 case 2: bits = isl_format_layouts[format].channels.b.bits; break;
41 case 3: bits = isl_format_layouts[format].channels.a.bits; break;
42 default: unreachable("Invalid component");
43 }
44
45 /*
46 * Take in account hardware restrictions when dealing with 64-bit floats.
47 *
48 * From Broadwell spec, command reference structures, page 586:
49 * "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
50 * 64-bit components are stored * in the URB without any conversion. In
51 * this case, vertex elements must be written as 128 or 256 bits, with
52 * VFCOMP_STORE_0 being used to pad the output as required. E.g., if
53 * R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
54 * Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
55 * set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
56 * Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
57 * a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
58 * Component 3 to be specified as VFCOMP_STORE_0 in order to output a
59 * 256-bit vertex element."
60 */
61 if (bits) {
62 return VFCOMP_STORE_SRC;
63 } else if (comp >= 2 &&
64 !isl_format_layouts[format].channels.b.bits &&
65 isl_format_layouts[format].channels.r.type == ISL_RAW) {
66 /* When emitting 64-bit attributes, we need to write either 128 or 256
67 * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
68 * VFCOMP_STORE_0 to pad the written chunk */
69 return VFCOMP_NOSTORE;
70 } else if (comp < 3 ||
71 isl_format_layouts[format].channels.r.type == ISL_RAW) {
72 /* Note we need to pad with value 0, not 1, due hardware restrictions
73 * (see comment above) */
74 return VFCOMP_STORE_0;
75 } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
76 isl_format_layouts[format].channels.r.type == ISL_SINT) {
77 assert(comp == 3);
78 return VFCOMP_STORE_1_INT;
79 } else {
80 assert(comp == 3);
81 return VFCOMP_STORE_1_FP;
82 }
83 }
84
85 static void
86 emit_vertex_input(struct anv_pipeline *pipeline,
87 const VkPipelineVertexInputStateCreateInfo *info)
88 {
89 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
90
91 /* Pull inputs_read out of the VS prog data */
92 const uint64_t inputs_read = vs_prog_data->inputs_read;
93 const uint64_t double_inputs_read = vs_prog_data->double_inputs_read;
94 assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
95 const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
96 const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
97 const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
98 vs_prog_data->uses_instanceid ||
99 vs_prog_data->uses_basevertex ||
100 vs_prog_data->uses_baseinstance;
101
102 uint32_t elem_count = __builtin_popcount(elements) -
103 __builtin_popcount(elements_double) / 2;
104
105 const uint32_t total_elems =
106 elem_count + needs_svgs_elem + vs_prog_data->uses_drawid;
107 if (total_elems == 0)
108 return;
109
110 uint32_t *p;
111
112 const uint32_t num_dwords = 1 + total_elems * 2;
113 p = anv_batch_emitn(&pipeline->batch, num_dwords,
114 GENX(3DSTATE_VERTEX_ELEMENTS));
115 if (!p)
116 return;
117 memset(p + 1, 0, (num_dwords - 1) * 4);
118
119 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
120 const VkVertexInputAttributeDescription *desc =
121 &info->pVertexAttributeDescriptions[i];
122 enum isl_format format = anv_get_isl_format(&pipeline->device->info,
123 desc->format,
124 VK_IMAGE_ASPECT_COLOR_BIT,
125 VK_IMAGE_TILING_LINEAR);
126
127 assert(desc->binding < MAX_VBS);
128
129 if ((elements & (1 << desc->location)) == 0)
130 continue; /* Binding unused */
131
132 uint32_t slot =
133 __builtin_popcount(elements & ((1 << desc->location) - 1)) -
134 DIV_ROUND_UP(__builtin_popcount(elements_double &
135 ((1 << desc->location) -1)), 2);
136
137 struct GENX(VERTEX_ELEMENT_STATE) element = {
138 .VertexBufferIndex = desc->binding,
139 .Valid = true,
140 .SourceElementFormat = format,
141 .EdgeFlagEnable = false,
142 .SourceElementOffset = desc->offset,
143 .Component0Control = vertex_element_comp_control(format, 0),
144 .Component1Control = vertex_element_comp_control(format, 1),
145 .Component2Control = vertex_element_comp_control(format, 2),
146 .Component3Control = vertex_element_comp_control(format, 3),
147 };
148 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
149
150 #if GEN_GEN >= 8
151 /* On Broadwell and later, we have a separate VF_INSTANCING packet
152 * that controls instancing. On Haswell and prior, that's part of
153 * VERTEX_BUFFER_STATE which we emit later.
154 */
155 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
156 vfi.InstancingEnable = pipeline->instancing_enable[desc->binding];
157 vfi.VertexElementIndex = slot;
158 /* Vulkan so far doesn't have an instance divisor, so
159 * this is always 1 (ignored if not instancing). */
160 vfi.InstanceDataStepRate = 1;
161 }
162 #endif
163 }
164
165 const uint32_t id_slot = elem_count;
166 if (needs_svgs_elem) {
167 /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
168 * "Within a VERTEX_ELEMENT_STATE structure, if a Component
169 * Control field is set to something other than VFCOMP_STORE_SRC,
170 * no higher-numbered Component Control fields may be set to
171 * VFCOMP_STORE_SRC"
172 *
173 * This means, that if we have BaseInstance, we need BaseVertex as
174 * well. Just do all or nothing.
175 */
176 uint32_t base_ctrl = (vs_prog_data->uses_basevertex ||
177 vs_prog_data->uses_baseinstance) ?
178 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
179
180 struct GENX(VERTEX_ELEMENT_STATE) element = {
181 .VertexBufferIndex = ANV_SVGS_VB_INDEX,
182 .Valid = true,
183 .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
184 .Component0Control = base_ctrl,
185 .Component1Control = base_ctrl,
186 #if GEN_GEN >= 8
187 .Component2Control = VFCOMP_STORE_0,
188 .Component3Control = VFCOMP_STORE_0,
189 #else
190 .Component2Control = VFCOMP_STORE_VID,
191 .Component3Control = VFCOMP_STORE_IID,
192 #endif
193 };
194 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
195 }
196
197 #if GEN_GEN >= 8
198 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) {
199 sgvs.VertexIDEnable = vs_prog_data->uses_vertexid;
200 sgvs.VertexIDComponentNumber = 2;
201 sgvs.VertexIDElementOffset = id_slot;
202 sgvs.InstanceIDEnable = vs_prog_data->uses_instanceid;
203 sgvs.InstanceIDComponentNumber = 3;
204 sgvs.InstanceIDElementOffset = id_slot;
205 }
206 #endif
207
208 const uint32_t drawid_slot = elem_count + needs_svgs_elem;
209 if (vs_prog_data->uses_drawid) {
210 struct GENX(VERTEX_ELEMENT_STATE) element = {
211 .VertexBufferIndex = ANV_DRAWID_VB_INDEX,
212 .Valid = true,
213 .SourceElementFormat = ISL_FORMAT_R32_UINT,
214 .Component0Control = VFCOMP_STORE_SRC,
215 .Component1Control = VFCOMP_STORE_0,
216 .Component2Control = VFCOMP_STORE_0,
217 .Component3Control = VFCOMP_STORE_0,
218 };
219 GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
220 &p[1 + drawid_slot * 2],
221 &element);
222
223 #if GEN_GEN >= 8
224 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
225 vfi.VertexElementIndex = drawid_slot;
226 }
227 #endif
228 }
229 }
230
231 void
232 genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
233 const struct gen_l3_config *l3_config,
234 VkShaderStageFlags active_stages,
235 const unsigned entry_size[4])
236 {
237 const struct gen_device_info *devinfo = &device->info;
238 #if GEN_IS_HASWELL
239 const unsigned push_constant_kb = devinfo->gt == 3 ? 32 : 16;
240 #else
241 const unsigned push_constant_kb = GEN_GEN >= 8 ? 32 : 16;
242 #endif
243
244 const unsigned urb_size_kb = gen_get_l3_config_urb_size(devinfo, l3_config);
245
246 unsigned entries[4];
247 unsigned start[4];
248 gen_get_urb_config(devinfo,
249 1024 * push_constant_kb, 1024 * urb_size_kb,
250 active_stages &
251 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
252 active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
253 entry_size, entries, start);
254
255 #if GEN_GEN == 7 && !GEN_IS_HASWELL
256 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
257 *
258 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
259 * needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
260 * 3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
261 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one PIPE_CONTROL
262 * needs to be sent before any combination of VS associated 3DSTATE."
263 */
264 anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
265 pc.DepthStallEnable = true;
266 pc.PostSyncOperation = WriteImmediateData;
267 pc.Address = (struct anv_address) { &device->workaround_bo, 0 };
268 }
269 #endif
270
271 for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
272 anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
273 urb._3DCommandSubOpcode += i;
274 urb.VSURBStartingAddress = start[i];
275 urb.VSURBEntryAllocationSize = entry_size[i] - 1;
276 urb.VSNumberofURBEntries = entries[i];
277 }
278 }
279 }
280
281 static inline void
282 emit_urb_setup(struct anv_pipeline *pipeline)
283 {
284 unsigned entry_size[4];
285 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
286 const struct brw_vue_prog_data *prog_data =
287 !anv_pipeline_has_stage(pipeline, i) ? NULL :
288 (const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
289
290 entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
291 }
292
293 genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
294 pipeline->urb.l3_config,
295 pipeline->active_stages, entry_size);
296 }
297
298 static void
299 emit_3dstate_sbe(struct anv_pipeline *pipeline)
300 {
301 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
302
303 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
304 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE), sbe);
305 #if GEN_GEN >= 8
306 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ), sbe);
307 #endif
308 return;
309 }
310
311 const struct brw_vue_map *fs_input_map =
312 &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
313
314 struct GENX(3DSTATE_SBE) sbe = {
315 GENX(3DSTATE_SBE_header),
316 .AttributeSwizzleEnable = true,
317 .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
318 .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
319 .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
320 };
321
322 #if GEN_GEN >= 9
323 for (unsigned i = 0; i < 32; i++)
324 sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
325 #endif
326
327 #if GEN_GEN >= 8
328 /* On Broadwell, they broke 3DSTATE_SBE into two packets */
329 struct GENX(3DSTATE_SBE_SWIZ) swiz = {
330 GENX(3DSTATE_SBE_SWIZ_header),
331 };
332 #else
333 # define swiz sbe
334 #endif
335
336 /* Skip the VUE header and position slots by default */
337 unsigned urb_entry_read_offset = 1;
338 int max_source_attr = 0;
339 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
340 int input_index = wm_prog_data->urb_setup[attr];
341
342 if (input_index < 0)
343 continue;
344
345 /* gl_Layer is stored in the VUE header */
346 if (attr == VARYING_SLOT_LAYER) {
347 urb_entry_read_offset = 0;
348 continue;
349 }
350
351 if (attr == VARYING_SLOT_PNTC) {
352 sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
353 continue;
354 }
355
356 const int slot = fs_input_map->varying_to_slot[attr];
357
358 if (input_index >= 16)
359 continue;
360
361 if (slot == -1) {
362 /* This attribute does not exist in the VUE--that means that the
363 * vertex shader did not write to it. It could be that it's a
364 * regular varying read by the fragment shader but not written by
365 * the vertex shader or it's gl_PrimitiveID. In the first case the
366 * value is undefined, in the second it needs to be
367 * gl_PrimitiveID.
368 */
369 swiz.Attribute[input_index].ConstantSource = PRIM_ID;
370 swiz.Attribute[input_index].ComponentOverrideX = true;
371 swiz.Attribute[input_index].ComponentOverrideY = true;
372 swiz.Attribute[input_index].ComponentOverrideZ = true;
373 swiz.Attribute[input_index].ComponentOverrideW = true;
374 } else {
375 /* We have to subtract two slots to accout for the URB entry output
376 * read offset in the VS and GS stages.
377 */
378 assert(slot >= 2);
379 const int source_attr = slot - 2 * urb_entry_read_offset;
380 max_source_attr = MAX2(max_source_attr, source_attr);
381 swiz.Attribute[input_index].SourceAttribute = source_attr;
382 }
383 }
384
385 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
386 sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
387 #if GEN_GEN >= 8
388 sbe.ForceVertexURBEntryReadOffset = true;
389 sbe.ForceVertexURBEntryReadLength = true;
390 #endif
391
392 uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
393 GENX(3DSTATE_SBE_length));
394 if (!dw)
395 return;
396 GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe);
397
398 #if GEN_GEN >= 8
399 dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length));
400 if (!dw)
401 return;
402 GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
403 #endif
404 }
405
406 static const uint32_t vk_to_gen_cullmode[] = {
407 [VK_CULL_MODE_NONE] = CULLMODE_NONE,
408 [VK_CULL_MODE_FRONT_BIT] = CULLMODE_FRONT,
409 [VK_CULL_MODE_BACK_BIT] = CULLMODE_BACK,
410 [VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH
411 };
412
413 static const uint32_t vk_to_gen_fillmode[] = {
414 [VK_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
415 [VK_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
416 [VK_POLYGON_MODE_POINT] = FILL_MODE_POINT,
417 };
418
419 static const uint32_t vk_to_gen_front_face[] = {
420 [VK_FRONT_FACE_COUNTER_CLOCKWISE] = 1,
421 [VK_FRONT_FACE_CLOCKWISE] = 0
422 };
423
424 static void
425 emit_rs_state(struct anv_pipeline *pipeline,
426 const VkPipelineRasterizationStateCreateInfo *rs_info,
427 const VkPipelineMultisampleStateCreateInfo *ms_info,
428 const struct anv_render_pass *pass,
429 const struct anv_subpass *subpass)
430 {
431 struct GENX(3DSTATE_SF) sf = {
432 GENX(3DSTATE_SF_header),
433 };
434
435 sf.ViewportTransformEnable = true;
436 sf.StatisticsEnable = true;
437 sf.TriangleStripListProvokingVertexSelect = 0;
438 sf.LineStripListProvokingVertexSelect = 0;
439 sf.TriangleFanProvokingVertexSelect = 1;
440
441 const struct brw_vue_prog_data *last_vue_prog_data =
442 anv_pipeline_get_last_vue_prog_data(pipeline);
443
444 if (last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
445 sf.PointWidthSource = Vertex;
446 } else {
447 sf.PointWidthSource = State;
448 sf.PointWidth = 1.0;
449 }
450
451 #if GEN_GEN >= 8
452 struct GENX(3DSTATE_RASTER) raster = {
453 GENX(3DSTATE_RASTER_header),
454 };
455 #else
456 # define raster sf
457 #endif
458
459 /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
460 * "Multisample Modes State".
461 */
462 #if GEN_GEN >= 8
463 raster.DXMultisampleRasterizationEnable = true;
464 /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
465 * computations. If we ever set this bit to a different value, they will
466 * need to be updated accordingly.
467 */
468 raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
469 raster.ForceMultisampling = false;
470 #else
471 raster.MultisampleRasterizationMode =
472 (ms_info && ms_info->rasterizationSamples > 1) ?
473 MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
474 #endif
475
476 raster.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
477 raster.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
478 raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
479 raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
480 raster.ScissorRectangleEnable = true;
481
482 #if GEN_GEN >= 9
483 /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
484 raster.ViewportZFarClipTestEnable = !pipeline->depth_clamp_enable;
485 raster.ViewportZNearClipTestEnable = !pipeline->depth_clamp_enable;
486 #elif GEN_GEN >= 8
487 raster.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
488 #endif
489
490 raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
491 raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
492 raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;
493
494 #if GEN_GEN == 7
495 /* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
496 * can get the depth offsets correct.
497 */
498 if (subpass->depth_stencil_attachment.attachment < pass->attachment_count) {
499 VkFormat vk_format =
500 pass->attachments[subpass->depth_stencil_attachment.attachment].format;
501 assert(vk_format_is_depth_or_stencil(vk_format));
502 if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
503 enum isl_format isl_format =
504 anv_get_isl_format(&pipeline->device->info, vk_format,
505 VK_IMAGE_ASPECT_DEPTH_BIT,
506 VK_IMAGE_TILING_OPTIMAL);
507 sf.DepthBufferSurfaceFormat =
508 isl_format_get_depth_format(isl_format, false);
509 }
510 }
511 #endif
512
513 #if GEN_GEN >= 8
514 GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
515 GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
516 #else
517 # undef raster
518 GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
519 #endif
520 }
521
522 static void
523 emit_ms_state(struct anv_pipeline *pipeline,
524 const VkPipelineMultisampleStateCreateInfo *info)
525 {
526 uint32_t samples = 1;
527 uint32_t log2_samples = 0;
528
529 /* From the Vulkan 1.0 spec:
530 * If pSampleMask is NULL, it is treated as if the mask has all bits
531 * enabled, i.e. no coverage is removed from fragments.
532 *
533 * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
534 */
535 #if GEN_GEN >= 8
536 uint32_t sample_mask = 0xffff;
537 #else
538 uint32_t sample_mask = 0xff;
539 #endif
540
541 if (info) {
542 samples = info->rasterizationSamples;
543 log2_samples = __builtin_ffs(samples) - 1;
544 }
545
546 if (info && info->pSampleMask)
547 sample_mask &= info->pSampleMask[0];
548
549 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
550 ms.NumberofMultisamples = log2_samples;
551
552 #if GEN_GEN >= 8
553 /* The PRM says that this bit is valid only for DX9:
554 *
555 * SW can choose to set this bit only for DX9 API. DX10/OGL API's
556 * should not have any effect by setting or not setting this bit.
557 */
558 ms.PixelPositionOffsetEnable = false;
559 ms.PixelLocation = CENTER;
560 #else
561 ms.PixelLocation = PIXLOC_CENTER;
562
563 switch (samples) {
564 case 1:
565 GEN_SAMPLE_POS_1X(ms.Sample);
566 break;
567 case 2:
568 GEN_SAMPLE_POS_2X(ms.Sample);
569 break;
570 case 4:
571 GEN_SAMPLE_POS_4X(ms.Sample);
572 break;
573 case 8:
574 GEN_SAMPLE_POS_8X(ms.Sample);
575 break;
576 default:
577 break;
578 }
579 #endif
580 }
581
582 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
583 sm.SampleMask = sample_mask;
584 }
585 }
586
587 static const uint32_t vk_to_gen_logic_op[] = {
588 [VK_LOGIC_OP_COPY] = LOGICOP_COPY,
589 [VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR,
590 [VK_LOGIC_OP_AND] = LOGICOP_AND,
591 [VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE,
592 [VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED,
593 [VK_LOGIC_OP_NO_OP] = LOGICOP_NOOP,
594 [VK_LOGIC_OP_XOR] = LOGICOP_XOR,
595 [VK_LOGIC_OP_OR] = LOGICOP_OR,
596 [VK_LOGIC_OP_NOR] = LOGICOP_NOR,
597 [VK_LOGIC_OP_EQUIVALENT] = LOGICOP_EQUIV,
598 [VK_LOGIC_OP_INVERT] = LOGICOP_INVERT,
599 [VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE,
600 [VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED,
601 [VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED,
602 [VK_LOGIC_OP_NAND] = LOGICOP_NAND,
603 [VK_LOGIC_OP_SET] = LOGICOP_SET,
604 };
605
606 static const uint32_t vk_to_gen_blend[] = {
607 [VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO,
608 [VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE,
609 [VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
610 [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
611 [VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR,
612 [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
613 [VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
614 [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
615 [VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA,
616 [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
617 [VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
618 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
619 [VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
620 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
621 [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
622 [VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
623 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
624 [VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
625 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
626 };
627
628 static const uint32_t vk_to_gen_blend_op[] = {
629 [VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
630 [VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
631 [VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
632 [VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
633 [VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
634 };
635
636 static const uint32_t vk_to_gen_compare_op[] = {
637 [VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER,
638 [VK_COMPARE_OP_LESS] = PREFILTEROPLESS,
639 [VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL,
640 [VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROPLEQUAL,
641 [VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER,
642 [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL,
643 [VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROPGEQUAL,
644 [VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS,
645 };
646
647 static const uint32_t vk_to_gen_stencil_op[] = {
648 [VK_STENCIL_OP_KEEP] = STENCILOP_KEEP,
649 [VK_STENCIL_OP_ZERO] = STENCILOP_ZERO,
650 [VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE,
651 [VK_STENCIL_OP_INCREMENT_AND_CLAMP] = STENCILOP_INCRSAT,
652 [VK_STENCIL_OP_DECREMENT_AND_CLAMP] = STENCILOP_DECRSAT,
653 [VK_STENCIL_OP_INVERT] = STENCILOP_INVERT,
654 [VK_STENCIL_OP_INCREMENT_AND_WRAP] = STENCILOP_INCR,
655 [VK_STENCIL_OP_DECREMENT_AND_WRAP] = STENCILOP_DECR,
656 };
657
658 /* This function sanitizes the VkStencilOpState by looking at the compare ops
659 * and trying to determine whether or not a given stencil op can ever actually
660 * occur. Stencil ops which can never occur are set to VK_STENCIL_OP_KEEP.
661 * This function returns true if, after sanitation, any of the stencil ops are
662 * set to something other than VK_STENCIL_OP_KEEP.
663 */
664 static bool
665 sanitize_stencil_face(VkStencilOpState *face,
666 VkCompareOp depthCompareOp)
667 {
668 /* If compareOp is ALWAYS then the stencil test will never fail and failOp
669 * will never happen. Set failOp to KEEP in this case.
670 */
671 if (face->compareOp == VK_COMPARE_OP_ALWAYS)
672 face->failOp = VK_STENCIL_OP_KEEP;
673
674 /* If compareOp is NEVER or depthCompareOp is NEVER then one of the depth
675 * or stencil tests will fail and passOp will never happen.
676 */
677 if (face->compareOp == VK_COMPARE_OP_NEVER ||
678 depthCompareOp == VK_COMPARE_OP_NEVER)
679 face->passOp = VK_STENCIL_OP_KEEP;
680
681 /* If compareOp is NEVER or depthCompareOp is ALWAYS then either the
682 * stencil test will fail or the depth test will pass. In either case,
683 * depthFailOp will never happen.
684 */
685 if (face->compareOp == VK_COMPARE_OP_NEVER ||
686 depthCompareOp == VK_COMPARE_OP_ALWAYS)
687 face->depthFailOp = VK_STENCIL_OP_KEEP;
688
689 return face->failOp != VK_STENCIL_OP_KEEP ||
690 face->depthFailOp != VK_STENCIL_OP_KEEP ||
691 face->passOp != VK_STENCIL_OP_KEEP;
692 }
693
694 /* Intel hardware is fairly sensitive to whether or not depth/stencil writes
695 * are enabled. In the presence of discards, it's fairly easy to get into the
696 * non-promoted case which means a fairly big performance hit. From the Iron
697 * Lake PRM, Vol 2, pt. 1, section 8.4.3.2, "Early Depth Test Cases":
698 *
699 * "Non-promoted depth (N) is active whenever the depth test can be done
700 * early but it cannot determine whether or not to write source depth to
701 * the depth buffer, therefore the depth write must be performed post pixel
702 * shader. This includes cases where the pixel shader can kill pixels,
703 * including via sampler chroma key, as well as cases where the alpha test
704 * function is enabled, which kills pixels based on a programmable alpha
705 * test. In this case, even if the depth test fails, the pixel cannot be
706 * killed if a stencil write is indicated. Whether or not the stencil write
707 * happens depends on whether or not the pixel is killed later. In these
708 * cases if stencil test fails and stencil writes are off, the pixels can
709 * also be killed early. If stencil writes are enabled, the pixels must be
710 * treated as Computed depth (described above)."
711 *
712 * The same thing as mentioned in the stencil case can happen in the depth
713 * case as well if it thinks it writes depth but, thanks to the depth test
714 * being GL_EQUAL, the write doesn't actually matter. A little extra work
715 * up-front to try and disable depth and stencil writes can make a big
716 * difference.
717 *
718 * Unfortunately, the way depth and stencil testing is specified, there are
719 * many case where, regardless of depth/stencil writes being enabled, nothing
720 * actually gets written due to some other bit of state being set. This
721 * function attempts to "sanitize" the depth stencil state and disable writes
722 * and sometimes even testing whenever possible.
723 */
724 static void
725 sanitize_ds_state(VkPipelineDepthStencilStateCreateInfo *state,
726 bool *stencilWriteEnable,
727 VkImageAspectFlags ds_aspects)
728 {
729 *stencilWriteEnable = state->stencilTestEnable;
730
731 /* If the depth test is disabled, we won't be writing anything. */
732 if (!state->depthTestEnable)
733 state->depthWriteEnable = false;
734
735 /* The Vulkan spec requires that if either depth or stencil is not present,
736 * the pipeline is to act as if the test silently passes.
737 */
738 if (!(ds_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
739 state->depthWriteEnable = false;
740 state->depthCompareOp = VK_COMPARE_OP_ALWAYS;
741 }
742
743 if (!(ds_aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
744 *stencilWriteEnable = false;
745 state->front.compareOp = VK_COMPARE_OP_ALWAYS;
746 state->back.compareOp = VK_COMPARE_OP_ALWAYS;
747 }
748
749 /* If the stencil test is enabled and always fails, then we will never get
750 * to the depth test so we can just disable the depth test entirely.
751 */
752 if (state->stencilTestEnable &&
753 state->front.compareOp == VK_COMPARE_OP_NEVER &&
754 state->back.compareOp == VK_COMPARE_OP_NEVER) {
755 state->depthTestEnable = false;
756 state->depthWriteEnable = false;
757 }
758
759 /* If depthCompareOp is EQUAL then the value we would be writing to the
760 * depth buffer is the same as the value that's already there so there's no
761 * point in writing it.
762 */
763 if (state->depthCompareOp == VK_COMPARE_OP_EQUAL)
764 state->depthWriteEnable = false;
765
766 /* If the stencil ops are such that we don't actually ever modify the
767 * stencil buffer, we should disable writes.
768 */
769 if (!sanitize_stencil_face(&state->front, state->depthCompareOp) &&
770 !sanitize_stencil_face(&state->back, state->depthCompareOp))
771 *stencilWriteEnable = false;
772
773 /* If the depth test always passes and we never write out depth, that's the
774 * same as if the depth test is disabled entirely.
775 */
776 if (state->depthCompareOp == VK_COMPARE_OP_ALWAYS &&
777 !state->depthWriteEnable)
778 state->depthTestEnable = false;
779
780 /* If the stencil test always passes and we never write out stencil, that's
781 * the same as if the stencil test is disabled entirely.
782 */
783 if (state->front.compareOp == VK_COMPARE_OP_ALWAYS &&
784 state->back.compareOp == VK_COMPARE_OP_ALWAYS &&
785 !*stencilWriteEnable)
786 state->stencilTestEnable = false;
787 }
788
789 static void
790 emit_ds_state(struct anv_pipeline *pipeline,
791 const VkPipelineDepthStencilStateCreateInfo *pCreateInfo,
792 const struct anv_render_pass *pass,
793 const struct anv_subpass *subpass)
794 {
795 #if GEN_GEN == 7
796 # define depth_stencil_dw pipeline->gen7.depth_stencil_state
797 #elif GEN_GEN == 8
798 # define depth_stencil_dw pipeline->gen8.wm_depth_stencil
799 #else
800 # define depth_stencil_dw pipeline->gen9.wm_depth_stencil
801 #endif
802
803 if (pCreateInfo == NULL) {
804 /* We're going to OR this together with the dynamic state. We need
805 * to make sure it's initialized to something useful.
806 */
807 pipeline->writes_stencil = false;
808 pipeline->stencil_test_enable = false;
809 pipeline->writes_depth = false;
810 pipeline->depth_test_enable = false;
811 memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
812 return;
813 }
814
815 VkImageAspectFlags ds_aspects = 0;
816 if (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
817 VkFormat depth_stencil_format =
818 pass->attachments[subpass->depth_stencil_attachment.attachment].format;
819 ds_aspects = vk_format_aspects(depth_stencil_format);
820 }
821
822 VkPipelineDepthStencilStateCreateInfo info = *pCreateInfo;
823 sanitize_ds_state(&info, &pipeline->writes_stencil, ds_aspects);
824 pipeline->stencil_test_enable = info.stencilTestEnable;
825 pipeline->writes_depth = info.depthWriteEnable;
826 pipeline->depth_test_enable = info.depthTestEnable;
827
828 /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
829
830 #if GEN_GEN <= 7
831 struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
832 #else
833 struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
834 #endif
835 .DepthTestEnable = info.depthTestEnable,
836 .DepthBufferWriteEnable = info.depthWriteEnable,
837 .DepthTestFunction = vk_to_gen_compare_op[info.depthCompareOp],
838 .DoubleSidedStencilEnable = true,
839
840 .StencilTestEnable = info.stencilTestEnable,
841 .StencilFailOp = vk_to_gen_stencil_op[info.front.failOp],
842 .StencilPassDepthPassOp = vk_to_gen_stencil_op[info.front.passOp],
843 .StencilPassDepthFailOp = vk_to_gen_stencil_op[info.front.depthFailOp],
844 .StencilTestFunction = vk_to_gen_compare_op[info.front.compareOp],
845 .BackfaceStencilFailOp = vk_to_gen_stencil_op[info.back.failOp],
846 .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info.back.passOp],
847 .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info.back.depthFailOp],
848 .BackfaceStencilTestFunction = vk_to_gen_compare_op[info.back.compareOp],
849 };
850
851 #if GEN_GEN <= 7
852 GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
853 #else
854 GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
855 #endif
856 }
857
858 static void
859 emit_cb_state(struct anv_pipeline *pipeline,
860 const VkPipelineColorBlendStateCreateInfo *info,
861 const VkPipelineMultisampleStateCreateInfo *ms_info)
862 {
863 struct anv_device *device = pipeline->device;
864
865 const uint32_t num_dwords = GENX(BLEND_STATE_length);
866 pipeline->blend_state =
867 anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
868
869 struct GENX(BLEND_STATE) blend_state = {
870 #if GEN_GEN >= 8
871 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
872 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
873 #else
874 /* Make sure it gets zeroed */
875 .Entry = { { 0, }, },
876 #endif
877 };
878
879 /* Default everything to disabled */
880 for (uint32_t i = 0; i < 8; i++) {
881 blend_state.Entry[i].WriteDisableAlpha = true;
882 blend_state.Entry[i].WriteDisableRed = true;
883 blend_state.Entry[i].WriteDisableGreen = true;
884 blend_state.Entry[i].WriteDisableBlue = true;
885 }
886
887 uint32_t surface_count = 0;
888 struct anv_pipeline_bind_map *map;
889 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
890 map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
891 surface_count = map->surface_count;
892 }
893
894 bool has_writeable_rt = false;
895 for (unsigned i = 0; i < surface_count; i++) {
896 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
897
898 /* All color attachments are at the beginning of the binding table */
899 if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
900 break;
901
902 /* We can have at most 8 attachments */
903 assert(i < 8);
904
905 if (info == NULL || binding->index >= info->attachmentCount)
906 continue;
907
908 assert(binding->binding == 0);
909 const VkPipelineColorBlendAttachmentState *a =
910 &info->pAttachments[binding->index];
911
912 blend_state.Entry[i] = (struct GENX(BLEND_STATE_ENTRY)) {
913 #if GEN_GEN < 8
914 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
915 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
916 #endif
917 .LogicOpEnable = info->logicOpEnable,
918 .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
919 .ColorBufferBlendEnable = a->blendEnable,
920 .ColorClampRange = COLORCLAMP_RTFORMAT,
921 .PreBlendColorClampEnable = true,
922 .PostBlendColorClampEnable = true,
923 .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
924 .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
925 .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
926 .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
927 .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
928 .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
929 .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
930 .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
931 .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
932 .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
933 };
934
935 if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
936 a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
937 a->colorBlendOp != a->alphaBlendOp) {
938 #if GEN_GEN >= 8
939 blend_state.IndependentAlphaBlendEnable = true;
940 #else
941 blend_state.Entry[i].IndependentAlphaBlendEnable = true;
942 #endif
943 }
944
945 if (a->colorWriteMask != 0)
946 has_writeable_rt = true;
947
948 /* Our hardware applies the blend factor prior to the blend function
949 * regardless of what function is used. Technically, this means the
950 * hardware can do MORE than GL or Vulkan specify. However, it also
951 * means that, for MIN and MAX, we have to stomp the blend factor to
952 * ONE to make it a no-op.
953 */
954 if (a->colorBlendOp == VK_BLEND_OP_MIN ||
955 a->colorBlendOp == VK_BLEND_OP_MAX) {
956 blend_state.Entry[i].SourceBlendFactor = BLENDFACTOR_ONE;
957 blend_state.Entry[i].DestinationBlendFactor = BLENDFACTOR_ONE;
958 }
959 if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
960 a->alphaBlendOp == VK_BLEND_OP_MAX) {
961 blend_state.Entry[i].SourceAlphaBlendFactor = BLENDFACTOR_ONE;
962 blend_state.Entry[i].DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
963 }
964 }
965
966 #if GEN_GEN >= 8
967 struct GENX(BLEND_STATE_ENTRY) *bs0 = &blend_state.Entry[0];
968 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
969 blend.AlphaToCoverageEnable = blend_state.AlphaToCoverageEnable;
970 blend.HasWriteableRT = has_writeable_rt;
971 blend.ColorBufferBlendEnable = bs0->ColorBufferBlendEnable;
972 blend.SourceAlphaBlendFactor = bs0->SourceAlphaBlendFactor;
973 blend.DestinationAlphaBlendFactor = bs0->DestinationAlphaBlendFactor;
974 blend.SourceBlendFactor = bs0->SourceBlendFactor;
975 blend.DestinationBlendFactor = bs0->DestinationBlendFactor;
976 blend.AlphaTestEnable = false;
977 blend.IndependentAlphaBlendEnable =
978 blend_state.IndependentAlphaBlendEnable;
979 }
980 #else
981 (void)has_writeable_rt;
982 #endif
983
984 GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
985 anv_state_flush(device, pipeline->blend_state);
986
987 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
988 bsp.BlendStatePointer = pipeline->blend_state.offset;
989 #if GEN_GEN >= 8
990 bsp.BlendStatePointerValid = true;
991 #endif
992 }
993 }
994
995 static void
996 emit_3dstate_clip(struct anv_pipeline *pipeline,
997 const VkPipelineViewportStateCreateInfo *vp_info,
998 const VkPipelineRasterizationStateCreateInfo *rs_info)
999 {
1000 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1001 (void) wm_prog_data;
1002 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
1003 clip.ClipEnable = true;
1004 clip.StatisticsEnable = true;
1005 clip.EarlyCullEnable = true;
1006 clip.APIMode = APIMODE_D3D,
1007 clip.ViewportXYClipTestEnable = true;
1008
1009 clip.ClipMode = CLIPMODE_NORMAL;
1010
1011 clip.TriangleStripListProvokingVertexSelect = 0;
1012 clip.LineStripListProvokingVertexSelect = 0;
1013 clip.TriangleFanProvokingVertexSelect = 1;
1014
1015 clip.MinimumPointWidth = 0.125;
1016 clip.MaximumPointWidth = 255.875;
1017
1018 const struct brw_vue_prog_data *last =
1019 anv_pipeline_get_last_vue_prog_data(pipeline);
1020
1021 /* From the Vulkan 1.0.45 spec:
1022 *
1023 * "If the last active vertex processing stage shader entry point's
1024 * interface does not include a variable decorated with
1025 * ViewportIndex, then the first viewport is used."
1026 */
1027 if (vp_info && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
1028 clip.MaximumVPIndex = vp_info->viewportCount - 1;
1029 } else {
1030 clip.MaximumVPIndex = 0;
1031 }
1032
1033 /* From the Vulkan 1.0.45 spec:
1034 *
1035 * "If the last active vertex processing stage shader entry point's
1036 * interface does not include a variable decorated with Layer, then
1037 * the first layer is used."
1038 */
1039 clip.ForceZeroRTAIndexEnable =
1040 !(last->vue_map.slots_valid & VARYING_BIT_LAYER);
1041
1042 #if GEN_GEN == 7
1043 clip.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
1044 clip.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
1045 clip.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
1046 if (last) {
1047 clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
1048 clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
1049 }
1050 #else
1051 clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
1052 (wm_prog_data->barycentric_interp_modes & 0x38) != 0 : 0;
1053 #endif
1054 }
1055 }
1056
1057 static void
1058 emit_3dstate_streamout(struct anv_pipeline *pipeline,
1059 const VkPipelineRasterizationStateCreateInfo *rs_info)
1060 {
1061 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), so) {
1062 so.RenderingDisable = rs_info->rasterizerDiscardEnable;
1063 }
1064 }
1065
1066 static inline uint32_t
1067 get_sampler_count(const struct anv_shader_bin *bin)
1068 {
1069 return DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
1070 }
1071
1072 static inline uint32_t
1073 get_binding_table_entry_count(const struct anv_shader_bin *bin)
1074 {
1075 return DIV_ROUND_UP(bin->bind_map.surface_count, 32);
1076 }
1077
1078 static inline struct anv_address
1079 get_scratch_address(struct anv_pipeline *pipeline,
1080 gl_shader_stage stage,
1081 const struct anv_shader_bin *bin)
1082 {
1083 return (struct anv_address) {
1084 .bo = anv_scratch_pool_alloc(pipeline->device,
1085 &pipeline->device->scratch_pool,
1086 stage, bin->prog_data->total_scratch),
1087 .offset = 0,
1088 };
1089 }
1090
1091 static inline uint32_t
1092 get_scratch_space(const struct anv_shader_bin *bin)
1093 {
1094 return ffs(bin->prog_data->total_scratch / 2048);
1095 }
1096
1097 static inline uint32_t
1098 get_urb_output_offset()
1099 {
1100 /* Skip the VUE header and position slots */
1101 return 1;
1102 }
1103
1104 static inline uint32_t
1105 get_urb_output_length(const struct anv_shader_bin *bin)
1106 {
1107 const struct brw_vue_prog_data *prog_data =
1108 (const struct brw_vue_prog_data *)bin->prog_data;
1109
1110 return (prog_data->vue_map.num_slots + 1) / 2 - get_urb_output_offset();
1111 }
1112
1113 static void
1114 emit_3dstate_vs(struct anv_pipeline *pipeline)
1115 {
1116 const struct gen_device_info *devinfo = &pipeline->device->info;
1117 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1118 const struct anv_shader_bin *vs_bin =
1119 pipeline->shaders[MESA_SHADER_VERTEX];
1120
1121 assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
1122
1123 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
1124 vs.FunctionEnable = true;
1125 vs.StatisticsEnable = true;
1126 vs.KernelStartPointer = vs_bin->kernel.offset;
1127 #if GEN_GEN >= 8
1128 vs.SIMD8DispatchEnable =
1129 vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
1130 #endif
1131
1132 assert(!vs_prog_data->base.base.use_alt_mode);
1133 vs.SingleVertexDispatch = false;
1134 vs.VectorMaskEnable = false;
1135 vs.SamplerCount = get_sampler_count(vs_bin);
1136 vs.BindingTableEntryCount = get_binding_table_entry_count(vs_bin);
1137 vs.FloatingPointMode = IEEE754;
1138 vs.IllegalOpcodeExceptionEnable = false;
1139 vs.SoftwareExceptionEnable = false;
1140 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
1141 vs.VertexCacheDisable = false;
1142
1143 vs.VertexURBEntryReadLength = vs_prog_data->base.urb_read_length;
1144 vs.VertexURBEntryReadOffset = 0;
1145 vs.DispatchGRFStartRegisterForURBData =
1146 vs_prog_data->base.base.dispatch_grf_start_reg;
1147
1148 #if GEN_GEN >= 8
1149 vs.VertexURBEntryOutputReadOffset = get_urb_output_offset();
1150 vs.VertexURBEntryOutputLength = get_urb_output_length(vs_bin);
1151
1152 vs.UserClipDistanceClipTestEnableBitmask =
1153 vs_prog_data->base.clip_distance_mask;
1154 vs.UserClipDistanceCullTestEnableBitmask =
1155 vs_prog_data->base.cull_distance_mask;
1156 #endif
1157
1158 vs.PerThreadScratchSpace = get_scratch_space(vs_bin);
1159 vs.ScratchSpaceBasePointer =
1160 get_scratch_address(pipeline, MESA_SHADER_VERTEX, vs_bin);
1161 }
1162 }
1163
1164 static void
1165 emit_3dstate_hs_te_ds(struct anv_pipeline *pipeline)
1166 {
1167 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1168 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs);
1169 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te);
1170 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds);
1171 return;
1172 }
1173
1174 const struct gen_device_info *devinfo = &pipeline->device->info;
1175 const struct anv_shader_bin *tcs_bin =
1176 pipeline->shaders[MESA_SHADER_TESS_CTRL];
1177 const struct anv_shader_bin *tes_bin =
1178 pipeline->shaders[MESA_SHADER_TESS_EVAL];
1179
1180 const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
1181 const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
1182
1183 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs) {
1184 hs.FunctionEnable = true;
1185 hs.StatisticsEnable = true;
1186 hs.KernelStartPointer = tcs_bin->kernel.offset;
1187
1188 hs.SamplerCount = get_sampler_count(tcs_bin);
1189 hs.BindingTableEntryCount = get_binding_table_entry_count(tcs_bin);
1190 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
1191 hs.IncludeVertexHandles = true;
1192 hs.InstanceCount = tcs_prog_data->instances - 1;
1193
1194 hs.VertexURBEntryReadLength = 0;
1195 hs.VertexURBEntryReadOffset = 0;
1196 hs.DispatchGRFStartRegisterForURBData =
1197 tcs_prog_data->base.base.dispatch_grf_start_reg;
1198
1199 hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
1200 hs.ScratchSpaceBasePointer =
1201 get_scratch_address(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
1202 }
1203
1204 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te) {
1205 te.Partitioning = tes_prog_data->partitioning;
1206 te.OutputTopology = tes_prog_data->output_topology;
1207 te.TEDomain = tes_prog_data->domain;
1208 te.TEEnable = true;
1209 te.MaximumTessellationFactorOdd = 63.0;
1210 te.MaximumTessellationFactorNotOdd = 64.0;
1211 }
1212
1213 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds) {
1214 ds.FunctionEnable = true;
1215 ds.StatisticsEnable = true;
1216 ds.KernelStartPointer = tes_bin->kernel.offset;
1217
1218 ds.SamplerCount = get_sampler_count(tes_bin);
1219 ds.BindingTableEntryCount = get_binding_table_entry_count(tes_bin);
1220 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
1221
1222 ds.ComputeWCoordinateEnable =
1223 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
1224
1225 ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
1226 ds.PatchURBEntryReadOffset = 0;
1227 ds.DispatchGRFStartRegisterForURBData =
1228 tes_prog_data->base.base.dispatch_grf_start_reg;
1229
1230 #if GEN_GEN >= 8
1231 ds.VertexURBEntryOutputReadOffset = 1;
1232 ds.VertexURBEntryOutputLength =
1233 (tes_prog_data->base.vue_map.num_slots + 1) / 2 - 1;
1234
1235 ds.DispatchMode =
1236 tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
1237 DISPATCH_MODE_SIMD8_SINGLE_PATCH :
1238 DISPATCH_MODE_SIMD4X2;
1239
1240 ds.UserClipDistanceClipTestEnableBitmask =
1241 tes_prog_data->base.clip_distance_mask;
1242 ds.UserClipDistanceCullTestEnableBitmask =
1243 tes_prog_data->base.cull_distance_mask;
1244 #endif
1245
1246 ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
1247 ds.ScratchSpaceBasePointer =
1248 get_scratch_address(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
1249 }
1250 }
1251
1252 static void
1253 emit_3dstate_gs(struct anv_pipeline *pipeline)
1254 {
1255 const struct gen_device_info *devinfo = &pipeline->device->info;
1256 const struct anv_shader_bin *gs_bin =
1257 pipeline->shaders[MESA_SHADER_GEOMETRY];
1258
1259 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
1260 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
1261 return;
1262 }
1263
1264 const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
1265
1266 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
1267 gs.FunctionEnable = true;
1268 gs.StatisticsEnable = true;
1269 gs.KernelStartPointer = gs_bin->kernel.offset;
1270 gs.DispatchMode = gs_prog_data->base.dispatch_mode;
1271
1272 gs.SingleProgramFlow = false;
1273 gs.VectorMaskEnable = false;
1274 gs.SamplerCount = get_sampler_count(gs_bin);
1275 gs.BindingTableEntryCount = get_binding_table_entry_count(gs_bin);
1276 gs.IncludeVertexHandles = gs_prog_data->base.include_vue_handles;
1277 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
1278
1279 if (GEN_GEN == 8) {
1280 /* Broadwell is weird. It needs us to divide by 2. */
1281 gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
1282 } else {
1283 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
1284 }
1285
1286 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
1287 gs.OutputTopology = gs_prog_data->output_topology;
1288 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1289 gs.ControlDataFormat = gs_prog_data->control_data_format;
1290 gs.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords;
1291 gs.InstanceControl = MAX2(gs_prog_data->invocations, 1) - 1;
1292 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1293 gs.ReorderMode = TRAILING;
1294 #else
1295 gs.ReorderEnable = true;
1296 #endif
1297
1298 #if GEN_GEN >= 8
1299 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
1300 gs.StaticOutput = gs_prog_data->static_vertex_count >= 0;
1301 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
1302 gs_prog_data->static_vertex_count : 0;
1303 #endif
1304
1305 gs.VertexURBEntryReadOffset = 0;
1306 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1307 gs.DispatchGRFStartRegisterForURBData =
1308 gs_prog_data->base.base.dispatch_grf_start_reg;
1309
1310 #if GEN_GEN >= 8
1311 gs.VertexURBEntryOutputReadOffset = get_urb_output_offset();
1312 gs.VertexURBEntryOutputLength = get_urb_output_length(gs_bin);
1313
1314 gs.UserClipDistanceClipTestEnableBitmask =
1315 gs_prog_data->base.clip_distance_mask;
1316 gs.UserClipDistanceCullTestEnableBitmask =
1317 gs_prog_data->base.cull_distance_mask;
1318 #endif
1319
1320 gs.PerThreadScratchSpace = get_scratch_space(gs_bin);
1321 gs.ScratchSpaceBasePointer =
1322 get_scratch_address(pipeline, MESA_SHADER_GEOMETRY, gs_bin);
1323 }
1324 }
1325
1326 static inline bool
1327 has_color_buffer_write_enabled(const struct anv_pipeline *pipeline)
1328 {
1329 const struct anv_shader_bin *shader_bin =
1330 pipeline->shaders[MESA_SHADER_FRAGMENT];
1331 if (!shader_bin)
1332 return false;
1333
1334 const struct anv_pipeline_bind_map *bind_map = &shader_bin->bind_map;
1335 for (int i = 0; i < bind_map->surface_count; i++) {
1336 if (bind_map->surface_to_descriptor[i].set !=
1337 ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1338 continue;
1339 if (bind_map->surface_to_descriptor[i].index != UINT8_MAX)
1340 return true;
1341 }
1342
1343 return false;
1344 }
1345
1346 static void
1347 emit_3dstate_wm(struct anv_pipeline *pipeline, struct anv_subpass *subpass,
1348 const VkPipelineMultisampleStateCreateInfo *multisample)
1349 {
1350 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1351
1352 MAYBE_UNUSED uint32_t samples =
1353 multisample ? multisample->rasterizationSamples : 1;
1354
1355 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
1356 wm.StatisticsEnable = true;
1357 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1358 wm.LineAntialiasingRegionWidth = _10pixels;
1359 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1360
1361 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1362 if (wm_prog_data->early_fragment_tests) {
1363 wm.EarlyDepthStencilControl = EDSC_PREPS;
1364 } else if (wm_prog_data->has_side_effects) {
1365 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1366 } else {
1367 wm.EarlyDepthStencilControl = EDSC_NORMAL;
1368 }
1369
1370 wm.BarycentricInterpolationMode =
1371 wm_prog_data->barycentric_interp_modes;
1372
1373 #if GEN_GEN < 8
1374 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1375 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1376 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1377 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1378
1379 /* If the subpass has a depth or stencil self-dependency, then we
1380 * need to force the hardware to do the depth/stencil write *after*
1381 * fragment shader execution. Otherwise, the writes may hit memory
1382 * before we get around to fetching from the input attachment and we
1383 * may get the depth or stencil value from the current draw rather
1384 * than the previous one.
1385 */
1386 wm.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
1387 wm_prog_data->uses_kill;
1388
1389 if (wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
1390 wm_prog_data->has_side_effects ||
1391 wm.PixelShaderKillsPixel ||
1392 has_color_buffer_write_enabled(pipeline))
1393 wm.ThreadDispatchEnable = true;
1394
1395 if (samples > 1) {
1396 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1397 if (wm_prog_data->persample_dispatch) {
1398 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1399 } else {
1400 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1401 }
1402 } else {
1403 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1404 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1405 }
1406 #endif
1407 }
1408 }
1409 }
1410
1411 static inline bool
1412 is_dual_src_blend_factor(VkBlendFactor factor)
1413 {
1414 return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
1415 factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
1416 factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
1417 factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
1418 }
1419
1420 static void
1421 emit_3dstate_ps(struct anv_pipeline *pipeline,
1422 const VkPipelineColorBlendStateCreateInfo *blend)
1423 {
1424 MAYBE_UNUSED const struct gen_device_info *devinfo = &pipeline->device->info;
1425 const struct anv_shader_bin *fs_bin =
1426 pipeline->shaders[MESA_SHADER_FRAGMENT];
1427
1428 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1429 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1430 #if GEN_GEN == 7
1431 /* Even if no fragments are ever dispatched, gen7 hardware hangs if
1432 * we don't at least set the maximum number of threads.
1433 */
1434 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1435 #endif
1436 }
1437 return;
1438 }
1439
1440 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1441
1442 #if GEN_GEN < 8
1443 /* The hardware wedges if you have this bit set but don't turn on any dual
1444 * source blend factors.
1445 */
1446 bool dual_src_blend = false;
1447 if (wm_prog_data->dual_src_blend && blend) {
1448 for (uint32_t i = 0; i < blend->attachmentCount; i++) {
1449 const VkPipelineColorBlendAttachmentState *bstate =
1450 &blend->pAttachments[i];
1451
1452 if (bstate->blendEnable &&
1453 (is_dual_src_blend_factor(bstate->srcColorBlendFactor) ||
1454 is_dual_src_blend_factor(bstate->dstColorBlendFactor) ||
1455 is_dual_src_blend_factor(bstate->srcAlphaBlendFactor) ||
1456 is_dual_src_blend_factor(bstate->dstAlphaBlendFactor))) {
1457 dual_src_blend = true;
1458 break;
1459 }
1460 }
1461 }
1462 #endif
1463
1464 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1465 ps.KernelStartPointer0 = fs_bin->kernel.offset;
1466 ps.KernelStartPointer1 = 0;
1467 ps.KernelStartPointer2 = fs_bin->kernel.offset +
1468 wm_prog_data->prog_offset_2;
1469 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1470 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1471 ps._32PixelDispatchEnable = false;
1472
1473 ps.SingleProgramFlow = false;
1474 ps.VectorMaskEnable = true;
1475 ps.SamplerCount = get_sampler_count(fs_bin);
1476 ps.BindingTableEntryCount = get_binding_table_entry_count(fs_bin);
1477 ps.PushConstantEnable = wm_prog_data->base.nr_params > 0;
1478 ps.PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ?
1479 POSOFFSET_SAMPLE: POSOFFSET_NONE;
1480 #if GEN_GEN < 8
1481 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
1482 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1483 ps.DualSourceBlendEnable = dual_src_blend;
1484 #endif
1485
1486 #if GEN_IS_HASWELL
1487 /* Haswell requires the sample mask to be set in this packet as well
1488 * as in 3DSTATE_SAMPLE_MASK; the values should match.
1489 */
1490 ps.SampleMask = 0xff;
1491 #endif
1492
1493 #if GEN_GEN >= 9
1494 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
1495 #elif GEN_GEN >= 8
1496 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
1497 #else
1498 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1499 #endif
1500
1501 ps.DispatchGRFStartRegisterForConstantSetupData0 =
1502 wm_prog_data->base.dispatch_grf_start_reg;
1503 ps.DispatchGRFStartRegisterForConstantSetupData1 = 0;
1504 ps.DispatchGRFStartRegisterForConstantSetupData2 =
1505 wm_prog_data->dispatch_grf_start_reg_2;
1506
1507 ps.PerThreadScratchSpace = get_scratch_space(fs_bin);
1508 ps.ScratchSpaceBasePointer =
1509 get_scratch_address(pipeline, MESA_SHADER_FRAGMENT, fs_bin);
1510 }
1511 }
1512
1513 #if GEN_GEN >= 8
1514 static void
1515 emit_3dstate_ps_extra(struct anv_pipeline *pipeline,
1516 struct anv_subpass *subpass)
1517 {
1518 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1519
1520 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1521 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps);
1522 return;
1523 }
1524
1525 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
1526 ps.PixelShaderValid = true;
1527 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
1528 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1529 ps.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
1530 ps.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1531 ps.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1532 ps.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1533
1534 /* If the subpass has a depth or stencil self-dependency, then we need
1535 * to force the hardware to do the depth/stencil write *after* fragment
1536 * shader execution. Otherwise, the writes may hit memory before we get
1537 * around to fetching from the input attachment and we may get the depth
1538 * or stencil value from the current draw rather than the previous one.
1539 */
1540 ps.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
1541 wm_prog_data->uses_kill;
1542
1543 /* The stricter cross-primitive coherency guarantees that the hardware
1544 * gives us with the "Accesses UAV" bit set for at least one shader stage
1545 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command are
1546 * redundant within the current image, atomic counter and SSBO GL APIs,
1547 * which all have very loose ordering and coherency requirements and
1548 * generally rely on the application to insert explicit barriers when a
1549 * shader invocation is expected to see the memory writes performed by the
1550 * invocations of some previous primitive. Regardless of the value of
1551 * "UAV coherency required", the "Accesses UAV" bits will implicitly cause
1552 * an in most cases useless DC flush when the lowermost stage with the bit
1553 * set finishes execution.
1554 *
1555 * It would be nice to disable it, but in some cases we can't because on
1556 * Gen8+ it also has an influence on rasterization via the PS UAV-only
1557 * signal (which could be set independently from the coherency mechanism
1558 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
1559 * determine whether the hardware skips execution of the fragment shader
1560 * or not via the ThreadDispatchEnable signal. However if we know that
1561 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
1562 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
1563 * difference so we may just disable it here.
1564 *
1565 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
1566 * take into account KillPixels when no depth or stencil writes are
1567 * enabled. In order for occlusion queries to work correctly with no
1568 * attachments, we need to force-enable here.
1569 */
1570 if ((wm_prog_data->has_side_effects || wm_prog_data->uses_kill) &&
1571 !has_color_buffer_write_enabled(pipeline))
1572 ps.PixelShaderHasUAV = true;
1573
1574 #if GEN_GEN >= 9
1575 ps.PixelShaderPullsBary = wm_prog_data->pulls_bary;
1576 ps.InputCoverageMaskState = wm_prog_data->uses_sample_mask ?
1577 ICMS_INNER_CONSERVATIVE : ICMS_NONE;
1578 #else
1579 ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1580 #endif
1581 }
1582 }
1583
1584 static void
1585 emit_3dstate_vf_topology(struct anv_pipeline *pipeline)
1586 {
1587 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
1588 vft.PrimitiveTopologyType = pipeline->topology;
1589 }
1590 }
1591 #endif
1592
1593 static void
1594 emit_3dstate_vf_statistics(struct anv_pipeline *pipeline)
1595 {
1596 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
1597 vfs.StatisticsEnable = true;
1598 }
1599 }
1600
1601 static void
1602 compute_kill_pixel(struct anv_pipeline *pipeline,
1603 const VkPipelineMultisampleStateCreateInfo *ms_info,
1604 const struct anv_subpass *subpass)
1605 {
1606 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1607 pipeline->kill_pixel = false;
1608 return;
1609 }
1610
1611 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1612
1613 /* This computes the KillPixel portion of the computation for whether or
1614 * not we want to enable the PMA fix on gen8 or gen9. It's given by this
1615 * chunk of the giant formula:
1616 *
1617 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1618 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1619 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1620 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1621 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1622 *
1623 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
1624 * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
1625 * of an alpha test.
1626 */
1627 pipeline->kill_pixel =
1628 subpass->has_ds_self_dep || wm_prog_data->uses_kill ||
1629 wm_prog_data->uses_omask ||
1630 (ms_info && ms_info->alphaToCoverageEnable);
1631 }
1632
1633 static VkResult
1634 genX(graphics_pipeline_create)(
1635 VkDevice _device,
1636 struct anv_pipeline_cache * cache,
1637 const VkGraphicsPipelineCreateInfo* pCreateInfo,
1638 const VkAllocationCallbacks* pAllocator,
1639 VkPipeline* pPipeline)
1640 {
1641 ANV_FROM_HANDLE(anv_device, device, _device);
1642 ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
1643 struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1644 struct anv_pipeline *pipeline;
1645 VkResult result;
1646
1647 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1648
1649 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1650 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1651 if (pipeline == NULL)
1652 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1653
1654 result = anv_pipeline_init(pipeline, device, cache,
1655 pCreateInfo, pAllocator);
1656 if (result != VK_SUCCESS) {
1657 vk_free2(&device->alloc, pAllocator, pipeline);
1658 return result;
1659 }
1660
1661 assert(pCreateInfo->pVertexInputState);
1662 emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
1663 assert(pCreateInfo->pRasterizationState);
1664 emit_rs_state(pipeline, pCreateInfo->pRasterizationState,
1665 pCreateInfo->pMultisampleState, pass, subpass);
1666 emit_ms_state(pipeline, pCreateInfo->pMultisampleState);
1667 emit_ds_state(pipeline, pCreateInfo->pDepthStencilState, pass, subpass);
1668 emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
1669 pCreateInfo->pMultisampleState);
1670 compute_kill_pixel(pipeline, pCreateInfo->pMultisampleState, subpass);
1671
1672 emit_urb_setup(pipeline);
1673
1674 emit_3dstate_clip(pipeline, pCreateInfo->pViewportState,
1675 pCreateInfo->pRasterizationState);
1676 emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);
1677
1678 #if 0
1679 /* From gen7_vs_state.c */
1680
1681 /**
1682 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
1683 * Geometry > Geometry Shader > State:
1684 *
1685 * "Note: Because of corruption in IVB:GT2, software needs to flush the
1686 * whole fixed function pipeline when the GS enable changes value in
1687 * the 3DSTATE_GS."
1688 *
1689 * The hardware architects have clarified that in this context "flush the
1690 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
1691 * Stall" bit set.
1692 */
1693 if (!brw->is_haswell && !brw->is_baytrail)
1694 gen7_emit_vs_workaround_flush(brw);
1695 #endif
1696
1697 emit_3dstate_vs(pipeline);
1698 emit_3dstate_hs_te_ds(pipeline);
1699 emit_3dstate_gs(pipeline);
1700 emit_3dstate_sbe(pipeline);
1701 emit_3dstate_wm(pipeline, subpass, pCreateInfo->pMultisampleState);
1702 emit_3dstate_ps(pipeline, pCreateInfo->pColorBlendState);
1703 #if GEN_GEN >= 8
1704 emit_3dstate_ps_extra(pipeline, subpass);
1705 emit_3dstate_vf_topology(pipeline);
1706 #endif
1707 emit_3dstate_vf_statistics(pipeline);
1708
1709 *pPipeline = anv_pipeline_to_handle(pipeline);
1710
1711 return pipeline->batch.status;
1712 }
1713
1714 static VkResult
1715 compute_pipeline_create(
1716 VkDevice _device,
1717 struct anv_pipeline_cache * cache,
1718 const VkComputePipelineCreateInfo* pCreateInfo,
1719 const VkAllocationCallbacks* pAllocator,
1720 VkPipeline* pPipeline)
1721 {
1722 ANV_FROM_HANDLE(anv_device, device, _device);
1723 const struct anv_physical_device *physical_device =
1724 &device->instance->physicalDevice;
1725 const struct gen_device_info *devinfo = &physical_device->info;
1726 struct anv_pipeline *pipeline;
1727 VkResult result;
1728
1729 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
1730
1731 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1732 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1733 if (pipeline == NULL)
1734 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1735
1736 pipeline->device = device;
1737 pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
1738
1739 pipeline->blend_state.map = NULL;
1740
1741 result = anv_reloc_list_init(&pipeline->batch_relocs,
1742 pAllocator ? pAllocator : &device->alloc);
1743 if (result != VK_SUCCESS) {
1744 vk_free2(&device->alloc, pAllocator, pipeline);
1745 return result;
1746 }
1747 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1748 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1749 pipeline->batch.relocs = &pipeline->batch_relocs;
1750 pipeline->batch.status = VK_SUCCESS;
1751
1752 /* When we free the pipeline, we detect stages based on the NULL status
1753 * of various prog_data pointers. Make them NULL by default.
1754 */
1755 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1756
1757 pipeline->active_stages = 0;
1758
1759 pipeline->needs_data_cache = false;
1760
1761 assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
1762 ANV_FROM_HANDLE(anv_shader_module, module, pCreateInfo->stage.module);
1763 result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
1764 pCreateInfo->stage.pName,
1765 pCreateInfo->stage.pSpecializationInfo);
1766 if (result != VK_SUCCESS) {
1767 vk_free2(&device->alloc, pAllocator, pipeline);
1768 return result;
1769 }
1770
1771 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
1772
1773 anv_pipeline_setup_l3_config(pipeline, cs_prog_data->base.total_shared > 0);
1774
1775 uint32_t group_size = cs_prog_data->local_size[0] *
1776 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
1777 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
1778
1779 if (remainder > 0)
1780 pipeline->cs_right_mask = ~0u >> (32 - remainder);
1781 else
1782 pipeline->cs_right_mask = ~0u >> (32 - cs_prog_data->simd_size);
1783
1784 const uint32_t vfe_curbe_allocation =
1785 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
1786 cs_prog_data->push.cross_thread.regs, 2);
1787
1788 const uint32_t subslices = MAX2(physical_device->subslice_total, 1);
1789
1790 const struct anv_shader_bin *cs_bin =
1791 pipeline->shaders[MESA_SHADER_COMPUTE];
1792
1793 anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE), vfe) {
1794 #if GEN_GEN > 7
1795 vfe.StackSize = 0;
1796 #else
1797 vfe.GPGPUMode = true;
1798 #endif
1799 vfe.MaximumNumberofThreads =
1800 devinfo->max_cs_threads * subslices - 1;
1801 vfe.NumberofURBEntries = GEN_GEN <= 7 ? 0 : 2;
1802 vfe.ResetGatewayTimer = true;
1803 #if GEN_GEN <= 8
1804 vfe.BypassGatewayControl = true;
1805 #endif
1806 vfe.URBEntryAllocationSize = GEN_GEN <= 7 ? 0 : 2;
1807 vfe.CURBEAllocationSize = vfe_curbe_allocation;
1808
1809 vfe.PerThreadScratchSpace = get_scratch_space(cs_bin);
1810 vfe.ScratchSpaceBasePointer =
1811 get_scratch_address(pipeline, MESA_SHADER_COMPUTE, cs_bin);
1812 }
1813
1814 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
1815 .KernelStartPointer = cs_bin->kernel.offset,
1816
1817 .SamplerCount = get_sampler_count(cs_bin),
1818 .BindingTableEntryCount = get_binding_table_entry_count(cs_bin),
1819 .BarrierEnable = cs_prog_data->uses_barrier,
1820 .SharedLocalMemorySize =
1821 encode_slm_size(GEN_GEN, cs_prog_data->base.total_shared),
1822
1823 #if !GEN_IS_HASWELL
1824 .ConstantURBEntryReadOffset = 0,
1825 #endif
1826 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
1827 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1828 .CrossThreadConstantDataReadLength =
1829 cs_prog_data->push.cross_thread.regs,
1830 #endif
1831
1832 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
1833 };
1834 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
1835 pipeline->interface_descriptor_data,
1836 &desc);
1837
1838 *pPipeline = anv_pipeline_to_handle(pipeline);
1839
1840 return pipeline->batch.status;
1841 }
1842
1843 VkResult genX(CreateGraphicsPipelines)(
1844 VkDevice _device,
1845 VkPipelineCache pipelineCache,
1846 uint32_t count,
1847 const VkGraphicsPipelineCreateInfo* pCreateInfos,
1848 const VkAllocationCallbacks* pAllocator,
1849 VkPipeline* pPipelines)
1850 {
1851 ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
1852
1853 VkResult result = VK_SUCCESS;
1854
1855 unsigned i;
1856 for (i = 0; i < count; i++) {
1857 result = genX(graphics_pipeline_create)(_device,
1858 pipeline_cache,
1859 &pCreateInfos[i],
1860 pAllocator, &pPipelines[i]);
1861
1862 /* Bail out on the first error as it is not obvious what error should be
1863 * report upon 2 different failures. */
1864 if (result != VK_SUCCESS)
1865 break;
1866 }
1867
1868 for (; i < count; i++)
1869 pPipelines[i] = VK_NULL_HANDLE;
1870
1871 return result;
1872 }
1873
1874 VkResult genX(CreateComputePipelines)(
1875 VkDevice _device,
1876 VkPipelineCache pipelineCache,
1877 uint32_t count,
1878 const VkComputePipelineCreateInfo* pCreateInfos,
1879 const VkAllocationCallbacks* pAllocator,
1880 VkPipeline* pPipelines)
1881 {
1882 ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
1883
1884 VkResult result = VK_SUCCESS;
1885
1886 unsigned i;
1887 for (i = 0; i < count; i++) {
1888 result = compute_pipeline_create(_device, pipeline_cache,
1889 &pCreateInfos[i],
1890 pAllocator, &pPipelines[i]);
1891
1892 /* Bail out on the first error as it is not obvious what error should be
1893 * report upon 2 different failures. */
1894 if (result != VK_SUCCESS)
1895 break;
1896 }
1897
1898 for (; i < count; i++)
1899 pPipelines[i] = VK_NULL_HANDLE;
1900
1901 return result;
1902 }