anv/query: Add an emit_srm helper
[mesa.git] / src / intel / vulkan / genX_query.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 VkResult genX(CreateQueryPool)(
36 VkDevice _device,
37 const VkQueryPoolCreateInfo* pCreateInfo,
38 const VkAllocationCallbacks* pAllocator,
39 VkQueryPool* pQueryPool)
40 {
41 ANV_FROM_HANDLE(anv_device, device, _device);
42 const struct anv_physical_device *pdevice = &device->instance->physicalDevice;
43 struct anv_query_pool *pool;
44 VkResult result;
45
46 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO);
47
48 /* Query pool slots are made up of some number of 64-bit values packed
49 * tightly together. The first 64-bit value is always the "available" bit
50 * which is 0 when the query is unavailable and 1 when it is available.
51 * The 64-bit values that follow are determined by the type of query.
52 */
53 uint32_t uint64s_per_slot = 1;
54
55 VkQueryPipelineStatisticFlags pipeline_statistics = 0;
56 switch (pCreateInfo->queryType) {
57 case VK_QUERY_TYPE_OCCLUSION:
58 /* Occlusion queries have two values: begin and end. */
59 uint64s_per_slot += 2;
60 break;
61 case VK_QUERY_TYPE_TIMESTAMP:
62 /* Timestamps just have the one timestamp value */
63 uint64s_per_slot += 1;
64 break;
65 case VK_QUERY_TYPE_PIPELINE_STATISTICS:
66 pipeline_statistics = pCreateInfo->pipelineStatistics;
67 /* We're going to trust this field implicitly so we need to ensure that
68 * no unhandled extension bits leak in.
69 */
70 pipeline_statistics &= ANV_PIPELINE_STATISTICS_MASK;
71
72 /* Statistics queries have a min and max for every statistic */
73 uint64s_per_slot += 2 * util_bitcount(pipeline_statistics);
74 break;
75 default:
76 assert(!"Invalid query type");
77 }
78
79 pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
80 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
81 if (pool == NULL)
82 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
83
84 pool->type = pCreateInfo->queryType;
85 pool->pipeline_statistics = pipeline_statistics;
86 pool->stride = uint64s_per_slot * sizeof(uint64_t);
87 pool->slots = pCreateInfo->queryCount;
88
89 uint64_t size = pool->slots * pool->stride;
90 result = anv_bo_init_new(&pool->bo, device, size);
91 if (result != VK_SUCCESS)
92 goto fail;
93
94 if (pdevice->supports_48bit_addresses)
95 pool->bo.flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
96
97 if (pdevice->use_softpin)
98 pool->bo.flags |= EXEC_OBJECT_PINNED;
99
100 if (pdevice->has_exec_async)
101 pool->bo.flags |= EXEC_OBJECT_ASYNC;
102
103 anv_vma_alloc(device, &pool->bo);
104
105 /* For query pools, we set the caching mode to I915_CACHING_CACHED. On LLC
106 * platforms, this does nothing. On non-LLC platforms, this means snooping
107 * which comes at a slight cost. However, the buffers aren't big, won't be
108 * written frequently, and trying to handle the flushing manually without
109 * doing too much flushing is extremely painful.
110 */
111 anv_gem_set_caching(device, pool->bo.gem_handle, I915_CACHING_CACHED);
112
113 pool->bo.map = anv_gem_mmap(device, pool->bo.gem_handle, 0, size, 0);
114
115 *pQueryPool = anv_query_pool_to_handle(pool);
116
117 return VK_SUCCESS;
118
119 fail:
120 vk_free2(&device->alloc, pAllocator, pool);
121
122 return result;
123 }
124
125 void genX(DestroyQueryPool)(
126 VkDevice _device,
127 VkQueryPool _pool,
128 const VkAllocationCallbacks* pAllocator)
129 {
130 ANV_FROM_HANDLE(anv_device, device, _device);
131 ANV_FROM_HANDLE(anv_query_pool, pool, _pool);
132
133 if (!pool)
134 return;
135
136 anv_gem_munmap(pool->bo.map, pool->bo.size);
137 anv_vma_free(device, &pool->bo);
138 anv_gem_close(device, pool->bo.gem_handle);
139 vk_free2(&device->alloc, pAllocator, pool);
140 }
141
142 static struct anv_address
143 anv_query_address(struct anv_query_pool *pool, uint32_t query)
144 {
145 return (struct anv_address) {
146 .bo = &pool->bo,
147 .offset = query * pool->stride,
148 };
149 }
150
151 static void
152 cpu_write_query_result(void *dst_slot, VkQueryResultFlags flags,
153 uint32_t value_index, uint64_t result)
154 {
155 if (flags & VK_QUERY_RESULT_64_BIT) {
156 uint64_t *dst64 = dst_slot;
157 dst64[value_index] = result;
158 } else {
159 uint32_t *dst32 = dst_slot;
160 dst32[value_index] = result;
161 }
162 }
163
164 static bool
165 query_is_available(uint64_t *slot)
166 {
167 return *(volatile uint64_t *)slot;
168 }
169
170 static VkResult
171 wait_for_available(struct anv_device *device,
172 struct anv_query_pool *pool, uint64_t *slot)
173 {
174 while (true) {
175 if (query_is_available(slot))
176 return VK_SUCCESS;
177
178 int ret = anv_gem_busy(device, pool->bo.gem_handle);
179 if (ret == 1) {
180 /* The BO is still busy, keep waiting. */
181 continue;
182 } else if (ret == -1) {
183 /* We don't know the real error. */
184 device->lost = true;
185 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
186 "gem wait failed: %m");
187 } else {
188 assert(ret == 0);
189 /* The BO is no longer busy. */
190 if (query_is_available(slot)) {
191 return VK_SUCCESS;
192 } else {
193 VkResult status = anv_device_query_status(device);
194 if (status != VK_SUCCESS)
195 return status;
196
197 /* If we haven't seen availability yet, then we never will. This
198 * can only happen if we have a client error where they call
199 * GetQueryPoolResults on a query that they haven't submitted to
200 * the GPU yet. The spec allows us to do anything in this case,
201 * but returning VK_SUCCESS doesn't seem right and we shouldn't
202 * just keep spinning.
203 */
204 return VK_NOT_READY;
205 }
206 }
207 }
208 }
209
210 VkResult genX(GetQueryPoolResults)(
211 VkDevice _device,
212 VkQueryPool queryPool,
213 uint32_t firstQuery,
214 uint32_t queryCount,
215 size_t dataSize,
216 void* pData,
217 VkDeviceSize stride,
218 VkQueryResultFlags flags)
219 {
220 ANV_FROM_HANDLE(anv_device, device, _device);
221 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
222
223 assert(pool->type == VK_QUERY_TYPE_OCCLUSION ||
224 pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS ||
225 pool->type == VK_QUERY_TYPE_TIMESTAMP);
226
227 if (unlikely(device->lost))
228 return VK_ERROR_DEVICE_LOST;
229
230 if (pData == NULL)
231 return VK_SUCCESS;
232
233 void *data_end = pData + dataSize;
234
235 VkResult status = VK_SUCCESS;
236 for (uint32_t i = 0; i < queryCount; i++) {
237 uint64_t *slot = pool->bo.map + (firstQuery + i) * pool->stride;
238
239 /* Availability is always at the start of the slot */
240 bool available = slot[0];
241
242 if (!available && (flags & VK_QUERY_RESULT_WAIT_BIT)) {
243 status = wait_for_available(device, pool, slot);
244 if (status != VK_SUCCESS)
245 return status;
246
247 available = true;
248 }
249
250 /* From the Vulkan 1.0.42 spec:
251 *
252 * "If VK_QUERY_RESULT_WAIT_BIT and VK_QUERY_RESULT_PARTIAL_BIT are
253 * both not set then no result values are written to pData for
254 * queries that are in the unavailable state at the time of the call,
255 * and vkGetQueryPoolResults returns VK_NOT_READY. However,
256 * availability state is still written to pData for those queries if
257 * VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set."
258 */
259 bool write_results = available || (flags & VK_QUERY_RESULT_PARTIAL_BIT);
260
261 uint32_t idx = 0;
262 switch (pool->type) {
263 case VK_QUERY_TYPE_OCCLUSION:
264 if (write_results)
265 cpu_write_query_result(pData, flags, idx, slot[2] - slot[1]);
266 idx++;
267 break;
268
269 case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
270 uint32_t statistics = pool->pipeline_statistics;
271 while (statistics) {
272 uint32_t stat = u_bit_scan(&statistics);
273 if (write_results) {
274 uint64_t result = slot[idx * 2 + 2] - slot[idx * 2 + 1];
275
276 /* WaDividePSInvocationCountBy4:HSW,BDW */
277 if ((device->info.gen == 8 || device->info.is_haswell) &&
278 (1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT)
279 result >>= 2;
280
281 cpu_write_query_result(pData, flags, idx, result);
282 }
283 idx++;
284 }
285 assert(idx == util_bitcount(pool->pipeline_statistics));
286 break;
287 }
288
289 case VK_QUERY_TYPE_TIMESTAMP:
290 if (write_results)
291 cpu_write_query_result(pData, flags, idx, slot[1]);
292 idx++;
293 break;
294
295 default:
296 unreachable("invalid pool type");
297 }
298
299 if (!write_results)
300 status = VK_NOT_READY;
301
302 if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT)
303 cpu_write_query_result(pData, flags, idx, available);
304
305 pData += stride;
306 if (pData >= data_end)
307 break;
308 }
309
310 return status;
311 }
312
313 static void
314 emit_srm32(struct anv_batch *batch, struct anv_address addr, uint32_t reg)
315 {
316 anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
317 srm.MemoryAddress = addr;
318 srm.RegisterAddress = reg;
319 }
320 }
321
322 static void
323 emit_srm64(struct anv_batch *batch, struct anv_address addr, uint32_t reg)
324 {
325 emit_srm32(batch, anv_address_add(addr, 0), reg + 0);
326 emit_srm32(batch, anv_address_add(addr, 4), reg + 4);
327 }
328
329 static void
330 emit_ps_depth_count(struct anv_cmd_buffer *cmd_buffer,
331 struct anv_address addr)
332 {
333 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
334 pc.DestinationAddressType = DAT_PPGTT;
335 pc.PostSyncOperation = WritePSDepthCount;
336 pc.DepthStallEnable = true;
337 pc.Address = addr;
338
339 if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
340 pc.CommandStreamerStallEnable = true;
341 }
342 }
343
344 static void
345 emit_query_availability(struct anv_cmd_buffer *cmd_buffer,
346 struct anv_address addr)
347 {
348 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
349 pc.DestinationAddressType = DAT_PPGTT;
350 pc.PostSyncOperation = WriteImmediateData;
351 pc.Address = addr;
352 pc.ImmediateData = 1;
353 }
354 }
355
356 /**
357 * Goes through a series of consecutive query indices in the given pool
358 * setting all element values to 0 and emitting them as available.
359 */
360 static void
361 emit_zero_queries(struct anv_cmd_buffer *cmd_buffer,
362 struct anv_query_pool *pool,
363 uint32_t first_index, uint32_t num_queries)
364 {
365 for (uint32_t i = 0; i < num_queries; i++) {
366 struct anv_address slot_addr =
367 anv_query_address(pool, first_index + i);
368 genX(cmd_buffer_mi_memset)(cmd_buffer, anv_address_add(slot_addr, 8),
369 0, pool->stride - 8);
370 emit_query_availability(cmd_buffer, slot_addr);
371 }
372 }
373
374 void genX(CmdResetQueryPool)(
375 VkCommandBuffer commandBuffer,
376 VkQueryPool queryPool,
377 uint32_t firstQuery,
378 uint32_t queryCount)
379 {
380 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
381 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
382
383 for (uint32_t i = 0; i < queryCount; i++) {
384 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdm) {
385 sdm.Address = anv_query_address(pool, firstQuery + i);
386 sdm.ImmediateData = 0;
387 }
388 }
389 }
390
391 static const uint32_t vk_pipeline_stat_to_reg[] = {
392 GENX(IA_VERTICES_COUNT_num),
393 GENX(IA_PRIMITIVES_COUNT_num),
394 GENX(VS_INVOCATION_COUNT_num),
395 GENX(GS_INVOCATION_COUNT_num),
396 GENX(GS_PRIMITIVES_COUNT_num),
397 GENX(CL_INVOCATION_COUNT_num),
398 GENX(CL_PRIMITIVES_COUNT_num),
399 GENX(PS_INVOCATION_COUNT_num),
400 GENX(HS_INVOCATION_COUNT_num),
401 GENX(DS_INVOCATION_COUNT_num),
402 GENX(CS_INVOCATION_COUNT_num),
403 };
404
405 static void
406 emit_pipeline_stat(struct anv_cmd_buffer *cmd_buffer, uint32_t stat,
407 struct anv_address addr)
408 {
409 STATIC_ASSERT(ANV_PIPELINE_STATISTICS_MASK ==
410 (1 << ARRAY_SIZE(vk_pipeline_stat_to_reg)) - 1);
411
412 assert(stat < ARRAY_SIZE(vk_pipeline_stat_to_reg));
413 emit_srm64(&cmd_buffer->batch, addr, vk_pipeline_stat_to_reg[stat]);
414 }
415
416 void genX(CmdBeginQuery)(
417 VkCommandBuffer commandBuffer,
418 VkQueryPool queryPool,
419 uint32_t query,
420 VkQueryControlFlags flags)
421 {
422 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
423 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
424 struct anv_address query_addr = anv_query_address(pool, query);
425
426 switch (pool->type) {
427 case VK_QUERY_TYPE_OCCLUSION:
428 emit_ps_depth_count(cmd_buffer, anv_address_add(query_addr, 8));
429 break;
430
431 case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
432 /* TODO: This might only be necessary for certain stats */
433 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
434 pc.CommandStreamerStallEnable = true;
435 pc.StallAtPixelScoreboard = true;
436 }
437
438 uint32_t statistics = pool->pipeline_statistics;
439 uint32_t offset = 8;
440 while (statistics) {
441 uint32_t stat = u_bit_scan(&statistics);
442 emit_pipeline_stat(cmd_buffer, stat,
443 anv_address_add(query_addr, offset));
444 offset += 16;
445 }
446 break;
447 }
448
449 default:
450 unreachable("");
451 }
452 }
453
454 void genX(CmdEndQuery)(
455 VkCommandBuffer commandBuffer,
456 VkQueryPool queryPool,
457 uint32_t query)
458 {
459 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
460 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
461 struct anv_address query_addr = anv_query_address(pool, query);
462
463 switch (pool->type) {
464 case VK_QUERY_TYPE_OCCLUSION:
465 emit_ps_depth_count(cmd_buffer, anv_address_add(query_addr, 16));
466 emit_query_availability(cmd_buffer, query_addr);
467 break;
468
469 case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
470 /* TODO: This might only be necessary for certain stats */
471 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
472 pc.CommandStreamerStallEnable = true;
473 pc.StallAtPixelScoreboard = true;
474 }
475
476 uint32_t statistics = pool->pipeline_statistics;
477 uint32_t offset = 16;
478 while (statistics) {
479 uint32_t stat = u_bit_scan(&statistics);
480 emit_pipeline_stat(cmd_buffer, stat,
481 anv_address_add(query_addr, offset));
482 offset += 16;
483 }
484
485 emit_query_availability(cmd_buffer, query_addr);
486 break;
487 }
488
489 default:
490 unreachable("");
491 }
492
493 /* When multiview is active the spec requires that N consecutive query
494 * indices are used, where N is the number of active views in the subpass.
495 * The spec allows that we only write the results to one of the queries
496 * but we still need to manage result availability for all the query indices.
497 * Since we only emit a single query for all active views in the
498 * first index, mark the other query indices as being already available
499 * with result 0.
500 */
501 if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
502 const uint32_t num_queries =
503 util_bitcount(cmd_buffer->state.subpass->view_mask);
504 if (num_queries > 1)
505 emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1);
506 }
507 }
508
509 #define TIMESTAMP 0x2358
510
511 void genX(CmdWriteTimestamp)(
512 VkCommandBuffer commandBuffer,
513 VkPipelineStageFlagBits pipelineStage,
514 VkQueryPool queryPool,
515 uint32_t query)
516 {
517 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
518 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
519 struct anv_address query_addr = anv_query_address(pool, query);
520
521 assert(pool->type == VK_QUERY_TYPE_TIMESTAMP);
522
523 switch (pipelineStage) {
524 case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
525 emit_srm64(&cmd_buffer->batch, anv_address_add(query_addr, 8), TIMESTAMP);
526 break;
527
528 default:
529 /* Everything else is bottom-of-pipe */
530 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
531 pc.DestinationAddressType = DAT_PPGTT;
532 pc.PostSyncOperation = WriteTimestamp;
533 pc.Address = anv_address_add(query_addr, 8);
534
535 if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
536 pc.CommandStreamerStallEnable = true;
537 }
538 break;
539 }
540
541 emit_query_availability(cmd_buffer, query_addr);
542
543 /* When multiview is active the spec requires that N consecutive query
544 * indices are used, where N is the number of active views in the subpass.
545 * The spec allows that we only write the results to one of the queries
546 * but we still need to manage result availability for all the query indices.
547 * Since we only emit a single query for all active views in the
548 * first index, mark the other query indices as being already available
549 * with result 0.
550 */
551 if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
552 const uint32_t num_queries =
553 util_bitcount(cmd_buffer->state.subpass->view_mask);
554 if (num_queries > 1)
555 emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1);
556 }
557 }
558
559 #if GEN_GEN > 7 || GEN_IS_HASWELL
560
561 static uint32_t
562 mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
563 {
564 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
565 .ALUOpcode = opcode,
566 .Operand1 = operand1,
567 .Operand2 = operand2,
568 };
569
570 uint32_t dw;
571 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
572
573 return dw;
574 }
575
576 #define CS_GPR(n) (0x2600 + (n) * 8)
577
578 static void
579 emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
580 struct anv_address addr)
581 {
582 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
583 lrm.RegisterAddress = reg;
584 lrm.MemoryAddress = anv_address_add(addr, 0);
585 }
586 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
587 lrm.RegisterAddress = reg + 4;
588 lrm.MemoryAddress = anv_address_add(addr, 4);
589 }
590 }
591
592 static void
593 emit_load_alu_reg_imm32(struct anv_batch *batch, uint32_t reg, uint32_t imm)
594 {
595 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
596 lri.RegisterOffset = reg;
597 lri.DataDWord = imm;
598 }
599 }
600
601 static void
602 emit_load_alu_reg_imm64(struct anv_batch *batch, uint32_t reg, uint64_t imm)
603 {
604 emit_load_alu_reg_imm32(batch, reg, (uint32_t)imm);
605 emit_load_alu_reg_imm32(batch, reg + 4, (uint32_t)(imm >> 32));
606 }
607
608 static void
609 emit_load_alu_reg_reg32(struct anv_batch *batch, uint32_t src, uint32_t dst)
610 {
611 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
612 lrr.SourceRegisterAddress = src;
613 lrr.DestinationRegisterAddress = dst;
614 }
615 }
616
617 /*
618 * GPR0 = GPR0 & ((1ull << n) - 1);
619 */
620 static void
621 keep_gpr0_lower_n_bits(struct anv_batch *batch, uint32_t n)
622 {
623 assert(n < 64);
624 emit_load_alu_reg_imm64(batch, CS_GPR(1), (1ull << n) - 1);
625
626 uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
627 if (!dw) {
628 anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
629 return;
630 }
631
632 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
633 dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
634 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
635 dw[4] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU);
636 }
637
638 /*
639 * GPR0 = GPR0 << 30;
640 */
641 static void
642 shl_gpr0_by_30_bits(struct anv_batch *batch)
643 {
644 /* First we mask 34 bits of GPR0 to prevent overflow */
645 keep_gpr0_lower_n_bits(batch, 34);
646
647 const uint32_t outer_count = 5;
648 const uint32_t inner_count = 6;
649 STATIC_ASSERT(outer_count * inner_count == 30);
650 const uint32_t cmd_len = 1 + inner_count * 4;
651
652 /* We'll emit 5 commands, each shifting GPR0 left by 6 bits, for a total of
653 * 30 left shifts.
654 */
655 for (int o = 0; o < outer_count; o++) {
656 /* Submit one MI_MATH to shift left by 6 bits */
657 uint32_t *dw = anv_batch_emitn(batch, cmd_len, GENX(MI_MATH));
658 if (!dw) {
659 anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
660 return;
661 }
662
663 dw++;
664 for (int i = 0; i < inner_count; i++, dw += 4) {
665 dw[0] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
666 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
667 dw[2] = mi_alu(MI_ALU_ADD, 0, 0);
668 dw[3] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU);
669 }
670 }
671 }
672
673 /*
674 * GPR0 = GPR0 >> 2;
675 *
676 * Note that the upper 30 bits of GPR are lost!
677 */
678 static void
679 shr_gpr0_by_2_bits(struct anv_batch *batch)
680 {
681 shl_gpr0_by_30_bits(batch);
682 emit_load_alu_reg_reg32(batch, CS_GPR(0) + 4, CS_GPR(0));
683 emit_load_alu_reg_imm32(batch, CS_GPR(0) + 4, 0);
684 }
685
686 static void
687 gpu_write_query_result(struct anv_batch *batch,
688 struct anv_address dst_addr,
689 VkQueryResultFlags flags,
690 uint32_t value_index, uint32_t reg)
691 {
692 if (flags & VK_QUERY_RESULT_64_BIT) {
693 emit_srm64(batch, anv_address_add(dst_addr, value_index * 8), reg);
694 } else {
695 emit_srm32(batch, anv_address_add(dst_addr, value_index * 4), reg);
696 }
697 }
698
699 static void
700 compute_query_result(struct anv_batch *batch, uint32_t dst_reg,
701 struct anv_address addr)
702 {
703 emit_load_alu_reg_u64(batch, CS_GPR(0), anv_address_add(addr, 0));
704 emit_load_alu_reg_u64(batch, CS_GPR(1), anv_address_add(addr, 8));
705
706 /* FIXME: We need to clamp the result for 32 bit. */
707
708 uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
709 if (!dw) {
710 anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
711 return;
712 }
713
714 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG1);
715 dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
716 dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
717 dw[4] = mi_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
718 }
719
720 void genX(CmdCopyQueryPoolResults)(
721 VkCommandBuffer commandBuffer,
722 VkQueryPool queryPool,
723 uint32_t firstQuery,
724 uint32_t queryCount,
725 VkBuffer destBuffer,
726 VkDeviceSize destOffset,
727 VkDeviceSize destStride,
728 VkQueryResultFlags flags)
729 {
730 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
731 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
732 ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
733
734 if (flags & VK_QUERY_RESULT_WAIT_BIT) {
735 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
736 pc.CommandStreamerStallEnable = true;
737 pc.StallAtPixelScoreboard = true;
738 }
739 }
740
741 struct anv_address dest_addr = anv_address_add(buffer->address, destOffset);
742 for (uint32_t i = 0; i < queryCount; i++) {
743 struct anv_address query_addr = anv_query_address(pool, firstQuery + i);
744 uint32_t idx = 0;
745 switch (pool->type) {
746 case VK_QUERY_TYPE_OCCLUSION:
747 compute_query_result(&cmd_buffer->batch, MI_ALU_REG2,
748 anv_address_add(query_addr, 8));
749 gpu_write_query_result(&cmd_buffer->batch, dest_addr,
750 flags, idx++, CS_GPR(2));
751 break;
752
753 case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
754 uint32_t statistics = pool->pipeline_statistics;
755 while (statistics) {
756 uint32_t stat = u_bit_scan(&statistics);
757
758 compute_query_result(&cmd_buffer->batch, MI_ALU_REG0,
759 anv_address_add(query_addr, idx * 16 + 8));
760
761 /* WaDividePSInvocationCountBy4:HSW,BDW */
762 if ((cmd_buffer->device->info.gen == 8 ||
763 cmd_buffer->device->info.is_haswell) &&
764 (1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT) {
765 shr_gpr0_by_2_bits(&cmd_buffer->batch);
766 }
767
768 gpu_write_query_result(&cmd_buffer->batch, dest_addr,
769 flags, idx++, CS_GPR(0));
770 }
771 assert(idx == util_bitcount(pool->pipeline_statistics));
772 break;
773 }
774
775 case VK_QUERY_TYPE_TIMESTAMP:
776 emit_load_alu_reg_u64(&cmd_buffer->batch,
777 CS_GPR(2), anv_address_add(query_addr, 8));
778 gpu_write_query_result(&cmd_buffer->batch, dest_addr,
779 flags, 0, CS_GPR(2));
780 break;
781
782 default:
783 unreachable("unhandled query type");
784 }
785
786 if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
787 emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0), query_addr);
788 gpu_write_query_result(&cmd_buffer->batch, dest_addr,
789 flags, idx, CS_GPR(0));
790 }
791
792 dest_addr = anv_address_add(dest_addr, destStride);
793 }
794 }
795
796 #else
797 void genX(CmdCopyQueryPoolResults)(
798 VkCommandBuffer commandBuffer,
799 VkQueryPool queryPool,
800 uint32_t firstQuery,
801 uint32_t queryCount,
802 VkBuffer destBuffer,
803 VkDeviceSize destOffset,
804 VkDeviceSize destStride,
805 VkQueryResultFlags flags)
806 {
807 anv_finishme("Queries not yet supported on Ivy Bridge");
808 }
809 #endif