anv: narrow flushing of the render target to buffer writes
[mesa.git] / src / intel / vulkan / genX_query.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 VkResult genX(CreateQueryPool)(
36 VkDevice _device,
37 const VkQueryPoolCreateInfo* pCreateInfo,
38 const VkAllocationCallbacks* pAllocator,
39 VkQueryPool* pQueryPool)
40 {
41 ANV_FROM_HANDLE(anv_device, device, _device);
42 const struct anv_physical_device *pdevice = &device->instance->physicalDevice;
43 struct anv_query_pool *pool;
44 VkResult result;
45
46 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO);
47
48 /* Query pool slots are made up of some number of 64-bit values packed
49 * tightly together. The first 64-bit value is always the "available" bit
50 * which is 0 when the query is unavailable and 1 when it is available.
51 * The 64-bit values that follow are determined by the type of query.
52 */
53 uint32_t uint64s_per_slot = 1;
54
55 VkQueryPipelineStatisticFlags pipeline_statistics = 0;
56 switch (pCreateInfo->queryType) {
57 case VK_QUERY_TYPE_OCCLUSION:
58 /* Occlusion queries have two values: begin and end. */
59 uint64s_per_slot += 2;
60 break;
61 case VK_QUERY_TYPE_TIMESTAMP:
62 /* Timestamps just have the one timestamp value */
63 uint64s_per_slot += 1;
64 break;
65 case VK_QUERY_TYPE_PIPELINE_STATISTICS:
66 pipeline_statistics = pCreateInfo->pipelineStatistics;
67 /* We're going to trust this field implicitly so we need to ensure that
68 * no unhandled extension bits leak in.
69 */
70 pipeline_statistics &= ANV_PIPELINE_STATISTICS_MASK;
71
72 /* Statistics queries have a min and max for every statistic */
73 uint64s_per_slot += 2 * util_bitcount(pipeline_statistics);
74 break;
75 default:
76 assert(!"Invalid query type");
77 }
78
79 pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
80 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
81 if (pool == NULL)
82 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
83
84 pool->type = pCreateInfo->queryType;
85 pool->pipeline_statistics = pipeline_statistics;
86 pool->stride = uint64s_per_slot * sizeof(uint64_t);
87 pool->slots = pCreateInfo->queryCount;
88
89 uint64_t size = pool->slots * pool->stride;
90 result = anv_bo_init_new(&pool->bo, device, size);
91 if (result != VK_SUCCESS)
92 goto fail;
93
94 if (pdevice->supports_48bit_addresses)
95 pool->bo.flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
96
97 if (pdevice->use_softpin)
98 pool->bo.flags |= EXEC_OBJECT_PINNED;
99
100 if (pdevice->has_exec_async)
101 pool->bo.flags |= EXEC_OBJECT_ASYNC;
102
103 anv_vma_alloc(device, &pool->bo);
104
105 /* For query pools, we set the caching mode to I915_CACHING_CACHED. On LLC
106 * platforms, this does nothing. On non-LLC platforms, this means snooping
107 * which comes at a slight cost. However, the buffers aren't big, won't be
108 * written frequently, and trying to handle the flushing manually without
109 * doing too much flushing is extremely painful.
110 */
111 anv_gem_set_caching(device, pool->bo.gem_handle, I915_CACHING_CACHED);
112
113 pool->bo.map = anv_gem_mmap(device, pool->bo.gem_handle, 0, size, 0);
114
115 *pQueryPool = anv_query_pool_to_handle(pool);
116
117 return VK_SUCCESS;
118
119 fail:
120 vk_free2(&device->alloc, pAllocator, pool);
121
122 return result;
123 }
124
125 void genX(DestroyQueryPool)(
126 VkDevice _device,
127 VkQueryPool _pool,
128 const VkAllocationCallbacks* pAllocator)
129 {
130 ANV_FROM_HANDLE(anv_device, device, _device);
131 ANV_FROM_HANDLE(anv_query_pool, pool, _pool);
132
133 if (!pool)
134 return;
135
136 anv_gem_munmap(pool->bo.map, pool->bo.size);
137 anv_vma_free(device, &pool->bo);
138 anv_gem_close(device, pool->bo.gem_handle);
139 vk_free2(&device->alloc, pAllocator, pool);
140 }
141
142 static struct anv_address
143 anv_query_address(struct anv_query_pool *pool, uint32_t query)
144 {
145 return (struct anv_address) {
146 .bo = &pool->bo,
147 .offset = query * pool->stride,
148 };
149 }
150
151 static void
152 cpu_write_query_result(void *dst_slot, VkQueryResultFlags flags,
153 uint32_t value_index, uint64_t result)
154 {
155 if (flags & VK_QUERY_RESULT_64_BIT) {
156 uint64_t *dst64 = dst_slot;
157 dst64[value_index] = result;
158 } else {
159 uint32_t *dst32 = dst_slot;
160 dst32[value_index] = result;
161 }
162 }
163
164 static bool
165 query_is_available(uint64_t *slot)
166 {
167 return *(volatile uint64_t *)slot;
168 }
169
170 static VkResult
171 wait_for_available(struct anv_device *device,
172 struct anv_query_pool *pool, uint64_t *slot)
173 {
174 while (true) {
175 if (query_is_available(slot))
176 return VK_SUCCESS;
177
178 int ret = anv_gem_busy(device, pool->bo.gem_handle);
179 if (ret == 1) {
180 /* The BO is still busy, keep waiting. */
181 continue;
182 } else if (ret == -1) {
183 /* We don't know the real error. */
184 return anv_device_set_lost(device, "gem wait failed: %m");
185 } else {
186 assert(ret == 0);
187 /* The BO is no longer busy. */
188 if (query_is_available(slot)) {
189 return VK_SUCCESS;
190 } else {
191 VkResult status = anv_device_query_status(device);
192 if (status != VK_SUCCESS)
193 return status;
194
195 /* If we haven't seen availability yet, then we never will. This
196 * can only happen if we have a client error where they call
197 * GetQueryPoolResults on a query that they haven't submitted to
198 * the GPU yet. The spec allows us to do anything in this case,
199 * but returning VK_SUCCESS doesn't seem right and we shouldn't
200 * just keep spinning.
201 */
202 return VK_NOT_READY;
203 }
204 }
205 }
206 }
207
208 VkResult genX(GetQueryPoolResults)(
209 VkDevice _device,
210 VkQueryPool queryPool,
211 uint32_t firstQuery,
212 uint32_t queryCount,
213 size_t dataSize,
214 void* pData,
215 VkDeviceSize stride,
216 VkQueryResultFlags flags)
217 {
218 ANV_FROM_HANDLE(anv_device, device, _device);
219 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
220
221 assert(pool->type == VK_QUERY_TYPE_OCCLUSION ||
222 pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS ||
223 pool->type == VK_QUERY_TYPE_TIMESTAMP);
224
225 if (anv_device_is_lost(device))
226 return VK_ERROR_DEVICE_LOST;
227
228 if (pData == NULL)
229 return VK_SUCCESS;
230
231 void *data_end = pData + dataSize;
232
233 VkResult status = VK_SUCCESS;
234 for (uint32_t i = 0; i < queryCount; i++) {
235 uint64_t *slot = pool->bo.map + (firstQuery + i) * pool->stride;
236
237 /* Availability is always at the start of the slot */
238 bool available = slot[0];
239
240 if (!available && (flags & VK_QUERY_RESULT_WAIT_BIT)) {
241 status = wait_for_available(device, pool, slot);
242 if (status != VK_SUCCESS)
243 return status;
244
245 available = true;
246 }
247
248 /* From the Vulkan 1.0.42 spec:
249 *
250 * "If VK_QUERY_RESULT_WAIT_BIT and VK_QUERY_RESULT_PARTIAL_BIT are
251 * both not set then no result values are written to pData for
252 * queries that are in the unavailable state at the time of the call,
253 * and vkGetQueryPoolResults returns VK_NOT_READY. However,
254 * availability state is still written to pData for those queries if
255 * VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set."
256 */
257 bool write_results = available || (flags & VK_QUERY_RESULT_PARTIAL_BIT);
258
259 uint32_t idx = 0;
260 switch (pool->type) {
261 case VK_QUERY_TYPE_OCCLUSION:
262 if (write_results)
263 cpu_write_query_result(pData, flags, idx, slot[2] - slot[1]);
264 idx++;
265 break;
266
267 case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
268 uint32_t statistics = pool->pipeline_statistics;
269 while (statistics) {
270 uint32_t stat = u_bit_scan(&statistics);
271 if (write_results) {
272 uint64_t result = slot[idx * 2 + 2] - slot[idx * 2 + 1];
273
274 /* WaDividePSInvocationCountBy4:HSW,BDW */
275 if ((device->info.gen == 8 || device->info.is_haswell) &&
276 (1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT)
277 result >>= 2;
278
279 cpu_write_query_result(pData, flags, idx, result);
280 }
281 idx++;
282 }
283 assert(idx == util_bitcount(pool->pipeline_statistics));
284 break;
285 }
286
287 case VK_QUERY_TYPE_TIMESTAMP:
288 if (write_results)
289 cpu_write_query_result(pData, flags, idx, slot[1]);
290 idx++;
291 break;
292
293 default:
294 unreachable("invalid pool type");
295 }
296
297 if (!write_results)
298 status = VK_NOT_READY;
299
300 if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT)
301 cpu_write_query_result(pData, flags, idx, available);
302
303 pData += stride;
304 if (pData >= data_end)
305 break;
306 }
307
308 return status;
309 }
310
311 static void
312 emit_srm32(struct anv_batch *batch, struct anv_address addr, uint32_t reg)
313 {
314 anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
315 srm.MemoryAddress = addr;
316 srm.RegisterAddress = reg;
317 }
318 }
319
320 static void
321 emit_srm64(struct anv_batch *batch, struct anv_address addr, uint32_t reg)
322 {
323 emit_srm32(batch, anv_address_add(addr, 0), reg + 0);
324 emit_srm32(batch, anv_address_add(addr, 4), reg + 4);
325 }
326
327 static void
328 emit_ps_depth_count(struct anv_cmd_buffer *cmd_buffer,
329 struct anv_address addr)
330 {
331 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
332 pc.DestinationAddressType = DAT_PPGTT;
333 pc.PostSyncOperation = WritePSDepthCount;
334 pc.DepthStallEnable = true;
335 pc.Address = addr;
336
337 if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
338 pc.CommandStreamerStallEnable = true;
339 }
340 }
341
342 static void
343 emit_query_availability(struct anv_cmd_buffer *cmd_buffer,
344 struct anv_address addr)
345 {
346 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
347 pc.DestinationAddressType = DAT_PPGTT;
348 pc.PostSyncOperation = WriteImmediateData;
349 pc.Address = addr;
350 pc.ImmediateData = 1;
351 }
352 }
353
354 /**
355 * Goes through a series of consecutive query indices in the given pool
356 * setting all element values to 0 and emitting them as available.
357 */
358 static void
359 emit_zero_queries(struct anv_cmd_buffer *cmd_buffer,
360 struct anv_query_pool *pool,
361 uint32_t first_index, uint32_t num_queries)
362 {
363 for (uint32_t i = 0; i < num_queries; i++) {
364 struct anv_address slot_addr =
365 anv_query_address(pool, first_index + i);
366 genX(cmd_buffer_mi_memset)(cmd_buffer, anv_address_add(slot_addr, 8),
367 0, pool->stride - 8);
368 emit_query_availability(cmd_buffer, slot_addr);
369 }
370 }
371
372 void genX(CmdResetQueryPool)(
373 VkCommandBuffer commandBuffer,
374 VkQueryPool queryPool,
375 uint32_t firstQuery,
376 uint32_t queryCount)
377 {
378 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
379 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
380
381 for (uint32_t i = 0; i < queryCount; i++) {
382 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdm) {
383 sdm.Address = anv_query_address(pool, firstQuery + i);
384 sdm.ImmediateData = 0;
385 }
386 }
387 }
388
389 static const uint32_t vk_pipeline_stat_to_reg[] = {
390 GENX(IA_VERTICES_COUNT_num),
391 GENX(IA_PRIMITIVES_COUNT_num),
392 GENX(VS_INVOCATION_COUNT_num),
393 GENX(GS_INVOCATION_COUNT_num),
394 GENX(GS_PRIMITIVES_COUNT_num),
395 GENX(CL_INVOCATION_COUNT_num),
396 GENX(CL_PRIMITIVES_COUNT_num),
397 GENX(PS_INVOCATION_COUNT_num),
398 GENX(HS_INVOCATION_COUNT_num),
399 GENX(DS_INVOCATION_COUNT_num),
400 GENX(CS_INVOCATION_COUNT_num),
401 };
402
403 static void
404 emit_pipeline_stat(struct anv_cmd_buffer *cmd_buffer, uint32_t stat,
405 struct anv_address addr)
406 {
407 STATIC_ASSERT(ANV_PIPELINE_STATISTICS_MASK ==
408 (1 << ARRAY_SIZE(vk_pipeline_stat_to_reg)) - 1);
409
410 assert(stat < ARRAY_SIZE(vk_pipeline_stat_to_reg));
411 emit_srm64(&cmd_buffer->batch, addr, vk_pipeline_stat_to_reg[stat]);
412 }
413
414 void genX(CmdBeginQuery)(
415 VkCommandBuffer commandBuffer,
416 VkQueryPool queryPool,
417 uint32_t query,
418 VkQueryControlFlags flags)
419 {
420 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
421 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
422 struct anv_address query_addr = anv_query_address(pool, query);
423
424 switch (pool->type) {
425 case VK_QUERY_TYPE_OCCLUSION:
426 emit_ps_depth_count(cmd_buffer, anv_address_add(query_addr, 8));
427 break;
428
429 case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
430 /* TODO: This might only be necessary for certain stats */
431 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
432 pc.CommandStreamerStallEnable = true;
433 pc.StallAtPixelScoreboard = true;
434 }
435
436 uint32_t statistics = pool->pipeline_statistics;
437 uint32_t offset = 8;
438 while (statistics) {
439 uint32_t stat = u_bit_scan(&statistics);
440 emit_pipeline_stat(cmd_buffer, stat,
441 anv_address_add(query_addr, offset));
442 offset += 16;
443 }
444 break;
445 }
446
447 default:
448 unreachable("");
449 }
450 }
451
452 void genX(CmdEndQuery)(
453 VkCommandBuffer commandBuffer,
454 VkQueryPool queryPool,
455 uint32_t query)
456 {
457 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
458 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
459 struct anv_address query_addr = anv_query_address(pool, query);
460
461 switch (pool->type) {
462 case VK_QUERY_TYPE_OCCLUSION:
463 emit_ps_depth_count(cmd_buffer, anv_address_add(query_addr, 16));
464 emit_query_availability(cmd_buffer, query_addr);
465 break;
466
467 case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
468 /* TODO: This might only be necessary for certain stats */
469 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
470 pc.CommandStreamerStallEnable = true;
471 pc.StallAtPixelScoreboard = true;
472 }
473
474 uint32_t statistics = pool->pipeline_statistics;
475 uint32_t offset = 16;
476 while (statistics) {
477 uint32_t stat = u_bit_scan(&statistics);
478 emit_pipeline_stat(cmd_buffer, stat,
479 anv_address_add(query_addr, offset));
480 offset += 16;
481 }
482
483 emit_query_availability(cmd_buffer, query_addr);
484 break;
485 }
486
487 default:
488 unreachable("");
489 }
490
491 /* When multiview is active the spec requires that N consecutive query
492 * indices are used, where N is the number of active views in the subpass.
493 * The spec allows that we only write the results to one of the queries
494 * but we still need to manage result availability for all the query indices.
495 * Since we only emit a single query for all active views in the
496 * first index, mark the other query indices as being already available
497 * with result 0.
498 */
499 if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
500 const uint32_t num_queries =
501 util_bitcount(cmd_buffer->state.subpass->view_mask);
502 if (num_queries > 1)
503 emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1);
504 }
505 }
506
507 #define TIMESTAMP 0x2358
508
509 void genX(CmdWriteTimestamp)(
510 VkCommandBuffer commandBuffer,
511 VkPipelineStageFlagBits pipelineStage,
512 VkQueryPool queryPool,
513 uint32_t query)
514 {
515 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
516 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
517 struct anv_address query_addr = anv_query_address(pool, query);
518
519 assert(pool->type == VK_QUERY_TYPE_TIMESTAMP);
520
521 switch (pipelineStage) {
522 case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
523 emit_srm64(&cmd_buffer->batch, anv_address_add(query_addr, 8), TIMESTAMP);
524 break;
525
526 default:
527 /* Everything else is bottom-of-pipe */
528 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
529 pc.DestinationAddressType = DAT_PPGTT;
530 pc.PostSyncOperation = WriteTimestamp;
531 pc.Address = anv_address_add(query_addr, 8);
532
533 if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
534 pc.CommandStreamerStallEnable = true;
535 }
536 break;
537 }
538
539 emit_query_availability(cmd_buffer, query_addr);
540
541 /* When multiview is active the spec requires that N consecutive query
542 * indices are used, where N is the number of active views in the subpass.
543 * The spec allows that we only write the results to one of the queries
544 * but we still need to manage result availability for all the query indices.
545 * Since we only emit a single query for all active views in the
546 * first index, mark the other query indices as being already available
547 * with result 0.
548 */
549 if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
550 const uint32_t num_queries =
551 util_bitcount(cmd_buffer->state.subpass->view_mask);
552 if (num_queries > 1)
553 emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1);
554 }
555 }
556
557 #if GEN_GEN > 7 || GEN_IS_HASWELL
558
559 static uint32_t
560 mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
561 {
562 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
563 .ALUOpcode = opcode,
564 .Operand1 = operand1,
565 .Operand2 = operand2,
566 };
567
568 uint32_t dw;
569 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
570
571 return dw;
572 }
573
574 #define CS_GPR(n) (0x2600 + (n) * 8)
575
576 static void
577 emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
578 struct anv_address addr)
579 {
580 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
581 lrm.RegisterAddress = reg;
582 lrm.MemoryAddress = anv_address_add(addr, 0);
583 }
584 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
585 lrm.RegisterAddress = reg + 4;
586 lrm.MemoryAddress = anv_address_add(addr, 4);
587 }
588 }
589
590 static void
591 emit_load_alu_reg_imm32(struct anv_batch *batch, uint32_t reg, uint32_t imm)
592 {
593 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
594 lri.RegisterOffset = reg;
595 lri.DataDWord = imm;
596 }
597 }
598
599 static void
600 emit_load_alu_reg_imm64(struct anv_batch *batch, uint32_t reg, uint64_t imm)
601 {
602 emit_load_alu_reg_imm32(batch, reg, (uint32_t)imm);
603 emit_load_alu_reg_imm32(batch, reg + 4, (uint32_t)(imm >> 32));
604 }
605
606 static void
607 emit_load_alu_reg_reg32(struct anv_batch *batch, uint32_t src, uint32_t dst)
608 {
609 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
610 lrr.SourceRegisterAddress = src;
611 lrr.DestinationRegisterAddress = dst;
612 }
613 }
614
615 /*
616 * GPR0 = GPR0 & ((1ull << n) - 1);
617 */
618 static void
619 keep_gpr0_lower_n_bits(struct anv_batch *batch, uint32_t n)
620 {
621 assert(n < 64);
622 emit_load_alu_reg_imm64(batch, CS_GPR(1), (1ull << n) - 1);
623
624 uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
625 if (!dw) {
626 anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
627 return;
628 }
629
630 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
631 dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
632 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
633 dw[4] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU);
634 }
635
636 /*
637 * GPR0 = GPR0 << 30;
638 */
639 static void
640 shl_gpr0_by_30_bits(struct anv_batch *batch)
641 {
642 /* First we mask 34 bits of GPR0 to prevent overflow */
643 keep_gpr0_lower_n_bits(batch, 34);
644
645 const uint32_t outer_count = 5;
646 const uint32_t inner_count = 6;
647 STATIC_ASSERT(outer_count * inner_count == 30);
648 const uint32_t cmd_len = 1 + inner_count * 4;
649
650 /* We'll emit 5 commands, each shifting GPR0 left by 6 bits, for a total of
651 * 30 left shifts.
652 */
653 for (int o = 0; o < outer_count; o++) {
654 /* Submit one MI_MATH to shift left by 6 bits */
655 uint32_t *dw = anv_batch_emitn(batch, cmd_len, GENX(MI_MATH));
656 if (!dw) {
657 anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
658 return;
659 }
660
661 dw++;
662 for (int i = 0; i < inner_count; i++, dw += 4) {
663 dw[0] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
664 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
665 dw[2] = mi_alu(MI_ALU_ADD, 0, 0);
666 dw[3] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU);
667 }
668 }
669 }
670
671 /*
672 * GPR0 = GPR0 >> 2;
673 *
674 * Note that the upper 30 bits of GPR are lost!
675 */
676 static void
677 shr_gpr0_by_2_bits(struct anv_batch *batch)
678 {
679 shl_gpr0_by_30_bits(batch);
680 emit_load_alu_reg_reg32(batch, CS_GPR(0) + 4, CS_GPR(0));
681 emit_load_alu_reg_imm32(batch, CS_GPR(0) + 4, 0);
682 }
683
684 static void
685 gpu_write_query_result(struct anv_batch *batch,
686 struct anv_address dst_addr,
687 VkQueryResultFlags flags,
688 uint32_t value_index, uint32_t reg)
689 {
690 if (flags & VK_QUERY_RESULT_64_BIT) {
691 emit_srm64(batch, anv_address_add(dst_addr, value_index * 8), reg);
692 } else {
693 emit_srm32(batch, anv_address_add(dst_addr, value_index * 4), reg);
694 }
695 }
696
697 static void
698 compute_query_result(struct anv_batch *batch, uint32_t dst_reg,
699 struct anv_address addr)
700 {
701 emit_load_alu_reg_u64(batch, CS_GPR(0), anv_address_add(addr, 0));
702 emit_load_alu_reg_u64(batch, CS_GPR(1), anv_address_add(addr, 8));
703
704 /* FIXME: We need to clamp the result for 32 bit. */
705
706 uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
707 if (!dw) {
708 anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
709 return;
710 }
711
712 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG1);
713 dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
714 dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
715 dw[4] = mi_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
716 }
717
718 void genX(CmdCopyQueryPoolResults)(
719 VkCommandBuffer commandBuffer,
720 VkQueryPool queryPool,
721 uint32_t firstQuery,
722 uint32_t queryCount,
723 VkBuffer destBuffer,
724 VkDeviceSize destOffset,
725 VkDeviceSize destStride,
726 VkQueryResultFlags flags)
727 {
728 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
729 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
730 ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
731
732 /* If render target writes are ongoing, request a render target cache flush
733 * to ensure proper ordering of the commands from the 3d pipe and the
734 * command streamer.
735 */
736 if (cmd_buffer->state.pending_pipe_bits & ANV_PIPE_RENDER_TARGET_BUFFER_WRITES) {
737 cmd_buffer->state.pending_pipe_bits |=
738 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
739 }
740
741 if ((flags & VK_QUERY_RESULT_WAIT_BIT) ||
742 (cmd_buffer->state.pending_pipe_bits & ANV_PIPE_FLUSH_BITS)) {
743 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
744 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
745 }
746
747 struct anv_address dest_addr = anv_address_add(buffer->address, destOffset);
748 for (uint32_t i = 0; i < queryCount; i++) {
749 struct anv_address query_addr = anv_query_address(pool, firstQuery + i);
750 uint32_t idx = 0;
751 switch (pool->type) {
752 case VK_QUERY_TYPE_OCCLUSION:
753 compute_query_result(&cmd_buffer->batch, MI_ALU_REG2,
754 anv_address_add(query_addr, 8));
755 gpu_write_query_result(&cmd_buffer->batch, dest_addr,
756 flags, idx++, CS_GPR(2));
757 break;
758
759 case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
760 uint32_t statistics = pool->pipeline_statistics;
761 while (statistics) {
762 uint32_t stat = u_bit_scan(&statistics);
763
764 compute_query_result(&cmd_buffer->batch, MI_ALU_REG0,
765 anv_address_add(query_addr, idx * 16 + 8));
766
767 /* WaDividePSInvocationCountBy4:HSW,BDW */
768 if ((cmd_buffer->device->info.gen == 8 ||
769 cmd_buffer->device->info.is_haswell) &&
770 (1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT) {
771 shr_gpr0_by_2_bits(&cmd_buffer->batch);
772 }
773
774 gpu_write_query_result(&cmd_buffer->batch, dest_addr,
775 flags, idx++, CS_GPR(0));
776 }
777 assert(idx == util_bitcount(pool->pipeline_statistics));
778 break;
779 }
780
781 case VK_QUERY_TYPE_TIMESTAMP:
782 emit_load_alu_reg_u64(&cmd_buffer->batch,
783 CS_GPR(2), anv_address_add(query_addr, 8));
784 gpu_write_query_result(&cmd_buffer->batch, dest_addr,
785 flags, 0, CS_GPR(2));
786 break;
787
788 default:
789 unreachable("unhandled query type");
790 }
791
792 if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
793 emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0), query_addr);
794 gpu_write_query_result(&cmd_buffer->batch, dest_addr,
795 flags, idx, CS_GPR(0));
796 }
797
798 dest_addr = anv_address_add(dest_addr, destStride);
799 }
800 }
801
802 #else
803 void genX(CmdCopyQueryPoolResults)(
804 VkCommandBuffer commandBuffer,
805 VkQueryPool queryPool,
806 uint32_t firstQuery,
807 uint32_t queryCount,
808 VkBuffer destBuffer,
809 VkDeviceSize destOffset,
810 VkDeviceSize destStride,
811 VkQueryResultFlags flags)
812 {
813 anv_finishme("Queries not yet supported on Ivy Bridge");
814 }
815 #endif