mem: Do not set cacheResponding on MSHR snoop if not responding
[gem5.git] / src / mem / XBar.py
1 # Copyright (c) 2012, 2015 ARM Limited
2 # All rights reserved.
3 #
4 # The license below extends only to copyright in the software and shall
5 # not be construed as granting a license to any other intellectual
6 # property including but not limited to intellectual property relating
7 # to a hardware implementation of the functionality of the software
8 # licensed hereunder. You may use the software subject to the license
9 # terms below provided that you ensure that this notice is replicated
10 # unmodified and in its entirety in all distributions of the software,
11 # modified or unmodified, in source code or in binary form.
12 #
13 # Copyright (c) 2005-2008 The Regents of The University of Michigan
14 # All rights reserved.
15 #
16 # Redistribution and use in source and binary forms, with or without
17 # modification, are permitted provided that the following conditions are
18 # met: redistributions of source code must retain the above copyright
19 # notice, this list of conditions and the following disclaimer;
20 # redistributions in binary form must reproduce the above copyright
21 # notice, this list of conditions and the following disclaimer in the
22 # documentation and/or other materials provided with the distribution;
23 # neither the name of the copyright holders nor the names of its
24 # contributors may be used to endorse or promote products derived from
25 # this software without specific prior written permission.
26 #
27 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 #
39 # Authors: Nathan Binkert
40 # Andreas Hansson
41
42 from MemObject import MemObject
43 from System import System
44 from m5.params import *
45 from m5.proxy import *
46 from m5.SimObject import SimObject
47
48 class BaseXBar(MemObject):
49 type = 'BaseXBar'
50 abstract = True
51 cxx_header = "mem/xbar.hh"
52
53 slave = VectorSlavePort("Vector port for connecting masters")
54 master = VectorMasterPort("Vector port for connecting slaves")
55
56 # Latencies governing the time taken for the variuos paths a
57 # packet has through the crossbar. Note that the crossbar itself
58 # does not add the latency due to assumptions in the coherency
59 # mechanism. Instead the latency is annotated on the packet and
60 # left to the neighbouring modules.
61 #
62 # A request incurs the frontend latency, possibly snoop filter
63 # lookup latency, and forward latency. A response incurs the
64 # response latency. Frontend latency encompasses arbitration and
65 # deciding what to do when a request arrives. the forward latency
66 # is the latency involved once a decision is made to forward the
67 # request. The response latency, is similar to the forward
68 # latency, but for responses rather than requests.
69 frontend_latency = Param.Cycles("Frontend latency")
70 forward_latency = Param.Cycles("Forward latency")
71 response_latency = Param.Cycles("Response latency")
72
73 # Width governing the throughput of the crossbar
74 width = Param.Unsigned("Datapath width per port (bytes)")
75
76 # The default port can be left unconnected, or be used to connect
77 # a default slave port
78 default = MasterPort("Port for connecting an optional default slave")
79
80 # The default port can be used unconditionally, or based on
81 # address range, in which case it may overlap with other
82 # ports. The default range is always checked first, thus creating
83 # a two-level hierarchical lookup. This is useful e.g. for the PCI
84 # xbar configuration.
85 use_default_range = Param.Bool(False, "Perform address mapping for " \
86 "the default port")
87
88 class NoncoherentXBar(BaseXBar):
89 type = 'NoncoherentXBar'
90 cxx_header = "mem/noncoherent_xbar.hh"
91
92 class CoherentXBar(BaseXBar):
93 type = 'CoherentXBar'
94 cxx_header = "mem/coherent_xbar.hh"
95
96 # The coherent crossbar additionally has snoop responses that are
97 # forwarded after a specific latency.
98 snoop_response_latency = Param.Cycles("Snoop response latency")
99
100 # An optional snoop filter
101 snoop_filter = Param.SnoopFilter(NULL, "Selected snoop filter")
102
103 # Determine how this crossbar handles packets where caches have
104 # already committed to responding, by establishing if the crossbar
105 # is the point of coherency or not.
106 point_of_coherency = Param.Bool(False, "Consider this crossbar the " \
107 "point of coherency")
108
109 system = Param.System(Parent.any, "System that the crossbar belongs to.")
110
111 class SnoopFilter(SimObject):
112 type = 'SnoopFilter'
113 cxx_header = "mem/snoop_filter.hh"
114
115 # Lookup latency of the snoop filter, added to requests that pass
116 # through a coherent crossbar.
117 lookup_latency = Param.Cycles(1, "Lookup latency")
118
119 system = Param.System(Parent.any, "System that the crossbar belongs to.")
120
121 # Sanity check on max capacity to track, adjust if needed.
122 max_capacity = Param.MemorySize('8MB', "Maximum capacity of snoop filter")
123
124 # We use a coherent crossbar to connect multiple masters to the L2
125 # caches. Normally this crossbar would be part of the cache itself.
126 class L2XBar(CoherentXBar):
127 # 256-bit crossbar by default
128 width = 32
129
130 # Assume that most of this is covered by the cache latencies, with
131 # no more than a single pipeline stage for any packet.
132 frontend_latency = 1
133 forward_latency = 0
134 response_latency = 1
135 snoop_response_latency = 1
136
137 # Use a snoop-filter by default, and set the latency to zero as
138 # the lookup is assumed to overlap with the frontend latency of
139 # the crossbar
140 snoop_filter = SnoopFilter(lookup_latency = 0)
141
142 # One of the key coherent crossbar instances is the system
143 # interconnect, tying together the CPU clusters, GPUs, and any I/O
144 # coherent masters, and DRAM controllers.
145 class SystemXBar(CoherentXBar):
146 # 128-bit crossbar by default
147 width = 16
148
149 # A handful pipeline stages for each portion of the latency
150 # contributions.
151 frontend_latency = 3
152 forward_latency = 4
153 response_latency = 2
154 snoop_response_latency = 4
155
156 # This specialisation of the coherent crossbar is to be considered
157 # the point of coherency, as there are no (coherent) downstream
158 # caches.
159 point_of_coherency = True
160
161 # In addition to the system interconnect, we typically also have one
162 # or more on-chip I/O crossbars. Note that at some point we might want
163 # to also define an off-chip I/O crossbar such as PCIe.
164 class IOXBar(NoncoherentXBar):
165 # 128-bit crossbar by default
166 width = 16
167
168 # Assume a simpler datapath than a coherent crossbar, incuring
169 # less pipeline stages for decision making and forwarding of
170 # requests.
171 frontend_latency = 2
172 forward_latency = 1
173 response_latency = 2