mem-cache: Fix setting prefetch bit
[gem5.git] / src / mem / XBar.py
1 # Copyright (c) 2012, 2015, 2017, 2019-2020 ARM Limited
2 # All rights reserved.
3 #
4 # The license below extends only to copyright in the software and shall
5 # not be construed as granting a license to any other intellectual
6 # property including but not limited to intellectual property relating
7 # to a hardware implementation of the functionality of the software
8 # licensed hereunder. You may use the software subject to the license
9 # terms below provided that you ensure that this notice is replicated
10 # unmodified and in its entirety in all distributions of the software,
11 # modified or unmodified, in source code or in binary form.
12 #
13 # Copyright (c) 2005-2008 The Regents of The University of Michigan
14 # All rights reserved.
15 #
16 # Redistribution and use in source and binary forms, with or without
17 # modification, are permitted provided that the following conditions are
18 # met: redistributions of source code must retain the above copyright
19 # notice, this list of conditions and the following disclaimer;
20 # redistributions in binary form must reproduce the above copyright
21 # notice, this list of conditions and the following disclaimer in the
22 # documentation and/or other materials provided with the distribution;
23 # neither the name of the copyright holders nor the names of its
24 # contributors may be used to endorse or promote products derived from
25 # this software without specific prior written permission.
26 #
27 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38
39 from m5.objects.System import System
40 from m5.params import *
41 from m5.proxy import *
42 from m5.SimObject import SimObject
43
44 from m5.objects.ClockedObject import ClockedObject
45
46 class BaseXBar(ClockedObject):
47 type = 'BaseXBar'
48 abstract = True
49 cxx_header = "mem/xbar.hh"
50
51 cpu_side_ports = VectorResponsePort("Vector port for connecting "
52 "mem side ports")
53 slave = DeprecatedParam(cpu_side_ports,
54 '`slave` is now called `cpu_side_ports`')
55 mem_side_ports = VectorRequestPort("Vector port for connecting "
56 "cpu side ports")
57 master = DeprecatedParam(mem_side_ports,
58 '`master` is now called `mem_side_ports`')
59
60 # Latencies governing the time taken for the variuos paths a
61 # packet has through the crossbar. Note that the crossbar itself
62 # does not add the latency due to assumptions in the coherency
63 # mechanism. Instead the latency is annotated on the packet and
64 # left to the neighbouring modules.
65 #
66 # A request incurs the frontend latency, possibly snoop filter
67 # lookup latency, and forward latency. A response incurs the
68 # response latency. Frontend latency encompasses arbitration and
69 # deciding what to do when a request arrives. the forward latency
70 # is the latency involved once a decision is made to forward the
71 # request. The response latency, is similar to the forward
72 # latency, but for responses rather than requests.
73 frontend_latency = Param.Cycles("Frontend latency")
74 forward_latency = Param.Cycles("Forward latency")
75 response_latency = Param.Cycles("Response latency")
76
77 # The XBar uses one Layer per requestor. Each Layer forwards a packet
78 # to its destination and is occupied for header_latency + size /
79 # width cycles
80 header_latency = Param.Cycles(1, "Header latency")
81
82 # Width governing the throughput of the crossbar
83 width = Param.Unsigned("Datapath width per port (bytes)")
84
85 # The default port can be left unconnected, or be used to connect
86 # a default response port
87 default = RequestPort("Port for connecting an optional default responder")
88
89 # The default port can be used unconditionally, or based on
90 # address range, in which case it may overlap with other
91 # ports. The default range is always checked first, thus creating
92 # a two-level hierarchical lookup. This is useful e.g. for the PCI
93 # xbar configuration.
94 use_default_range = Param.Bool(False, "Perform address mapping for " \
95 "the default port")
96
97 class NoncoherentXBar(BaseXBar):
98 type = 'NoncoherentXBar'
99 cxx_header = "mem/noncoherent_xbar.hh"
100
101 class CoherentXBar(BaseXBar):
102 type = 'CoherentXBar'
103 cxx_header = "mem/coherent_xbar.hh"
104
105 # The coherent crossbar additionally has snoop responses that are
106 # forwarded after a specific latency.
107 snoop_response_latency = Param.Cycles("Snoop response latency")
108
109 # An optional snoop filter
110 snoop_filter = Param.SnoopFilter(NULL, "Selected snoop filter")
111
112 # Maximum number of outstanding snoop requests for sanity checks
113 max_outstanding_snoops = Param.Int(512, "Max. outstanding snoops allowed")
114
115 # Maximum routing table size for sanity checks
116 max_routing_table_size = Param.Int(512, "Max. routing table size")
117
118 # Determine how this crossbar handles packets where caches have
119 # already committed to responding, by establishing if the crossbar
120 # is the point of coherency or not.
121 point_of_coherency = Param.Bool(False, "Consider this crossbar the " \
122 "point of coherency")
123
124 # Specify whether this crossbar is the point of unification.
125 point_of_unification = Param.Bool(False, "Consider this crossbar the " \
126 "point of unification")
127
128 system = Param.System(Parent.any, "System that the crossbar belongs to.")
129
130 class SnoopFilter(SimObject):
131 type = 'SnoopFilter'
132 cxx_header = "mem/snoop_filter.hh"
133
134 # Lookup latency of the snoop filter, added to requests that pass
135 # through a coherent crossbar.
136 lookup_latency = Param.Cycles(1, "Lookup latency")
137
138 system = Param.System(Parent.any, "System that the crossbar belongs to.")
139
140 # Sanity check on max capacity to track, adjust if needed.
141 max_capacity = Param.MemorySize('8MB', "Maximum capacity of snoop filter")
142
143 # We use a coherent crossbar to connect multiple requestors to the L2
144 # caches. Normally this crossbar would be part of the cache itself.
145 class L2XBar(CoherentXBar):
146 # 256-bit crossbar by default
147 width = 32
148
149 # Assume that most of this is covered by the cache latencies, with
150 # no more than a single pipeline stage for any packet.
151 frontend_latency = 1
152 forward_latency = 0
153 response_latency = 1
154 snoop_response_latency = 1
155
156 # Use a snoop-filter by default, and set the latency to zero as
157 # the lookup is assumed to overlap with the frontend latency of
158 # the crossbar
159 snoop_filter = SnoopFilter(lookup_latency = 0)
160
161 # This specialisation of the coherent crossbar is to be considered
162 # the point of unification, it connects the dcache and the icache
163 # to the first level of unified cache.
164 point_of_unification = True
165
166 # One of the key coherent crossbar instances is the system
167 # interconnect, tying together the CPU clusters, GPUs, and any I/O
168 # coherent requestors, and DRAM controllers.
169 class SystemXBar(CoherentXBar):
170 # 128-bit crossbar by default
171 width = 16
172
173 # A handful pipeline stages for each portion of the latency
174 # contributions.
175 frontend_latency = 3
176 forward_latency = 4
177 response_latency = 2
178 snoop_response_latency = 4
179
180 # Use a snoop-filter by default
181 snoop_filter = SnoopFilter(lookup_latency = 1)
182
183 # This specialisation of the coherent crossbar is to be considered
184 # the point of coherency, as there are no (coherent) downstream
185 # caches.
186 point_of_coherency = True
187
188 # This specialisation of the coherent crossbar is to be considered
189 # the point of unification, it connects the dcache and the icache
190 # to the first level of unified cache. This is needed for systems
191 # without caches where the SystemXBar is also the point of
192 # unification.
193 point_of_unification = True
194
195 # In addition to the system interconnect, we typically also have one
196 # or more on-chip I/O crossbars. Note that at some point we might want
197 # to also define an off-chip I/O crossbar such as PCIe.
198 class IOXBar(NoncoherentXBar):
199 # 128-bit crossbar by default
200 width = 16
201
202 # Assume a simpler datapath than a coherent crossbar, incuring
203 # less pipeline stages for decision making and forwarding of
204 # requests.
205 frontend_latency = 2
206 forward_latency = 1
207 response_latency = 2