018770332e1dab2fe800d34a872e926180edbdb8
[gem5.git] / src / mem / cache / base.cc
1 /*
2 * Copyright (c) 2012-2013, 2018-2019 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /**
42 * @file
43 * Definition of BaseCache functions.
44 */
45
46 #include "mem/cache/base.hh"
47
48 #include "base/compiler.hh"
49 #include "base/logging.hh"
50 #include "debug/Cache.hh"
51 #include "debug/CacheComp.hh"
52 #include "debug/CachePort.hh"
53 #include "debug/CacheRepl.hh"
54 #include "debug/CacheVerbose.hh"
55 #include "mem/cache/compressors/base.hh"
56 #include "mem/cache/mshr.hh"
57 #include "mem/cache/prefetch/base.hh"
58 #include "mem/cache/queue_entry.hh"
59 #include "mem/cache/tags/super_blk.hh"
60 #include "params/BaseCache.hh"
61 #include "params/WriteAllocator.hh"
62 #include "sim/core.hh"
63
64 using namespace std;
65
66 BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
67 BaseCache *_cache,
68 const std::string &_label)
69 : QueuedSlavePort(_name, _cache, queue),
70 queue(*_cache, *this, true, _label),
71 blocked(false), mustSendRetry(false),
72 sendRetryEvent([this]{ processSendRetry(); }, _name)
73 {
74 }
75
76 BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
77 : ClockedObject(p),
78 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
79 memSidePort(p->name + ".mem_side", this, "MemSidePort"),
80 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
81 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
82 tags(p->tags),
83 compressor(p->compressor),
84 prefetcher(p->prefetcher),
85 writeAllocator(p->write_allocator),
86 writebackClean(p->writeback_clean),
87 tempBlockWriteback(nullptr),
88 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
89 name(), false,
90 EventBase::Delayed_Writeback_Pri),
91 blkSize(blk_size),
92 lookupLatency(p->tag_latency),
93 dataLatency(p->data_latency),
94 forwardLatency(p->tag_latency),
95 fillLatency(p->data_latency),
96 responseLatency(p->response_latency),
97 sequentialAccess(p->sequential_access),
98 numTarget(p->tgts_per_mshr),
99 forwardSnoops(true),
100 clusivity(p->clusivity),
101 isReadOnly(p->is_read_only),
102 blocked(0),
103 order(0),
104 noTargetMSHR(nullptr),
105 missCount(p->max_miss_count),
106 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
107 system(p->system),
108 stats(*this)
109 {
110 // the MSHR queue has no reserve entries as we check the MSHR
111 // queue on every single allocation, whereas the write queue has
112 // as many reserve entries as we have MSHRs, since every MSHR may
113 // eventually require a writeback, and we do not check the write
114 // buffer before committing to an MSHR
115
116 // forward snoops is overridden in init() once we can query
117 // whether the connected master is actually snooping or not
118
119 tempBlock = new TempCacheBlk(blkSize);
120
121 tags->tagsInit();
122 if (prefetcher)
123 prefetcher->setCache(this);
124 }
125
126 BaseCache::~BaseCache()
127 {
128 delete tempBlock;
129 }
130
131 void
132 BaseCache::CacheSlavePort::setBlocked()
133 {
134 assert(!blocked);
135 DPRINTF(CachePort, "Port is blocking new requests\n");
136 blocked = true;
137 // if we already scheduled a retry in this cycle, but it has not yet
138 // happened, cancel it
139 if (sendRetryEvent.scheduled()) {
140 owner.deschedule(sendRetryEvent);
141 DPRINTF(CachePort, "Port descheduled retry\n");
142 mustSendRetry = true;
143 }
144 }
145
146 void
147 BaseCache::CacheSlavePort::clearBlocked()
148 {
149 assert(blocked);
150 DPRINTF(CachePort, "Port is accepting new requests\n");
151 blocked = false;
152 if (mustSendRetry) {
153 // @TODO: need to find a better time (next cycle?)
154 owner.schedule(sendRetryEvent, curTick() + 1);
155 }
156 }
157
158 void
159 BaseCache::CacheSlavePort::processSendRetry()
160 {
161 DPRINTF(CachePort, "Port is sending retry\n");
162
163 // reset the flag and call retry
164 mustSendRetry = false;
165 sendRetryReq();
166 }
167
168 Addr
169 BaseCache::regenerateBlkAddr(CacheBlk* blk)
170 {
171 if (blk != tempBlock) {
172 return tags->regenerateBlkAddr(blk);
173 } else {
174 return tempBlock->getAddr();
175 }
176 }
177
178 void
179 BaseCache::init()
180 {
181 if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
182 fatal("Cache ports on %s are not connected\n", name());
183 cpuSidePort.sendRangeChange();
184 forwardSnoops = cpuSidePort.isSnooping();
185 }
186
187 Port &
188 BaseCache::getPort(const std::string &if_name, PortID idx)
189 {
190 if (if_name == "mem_side") {
191 return memSidePort;
192 } else if (if_name == "cpu_side") {
193 return cpuSidePort;
194 } else {
195 return ClockedObject::getPort(if_name, idx);
196 }
197 }
198
199 bool
200 BaseCache::inRange(Addr addr) const
201 {
202 for (const auto& r : addrRanges) {
203 if (r.contains(addr)) {
204 return true;
205 }
206 }
207 return false;
208 }
209
210 void
211 BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
212 {
213 if (pkt->needsResponse()) {
214 // These delays should have been consumed by now
215 assert(pkt->headerDelay == 0);
216 assert(pkt->payloadDelay == 0);
217
218 pkt->makeTimingResponse();
219
220 // In this case we are considering request_time that takes
221 // into account the delay of the xbar, if any, and just
222 // lat, neglecting responseLatency, modelling hit latency
223 // just as the value of lat overriden by access(), which calls
224 // the calculateAccessLatency() function.
225 cpuSidePort.schedTimingResp(pkt, request_time);
226 } else {
227 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
228 pkt->print());
229
230 // queue the packet for deletion, as the sending cache is
231 // still relying on it; if the block is found in access(),
232 // CleanEvict and Writeback messages will be deleted
233 // here as well
234 pendingDelete.reset(pkt);
235 }
236 }
237
238 void
239 BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
240 Tick forward_time, Tick request_time)
241 {
242 if (writeAllocator &&
243 pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
244 writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
245 pkt->getBlockAddr(blkSize));
246 }
247
248 if (mshr) {
249 /// MSHR hit
250 /// @note writebacks will be checked in getNextMSHR()
251 /// for any conflicting requests to the same block
252
253 //@todo remove hw_pf here
254
255 // Coalesce unless it was a software prefetch (see above).
256 if (pkt) {
257 assert(!pkt->isWriteback());
258 // CleanEvicts corresponding to blocks which have
259 // outstanding requests in MSHRs are simply sunk here
260 if (pkt->cmd == MemCmd::CleanEvict) {
261 pendingDelete.reset(pkt);
262 } else if (pkt->cmd == MemCmd::WriteClean) {
263 // A WriteClean should never coalesce with any
264 // outstanding cache maintenance requests.
265
266 // We use forward_time here because there is an
267 // uncached memory write, forwarded to WriteBuffer.
268 allocateWriteBuffer(pkt, forward_time);
269 } else {
270 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
271 pkt->print());
272
273 assert(pkt->req->masterId() < system->maxMasters());
274 stats.cmdStats(pkt).mshr_hits[pkt->req->masterId()]++;
275
276 // We use forward_time here because it is the same
277 // considering new targets. We have multiple
278 // requests for the same address here. It
279 // specifies the latency to allocate an internal
280 // buffer and to schedule an event to the queued
281 // port and also takes into account the additional
282 // delay of the xbar.
283 mshr->allocateTarget(pkt, forward_time, order++,
284 allocOnFill(pkt->cmd));
285 if (mshr->getNumTargets() == numTarget) {
286 noTargetMSHR = mshr;
287 setBlocked(Blocked_NoTargets);
288 // need to be careful with this... if this mshr isn't
289 // ready yet (i.e. time > curTick()), we don't want to
290 // move it ahead of mshrs that are ready
291 // mshrQueue.moveToFront(mshr);
292 }
293 }
294 }
295 } else {
296 // no MSHR
297 assert(pkt->req->masterId() < system->maxMasters());
298 stats.cmdStats(pkt).mshr_misses[pkt->req->masterId()]++;
299
300 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
301 // We use forward_time here because there is an
302 // writeback or writeclean, forwarded to WriteBuffer.
303 allocateWriteBuffer(pkt, forward_time);
304 } else {
305 if (blk && blk->isValid()) {
306 // If we have a write miss to a valid block, we
307 // need to mark the block non-readable. Otherwise
308 // if we allow reads while there's an outstanding
309 // write miss, the read could return stale data
310 // out of the cache block... a more aggressive
311 // system could detect the overlap (if any) and
312 // forward data out of the MSHRs, but we don't do
313 // that yet. Note that we do need to leave the
314 // block valid so that it stays in the cache, in
315 // case we get an upgrade response (and hence no
316 // new data) when the write miss completes.
317 // As long as CPUs do proper store/load forwarding
318 // internally, and have a sufficiently weak memory
319 // model, this is probably unnecessary, but at some
320 // point it must have seemed like we needed it...
321 assert((pkt->needsWritable() && !blk->isWritable()) ||
322 pkt->req->isCacheMaintenance());
323 blk->status &= ~BlkReadable;
324 }
325 // Here we are using forward_time, modelling the latency of
326 // a miss (outbound) just as forwardLatency, neglecting the
327 // lookupLatency component.
328 allocateMissBuffer(pkt, forward_time);
329 }
330 }
331 }
332
333 void
334 BaseCache::recvTimingReq(PacketPtr pkt)
335 {
336 // anything that is merely forwarded pays for the forward latency and
337 // the delay provided by the crossbar
338 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
339
340 Cycles lat;
341 CacheBlk *blk = nullptr;
342 bool satisfied = false;
343 {
344 PacketList writebacks;
345 // Note that lat is passed by reference here. The function
346 // access() will set the lat value.
347 satisfied = access(pkt, blk, lat, writebacks);
348
349 // After the evicted blocks are selected, they must be forwarded
350 // to the write buffer to ensure they logically precede anything
351 // happening below
352 doWritebacks(writebacks, clockEdge(lat + forwardLatency));
353 }
354
355 // Here we charge the headerDelay that takes into account the latencies
356 // of the bus, if the packet comes from it.
357 // The latency charged is just the value set by the access() function.
358 // In case of a hit we are neglecting response latency.
359 // In case of a miss we are neglecting forward latency.
360 Tick request_time = clockEdge(lat);
361 // Here we reset the timing of the packet.
362 pkt->headerDelay = pkt->payloadDelay = 0;
363
364 if (satisfied) {
365 // notify before anything else as later handleTimingReqHit might turn
366 // the packet in a response
367 ppHit->notify(pkt);
368
369 if (prefetcher && blk && blk->wasPrefetched()) {
370 blk->status &= ~BlkHWPrefetched;
371 }
372
373 handleTimingReqHit(pkt, blk, request_time);
374 } else {
375 handleTimingReqMiss(pkt, blk, forward_time, request_time);
376
377 ppMiss->notify(pkt);
378 }
379
380 if (prefetcher) {
381 // track time of availability of next prefetch, if any
382 Tick next_pf_time = prefetcher->nextPrefetchReadyTime();
383 if (next_pf_time != MaxTick) {
384 schedMemSideSendEvent(next_pf_time);
385 }
386 }
387 }
388
389 void
390 BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
391 {
392 Tick completion_time = clockEdge(responseLatency) +
393 pkt->headerDelay + pkt->payloadDelay;
394
395 // Reset the bus additional time as it is now accounted for
396 pkt->headerDelay = pkt->payloadDelay = 0;
397
398 cpuSidePort.schedTimingResp(pkt, completion_time);
399 }
400
401 void
402 BaseCache::recvTimingResp(PacketPtr pkt)
403 {
404 assert(pkt->isResponse());
405
406 // all header delay should be paid for by the crossbar, unless
407 // this is a prefetch response from above
408 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
409 "%s saw a non-zero packet delay\n", name());
410
411 const bool is_error = pkt->isError();
412
413 if (is_error) {
414 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
415 pkt->print());
416 }
417
418 DPRINTF(Cache, "%s: Handling response %s\n", __func__,
419 pkt->print());
420
421 // if this is a write, we should be looking at an uncacheable
422 // write
423 if (pkt->isWrite()) {
424 assert(pkt->req->isUncacheable());
425 handleUncacheableWriteResp(pkt);
426 return;
427 }
428
429 // we have dealt with any (uncacheable) writes above, from here on
430 // we know we are dealing with an MSHR due to a miss or a prefetch
431 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
432 assert(mshr);
433
434 if (mshr == noTargetMSHR) {
435 // we always clear at least one target
436 clearBlocked(Blocked_NoTargets);
437 noTargetMSHR = nullptr;
438 }
439
440 // Initial target is used just for stats
441 const QueueEntry::Target *initial_tgt = mshr->getTarget();
442 const Tick miss_latency = curTick() - initial_tgt->recvTime;
443 if (pkt->req->isUncacheable()) {
444 assert(pkt->req->masterId() < system->maxMasters());
445 stats.cmdStats(initial_tgt->pkt)
446 .mshr_uncacheable_lat[pkt->req->masterId()] += miss_latency;
447 } else {
448 assert(pkt->req->masterId() < system->maxMasters());
449 stats.cmdStats(initial_tgt->pkt)
450 .mshr_miss_latency[pkt->req->masterId()] += miss_latency;
451 }
452
453 PacketList writebacks;
454
455 bool is_fill = !mshr->isForward &&
456 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
457 mshr->wasWholeLineWrite);
458
459 // make sure that if the mshr was due to a whole line write then
460 // the response is an invalidation
461 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
462
463 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
464
465 if (is_fill && !is_error) {
466 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
467 pkt->getAddr());
468
469 const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
470 writeAllocator->allocate() : mshr->allocOnFill();
471 blk = handleFill(pkt, blk, writebacks, allocate);
472 assert(blk != nullptr);
473 ppFill->notify(pkt);
474 }
475
476 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
477 // The block was marked not readable while there was a pending
478 // cache maintenance operation, restore its flag.
479 blk->status |= BlkReadable;
480
481 // This was a cache clean operation (without invalidate)
482 // and we have a copy of the block already. Since there
483 // is no invalidation, we can promote targets that don't
484 // require a writable copy
485 mshr->promoteReadable();
486 }
487
488 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
489 // If at this point the referenced block is writable and the
490 // response is not a cache invalidate, we promote targets that
491 // were deferred as we couldn't guarrantee a writable copy
492 mshr->promoteWritable();
493 }
494
495 serviceMSHRTargets(mshr, pkt, blk);
496
497 if (mshr->promoteDeferredTargets()) {
498 // avoid later read getting stale data while write miss is
499 // outstanding.. see comment in timingAccess()
500 if (blk) {
501 blk->status &= ~BlkReadable;
502 }
503 mshrQueue.markPending(mshr);
504 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
505 } else {
506 // while we deallocate an mshr from the queue we still have to
507 // check the isFull condition before and after as we might
508 // have been using the reserved entries already
509 const bool was_full = mshrQueue.isFull();
510 mshrQueue.deallocate(mshr);
511 if (was_full && !mshrQueue.isFull()) {
512 clearBlocked(Blocked_NoMSHRs);
513 }
514
515 // Request the bus for a prefetch if this deallocation freed enough
516 // MSHRs for a prefetch to take place
517 if (prefetcher && mshrQueue.canPrefetch() && !isBlocked()) {
518 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
519 clockEdge());
520 if (next_pf_time != MaxTick)
521 schedMemSideSendEvent(next_pf_time);
522 }
523 }
524
525 // if we used temp block, check to see if its valid and then clear it out
526 if (blk == tempBlock && tempBlock->isValid()) {
527 evictBlock(blk, writebacks);
528 }
529
530 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
531 // copy writebacks to write buffer
532 doWritebacks(writebacks, forward_time);
533
534 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
535 delete pkt;
536 }
537
538
539 Tick
540 BaseCache::recvAtomic(PacketPtr pkt)
541 {
542 // should assert here that there are no outstanding MSHRs or
543 // writebacks... that would mean that someone used an atomic
544 // access in timing mode
545
546 // We use lookupLatency here because it is used to specify the latency
547 // to access.
548 Cycles lat = lookupLatency;
549
550 CacheBlk *blk = nullptr;
551 PacketList writebacks;
552 bool satisfied = access(pkt, blk, lat, writebacks);
553
554 if (pkt->isClean() && blk && blk->isDirty()) {
555 // A cache clean opearation is looking for a dirty
556 // block. If a dirty block is encountered a WriteClean
557 // will update any copies to the path to the memory
558 // until the point of reference.
559 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
560 __func__, pkt->print(), blk->print());
561 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
562 writebacks.push_back(wb_pkt);
563 pkt->setSatisfied();
564 }
565
566 // handle writebacks resulting from the access here to ensure they
567 // logically precede anything happening below
568 doWritebacksAtomic(writebacks);
569 assert(writebacks.empty());
570
571 if (!satisfied) {
572 lat += handleAtomicReqMiss(pkt, blk, writebacks);
573 }
574
575 // Note that we don't invoke the prefetcher at all in atomic mode.
576 // It's not clear how to do it properly, particularly for
577 // prefetchers that aggressively generate prefetch candidates and
578 // rely on bandwidth contention to throttle them; these will tend
579 // to pollute the cache in atomic mode since there is no bandwidth
580 // contention. If we ever do want to enable prefetching in atomic
581 // mode, though, this is the place to do it... see timingAccess()
582 // for an example (though we'd want to issue the prefetch(es)
583 // immediately rather than calling requestMemSideBus() as we do
584 // there).
585
586 // do any writebacks resulting from the response handling
587 doWritebacksAtomic(writebacks);
588
589 // if we used temp block, check to see if its valid and if so
590 // clear it out, but only do so after the call to recvAtomic is
591 // finished so that any downstream observers (such as a snoop
592 // filter), first see the fill, and only then see the eviction
593 if (blk == tempBlock && tempBlock->isValid()) {
594 // the atomic CPU calls recvAtomic for fetch and load/store
595 // sequentuially, and we may already have a tempBlock
596 // writeback from the fetch that we have not yet sent
597 if (tempBlockWriteback) {
598 // if that is the case, write the prevoius one back, and
599 // do not schedule any new event
600 writebackTempBlockAtomic();
601 } else {
602 // the writeback/clean eviction happens after the call to
603 // recvAtomic has finished (but before any successive
604 // calls), so that the response handling from the fill is
605 // allowed to happen first
606 schedule(writebackTempBlockAtomicEvent, curTick());
607 }
608
609 tempBlockWriteback = evictBlock(blk);
610 }
611
612 if (pkt->needsResponse()) {
613 pkt->makeAtomicResponse();
614 }
615
616 return lat * clockPeriod();
617 }
618
619 void
620 BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
621 {
622 Addr blk_addr = pkt->getBlockAddr(blkSize);
623 bool is_secure = pkt->isSecure();
624 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
625 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
626
627 pkt->pushLabel(name());
628
629 CacheBlkPrintWrapper cbpw(blk);
630
631 // Note that just because an L2/L3 has valid data doesn't mean an
632 // L1 doesn't have a more up-to-date modified copy that still
633 // needs to be found. As a result we always update the request if
634 // we have it, but only declare it satisfied if we are the owner.
635
636 // see if we have data at all (owned or otherwise)
637 bool have_data = blk && blk->isValid()
638 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
639 blk->data);
640
641 // data we have is dirty if marked as such or if we have an
642 // in-service MSHR that is pending a modified line
643 bool have_dirty =
644 have_data && (blk->isDirty() ||
645 (mshr && mshr->inService && mshr->isPendingModified()));
646
647 bool done = have_dirty ||
648 cpuSidePort.trySatisfyFunctional(pkt) ||
649 mshrQueue.trySatisfyFunctional(pkt) ||
650 writeBuffer.trySatisfyFunctional(pkt) ||
651 memSidePort.trySatisfyFunctional(pkt);
652
653 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
654 (blk && blk->isValid()) ? "valid " : "",
655 have_data ? "data " : "", done ? "done " : "");
656
657 // We're leaving the cache, so pop cache->name() label
658 pkt->popLabel();
659
660 if (done) {
661 pkt->makeResponse();
662 } else {
663 // if it came as a request from the CPU side then make sure it
664 // continues towards the memory side
665 if (from_cpu_side) {
666 memSidePort.sendFunctional(pkt);
667 } else if (cpuSidePort.isSnooping()) {
668 // if it came from the memory side, it must be a snoop request
669 // and we should only forward it if we are forwarding snoops
670 cpuSidePort.sendFunctionalSnoop(pkt);
671 }
672 }
673 }
674
675
676 void
677 BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
678 {
679 assert(pkt->isRequest());
680
681 uint64_t overwrite_val;
682 bool overwrite_mem;
683 uint64_t condition_val64;
684 uint32_t condition_val32;
685
686 int offset = pkt->getOffset(blkSize);
687 uint8_t *blk_data = blk->data + offset;
688
689 assert(sizeof(uint64_t) >= pkt->getSize());
690
691 overwrite_mem = true;
692 // keep a copy of our possible write value, and copy what is at the
693 // memory address into the packet
694 pkt->writeData((uint8_t *)&overwrite_val);
695 pkt->setData(blk_data);
696
697 if (pkt->req->isCondSwap()) {
698 if (pkt->getSize() == sizeof(uint64_t)) {
699 condition_val64 = pkt->req->getExtraData();
700 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
701 sizeof(uint64_t));
702 } else if (pkt->getSize() == sizeof(uint32_t)) {
703 condition_val32 = (uint32_t)pkt->req->getExtraData();
704 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
705 sizeof(uint32_t));
706 } else
707 panic("Invalid size for conditional read/write\n");
708 }
709
710 if (overwrite_mem) {
711 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
712 blk->status |= BlkDirty;
713 }
714 }
715
716 QueueEntry*
717 BaseCache::getNextQueueEntry()
718 {
719 // Check both MSHR queue and write buffer for potential requests,
720 // note that null does not mean there is no request, it could
721 // simply be that it is not ready
722 MSHR *miss_mshr = mshrQueue.getNext();
723 WriteQueueEntry *wq_entry = writeBuffer.getNext();
724
725 // If we got a write buffer request ready, first priority is a
726 // full write buffer, otherwise we favour the miss requests
727 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
728 // need to search MSHR queue for conflicting earlier miss.
729 MSHR *conflict_mshr = mshrQueue.findPending(wq_entry);
730
731 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
732 // Service misses in order until conflict is cleared.
733 return conflict_mshr;
734
735 // @todo Note that we ignore the ready time of the conflict here
736 }
737
738 // No conflicts; issue write
739 return wq_entry;
740 } else if (miss_mshr) {
741 // need to check for conflicting earlier writeback
742 WriteQueueEntry *conflict_mshr = writeBuffer.findPending(miss_mshr);
743 if (conflict_mshr) {
744 // not sure why we don't check order here... it was in the
745 // original code but commented out.
746
747 // The only way this happens is if we are
748 // doing a write and we didn't have permissions
749 // then subsequently saw a writeback (owned got evicted)
750 // We need to make sure to perform the writeback first
751 // To preserve the dirty data, then we can issue the write
752
753 // should we return wq_entry here instead? I.e. do we
754 // have to flush writes in order? I don't think so... not
755 // for Alpha anyway. Maybe for x86?
756 return conflict_mshr;
757
758 // @todo Note that we ignore the ready time of the conflict here
759 }
760
761 // No conflicts; issue read
762 return miss_mshr;
763 }
764
765 // fall through... no pending requests. Try a prefetch.
766 assert(!miss_mshr && !wq_entry);
767 if (prefetcher && mshrQueue.canPrefetch() && !isBlocked()) {
768 // If we have a miss queue slot, we can try a prefetch
769 PacketPtr pkt = prefetcher->getPacket();
770 if (pkt) {
771 Addr pf_addr = pkt->getBlockAddr(blkSize);
772 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
773 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
774 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
775 // Update statistic on number of prefetches issued
776 // (hwpf_mshr_misses)
777 assert(pkt->req->masterId() < system->maxMasters());
778 stats.cmdStats(pkt).mshr_misses[pkt->req->masterId()]++;
779
780 // allocate an MSHR and return it, note
781 // that we send the packet straight away, so do not
782 // schedule the send
783 return allocateMissBuffer(pkt, curTick(), false);
784 } else {
785 // free the request and packet
786 delete pkt;
787 }
788 }
789 }
790
791 return nullptr;
792 }
793
794 bool
795 BaseCache::handleEvictions(std::vector<CacheBlk*> &evict_blks,
796 PacketList &writebacks)
797 {
798 bool replacement = false;
799 for (const auto& blk : evict_blks) {
800 if (blk->isValid()) {
801 replacement = true;
802
803 const MSHR* mshr =
804 mshrQueue.findMatch(regenerateBlkAddr(blk), blk->isSecure());
805 if (mshr) {
806 // Must be an outstanding upgrade or clean request on a block
807 // we're about to replace
808 assert((!blk->isWritable() && mshr->needsWritable()) ||
809 mshr->isCleaning());
810 return false;
811 }
812 }
813 }
814
815 // The victim will be replaced by a new entry, so increase the replacement
816 // counter if a valid block is being replaced
817 if (replacement) {
818 stats.replacements++;
819
820 // Evict valid blocks associated to this victim block
821 for (auto& blk : evict_blks) {
822 if (blk->isValid()) {
823 evictBlock(blk, writebacks);
824 }
825 }
826 }
827
828 return true;
829 }
830
831 bool
832 BaseCache::updateCompressionData(CacheBlk *blk, const uint64_t* data,
833 PacketList &writebacks)
834 {
835 // tempBlock does not exist in the tags, so don't do anything for it.
836 if (blk == tempBlock) {
837 return true;
838 }
839
840 // Get superblock of the given block
841 CompressionBlk* compression_blk = static_cast<CompressionBlk*>(blk);
842 const SuperBlk* superblock = static_cast<const SuperBlk*>(
843 compression_blk->getSectorBlock());
844
845 // The compressor is called to compress the updated data, so that its
846 // metadata can be updated.
847 std::size_t compression_size = 0;
848 Cycles compression_lat = Cycles(0);
849 Cycles decompression_lat = Cycles(0);
850 compressor->compress(data, compression_lat, decompression_lat,
851 compression_size);
852
853 // If block's compression factor increased, it may not be co-allocatable
854 // anymore. If so, some blocks might need to be evicted to make room for
855 // the bigger block
856
857 // Get previous compressed size
858 const std::size_t M5_VAR_USED prev_size = compression_blk->getSizeBits();
859
860 // Check if new data is co-allocatable
861 const bool is_co_allocatable = superblock->isCompressed(compression_blk) &&
862 superblock->canCoAllocate(compression_size);
863
864 // If block was compressed, possibly co-allocated with other blocks, and
865 // cannot be co-allocated anymore, one or more blocks must be evicted to
866 // make room for the expanded block. As of now we decide to evict the co-
867 // allocated blocks to make room for the expansion, but other approaches
868 // that take the replacement data of the superblock into account may
869 // generate better results
870 const bool was_compressed = compression_blk->isCompressed();
871 if (was_compressed && !is_co_allocatable) {
872 std::vector<CacheBlk*> evict_blks;
873 for (const auto& sub_blk : superblock->blks) {
874 if (sub_blk->isValid() && (compression_blk != sub_blk)) {
875 evict_blks.push_back(sub_blk);
876 }
877 }
878
879 // Try to evict blocks; if it fails, give up on update
880 if (!handleEvictions(evict_blks, writebacks)) {
881 return false;
882 }
883
884 // Update the number of data expansions
885 stats.dataExpansions++;
886
887 DPRINTF(CacheComp, "Data expansion: expanding [%s] from %d to %d bits"
888 "\n", blk->print(), prev_size, compression_size);
889 }
890
891 // We always store compressed blocks when possible
892 if (is_co_allocatable) {
893 compression_blk->setCompressed();
894 } else {
895 compression_blk->setUncompressed();
896 }
897 compression_blk->setSizeBits(compression_size);
898 compression_blk->setDecompressionLatency(decompression_lat);
899
900 return true;
901 }
902
903 void
904 BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
905 {
906 assert(pkt->isRequest());
907
908 assert(blk && blk->isValid());
909 // Occasionally this is not true... if we are a lower-level cache
910 // satisfying a string of Read and ReadEx requests from
911 // upper-level caches, a Read will mark the block as shared but we
912 // can satisfy a following ReadEx anyway since we can rely on the
913 // Read requester(s) to have buffered the ReadEx snoop and to
914 // invalidate their blocks after receiving them.
915 // assert(!pkt->needsWritable() || blk->isWritable());
916 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
917
918 // Check RMW operations first since both isRead() and
919 // isWrite() will be true for them
920 if (pkt->cmd == MemCmd::SwapReq) {
921 if (pkt->isAtomicOp()) {
922 // extract data from cache and save it into the data field in
923 // the packet as a return value from this atomic op
924 int offset = tags->extractBlkOffset(pkt->getAddr());
925 uint8_t *blk_data = blk->data + offset;
926 pkt->setData(blk_data);
927
928 // execute AMO operation
929 (*(pkt->getAtomicOp()))(blk_data);
930
931 // set block status to dirty
932 blk->status |= BlkDirty;
933 } else {
934 cmpAndSwap(blk, pkt);
935 }
936 } else if (pkt->isWrite()) {
937 // we have the block in a writable state and can go ahead,
938 // note that the line may be also be considered writable in
939 // downstream caches along the path to memory, but always
940 // Exclusive, and never Modified
941 assert(blk->isWritable());
942 // Write or WriteLine at the first cache with block in writable state
943 if (blk->checkWrite(pkt)) {
944 pkt->writeDataToBlock(blk->data, blkSize);
945 }
946 // Always mark the line as dirty (and thus transition to the
947 // Modified state) even if we are a failed StoreCond so we
948 // supply data to any snoops that have appended themselves to
949 // this cache before knowing the store will fail.
950 blk->status |= BlkDirty;
951 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
952 } else if (pkt->isRead()) {
953 if (pkt->isLLSC()) {
954 blk->trackLoadLocked(pkt);
955 }
956
957 // all read responses have a data payload
958 assert(pkt->hasRespData());
959 pkt->setDataFromBlock(blk->data, blkSize);
960 } else if (pkt->isUpgrade()) {
961 // sanity check
962 assert(!pkt->hasSharers());
963
964 if (blk->isDirty()) {
965 // we were in the Owned state, and a cache above us that
966 // has the line in Shared state needs to be made aware
967 // that the data it already has is in fact dirty
968 pkt->setCacheResponding();
969 blk->status &= ~BlkDirty;
970 }
971 } else if (pkt->isClean()) {
972 blk->status &= ~BlkDirty;
973 } else {
974 assert(pkt->isInvalidate());
975 invalidateBlock(blk);
976 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
977 pkt->print());
978 }
979 }
980
981 /////////////////////////////////////////////////////
982 //
983 // Access path: requests coming in from the CPU side
984 //
985 /////////////////////////////////////////////////////
986 Cycles
987 BaseCache::calculateTagOnlyLatency(const uint32_t delay,
988 const Cycles lookup_lat) const
989 {
990 // A tag-only access has to wait for the packet to arrive in order to
991 // perform the tag lookup.
992 return ticksToCycles(delay) + lookup_lat;
993 }
994
995 Cycles
996 BaseCache::calculateAccessLatency(const CacheBlk* blk, const uint32_t delay,
997 const Cycles lookup_lat) const
998 {
999 Cycles lat(0);
1000
1001 if (blk != nullptr) {
1002 // As soon as the access arrives, for sequential accesses first access
1003 // tags, then the data entry. In the case of parallel accesses the
1004 // latency is dictated by the slowest of tag and data latencies.
1005 if (sequentialAccess) {
1006 lat = ticksToCycles(delay) + lookup_lat + dataLatency;
1007 } else {
1008 lat = ticksToCycles(delay) + std::max(lookup_lat, dataLatency);
1009 }
1010
1011 // Check if the block to be accessed is available. If not, apply the
1012 // access latency on top of when the block is ready to be accessed.
1013 const Tick tick = curTick() + delay;
1014 const Tick when_ready = blk->getWhenReady();
1015 if (when_ready > tick &&
1016 ticksToCycles(when_ready - tick) > lat) {
1017 lat += ticksToCycles(when_ready - tick);
1018 }
1019 } else {
1020 // In case of a miss, we neglect the data access in a parallel
1021 // configuration (i.e., the data access will be stopped as soon as
1022 // we find out it is a miss), and use the tag-only latency.
1023 lat = calculateTagOnlyLatency(delay, lookup_lat);
1024 }
1025
1026 return lat;
1027 }
1028
1029 bool
1030 BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
1031 PacketList &writebacks)
1032 {
1033 // sanity check
1034 assert(pkt->isRequest());
1035
1036 chatty_assert(!(isReadOnly && pkt->isWrite()),
1037 "Should never see a write in a read-only cache %s\n",
1038 name());
1039
1040 // Access block in the tags
1041 Cycles tag_latency(0);
1042 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency);
1043
1044 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
1045 blk ? "hit " + blk->print() : "miss");
1046
1047 if (pkt->req->isCacheMaintenance()) {
1048 // A cache maintenance operation is always forwarded to the
1049 // memory below even if the block is found in dirty state.
1050
1051 // We defer any changes to the state of the block until we
1052 // create and mark as in service the mshr for the downstream
1053 // packet.
1054
1055 // Calculate access latency on top of when the packet arrives. This
1056 // takes into account the bus delay.
1057 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1058
1059 return false;
1060 }
1061
1062 if (pkt->isEviction()) {
1063 // We check for presence of block in above caches before issuing
1064 // Writeback or CleanEvict to write buffer. Therefore the only
1065 // possible cases can be of a CleanEvict packet coming from above
1066 // encountering a Writeback generated in this cache peer cache and
1067 // waiting in the write buffer. Cases of upper level peer caches
1068 // generating CleanEvict and Writeback or simply CleanEvict and
1069 // CleanEvict almost simultaneously will be caught by snoops sent out
1070 // by crossbar.
1071 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
1072 pkt->isSecure());
1073 if (wb_entry) {
1074 assert(wb_entry->getNumTargets() == 1);
1075 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
1076 assert(wbPkt->isWriteback());
1077
1078 if (pkt->isCleanEviction()) {
1079 // The CleanEvict and WritebackClean snoops into other
1080 // peer caches of the same level while traversing the
1081 // crossbar. If a copy of the block is found, the
1082 // packet is deleted in the crossbar. Hence, none of
1083 // the other upper level caches connected to this
1084 // cache have the block, so we can clear the
1085 // BLOCK_CACHED flag in the Writeback if set and
1086 // discard the CleanEvict by returning true.
1087 wbPkt->clearBlockCached();
1088
1089 // A clean evict does not need to access the data array
1090 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1091
1092 return true;
1093 } else {
1094 assert(pkt->cmd == MemCmd::WritebackDirty);
1095 // Dirty writeback from above trumps our clean
1096 // writeback... discard here
1097 // Note: markInService will remove entry from writeback buffer.
1098 markInService(wb_entry);
1099 delete wbPkt;
1100 }
1101 }
1102 }
1103
1104 // The critical latency part of a write depends only on the tag access
1105 if (pkt->isWrite()) {
1106 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1107 }
1108
1109 // Writeback handling is special case. We can write the block into
1110 // the cache without having a writeable copy (or any copy at all).
1111 if (pkt->isWriteback()) {
1112 assert(blkSize == pkt->getSize());
1113
1114 // we could get a clean writeback while we are having
1115 // outstanding accesses to a block, do the simple thing for
1116 // now and drop the clean writeback so that we do not upset
1117 // any ordering/decisions about ownership already taken
1118 if (pkt->cmd == MemCmd::WritebackClean &&
1119 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
1120 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
1121 "dropping\n", pkt->getAddr());
1122
1123 // A writeback searches for the block, then writes the data.
1124 // As the writeback is being dropped, the data is not touched,
1125 // and we just had to wait for the time to find a match in the
1126 // MSHR. As of now assume a mshr queue search takes as long as
1127 // a tag lookup for simplicity.
1128 return true;
1129 }
1130
1131 if (!blk) {
1132 // need to do a replacement
1133 blk = allocateBlock(pkt, writebacks);
1134 if (!blk) {
1135 // no replaceable block available: give up, fwd to next level.
1136 incMissCount(pkt);
1137 return false;
1138 }
1139
1140 blk->status |= BlkReadable;
1141 } else if (compressor) {
1142 // This is an overwrite to an existing block, therefore we need
1143 // to check for data expansion (i.e., block was compressed with
1144 // a smaller size, and now it doesn't fit the entry anymore).
1145 // If that is the case we might need to evict blocks.
1146 if (!updateCompressionData(blk, pkt->getConstPtr<uint64_t>(),
1147 writebacks)) {
1148 invalidateBlock(blk);
1149 return false;
1150 }
1151 }
1152
1153 // only mark the block dirty if we got a writeback command,
1154 // and leave it as is for a clean writeback
1155 if (pkt->cmd == MemCmd::WritebackDirty) {
1156 // TODO: the coherent cache can assert(!blk->isDirty());
1157 blk->status |= BlkDirty;
1158 }
1159 // if the packet does not have sharers, it is passing
1160 // writable, and we got the writeback in Modified or Exclusive
1161 // state, if not we are in the Owned or Shared state
1162 if (!pkt->hasSharers()) {
1163 blk->status |= BlkWritable;
1164 }
1165 // nothing else to do; writeback doesn't expect response
1166 assert(!pkt->needsResponse());
1167 pkt->writeDataToBlock(blk->data, blkSize);
1168 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1169 incHitCount(pkt);
1170
1171 // When the packet metadata arrives, the tag lookup will be done while
1172 // the payload is arriving. Then the block will be ready to access as
1173 // soon as the fill is done
1174 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1175 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
1176
1177 return true;
1178 } else if (pkt->cmd == MemCmd::CleanEvict) {
1179 // A CleanEvict does not need to access the data array
1180 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1181
1182 if (blk) {
1183 // Found the block in the tags, need to stop CleanEvict from
1184 // propagating further down the hierarchy. Returning true will
1185 // treat the CleanEvict like a satisfied write request and delete
1186 // it.
1187 return true;
1188 }
1189 // We didn't find the block here, propagate the CleanEvict further
1190 // down the memory hierarchy. Returning false will treat the CleanEvict
1191 // like a Writeback which could not find a replaceable block so has to
1192 // go to next level.
1193 return false;
1194 } else if (pkt->cmd == MemCmd::WriteClean) {
1195 // WriteClean handling is a special case. We can allocate a
1196 // block directly if it doesn't exist and we can update the
1197 // block immediately. The WriteClean transfers the ownership
1198 // of the block as well.
1199 assert(blkSize == pkt->getSize());
1200
1201 if (!blk) {
1202 if (pkt->writeThrough()) {
1203 // if this is a write through packet, we don't try to
1204 // allocate if the block is not present
1205 return false;
1206 } else {
1207 // a writeback that misses needs to allocate a new block
1208 blk = allocateBlock(pkt, writebacks);
1209 if (!blk) {
1210 // no replaceable block available: give up, fwd to
1211 // next level.
1212 incMissCount(pkt);
1213 return false;
1214 }
1215
1216 blk->status |= BlkReadable;
1217 }
1218 } else if (compressor) {
1219 // This is an overwrite to an existing block, therefore we need
1220 // to check for data expansion (i.e., block was compressed with
1221 // a smaller size, and now it doesn't fit the entry anymore).
1222 // If that is the case we might need to evict blocks.
1223 if (!updateCompressionData(blk, pkt->getConstPtr<uint64_t>(),
1224 writebacks)) {
1225 invalidateBlock(blk);
1226 return false;
1227 }
1228 }
1229
1230 // at this point either this is a writeback or a write-through
1231 // write clean operation and the block is already in this
1232 // cache, we need to update the data and the block flags
1233 assert(blk);
1234 // TODO: the coherent cache can assert(!blk->isDirty());
1235 if (!pkt->writeThrough()) {
1236 blk->status |= BlkDirty;
1237 }
1238 // nothing else to do; writeback doesn't expect response
1239 assert(!pkt->needsResponse());
1240 pkt->writeDataToBlock(blk->data, blkSize);
1241 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1242
1243 incHitCount(pkt);
1244
1245 // When the packet metadata arrives, the tag lookup will be done while
1246 // the payload is arriving. Then the block will be ready to access as
1247 // soon as the fill is done
1248 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1249 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
1250
1251 // If this a write-through packet it will be sent to cache below
1252 return !pkt->writeThrough();
1253 } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1254 blk->isReadable())) {
1255 // OK to satisfy access
1256 incHitCount(pkt);
1257
1258 // Calculate access latency based on the need to access the data array
1259 if (pkt->isRead()) {
1260 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1261
1262 // When a block is compressed, it must first be decompressed
1263 // before being read. This adds to the access latency.
1264 if (compressor) {
1265 lat += compressor->getDecompressionLatency(blk);
1266 }
1267 } else {
1268 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1269 }
1270
1271 satisfyRequest(pkt, blk);
1272 maintainClusivity(pkt->fromCache(), blk);
1273
1274 return true;
1275 }
1276
1277 // Can't satisfy access normally... either no block (blk == nullptr)
1278 // or have block but need writable
1279
1280 incMissCount(pkt);
1281
1282 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1283
1284 if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1285 // complete miss on store conditional... just give up now
1286 pkt->req->setExtraData(0);
1287 return true;
1288 }
1289
1290 return false;
1291 }
1292
1293 void
1294 BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1295 {
1296 if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1297 clusivity == Enums::mostly_excl) {
1298 // if we have responded to a cache, and our block is still
1299 // valid, but not dirty, and this cache is mostly exclusive
1300 // with respect to the cache above, drop the block
1301 invalidateBlock(blk);
1302 }
1303 }
1304
1305 CacheBlk*
1306 BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1307 bool allocate)
1308 {
1309 assert(pkt->isResponse());
1310 Addr addr = pkt->getAddr();
1311 bool is_secure = pkt->isSecure();
1312 #if TRACING_ON
1313 CacheBlk::State old_state = blk ? blk->status : 0;
1314 #endif
1315
1316 // When handling a fill, we should have no writes to this line.
1317 assert(addr == pkt->getBlockAddr(blkSize));
1318 assert(!writeBuffer.findMatch(addr, is_secure));
1319
1320 if (!blk) {
1321 // better have read new data...
1322 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
1323
1324 // need to do a replacement if allocating, otherwise we stick
1325 // with the temporary storage
1326 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1327
1328 if (!blk) {
1329 // No replaceable block or a mostly exclusive
1330 // cache... just use temporary storage to complete the
1331 // current request and then get rid of it
1332 blk = tempBlock;
1333 tempBlock->insert(addr, is_secure);
1334 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1335 is_secure ? "s" : "ns");
1336 }
1337 } else {
1338 // existing block... probably an upgrade
1339 // don't clear block status... if block is already dirty we
1340 // don't want to lose that
1341 }
1342
1343 // Block is guaranteed to be valid at this point
1344 assert(blk->isValid());
1345 assert(blk->isSecure() == is_secure);
1346 assert(regenerateBlkAddr(blk) == addr);
1347
1348 blk->status |= BlkReadable;
1349
1350 // sanity check for whole-line writes, which should always be
1351 // marked as writable as part of the fill, and then later marked
1352 // dirty as part of satisfyRequest
1353 if (pkt->cmd == MemCmd::InvalidateResp) {
1354 assert(!pkt->hasSharers());
1355 }
1356
1357 // here we deal with setting the appropriate state of the line,
1358 // and we start by looking at the hasSharers flag, and ignore the
1359 // cacheResponding flag (normally signalling dirty data) if the
1360 // packet has sharers, thus the line is never allocated as Owned
1361 // (dirty but not writable), and always ends up being either
1362 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1363 // for more details
1364 if (!pkt->hasSharers()) {
1365 // we could get a writable line from memory (rather than a
1366 // cache) even in a read-only cache, note that we set this bit
1367 // even for a read-only cache, possibly revisit this decision
1368 blk->status |= BlkWritable;
1369
1370 // check if we got this via cache-to-cache transfer (i.e., from a
1371 // cache that had the block in Modified or Owned state)
1372 if (pkt->cacheResponding()) {
1373 // we got the block in Modified state, and invalidated the
1374 // owners copy
1375 blk->status |= BlkDirty;
1376
1377 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1378 "in read-only cache %s\n", name());
1379
1380 }
1381 }
1382
1383 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1384 addr, is_secure ? "s" : "ns", old_state, blk->print());
1385
1386 // if we got new data, copy it in (checking for a read response
1387 // and a response that has data is the same in the end)
1388 if (pkt->isRead()) {
1389 // sanity checks
1390 assert(pkt->hasData());
1391 assert(pkt->getSize() == blkSize);
1392
1393 pkt->writeDataToBlock(blk->data, blkSize);
1394 }
1395 // The block will be ready when the payload arrives and the fill is done
1396 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1397 pkt->payloadDelay);
1398
1399 return blk;
1400 }
1401
1402 CacheBlk*
1403 BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1404 {
1405 // Get address
1406 const Addr addr = pkt->getAddr();
1407
1408 // Get secure bit
1409 const bool is_secure = pkt->isSecure();
1410
1411 // Block size and compression related access latency. Only relevant if
1412 // using a compressor, otherwise there is no extra delay, and the block
1413 // is fully sized
1414 std::size_t blk_size_bits = blkSize*8;
1415 Cycles compression_lat = Cycles(0);
1416 Cycles decompression_lat = Cycles(0);
1417
1418 // If a compressor is being used, it is called to compress data before
1419 // insertion. Although in Gem5 the data is stored uncompressed, even if a
1420 // compressor is used, the compression/decompression methods are called to
1421 // calculate the amount of extra cycles needed to read or write compressed
1422 // blocks.
1423 if (compressor && pkt->hasData()) {
1424 compressor->compress(pkt->getConstPtr<uint64_t>(), compression_lat,
1425 decompression_lat, blk_size_bits);
1426 }
1427
1428 // Find replacement victim
1429 std::vector<CacheBlk*> evict_blks;
1430 CacheBlk *victim = tags->findVictim(addr, is_secure, blk_size_bits,
1431 evict_blks);
1432
1433 // It is valid to return nullptr if there is no victim
1434 if (!victim)
1435 return nullptr;
1436
1437 // Print victim block's information
1438 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
1439
1440 // Try to evict blocks; if it fails, give up on allocation
1441 if (!handleEvictions(evict_blks, writebacks)) {
1442 return nullptr;
1443 }
1444
1445 // If using a compressor, set compression data. This must be done before
1446 // block insertion, as compressed tags use this information.
1447 if (compressor) {
1448 compressor->setSizeBits(victim, blk_size_bits);
1449 compressor->setDecompressionLatency(victim, decompression_lat);
1450 }
1451
1452 // Insert new block at victimized entry
1453 tags->insertBlock(pkt, victim);
1454
1455 return victim;
1456 }
1457
1458 void
1459 BaseCache::invalidateBlock(CacheBlk *blk)
1460 {
1461 // If block is still marked as prefetched, then it hasn't been used
1462 if (blk->wasPrefetched()) {
1463 stats.unusedPrefetches++;
1464 }
1465
1466 // If handling a block present in the Tags, let it do its invalidation
1467 // process, which will update stats and invalidate the block itself
1468 if (blk != tempBlock) {
1469 tags->invalidate(blk);
1470 } else {
1471 tempBlock->invalidate();
1472 }
1473 }
1474
1475 void
1476 BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks)
1477 {
1478 PacketPtr pkt = evictBlock(blk);
1479 if (pkt) {
1480 writebacks.push_back(pkt);
1481 }
1482 }
1483
1484 PacketPtr
1485 BaseCache::writebackBlk(CacheBlk *blk)
1486 {
1487 chatty_assert(!isReadOnly || writebackClean,
1488 "Writeback from read-only cache");
1489 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1490
1491 stats.writebacks[Request::wbMasterId]++;
1492
1493 RequestPtr req = std::make_shared<Request>(
1494 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1495
1496 if (blk->isSecure())
1497 req->setFlags(Request::SECURE);
1498
1499 req->taskId(blk->task_id);
1500
1501 PacketPtr pkt =
1502 new Packet(req, blk->isDirty() ?
1503 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1504
1505 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1506 pkt->print(), blk->isWritable(), blk->isDirty());
1507
1508 if (blk->isWritable()) {
1509 // not asserting shared means we pass the block in modified
1510 // state, mark our own block non-writeable
1511 blk->status &= ~BlkWritable;
1512 } else {
1513 // we are in the Owned state, tell the receiver
1514 pkt->setHasSharers();
1515 }
1516
1517 // make sure the block is not marked dirty
1518 blk->status &= ~BlkDirty;
1519
1520 pkt->allocate();
1521 pkt->setDataFromBlock(blk->data, blkSize);
1522
1523 // When a block is compressed, it must first be decompressed before being
1524 // sent for writeback.
1525 if (compressor) {
1526 pkt->payloadDelay = compressor->getDecompressionLatency(blk);
1527 }
1528
1529 return pkt;
1530 }
1531
1532 PacketPtr
1533 BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1534 {
1535 RequestPtr req = std::make_shared<Request>(
1536 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1537
1538 if (blk->isSecure()) {
1539 req->setFlags(Request::SECURE);
1540 }
1541 req->taskId(blk->task_id);
1542
1543 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1544
1545 if (dest) {
1546 req->setFlags(dest);
1547 pkt->setWriteThrough();
1548 }
1549
1550 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1551 blk->isWritable(), blk->isDirty());
1552
1553 if (blk->isWritable()) {
1554 // not asserting shared means we pass the block in modified
1555 // state, mark our own block non-writeable
1556 blk->status &= ~BlkWritable;
1557 } else {
1558 // we are in the Owned state, tell the receiver
1559 pkt->setHasSharers();
1560 }
1561
1562 // make sure the block is not marked dirty
1563 blk->status &= ~BlkDirty;
1564
1565 pkt->allocate();
1566 pkt->setDataFromBlock(blk->data, blkSize);
1567
1568 // When a block is compressed, it must first be decompressed before being
1569 // sent for writeback.
1570 if (compressor) {
1571 pkt->payloadDelay = compressor->getDecompressionLatency(blk);
1572 }
1573
1574 return pkt;
1575 }
1576
1577
1578 void
1579 BaseCache::memWriteback()
1580 {
1581 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1582 }
1583
1584 void
1585 BaseCache::memInvalidate()
1586 {
1587 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1588 }
1589
1590 bool
1591 BaseCache::isDirty() const
1592 {
1593 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1594 }
1595
1596 bool
1597 BaseCache::coalesce() const
1598 {
1599 return writeAllocator && writeAllocator->coalesce();
1600 }
1601
1602 void
1603 BaseCache::writebackVisitor(CacheBlk &blk)
1604 {
1605 if (blk.isDirty()) {
1606 assert(blk.isValid());
1607
1608 RequestPtr request = std::make_shared<Request>(
1609 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1610
1611 request->taskId(blk.task_id);
1612 if (blk.isSecure()) {
1613 request->setFlags(Request::SECURE);
1614 }
1615
1616 Packet packet(request, MemCmd::WriteReq);
1617 packet.dataStatic(blk.data);
1618
1619 memSidePort.sendFunctional(&packet);
1620
1621 blk.status &= ~BlkDirty;
1622 }
1623 }
1624
1625 void
1626 BaseCache::invalidateVisitor(CacheBlk &blk)
1627 {
1628 if (blk.isDirty())
1629 warn_once("Invalidating dirty cache lines. " \
1630 "Expect things to break.\n");
1631
1632 if (blk.isValid()) {
1633 assert(!blk.isDirty());
1634 invalidateBlock(&blk);
1635 }
1636 }
1637
1638 Tick
1639 BaseCache::nextQueueReadyTime() const
1640 {
1641 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1642 writeBuffer.nextReadyTime());
1643
1644 // Don't signal prefetch ready time if no MSHRs available
1645 // Will signal once enoguh MSHRs are deallocated
1646 if (prefetcher && mshrQueue.canPrefetch() && !isBlocked()) {
1647 nextReady = std::min(nextReady,
1648 prefetcher->nextPrefetchReadyTime());
1649 }
1650
1651 return nextReady;
1652 }
1653
1654
1655 bool
1656 BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1657 {
1658 assert(mshr);
1659
1660 // use request from 1st target
1661 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1662
1663 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1664
1665 // if the cache is in write coalescing mode or (additionally) in
1666 // no allocation mode, and we have a write packet with an MSHR
1667 // that is not a whole-line write (due to incompatible flags etc),
1668 // then reset the write mode
1669 if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
1670 if (!mshr->isWholeLineWrite()) {
1671 // if we are currently write coalescing, hold on the
1672 // MSHR as many cycles extra as we need to completely
1673 // write a cache line
1674 if (writeAllocator->delay(mshr->blkAddr)) {
1675 Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
1676 DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
1677 "for write coalescing\n", tgt_pkt->print(), delay);
1678 mshrQueue.delay(mshr, delay);
1679 return false;
1680 } else {
1681 writeAllocator->reset();
1682 }
1683 } else {
1684 writeAllocator->resetDelay(mshr->blkAddr);
1685 }
1686 }
1687
1688 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1689
1690 // either a prefetch that is not present upstream, or a normal
1691 // MSHR request, proceed to get the packet to send downstream
1692 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
1693 mshr->isWholeLineWrite());
1694
1695 mshr->isForward = (pkt == nullptr);
1696
1697 if (mshr->isForward) {
1698 // not a cache block request, but a response is expected
1699 // make copy of current packet to forward, keep current
1700 // copy for response handling
1701 pkt = new Packet(tgt_pkt, false, true);
1702 assert(!pkt->isWrite());
1703 }
1704
1705 // play it safe and append (rather than set) the sender state,
1706 // as forwarded packets may already have existing state
1707 pkt->pushSenderState(mshr);
1708
1709 if (pkt->isClean() && blk && blk->isDirty()) {
1710 // A cache clean opearation is looking for a dirty block. Mark
1711 // the packet so that the destination xbar can determine that
1712 // there will be a follow-up write packet as well.
1713 pkt->setSatisfied();
1714 }
1715
1716 if (!memSidePort.sendTimingReq(pkt)) {
1717 // we are awaiting a retry, but we
1718 // delete the packet and will be creating a new packet
1719 // when we get the opportunity
1720 delete pkt;
1721
1722 // note that we have now masked any requestBus and
1723 // schedSendEvent (we will wait for a retry before
1724 // doing anything), and this is so even if we do not
1725 // care about this packet and might override it before
1726 // it gets retried
1727 return true;
1728 } else {
1729 // As part of the call to sendTimingReq the packet is
1730 // forwarded to all neighbouring caches (and any caches
1731 // above them) as a snoop. Thus at this point we know if
1732 // any of the neighbouring caches are responding, and if
1733 // so, we know it is dirty, and we can determine if it is
1734 // being passed as Modified, making our MSHR the ordering
1735 // point
1736 bool pending_modified_resp = !pkt->hasSharers() &&
1737 pkt->cacheResponding();
1738 markInService(mshr, pending_modified_resp);
1739
1740 if (pkt->isClean() && blk && blk->isDirty()) {
1741 // A cache clean opearation is looking for a dirty
1742 // block. If a dirty block is encountered a WriteClean
1743 // will update any copies to the path to the memory
1744 // until the point of reference.
1745 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1746 __func__, pkt->print(), blk->print());
1747 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1748 pkt->id);
1749 PacketList writebacks;
1750 writebacks.push_back(wb_pkt);
1751 doWritebacks(writebacks, 0);
1752 }
1753
1754 return false;
1755 }
1756 }
1757
1758 bool
1759 BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1760 {
1761 assert(wq_entry);
1762
1763 // always a single target for write queue entries
1764 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1765
1766 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1767
1768 // forward as is, both for evictions and uncacheable writes
1769 if (!memSidePort.sendTimingReq(tgt_pkt)) {
1770 // note that we have now masked any requestBus and
1771 // schedSendEvent (we will wait for a retry before
1772 // doing anything), and this is so even if we do not
1773 // care about this packet and might override it before
1774 // it gets retried
1775 return true;
1776 } else {
1777 markInService(wq_entry);
1778 return false;
1779 }
1780 }
1781
1782 void
1783 BaseCache::serialize(CheckpointOut &cp) const
1784 {
1785 bool dirty(isDirty());
1786
1787 if (dirty) {
1788 warn("*** The cache still contains dirty data. ***\n");
1789 warn(" Make sure to drain the system using the correct flags.\n");
1790 warn(" This checkpoint will not restore correctly " \
1791 "and dirty data in the cache will be lost!\n");
1792 }
1793
1794 // Since we don't checkpoint the data in the cache, any dirty data
1795 // will be lost when restoring from a checkpoint of a system that
1796 // wasn't drained properly. Flag the checkpoint as invalid if the
1797 // cache contains dirty data.
1798 bool bad_checkpoint(dirty);
1799 SERIALIZE_SCALAR(bad_checkpoint);
1800 }
1801
1802 void
1803 BaseCache::unserialize(CheckpointIn &cp)
1804 {
1805 bool bad_checkpoint;
1806 UNSERIALIZE_SCALAR(bad_checkpoint);
1807 if (bad_checkpoint) {
1808 fatal("Restoring from checkpoints with dirty caches is not "
1809 "supported in the classic memory system. Please remove any "
1810 "caches or drain them properly before taking checkpoints.\n");
1811 }
1812 }
1813
1814
1815 BaseCache::CacheCmdStats::CacheCmdStats(BaseCache &c,
1816 const std::string &name)
1817 : Stats::Group(&c), cache(c),
1818
1819 hits(
1820 this, (name + "_hits").c_str(),
1821 ("number of " + name + " hits").c_str()),
1822 misses(
1823 this, (name + "_misses").c_str(),
1824 ("number of " + name + " misses").c_str()),
1825 missLatency(
1826 this, (name + "_miss_latency").c_str(),
1827 ("number of " + name + " miss cycles").c_str()),
1828 accesses(
1829 this, (name + "_accesses").c_str(),
1830 ("number of " + name + " accesses(hits+misses)").c_str()),
1831 missRate(
1832 this, (name + "_miss_rate").c_str(),
1833 ("miss rate for " + name + " accesses").c_str()),
1834 avgMissLatency(
1835 this, (name + "_avg_miss_latency").c_str(),
1836 ("average " + name + " miss latency").c_str()),
1837 mshr_hits(
1838 this, (name + "_mshr_hits").c_str(),
1839 ("number of " + name + " MSHR hits").c_str()),
1840 mshr_misses(
1841 this, (name + "_mshr_misses").c_str(),
1842 ("number of " + name + " MSHR misses").c_str()),
1843 mshr_uncacheable(
1844 this, (name + "_mshr_uncacheable").c_str(),
1845 ("number of " + name + " MSHR uncacheable").c_str()),
1846 mshr_miss_latency(
1847 this, (name + "_mshr_miss_latency").c_str(),
1848 ("number of " + name + " MSHR miss cycles").c_str()),
1849 mshr_uncacheable_lat(
1850 this, (name + "_mshr_uncacheable_latency").c_str(),
1851 ("number of " + name + " MSHR uncacheable cycles").c_str()),
1852 mshrMissRate(
1853 this, (name + "_mshr_miss_rate").c_str(),
1854 ("mshr miss rate for " + name + " accesses").c_str()),
1855 avgMshrMissLatency(
1856 this, (name + "_avg_mshr_miss_latency").c_str(),
1857 ("average " + name + " mshr miss latency").c_str()),
1858 avgMshrUncacheableLatency(
1859 this, (name + "_avg_mshr_uncacheable_latency").c_str(),
1860 ("average " + name + " mshr uncacheable latency").c_str())
1861 {
1862 }
1863
1864 void
1865 BaseCache::CacheCmdStats::regStatsFromParent()
1866 {
1867 using namespace Stats;
1868
1869 Stats::Group::regStats();
1870 System *system = cache.system;
1871 const auto max_masters = system->maxMasters();
1872
1873 hits
1874 .init(max_masters)
1875 .flags(total | nozero | nonan)
1876 ;
1877 for (int i = 0; i < max_masters; i++) {
1878 hits.subname(i, system->getMasterName(i));
1879 }
1880
1881 // Miss statistics
1882 misses
1883 .init(max_masters)
1884 .flags(total | nozero | nonan)
1885 ;
1886 for (int i = 0; i < max_masters; i++) {
1887 misses.subname(i, system->getMasterName(i));
1888 }
1889
1890 // Miss latency statistics
1891 missLatency
1892 .init(max_masters)
1893 .flags(total | nozero | nonan)
1894 ;
1895 for (int i = 0; i < max_masters; i++) {
1896 missLatency.subname(i, system->getMasterName(i));
1897 }
1898
1899 // access formulas
1900 accesses.flags(total | nozero | nonan);
1901 accesses = hits + misses;
1902 for (int i = 0; i < max_masters; i++) {
1903 accesses.subname(i, system->getMasterName(i));
1904 }
1905
1906 // miss rate formulas
1907 missRate.flags(total | nozero | nonan);
1908 missRate = misses / accesses;
1909 for (int i = 0; i < max_masters; i++) {
1910 missRate.subname(i, system->getMasterName(i));
1911 }
1912
1913 // miss latency formulas
1914 avgMissLatency.flags(total | nozero | nonan);
1915 avgMissLatency = missLatency / misses;
1916 for (int i = 0; i < max_masters; i++) {
1917 avgMissLatency.subname(i, system->getMasterName(i));
1918 }
1919
1920 // MSHR statistics
1921 // MSHR hit statistics
1922 mshr_hits
1923 .init(max_masters)
1924 .flags(total | nozero | nonan)
1925 ;
1926 for (int i = 0; i < max_masters; i++) {
1927 mshr_hits.subname(i, system->getMasterName(i));
1928 }
1929
1930 // MSHR miss statistics
1931 mshr_misses
1932 .init(max_masters)
1933 .flags(total | nozero | nonan)
1934 ;
1935 for (int i = 0; i < max_masters; i++) {
1936 mshr_misses.subname(i, system->getMasterName(i));
1937 }
1938
1939 // MSHR miss latency statistics
1940 mshr_miss_latency
1941 .init(max_masters)
1942 .flags(total | nozero | nonan)
1943 ;
1944 for (int i = 0; i < max_masters; i++) {
1945 mshr_miss_latency.subname(i, system->getMasterName(i));
1946 }
1947
1948 // MSHR uncacheable statistics
1949 mshr_uncacheable
1950 .init(max_masters)
1951 .flags(total | nozero | nonan)
1952 ;
1953 for (int i = 0; i < max_masters; i++) {
1954 mshr_uncacheable.subname(i, system->getMasterName(i));
1955 }
1956
1957 // MSHR miss latency statistics
1958 mshr_uncacheable_lat
1959 .init(max_masters)
1960 .flags(total | nozero | nonan)
1961 ;
1962 for (int i = 0; i < max_masters; i++) {
1963 mshr_uncacheable_lat.subname(i, system->getMasterName(i));
1964 }
1965
1966 // MSHR miss rate formulas
1967 mshrMissRate.flags(total | nozero | nonan);
1968 mshrMissRate = mshr_misses / accesses;
1969
1970 for (int i = 0; i < max_masters; i++) {
1971 mshrMissRate.subname(i, system->getMasterName(i));
1972 }
1973
1974 // mshrMiss latency formulas
1975 avgMshrMissLatency.flags(total | nozero | nonan);
1976 avgMshrMissLatency = mshr_miss_latency / mshr_misses;
1977 for (int i = 0; i < max_masters; i++) {
1978 avgMshrMissLatency.subname(i, system->getMasterName(i));
1979 }
1980
1981 // mshrUncacheable latency formulas
1982 avgMshrUncacheableLatency.flags(total | nozero | nonan);
1983 avgMshrUncacheableLatency = mshr_uncacheable_lat / mshr_uncacheable;
1984 for (int i = 0; i < max_masters; i++) {
1985 avgMshrUncacheableLatency.subname(i, system->getMasterName(i));
1986 }
1987 }
1988
1989 BaseCache::CacheStats::CacheStats(BaseCache &c)
1990 : Stats::Group(&c), cache(c),
1991
1992 demandHits(this, "demand_hits", "number of demand (read+write) hits"),
1993
1994 overallHits(this, "overall_hits", "number of overall hits"),
1995 demandMisses(this, "demand_misses",
1996 "number of demand (read+write) misses"),
1997 overallMisses(this, "overall_misses", "number of overall misses"),
1998 demandMissLatency(this, "demand_miss_latency",
1999 "number of demand (read+write) miss cycles"),
2000 overallMissLatency(this, "overall_miss_latency",
2001 "number of overall miss cycles"),
2002 demandAccesses(this, "demand_accesses",
2003 "number of demand (read+write) accesses"),
2004 overallAccesses(this, "overall_accesses",
2005 "number of overall (read+write) accesses"),
2006 demandMissRate(this, "demand_miss_rate",
2007 "miss rate for demand accesses"),
2008 overallMissRate(this, "overall_miss_rate",
2009 "miss rate for overall accesses"),
2010 demandAvgMissLatency(this, "demand_avg_miss_latency",
2011 "average overall miss latency"),
2012 overallAvgMissLatency(this, "overall_avg_miss_latency",
2013 "average overall miss latency"),
2014 blocked_cycles(this, "blocked_cycles",
2015 "number of cycles access was blocked"),
2016 blocked_causes(this, "blocked", "number of cycles access was blocked"),
2017 avg_blocked(this, "avg_blocked_cycles",
2018 "average number of cycles each access was blocked"),
2019 unusedPrefetches(this, "unused_prefetches",
2020 "number of HardPF blocks evicted w/o reference"),
2021 writebacks(this, "writebacks", "number of writebacks"),
2022 demandMshrHits(this, "demand_mshr_hits",
2023 "number of demand (read+write) MSHR hits"),
2024 overallMshrHits(this, "overall_mshr_hits",
2025 "number of overall MSHR hits"),
2026 demandMshrMisses(this, "demand_mshr_misses",
2027 "number of demand (read+write) MSHR misses"),
2028 overallMshrMisses(this, "overall_mshr_misses",
2029 "number of overall MSHR misses"),
2030 overallMshrUncacheable(this, "overall_mshr_uncacheable_misses",
2031 "number of overall MSHR uncacheable misses"),
2032 demandMshrMissLatency(this, "demand_mshr_miss_latency",
2033 "number of demand (read+write) MSHR miss cycles"),
2034 overallMshrMissLatency(this, "overall_mshr_miss_latency",
2035 "number of overall MSHR miss cycles"),
2036 overallMshrUncacheableLatency(this, "overall_mshr_uncacheable_latency",
2037 "number of overall MSHR uncacheable cycles"),
2038 demandMshrMissRate(this, "demand_mshr_miss_rate",
2039 "mshr miss rate for demand accesses"),
2040 overallMshrMissRate(this, "overall_mshr_miss_rate",
2041 "mshr miss rate for overall accesses"),
2042 demandAvgMshrMissLatency(this, "demand_avg_mshr_miss_latency",
2043 "average overall mshr miss latency"),
2044 overallAvgMshrMissLatency(this, "overall_avg_mshr_miss_latency",
2045 "average overall mshr miss latency"),
2046 overallAvgMshrUncacheableLatency(
2047 this, "overall_avg_mshr_uncacheable_latency",
2048 "average overall mshr uncacheable latency"),
2049 replacements(this, "replacements", "number of replacements"),
2050
2051 dataExpansions(this, "data_expansions", "number of data expansions"),
2052 cmd(MemCmd::NUM_MEM_CMDS)
2053 {
2054 for (int idx = 0; idx < MemCmd::NUM_MEM_CMDS; ++idx)
2055 cmd[idx].reset(new CacheCmdStats(c, MemCmd(idx).toString()));
2056 }
2057
2058 void
2059 BaseCache::CacheStats::regStats()
2060 {
2061 using namespace Stats;
2062
2063 Stats::Group::regStats();
2064
2065 System *system = cache.system;
2066 const auto max_masters = system->maxMasters();
2067
2068 for (auto &cs : cmd)
2069 cs->regStatsFromParent();
2070
2071 // These macros make it easier to sum the right subset of commands and
2072 // to change the subset of commands that are considered "demand" vs
2073 // "non-demand"
2074 #define SUM_DEMAND(s) \
2075 (cmd[MemCmd::ReadReq]->s + cmd[MemCmd::WriteReq]->s + \
2076 cmd[MemCmd::WriteLineReq]->s + cmd[MemCmd::ReadExReq]->s + \
2077 cmd[MemCmd::ReadCleanReq]->s + cmd[MemCmd::ReadSharedReq]->s)
2078
2079 // should writebacks be included here? prior code was inconsistent...
2080 #define SUM_NON_DEMAND(s) \
2081 (cmd[MemCmd::SoftPFReq]->s + cmd[MemCmd::HardPFReq]->s + \
2082 cmd[MemCmd::SoftPFExReq]->s)
2083
2084 demandHits.flags(total | nozero | nonan);
2085 demandHits = SUM_DEMAND(hits);
2086 for (int i = 0; i < max_masters; i++) {
2087 demandHits.subname(i, system->getMasterName(i));
2088 }
2089
2090 overallHits.flags(total | nozero | nonan);
2091 overallHits = demandHits + SUM_NON_DEMAND(hits);
2092 for (int i = 0; i < max_masters; i++) {
2093 overallHits.subname(i, system->getMasterName(i));
2094 }
2095
2096 demandMisses.flags(total | nozero | nonan);
2097 demandMisses = SUM_DEMAND(misses);
2098 for (int i = 0; i < max_masters; i++) {
2099 demandMisses.subname(i, system->getMasterName(i));
2100 }
2101
2102 overallMisses.flags(total | nozero | nonan);
2103 overallMisses = demandMisses + SUM_NON_DEMAND(misses);
2104 for (int i = 0; i < max_masters; i++) {
2105 overallMisses.subname(i, system->getMasterName(i));
2106 }
2107
2108 demandMissLatency.flags(total | nozero | nonan);
2109 demandMissLatency = SUM_DEMAND(missLatency);
2110 for (int i = 0; i < max_masters; i++) {
2111 demandMissLatency.subname(i, system->getMasterName(i));
2112 }
2113
2114 overallMissLatency.flags(total | nozero | nonan);
2115 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
2116 for (int i = 0; i < max_masters; i++) {
2117 overallMissLatency.subname(i, system->getMasterName(i));
2118 }
2119
2120 demandAccesses.flags(total | nozero | nonan);
2121 demandAccesses = demandHits + demandMisses;
2122 for (int i = 0; i < max_masters; i++) {
2123 demandAccesses.subname(i, system->getMasterName(i));
2124 }
2125
2126 overallAccesses.flags(total | nozero | nonan);
2127 overallAccesses = overallHits + overallMisses;
2128 for (int i = 0; i < max_masters; i++) {
2129 overallAccesses.subname(i, system->getMasterName(i));
2130 }
2131
2132 demandMissRate.flags(total | nozero | nonan);
2133 demandMissRate = demandMisses / demandAccesses;
2134 for (int i = 0; i < max_masters; i++) {
2135 demandMissRate.subname(i, system->getMasterName(i));
2136 }
2137
2138 overallMissRate.flags(total | nozero | nonan);
2139 overallMissRate = overallMisses / overallAccesses;
2140 for (int i = 0; i < max_masters; i++) {
2141 overallMissRate.subname(i, system->getMasterName(i));
2142 }
2143
2144 demandAvgMissLatency.flags(total | nozero | nonan);
2145 demandAvgMissLatency = demandMissLatency / demandMisses;
2146 for (int i = 0; i < max_masters; i++) {
2147 demandAvgMissLatency.subname(i, system->getMasterName(i));
2148 }
2149
2150 overallAvgMissLatency.flags(total | nozero | nonan);
2151 overallAvgMissLatency = overallMissLatency / overallMisses;
2152 for (int i = 0; i < max_masters; i++) {
2153 overallAvgMissLatency.subname(i, system->getMasterName(i));
2154 }
2155
2156 blocked_cycles.init(NUM_BLOCKED_CAUSES);
2157 blocked_cycles
2158 .subname(Blocked_NoMSHRs, "no_mshrs")
2159 .subname(Blocked_NoTargets, "no_targets")
2160 ;
2161
2162
2163 blocked_causes.init(NUM_BLOCKED_CAUSES);
2164 blocked_causes
2165 .subname(Blocked_NoMSHRs, "no_mshrs")
2166 .subname(Blocked_NoTargets, "no_targets")
2167 ;
2168
2169 avg_blocked
2170 .subname(Blocked_NoMSHRs, "no_mshrs")
2171 .subname(Blocked_NoTargets, "no_targets")
2172 ;
2173 avg_blocked = blocked_cycles / blocked_causes;
2174
2175 unusedPrefetches.flags(nozero);
2176
2177 writebacks
2178 .init(max_masters)
2179 .flags(total | nozero | nonan)
2180 ;
2181 for (int i = 0; i < max_masters; i++) {
2182 writebacks.subname(i, system->getMasterName(i));
2183 }
2184
2185 demandMshrHits.flags(total | nozero | nonan);
2186 demandMshrHits = SUM_DEMAND(mshr_hits);
2187 for (int i = 0; i < max_masters; i++) {
2188 demandMshrHits.subname(i, system->getMasterName(i));
2189 }
2190
2191 overallMshrHits.flags(total | nozero | nonan);
2192 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
2193 for (int i = 0; i < max_masters; i++) {
2194 overallMshrHits.subname(i, system->getMasterName(i));
2195 }
2196
2197 demandMshrMisses.flags(total | nozero | nonan);
2198 demandMshrMisses = SUM_DEMAND(mshr_misses);
2199 for (int i = 0; i < max_masters; i++) {
2200 demandMshrMisses.subname(i, system->getMasterName(i));
2201 }
2202
2203 overallMshrMisses.flags(total | nozero | nonan);
2204 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
2205 for (int i = 0; i < max_masters; i++) {
2206 overallMshrMisses.subname(i, system->getMasterName(i));
2207 }
2208
2209 demandMshrMissLatency.flags(total | nozero | nonan);
2210 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
2211 for (int i = 0; i < max_masters; i++) {
2212 demandMshrMissLatency.subname(i, system->getMasterName(i));
2213 }
2214
2215 overallMshrMissLatency.flags(total | nozero | nonan);
2216 overallMshrMissLatency =
2217 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
2218 for (int i = 0; i < max_masters; i++) {
2219 overallMshrMissLatency.subname(i, system->getMasterName(i));
2220 }
2221
2222 overallMshrUncacheable.flags(total | nozero | nonan);
2223 overallMshrUncacheable =
2224 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
2225 for (int i = 0; i < max_masters; i++) {
2226 overallMshrUncacheable.subname(i, system->getMasterName(i));
2227 }
2228
2229
2230 overallMshrUncacheableLatency.flags(total | nozero | nonan);
2231 overallMshrUncacheableLatency =
2232 SUM_DEMAND(mshr_uncacheable_lat) +
2233 SUM_NON_DEMAND(mshr_uncacheable_lat);
2234 for (int i = 0; i < max_masters; i++) {
2235 overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2236 }
2237
2238 demandMshrMissRate.flags(total | nozero | nonan);
2239 demandMshrMissRate = demandMshrMisses / demandAccesses;
2240 for (int i = 0; i < max_masters; i++) {
2241 demandMshrMissRate.subname(i, system->getMasterName(i));
2242 }
2243
2244 overallMshrMissRate.flags(total | nozero | nonan);
2245 overallMshrMissRate = overallMshrMisses / overallAccesses;
2246 for (int i = 0; i < max_masters; i++) {
2247 overallMshrMissRate.subname(i, system->getMasterName(i));
2248 }
2249
2250 demandAvgMshrMissLatency.flags(total | nozero | nonan);
2251 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2252 for (int i = 0; i < max_masters; i++) {
2253 demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2254 }
2255
2256 overallAvgMshrMissLatency.flags(total | nozero | nonan);
2257 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2258 for (int i = 0; i < max_masters; i++) {
2259 overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2260 }
2261
2262 overallAvgMshrUncacheableLatency.flags(total | nozero | nonan);
2263 overallAvgMshrUncacheableLatency =
2264 overallMshrUncacheableLatency / overallMshrUncacheable;
2265 for (int i = 0; i < max_masters; i++) {
2266 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2267 }
2268
2269 dataExpansions.flags(nozero | nonan);
2270 }
2271
2272 void
2273 BaseCache::regProbePoints()
2274 {
2275 ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit");
2276 ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss");
2277 ppFill = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Fill");
2278 }
2279
2280 ///////////////
2281 //
2282 // CpuSidePort
2283 //
2284 ///////////////
2285 bool
2286 BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2287 {
2288 // Snoops shouldn't happen when bypassing caches
2289 assert(!cache->system->bypassCaches());
2290
2291 assert(pkt->isResponse());
2292
2293 // Express snoop responses from master to slave, e.g., from L1 to L2
2294 cache->recvTimingSnoopResp(pkt);
2295 return true;
2296 }
2297
2298
2299 bool
2300 BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2301 {
2302 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2303 // always let express snoop packets through even if blocked
2304 return true;
2305 } else if (blocked || mustSendRetry) {
2306 // either already committed to send a retry, or blocked
2307 mustSendRetry = true;
2308 return false;
2309 }
2310 mustSendRetry = false;
2311 return true;
2312 }
2313
2314 bool
2315 BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2316 {
2317 assert(pkt->isRequest());
2318
2319 if (cache->system->bypassCaches()) {
2320 // Just forward the packet if caches are disabled.
2321 // @todo This should really enqueue the packet rather
2322 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2323 assert(success);
2324 return true;
2325 } else if (tryTiming(pkt)) {
2326 cache->recvTimingReq(pkt);
2327 return true;
2328 }
2329 return false;
2330 }
2331
2332 Tick
2333 BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2334 {
2335 if (cache->system->bypassCaches()) {
2336 // Forward the request if the system is in cache bypass mode.
2337 return cache->memSidePort.sendAtomic(pkt);
2338 } else {
2339 return cache->recvAtomic(pkt);
2340 }
2341 }
2342
2343 void
2344 BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2345 {
2346 if (cache->system->bypassCaches()) {
2347 // The cache should be flushed if we are in cache bypass mode,
2348 // so we don't need to check if we need to update anything.
2349 cache->memSidePort.sendFunctional(pkt);
2350 return;
2351 }
2352
2353 // functional request
2354 cache->functionalAccess(pkt, true);
2355 }
2356
2357 AddrRangeList
2358 BaseCache::CpuSidePort::getAddrRanges() const
2359 {
2360 return cache->getAddrRanges();
2361 }
2362
2363
2364 BaseCache::
2365 CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2366 const std::string &_label)
2367 : CacheSlavePort(_name, _cache, _label), cache(_cache)
2368 {
2369 }
2370
2371 ///////////////
2372 //
2373 // MemSidePort
2374 //
2375 ///////////////
2376 bool
2377 BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2378 {
2379 cache->recvTimingResp(pkt);
2380 return true;
2381 }
2382
2383 // Express snooping requests to memside port
2384 void
2385 BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2386 {
2387 // Snoops shouldn't happen when bypassing caches
2388 assert(!cache->system->bypassCaches());
2389
2390 // handle snooping requests
2391 cache->recvTimingSnoopReq(pkt);
2392 }
2393
2394 Tick
2395 BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2396 {
2397 // Snoops shouldn't happen when bypassing caches
2398 assert(!cache->system->bypassCaches());
2399
2400 return cache->recvAtomicSnoop(pkt);
2401 }
2402
2403 void
2404 BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2405 {
2406 // Snoops shouldn't happen when bypassing caches
2407 assert(!cache->system->bypassCaches());
2408
2409 // functional snoop (note that in contrast to atomic we don't have
2410 // a specific functionalSnoop method, as they have the same
2411 // behaviour regardless)
2412 cache->functionalAccess(pkt, false);
2413 }
2414
2415 void
2416 BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2417 {
2418 // sanity check
2419 assert(!waitingOnRetry);
2420
2421 // there should never be any deferred request packets in the
2422 // queue, instead we resly on the cache to provide the packets
2423 // from the MSHR queue or write queue
2424 assert(deferredPacketReadyTime() == MaxTick);
2425
2426 // check for request packets (requests & writebacks)
2427 QueueEntry* entry = cache.getNextQueueEntry();
2428
2429 if (!entry) {
2430 // can happen if e.g. we attempt a writeback and fail, but
2431 // before the retry, the writeback is eliminated because
2432 // we snoop another cache's ReadEx.
2433 } else {
2434 // let our snoop responses go first if there are responses to
2435 // the same addresses
2436 if (checkConflictingSnoop(entry->getTarget()->pkt)) {
2437 return;
2438 }
2439 waitingOnRetry = entry->sendPacket(cache);
2440 }
2441
2442 // if we succeeded and are not waiting for a retry, schedule the
2443 // next send considering when the next queue is ready, note that
2444 // snoop responses have their own packet queue and thus schedule
2445 // their own events
2446 if (!waitingOnRetry) {
2447 schedSendEvent(cache.nextQueueReadyTime());
2448 }
2449 }
2450
2451 BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2452 BaseCache *_cache,
2453 const std::string &_label)
2454 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2455 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2456 _snoopRespQueue(*_cache, *this, true, _label), cache(_cache)
2457 {
2458 }
2459
2460 void
2461 WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
2462 Addr blk_addr)
2463 {
2464 // check if we are continuing where the last write ended
2465 if (nextAddr == write_addr) {
2466 delayCtr[blk_addr] = delayThreshold;
2467 // stop if we have already saturated
2468 if (mode != WriteMode::NO_ALLOCATE) {
2469 byteCount += write_size;
2470 // switch to streaming mode if we have passed the lower
2471 // threshold
2472 if (mode == WriteMode::ALLOCATE &&
2473 byteCount > coalesceLimit) {
2474 mode = WriteMode::COALESCE;
2475 DPRINTF(Cache, "Switched to write coalescing\n");
2476 } else if (mode == WriteMode::COALESCE &&
2477 byteCount > noAllocateLimit) {
2478 // and continue and switch to non-allocating mode if we
2479 // pass the upper threshold
2480 mode = WriteMode::NO_ALLOCATE;
2481 DPRINTF(Cache, "Switched to write-no-allocate\n");
2482 }
2483 }
2484 } else {
2485 // we did not see a write matching the previous one, start
2486 // over again
2487 byteCount = write_size;
2488 mode = WriteMode::ALLOCATE;
2489 resetDelay(blk_addr);
2490 }
2491 nextAddr = write_addr + write_size;
2492 }
2493
2494 WriteAllocator*
2495 WriteAllocatorParams::create()
2496 {
2497 return new WriteAllocator(this);
2498 }