cpu-o3: Make the smtCommitPolicy a Param.ScopedEnum
[gem5.git] / src / mem / cache / base.cc
1 /*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 * Nikos Nikoleris
42 */
43
44 /**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49 #include "mem/cache/base.hh"
50
51 #include "base/compiler.hh"
52 #include "base/logging.hh"
53 #include "debug/Cache.hh"
54 #include "debug/CachePort.hh"
55 #include "debug/CacheRepl.hh"
56 #include "debug/CacheVerbose.hh"
57 #include "mem/cache/mshr.hh"
58 #include "mem/cache/prefetch/base.hh"
59 #include "mem/cache/queue_entry.hh"
60 #include "params/BaseCache.hh"
61 #include "params/WriteAllocator.hh"
62 #include "sim/core.hh"
63
64 class BaseMasterPort;
65 class BaseSlavePort;
66
67 using namespace std;
68
69 BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
70 BaseCache *_cache,
71 const std::string &_label)
72 : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label),
73 blocked(false), mustSendRetry(false),
74 sendRetryEvent([this]{ processSendRetry(); }, _name)
75 {
76 }
77
78 BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
79 : MemObject(p),
80 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
81 memSidePort(p->name + ".mem_side", this, "MemSidePort"),
82 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
83 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
84 tags(p->tags),
85 prefetcher(p->prefetcher),
86 writeAllocator(p->write_allocator),
87 writebackClean(p->writeback_clean),
88 tempBlockWriteback(nullptr),
89 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
90 name(), false,
91 EventBase::Delayed_Writeback_Pri),
92 blkSize(blk_size),
93 lookupLatency(p->tag_latency),
94 dataLatency(p->data_latency),
95 forwardLatency(p->tag_latency),
96 fillLatency(p->data_latency),
97 responseLatency(p->response_latency),
98 sequentialAccess(p->sequential_access),
99 numTarget(p->tgts_per_mshr),
100 forwardSnoops(true),
101 clusivity(p->clusivity),
102 isReadOnly(p->is_read_only),
103 blocked(0),
104 order(0),
105 noTargetMSHR(nullptr),
106 missCount(p->max_miss_count),
107 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
108 system(p->system)
109 {
110 // the MSHR queue has no reserve entries as we check the MSHR
111 // queue on every single allocation, whereas the write queue has
112 // as many reserve entries as we have MSHRs, since every MSHR may
113 // eventually require a writeback, and we do not check the write
114 // buffer before committing to an MSHR
115
116 // forward snoops is overridden in init() once we can query
117 // whether the connected master is actually snooping or not
118
119 tempBlock = new TempCacheBlk(blkSize);
120
121 tags->tagsInit();
122 if (prefetcher)
123 prefetcher->setCache(this);
124 }
125
126 BaseCache::~BaseCache()
127 {
128 delete tempBlock;
129 }
130
131 void
132 BaseCache::CacheSlavePort::setBlocked()
133 {
134 assert(!blocked);
135 DPRINTF(CachePort, "Port is blocking new requests\n");
136 blocked = true;
137 // if we already scheduled a retry in this cycle, but it has not yet
138 // happened, cancel it
139 if (sendRetryEvent.scheduled()) {
140 owner.deschedule(sendRetryEvent);
141 DPRINTF(CachePort, "Port descheduled retry\n");
142 mustSendRetry = true;
143 }
144 }
145
146 void
147 BaseCache::CacheSlavePort::clearBlocked()
148 {
149 assert(blocked);
150 DPRINTF(CachePort, "Port is accepting new requests\n");
151 blocked = false;
152 if (mustSendRetry) {
153 // @TODO: need to find a better time (next cycle?)
154 owner.schedule(sendRetryEvent, curTick() + 1);
155 }
156 }
157
158 void
159 BaseCache::CacheSlavePort::processSendRetry()
160 {
161 DPRINTF(CachePort, "Port is sending retry\n");
162
163 // reset the flag and call retry
164 mustSendRetry = false;
165 sendRetryReq();
166 }
167
168 Addr
169 BaseCache::regenerateBlkAddr(CacheBlk* blk)
170 {
171 if (blk != tempBlock) {
172 return tags->regenerateBlkAddr(blk);
173 } else {
174 return tempBlock->getAddr();
175 }
176 }
177
178 void
179 BaseCache::init()
180 {
181 if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
182 fatal("Cache ports on %s are not connected\n", name());
183 cpuSidePort.sendRangeChange();
184 forwardSnoops = cpuSidePort.isSnooping();
185 }
186
187 BaseMasterPort &
188 BaseCache::getMasterPort(const std::string &if_name, PortID idx)
189 {
190 if (if_name == "mem_side") {
191 return memSidePort;
192 } else {
193 return MemObject::getMasterPort(if_name, idx);
194 }
195 }
196
197 BaseSlavePort &
198 BaseCache::getSlavePort(const std::string &if_name, PortID idx)
199 {
200 if (if_name == "cpu_side") {
201 return cpuSidePort;
202 } else {
203 return MemObject::getSlavePort(if_name, idx);
204 }
205 }
206
207 bool
208 BaseCache::inRange(Addr addr) const
209 {
210 for (const auto& r : addrRanges) {
211 if (r.contains(addr)) {
212 return true;
213 }
214 }
215 return false;
216 }
217
218 void
219 BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
220 {
221 if (pkt->needsResponse()) {
222 pkt->makeTimingResponse();
223 // @todo: Make someone pay for this
224 pkt->headerDelay = pkt->payloadDelay = 0;
225
226 // In this case we are considering request_time that takes
227 // into account the delay of the xbar, if any, and just
228 // lat, neglecting responseLatency, modelling hit latency
229 // just as the value of lat overriden by access(), which calls
230 // the calculateAccessLatency() function.
231 cpuSidePort.schedTimingResp(pkt, request_time, true);
232 } else {
233 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
234 pkt->print());
235
236 // queue the packet for deletion, as the sending cache is
237 // still relying on it; if the block is found in access(),
238 // CleanEvict and Writeback messages will be deleted
239 // here as well
240 pendingDelete.reset(pkt);
241 }
242 }
243
244 void
245 BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
246 Tick forward_time, Tick request_time)
247 {
248 if (writeAllocator &&
249 pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
250 writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
251 pkt->getBlockAddr(blkSize));
252 }
253
254 if (mshr) {
255 /// MSHR hit
256 /// @note writebacks will be checked in getNextMSHR()
257 /// for any conflicting requests to the same block
258
259 //@todo remove hw_pf here
260
261 // Coalesce unless it was a software prefetch (see above).
262 if (pkt) {
263 assert(!pkt->isWriteback());
264 // CleanEvicts corresponding to blocks which have
265 // outstanding requests in MSHRs are simply sunk here
266 if (pkt->cmd == MemCmd::CleanEvict) {
267 pendingDelete.reset(pkt);
268 } else if (pkt->cmd == MemCmd::WriteClean) {
269 // A WriteClean should never coalesce with any
270 // outstanding cache maintenance requests.
271
272 // We use forward_time here because there is an
273 // uncached memory write, forwarded to WriteBuffer.
274 allocateWriteBuffer(pkt, forward_time);
275 } else {
276 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
277 pkt->print());
278
279 assert(pkt->req->masterId() < system->maxMasters());
280 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
281
282 // We use forward_time here because it is the same
283 // considering new targets. We have multiple
284 // requests for the same address here. It
285 // specifies the latency to allocate an internal
286 // buffer and to schedule an event to the queued
287 // port and also takes into account the additional
288 // delay of the xbar.
289 mshr->allocateTarget(pkt, forward_time, order++,
290 allocOnFill(pkt->cmd));
291 if (mshr->getNumTargets() == numTarget) {
292 noTargetMSHR = mshr;
293 setBlocked(Blocked_NoTargets);
294 // need to be careful with this... if this mshr isn't
295 // ready yet (i.e. time > curTick()), we don't want to
296 // move it ahead of mshrs that are ready
297 // mshrQueue.moveToFront(mshr);
298 }
299 }
300 }
301 } else {
302 // no MSHR
303 assert(pkt->req->masterId() < system->maxMasters());
304 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
305
306 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
307 // We use forward_time here because there is an
308 // writeback or writeclean, forwarded to WriteBuffer.
309 allocateWriteBuffer(pkt, forward_time);
310 } else {
311 if (blk && blk->isValid()) {
312 // If we have a write miss to a valid block, we
313 // need to mark the block non-readable. Otherwise
314 // if we allow reads while there's an outstanding
315 // write miss, the read could return stale data
316 // out of the cache block... a more aggressive
317 // system could detect the overlap (if any) and
318 // forward data out of the MSHRs, but we don't do
319 // that yet. Note that we do need to leave the
320 // block valid so that it stays in the cache, in
321 // case we get an upgrade response (and hence no
322 // new data) when the write miss completes.
323 // As long as CPUs do proper store/load forwarding
324 // internally, and have a sufficiently weak memory
325 // model, this is probably unnecessary, but at some
326 // point it must have seemed like we needed it...
327 assert((pkt->needsWritable() && !blk->isWritable()) ||
328 pkt->req->isCacheMaintenance());
329 blk->status &= ~BlkReadable;
330 }
331 // Here we are using forward_time, modelling the latency of
332 // a miss (outbound) just as forwardLatency, neglecting the
333 // lookupLatency component.
334 allocateMissBuffer(pkt, forward_time);
335 }
336 }
337 }
338
339 void
340 BaseCache::recvTimingReq(PacketPtr pkt)
341 {
342 // anything that is merely forwarded pays for the forward latency and
343 // the delay provided by the crossbar
344 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
345
346 Cycles lat;
347 CacheBlk *blk = nullptr;
348 bool satisfied = false;
349 {
350 PacketList writebacks;
351 // Note that lat is passed by reference here. The function
352 // access() will set the lat value.
353 satisfied = access(pkt, blk, lat, writebacks);
354
355 // copy writebacks to write buffer here to ensure they logically
356 // precede anything happening below
357 doWritebacks(writebacks, forward_time);
358 }
359
360 // Here we charge the headerDelay that takes into account the latencies
361 // of the bus, if the packet comes from it.
362 // The latency charged is just the value set by the access() function.
363 // In case of a hit we are neglecting response latency.
364 // In case of a miss we are neglecting forward latency.
365 Tick request_time = clockEdge(lat) + pkt->headerDelay;
366 // Here we reset the timing of the packet.
367 pkt->headerDelay = pkt->payloadDelay = 0;
368
369 if (satisfied) {
370 // notify before anything else as later handleTimingReqHit might turn
371 // the packet in a response
372 ppHit->notify(pkt);
373
374 if (prefetcher && blk && blk->wasPrefetched()) {
375 blk->status &= ~BlkHWPrefetched;
376 }
377
378 handleTimingReqHit(pkt, blk, request_time);
379 } else {
380 handleTimingReqMiss(pkt, blk, forward_time, request_time);
381
382 ppMiss->notify(pkt);
383 }
384
385 if (prefetcher) {
386 // track time of availability of next prefetch, if any
387 Tick next_pf_time = prefetcher->nextPrefetchReadyTime();
388 if (next_pf_time != MaxTick) {
389 schedMemSideSendEvent(next_pf_time);
390 }
391 }
392 }
393
394 void
395 BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
396 {
397 Tick completion_time = clockEdge(responseLatency) +
398 pkt->headerDelay + pkt->payloadDelay;
399
400 // Reset the bus additional time as it is now accounted for
401 pkt->headerDelay = pkt->payloadDelay = 0;
402
403 cpuSidePort.schedTimingResp(pkt, completion_time, true);
404 }
405
406 void
407 BaseCache::recvTimingResp(PacketPtr pkt)
408 {
409 assert(pkt->isResponse());
410
411 // all header delay should be paid for by the crossbar, unless
412 // this is a prefetch response from above
413 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
414 "%s saw a non-zero packet delay\n", name());
415
416 const bool is_error = pkt->isError();
417
418 if (is_error) {
419 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
420 pkt->print());
421 }
422
423 DPRINTF(Cache, "%s: Handling response %s\n", __func__,
424 pkt->print());
425
426 // if this is a write, we should be looking at an uncacheable
427 // write
428 if (pkt->isWrite()) {
429 assert(pkt->req->isUncacheable());
430 handleUncacheableWriteResp(pkt);
431 return;
432 }
433
434 // we have dealt with any (uncacheable) writes above, from here on
435 // we know we are dealing with an MSHR due to a miss or a prefetch
436 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
437 assert(mshr);
438
439 if (mshr == noTargetMSHR) {
440 // we always clear at least one target
441 clearBlocked(Blocked_NoTargets);
442 noTargetMSHR = nullptr;
443 }
444
445 // Initial target is used just for stats
446 MSHR::Target *initial_tgt = mshr->getTarget();
447 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
448 Tick miss_latency = curTick() - initial_tgt->recvTime;
449
450 if (pkt->req->isUncacheable()) {
451 assert(pkt->req->masterId() < system->maxMasters());
452 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
453 miss_latency;
454 } else {
455 assert(pkt->req->masterId() < system->maxMasters());
456 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
457 miss_latency;
458 }
459
460 PacketList writebacks;
461
462 bool is_fill = !mshr->isForward &&
463 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
464 mshr->wasWholeLineWrite);
465
466 // make sure that if the mshr was due to a whole line write then
467 // the response is an invalidation
468 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
469
470 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
471
472 if (is_fill && !is_error) {
473 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
474 pkt->getAddr());
475
476 const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
477 writeAllocator->allocate() : mshr->allocOnFill();
478 blk = handleFill(pkt, blk, writebacks, allocate);
479 assert(blk != nullptr);
480 }
481
482 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
483 // The block was marked not readable while there was a pending
484 // cache maintenance operation, restore its flag.
485 blk->status |= BlkReadable;
486
487 // This was a cache clean operation (without invalidate)
488 // and we have a copy of the block already. Since there
489 // is no invalidation, we can promote targets that don't
490 // require a writable copy
491 mshr->promoteReadable();
492 }
493
494 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
495 // If at this point the referenced block is writable and the
496 // response is not a cache invalidate, we promote targets that
497 // were deferred as we couldn't guarrantee a writable copy
498 mshr->promoteWritable();
499 }
500
501 serviceMSHRTargets(mshr, pkt, blk);
502
503 if (mshr->promoteDeferredTargets()) {
504 // avoid later read getting stale data while write miss is
505 // outstanding.. see comment in timingAccess()
506 if (blk) {
507 blk->status &= ~BlkReadable;
508 }
509 mshrQueue.markPending(mshr);
510 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
511 } else {
512 // while we deallocate an mshr from the queue we still have to
513 // check the isFull condition before and after as we might
514 // have been using the reserved entries already
515 const bool was_full = mshrQueue.isFull();
516 mshrQueue.deallocate(mshr);
517 if (was_full && !mshrQueue.isFull()) {
518 clearBlocked(Blocked_NoMSHRs);
519 }
520
521 // Request the bus for a prefetch if this deallocation freed enough
522 // MSHRs for a prefetch to take place
523 if (prefetcher && mshrQueue.canPrefetch()) {
524 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
525 clockEdge());
526 if (next_pf_time != MaxTick)
527 schedMemSideSendEvent(next_pf_time);
528 }
529 }
530
531 // if we used temp block, check to see if its valid and then clear it out
532 if (blk == tempBlock && tempBlock->isValid()) {
533 evictBlock(blk, writebacks);
534 }
535
536 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
537 // copy writebacks to write buffer
538 doWritebacks(writebacks, forward_time);
539
540 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
541 delete pkt;
542 }
543
544
545 Tick
546 BaseCache::recvAtomic(PacketPtr pkt)
547 {
548 // should assert here that there are no outstanding MSHRs or
549 // writebacks... that would mean that someone used an atomic
550 // access in timing mode
551
552 // We use lookupLatency here because it is used to specify the latency
553 // to access.
554 Cycles lat = lookupLatency;
555
556 CacheBlk *blk = nullptr;
557 PacketList writebacks;
558 bool satisfied = access(pkt, blk, lat, writebacks);
559
560 if (pkt->isClean() && blk && blk->isDirty()) {
561 // A cache clean opearation is looking for a dirty
562 // block. If a dirty block is encountered a WriteClean
563 // will update any copies to the path to the memory
564 // until the point of reference.
565 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
566 __func__, pkt->print(), blk->print());
567 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
568 writebacks.push_back(wb_pkt);
569 pkt->setSatisfied();
570 }
571
572 // handle writebacks resulting from the access here to ensure they
573 // logically precede anything happening below
574 doWritebacksAtomic(writebacks);
575 assert(writebacks.empty());
576
577 if (!satisfied) {
578 lat += handleAtomicReqMiss(pkt, blk, writebacks);
579 }
580
581 // Note that we don't invoke the prefetcher at all in atomic mode.
582 // It's not clear how to do it properly, particularly for
583 // prefetchers that aggressively generate prefetch candidates and
584 // rely on bandwidth contention to throttle them; these will tend
585 // to pollute the cache in atomic mode since there is no bandwidth
586 // contention. If we ever do want to enable prefetching in atomic
587 // mode, though, this is the place to do it... see timingAccess()
588 // for an example (though we'd want to issue the prefetch(es)
589 // immediately rather than calling requestMemSideBus() as we do
590 // there).
591
592 // do any writebacks resulting from the response handling
593 doWritebacksAtomic(writebacks);
594
595 // if we used temp block, check to see if its valid and if so
596 // clear it out, but only do so after the call to recvAtomic is
597 // finished so that any downstream observers (such as a snoop
598 // filter), first see the fill, and only then see the eviction
599 if (blk == tempBlock && tempBlock->isValid()) {
600 // the atomic CPU calls recvAtomic for fetch and load/store
601 // sequentuially, and we may already have a tempBlock
602 // writeback from the fetch that we have not yet sent
603 if (tempBlockWriteback) {
604 // if that is the case, write the prevoius one back, and
605 // do not schedule any new event
606 writebackTempBlockAtomic();
607 } else {
608 // the writeback/clean eviction happens after the call to
609 // recvAtomic has finished (but before any successive
610 // calls), so that the response handling from the fill is
611 // allowed to happen first
612 schedule(writebackTempBlockAtomicEvent, curTick());
613 }
614
615 tempBlockWriteback = evictBlock(blk);
616 }
617
618 if (pkt->needsResponse()) {
619 pkt->makeAtomicResponse();
620 }
621
622 return lat * clockPeriod();
623 }
624
625 void
626 BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
627 {
628 Addr blk_addr = pkt->getBlockAddr(blkSize);
629 bool is_secure = pkt->isSecure();
630 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
631 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
632
633 pkt->pushLabel(name());
634
635 CacheBlkPrintWrapper cbpw(blk);
636
637 // Note that just because an L2/L3 has valid data doesn't mean an
638 // L1 doesn't have a more up-to-date modified copy that still
639 // needs to be found. As a result we always update the request if
640 // we have it, but only declare it satisfied if we are the owner.
641
642 // see if we have data at all (owned or otherwise)
643 bool have_data = blk && blk->isValid()
644 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
645 blk->data);
646
647 // data we have is dirty if marked as such or if we have an
648 // in-service MSHR that is pending a modified line
649 bool have_dirty =
650 have_data && (blk->isDirty() ||
651 (mshr && mshr->inService && mshr->isPendingModified()));
652
653 bool done = have_dirty ||
654 cpuSidePort.trySatisfyFunctional(pkt) ||
655 mshrQueue.trySatisfyFunctional(pkt, blk_addr) ||
656 writeBuffer.trySatisfyFunctional(pkt, blk_addr) ||
657 memSidePort.trySatisfyFunctional(pkt);
658
659 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
660 (blk && blk->isValid()) ? "valid " : "",
661 have_data ? "data " : "", done ? "done " : "");
662
663 // We're leaving the cache, so pop cache->name() label
664 pkt->popLabel();
665
666 if (done) {
667 pkt->makeResponse();
668 } else {
669 // if it came as a request from the CPU side then make sure it
670 // continues towards the memory side
671 if (from_cpu_side) {
672 memSidePort.sendFunctional(pkt);
673 } else if (cpuSidePort.isSnooping()) {
674 // if it came from the memory side, it must be a snoop request
675 // and we should only forward it if we are forwarding snoops
676 cpuSidePort.sendFunctionalSnoop(pkt);
677 }
678 }
679 }
680
681
682 void
683 BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
684 {
685 assert(pkt->isRequest());
686
687 uint64_t overwrite_val;
688 bool overwrite_mem;
689 uint64_t condition_val64;
690 uint32_t condition_val32;
691
692 int offset = pkt->getOffset(blkSize);
693 uint8_t *blk_data = blk->data + offset;
694
695 assert(sizeof(uint64_t) >= pkt->getSize());
696
697 overwrite_mem = true;
698 // keep a copy of our possible write value, and copy what is at the
699 // memory address into the packet
700 pkt->writeData((uint8_t *)&overwrite_val);
701 pkt->setData(blk_data);
702
703 if (pkt->req->isCondSwap()) {
704 if (pkt->getSize() == sizeof(uint64_t)) {
705 condition_val64 = pkt->req->getExtraData();
706 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
707 sizeof(uint64_t));
708 } else if (pkt->getSize() == sizeof(uint32_t)) {
709 condition_val32 = (uint32_t)pkt->req->getExtraData();
710 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
711 sizeof(uint32_t));
712 } else
713 panic("Invalid size for conditional read/write\n");
714 }
715
716 if (overwrite_mem) {
717 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
718 blk->status |= BlkDirty;
719 }
720 }
721
722 QueueEntry*
723 BaseCache::getNextQueueEntry()
724 {
725 // Check both MSHR queue and write buffer for potential requests,
726 // note that null does not mean there is no request, it could
727 // simply be that it is not ready
728 MSHR *miss_mshr = mshrQueue.getNext();
729 WriteQueueEntry *wq_entry = writeBuffer.getNext();
730
731 // If we got a write buffer request ready, first priority is a
732 // full write buffer, otherwise we favour the miss requests
733 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
734 // need to search MSHR queue for conflicting earlier miss.
735 MSHR *conflict_mshr =
736 mshrQueue.findPending(wq_entry->blkAddr,
737 wq_entry->isSecure);
738
739 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
740 // Service misses in order until conflict is cleared.
741 return conflict_mshr;
742
743 // @todo Note that we ignore the ready time of the conflict here
744 }
745
746 // No conflicts; issue write
747 return wq_entry;
748 } else if (miss_mshr) {
749 // need to check for conflicting earlier writeback
750 WriteQueueEntry *conflict_mshr =
751 writeBuffer.findPending(miss_mshr->blkAddr,
752 miss_mshr->isSecure);
753 if (conflict_mshr) {
754 // not sure why we don't check order here... it was in the
755 // original code but commented out.
756
757 // The only way this happens is if we are
758 // doing a write and we didn't have permissions
759 // then subsequently saw a writeback (owned got evicted)
760 // We need to make sure to perform the writeback first
761 // To preserve the dirty data, then we can issue the write
762
763 // should we return wq_entry here instead? I.e. do we
764 // have to flush writes in order? I don't think so... not
765 // for Alpha anyway. Maybe for x86?
766 return conflict_mshr;
767
768 // @todo Note that we ignore the ready time of the conflict here
769 }
770
771 // No conflicts; issue read
772 return miss_mshr;
773 }
774
775 // fall through... no pending requests. Try a prefetch.
776 assert(!miss_mshr && !wq_entry);
777 if (prefetcher && mshrQueue.canPrefetch()) {
778 // If we have a miss queue slot, we can try a prefetch
779 PacketPtr pkt = prefetcher->getPacket();
780 if (pkt) {
781 Addr pf_addr = pkt->getBlockAddr(blkSize);
782 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
783 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
784 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
785 // Update statistic on number of prefetches issued
786 // (hwpf_mshr_misses)
787 assert(pkt->req->masterId() < system->maxMasters());
788 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
789
790 // allocate an MSHR and return it, note
791 // that we send the packet straight away, so do not
792 // schedule the send
793 return allocateMissBuffer(pkt, curTick(), false);
794 } else {
795 // free the request and packet
796 delete pkt;
797 }
798 }
799 }
800
801 return nullptr;
802 }
803
804 void
805 BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
806 {
807 assert(pkt->isRequest());
808
809 assert(blk && blk->isValid());
810 // Occasionally this is not true... if we are a lower-level cache
811 // satisfying a string of Read and ReadEx requests from
812 // upper-level caches, a Read will mark the block as shared but we
813 // can satisfy a following ReadEx anyway since we can rely on the
814 // Read requester(s) to have buffered the ReadEx snoop and to
815 // invalidate their blocks after receiving them.
816 // assert(!pkt->needsWritable() || blk->isWritable());
817 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
818
819 // Check RMW operations first since both isRead() and
820 // isWrite() will be true for them
821 if (pkt->cmd == MemCmd::SwapReq) {
822 if (pkt->isAtomicOp()) {
823 // extract data from cache and save it into the data field in
824 // the packet as a return value from this atomic op
825 int offset = tags->extractBlkOffset(pkt->getAddr());
826 uint8_t *blk_data = blk->data + offset;
827 pkt->setData(blk_data);
828
829 // execute AMO operation
830 (*(pkt->getAtomicOp()))(blk_data);
831
832 // set block status to dirty
833 blk->status |= BlkDirty;
834 } else {
835 cmpAndSwap(blk, pkt);
836 }
837 } else if (pkt->isWrite()) {
838 // we have the block in a writable state and can go ahead,
839 // note that the line may be also be considered writable in
840 // downstream caches along the path to memory, but always
841 // Exclusive, and never Modified
842 assert(blk->isWritable());
843 // Write or WriteLine at the first cache with block in writable state
844 if (blk->checkWrite(pkt)) {
845 pkt->writeDataToBlock(blk->data, blkSize);
846 }
847 // Always mark the line as dirty (and thus transition to the
848 // Modified state) even if we are a failed StoreCond so we
849 // supply data to any snoops that have appended themselves to
850 // this cache before knowing the store will fail.
851 blk->status |= BlkDirty;
852 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
853 } else if (pkt->isRead()) {
854 if (pkt->isLLSC()) {
855 blk->trackLoadLocked(pkt);
856 }
857
858 // all read responses have a data payload
859 assert(pkt->hasRespData());
860 pkt->setDataFromBlock(blk->data, blkSize);
861 } else if (pkt->isUpgrade()) {
862 // sanity check
863 assert(!pkt->hasSharers());
864
865 if (blk->isDirty()) {
866 // we were in the Owned state, and a cache above us that
867 // has the line in Shared state needs to be made aware
868 // that the data it already has is in fact dirty
869 pkt->setCacheResponding();
870 blk->status &= ~BlkDirty;
871 }
872 } else if (pkt->isClean()) {
873 blk->status &= ~BlkDirty;
874 } else {
875 assert(pkt->isInvalidate());
876 invalidateBlock(blk);
877 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
878 pkt->print());
879 }
880 }
881
882 /////////////////////////////////////////////////////
883 //
884 // Access path: requests coming in from the CPU side
885 //
886 /////////////////////////////////////////////////////
887 Cycles
888 BaseCache::calculateAccessLatency(const CacheBlk* blk,
889 const Cycles lookup_lat) const
890 {
891 Cycles lat(lookup_lat);
892
893 if (blk != nullptr) {
894 // First access tags, then data
895 if (sequentialAccess) {
896 lat += dataLatency;
897 // Latency is dictated by the slowest of tag and data latencies
898 } else {
899 lat = std::max(lookup_lat, dataLatency);
900 }
901
902 // Check if the block to be accessed is available. If not, apply the
903 // access latency on top of when the block is ready to be accessed.
904 const Tick when_ready = blk->getWhenReady();
905 if (when_ready > curTick() &&
906 ticksToCycles(when_ready - curTick()) > lat) {
907 lat += ticksToCycles(when_ready - curTick());
908 }
909 }
910
911 return lat;
912 }
913
914 bool
915 BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
916 PacketList &writebacks)
917 {
918 // sanity check
919 assert(pkt->isRequest());
920
921 chatty_assert(!(isReadOnly && pkt->isWrite()),
922 "Should never see a write in a read-only cache %s\n",
923 name());
924
925 // Access block in the tags
926 Cycles tag_latency(0);
927 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency);
928
929 // Calculate access latency
930 lat = calculateAccessLatency(blk, tag_latency);
931
932 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
933 blk ? "hit " + blk->print() : "miss");
934
935 if (pkt->req->isCacheMaintenance()) {
936 // A cache maintenance operation is always forwarded to the
937 // memory below even if the block is found in dirty state.
938
939 // We defer any changes to the state of the block until we
940 // create and mark as in service the mshr for the downstream
941 // packet.
942 return false;
943 }
944
945 if (pkt->isEviction()) {
946 // We check for presence of block in above caches before issuing
947 // Writeback or CleanEvict to write buffer. Therefore the only
948 // possible cases can be of a CleanEvict packet coming from above
949 // encountering a Writeback generated in this cache peer cache and
950 // waiting in the write buffer. Cases of upper level peer caches
951 // generating CleanEvict and Writeback or simply CleanEvict and
952 // CleanEvict almost simultaneously will be caught by snoops sent out
953 // by crossbar.
954 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
955 pkt->isSecure());
956 if (wb_entry) {
957 assert(wb_entry->getNumTargets() == 1);
958 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
959 assert(wbPkt->isWriteback());
960
961 if (pkt->isCleanEviction()) {
962 // The CleanEvict and WritebackClean snoops into other
963 // peer caches of the same level while traversing the
964 // crossbar. If a copy of the block is found, the
965 // packet is deleted in the crossbar. Hence, none of
966 // the other upper level caches connected to this
967 // cache have the block, so we can clear the
968 // BLOCK_CACHED flag in the Writeback if set and
969 // discard the CleanEvict by returning true.
970 wbPkt->clearBlockCached();
971 return true;
972 } else {
973 assert(pkt->cmd == MemCmd::WritebackDirty);
974 // Dirty writeback from above trumps our clean
975 // writeback... discard here
976 // Note: markInService will remove entry from writeback buffer.
977 markInService(wb_entry);
978 delete wbPkt;
979 }
980 }
981 }
982
983 // Writeback handling is special case. We can write the block into
984 // the cache without having a writeable copy (or any copy at all).
985 if (pkt->isWriteback()) {
986 assert(blkSize == pkt->getSize());
987
988 // we could get a clean writeback while we are having
989 // outstanding accesses to a block, do the simple thing for
990 // now and drop the clean writeback so that we do not upset
991 // any ordering/decisions about ownership already taken
992 if (pkt->cmd == MemCmd::WritebackClean &&
993 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
994 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
995 "dropping\n", pkt->getAddr());
996 return true;
997 }
998
999 if (!blk) {
1000 // need to do a replacement
1001 blk = allocateBlock(pkt, writebacks);
1002 if (!blk) {
1003 // no replaceable block available: give up, fwd to next level.
1004 incMissCount(pkt);
1005 return false;
1006 }
1007
1008 blk->status |= BlkReadable;
1009 }
1010 // only mark the block dirty if we got a writeback command,
1011 // and leave it as is for a clean writeback
1012 if (pkt->cmd == MemCmd::WritebackDirty) {
1013 // TODO: the coherent cache can assert(!blk->isDirty());
1014 blk->status |= BlkDirty;
1015 }
1016 // if the packet does not have sharers, it is passing
1017 // writable, and we got the writeback in Modified or Exclusive
1018 // state, if not we are in the Owned or Shared state
1019 if (!pkt->hasSharers()) {
1020 blk->status |= BlkWritable;
1021 }
1022 // nothing else to do; writeback doesn't expect response
1023 assert(!pkt->needsResponse());
1024 pkt->writeDataToBlock(blk->data, blkSize);
1025 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1026 incHitCount(pkt);
1027 // populate the time when the block will be ready to access.
1028 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1029 pkt->payloadDelay);
1030 return true;
1031 } else if (pkt->cmd == MemCmd::CleanEvict) {
1032 if (blk) {
1033 // Found the block in the tags, need to stop CleanEvict from
1034 // propagating further down the hierarchy. Returning true will
1035 // treat the CleanEvict like a satisfied write request and delete
1036 // it.
1037 return true;
1038 }
1039 // We didn't find the block here, propagate the CleanEvict further
1040 // down the memory hierarchy. Returning false will treat the CleanEvict
1041 // like a Writeback which could not find a replaceable block so has to
1042 // go to next level.
1043 return false;
1044 } else if (pkt->cmd == MemCmd::WriteClean) {
1045 // WriteClean handling is a special case. We can allocate a
1046 // block directly if it doesn't exist and we can update the
1047 // block immediately. The WriteClean transfers the ownership
1048 // of the block as well.
1049 assert(blkSize == pkt->getSize());
1050
1051 if (!blk) {
1052 if (pkt->writeThrough()) {
1053 // if this is a write through packet, we don't try to
1054 // allocate if the block is not present
1055 return false;
1056 } else {
1057 // a writeback that misses needs to allocate a new block
1058 blk = allocateBlock(pkt, writebacks);
1059 if (!blk) {
1060 // no replaceable block available: give up, fwd to
1061 // next level.
1062 incMissCount(pkt);
1063 return false;
1064 }
1065
1066 blk->status |= BlkReadable;
1067 }
1068 }
1069
1070 // at this point either this is a writeback or a write-through
1071 // write clean operation and the block is already in this
1072 // cache, we need to update the data and the block flags
1073 assert(blk);
1074 // TODO: the coherent cache can assert(!blk->isDirty());
1075 if (!pkt->writeThrough()) {
1076 blk->status |= BlkDirty;
1077 }
1078 // nothing else to do; writeback doesn't expect response
1079 assert(!pkt->needsResponse());
1080 pkt->writeDataToBlock(blk->data, blkSize);
1081 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1082
1083 incHitCount(pkt);
1084 // populate the time when the block will be ready to access.
1085 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1086 pkt->payloadDelay);
1087 // if this a write-through packet it will be sent to cache
1088 // below
1089 return !pkt->writeThrough();
1090 } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1091 blk->isReadable())) {
1092 // OK to satisfy access
1093 incHitCount(pkt);
1094 satisfyRequest(pkt, blk);
1095 maintainClusivity(pkt->fromCache(), blk);
1096
1097 return true;
1098 }
1099
1100 // Can't satisfy access normally... either no block (blk == nullptr)
1101 // or have block but need writable
1102
1103 incMissCount(pkt);
1104
1105 if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1106 // complete miss on store conditional... just give up now
1107 pkt->req->setExtraData(0);
1108 return true;
1109 }
1110
1111 return false;
1112 }
1113
1114 void
1115 BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1116 {
1117 if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1118 clusivity == Enums::mostly_excl) {
1119 // if we have responded to a cache, and our block is still
1120 // valid, but not dirty, and this cache is mostly exclusive
1121 // with respect to the cache above, drop the block
1122 invalidateBlock(blk);
1123 }
1124 }
1125
1126 CacheBlk*
1127 BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1128 bool allocate)
1129 {
1130 assert(pkt->isResponse());
1131 Addr addr = pkt->getAddr();
1132 bool is_secure = pkt->isSecure();
1133 #if TRACING_ON
1134 CacheBlk::State old_state = blk ? blk->status : 0;
1135 #endif
1136
1137 // When handling a fill, we should have no writes to this line.
1138 assert(addr == pkt->getBlockAddr(blkSize));
1139 assert(!writeBuffer.findMatch(addr, is_secure));
1140
1141 if (!blk) {
1142 // better have read new data...
1143 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
1144
1145 // need to do a replacement if allocating, otherwise we stick
1146 // with the temporary storage
1147 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1148
1149 if (!blk) {
1150 // No replaceable block or a mostly exclusive
1151 // cache... just use temporary storage to complete the
1152 // current request and then get rid of it
1153 blk = tempBlock;
1154 tempBlock->insert(addr, is_secure);
1155 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1156 is_secure ? "s" : "ns");
1157 }
1158 } else {
1159 // existing block... probably an upgrade
1160 // don't clear block status... if block is already dirty we
1161 // don't want to lose that
1162 }
1163
1164 // Block is guaranteed to be valid at this point
1165 assert(blk->isValid());
1166 assert(blk->isSecure() == is_secure);
1167 assert(regenerateBlkAddr(blk) == addr);
1168
1169 blk->status |= BlkReadable;
1170
1171 // sanity check for whole-line writes, which should always be
1172 // marked as writable as part of the fill, and then later marked
1173 // dirty as part of satisfyRequest
1174 if (pkt->cmd == MemCmd::InvalidateResp) {
1175 assert(!pkt->hasSharers());
1176 }
1177
1178 // here we deal with setting the appropriate state of the line,
1179 // and we start by looking at the hasSharers flag, and ignore the
1180 // cacheResponding flag (normally signalling dirty data) if the
1181 // packet has sharers, thus the line is never allocated as Owned
1182 // (dirty but not writable), and always ends up being either
1183 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1184 // for more details
1185 if (!pkt->hasSharers()) {
1186 // we could get a writable line from memory (rather than a
1187 // cache) even in a read-only cache, note that we set this bit
1188 // even for a read-only cache, possibly revisit this decision
1189 blk->status |= BlkWritable;
1190
1191 // check if we got this via cache-to-cache transfer (i.e., from a
1192 // cache that had the block in Modified or Owned state)
1193 if (pkt->cacheResponding()) {
1194 // we got the block in Modified state, and invalidated the
1195 // owners copy
1196 blk->status |= BlkDirty;
1197
1198 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1199 "in read-only cache %s\n", name());
1200 }
1201 }
1202
1203 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1204 addr, is_secure ? "s" : "ns", old_state, blk->print());
1205
1206 // if we got new data, copy it in (checking for a read response
1207 // and a response that has data is the same in the end)
1208 if (pkt->isRead()) {
1209 // sanity checks
1210 assert(pkt->hasData());
1211 assert(pkt->getSize() == blkSize);
1212
1213 pkt->writeDataToBlock(blk->data, blkSize);
1214 }
1215 // We pay for fillLatency here.
1216 blk->setWhenReady(clockEdge(fillLatency) + pkt->payloadDelay);
1217
1218 return blk;
1219 }
1220
1221 CacheBlk*
1222 BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1223 {
1224 // Get address
1225 const Addr addr = pkt->getAddr();
1226
1227 // Get secure bit
1228 const bool is_secure = pkt->isSecure();
1229
1230 // Find replacement victim
1231 std::vector<CacheBlk*> evict_blks;
1232 CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1233
1234 // It is valid to return nullptr if there is no victim
1235 if (!victim)
1236 return nullptr;
1237
1238 // Print victim block's information
1239 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
1240
1241 // Check for transient state allocations. If any of the entries listed
1242 // for eviction has a transient state, the allocation fails
1243 for (const auto& blk : evict_blks) {
1244 if (blk->isValid()) {
1245 Addr repl_addr = regenerateBlkAddr(blk);
1246 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1247 if (repl_mshr) {
1248 // must be an outstanding upgrade or clean request
1249 // on a block we're about to replace...
1250 assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1251 repl_mshr->isCleaning());
1252
1253 // too hard to replace block with transient state
1254 // allocation failed, block not inserted
1255 return nullptr;
1256 }
1257 }
1258 }
1259
1260 // The victim will be replaced by a new entry, so increase the replacement
1261 // counter if a valid block is being replaced
1262 if (victim->isValid()) {
1263 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1264 "(%s): %s\n", regenerateBlkAddr(victim),
1265 victim->isSecure() ? "s" : "ns",
1266 addr, is_secure ? "s" : "ns",
1267 victim->isDirty() ? "writeback" : "clean");
1268
1269 replacements++;
1270 }
1271
1272 // Evict valid blocks associated to this victim block
1273 for (const auto& blk : evict_blks) {
1274 if (blk->isValid()) {
1275 if (blk->wasPrefetched()) {
1276 unusedPrefetches++;
1277 }
1278
1279 evictBlock(blk, writebacks);
1280 }
1281 }
1282
1283 // Insert new block at victimized entry
1284 tags->insertBlock(addr, is_secure, pkt->req->masterId(),
1285 pkt->req->taskId(), victim);
1286
1287 return victim;
1288 }
1289
1290 void
1291 BaseCache::invalidateBlock(CacheBlk *blk)
1292 {
1293 // If handling a block present in the Tags, let it do its invalidation
1294 // process, which will update stats and invalidate the block itself
1295 if (blk != tempBlock) {
1296 tags->invalidate(blk);
1297 } else {
1298 tempBlock->invalidate();
1299 }
1300 }
1301
1302 void
1303 BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks)
1304 {
1305 PacketPtr pkt = evictBlock(blk);
1306 if (pkt) {
1307 writebacks.push_back(pkt);
1308 }
1309 }
1310
1311 PacketPtr
1312 BaseCache::writebackBlk(CacheBlk *blk)
1313 {
1314 chatty_assert(!isReadOnly || writebackClean,
1315 "Writeback from read-only cache");
1316 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1317
1318 writebacks[Request::wbMasterId]++;
1319
1320 RequestPtr req = std::make_shared<Request>(
1321 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1322
1323 if (blk->isSecure())
1324 req->setFlags(Request::SECURE);
1325
1326 req->taskId(blk->task_id);
1327
1328 PacketPtr pkt =
1329 new Packet(req, blk->isDirty() ?
1330 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1331
1332 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1333 pkt->print(), blk->isWritable(), blk->isDirty());
1334
1335 if (blk->isWritable()) {
1336 // not asserting shared means we pass the block in modified
1337 // state, mark our own block non-writeable
1338 blk->status &= ~BlkWritable;
1339 } else {
1340 // we are in the Owned state, tell the receiver
1341 pkt->setHasSharers();
1342 }
1343
1344 // make sure the block is not marked dirty
1345 blk->status &= ~BlkDirty;
1346
1347 pkt->allocate();
1348 pkt->setDataFromBlock(blk->data, blkSize);
1349
1350 return pkt;
1351 }
1352
1353 PacketPtr
1354 BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1355 {
1356 RequestPtr req = std::make_shared<Request>(
1357 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1358
1359 if (blk->isSecure()) {
1360 req->setFlags(Request::SECURE);
1361 }
1362 req->taskId(blk->task_id);
1363
1364 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1365
1366 if (dest) {
1367 req->setFlags(dest);
1368 pkt->setWriteThrough();
1369 }
1370
1371 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1372 blk->isWritable(), blk->isDirty());
1373
1374 if (blk->isWritable()) {
1375 // not asserting shared means we pass the block in modified
1376 // state, mark our own block non-writeable
1377 blk->status &= ~BlkWritable;
1378 } else {
1379 // we are in the Owned state, tell the receiver
1380 pkt->setHasSharers();
1381 }
1382
1383 // make sure the block is not marked dirty
1384 blk->status &= ~BlkDirty;
1385
1386 pkt->allocate();
1387 pkt->setDataFromBlock(blk->data, blkSize);
1388
1389 return pkt;
1390 }
1391
1392
1393 void
1394 BaseCache::memWriteback()
1395 {
1396 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1397 }
1398
1399 void
1400 BaseCache::memInvalidate()
1401 {
1402 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1403 }
1404
1405 bool
1406 BaseCache::isDirty() const
1407 {
1408 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1409 }
1410
1411 bool
1412 BaseCache::coalesce() const
1413 {
1414 return writeAllocator && writeAllocator->coalesce();
1415 }
1416
1417 void
1418 BaseCache::writebackVisitor(CacheBlk &blk)
1419 {
1420 if (blk.isDirty()) {
1421 assert(blk.isValid());
1422
1423 RequestPtr request = std::make_shared<Request>(
1424 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1425
1426 request->taskId(blk.task_id);
1427 if (blk.isSecure()) {
1428 request->setFlags(Request::SECURE);
1429 }
1430
1431 Packet packet(request, MemCmd::WriteReq);
1432 packet.dataStatic(blk.data);
1433
1434 memSidePort.sendFunctional(&packet);
1435
1436 blk.status &= ~BlkDirty;
1437 }
1438 }
1439
1440 void
1441 BaseCache::invalidateVisitor(CacheBlk &blk)
1442 {
1443 if (blk.isDirty())
1444 warn_once("Invalidating dirty cache lines. " \
1445 "Expect things to break.\n");
1446
1447 if (blk.isValid()) {
1448 assert(!blk.isDirty());
1449 invalidateBlock(&blk);
1450 }
1451 }
1452
1453 Tick
1454 BaseCache::nextQueueReadyTime() const
1455 {
1456 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1457 writeBuffer.nextReadyTime());
1458
1459 // Don't signal prefetch ready time if no MSHRs available
1460 // Will signal once enoguh MSHRs are deallocated
1461 if (prefetcher && mshrQueue.canPrefetch()) {
1462 nextReady = std::min(nextReady,
1463 prefetcher->nextPrefetchReadyTime());
1464 }
1465
1466 return nextReady;
1467 }
1468
1469
1470 bool
1471 BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1472 {
1473 assert(mshr);
1474
1475 // use request from 1st target
1476 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1477
1478 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1479
1480 // if the cache is in write coalescing mode or (additionally) in
1481 // no allocation mode, and we have a write packet with an MSHR
1482 // that is not a whole-line write (due to incompatible flags etc),
1483 // then reset the write mode
1484 if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
1485 if (!mshr->isWholeLineWrite()) {
1486 // if we are currently write coalescing, hold on the
1487 // MSHR as many cycles extra as we need to completely
1488 // write a cache line
1489 if (writeAllocator->delay(mshr->blkAddr)) {
1490 Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
1491 DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
1492 "for write coalescing\n", tgt_pkt->print(), delay);
1493 mshrQueue.delay(mshr, delay);
1494 return false;
1495 } else {
1496 writeAllocator->reset();
1497 }
1498 } else {
1499 writeAllocator->resetDelay(mshr->blkAddr);
1500 }
1501 }
1502
1503 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1504
1505 // either a prefetch that is not present upstream, or a normal
1506 // MSHR request, proceed to get the packet to send downstream
1507 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
1508 mshr->isWholeLineWrite());
1509
1510 mshr->isForward = (pkt == nullptr);
1511
1512 if (mshr->isForward) {
1513 // not a cache block request, but a response is expected
1514 // make copy of current packet to forward, keep current
1515 // copy for response handling
1516 pkt = new Packet(tgt_pkt, false, true);
1517 assert(!pkt->isWrite());
1518 }
1519
1520 // play it safe and append (rather than set) the sender state,
1521 // as forwarded packets may already have existing state
1522 pkt->pushSenderState(mshr);
1523
1524 if (pkt->isClean() && blk && blk->isDirty()) {
1525 // A cache clean opearation is looking for a dirty block. Mark
1526 // the packet so that the destination xbar can determine that
1527 // there will be a follow-up write packet as well.
1528 pkt->setSatisfied();
1529 }
1530
1531 if (!memSidePort.sendTimingReq(pkt)) {
1532 // we are awaiting a retry, but we
1533 // delete the packet and will be creating a new packet
1534 // when we get the opportunity
1535 delete pkt;
1536
1537 // note that we have now masked any requestBus and
1538 // schedSendEvent (we will wait for a retry before
1539 // doing anything), and this is so even if we do not
1540 // care about this packet and might override it before
1541 // it gets retried
1542 return true;
1543 } else {
1544 // As part of the call to sendTimingReq the packet is
1545 // forwarded to all neighbouring caches (and any caches
1546 // above them) as a snoop. Thus at this point we know if
1547 // any of the neighbouring caches are responding, and if
1548 // so, we know it is dirty, and we can determine if it is
1549 // being passed as Modified, making our MSHR the ordering
1550 // point
1551 bool pending_modified_resp = !pkt->hasSharers() &&
1552 pkt->cacheResponding();
1553 markInService(mshr, pending_modified_resp);
1554
1555 if (pkt->isClean() && blk && blk->isDirty()) {
1556 // A cache clean opearation is looking for a dirty
1557 // block. If a dirty block is encountered a WriteClean
1558 // will update any copies to the path to the memory
1559 // until the point of reference.
1560 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1561 __func__, pkt->print(), blk->print());
1562 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1563 pkt->id);
1564 PacketList writebacks;
1565 writebacks.push_back(wb_pkt);
1566 doWritebacks(writebacks, 0);
1567 }
1568
1569 return false;
1570 }
1571 }
1572
1573 bool
1574 BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1575 {
1576 assert(wq_entry);
1577
1578 // always a single target for write queue entries
1579 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1580
1581 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1582
1583 // forward as is, both for evictions and uncacheable writes
1584 if (!memSidePort.sendTimingReq(tgt_pkt)) {
1585 // note that we have now masked any requestBus and
1586 // schedSendEvent (we will wait for a retry before
1587 // doing anything), and this is so even if we do not
1588 // care about this packet and might override it before
1589 // it gets retried
1590 return true;
1591 } else {
1592 markInService(wq_entry);
1593 return false;
1594 }
1595 }
1596
1597 void
1598 BaseCache::serialize(CheckpointOut &cp) const
1599 {
1600 bool dirty(isDirty());
1601
1602 if (dirty) {
1603 warn("*** The cache still contains dirty data. ***\n");
1604 warn(" Make sure to drain the system using the correct flags.\n");
1605 warn(" This checkpoint will not restore correctly " \
1606 "and dirty data in the cache will be lost!\n");
1607 }
1608
1609 // Since we don't checkpoint the data in the cache, any dirty data
1610 // will be lost when restoring from a checkpoint of a system that
1611 // wasn't drained properly. Flag the checkpoint as invalid if the
1612 // cache contains dirty data.
1613 bool bad_checkpoint(dirty);
1614 SERIALIZE_SCALAR(bad_checkpoint);
1615 }
1616
1617 void
1618 BaseCache::unserialize(CheckpointIn &cp)
1619 {
1620 bool bad_checkpoint;
1621 UNSERIALIZE_SCALAR(bad_checkpoint);
1622 if (bad_checkpoint) {
1623 fatal("Restoring from checkpoints with dirty caches is not "
1624 "supported in the classic memory system. Please remove any "
1625 "caches or drain them properly before taking checkpoints.\n");
1626 }
1627 }
1628
1629 void
1630 BaseCache::regStats()
1631 {
1632 MemObject::regStats();
1633
1634 using namespace Stats;
1635
1636 // Hit statistics
1637 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1638 MemCmd cmd(access_idx);
1639 const string &cstr = cmd.toString();
1640
1641 hits[access_idx]
1642 .init(system->maxMasters())
1643 .name(name() + "." + cstr + "_hits")
1644 .desc("number of " + cstr + " hits")
1645 .flags(total | nozero | nonan)
1646 ;
1647 for (int i = 0; i < system->maxMasters(); i++) {
1648 hits[access_idx].subname(i, system->getMasterName(i));
1649 }
1650 }
1651
1652 // These macros make it easier to sum the right subset of commands and
1653 // to change the subset of commands that are considered "demand" vs
1654 // "non-demand"
1655 #define SUM_DEMAND(s) \
1656 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1657 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1658
1659 // should writebacks be included here? prior code was inconsistent...
1660 #define SUM_NON_DEMAND(s) \
1661 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq])
1662
1663 demandHits
1664 .name(name() + ".demand_hits")
1665 .desc("number of demand (read+write) hits")
1666 .flags(total | nozero | nonan)
1667 ;
1668 demandHits = SUM_DEMAND(hits);
1669 for (int i = 0; i < system->maxMasters(); i++) {
1670 demandHits.subname(i, system->getMasterName(i));
1671 }
1672
1673 overallHits
1674 .name(name() + ".overall_hits")
1675 .desc("number of overall hits")
1676 .flags(total | nozero | nonan)
1677 ;
1678 overallHits = demandHits + SUM_NON_DEMAND(hits);
1679 for (int i = 0; i < system->maxMasters(); i++) {
1680 overallHits.subname(i, system->getMasterName(i));
1681 }
1682
1683 // Miss statistics
1684 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1685 MemCmd cmd(access_idx);
1686 const string &cstr = cmd.toString();
1687
1688 misses[access_idx]
1689 .init(system->maxMasters())
1690 .name(name() + "." + cstr + "_misses")
1691 .desc("number of " + cstr + " misses")
1692 .flags(total | nozero | nonan)
1693 ;
1694 for (int i = 0; i < system->maxMasters(); i++) {
1695 misses[access_idx].subname(i, system->getMasterName(i));
1696 }
1697 }
1698
1699 demandMisses
1700 .name(name() + ".demand_misses")
1701 .desc("number of demand (read+write) misses")
1702 .flags(total | nozero | nonan)
1703 ;
1704 demandMisses = SUM_DEMAND(misses);
1705 for (int i = 0; i < system->maxMasters(); i++) {
1706 demandMisses.subname(i, system->getMasterName(i));
1707 }
1708
1709 overallMisses
1710 .name(name() + ".overall_misses")
1711 .desc("number of overall misses")
1712 .flags(total | nozero | nonan)
1713 ;
1714 overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1715 for (int i = 0; i < system->maxMasters(); i++) {
1716 overallMisses.subname(i, system->getMasterName(i));
1717 }
1718
1719 // Miss latency statistics
1720 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1721 MemCmd cmd(access_idx);
1722 const string &cstr = cmd.toString();
1723
1724 missLatency[access_idx]
1725 .init(system->maxMasters())
1726 .name(name() + "." + cstr + "_miss_latency")
1727 .desc("number of " + cstr + " miss cycles")
1728 .flags(total | nozero | nonan)
1729 ;
1730 for (int i = 0; i < system->maxMasters(); i++) {
1731 missLatency[access_idx].subname(i, system->getMasterName(i));
1732 }
1733 }
1734
1735 demandMissLatency
1736 .name(name() + ".demand_miss_latency")
1737 .desc("number of demand (read+write) miss cycles")
1738 .flags(total | nozero | nonan)
1739 ;
1740 demandMissLatency = SUM_DEMAND(missLatency);
1741 for (int i = 0; i < system->maxMasters(); i++) {
1742 demandMissLatency.subname(i, system->getMasterName(i));
1743 }
1744
1745 overallMissLatency
1746 .name(name() + ".overall_miss_latency")
1747 .desc("number of overall miss cycles")
1748 .flags(total | nozero | nonan)
1749 ;
1750 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1751 for (int i = 0; i < system->maxMasters(); i++) {
1752 overallMissLatency.subname(i, system->getMasterName(i));
1753 }
1754
1755 // access formulas
1756 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1757 MemCmd cmd(access_idx);
1758 const string &cstr = cmd.toString();
1759
1760 accesses[access_idx]
1761 .name(name() + "." + cstr + "_accesses")
1762 .desc("number of " + cstr + " accesses(hits+misses)")
1763 .flags(total | nozero | nonan)
1764 ;
1765 accesses[access_idx] = hits[access_idx] + misses[access_idx];
1766
1767 for (int i = 0; i < system->maxMasters(); i++) {
1768 accesses[access_idx].subname(i, system->getMasterName(i));
1769 }
1770 }
1771
1772 demandAccesses
1773 .name(name() + ".demand_accesses")
1774 .desc("number of demand (read+write) accesses")
1775 .flags(total | nozero | nonan)
1776 ;
1777 demandAccesses = demandHits + demandMisses;
1778 for (int i = 0; i < system->maxMasters(); i++) {
1779 demandAccesses.subname(i, system->getMasterName(i));
1780 }
1781
1782 overallAccesses
1783 .name(name() + ".overall_accesses")
1784 .desc("number of overall (read+write) accesses")
1785 .flags(total | nozero | nonan)
1786 ;
1787 overallAccesses = overallHits + overallMisses;
1788 for (int i = 0; i < system->maxMasters(); i++) {
1789 overallAccesses.subname(i, system->getMasterName(i));
1790 }
1791
1792 // miss rate formulas
1793 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1794 MemCmd cmd(access_idx);
1795 const string &cstr = cmd.toString();
1796
1797 missRate[access_idx]
1798 .name(name() + "." + cstr + "_miss_rate")
1799 .desc("miss rate for " + cstr + " accesses")
1800 .flags(total | nozero | nonan)
1801 ;
1802 missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1803
1804 for (int i = 0; i < system->maxMasters(); i++) {
1805 missRate[access_idx].subname(i, system->getMasterName(i));
1806 }
1807 }
1808
1809 demandMissRate
1810 .name(name() + ".demand_miss_rate")
1811 .desc("miss rate for demand accesses")
1812 .flags(total | nozero | nonan)
1813 ;
1814 demandMissRate = demandMisses / demandAccesses;
1815 for (int i = 0; i < system->maxMasters(); i++) {
1816 demandMissRate.subname(i, system->getMasterName(i));
1817 }
1818
1819 overallMissRate
1820 .name(name() + ".overall_miss_rate")
1821 .desc("miss rate for overall accesses")
1822 .flags(total | nozero | nonan)
1823 ;
1824 overallMissRate = overallMisses / overallAccesses;
1825 for (int i = 0; i < system->maxMasters(); i++) {
1826 overallMissRate.subname(i, system->getMasterName(i));
1827 }
1828
1829 // miss latency formulas
1830 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1831 MemCmd cmd(access_idx);
1832 const string &cstr = cmd.toString();
1833
1834 avgMissLatency[access_idx]
1835 .name(name() + "." + cstr + "_avg_miss_latency")
1836 .desc("average " + cstr + " miss latency")
1837 .flags(total | nozero | nonan)
1838 ;
1839 avgMissLatency[access_idx] =
1840 missLatency[access_idx] / misses[access_idx];
1841
1842 for (int i = 0; i < system->maxMasters(); i++) {
1843 avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1844 }
1845 }
1846
1847 demandAvgMissLatency
1848 .name(name() + ".demand_avg_miss_latency")
1849 .desc("average overall miss latency")
1850 .flags(total | nozero | nonan)
1851 ;
1852 demandAvgMissLatency = demandMissLatency / demandMisses;
1853 for (int i = 0; i < system->maxMasters(); i++) {
1854 demandAvgMissLatency.subname(i, system->getMasterName(i));
1855 }
1856
1857 overallAvgMissLatency
1858 .name(name() + ".overall_avg_miss_latency")
1859 .desc("average overall miss latency")
1860 .flags(total | nozero | nonan)
1861 ;
1862 overallAvgMissLatency = overallMissLatency / overallMisses;
1863 for (int i = 0; i < system->maxMasters(); i++) {
1864 overallAvgMissLatency.subname(i, system->getMasterName(i));
1865 }
1866
1867 blocked_cycles.init(NUM_BLOCKED_CAUSES);
1868 blocked_cycles
1869 .name(name() + ".blocked_cycles")
1870 .desc("number of cycles access was blocked")
1871 .subname(Blocked_NoMSHRs, "no_mshrs")
1872 .subname(Blocked_NoTargets, "no_targets")
1873 ;
1874
1875
1876 blocked_causes.init(NUM_BLOCKED_CAUSES);
1877 blocked_causes
1878 .name(name() + ".blocked")
1879 .desc("number of cycles access was blocked")
1880 .subname(Blocked_NoMSHRs, "no_mshrs")
1881 .subname(Blocked_NoTargets, "no_targets")
1882 ;
1883
1884 avg_blocked
1885 .name(name() + ".avg_blocked_cycles")
1886 .desc("average number of cycles each access was blocked")
1887 .subname(Blocked_NoMSHRs, "no_mshrs")
1888 .subname(Blocked_NoTargets, "no_targets")
1889 ;
1890
1891 avg_blocked = blocked_cycles / blocked_causes;
1892
1893 unusedPrefetches
1894 .name(name() + ".unused_prefetches")
1895 .desc("number of HardPF blocks evicted w/o reference")
1896 .flags(nozero)
1897 ;
1898
1899 writebacks
1900 .init(system->maxMasters())
1901 .name(name() + ".writebacks")
1902 .desc("number of writebacks")
1903 .flags(total | nozero | nonan)
1904 ;
1905 for (int i = 0; i < system->maxMasters(); i++) {
1906 writebacks.subname(i, system->getMasterName(i));
1907 }
1908
1909 // MSHR statistics
1910 // MSHR hit statistics
1911 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1912 MemCmd cmd(access_idx);
1913 const string &cstr = cmd.toString();
1914
1915 mshr_hits[access_idx]
1916 .init(system->maxMasters())
1917 .name(name() + "." + cstr + "_mshr_hits")
1918 .desc("number of " + cstr + " MSHR hits")
1919 .flags(total | nozero | nonan)
1920 ;
1921 for (int i = 0; i < system->maxMasters(); i++) {
1922 mshr_hits[access_idx].subname(i, system->getMasterName(i));
1923 }
1924 }
1925
1926 demandMshrHits
1927 .name(name() + ".demand_mshr_hits")
1928 .desc("number of demand (read+write) MSHR hits")
1929 .flags(total | nozero | nonan)
1930 ;
1931 demandMshrHits = SUM_DEMAND(mshr_hits);
1932 for (int i = 0; i < system->maxMasters(); i++) {
1933 demandMshrHits.subname(i, system->getMasterName(i));
1934 }
1935
1936 overallMshrHits
1937 .name(name() + ".overall_mshr_hits")
1938 .desc("number of overall MSHR hits")
1939 .flags(total | nozero | nonan)
1940 ;
1941 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
1942 for (int i = 0; i < system->maxMasters(); i++) {
1943 overallMshrHits.subname(i, system->getMasterName(i));
1944 }
1945
1946 // MSHR miss statistics
1947 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1948 MemCmd cmd(access_idx);
1949 const string &cstr = cmd.toString();
1950
1951 mshr_misses[access_idx]
1952 .init(system->maxMasters())
1953 .name(name() + "." + cstr + "_mshr_misses")
1954 .desc("number of " + cstr + " MSHR misses")
1955 .flags(total | nozero | nonan)
1956 ;
1957 for (int i = 0; i < system->maxMasters(); i++) {
1958 mshr_misses[access_idx].subname(i, system->getMasterName(i));
1959 }
1960 }
1961
1962 demandMshrMisses
1963 .name(name() + ".demand_mshr_misses")
1964 .desc("number of demand (read+write) MSHR misses")
1965 .flags(total | nozero | nonan)
1966 ;
1967 demandMshrMisses = SUM_DEMAND(mshr_misses);
1968 for (int i = 0; i < system->maxMasters(); i++) {
1969 demandMshrMisses.subname(i, system->getMasterName(i));
1970 }
1971
1972 overallMshrMisses
1973 .name(name() + ".overall_mshr_misses")
1974 .desc("number of overall MSHR misses")
1975 .flags(total | nozero | nonan)
1976 ;
1977 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
1978 for (int i = 0; i < system->maxMasters(); i++) {
1979 overallMshrMisses.subname(i, system->getMasterName(i));
1980 }
1981
1982 // MSHR miss latency statistics
1983 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1984 MemCmd cmd(access_idx);
1985 const string &cstr = cmd.toString();
1986
1987 mshr_miss_latency[access_idx]
1988 .init(system->maxMasters())
1989 .name(name() + "." + cstr + "_mshr_miss_latency")
1990 .desc("number of " + cstr + " MSHR miss cycles")
1991 .flags(total | nozero | nonan)
1992 ;
1993 for (int i = 0; i < system->maxMasters(); i++) {
1994 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
1995 }
1996 }
1997
1998 demandMshrMissLatency
1999 .name(name() + ".demand_mshr_miss_latency")
2000 .desc("number of demand (read+write) MSHR miss cycles")
2001 .flags(total | nozero | nonan)
2002 ;
2003 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
2004 for (int i = 0; i < system->maxMasters(); i++) {
2005 demandMshrMissLatency.subname(i, system->getMasterName(i));
2006 }
2007
2008 overallMshrMissLatency
2009 .name(name() + ".overall_mshr_miss_latency")
2010 .desc("number of overall MSHR miss cycles")
2011 .flags(total | nozero | nonan)
2012 ;
2013 overallMshrMissLatency =
2014 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
2015 for (int i = 0; i < system->maxMasters(); i++) {
2016 overallMshrMissLatency.subname(i, system->getMasterName(i));
2017 }
2018
2019 // MSHR uncacheable statistics
2020 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2021 MemCmd cmd(access_idx);
2022 const string &cstr = cmd.toString();
2023
2024 mshr_uncacheable[access_idx]
2025 .init(system->maxMasters())
2026 .name(name() + "." + cstr + "_mshr_uncacheable")
2027 .desc("number of " + cstr + " MSHR uncacheable")
2028 .flags(total | nozero | nonan)
2029 ;
2030 for (int i = 0; i < system->maxMasters(); i++) {
2031 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
2032 }
2033 }
2034
2035 overallMshrUncacheable
2036 .name(name() + ".overall_mshr_uncacheable_misses")
2037 .desc("number of overall MSHR uncacheable misses")
2038 .flags(total | nozero | nonan)
2039 ;
2040 overallMshrUncacheable =
2041 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
2042 for (int i = 0; i < system->maxMasters(); i++) {
2043 overallMshrUncacheable.subname(i, system->getMasterName(i));
2044 }
2045
2046 // MSHR miss latency statistics
2047 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2048 MemCmd cmd(access_idx);
2049 const string &cstr = cmd.toString();
2050
2051 mshr_uncacheable_lat[access_idx]
2052 .init(system->maxMasters())
2053 .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2054 .desc("number of " + cstr + " MSHR uncacheable cycles")
2055 .flags(total | nozero | nonan)
2056 ;
2057 for (int i = 0; i < system->maxMasters(); i++) {
2058 mshr_uncacheable_lat[access_idx].subname(
2059 i, system->getMasterName(i));
2060 }
2061 }
2062
2063 overallMshrUncacheableLatency
2064 .name(name() + ".overall_mshr_uncacheable_latency")
2065 .desc("number of overall MSHR uncacheable cycles")
2066 .flags(total | nozero | nonan)
2067 ;
2068 overallMshrUncacheableLatency =
2069 SUM_DEMAND(mshr_uncacheable_lat) +
2070 SUM_NON_DEMAND(mshr_uncacheable_lat);
2071 for (int i = 0; i < system->maxMasters(); i++) {
2072 overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2073 }
2074
2075 #if 0
2076 // MSHR access formulas
2077 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2078 MemCmd cmd(access_idx);
2079 const string &cstr = cmd.toString();
2080
2081 mshrAccesses[access_idx]
2082 .name(name() + "." + cstr + "_mshr_accesses")
2083 .desc("number of " + cstr + " mshr accesses(hits+misses)")
2084 .flags(total | nozero | nonan)
2085 ;
2086 mshrAccesses[access_idx] =
2087 mshr_hits[access_idx] + mshr_misses[access_idx]
2088 + mshr_uncacheable[access_idx];
2089 }
2090
2091 demandMshrAccesses
2092 .name(name() + ".demand_mshr_accesses")
2093 .desc("number of demand (read+write) mshr accesses")
2094 .flags(total | nozero | nonan)
2095 ;
2096 demandMshrAccesses = demandMshrHits + demandMshrMisses;
2097
2098 overallMshrAccesses
2099 .name(name() + ".overall_mshr_accesses")
2100 .desc("number of overall (read+write) mshr accesses")
2101 .flags(total | nozero | nonan)
2102 ;
2103 overallMshrAccesses = overallMshrHits + overallMshrMisses
2104 + overallMshrUncacheable;
2105 #endif
2106
2107 // MSHR miss rate formulas
2108 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2109 MemCmd cmd(access_idx);
2110 const string &cstr = cmd.toString();
2111
2112 mshrMissRate[access_idx]
2113 .name(name() + "." + cstr + "_mshr_miss_rate")
2114 .desc("mshr miss rate for " + cstr + " accesses")
2115 .flags(total | nozero | nonan)
2116 ;
2117 mshrMissRate[access_idx] =
2118 mshr_misses[access_idx] / accesses[access_idx];
2119
2120 for (int i = 0; i < system->maxMasters(); i++) {
2121 mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2122 }
2123 }
2124
2125 demandMshrMissRate
2126 .name(name() + ".demand_mshr_miss_rate")
2127 .desc("mshr miss rate for demand accesses")
2128 .flags(total | nozero | nonan)
2129 ;
2130 demandMshrMissRate = demandMshrMisses / demandAccesses;
2131 for (int i = 0; i < system->maxMasters(); i++) {
2132 demandMshrMissRate.subname(i, system->getMasterName(i));
2133 }
2134
2135 overallMshrMissRate
2136 .name(name() + ".overall_mshr_miss_rate")
2137 .desc("mshr miss rate for overall accesses")
2138 .flags(total | nozero | nonan)
2139 ;
2140 overallMshrMissRate = overallMshrMisses / overallAccesses;
2141 for (int i = 0; i < system->maxMasters(); i++) {
2142 overallMshrMissRate.subname(i, system->getMasterName(i));
2143 }
2144
2145 // mshrMiss latency formulas
2146 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2147 MemCmd cmd(access_idx);
2148 const string &cstr = cmd.toString();
2149
2150 avgMshrMissLatency[access_idx]
2151 .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2152 .desc("average " + cstr + " mshr miss latency")
2153 .flags(total | nozero | nonan)
2154 ;
2155 avgMshrMissLatency[access_idx] =
2156 mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2157
2158 for (int i = 0; i < system->maxMasters(); i++) {
2159 avgMshrMissLatency[access_idx].subname(
2160 i, system->getMasterName(i));
2161 }
2162 }
2163
2164 demandAvgMshrMissLatency
2165 .name(name() + ".demand_avg_mshr_miss_latency")
2166 .desc("average overall mshr miss latency")
2167 .flags(total | nozero | nonan)
2168 ;
2169 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2170 for (int i = 0; i < system->maxMasters(); i++) {
2171 demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2172 }
2173
2174 overallAvgMshrMissLatency
2175 .name(name() + ".overall_avg_mshr_miss_latency")
2176 .desc("average overall mshr miss latency")
2177 .flags(total | nozero | nonan)
2178 ;
2179 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2180 for (int i = 0; i < system->maxMasters(); i++) {
2181 overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2182 }
2183
2184 // mshrUncacheable latency formulas
2185 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2186 MemCmd cmd(access_idx);
2187 const string &cstr = cmd.toString();
2188
2189 avgMshrUncacheableLatency[access_idx]
2190 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2191 .desc("average " + cstr + " mshr uncacheable latency")
2192 .flags(total | nozero | nonan)
2193 ;
2194 avgMshrUncacheableLatency[access_idx] =
2195 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2196
2197 for (int i = 0; i < system->maxMasters(); i++) {
2198 avgMshrUncacheableLatency[access_idx].subname(
2199 i, system->getMasterName(i));
2200 }
2201 }
2202
2203 overallAvgMshrUncacheableLatency
2204 .name(name() + ".overall_avg_mshr_uncacheable_latency")
2205 .desc("average overall mshr uncacheable latency")
2206 .flags(total | nozero | nonan)
2207 ;
2208 overallAvgMshrUncacheableLatency =
2209 overallMshrUncacheableLatency / overallMshrUncacheable;
2210 for (int i = 0; i < system->maxMasters(); i++) {
2211 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2212 }
2213
2214 replacements
2215 .name(name() + ".replacements")
2216 .desc("number of replacements")
2217 ;
2218 }
2219
2220 void
2221 BaseCache::regProbePoints()
2222 {
2223 ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit");
2224 ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss");
2225 }
2226
2227 ///////////////
2228 //
2229 // CpuSidePort
2230 //
2231 ///////////////
2232 bool
2233 BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2234 {
2235 // Snoops shouldn't happen when bypassing caches
2236 assert(!cache->system->bypassCaches());
2237
2238 assert(pkt->isResponse());
2239
2240 // Express snoop responses from master to slave, e.g., from L1 to L2
2241 cache->recvTimingSnoopResp(pkt);
2242 return true;
2243 }
2244
2245
2246 bool
2247 BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2248 {
2249 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2250 // always let express snoop packets through even if blocked
2251 return true;
2252 } else if (blocked || mustSendRetry) {
2253 // either already committed to send a retry, or blocked
2254 mustSendRetry = true;
2255 return false;
2256 }
2257 mustSendRetry = false;
2258 return true;
2259 }
2260
2261 bool
2262 BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2263 {
2264 assert(pkt->isRequest());
2265
2266 if (cache->system->bypassCaches()) {
2267 // Just forward the packet if caches are disabled.
2268 // @todo This should really enqueue the packet rather
2269 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2270 assert(success);
2271 return true;
2272 } else if (tryTiming(pkt)) {
2273 cache->recvTimingReq(pkt);
2274 return true;
2275 }
2276 return false;
2277 }
2278
2279 Tick
2280 BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2281 {
2282 if (cache->system->bypassCaches()) {
2283 // Forward the request if the system is in cache bypass mode.
2284 return cache->memSidePort.sendAtomic(pkt);
2285 } else {
2286 return cache->recvAtomic(pkt);
2287 }
2288 }
2289
2290 void
2291 BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2292 {
2293 if (cache->system->bypassCaches()) {
2294 // The cache should be flushed if we are in cache bypass mode,
2295 // so we don't need to check if we need to update anything.
2296 cache->memSidePort.sendFunctional(pkt);
2297 return;
2298 }
2299
2300 // functional request
2301 cache->functionalAccess(pkt, true);
2302 }
2303
2304 AddrRangeList
2305 BaseCache::CpuSidePort::getAddrRanges() const
2306 {
2307 return cache->getAddrRanges();
2308 }
2309
2310
2311 BaseCache::
2312 CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2313 const std::string &_label)
2314 : CacheSlavePort(_name, _cache, _label), cache(_cache)
2315 {
2316 }
2317
2318 ///////////////
2319 //
2320 // MemSidePort
2321 //
2322 ///////////////
2323 bool
2324 BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2325 {
2326 cache->recvTimingResp(pkt);
2327 return true;
2328 }
2329
2330 // Express snooping requests to memside port
2331 void
2332 BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2333 {
2334 // Snoops shouldn't happen when bypassing caches
2335 assert(!cache->system->bypassCaches());
2336
2337 // handle snooping requests
2338 cache->recvTimingSnoopReq(pkt);
2339 }
2340
2341 Tick
2342 BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2343 {
2344 // Snoops shouldn't happen when bypassing caches
2345 assert(!cache->system->bypassCaches());
2346
2347 return cache->recvAtomicSnoop(pkt);
2348 }
2349
2350 void
2351 BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2352 {
2353 // Snoops shouldn't happen when bypassing caches
2354 assert(!cache->system->bypassCaches());
2355
2356 // functional snoop (note that in contrast to atomic we don't have
2357 // a specific functionalSnoop method, as they have the same
2358 // behaviour regardless)
2359 cache->functionalAccess(pkt, false);
2360 }
2361
2362 void
2363 BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2364 {
2365 // sanity check
2366 assert(!waitingOnRetry);
2367
2368 // there should never be any deferred request packets in the
2369 // queue, instead we resly on the cache to provide the packets
2370 // from the MSHR queue or write queue
2371 assert(deferredPacketReadyTime() == MaxTick);
2372
2373 // check for request packets (requests & writebacks)
2374 QueueEntry* entry = cache.getNextQueueEntry();
2375
2376 if (!entry) {
2377 // can happen if e.g. we attempt a writeback and fail, but
2378 // before the retry, the writeback is eliminated because
2379 // we snoop another cache's ReadEx.
2380 } else {
2381 // let our snoop responses go first if there are responses to
2382 // the same addresses
2383 if (checkConflictingSnoop(entry->blkAddr)) {
2384 return;
2385 }
2386 waitingOnRetry = entry->sendPacket(cache);
2387 }
2388
2389 // if we succeeded and are not waiting for a retry, schedule the
2390 // next send considering when the next queue is ready, note that
2391 // snoop responses have their own packet queue and thus schedule
2392 // their own events
2393 if (!waitingOnRetry) {
2394 schedSendEvent(cache.nextQueueReadyTime());
2395 }
2396 }
2397
2398 BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2399 BaseCache *_cache,
2400 const std::string &_label)
2401 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2402 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2403 _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2404 {
2405 }
2406
2407 void
2408 WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
2409 Addr blk_addr)
2410 {
2411 // check if we are continuing where the last write ended
2412 if (nextAddr == write_addr) {
2413 delayCtr[blk_addr] = delayThreshold;
2414 // stop if we have already saturated
2415 if (mode != WriteMode::NO_ALLOCATE) {
2416 byteCount += write_size;
2417 // switch to streaming mode if we have passed the lower
2418 // threshold
2419 if (mode == WriteMode::ALLOCATE &&
2420 byteCount > coalesceLimit) {
2421 mode = WriteMode::COALESCE;
2422 DPRINTF(Cache, "Switched to write coalescing\n");
2423 } else if (mode == WriteMode::COALESCE &&
2424 byteCount > noAllocateLimit) {
2425 // and continue and switch to non-allocating mode if we
2426 // pass the upper threshold
2427 mode = WriteMode::NO_ALLOCATE;
2428 DPRINTF(Cache, "Switched to write-no-allocate\n");
2429 }
2430 }
2431 } else {
2432 // we did not see a write matching the previous one, start
2433 // over again
2434 byteCount = write_size;
2435 mode = WriteMode::ALLOCATE;
2436 resetDelay(blk_addr);
2437 }
2438 nextAddr = write_addr + write_size;
2439 }
2440
2441 WriteAllocator*
2442 WriteAllocatorParams::create()
2443 {
2444 return new WriteAllocator(this);
2445 }