mem-cache: Remove writebacks packet list
[gem5.git] / src / mem / cache / base.cc
1 /*
2 * Copyright (c) 2012-2013, 2018-2019 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 * Nikos Nikoleris
42 */
43
44 /**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49 #include "mem/cache/base.hh"
50
51 #include "base/compiler.hh"
52 #include "base/logging.hh"
53 #include "debug/Cache.hh"
54 #include "debug/CacheComp.hh"
55 #include "debug/CachePort.hh"
56 #include "debug/CacheRepl.hh"
57 #include "debug/CacheVerbose.hh"
58 #include "mem/cache/compressors/base.hh"
59 #include "mem/cache/mshr.hh"
60 #include "mem/cache/prefetch/base.hh"
61 #include "mem/cache/queue_entry.hh"
62 #include "mem/cache/tags/super_blk.hh"
63 #include "params/BaseCache.hh"
64 #include "params/WriteAllocator.hh"
65 #include "sim/core.hh"
66
67 class BaseMasterPort;
68 class BaseSlavePort;
69
70 using namespace std;
71
72 BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
73 BaseCache *_cache,
74 const std::string &_label)
75 : QueuedSlavePort(_name, _cache, queue),
76 queue(*_cache, *this, true, _label),
77 blocked(false), mustSendRetry(false),
78 sendRetryEvent([this]{ processSendRetry(); }, _name)
79 {
80 }
81
82 BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
83 : ClockedObject(p),
84 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
85 memSidePort(p->name + ".mem_side", this, "MemSidePort"),
86 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
87 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
88 tags(p->tags),
89 compressor(p->compressor),
90 prefetcher(p->prefetcher),
91 writeAllocator(p->write_allocator),
92 writebackClean(p->writeback_clean),
93 tempBlockWriteback(nullptr),
94 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
95 name(), false,
96 EventBase::Delayed_Writeback_Pri),
97 blkSize(blk_size),
98 lookupLatency(p->tag_latency),
99 dataLatency(p->data_latency),
100 forwardLatency(p->tag_latency),
101 fillLatency(p->data_latency),
102 responseLatency(p->response_latency),
103 sequentialAccess(p->sequential_access),
104 numTarget(p->tgts_per_mshr),
105 forwardSnoops(true),
106 clusivity(p->clusivity),
107 isReadOnly(p->is_read_only),
108 blocked(0),
109 order(0),
110 noTargetMSHR(nullptr),
111 missCount(p->max_miss_count),
112 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
113 system(p->system)
114 {
115 // the MSHR queue has no reserve entries as we check the MSHR
116 // queue on every single allocation, whereas the write queue has
117 // as many reserve entries as we have MSHRs, since every MSHR may
118 // eventually require a writeback, and we do not check the write
119 // buffer before committing to an MSHR
120
121 // forward snoops is overridden in init() once we can query
122 // whether the connected master is actually snooping or not
123
124 tempBlock = new TempCacheBlk(blkSize);
125
126 tags->tagsInit();
127 if (prefetcher)
128 prefetcher->setCache(this);
129 }
130
131 BaseCache::~BaseCache()
132 {
133 delete tempBlock;
134 }
135
136 void
137 BaseCache::CacheSlavePort::setBlocked()
138 {
139 assert(!blocked);
140 DPRINTF(CachePort, "Port is blocking new requests\n");
141 blocked = true;
142 // if we already scheduled a retry in this cycle, but it has not yet
143 // happened, cancel it
144 if (sendRetryEvent.scheduled()) {
145 owner.deschedule(sendRetryEvent);
146 DPRINTF(CachePort, "Port descheduled retry\n");
147 mustSendRetry = true;
148 }
149 }
150
151 void
152 BaseCache::CacheSlavePort::clearBlocked()
153 {
154 assert(blocked);
155 DPRINTF(CachePort, "Port is accepting new requests\n");
156 blocked = false;
157 if (mustSendRetry) {
158 // @TODO: need to find a better time (next cycle?)
159 owner.schedule(sendRetryEvent, curTick() + 1);
160 }
161 }
162
163 void
164 BaseCache::CacheSlavePort::processSendRetry()
165 {
166 DPRINTF(CachePort, "Port is sending retry\n");
167
168 // reset the flag and call retry
169 mustSendRetry = false;
170 sendRetryReq();
171 }
172
173 Addr
174 BaseCache::regenerateBlkAddr(CacheBlk* blk)
175 {
176 if (blk != tempBlock) {
177 return tags->regenerateBlkAddr(blk);
178 } else {
179 return tempBlock->getAddr();
180 }
181 }
182
183 void
184 BaseCache::init()
185 {
186 if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
187 fatal("Cache ports on %s are not connected\n", name());
188 cpuSidePort.sendRangeChange();
189 forwardSnoops = cpuSidePort.isSnooping();
190 }
191
192 Port &
193 BaseCache::getPort(const std::string &if_name, PortID idx)
194 {
195 if (if_name == "mem_side") {
196 return memSidePort;
197 } else if (if_name == "cpu_side") {
198 return cpuSidePort;
199 } else {
200 return ClockedObject::getPort(if_name, idx);
201 }
202 }
203
204 bool
205 BaseCache::inRange(Addr addr) const
206 {
207 for (const auto& r : addrRanges) {
208 if (r.contains(addr)) {
209 return true;
210 }
211 }
212 return false;
213 }
214
215 void
216 BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
217 {
218 if (pkt->needsResponse()) {
219 // These delays should have been consumed by now
220 assert(pkt->headerDelay == 0);
221 assert(pkt->payloadDelay == 0);
222
223 pkt->makeTimingResponse();
224
225 // In this case we are considering request_time that takes
226 // into account the delay of the xbar, if any, and just
227 // lat, neglecting responseLatency, modelling hit latency
228 // just as the value of lat overriden by access(), which calls
229 // the calculateAccessLatency() function.
230 cpuSidePort.schedTimingResp(pkt, request_time);
231 } else {
232 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
233 pkt->print());
234
235 // queue the packet for deletion, as the sending cache is
236 // still relying on it; if the block is found in access(),
237 // CleanEvict and Writeback messages will be deleted
238 // here as well
239 pendingDelete.reset(pkt);
240 }
241 }
242
243 void
244 BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
245 Tick forward_time, Tick request_time)
246 {
247 if (writeAllocator &&
248 pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
249 writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
250 pkt->getBlockAddr(blkSize));
251 }
252
253 if (mshr) {
254 /// MSHR hit
255 /// @note writebacks will be checked in getNextMSHR()
256 /// for any conflicting requests to the same block
257
258 //@todo remove hw_pf here
259
260 // Coalesce unless it was a software prefetch (see above).
261 if (pkt) {
262 assert(!pkt->isWriteback());
263 // CleanEvicts corresponding to blocks which have
264 // outstanding requests in MSHRs are simply sunk here
265 if (pkt->cmd == MemCmd::CleanEvict) {
266 pendingDelete.reset(pkt);
267 } else if (pkt->cmd == MemCmd::WriteClean) {
268 // A WriteClean should never coalesce with any
269 // outstanding cache maintenance requests.
270
271 // We use forward_time here because there is an
272 // uncached memory write, forwarded to WriteBuffer.
273 allocateWriteBuffer(pkt, forward_time);
274 } else {
275 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
276 pkt->print());
277
278 assert(pkt->req->masterId() < system->maxMasters());
279 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
280
281 // We use forward_time here because it is the same
282 // considering new targets. We have multiple
283 // requests for the same address here. It
284 // specifies the latency to allocate an internal
285 // buffer and to schedule an event to the queued
286 // port and also takes into account the additional
287 // delay of the xbar.
288 mshr->allocateTarget(pkt, forward_time, order++,
289 allocOnFill(pkt->cmd));
290 if (mshr->getNumTargets() == numTarget) {
291 noTargetMSHR = mshr;
292 setBlocked(Blocked_NoTargets);
293 // need to be careful with this... if this mshr isn't
294 // ready yet (i.e. time > curTick()), we don't want to
295 // move it ahead of mshrs that are ready
296 // mshrQueue.moveToFront(mshr);
297 }
298 }
299 }
300 } else {
301 // no MSHR
302 assert(pkt->req->masterId() < system->maxMasters());
303 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
304
305 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
306 // We use forward_time here because there is an
307 // writeback or writeclean, forwarded to WriteBuffer.
308 allocateWriteBuffer(pkt, forward_time);
309 } else {
310 if (blk && blk->isValid()) {
311 // If we have a write miss to a valid block, we
312 // need to mark the block non-readable. Otherwise
313 // if we allow reads while there's an outstanding
314 // write miss, the read could return stale data
315 // out of the cache block... a more aggressive
316 // system could detect the overlap (if any) and
317 // forward data out of the MSHRs, but we don't do
318 // that yet. Note that we do need to leave the
319 // block valid so that it stays in the cache, in
320 // case we get an upgrade response (and hence no
321 // new data) when the write miss completes.
322 // As long as CPUs do proper store/load forwarding
323 // internally, and have a sufficiently weak memory
324 // model, this is probably unnecessary, but at some
325 // point it must have seemed like we needed it...
326 assert((pkt->needsWritable() && !blk->isWritable()) ||
327 pkt->req->isCacheMaintenance());
328 blk->status &= ~BlkReadable;
329 }
330 // Here we are using forward_time, modelling the latency of
331 // a miss (outbound) just as forwardLatency, neglecting the
332 // lookupLatency component.
333 allocateMissBuffer(pkt, forward_time);
334 }
335 }
336 }
337
338 void
339 BaseCache::recvTimingReq(PacketPtr pkt)
340 {
341 // anything that is merely forwarded pays for the forward latency and
342 // the delay provided by the crossbar
343 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
344
345 // Note that lat is passed by reference here. The function
346 // access() will set the lat value.
347 Cycles lat;
348 CacheBlk *blk = nullptr;
349 bool satisfied = access(pkt, blk, lat);
350
351 // Here we charge the headerDelay that takes into account the latencies
352 // of the bus, if the packet comes from it.
353 // The latency charged is just the value set by the access() function.
354 // In case of a hit we are neglecting response latency.
355 // In case of a miss we are neglecting forward latency.
356 Tick request_time = clockEdge(lat);
357 // Here we reset the timing of the packet.
358 pkt->headerDelay = pkt->payloadDelay = 0;
359
360 if (satisfied) {
361 // notify before anything else as later handleTimingReqHit might turn
362 // the packet in a response
363 ppHit->notify(pkt);
364
365 if (prefetcher && blk && blk->wasPrefetched()) {
366 blk->status &= ~BlkHWPrefetched;
367 }
368
369 handleTimingReqHit(pkt, blk, request_time);
370 } else {
371 handleTimingReqMiss(pkt, blk, forward_time, request_time);
372
373 ppMiss->notify(pkt);
374 }
375
376 if (prefetcher) {
377 // track time of availability of next prefetch, if any
378 Tick next_pf_time = prefetcher->nextPrefetchReadyTime();
379 if (next_pf_time != MaxTick) {
380 schedMemSideSendEvent(next_pf_time);
381 }
382 }
383 }
384
385 void
386 BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
387 {
388 Tick completion_time = clockEdge(responseLatency) +
389 pkt->headerDelay + pkt->payloadDelay;
390
391 // Reset the bus additional time as it is now accounted for
392 pkt->headerDelay = pkt->payloadDelay = 0;
393
394 cpuSidePort.schedTimingResp(pkt, completion_time);
395 }
396
397 void
398 BaseCache::recvTimingResp(PacketPtr pkt)
399 {
400 assert(pkt->isResponse());
401
402 // all header delay should be paid for by the crossbar, unless
403 // this is a prefetch response from above
404 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
405 "%s saw a non-zero packet delay\n", name());
406
407 const bool is_error = pkt->isError();
408
409 if (is_error) {
410 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
411 pkt->print());
412 }
413
414 DPRINTF(Cache, "%s: Handling response %s\n", __func__,
415 pkt->print());
416
417 // if this is a write, we should be looking at an uncacheable
418 // write
419 if (pkt->isWrite()) {
420 assert(pkt->req->isUncacheable());
421 handleUncacheableWriteResp(pkt);
422 return;
423 }
424
425 // we have dealt with any (uncacheable) writes above, from here on
426 // we know we are dealing with an MSHR due to a miss or a prefetch
427 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
428 assert(mshr);
429
430 if (mshr == noTargetMSHR) {
431 // we always clear at least one target
432 clearBlocked(Blocked_NoTargets);
433 noTargetMSHR = nullptr;
434 }
435
436 // Initial target is used just for stats
437 QueueEntry::Target *initial_tgt = mshr->getTarget();
438 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
439 Tick miss_latency = curTick() - initial_tgt->recvTime;
440
441 if (pkt->req->isUncacheable()) {
442 assert(pkt->req->masterId() < system->maxMasters());
443 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
444 miss_latency;
445 } else {
446 assert(pkt->req->masterId() < system->maxMasters());
447 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
448 miss_latency;
449 }
450
451 bool is_fill = !mshr->isForward &&
452 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
453 mshr->wasWholeLineWrite);
454
455 // make sure that if the mshr was due to a whole line write then
456 // the response is an invalidation
457 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
458
459 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
460
461 if (is_fill && !is_error) {
462 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
463 pkt->getAddr());
464
465 const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
466 writeAllocator->allocate() : mshr->allocOnFill();
467 blk = handleFill(pkt, blk, allocate);
468 assert(blk != nullptr);
469 ppFill->notify(pkt);
470 }
471
472 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
473 // The block was marked not readable while there was a pending
474 // cache maintenance operation, restore its flag.
475 blk->status |= BlkReadable;
476
477 // This was a cache clean operation (without invalidate)
478 // and we have a copy of the block already. Since there
479 // is no invalidation, we can promote targets that don't
480 // require a writable copy
481 mshr->promoteReadable();
482 }
483
484 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
485 // If at this point the referenced block is writable and the
486 // response is not a cache invalidate, we promote targets that
487 // were deferred as we couldn't guarrantee a writable copy
488 mshr->promoteWritable();
489 }
490
491 serviceMSHRTargets(mshr, pkt, blk);
492
493 if (mshr->promoteDeferredTargets()) {
494 // avoid later read getting stale data while write miss is
495 // outstanding.. see comment in timingAccess()
496 if (blk) {
497 blk->status &= ~BlkReadable;
498 }
499 mshrQueue.markPending(mshr);
500 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
501 } else {
502 // while we deallocate an mshr from the queue we still have to
503 // check the isFull condition before and after as we might
504 // have been using the reserved entries already
505 const bool was_full = mshrQueue.isFull();
506 mshrQueue.deallocate(mshr);
507 if (was_full && !mshrQueue.isFull()) {
508 clearBlocked(Blocked_NoMSHRs);
509 }
510
511 // Request the bus for a prefetch if this deallocation freed enough
512 // MSHRs for a prefetch to take place
513 if (prefetcher && mshrQueue.canPrefetch()) {
514 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
515 clockEdge());
516 if (next_pf_time != MaxTick)
517 schedMemSideSendEvent(next_pf_time);
518 }
519 }
520
521 // if we used temp block, check to see if its valid and then clear it out
522 if (blk == tempBlock && tempBlock->isValid()) {
523 evictBlock(blk, clockEdge(forwardLatency) + pkt->headerDelay);
524 }
525
526 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
527 delete pkt;
528 }
529
530
531 Tick
532 BaseCache::recvAtomic(PacketPtr pkt)
533 {
534 // should assert here that there are no outstanding MSHRs or
535 // writebacks... that would mean that someone used an atomic
536 // access in timing mode
537
538 // We use lookupLatency here because it is used to specify the latency
539 // to access.
540 Cycles lat = lookupLatency;
541
542 CacheBlk *blk = nullptr;
543 bool satisfied = access(pkt, blk, lat);
544
545 if (pkt->isClean() && blk && blk->isDirty()) {
546 // A cache clean opearation is looking for a dirty
547 // block. If a dirty block is encountered a WriteClean
548 // will update any copies to the path to the memory
549 // until the point of reference.
550 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
551 __func__, pkt->print(), blk->print());
552 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
553 pkt->setSatisfied();
554 doWritebacksAtomic(wb_pkt);
555 }
556
557 if (!satisfied) {
558 lat += handleAtomicReqMiss(pkt, blk);
559 }
560
561 // Note that we don't invoke the prefetcher at all in atomic mode.
562 // It's not clear how to do it properly, particularly for
563 // prefetchers that aggressively generate prefetch candidates and
564 // rely on bandwidth contention to throttle them; these will tend
565 // to pollute the cache in atomic mode since there is no bandwidth
566 // contention. If we ever do want to enable prefetching in atomic
567 // mode, though, this is the place to do it... see timingAccess()
568 // for an example (though we'd want to issue the prefetch(es)
569 // immediately rather than calling requestMemSideBus() as we do
570 // there).
571
572 // if we used temp block, check to see if its valid and if so
573 // clear it out, but only do so after the call to recvAtomic is
574 // finished so that any downstream observers (such as a snoop
575 // filter), first see the fill, and only then see the eviction
576 if (blk == tempBlock && tempBlock->isValid()) {
577 // the atomic CPU calls recvAtomic for fetch and load/store
578 // sequentuially, and we may already have a tempBlock
579 // writeback from the fetch that we have not yet sent
580 if (tempBlockWriteback) {
581 // if that is the case, write the prevoius one back, and
582 // do not schedule any new event
583 writebackTempBlockAtomic();
584 } else {
585 // the writeback/clean eviction happens after the call to
586 // recvAtomic has finished (but before any successive
587 // calls), so that the response handling from the fill is
588 // allowed to happen first
589 schedule(writebackTempBlockAtomicEvent, curTick());
590 }
591
592 tempBlockWriteback = evictBlock(blk);
593 }
594
595 if (pkt->needsResponse()) {
596 pkt->makeAtomicResponse();
597 }
598
599 return lat * clockPeriod();
600 }
601
602 void
603 BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
604 {
605 Addr blk_addr = pkt->getBlockAddr(blkSize);
606 bool is_secure = pkt->isSecure();
607 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
608 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
609
610 pkt->pushLabel(name());
611
612 CacheBlkPrintWrapper cbpw(blk);
613
614 // Note that just because an L2/L3 has valid data doesn't mean an
615 // L1 doesn't have a more up-to-date modified copy that still
616 // needs to be found. As a result we always update the request if
617 // we have it, but only declare it satisfied if we are the owner.
618
619 // see if we have data at all (owned or otherwise)
620 bool have_data = blk && blk->isValid()
621 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
622 blk->data);
623
624 // data we have is dirty if marked as such or if we have an
625 // in-service MSHR that is pending a modified line
626 bool have_dirty =
627 have_data && (blk->isDirty() ||
628 (mshr && mshr->inService && mshr->isPendingModified()));
629
630 bool done = have_dirty ||
631 cpuSidePort.trySatisfyFunctional(pkt) ||
632 mshrQueue.trySatisfyFunctional(pkt) ||
633 writeBuffer.trySatisfyFunctional(pkt) ||
634 memSidePort.trySatisfyFunctional(pkt);
635
636 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
637 (blk && blk->isValid()) ? "valid " : "",
638 have_data ? "data " : "", done ? "done " : "");
639
640 // We're leaving the cache, so pop cache->name() label
641 pkt->popLabel();
642
643 if (done) {
644 pkt->makeResponse();
645 } else {
646 // if it came as a request from the CPU side then make sure it
647 // continues towards the memory side
648 if (from_cpu_side) {
649 memSidePort.sendFunctional(pkt);
650 } else if (cpuSidePort.isSnooping()) {
651 // if it came from the memory side, it must be a snoop request
652 // and we should only forward it if we are forwarding snoops
653 cpuSidePort.sendFunctionalSnoop(pkt);
654 }
655 }
656 }
657
658
659 void
660 BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
661 {
662 assert(pkt->isRequest());
663
664 uint64_t overwrite_val;
665 bool overwrite_mem;
666 uint64_t condition_val64;
667 uint32_t condition_val32;
668
669 int offset = pkt->getOffset(blkSize);
670 uint8_t *blk_data = blk->data + offset;
671
672 assert(sizeof(uint64_t) >= pkt->getSize());
673
674 overwrite_mem = true;
675 // keep a copy of our possible write value, and copy what is at the
676 // memory address into the packet
677 pkt->writeData((uint8_t *)&overwrite_val);
678 pkt->setData(blk_data);
679
680 if (pkt->req->isCondSwap()) {
681 if (pkt->getSize() == sizeof(uint64_t)) {
682 condition_val64 = pkt->req->getExtraData();
683 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
684 sizeof(uint64_t));
685 } else if (pkt->getSize() == sizeof(uint32_t)) {
686 condition_val32 = (uint32_t)pkt->req->getExtraData();
687 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
688 sizeof(uint32_t));
689 } else
690 panic("Invalid size for conditional read/write\n");
691 }
692
693 if (overwrite_mem) {
694 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
695 blk->status |= BlkDirty;
696 }
697 }
698
699 QueueEntry*
700 BaseCache::getNextQueueEntry()
701 {
702 // Check both MSHR queue and write buffer for potential requests,
703 // note that null does not mean there is no request, it could
704 // simply be that it is not ready
705 MSHR *miss_mshr = mshrQueue.getNext();
706 WriteQueueEntry *wq_entry = writeBuffer.getNext();
707
708 // If we got a write buffer request ready, first priority is a
709 // full write buffer, otherwise we favour the miss requests
710 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
711 // need to search MSHR queue for conflicting earlier miss.
712 MSHR *conflict_mshr = mshrQueue.findPending(wq_entry);
713
714 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
715 // Service misses in order until conflict is cleared.
716 return conflict_mshr;
717
718 // @todo Note that we ignore the ready time of the conflict here
719 }
720
721 // No conflicts; issue write
722 return wq_entry;
723 } else if (miss_mshr) {
724 // need to check for conflicting earlier writeback
725 WriteQueueEntry *conflict_mshr = writeBuffer.findPending(miss_mshr);
726 if (conflict_mshr) {
727 // not sure why we don't check order here... it was in the
728 // original code but commented out.
729
730 // The only way this happens is if we are
731 // doing a write and we didn't have permissions
732 // then subsequently saw a writeback (owned got evicted)
733 // We need to make sure to perform the writeback first
734 // To preserve the dirty data, then we can issue the write
735
736 // should we return wq_entry here instead? I.e. do we
737 // have to flush writes in order? I don't think so... not
738 // for Alpha anyway. Maybe for x86?
739 return conflict_mshr;
740
741 // @todo Note that we ignore the ready time of the conflict here
742 }
743
744 // No conflicts; issue read
745 return miss_mshr;
746 }
747
748 // fall through... no pending requests. Try a prefetch.
749 assert(!miss_mshr && !wq_entry);
750 if (prefetcher && mshrQueue.canPrefetch()) {
751 // If we have a miss queue slot, we can try a prefetch
752 PacketPtr pkt = prefetcher->getPacket();
753 if (pkt) {
754 Addr pf_addr = pkt->getBlockAddr(blkSize);
755 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
756 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
757 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
758 // Update statistic on number of prefetches issued
759 // (hwpf_mshr_misses)
760 assert(pkt->req->masterId() < system->maxMasters());
761 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
762
763 // allocate an MSHR and return it, note
764 // that we send the packet straight away, so do not
765 // schedule the send
766 return allocateMissBuffer(pkt, curTick(), false);
767 } else {
768 // free the request and packet
769 delete pkt;
770 }
771 }
772 }
773
774 return nullptr;
775 }
776
777 bool
778 BaseCache::updateCompressionData(CacheBlk *blk, const uint64_t* data,
779 uint32_t delay, Cycles tag_latency)
780 {
781 // tempBlock does not exist in the tags, so don't do anything for it.
782 if (blk == tempBlock) {
783 return true;
784 }
785
786 // Get superblock of the given block
787 CompressionBlk* compression_blk = static_cast<CompressionBlk*>(blk);
788 const SuperBlk* superblock = static_cast<const SuperBlk*>(
789 compression_blk->getSectorBlock());
790
791 // The compressor is called to compress the updated data, so that its
792 // metadata can be updated.
793 std::size_t compression_size = 0;
794 Cycles compression_lat = Cycles(0);
795 Cycles decompression_lat = Cycles(0);
796 compressor->compress(data, compression_lat, decompression_lat,
797 compression_size);
798
799 // If block's compression factor increased, it may not be co-allocatable
800 // anymore. If so, some blocks might need to be evicted to make room for
801 // the bigger block
802
803 // Get previous compressed size
804 const std::size_t M5_VAR_USED prev_size = compression_blk->getSizeBits();
805
806 // Check if new data is co-allocatable
807 const bool is_co_allocatable = superblock->isCompressed(compression_blk) &&
808 superblock->canCoAllocate(compression_size);
809
810 // If block was compressed, possibly co-allocated with other blocks, and
811 // cannot be co-allocated anymore, one or more blocks must be evicted to
812 // make room for the expanded block. As of now we decide to evict the co-
813 // allocated blocks to make room for the expansion, but other approaches
814 // that take the replacement data of the superblock into account may
815 // generate better results
816 std::vector<CacheBlk*> evict_blks;
817 const bool was_compressed = compression_blk->isCompressed();
818 if (was_compressed && !is_co_allocatable) {
819 // Get all co-allocated blocks
820 for (const auto& sub_blk : superblock->blks) {
821 if (sub_blk->isValid() && (compression_blk != sub_blk)) {
822 // Check for transient state allocations. If any of the
823 // entries listed for eviction has a transient state, the
824 // allocation fails
825 const Addr repl_addr = regenerateBlkAddr(sub_blk);
826 const MSHR *repl_mshr =
827 mshrQueue.findMatch(repl_addr, sub_blk->isSecure());
828 if (repl_mshr) {
829 DPRINTF(CacheRepl, "Aborting data expansion of %s due " \
830 "to replacement of block in transient state: %s\n",
831 compression_blk->print(), sub_blk->print());
832 // Too hard to replace block with transient state, so it
833 // cannot be evicted. Mark the update as failed and expect
834 // the caller to evict this block. Since this is called
835 // only when writebacks arrive, and packets do not contain
836 // compressed data, there is no need to decompress
837 compression_blk->setSizeBits(blkSize * 8);
838 compression_blk->setDecompressionLatency(Cycles(0));
839 compression_blk->setUncompressed();
840 return false;
841 }
842
843 evict_blks.push_back(sub_blk);
844 }
845 }
846
847 // Update the number of data expansions
848 dataExpansions++;
849
850 DPRINTF(CacheComp, "Data expansion: expanding [%s] from %d to %d bits"
851 "\n", blk->print(), prev_size, compression_size);
852 }
853
854 // We always store compressed blocks when possible
855 if (is_co_allocatable) {
856 compression_blk->setCompressed();
857 } else {
858 compression_blk->setUncompressed();
859 }
860 compression_blk->setSizeBits(compression_size);
861 compression_blk->setDecompressionLatency(decompression_lat);
862
863 // Evict valid blocks
864 for (const auto& evict_blk : evict_blks) {
865 if (evict_blk->isValid()) {
866 if (evict_blk->wasPrefetched()) {
867 unusedPrefetches++;
868 }
869 Cycles lat = calculateAccessLatency(evict_blk, delay, tag_latency);
870 evictBlock(evict_blk, clockEdge(lat + forwardLatency));
871 }
872 }
873
874 return true;
875 }
876
877 void
878 BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
879 {
880 assert(pkt->isRequest());
881
882 assert(blk && blk->isValid());
883 // Occasionally this is not true... if we are a lower-level cache
884 // satisfying a string of Read and ReadEx requests from
885 // upper-level caches, a Read will mark the block as shared but we
886 // can satisfy a following ReadEx anyway since we can rely on the
887 // Read requester(s) to have buffered the ReadEx snoop and to
888 // invalidate their blocks after receiving them.
889 // assert(!pkt->needsWritable() || blk->isWritable());
890 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
891
892 // Check RMW operations first since both isRead() and
893 // isWrite() will be true for them
894 if (pkt->cmd == MemCmd::SwapReq) {
895 if (pkt->isAtomicOp()) {
896 // extract data from cache and save it into the data field in
897 // the packet as a return value from this atomic op
898 int offset = tags->extractBlkOffset(pkt->getAddr());
899 uint8_t *blk_data = blk->data + offset;
900 pkt->setData(blk_data);
901
902 // execute AMO operation
903 (*(pkt->getAtomicOp()))(blk_data);
904
905 // set block status to dirty
906 blk->status |= BlkDirty;
907 } else {
908 cmpAndSwap(blk, pkt);
909 }
910 } else if (pkt->isWrite()) {
911 // we have the block in a writable state and can go ahead,
912 // note that the line may be also be considered writable in
913 // downstream caches along the path to memory, but always
914 // Exclusive, and never Modified
915 assert(blk->isWritable());
916 // Write or WriteLine at the first cache with block in writable state
917 if (blk->checkWrite(pkt)) {
918 pkt->writeDataToBlock(blk->data, blkSize);
919 }
920 // Always mark the line as dirty (and thus transition to the
921 // Modified state) even if we are a failed StoreCond so we
922 // supply data to any snoops that have appended themselves to
923 // this cache before knowing the store will fail.
924 blk->status |= BlkDirty;
925 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
926 } else if (pkt->isRead()) {
927 if (pkt->isLLSC()) {
928 blk->trackLoadLocked(pkt);
929 }
930
931 // all read responses have a data payload
932 assert(pkt->hasRespData());
933 pkt->setDataFromBlock(blk->data, blkSize);
934 } else if (pkt->isUpgrade()) {
935 // sanity check
936 assert(!pkt->hasSharers());
937
938 if (blk->isDirty()) {
939 // we were in the Owned state, and a cache above us that
940 // has the line in Shared state needs to be made aware
941 // that the data it already has is in fact dirty
942 pkt->setCacheResponding();
943 blk->status &= ~BlkDirty;
944 }
945 } else if (pkt->isClean()) {
946 blk->status &= ~BlkDirty;
947 } else {
948 assert(pkt->isInvalidate());
949 invalidateBlock(blk);
950 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
951 pkt->print());
952 }
953 }
954
955 /////////////////////////////////////////////////////
956 //
957 // Access path: requests coming in from the CPU side
958 //
959 /////////////////////////////////////////////////////
960 Cycles
961 BaseCache::calculateTagOnlyLatency(const uint32_t delay,
962 const Cycles lookup_lat) const
963 {
964 // A tag-only access has to wait for the packet to arrive in order to
965 // perform the tag lookup.
966 return ticksToCycles(delay) + lookup_lat;
967 }
968
969 Cycles
970 BaseCache::calculateAccessLatency(const CacheBlk* blk, const uint32_t delay,
971 const Cycles lookup_lat) const
972 {
973 Cycles lat(0);
974
975 if (blk != nullptr) {
976 // As soon as the access arrives, for sequential accesses first access
977 // tags, then the data entry. In the case of parallel accesses the
978 // latency is dictated by the slowest of tag and data latencies.
979 if (sequentialAccess) {
980 lat = ticksToCycles(delay) + lookup_lat + dataLatency;
981 } else {
982 lat = ticksToCycles(delay) + std::max(lookup_lat, dataLatency);
983 }
984
985 // Check if the block to be accessed is available. If not, apply the
986 // access latency on top of when the block is ready to be accessed.
987 const Tick tick = curTick() + delay;
988 const Tick when_ready = blk->getWhenReady();
989 if (when_ready > tick &&
990 ticksToCycles(when_ready - tick) > lat) {
991 lat += ticksToCycles(when_ready - tick);
992 }
993 } else {
994 // In case of a miss, we neglect the data access in a parallel
995 // configuration (i.e., the data access will be stopped as soon as
996 // we find out it is a miss), and use the tag-only latency.
997 lat = calculateTagOnlyLatency(delay, lookup_lat);
998 }
999
1000 return lat;
1001 }
1002
1003 bool
1004 BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat)
1005 {
1006 // sanity check
1007 assert(pkt->isRequest());
1008
1009 chatty_assert(!(isReadOnly && pkt->isWrite()),
1010 "Should never see a write in a read-only cache %s\n",
1011 name());
1012
1013 // Access block in the tags
1014 Cycles tag_latency(0);
1015 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency);
1016
1017 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
1018 blk ? "hit " + blk->print() : "miss");
1019
1020 if (pkt->req->isCacheMaintenance()) {
1021 // A cache maintenance operation is always forwarded to the
1022 // memory below even if the block is found in dirty state.
1023
1024 // We defer any changes to the state of the block until we
1025 // create and mark as in service the mshr for the downstream
1026 // packet.
1027
1028 // Calculate access latency on top of when the packet arrives. This
1029 // takes into account the bus delay.
1030 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1031
1032 return false;
1033 }
1034
1035 if (pkt->isEviction()) {
1036 // We check for presence of block in above caches before issuing
1037 // Writeback or CleanEvict to write buffer. Therefore the only
1038 // possible cases can be of a CleanEvict packet coming from above
1039 // encountering a Writeback generated in this cache peer cache and
1040 // waiting in the write buffer. Cases of upper level peer caches
1041 // generating CleanEvict and Writeback or simply CleanEvict and
1042 // CleanEvict almost simultaneously will be caught by snoops sent out
1043 // by crossbar.
1044 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
1045 pkt->isSecure());
1046 if (wb_entry) {
1047 assert(wb_entry->getNumTargets() == 1);
1048 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
1049 assert(wbPkt->isWriteback());
1050
1051 if (pkt->isCleanEviction()) {
1052 // The CleanEvict and WritebackClean snoops into other
1053 // peer caches of the same level while traversing the
1054 // crossbar. If a copy of the block is found, the
1055 // packet is deleted in the crossbar. Hence, none of
1056 // the other upper level caches connected to this
1057 // cache have the block, so we can clear the
1058 // BLOCK_CACHED flag in the Writeback if set and
1059 // discard the CleanEvict by returning true.
1060 wbPkt->clearBlockCached();
1061
1062 // A clean evict does not need to access the data array
1063 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1064
1065 return true;
1066 } else {
1067 assert(pkt->cmd == MemCmd::WritebackDirty);
1068 // Dirty writeback from above trumps our clean
1069 // writeback... discard here
1070 // Note: markInService will remove entry from writeback buffer.
1071 markInService(wb_entry);
1072 delete wbPkt;
1073 }
1074 }
1075 }
1076
1077 // Writeback handling is special case. We can write the block into
1078 // the cache without having a writeable copy (or any copy at all).
1079 if (pkt->isWriteback()) {
1080 assert(blkSize == pkt->getSize());
1081
1082 // we could get a clean writeback while we are having
1083 // outstanding accesses to a block, do the simple thing for
1084 // now and drop the clean writeback so that we do not upset
1085 // any ordering/decisions about ownership already taken
1086 if (pkt->cmd == MemCmd::WritebackClean &&
1087 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
1088 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
1089 "dropping\n", pkt->getAddr());
1090
1091 // A writeback searches for the block, then writes the data.
1092 // As the writeback is being dropped, the data is not touched,
1093 // and we just had to wait for the time to find a match in the
1094 // MSHR. As of now assume a mshr queue search takes as long as
1095 // a tag lookup for simplicity.
1096 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1097
1098 return true;
1099 }
1100
1101 if (!blk) {
1102 // need to do a replacement
1103 blk = allocateBlock(pkt, tag_latency);
1104 if (!blk) {
1105 // no replaceable block available: give up, fwd to next level.
1106 incMissCount(pkt);
1107
1108 // A writeback searches for the block, then writes the data.
1109 // As the block could not be found, it was a tag-only access.
1110 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1111
1112 return false;
1113 }
1114
1115 blk->status |= BlkReadable;
1116 } else if (compressor) {
1117 // This is an overwrite to an existing block, therefore we need
1118 // to check for data expansion (i.e., block was compressed with
1119 // a smaller size, and now it doesn't fit the entry anymore).
1120 // If that is the case we might need to evict blocks.
1121 if (!updateCompressionData(blk, pkt->getConstPtr<uint64_t>(),
1122 pkt->headerDelay, tag_latency)) {
1123 // This is a failed data expansion (write), which happened
1124 // after finding the replacement entries and accessing the
1125 // block's data. There were no replaceable entries available
1126 // to make room for the expanded block, and since it does not
1127 // fit anymore and it has been properly updated to contain
1128 // the new data, forward it to the next level
1129 lat = calculateAccessLatency(blk, pkt->headerDelay,
1130 tag_latency);
1131 invalidateBlock(blk);
1132 return false;
1133 }
1134 }
1135
1136 // only mark the block dirty if we got a writeback command,
1137 // and leave it as is for a clean writeback
1138 if (pkt->cmd == MemCmd::WritebackDirty) {
1139 // TODO: the coherent cache can assert(!blk->isDirty());
1140 blk->status |= BlkDirty;
1141 }
1142 // if the packet does not have sharers, it is passing
1143 // writable, and we got the writeback in Modified or Exclusive
1144 // state, if not we are in the Owned or Shared state
1145 if (!pkt->hasSharers()) {
1146 blk->status |= BlkWritable;
1147 }
1148 // nothing else to do; writeback doesn't expect response
1149 assert(!pkt->needsResponse());
1150 pkt->writeDataToBlock(blk->data, blkSize);
1151 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1152 incHitCount(pkt);
1153
1154 // A writeback searches for the block, then writes the data
1155 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1156
1157 // When the packet metadata arrives, the tag lookup will be done while
1158 // the payload is arriving. Then the block will be ready to access as
1159 // soon as the fill is done
1160 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1161 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
1162
1163 return true;
1164 } else if (pkt->cmd == MemCmd::CleanEvict) {
1165 // A CleanEvict does not need to access the data array
1166 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1167
1168 if (blk) {
1169 // Found the block in the tags, need to stop CleanEvict from
1170 // propagating further down the hierarchy. Returning true will
1171 // treat the CleanEvict like a satisfied write request and delete
1172 // it.
1173 return true;
1174 }
1175 // We didn't find the block here, propagate the CleanEvict further
1176 // down the memory hierarchy. Returning false will treat the CleanEvict
1177 // like a Writeback which could not find a replaceable block so has to
1178 // go to next level.
1179 return false;
1180 } else if (pkt->cmd == MemCmd::WriteClean) {
1181 // WriteClean handling is a special case. We can allocate a
1182 // block directly if it doesn't exist and we can update the
1183 // block immediately. The WriteClean transfers the ownership
1184 // of the block as well.
1185 assert(blkSize == pkt->getSize());
1186
1187 if (!blk) {
1188 if (pkt->writeThrough()) {
1189 // A writeback searches for the block, then writes the data.
1190 // As the block could not be found, it was a tag-only access.
1191 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1192
1193 // if this is a write through packet, we don't try to
1194 // allocate if the block is not present
1195 return false;
1196 } else {
1197 // a writeback that misses needs to allocate a new block
1198 blk = allocateBlock(pkt, tag_latency);
1199 if (!blk) {
1200 // no replaceable block available: give up, fwd to
1201 // next level.
1202 incMissCount(pkt);
1203
1204 // A writeback searches for the block, then writes the
1205 // data. As the block could not be found, it was a tag-only
1206 // access.
1207 lat = calculateTagOnlyLatency(pkt->headerDelay,
1208 tag_latency);
1209
1210 return false;
1211 }
1212
1213 blk->status |= BlkReadable;
1214 }
1215 } else if (compressor) {
1216 // This is an overwrite to an existing block, therefore we need
1217 // to check for data expansion (i.e., block was compressed with
1218 // a smaller size, and now it doesn't fit the entry anymore).
1219 // If that is the case we might need to evict blocks.
1220 if (!updateCompressionData(blk, pkt->getConstPtr<uint64_t>(),
1221 pkt->headerDelay, tag_latency)) {
1222 // This is a failed data expansion (write), which happened
1223 // after finding the replacement entries and accessing the
1224 // block's data. There were no replaceable entries available
1225 // to make room for the expanded block, and since it does not
1226 // fit anymore and it has been properly updated to contain
1227 // the new data, forward it to the next level
1228 lat = calculateAccessLatency(blk, pkt->headerDelay,
1229 tag_latency);
1230 invalidateBlock(blk);
1231 return false;
1232 }
1233 }
1234
1235 // at this point either this is a writeback or a write-through
1236 // write clean operation and the block is already in this
1237 // cache, we need to update the data and the block flags
1238 assert(blk);
1239 // TODO: the coherent cache can assert(!blk->isDirty());
1240 if (!pkt->writeThrough()) {
1241 blk->status |= BlkDirty;
1242 }
1243 // nothing else to do; writeback doesn't expect response
1244 assert(!pkt->needsResponse());
1245 pkt->writeDataToBlock(blk->data, blkSize);
1246 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1247
1248 incHitCount(pkt);
1249
1250 // A writeback searches for the block, then writes the data
1251 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1252
1253 // When the packet metadata arrives, the tag lookup will be done while
1254 // the payload is arriving. Then the block will be ready to access as
1255 // soon as the fill is done
1256 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1257 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
1258
1259 // If this a write-through packet it will be sent to cache below
1260 return !pkt->writeThrough();
1261 } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1262 blk->isReadable())) {
1263 // OK to satisfy access
1264 incHitCount(pkt);
1265
1266 // Calculate access latency based on the need to access the data array
1267 if (pkt->isRead() || pkt->isWrite()) {
1268 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1269
1270 // When a block is compressed, it must first be decompressed
1271 // before being read. This adds to the access latency.
1272 if (compressor && pkt->isRead()) {
1273 lat += compressor->getDecompressionLatency(blk);
1274 }
1275 } else {
1276 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1277 }
1278
1279 satisfyRequest(pkt, blk);
1280 maintainClusivity(pkt->fromCache(), blk);
1281
1282 return true;
1283 }
1284
1285 // Can't satisfy access normally... either no block (blk == nullptr)
1286 // or have block but need writable
1287
1288 incMissCount(pkt);
1289
1290 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1291
1292 if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1293 // complete miss on store conditional... just give up now
1294 pkt->req->setExtraData(0);
1295 return true;
1296 }
1297
1298 return false;
1299 }
1300
1301 void
1302 BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1303 {
1304 if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1305 clusivity == Enums::mostly_excl) {
1306 // if we have responded to a cache, and our block is still
1307 // valid, but not dirty, and this cache is mostly exclusive
1308 // with respect to the cache above, drop the block
1309 invalidateBlock(blk);
1310 }
1311 }
1312
1313 CacheBlk*
1314 BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, bool allocate)
1315 {
1316 assert(pkt->isResponse());
1317 Addr addr = pkt->getAddr();
1318 bool is_secure = pkt->isSecure();
1319 #if TRACING_ON
1320 CacheBlk::State old_state = blk ? blk->status : 0;
1321 #endif
1322
1323 // When handling a fill, we should have no writes to this line.
1324 assert(addr == pkt->getBlockAddr(blkSize));
1325 assert(!writeBuffer.findMatch(addr, is_secure));
1326
1327 if (!blk) {
1328 // better have read new data...
1329 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
1330
1331 // Need to do a replacement if allocating, otherwise we stick
1332 // with the temporary storage. The tag lookup has already been
1333 // done to decide the eviction victims, so it is set to 0 here.
1334 // The eviction itself, however, is delayed until the new data
1335 // for the block that is requesting the replacement arrives.
1336 blk = allocate ? allocateBlock(pkt, Cycles(0)) : nullptr;
1337
1338 if (!blk) {
1339 // No replaceable block or a mostly exclusive
1340 // cache... just use temporary storage to complete the
1341 // current request and then get rid of it
1342 blk = tempBlock;
1343 tempBlock->insert(addr, is_secure);
1344 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1345 is_secure ? "s" : "ns");
1346 }
1347 } else {
1348 // existing block... probably an upgrade
1349 // don't clear block status... if block is already dirty we
1350 // don't want to lose that
1351 }
1352
1353 // Block is guaranteed to be valid at this point
1354 assert(blk->isValid());
1355 assert(blk->isSecure() == is_secure);
1356 assert(regenerateBlkAddr(blk) == addr);
1357
1358 blk->status |= BlkReadable;
1359
1360 // sanity check for whole-line writes, which should always be
1361 // marked as writable as part of the fill, and then later marked
1362 // dirty as part of satisfyRequest
1363 if (pkt->cmd == MemCmd::InvalidateResp) {
1364 assert(!pkt->hasSharers());
1365 }
1366
1367 // here we deal with setting the appropriate state of the line,
1368 // and we start by looking at the hasSharers flag, and ignore the
1369 // cacheResponding flag (normally signalling dirty data) if the
1370 // packet has sharers, thus the line is never allocated as Owned
1371 // (dirty but not writable), and always ends up being either
1372 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1373 // for more details
1374 if (!pkt->hasSharers()) {
1375 // we could get a writable line from memory (rather than a
1376 // cache) even in a read-only cache, note that we set this bit
1377 // even for a read-only cache, possibly revisit this decision
1378 blk->status |= BlkWritable;
1379
1380 // check if we got this via cache-to-cache transfer (i.e., from a
1381 // cache that had the block in Modified or Owned state)
1382 if (pkt->cacheResponding()) {
1383 // we got the block in Modified state, and invalidated the
1384 // owners copy
1385 blk->status |= BlkDirty;
1386
1387 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1388 "in read-only cache %s\n", name());
1389
1390 } else if (pkt->cmd.isSWPrefetch() && pkt->needsWritable()) {
1391 // All other copies of the block were invalidated and we
1392 // have an exclusive copy.
1393
1394 // The coherence protocol assumes that if we fetched an
1395 // exclusive copy of the block, we have the intention to
1396 // modify it. Therefore the MSHR for the PrefetchExReq has
1397 // been the point of ordering and this cache has commited
1398 // to respond to snoops for the block.
1399 //
1400 // In most cases this is true anyway - a PrefetchExReq
1401 // will be followed by a WriteReq. However, if that
1402 // doesn't happen, the block is not marked as dirty and
1403 // the cache doesn't respond to snoops that has committed
1404 // to do so.
1405 //
1406 // To avoid deadlocks in cases where there is a snoop
1407 // between the PrefetchExReq and the expected WriteReq, we
1408 // proactively mark the block as Dirty.
1409
1410 blk->status |= BlkDirty;
1411
1412 panic_if(!isReadOnly, "Prefetch exclusive requests from read-only "
1413 "cache %s\n", name());
1414 }
1415 }
1416
1417 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1418 addr, is_secure ? "s" : "ns", old_state, blk->print());
1419
1420 // if we got new data, copy it in (checking for a read response
1421 // and a response that has data is the same in the end)
1422 if (pkt->isRead()) {
1423 // sanity checks
1424 assert(pkt->hasData());
1425 assert(pkt->getSize() == blkSize);
1426
1427 pkt->writeDataToBlock(blk->data, blkSize);
1428 }
1429 // The block will be ready when the payload arrives and the fill is done
1430 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1431 pkt->payloadDelay);
1432
1433 return blk;
1434 }
1435
1436 CacheBlk*
1437 BaseCache::allocateBlock(const PacketPtr pkt, Cycles tag_latency)
1438 {
1439 // Get address
1440 const Addr addr = pkt->getAddr();
1441
1442 // Get secure bit
1443 const bool is_secure = pkt->isSecure();
1444
1445 // Block size and compression related access latency. Only relevant if
1446 // using a compressor, otherwise there is no extra delay, and the block
1447 // is fully sized
1448 std::size_t blk_size_bits = blkSize*8;
1449 Cycles compression_lat = Cycles(0);
1450 Cycles decompression_lat = Cycles(0);
1451
1452 // If a compressor is being used, it is called to compress data before
1453 // insertion. Although in Gem5 the data is stored uncompressed, even if a
1454 // compressor is used, the compression/decompression methods are called to
1455 // calculate the amount of extra cycles needed to read or write compressed
1456 // blocks.
1457 if (compressor) {
1458 compressor->compress(pkt->getConstPtr<uint64_t>(), compression_lat,
1459 decompression_lat, blk_size_bits);
1460 }
1461
1462 // Find replacement victim
1463 std::vector<CacheBlk*> evict_blks;
1464 CacheBlk *victim = tags->findVictim(addr, is_secure, blk_size_bits,
1465 evict_blks);
1466
1467 // It is valid to return nullptr if there is no victim
1468 if (!victim)
1469 return nullptr;
1470
1471 // Print victim block's information
1472 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
1473
1474 // Check for transient state allocations. If any of the entries listed
1475 // for eviction has a transient state, the allocation fails
1476 bool replacement = false;
1477 for (const auto& blk : evict_blks) {
1478 if (blk->isValid()) {
1479 replacement = true;
1480
1481 Addr repl_addr = regenerateBlkAddr(blk);
1482 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1483 if (repl_mshr) {
1484 // must be an outstanding upgrade or clean request
1485 // on a block we're about to replace...
1486 assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1487 repl_mshr->isCleaning());
1488
1489 // too hard to replace block with transient state
1490 // allocation failed, block not inserted
1491 return nullptr;
1492 }
1493 }
1494 }
1495
1496 // The victim will be replaced by a new entry, so increase the replacement
1497 // counter if a valid block is being replaced
1498 if (replacement) {
1499 // Evict valid blocks associated to this victim block
1500 for (const auto& blk : evict_blks) {
1501 if (blk->isValid()) {
1502 DPRINTF(CacheRepl, "Evicting %s (%#llx) to make room for " \
1503 "%#llx (%s)\n", blk->print(), regenerateBlkAddr(blk),
1504 addr, is_secure);
1505
1506 if (blk->wasPrefetched()) {
1507 unusedPrefetches++;
1508 }
1509
1510 Cycles lat =
1511 calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1512 evictBlock(blk, clockEdge(lat + forwardLatency));
1513 }
1514 }
1515
1516 replacements++;
1517 }
1518
1519 // If using a compressor, set compression data. This must be done before
1520 // block insertion, as compressed tags use this information.
1521 if (compressor) {
1522 compressor->setSizeBits(victim, blk_size_bits);
1523 compressor->setDecompressionLatency(victim, decompression_lat);
1524 }
1525
1526 // Insert new block at victimized entry
1527 tags->insertBlock(pkt, victim);
1528
1529 return victim;
1530 }
1531
1532 void
1533 BaseCache::invalidateBlock(CacheBlk *blk)
1534 {
1535 // If handling a block present in the Tags, let it do its invalidation
1536 // process, which will update stats and invalidate the block itself
1537 if (blk != tempBlock) {
1538 tags->invalidate(blk);
1539 } else {
1540 tempBlock->invalidate();
1541 }
1542 }
1543
1544 void
1545 BaseCache::evictBlock(CacheBlk *blk, Tick forward_timing)
1546 {
1547 PacketPtr pkt = evictBlock(blk);
1548 if (pkt) {
1549 if (system->isTimingMode()) {
1550 doWritebacks(pkt, forward_timing);
1551 } else {
1552 doWritebacksAtomic(pkt);
1553 }
1554 }
1555 }
1556
1557 PacketPtr
1558 BaseCache::writebackBlk(CacheBlk *blk)
1559 {
1560 chatty_assert(!isReadOnly || writebackClean,
1561 "Writeback from read-only cache");
1562 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1563
1564 writebacks[Request::wbMasterId]++;
1565
1566 RequestPtr req = std::make_shared<Request>(
1567 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1568
1569 if (blk->isSecure())
1570 req->setFlags(Request::SECURE);
1571
1572 req->taskId(blk->task_id);
1573
1574 PacketPtr pkt =
1575 new Packet(req, blk->isDirty() ?
1576 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1577
1578 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1579 pkt->print(), blk->isWritable(), blk->isDirty());
1580
1581 if (blk->isWritable()) {
1582 // not asserting shared means we pass the block in modified
1583 // state, mark our own block non-writeable
1584 blk->status &= ~BlkWritable;
1585 } else {
1586 // we are in the Owned state, tell the receiver
1587 pkt->setHasSharers();
1588 }
1589
1590 // make sure the block is not marked dirty
1591 blk->status &= ~BlkDirty;
1592
1593 pkt->allocate();
1594 pkt->setDataFromBlock(blk->data, blkSize);
1595
1596 // When a block is compressed, it must first be decompressed before being
1597 // sent for writeback.
1598 if (compressor) {
1599 pkt->payloadDelay = compressor->getDecompressionLatency(blk);
1600 }
1601
1602 return pkt;
1603 }
1604
1605 PacketPtr
1606 BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1607 {
1608 RequestPtr req = std::make_shared<Request>(
1609 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1610
1611 if (blk->isSecure()) {
1612 req->setFlags(Request::SECURE);
1613 }
1614 req->taskId(blk->task_id);
1615
1616 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1617
1618 if (dest) {
1619 req->setFlags(dest);
1620 pkt->setWriteThrough();
1621 }
1622
1623 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1624 blk->isWritable(), blk->isDirty());
1625
1626 if (blk->isWritable()) {
1627 // not asserting shared means we pass the block in modified
1628 // state, mark our own block non-writeable
1629 blk->status &= ~BlkWritable;
1630 } else {
1631 // we are in the Owned state, tell the receiver
1632 pkt->setHasSharers();
1633 }
1634
1635 // make sure the block is not marked dirty
1636 blk->status &= ~BlkDirty;
1637
1638 pkt->allocate();
1639 pkt->setDataFromBlock(blk->data, blkSize);
1640
1641 // When a block is compressed, it must first be decompressed before being
1642 // sent for writeback.
1643 if (compressor) {
1644 pkt->payloadDelay = compressor->getDecompressionLatency(blk);
1645 }
1646
1647 return pkt;
1648 }
1649
1650
1651 void
1652 BaseCache::memWriteback()
1653 {
1654 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1655 }
1656
1657 void
1658 BaseCache::memInvalidate()
1659 {
1660 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1661 }
1662
1663 bool
1664 BaseCache::isDirty() const
1665 {
1666 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1667 }
1668
1669 bool
1670 BaseCache::coalesce() const
1671 {
1672 return writeAllocator && writeAllocator->coalesce();
1673 }
1674
1675 void
1676 BaseCache::writebackVisitor(CacheBlk &blk)
1677 {
1678 if (blk.isDirty()) {
1679 assert(blk.isValid());
1680
1681 RequestPtr request = std::make_shared<Request>(
1682 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1683
1684 request->taskId(blk.task_id);
1685 if (blk.isSecure()) {
1686 request->setFlags(Request::SECURE);
1687 }
1688
1689 Packet packet(request, MemCmd::WriteReq);
1690 packet.dataStatic(blk.data);
1691
1692 memSidePort.sendFunctional(&packet);
1693
1694 blk.status &= ~BlkDirty;
1695 }
1696 }
1697
1698 void
1699 BaseCache::invalidateVisitor(CacheBlk &blk)
1700 {
1701 if (blk.isDirty())
1702 warn_once("Invalidating dirty cache lines. " \
1703 "Expect things to break.\n");
1704
1705 if (blk.isValid()) {
1706 assert(!blk.isDirty());
1707 invalidateBlock(&blk);
1708 }
1709 }
1710
1711 Tick
1712 BaseCache::nextQueueReadyTime() const
1713 {
1714 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1715 writeBuffer.nextReadyTime());
1716
1717 // Don't signal prefetch ready time if no MSHRs available
1718 // Will signal once enoguh MSHRs are deallocated
1719 if (prefetcher && mshrQueue.canPrefetch()) {
1720 nextReady = std::min(nextReady,
1721 prefetcher->nextPrefetchReadyTime());
1722 }
1723
1724 return nextReady;
1725 }
1726
1727
1728 bool
1729 BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1730 {
1731 assert(mshr);
1732
1733 // use request from 1st target
1734 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1735
1736 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1737
1738 // if the cache is in write coalescing mode or (additionally) in
1739 // no allocation mode, and we have a write packet with an MSHR
1740 // that is not a whole-line write (due to incompatible flags etc),
1741 // then reset the write mode
1742 if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
1743 if (!mshr->isWholeLineWrite()) {
1744 // if we are currently write coalescing, hold on the
1745 // MSHR as many cycles extra as we need to completely
1746 // write a cache line
1747 if (writeAllocator->delay(mshr->blkAddr)) {
1748 Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
1749 DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
1750 "for write coalescing\n", tgt_pkt->print(), delay);
1751 mshrQueue.delay(mshr, delay);
1752 return false;
1753 } else {
1754 writeAllocator->reset();
1755 }
1756 } else {
1757 writeAllocator->resetDelay(mshr->blkAddr);
1758 }
1759 }
1760
1761 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1762
1763 // either a prefetch that is not present upstream, or a normal
1764 // MSHR request, proceed to get the packet to send downstream
1765 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
1766 mshr->isWholeLineWrite());
1767
1768 mshr->isForward = (pkt == nullptr);
1769
1770 if (mshr->isForward) {
1771 // not a cache block request, but a response is expected
1772 // make copy of current packet to forward, keep current
1773 // copy for response handling
1774 pkt = new Packet(tgt_pkt, false, true);
1775 assert(!pkt->isWrite());
1776 }
1777
1778 // play it safe and append (rather than set) the sender state,
1779 // as forwarded packets may already have existing state
1780 pkt->pushSenderState(mshr);
1781
1782 if (pkt->isClean() && blk && blk->isDirty()) {
1783 // A cache clean opearation is looking for a dirty block. Mark
1784 // the packet so that the destination xbar can determine that
1785 // there will be a follow-up write packet as well.
1786 pkt->setSatisfied();
1787 }
1788
1789 if (!memSidePort.sendTimingReq(pkt)) {
1790 // we are awaiting a retry, but we
1791 // delete the packet and will be creating a new packet
1792 // when we get the opportunity
1793 delete pkt;
1794
1795 // note that we have now masked any requestBus and
1796 // schedSendEvent (we will wait for a retry before
1797 // doing anything), and this is so even if we do not
1798 // care about this packet and might override it before
1799 // it gets retried
1800 return true;
1801 } else {
1802 // As part of the call to sendTimingReq the packet is
1803 // forwarded to all neighbouring caches (and any caches
1804 // above them) as a snoop. Thus at this point we know if
1805 // any of the neighbouring caches are responding, and if
1806 // so, we know it is dirty, and we can determine if it is
1807 // being passed as Modified, making our MSHR the ordering
1808 // point
1809 bool pending_modified_resp = !pkt->hasSharers() &&
1810 pkt->cacheResponding();
1811 markInService(mshr, pending_modified_resp);
1812
1813 if (pkt->isClean() && blk && blk->isDirty()) {
1814 // A cache clean opearation is looking for a dirty
1815 // block. If a dirty block is encountered a WriteClean
1816 // will update any copies to the path to the memory
1817 // until the point of reference.
1818 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1819 __func__, pkt->print(), blk->print());
1820 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1821 pkt->id);
1822 doWritebacks(wb_pkt, 0);
1823 }
1824
1825 return false;
1826 }
1827 }
1828
1829 bool
1830 BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1831 {
1832 assert(wq_entry);
1833
1834 // always a single target for write queue entries
1835 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1836
1837 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1838
1839 // forward as is, both for evictions and uncacheable writes
1840 if (!memSidePort.sendTimingReq(tgt_pkt)) {
1841 // note that we have now masked any requestBus and
1842 // schedSendEvent (we will wait for a retry before
1843 // doing anything), and this is so even if we do not
1844 // care about this packet and might override it before
1845 // it gets retried
1846 return true;
1847 } else {
1848 markInService(wq_entry);
1849 return false;
1850 }
1851 }
1852
1853 void
1854 BaseCache::serialize(CheckpointOut &cp) const
1855 {
1856 bool dirty(isDirty());
1857
1858 if (dirty) {
1859 warn("*** The cache still contains dirty data. ***\n");
1860 warn(" Make sure to drain the system using the correct flags.\n");
1861 warn(" This checkpoint will not restore correctly " \
1862 "and dirty data in the cache will be lost!\n");
1863 }
1864
1865 // Since we don't checkpoint the data in the cache, any dirty data
1866 // will be lost when restoring from a checkpoint of a system that
1867 // wasn't drained properly. Flag the checkpoint as invalid if the
1868 // cache contains dirty data.
1869 bool bad_checkpoint(dirty);
1870 SERIALIZE_SCALAR(bad_checkpoint);
1871 }
1872
1873 void
1874 BaseCache::unserialize(CheckpointIn &cp)
1875 {
1876 bool bad_checkpoint;
1877 UNSERIALIZE_SCALAR(bad_checkpoint);
1878 if (bad_checkpoint) {
1879 fatal("Restoring from checkpoints with dirty caches is not "
1880 "supported in the classic memory system. Please remove any "
1881 "caches or drain them properly before taking checkpoints.\n");
1882 }
1883 }
1884
1885 void
1886 BaseCache::regStats()
1887 {
1888 ClockedObject::regStats();
1889
1890 using namespace Stats;
1891
1892 // Hit statistics
1893 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1894 MemCmd cmd(access_idx);
1895 const string &cstr = cmd.toString();
1896
1897 hits[access_idx]
1898 .init(system->maxMasters())
1899 .name(name() + "." + cstr + "_hits")
1900 .desc("number of " + cstr + " hits")
1901 .flags(total | nozero | nonan)
1902 ;
1903 for (int i = 0; i < system->maxMasters(); i++) {
1904 hits[access_idx].subname(i, system->getMasterName(i));
1905 }
1906 }
1907
1908 // These macros make it easier to sum the right subset of commands and
1909 // to change the subset of commands that are considered "demand" vs
1910 // "non-demand"
1911 #define SUM_DEMAND(s) \
1912 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1913 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1914
1915 // should writebacks be included here? prior code was inconsistent...
1916 #define SUM_NON_DEMAND(s) \
1917 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq])
1918
1919 demandHits
1920 .name(name() + ".demand_hits")
1921 .desc("number of demand (read+write) hits")
1922 .flags(total | nozero | nonan)
1923 ;
1924 demandHits = SUM_DEMAND(hits);
1925 for (int i = 0; i < system->maxMasters(); i++) {
1926 demandHits.subname(i, system->getMasterName(i));
1927 }
1928
1929 overallHits
1930 .name(name() + ".overall_hits")
1931 .desc("number of overall hits")
1932 .flags(total | nozero | nonan)
1933 ;
1934 overallHits = demandHits + SUM_NON_DEMAND(hits);
1935 for (int i = 0; i < system->maxMasters(); i++) {
1936 overallHits.subname(i, system->getMasterName(i));
1937 }
1938
1939 // Miss statistics
1940 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1941 MemCmd cmd(access_idx);
1942 const string &cstr = cmd.toString();
1943
1944 misses[access_idx]
1945 .init(system->maxMasters())
1946 .name(name() + "." + cstr + "_misses")
1947 .desc("number of " + cstr + " misses")
1948 .flags(total | nozero | nonan)
1949 ;
1950 for (int i = 0; i < system->maxMasters(); i++) {
1951 misses[access_idx].subname(i, system->getMasterName(i));
1952 }
1953 }
1954
1955 demandMisses
1956 .name(name() + ".demand_misses")
1957 .desc("number of demand (read+write) misses")
1958 .flags(total | nozero | nonan)
1959 ;
1960 demandMisses = SUM_DEMAND(misses);
1961 for (int i = 0; i < system->maxMasters(); i++) {
1962 demandMisses.subname(i, system->getMasterName(i));
1963 }
1964
1965 overallMisses
1966 .name(name() + ".overall_misses")
1967 .desc("number of overall misses")
1968 .flags(total | nozero | nonan)
1969 ;
1970 overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1971 for (int i = 0; i < system->maxMasters(); i++) {
1972 overallMisses.subname(i, system->getMasterName(i));
1973 }
1974
1975 // Miss latency statistics
1976 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1977 MemCmd cmd(access_idx);
1978 const string &cstr = cmd.toString();
1979
1980 missLatency[access_idx]
1981 .init(system->maxMasters())
1982 .name(name() + "." + cstr + "_miss_latency")
1983 .desc("number of " + cstr + " miss cycles")
1984 .flags(total | nozero | nonan)
1985 ;
1986 for (int i = 0; i < system->maxMasters(); i++) {
1987 missLatency[access_idx].subname(i, system->getMasterName(i));
1988 }
1989 }
1990
1991 demandMissLatency
1992 .name(name() + ".demand_miss_latency")
1993 .desc("number of demand (read+write) miss cycles")
1994 .flags(total | nozero | nonan)
1995 ;
1996 demandMissLatency = SUM_DEMAND(missLatency);
1997 for (int i = 0; i < system->maxMasters(); i++) {
1998 demandMissLatency.subname(i, system->getMasterName(i));
1999 }
2000
2001 overallMissLatency
2002 .name(name() + ".overall_miss_latency")
2003 .desc("number of overall miss cycles")
2004 .flags(total | nozero | nonan)
2005 ;
2006 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
2007 for (int i = 0; i < system->maxMasters(); i++) {
2008 overallMissLatency.subname(i, system->getMasterName(i));
2009 }
2010
2011 // access formulas
2012 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2013 MemCmd cmd(access_idx);
2014 const string &cstr = cmd.toString();
2015
2016 accesses[access_idx]
2017 .name(name() + "." + cstr + "_accesses")
2018 .desc("number of " + cstr + " accesses(hits+misses)")
2019 .flags(total | nozero | nonan)
2020 ;
2021 accesses[access_idx] = hits[access_idx] + misses[access_idx];
2022
2023 for (int i = 0; i < system->maxMasters(); i++) {
2024 accesses[access_idx].subname(i, system->getMasterName(i));
2025 }
2026 }
2027
2028 demandAccesses
2029 .name(name() + ".demand_accesses")
2030 .desc("number of demand (read+write) accesses")
2031 .flags(total | nozero | nonan)
2032 ;
2033 demandAccesses = demandHits + demandMisses;
2034 for (int i = 0; i < system->maxMasters(); i++) {
2035 demandAccesses.subname(i, system->getMasterName(i));
2036 }
2037
2038 overallAccesses
2039 .name(name() + ".overall_accesses")
2040 .desc("number of overall (read+write) accesses")
2041 .flags(total | nozero | nonan)
2042 ;
2043 overallAccesses = overallHits + overallMisses;
2044 for (int i = 0; i < system->maxMasters(); i++) {
2045 overallAccesses.subname(i, system->getMasterName(i));
2046 }
2047
2048 // miss rate formulas
2049 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2050 MemCmd cmd(access_idx);
2051 const string &cstr = cmd.toString();
2052
2053 missRate[access_idx]
2054 .name(name() + "." + cstr + "_miss_rate")
2055 .desc("miss rate for " + cstr + " accesses")
2056 .flags(total | nozero | nonan)
2057 ;
2058 missRate[access_idx] = misses[access_idx] / accesses[access_idx];
2059
2060 for (int i = 0; i < system->maxMasters(); i++) {
2061 missRate[access_idx].subname(i, system->getMasterName(i));
2062 }
2063 }
2064
2065 demandMissRate
2066 .name(name() + ".demand_miss_rate")
2067 .desc("miss rate for demand accesses")
2068 .flags(total | nozero | nonan)
2069 ;
2070 demandMissRate = demandMisses / demandAccesses;
2071 for (int i = 0; i < system->maxMasters(); i++) {
2072 demandMissRate.subname(i, system->getMasterName(i));
2073 }
2074
2075 overallMissRate
2076 .name(name() + ".overall_miss_rate")
2077 .desc("miss rate for overall accesses")
2078 .flags(total | nozero | nonan)
2079 ;
2080 overallMissRate = overallMisses / overallAccesses;
2081 for (int i = 0; i < system->maxMasters(); i++) {
2082 overallMissRate.subname(i, system->getMasterName(i));
2083 }
2084
2085 // miss latency formulas
2086 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2087 MemCmd cmd(access_idx);
2088 const string &cstr = cmd.toString();
2089
2090 avgMissLatency[access_idx]
2091 .name(name() + "." + cstr + "_avg_miss_latency")
2092 .desc("average " + cstr + " miss latency")
2093 .flags(total | nozero | nonan)
2094 ;
2095 avgMissLatency[access_idx] =
2096 missLatency[access_idx] / misses[access_idx];
2097
2098 for (int i = 0; i < system->maxMasters(); i++) {
2099 avgMissLatency[access_idx].subname(i, system->getMasterName(i));
2100 }
2101 }
2102
2103 demandAvgMissLatency
2104 .name(name() + ".demand_avg_miss_latency")
2105 .desc("average overall miss latency")
2106 .flags(total | nozero | nonan)
2107 ;
2108 demandAvgMissLatency = demandMissLatency / demandMisses;
2109 for (int i = 0; i < system->maxMasters(); i++) {
2110 demandAvgMissLatency.subname(i, system->getMasterName(i));
2111 }
2112
2113 overallAvgMissLatency
2114 .name(name() + ".overall_avg_miss_latency")
2115 .desc("average overall miss latency")
2116 .flags(total | nozero | nonan)
2117 ;
2118 overallAvgMissLatency = overallMissLatency / overallMisses;
2119 for (int i = 0; i < system->maxMasters(); i++) {
2120 overallAvgMissLatency.subname(i, system->getMasterName(i));
2121 }
2122
2123 blocked_cycles.init(NUM_BLOCKED_CAUSES);
2124 blocked_cycles
2125 .name(name() + ".blocked_cycles")
2126 .desc("number of cycles access was blocked")
2127 .subname(Blocked_NoMSHRs, "no_mshrs")
2128 .subname(Blocked_NoTargets, "no_targets")
2129 ;
2130
2131
2132 blocked_causes.init(NUM_BLOCKED_CAUSES);
2133 blocked_causes
2134 .name(name() + ".blocked")
2135 .desc("number of cycles access was blocked")
2136 .subname(Blocked_NoMSHRs, "no_mshrs")
2137 .subname(Blocked_NoTargets, "no_targets")
2138 ;
2139
2140 avg_blocked
2141 .name(name() + ".avg_blocked_cycles")
2142 .desc("average number of cycles each access was blocked")
2143 .subname(Blocked_NoMSHRs, "no_mshrs")
2144 .subname(Blocked_NoTargets, "no_targets")
2145 ;
2146
2147 avg_blocked = blocked_cycles / blocked_causes;
2148
2149 unusedPrefetches
2150 .name(name() + ".unused_prefetches")
2151 .desc("number of HardPF blocks evicted w/o reference")
2152 .flags(nozero)
2153 ;
2154
2155 writebacks
2156 .init(system->maxMasters())
2157 .name(name() + ".writebacks")
2158 .desc("number of writebacks")
2159 .flags(total | nozero | nonan)
2160 ;
2161 for (int i = 0; i < system->maxMasters(); i++) {
2162 writebacks.subname(i, system->getMasterName(i));
2163 }
2164
2165 // MSHR statistics
2166 // MSHR hit statistics
2167 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2168 MemCmd cmd(access_idx);
2169 const string &cstr = cmd.toString();
2170
2171 mshr_hits[access_idx]
2172 .init(system->maxMasters())
2173 .name(name() + "." + cstr + "_mshr_hits")
2174 .desc("number of " + cstr + " MSHR hits")
2175 .flags(total | nozero | nonan)
2176 ;
2177 for (int i = 0; i < system->maxMasters(); i++) {
2178 mshr_hits[access_idx].subname(i, system->getMasterName(i));
2179 }
2180 }
2181
2182 demandMshrHits
2183 .name(name() + ".demand_mshr_hits")
2184 .desc("number of demand (read+write) MSHR hits")
2185 .flags(total | nozero | nonan)
2186 ;
2187 demandMshrHits = SUM_DEMAND(mshr_hits);
2188 for (int i = 0; i < system->maxMasters(); i++) {
2189 demandMshrHits.subname(i, system->getMasterName(i));
2190 }
2191
2192 overallMshrHits
2193 .name(name() + ".overall_mshr_hits")
2194 .desc("number of overall MSHR hits")
2195 .flags(total | nozero | nonan)
2196 ;
2197 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
2198 for (int i = 0; i < system->maxMasters(); i++) {
2199 overallMshrHits.subname(i, system->getMasterName(i));
2200 }
2201
2202 // MSHR miss statistics
2203 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2204 MemCmd cmd(access_idx);
2205 const string &cstr = cmd.toString();
2206
2207 mshr_misses[access_idx]
2208 .init(system->maxMasters())
2209 .name(name() + "." + cstr + "_mshr_misses")
2210 .desc("number of " + cstr + " MSHR misses")
2211 .flags(total | nozero | nonan)
2212 ;
2213 for (int i = 0; i < system->maxMasters(); i++) {
2214 mshr_misses[access_idx].subname(i, system->getMasterName(i));
2215 }
2216 }
2217
2218 demandMshrMisses
2219 .name(name() + ".demand_mshr_misses")
2220 .desc("number of demand (read+write) MSHR misses")
2221 .flags(total | nozero | nonan)
2222 ;
2223 demandMshrMisses = SUM_DEMAND(mshr_misses);
2224 for (int i = 0; i < system->maxMasters(); i++) {
2225 demandMshrMisses.subname(i, system->getMasterName(i));
2226 }
2227
2228 overallMshrMisses
2229 .name(name() + ".overall_mshr_misses")
2230 .desc("number of overall MSHR misses")
2231 .flags(total | nozero | nonan)
2232 ;
2233 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
2234 for (int i = 0; i < system->maxMasters(); i++) {
2235 overallMshrMisses.subname(i, system->getMasterName(i));
2236 }
2237
2238 // MSHR miss latency statistics
2239 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2240 MemCmd cmd(access_idx);
2241 const string &cstr = cmd.toString();
2242
2243 mshr_miss_latency[access_idx]
2244 .init(system->maxMasters())
2245 .name(name() + "." + cstr + "_mshr_miss_latency")
2246 .desc("number of " + cstr + " MSHR miss cycles")
2247 .flags(total | nozero | nonan)
2248 ;
2249 for (int i = 0; i < system->maxMasters(); i++) {
2250 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
2251 }
2252 }
2253
2254 demandMshrMissLatency
2255 .name(name() + ".demand_mshr_miss_latency")
2256 .desc("number of demand (read+write) MSHR miss cycles")
2257 .flags(total | nozero | nonan)
2258 ;
2259 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
2260 for (int i = 0; i < system->maxMasters(); i++) {
2261 demandMshrMissLatency.subname(i, system->getMasterName(i));
2262 }
2263
2264 overallMshrMissLatency
2265 .name(name() + ".overall_mshr_miss_latency")
2266 .desc("number of overall MSHR miss cycles")
2267 .flags(total | nozero | nonan)
2268 ;
2269 overallMshrMissLatency =
2270 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
2271 for (int i = 0; i < system->maxMasters(); i++) {
2272 overallMshrMissLatency.subname(i, system->getMasterName(i));
2273 }
2274
2275 // MSHR uncacheable statistics
2276 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2277 MemCmd cmd(access_idx);
2278 const string &cstr = cmd.toString();
2279
2280 mshr_uncacheable[access_idx]
2281 .init(system->maxMasters())
2282 .name(name() + "." + cstr + "_mshr_uncacheable")
2283 .desc("number of " + cstr + " MSHR uncacheable")
2284 .flags(total | nozero | nonan)
2285 ;
2286 for (int i = 0; i < system->maxMasters(); i++) {
2287 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
2288 }
2289 }
2290
2291 overallMshrUncacheable
2292 .name(name() + ".overall_mshr_uncacheable_misses")
2293 .desc("number of overall MSHR uncacheable misses")
2294 .flags(total | nozero | nonan)
2295 ;
2296 overallMshrUncacheable =
2297 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
2298 for (int i = 0; i < system->maxMasters(); i++) {
2299 overallMshrUncacheable.subname(i, system->getMasterName(i));
2300 }
2301
2302 // MSHR miss latency statistics
2303 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2304 MemCmd cmd(access_idx);
2305 const string &cstr = cmd.toString();
2306
2307 mshr_uncacheable_lat[access_idx]
2308 .init(system->maxMasters())
2309 .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2310 .desc("number of " + cstr + " MSHR uncacheable cycles")
2311 .flags(total | nozero | nonan)
2312 ;
2313 for (int i = 0; i < system->maxMasters(); i++) {
2314 mshr_uncacheable_lat[access_idx].subname(
2315 i, system->getMasterName(i));
2316 }
2317 }
2318
2319 overallMshrUncacheableLatency
2320 .name(name() + ".overall_mshr_uncacheable_latency")
2321 .desc("number of overall MSHR uncacheable cycles")
2322 .flags(total | nozero | nonan)
2323 ;
2324 overallMshrUncacheableLatency =
2325 SUM_DEMAND(mshr_uncacheable_lat) +
2326 SUM_NON_DEMAND(mshr_uncacheable_lat);
2327 for (int i = 0; i < system->maxMasters(); i++) {
2328 overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2329 }
2330
2331 #if 0
2332 // MSHR access formulas
2333 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2334 MemCmd cmd(access_idx);
2335 const string &cstr = cmd.toString();
2336
2337 mshrAccesses[access_idx]
2338 .name(name() + "." + cstr + "_mshr_accesses")
2339 .desc("number of " + cstr + " mshr accesses(hits+misses)")
2340 .flags(total | nozero | nonan)
2341 ;
2342 mshrAccesses[access_idx] =
2343 mshr_hits[access_idx] + mshr_misses[access_idx]
2344 + mshr_uncacheable[access_idx];
2345 }
2346
2347 demandMshrAccesses
2348 .name(name() + ".demand_mshr_accesses")
2349 .desc("number of demand (read+write) mshr accesses")
2350 .flags(total | nozero | nonan)
2351 ;
2352 demandMshrAccesses = demandMshrHits + demandMshrMisses;
2353
2354 overallMshrAccesses
2355 .name(name() + ".overall_mshr_accesses")
2356 .desc("number of overall (read+write) mshr accesses")
2357 .flags(total | nozero | nonan)
2358 ;
2359 overallMshrAccesses = overallMshrHits + overallMshrMisses
2360 + overallMshrUncacheable;
2361 #endif
2362
2363 // MSHR miss rate formulas
2364 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2365 MemCmd cmd(access_idx);
2366 const string &cstr = cmd.toString();
2367
2368 mshrMissRate[access_idx]
2369 .name(name() + "." + cstr + "_mshr_miss_rate")
2370 .desc("mshr miss rate for " + cstr + " accesses")
2371 .flags(total | nozero | nonan)
2372 ;
2373 mshrMissRate[access_idx] =
2374 mshr_misses[access_idx] / accesses[access_idx];
2375
2376 for (int i = 0; i < system->maxMasters(); i++) {
2377 mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2378 }
2379 }
2380
2381 demandMshrMissRate
2382 .name(name() + ".demand_mshr_miss_rate")
2383 .desc("mshr miss rate for demand accesses")
2384 .flags(total | nozero | nonan)
2385 ;
2386 demandMshrMissRate = demandMshrMisses / demandAccesses;
2387 for (int i = 0; i < system->maxMasters(); i++) {
2388 demandMshrMissRate.subname(i, system->getMasterName(i));
2389 }
2390
2391 overallMshrMissRate
2392 .name(name() + ".overall_mshr_miss_rate")
2393 .desc("mshr miss rate for overall accesses")
2394 .flags(total | nozero | nonan)
2395 ;
2396 overallMshrMissRate = overallMshrMisses / overallAccesses;
2397 for (int i = 0; i < system->maxMasters(); i++) {
2398 overallMshrMissRate.subname(i, system->getMasterName(i));
2399 }
2400
2401 // mshrMiss latency formulas
2402 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2403 MemCmd cmd(access_idx);
2404 const string &cstr = cmd.toString();
2405
2406 avgMshrMissLatency[access_idx]
2407 .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2408 .desc("average " + cstr + " mshr miss latency")
2409 .flags(total | nozero | nonan)
2410 ;
2411 avgMshrMissLatency[access_idx] =
2412 mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2413
2414 for (int i = 0; i < system->maxMasters(); i++) {
2415 avgMshrMissLatency[access_idx].subname(
2416 i, system->getMasterName(i));
2417 }
2418 }
2419
2420 demandAvgMshrMissLatency
2421 .name(name() + ".demand_avg_mshr_miss_latency")
2422 .desc("average overall mshr miss latency")
2423 .flags(total | nozero | nonan)
2424 ;
2425 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2426 for (int i = 0; i < system->maxMasters(); i++) {
2427 demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2428 }
2429
2430 overallAvgMshrMissLatency
2431 .name(name() + ".overall_avg_mshr_miss_latency")
2432 .desc("average overall mshr miss latency")
2433 .flags(total | nozero | nonan)
2434 ;
2435 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2436 for (int i = 0; i < system->maxMasters(); i++) {
2437 overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2438 }
2439
2440 // mshrUncacheable latency formulas
2441 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2442 MemCmd cmd(access_idx);
2443 const string &cstr = cmd.toString();
2444
2445 avgMshrUncacheableLatency[access_idx]
2446 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2447 .desc("average " + cstr + " mshr uncacheable latency")
2448 .flags(total | nozero | nonan)
2449 ;
2450 avgMshrUncacheableLatency[access_idx] =
2451 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2452
2453 for (int i = 0; i < system->maxMasters(); i++) {
2454 avgMshrUncacheableLatency[access_idx].subname(
2455 i, system->getMasterName(i));
2456 }
2457 }
2458
2459 overallAvgMshrUncacheableLatency
2460 .name(name() + ".overall_avg_mshr_uncacheable_latency")
2461 .desc("average overall mshr uncacheable latency")
2462 .flags(total | nozero | nonan)
2463 ;
2464 overallAvgMshrUncacheableLatency =
2465 overallMshrUncacheableLatency / overallMshrUncacheable;
2466 for (int i = 0; i < system->maxMasters(); i++) {
2467 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2468 }
2469
2470 replacements
2471 .name(name() + ".replacements")
2472 .desc("number of replacements")
2473 ;
2474
2475 dataExpansions
2476 .name(name() + ".data_expansions")
2477 .desc("number of data expansions")
2478 .flags(nozero | nonan)
2479 ;
2480 }
2481
2482 void
2483 BaseCache::regProbePoints()
2484 {
2485 ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit");
2486 ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss");
2487 ppFill = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Fill");
2488 }
2489
2490 ///////////////
2491 //
2492 // CpuSidePort
2493 //
2494 ///////////////
2495 bool
2496 BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2497 {
2498 // Snoops shouldn't happen when bypassing caches
2499 assert(!cache->system->bypassCaches());
2500
2501 assert(pkt->isResponse());
2502
2503 // Express snoop responses from master to slave, e.g., from L1 to L2
2504 cache->recvTimingSnoopResp(pkt);
2505 return true;
2506 }
2507
2508
2509 bool
2510 BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2511 {
2512 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2513 // always let express snoop packets through even if blocked
2514 return true;
2515 } else if (blocked || mustSendRetry) {
2516 // either already committed to send a retry, or blocked
2517 mustSendRetry = true;
2518 return false;
2519 }
2520 mustSendRetry = false;
2521 return true;
2522 }
2523
2524 bool
2525 BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2526 {
2527 assert(pkt->isRequest());
2528
2529 if (cache->system->bypassCaches()) {
2530 // Just forward the packet if caches are disabled.
2531 // @todo This should really enqueue the packet rather
2532 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2533 assert(success);
2534 return true;
2535 } else if (tryTiming(pkt)) {
2536 cache->recvTimingReq(pkt);
2537 return true;
2538 }
2539 return false;
2540 }
2541
2542 Tick
2543 BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2544 {
2545 if (cache->system->bypassCaches()) {
2546 // Forward the request if the system is in cache bypass mode.
2547 return cache->memSidePort.sendAtomic(pkt);
2548 } else {
2549 return cache->recvAtomic(pkt);
2550 }
2551 }
2552
2553 void
2554 BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2555 {
2556 if (cache->system->bypassCaches()) {
2557 // The cache should be flushed if we are in cache bypass mode,
2558 // so we don't need to check if we need to update anything.
2559 cache->memSidePort.sendFunctional(pkt);
2560 return;
2561 }
2562
2563 // functional request
2564 cache->functionalAccess(pkt, true);
2565 }
2566
2567 AddrRangeList
2568 BaseCache::CpuSidePort::getAddrRanges() const
2569 {
2570 return cache->getAddrRanges();
2571 }
2572
2573
2574 BaseCache::
2575 CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2576 const std::string &_label)
2577 : CacheSlavePort(_name, _cache, _label), cache(_cache)
2578 {
2579 }
2580
2581 ///////////////
2582 //
2583 // MemSidePort
2584 //
2585 ///////////////
2586 bool
2587 BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2588 {
2589 cache->recvTimingResp(pkt);
2590 return true;
2591 }
2592
2593 // Express snooping requests to memside port
2594 void
2595 BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2596 {
2597 // Snoops shouldn't happen when bypassing caches
2598 assert(!cache->system->bypassCaches());
2599
2600 // handle snooping requests
2601 cache->recvTimingSnoopReq(pkt);
2602 }
2603
2604 Tick
2605 BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2606 {
2607 // Snoops shouldn't happen when bypassing caches
2608 assert(!cache->system->bypassCaches());
2609
2610 return cache->recvAtomicSnoop(pkt);
2611 }
2612
2613 void
2614 BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2615 {
2616 // Snoops shouldn't happen when bypassing caches
2617 assert(!cache->system->bypassCaches());
2618
2619 // functional snoop (note that in contrast to atomic we don't have
2620 // a specific functionalSnoop method, as they have the same
2621 // behaviour regardless)
2622 cache->functionalAccess(pkt, false);
2623 }
2624
2625 void
2626 BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2627 {
2628 // sanity check
2629 assert(!waitingOnRetry);
2630
2631 // there should never be any deferred request packets in the
2632 // queue, instead we resly on the cache to provide the packets
2633 // from the MSHR queue or write queue
2634 assert(deferredPacketReadyTime() == MaxTick);
2635
2636 // check for request packets (requests & writebacks)
2637 QueueEntry* entry = cache.getNextQueueEntry();
2638
2639 if (!entry) {
2640 // can happen if e.g. we attempt a writeback and fail, but
2641 // before the retry, the writeback is eliminated because
2642 // we snoop another cache's ReadEx.
2643 } else {
2644 // let our snoop responses go first if there are responses to
2645 // the same addresses
2646 if (checkConflictingSnoop(entry->getTarget()->pkt)) {
2647 return;
2648 }
2649 waitingOnRetry = entry->sendPacket(cache);
2650 }
2651
2652 // if we succeeded and are not waiting for a retry, schedule the
2653 // next send considering when the next queue is ready, note that
2654 // snoop responses have their own packet queue and thus schedule
2655 // their own events
2656 if (!waitingOnRetry) {
2657 schedSendEvent(cache.nextQueueReadyTime());
2658 }
2659 }
2660
2661 BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2662 BaseCache *_cache,
2663 const std::string &_label)
2664 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2665 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2666 _snoopRespQueue(*_cache, *this, true, _label), cache(_cache)
2667 {
2668 }
2669
2670 void
2671 WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
2672 Addr blk_addr)
2673 {
2674 // check if we are continuing where the last write ended
2675 if (nextAddr == write_addr) {
2676 delayCtr[blk_addr] = delayThreshold;
2677 // stop if we have already saturated
2678 if (mode != WriteMode::NO_ALLOCATE) {
2679 byteCount += write_size;
2680 // switch to streaming mode if we have passed the lower
2681 // threshold
2682 if (mode == WriteMode::ALLOCATE &&
2683 byteCount > coalesceLimit) {
2684 mode = WriteMode::COALESCE;
2685 DPRINTF(Cache, "Switched to write coalescing\n");
2686 } else if (mode == WriteMode::COALESCE &&
2687 byteCount > noAllocateLimit) {
2688 // and continue and switch to non-allocating mode if we
2689 // pass the upper threshold
2690 mode = WriteMode::NO_ALLOCATE;
2691 DPRINTF(Cache, "Switched to write-no-allocate\n");
2692 }
2693 }
2694 } else {
2695 // we did not see a write matching the previous one, start
2696 // over again
2697 byteCount = write_size;
2698 mode = WriteMode::ALLOCATE;
2699 resetDelay(blk_addr);
2700 }
2701 nextAddr = write_addr + write_size;
2702 }
2703
2704 WriteAllocator*
2705 WriteAllocatorParams::create()
2706 {
2707 return new WriteAllocator(this);
2708 }