mem-cache: Fix recvTimingReq doWritebacks tick
[gem5.git] / src / mem / cache / base.cc
1 /*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 * Nikos Nikoleris
42 */
43
44 /**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49 #include "mem/cache/base.hh"
50
51 #include "base/compiler.hh"
52 #include "base/logging.hh"
53 #include "debug/Cache.hh"
54 #include "debug/CachePort.hh"
55 #include "debug/CacheRepl.hh"
56 #include "debug/CacheVerbose.hh"
57 #include "mem/cache/mshr.hh"
58 #include "mem/cache/prefetch/base.hh"
59 #include "mem/cache/queue_entry.hh"
60 #include "params/BaseCache.hh"
61 #include "params/WriteAllocator.hh"
62 #include "sim/core.hh"
63
64 class BaseMasterPort;
65 class BaseSlavePort;
66
67 using namespace std;
68
69 BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
70 BaseCache *_cache,
71 const std::string &_label)
72 : QueuedSlavePort(_name, _cache, queue),
73 queue(*_cache, *this, true, _label),
74 blocked(false), mustSendRetry(false),
75 sendRetryEvent([this]{ processSendRetry(); }, _name)
76 {
77 }
78
79 BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
80 : MemObject(p),
81 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
82 memSidePort(p->name + ".mem_side", this, "MemSidePort"),
83 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
84 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
85 tags(p->tags),
86 prefetcher(p->prefetcher),
87 writeAllocator(p->write_allocator),
88 writebackClean(p->writeback_clean),
89 tempBlockWriteback(nullptr),
90 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
91 name(), false,
92 EventBase::Delayed_Writeback_Pri),
93 blkSize(blk_size),
94 lookupLatency(p->tag_latency),
95 dataLatency(p->data_latency),
96 forwardLatency(p->tag_latency),
97 fillLatency(p->data_latency),
98 responseLatency(p->response_latency),
99 sequentialAccess(p->sequential_access),
100 numTarget(p->tgts_per_mshr),
101 forwardSnoops(true),
102 clusivity(p->clusivity),
103 isReadOnly(p->is_read_only),
104 blocked(0),
105 order(0),
106 noTargetMSHR(nullptr),
107 missCount(p->max_miss_count),
108 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
109 system(p->system)
110 {
111 // the MSHR queue has no reserve entries as we check the MSHR
112 // queue on every single allocation, whereas the write queue has
113 // as many reserve entries as we have MSHRs, since every MSHR may
114 // eventually require a writeback, and we do not check the write
115 // buffer before committing to an MSHR
116
117 // forward snoops is overridden in init() once we can query
118 // whether the connected master is actually snooping or not
119
120 tempBlock = new TempCacheBlk(blkSize);
121
122 tags->tagsInit();
123 if (prefetcher)
124 prefetcher->setCache(this);
125 }
126
127 BaseCache::~BaseCache()
128 {
129 delete tempBlock;
130 }
131
132 void
133 BaseCache::CacheSlavePort::setBlocked()
134 {
135 assert(!blocked);
136 DPRINTF(CachePort, "Port is blocking new requests\n");
137 blocked = true;
138 // if we already scheduled a retry in this cycle, but it has not yet
139 // happened, cancel it
140 if (sendRetryEvent.scheduled()) {
141 owner.deschedule(sendRetryEvent);
142 DPRINTF(CachePort, "Port descheduled retry\n");
143 mustSendRetry = true;
144 }
145 }
146
147 void
148 BaseCache::CacheSlavePort::clearBlocked()
149 {
150 assert(blocked);
151 DPRINTF(CachePort, "Port is accepting new requests\n");
152 blocked = false;
153 if (mustSendRetry) {
154 // @TODO: need to find a better time (next cycle?)
155 owner.schedule(sendRetryEvent, curTick() + 1);
156 }
157 }
158
159 void
160 BaseCache::CacheSlavePort::processSendRetry()
161 {
162 DPRINTF(CachePort, "Port is sending retry\n");
163
164 // reset the flag and call retry
165 mustSendRetry = false;
166 sendRetryReq();
167 }
168
169 Addr
170 BaseCache::regenerateBlkAddr(CacheBlk* blk)
171 {
172 if (blk != tempBlock) {
173 return tags->regenerateBlkAddr(blk);
174 } else {
175 return tempBlock->getAddr();
176 }
177 }
178
179 void
180 BaseCache::init()
181 {
182 if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
183 fatal("Cache ports on %s are not connected\n", name());
184 cpuSidePort.sendRangeChange();
185 forwardSnoops = cpuSidePort.isSnooping();
186 }
187
188 BaseMasterPort &
189 BaseCache::getMasterPort(const std::string &if_name, PortID idx)
190 {
191 if (if_name == "mem_side") {
192 return memSidePort;
193 } else {
194 return MemObject::getMasterPort(if_name, idx);
195 }
196 }
197
198 BaseSlavePort &
199 BaseCache::getSlavePort(const std::string &if_name, PortID idx)
200 {
201 if (if_name == "cpu_side") {
202 return cpuSidePort;
203 } else {
204 return MemObject::getSlavePort(if_name, idx);
205 }
206 }
207
208 bool
209 BaseCache::inRange(Addr addr) const
210 {
211 for (const auto& r : addrRanges) {
212 if (r.contains(addr)) {
213 return true;
214 }
215 }
216 return false;
217 }
218
219 void
220 BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
221 {
222 if (pkt->needsResponse()) {
223 // These delays should have been consumed by now
224 assert(pkt->headerDelay == 0);
225 assert(pkt->payloadDelay == 0);
226
227 pkt->makeTimingResponse();
228
229 // In this case we are considering request_time that takes
230 // into account the delay of the xbar, if any, and just
231 // lat, neglecting responseLatency, modelling hit latency
232 // just as the value of lat overriden by access(), which calls
233 // the calculateAccessLatency() function.
234 cpuSidePort.schedTimingResp(pkt, request_time);
235 } else {
236 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
237 pkt->print());
238
239 // queue the packet for deletion, as the sending cache is
240 // still relying on it; if the block is found in access(),
241 // CleanEvict and Writeback messages will be deleted
242 // here as well
243 pendingDelete.reset(pkt);
244 }
245 }
246
247 void
248 BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
249 Tick forward_time, Tick request_time)
250 {
251 if (writeAllocator &&
252 pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
253 writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
254 pkt->getBlockAddr(blkSize));
255 }
256
257 if (mshr) {
258 /// MSHR hit
259 /// @note writebacks will be checked in getNextMSHR()
260 /// for any conflicting requests to the same block
261
262 //@todo remove hw_pf here
263
264 // Coalesce unless it was a software prefetch (see above).
265 if (pkt) {
266 assert(!pkt->isWriteback());
267 // CleanEvicts corresponding to blocks which have
268 // outstanding requests in MSHRs are simply sunk here
269 if (pkt->cmd == MemCmd::CleanEvict) {
270 pendingDelete.reset(pkt);
271 } else if (pkt->cmd == MemCmd::WriteClean) {
272 // A WriteClean should never coalesce with any
273 // outstanding cache maintenance requests.
274
275 // We use forward_time here because there is an
276 // uncached memory write, forwarded to WriteBuffer.
277 allocateWriteBuffer(pkt, forward_time);
278 } else {
279 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
280 pkt->print());
281
282 assert(pkt->req->masterId() < system->maxMasters());
283 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
284
285 // We use forward_time here because it is the same
286 // considering new targets. We have multiple
287 // requests for the same address here. It
288 // specifies the latency to allocate an internal
289 // buffer and to schedule an event to the queued
290 // port and also takes into account the additional
291 // delay of the xbar.
292 mshr->allocateTarget(pkt, forward_time, order++,
293 allocOnFill(pkt->cmd));
294 if (mshr->getNumTargets() == numTarget) {
295 noTargetMSHR = mshr;
296 setBlocked(Blocked_NoTargets);
297 // need to be careful with this... if this mshr isn't
298 // ready yet (i.e. time > curTick()), we don't want to
299 // move it ahead of mshrs that are ready
300 // mshrQueue.moveToFront(mshr);
301 }
302 }
303 }
304 } else {
305 // no MSHR
306 assert(pkt->req->masterId() < system->maxMasters());
307 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
308
309 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
310 // We use forward_time here because there is an
311 // writeback or writeclean, forwarded to WriteBuffer.
312 allocateWriteBuffer(pkt, forward_time);
313 } else {
314 if (blk && blk->isValid()) {
315 // If we have a write miss to a valid block, we
316 // need to mark the block non-readable. Otherwise
317 // if we allow reads while there's an outstanding
318 // write miss, the read could return stale data
319 // out of the cache block... a more aggressive
320 // system could detect the overlap (if any) and
321 // forward data out of the MSHRs, but we don't do
322 // that yet. Note that we do need to leave the
323 // block valid so that it stays in the cache, in
324 // case we get an upgrade response (and hence no
325 // new data) when the write miss completes.
326 // As long as CPUs do proper store/load forwarding
327 // internally, and have a sufficiently weak memory
328 // model, this is probably unnecessary, but at some
329 // point it must have seemed like we needed it...
330 assert((pkt->needsWritable() && !blk->isWritable()) ||
331 pkt->req->isCacheMaintenance());
332 blk->status &= ~BlkReadable;
333 }
334 // Here we are using forward_time, modelling the latency of
335 // a miss (outbound) just as forwardLatency, neglecting the
336 // lookupLatency component.
337 allocateMissBuffer(pkt, forward_time);
338 }
339 }
340 }
341
342 void
343 BaseCache::recvTimingReq(PacketPtr pkt)
344 {
345 // anything that is merely forwarded pays for the forward latency and
346 // the delay provided by the crossbar
347 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
348
349 Cycles lat;
350 CacheBlk *blk = nullptr;
351 bool satisfied = false;
352 {
353 PacketList writebacks;
354 // Note that lat is passed by reference here. The function
355 // access() will set the lat value.
356 satisfied = access(pkt, blk, lat, writebacks);
357
358 // After the evicted blocks are selected, they must be forwarded
359 // to the write buffer to ensure they logically precede anything
360 // happening below
361 doWritebacks(writebacks, clockEdge(lat + forwardLatency));
362 }
363
364 // Here we charge the headerDelay that takes into account the latencies
365 // of the bus, if the packet comes from it.
366 // The latency charged is just the value set by the access() function.
367 // In case of a hit we are neglecting response latency.
368 // In case of a miss we are neglecting forward latency.
369 Tick request_time = clockEdge(lat);
370 // Here we reset the timing of the packet.
371 pkt->headerDelay = pkt->payloadDelay = 0;
372
373 if (satisfied) {
374 // notify before anything else as later handleTimingReqHit might turn
375 // the packet in a response
376 ppHit->notify(pkt);
377
378 if (prefetcher && blk && blk->wasPrefetched()) {
379 blk->status &= ~BlkHWPrefetched;
380 }
381
382 handleTimingReqHit(pkt, blk, request_time);
383 } else {
384 handleTimingReqMiss(pkt, blk, forward_time, request_time);
385
386 ppMiss->notify(pkt);
387 }
388
389 if (prefetcher) {
390 // track time of availability of next prefetch, if any
391 Tick next_pf_time = prefetcher->nextPrefetchReadyTime();
392 if (next_pf_time != MaxTick) {
393 schedMemSideSendEvent(next_pf_time);
394 }
395 }
396 }
397
398 void
399 BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
400 {
401 Tick completion_time = clockEdge(responseLatency) +
402 pkt->headerDelay + pkt->payloadDelay;
403
404 // Reset the bus additional time as it is now accounted for
405 pkt->headerDelay = pkt->payloadDelay = 0;
406
407 cpuSidePort.schedTimingResp(pkt, completion_time);
408 }
409
410 void
411 BaseCache::recvTimingResp(PacketPtr pkt)
412 {
413 assert(pkt->isResponse());
414
415 // all header delay should be paid for by the crossbar, unless
416 // this is a prefetch response from above
417 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
418 "%s saw a non-zero packet delay\n", name());
419
420 const bool is_error = pkt->isError();
421
422 if (is_error) {
423 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
424 pkt->print());
425 }
426
427 DPRINTF(Cache, "%s: Handling response %s\n", __func__,
428 pkt->print());
429
430 // if this is a write, we should be looking at an uncacheable
431 // write
432 if (pkt->isWrite()) {
433 assert(pkt->req->isUncacheable());
434 handleUncacheableWriteResp(pkt);
435 return;
436 }
437
438 // we have dealt with any (uncacheable) writes above, from here on
439 // we know we are dealing with an MSHR due to a miss or a prefetch
440 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
441 assert(mshr);
442
443 if (mshr == noTargetMSHR) {
444 // we always clear at least one target
445 clearBlocked(Blocked_NoTargets);
446 noTargetMSHR = nullptr;
447 }
448
449 // Initial target is used just for stats
450 MSHR::Target *initial_tgt = mshr->getTarget();
451 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
452 Tick miss_latency = curTick() - initial_tgt->recvTime;
453
454 if (pkt->req->isUncacheable()) {
455 assert(pkt->req->masterId() < system->maxMasters());
456 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
457 miss_latency;
458 } else {
459 assert(pkt->req->masterId() < system->maxMasters());
460 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
461 miss_latency;
462 }
463
464 PacketList writebacks;
465
466 bool is_fill = !mshr->isForward &&
467 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
468 mshr->wasWholeLineWrite);
469
470 // make sure that if the mshr was due to a whole line write then
471 // the response is an invalidation
472 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
473
474 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
475
476 if (is_fill && !is_error) {
477 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
478 pkt->getAddr());
479
480 const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
481 writeAllocator->allocate() : mshr->allocOnFill();
482 blk = handleFill(pkt, blk, writebacks, allocate);
483 assert(blk != nullptr);
484 ppFill->notify(pkt);
485 }
486
487 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
488 // The block was marked not readable while there was a pending
489 // cache maintenance operation, restore its flag.
490 blk->status |= BlkReadable;
491
492 // This was a cache clean operation (without invalidate)
493 // and we have a copy of the block already. Since there
494 // is no invalidation, we can promote targets that don't
495 // require a writable copy
496 mshr->promoteReadable();
497 }
498
499 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
500 // If at this point the referenced block is writable and the
501 // response is not a cache invalidate, we promote targets that
502 // were deferred as we couldn't guarrantee a writable copy
503 mshr->promoteWritable();
504 }
505
506 serviceMSHRTargets(mshr, pkt, blk);
507
508 if (mshr->promoteDeferredTargets()) {
509 // avoid later read getting stale data while write miss is
510 // outstanding.. see comment in timingAccess()
511 if (blk) {
512 blk->status &= ~BlkReadable;
513 }
514 mshrQueue.markPending(mshr);
515 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
516 } else {
517 // while we deallocate an mshr from the queue we still have to
518 // check the isFull condition before and after as we might
519 // have been using the reserved entries already
520 const bool was_full = mshrQueue.isFull();
521 mshrQueue.deallocate(mshr);
522 if (was_full && !mshrQueue.isFull()) {
523 clearBlocked(Blocked_NoMSHRs);
524 }
525
526 // Request the bus for a prefetch if this deallocation freed enough
527 // MSHRs for a prefetch to take place
528 if (prefetcher && mshrQueue.canPrefetch()) {
529 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
530 clockEdge());
531 if (next_pf_time != MaxTick)
532 schedMemSideSendEvent(next_pf_time);
533 }
534 }
535
536 // if we used temp block, check to see if its valid and then clear it out
537 if (blk == tempBlock && tempBlock->isValid()) {
538 evictBlock(blk, writebacks);
539 }
540
541 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
542 // copy writebacks to write buffer
543 doWritebacks(writebacks, forward_time);
544
545 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
546 delete pkt;
547 }
548
549
550 Tick
551 BaseCache::recvAtomic(PacketPtr pkt)
552 {
553 // should assert here that there are no outstanding MSHRs or
554 // writebacks... that would mean that someone used an atomic
555 // access in timing mode
556
557 // We use lookupLatency here because it is used to specify the latency
558 // to access.
559 Cycles lat = lookupLatency;
560
561 CacheBlk *blk = nullptr;
562 PacketList writebacks;
563 bool satisfied = access(pkt, blk, lat, writebacks);
564
565 if (pkt->isClean() && blk && blk->isDirty()) {
566 // A cache clean opearation is looking for a dirty
567 // block. If a dirty block is encountered a WriteClean
568 // will update any copies to the path to the memory
569 // until the point of reference.
570 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
571 __func__, pkt->print(), blk->print());
572 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
573 writebacks.push_back(wb_pkt);
574 pkt->setSatisfied();
575 }
576
577 // handle writebacks resulting from the access here to ensure they
578 // logically precede anything happening below
579 doWritebacksAtomic(writebacks);
580 assert(writebacks.empty());
581
582 if (!satisfied) {
583 lat += handleAtomicReqMiss(pkt, blk, writebacks);
584 }
585
586 // Note that we don't invoke the prefetcher at all in atomic mode.
587 // It's not clear how to do it properly, particularly for
588 // prefetchers that aggressively generate prefetch candidates and
589 // rely on bandwidth contention to throttle them; these will tend
590 // to pollute the cache in atomic mode since there is no bandwidth
591 // contention. If we ever do want to enable prefetching in atomic
592 // mode, though, this is the place to do it... see timingAccess()
593 // for an example (though we'd want to issue the prefetch(es)
594 // immediately rather than calling requestMemSideBus() as we do
595 // there).
596
597 // do any writebacks resulting from the response handling
598 doWritebacksAtomic(writebacks);
599
600 // if we used temp block, check to see if its valid and if so
601 // clear it out, but only do so after the call to recvAtomic is
602 // finished so that any downstream observers (such as a snoop
603 // filter), first see the fill, and only then see the eviction
604 if (blk == tempBlock && tempBlock->isValid()) {
605 // the atomic CPU calls recvAtomic for fetch and load/store
606 // sequentuially, and we may already have a tempBlock
607 // writeback from the fetch that we have not yet sent
608 if (tempBlockWriteback) {
609 // if that is the case, write the prevoius one back, and
610 // do not schedule any new event
611 writebackTempBlockAtomic();
612 } else {
613 // the writeback/clean eviction happens after the call to
614 // recvAtomic has finished (but before any successive
615 // calls), so that the response handling from the fill is
616 // allowed to happen first
617 schedule(writebackTempBlockAtomicEvent, curTick());
618 }
619
620 tempBlockWriteback = evictBlock(blk);
621 }
622
623 if (pkt->needsResponse()) {
624 pkt->makeAtomicResponse();
625 }
626
627 return lat * clockPeriod();
628 }
629
630 void
631 BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
632 {
633 Addr blk_addr = pkt->getBlockAddr(blkSize);
634 bool is_secure = pkt->isSecure();
635 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
636 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
637
638 pkt->pushLabel(name());
639
640 CacheBlkPrintWrapper cbpw(blk);
641
642 // Note that just because an L2/L3 has valid data doesn't mean an
643 // L1 doesn't have a more up-to-date modified copy that still
644 // needs to be found. As a result we always update the request if
645 // we have it, but only declare it satisfied if we are the owner.
646
647 // see if we have data at all (owned or otherwise)
648 bool have_data = blk && blk->isValid()
649 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
650 blk->data);
651
652 // data we have is dirty if marked as such or if we have an
653 // in-service MSHR that is pending a modified line
654 bool have_dirty =
655 have_data && (blk->isDirty() ||
656 (mshr && mshr->inService && mshr->isPendingModified()));
657
658 bool done = have_dirty ||
659 cpuSidePort.trySatisfyFunctional(pkt) ||
660 mshrQueue.trySatisfyFunctional(pkt, blk_addr) ||
661 writeBuffer.trySatisfyFunctional(pkt, blk_addr) ||
662 memSidePort.trySatisfyFunctional(pkt);
663
664 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
665 (blk && blk->isValid()) ? "valid " : "",
666 have_data ? "data " : "", done ? "done " : "");
667
668 // We're leaving the cache, so pop cache->name() label
669 pkt->popLabel();
670
671 if (done) {
672 pkt->makeResponse();
673 } else {
674 // if it came as a request from the CPU side then make sure it
675 // continues towards the memory side
676 if (from_cpu_side) {
677 memSidePort.sendFunctional(pkt);
678 } else if (cpuSidePort.isSnooping()) {
679 // if it came from the memory side, it must be a snoop request
680 // and we should only forward it if we are forwarding snoops
681 cpuSidePort.sendFunctionalSnoop(pkt);
682 }
683 }
684 }
685
686
687 void
688 BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
689 {
690 assert(pkt->isRequest());
691
692 uint64_t overwrite_val;
693 bool overwrite_mem;
694 uint64_t condition_val64;
695 uint32_t condition_val32;
696
697 int offset = pkt->getOffset(blkSize);
698 uint8_t *blk_data = blk->data + offset;
699
700 assert(sizeof(uint64_t) >= pkt->getSize());
701
702 overwrite_mem = true;
703 // keep a copy of our possible write value, and copy what is at the
704 // memory address into the packet
705 pkt->writeData((uint8_t *)&overwrite_val);
706 pkt->setData(blk_data);
707
708 if (pkt->req->isCondSwap()) {
709 if (pkt->getSize() == sizeof(uint64_t)) {
710 condition_val64 = pkt->req->getExtraData();
711 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
712 sizeof(uint64_t));
713 } else if (pkt->getSize() == sizeof(uint32_t)) {
714 condition_val32 = (uint32_t)pkt->req->getExtraData();
715 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
716 sizeof(uint32_t));
717 } else
718 panic("Invalid size for conditional read/write\n");
719 }
720
721 if (overwrite_mem) {
722 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
723 blk->status |= BlkDirty;
724 }
725 }
726
727 QueueEntry*
728 BaseCache::getNextQueueEntry()
729 {
730 // Check both MSHR queue and write buffer for potential requests,
731 // note that null does not mean there is no request, it could
732 // simply be that it is not ready
733 MSHR *miss_mshr = mshrQueue.getNext();
734 WriteQueueEntry *wq_entry = writeBuffer.getNext();
735
736 // If we got a write buffer request ready, first priority is a
737 // full write buffer, otherwise we favour the miss requests
738 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
739 // need to search MSHR queue for conflicting earlier miss.
740 MSHR *conflict_mshr =
741 mshrQueue.findPending(wq_entry->blkAddr,
742 wq_entry->isSecure);
743
744 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
745 // Service misses in order until conflict is cleared.
746 return conflict_mshr;
747
748 // @todo Note that we ignore the ready time of the conflict here
749 }
750
751 // No conflicts; issue write
752 return wq_entry;
753 } else if (miss_mshr) {
754 // need to check for conflicting earlier writeback
755 WriteQueueEntry *conflict_mshr =
756 writeBuffer.findPending(miss_mshr->blkAddr,
757 miss_mshr->isSecure);
758 if (conflict_mshr) {
759 // not sure why we don't check order here... it was in the
760 // original code but commented out.
761
762 // The only way this happens is if we are
763 // doing a write and we didn't have permissions
764 // then subsequently saw a writeback (owned got evicted)
765 // We need to make sure to perform the writeback first
766 // To preserve the dirty data, then we can issue the write
767
768 // should we return wq_entry here instead? I.e. do we
769 // have to flush writes in order? I don't think so... not
770 // for Alpha anyway. Maybe for x86?
771 return conflict_mshr;
772
773 // @todo Note that we ignore the ready time of the conflict here
774 }
775
776 // No conflicts; issue read
777 return miss_mshr;
778 }
779
780 // fall through... no pending requests. Try a prefetch.
781 assert(!miss_mshr && !wq_entry);
782 if (prefetcher && mshrQueue.canPrefetch()) {
783 // If we have a miss queue slot, we can try a prefetch
784 PacketPtr pkt = prefetcher->getPacket();
785 if (pkt) {
786 Addr pf_addr = pkt->getBlockAddr(blkSize);
787 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
788 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
789 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
790 // Update statistic on number of prefetches issued
791 // (hwpf_mshr_misses)
792 assert(pkt->req->masterId() < system->maxMasters());
793 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
794
795 // allocate an MSHR and return it, note
796 // that we send the packet straight away, so do not
797 // schedule the send
798 return allocateMissBuffer(pkt, curTick(), false);
799 } else {
800 // free the request and packet
801 delete pkt;
802 }
803 }
804 }
805
806 return nullptr;
807 }
808
809 void
810 BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
811 {
812 assert(pkt->isRequest());
813
814 assert(blk && blk->isValid());
815 // Occasionally this is not true... if we are a lower-level cache
816 // satisfying a string of Read and ReadEx requests from
817 // upper-level caches, a Read will mark the block as shared but we
818 // can satisfy a following ReadEx anyway since we can rely on the
819 // Read requester(s) to have buffered the ReadEx snoop and to
820 // invalidate their blocks after receiving them.
821 // assert(!pkt->needsWritable() || blk->isWritable());
822 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
823
824 // Check RMW operations first since both isRead() and
825 // isWrite() will be true for them
826 if (pkt->cmd == MemCmd::SwapReq) {
827 if (pkt->isAtomicOp()) {
828 // extract data from cache and save it into the data field in
829 // the packet as a return value from this atomic op
830 int offset = tags->extractBlkOffset(pkt->getAddr());
831 uint8_t *blk_data = blk->data + offset;
832 pkt->setData(blk_data);
833
834 // execute AMO operation
835 (*(pkt->getAtomicOp()))(blk_data);
836
837 // set block status to dirty
838 blk->status |= BlkDirty;
839 } else {
840 cmpAndSwap(blk, pkt);
841 }
842 } else if (pkt->isWrite()) {
843 // we have the block in a writable state and can go ahead,
844 // note that the line may be also be considered writable in
845 // downstream caches along the path to memory, but always
846 // Exclusive, and never Modified
847 assert(blk->isWritable());
848 // Write or WriteLine at the first cache with block in writable state
849 if (blk->checkWrite(pkt)) {
850 pkt->writeDataToBlock(blk->data, blkSize);
851 }
852 // Always mark the line as dirty (and thus transition to the
853 // Modified state) even if we are a failed StoreCond so we
854 // supply data to any snoops that have appended themselves to
855 // this cache before knowing the store will fail.
856 blk->status |= BlkDirty;
857 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
858 } else if (pkt->isRead()) {
859 if (pkt->isLLSC()) {
860 blk->trackLoadLocked(pkt);
861 }
862
863 // all read responses have a data payload
864 assert(pkt->hasRespData());
865 pkt->setDataFromBlock(blk->data, blkSize);
866 } else if (pkt->isUpgrade()) {
867 // sanity check
868 assert(!pkt->hasSharers());
869
870 if (blk->isDirty()) {
871 // we were in the Owned state, and a cache above us that
872 // has the line in Shared state needs to be made aware
873 // that the data it already has is in fact dirty
874 pkt->setCacheResponding();
875 blk->status &= ~BlkDirty;
876 }
877 } else if (pkt->isClean()) {
878 blk->status &= ~BlkDirty;
879 } else {
880 assert(pkt->isInvalidate());
881 invalidateBlock(blk);
882 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
883 pkt->print());
884 }
885 }
886
887 /////////////////////////////////////////////////////
888 //
889 // Access path: requests coming in from the CPU side
890 //
891 /////////////////////////////////////////////////////
892 Cycles
893 BaseCache::calculateAccessLatency(const CacheBlk* blk, const uint32_t delay,
894 const Cycles lookup_lat) const
895 {
896 Cycles lat(0);
897
898 if (blk != nullptr) {
899 // As soon as the access arrives, for sequential accesses first access
900 // tags, then the data entry. In the case of parallel accesses the
901 // latency is dictated by the slowest of tag and data latencies.
902 if (sequentialAccess) {
903 lat = ticksToCycles(delay) + lookup_lat + dataLatency;
904 } else {
905 lat = ticksToCycles(delay) + std::max(lookup_lat, dataLatency);
906 }
907
908 // Check if the block to be accessed is available. If not, apply the
909 // access latency on top of when the block is ready to be accessed.
910 const Tick tick = curTick() + delay;
911 const Tick when_ready = blk->getWhenReady();
912 if (when_ready > tick &&
913 ticksToCycles(when_ready - tick) > lat) {
914 lat += ticksToCycles(when_ready - tick);
915 }
916 } else {
917 // In case of a miss, apply lookup latency on top of the metadata
918 // delay, as the access can only start when it arrives.
919 lat = ticksToCycles(delay) + lookup_lat;
920 }
921
922 return lat;
923 }
924
925 bool
926 BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
927 PacketList &writebacks)
928 {
929 // sanity check
930 assert(pkt->isRequest());
931
932 chatty_assert(!(isReadOnly && pkt->isWrite()),
933 "Should never see a write in a read-only cache %s\n",
934 name());
935
936 // Access block in the tags
937 Cycles tag_latency(0);
938 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency);
939
940 // Calculate access latency on top of when the packet arrives. This
941 // takes into account the bus delay.
942 lat = calculateAccessLatency(blk, pkt->headerDelay,
943 tag_latency);
944
945 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
946 blk ? "hit " + blk->print() : "miss");
947
948 if (pkt->req->isCacheMaintenance()) {
949 // A cache maintenance operation is always forwarded to the
950 // memory below even if the block is found in dirty state.
951
952 // We defer any changes to the state of the block until we
953 // create and mark as in service the mshr for the downstream
954 // packet.
955 return false;
956 }
957
958 if (pkt->isEviction()) {
959 // We check for presence of block in above caches before issuing
960 // Writeback or CleanEvict to write buffer. Therefore the only
961 // possible cases can be of a CleanEvict packet coming from above
962 // encountering a Writeback generated in this cache peer cache and
963 // waiting in the write buffer. Cases of upper level peer caches
964 // generating CleanEvict and Writeback or simply CleanEvict and
965 // CleanEvict almost simultaneously will be caught by snoops sent out
966 // by crossbar.
967 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
968 pkt->isSecure());
969 if (wb_entry) {
970 assert(wb_entry->getNumTargets() == 1);
971 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
972 assert(wbPkt->isWriteback());
973
974 if (pkt->isCleanEviction()) {
975 // The CleanEvict and WritebackClean snoops into other
976 // peer caches of the same level while traversing the
977 // crossbar. If a copy of the block is found, the
978 // packet is deleted in the crossbar. Hence, none of
979 // the other upper level caches connected to this
980 // cache have the block, so we can clear the
981 // BLOCK_CACHED flag in the Writeback if set and
982 // discard the CleanEvict by returning true.
983 wbPkt->clearBlockCached();
984 return true;
985 } else {
986 assert(pkt->cmd == MemCmd::WritebackDirty);
987 // Dirty writeback from above trumps our clean
988 // writeback... discard here
989 // Note: markInService will remove entry from writeback buffer.
990 markInService(wb_entry);
991 delete wbPkt;
992 }
993 }
994 }
995
996 // Writeback handling is special case. We can write the block into
997 // the cache without having a writeable copy (or any copy at all).
998 if (pkt->isWriteback()) {
999 assert(blkSize == pkt->getSize());
1000
1001 // we could get a clean writeback while we are having
1002 // outstanding accesses to a block, do the simple thing for
1003 // now and drop the clean writeback so that we do not upset
1004 // any ordering/decisions about ownership already taken
1005 if (pkt->cmd == MemCmd::WritebackClean &&
1006 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
1007 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
1008 "dropping\n", pkt->getAddr());
1009 return true;
1010 }
1011
1012 if (!blk) {
1013 // need to do a replacement
1014 blk = allocateBlock(pkt, writebacks);
1015 if (!blk) {
1016 // no replaceable block available: give up, fwd to next level.
1017 incMissCount(pkt);
1018 return false;
1019 }
1020
1021 blk->status |= BlkReadable;
1022 }
1023 // only mark the block dirty if we got a writeback command,
1024 // and leave it as is for a clean writeback
1025 if (pkt->cmd == MemCmd::WritebackDirty) {
1026 // TODO: the coherent cache can assert(!blk->isDirty());
1027 blk->status |= BlkDirty;
1028 }
1029 // if the packet does not have sharers, it is passing
1030 // writable, and we got the writeback in Modified or Exclusive
1031 // state, if not we are in the Owned or Shared state
1032 if (!pkt->hasSharers()) {
1033 blk->status |= BlkWritable;
1034 }
1035 // nothing else to do; writeback doesn't expect response
1036 assert(!pkt->needsResponse());
1037 pkt->writeDataToBlock(blk->data, blkSize);
1038 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1039 incHitCount(pkt);
1040 // populate the time when the block will be ready to access.
1041 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1042 pkt->payloadDelay);
1043 return true;
1044 } else if (pkt->cmd == MemCmd::CleanEvict) {
1045 if (blk) {
1046 // Found the block in the tags, need to stop CleanEvict from
1047 // propagating further down the hierarchy. Returning true will
1048 // treat the CleanEvict like a satisfied write request and delete
1049 // it.
1050 return true;
1051 }
1052 // We didn't find the block here, propagate the CleanEvict further
1053 // down the memory hierarchy. Returning false will treat the CleanEvict
1054 // like a Writeback which could not find a replaceable block so has to
1055 // go to next level.
1056 return false;
1057 } else if (pkt->cmd == MemCmd::WriteClean) {
1058 // WriteClean handling is a special case. We can allocate a
1059 // block directly if it doesn't exist and we can update the
1060 // block immediately. The WriteClean transfers the ownership
1061 // of the block as well.
1062 assert(blkSize == pkt->getSize());
1063
1064 if (!blk) {
1065 if (pkt->writeThrough()) {
1066 // if this is a write through packet, we don't try to
1067 // allocate if the block is not present
1068 return false;
1069 } else {
1070 // a writeback that misses needs to allocate a new block
1071 blk = allocateBlock(pkt, writebacks);
1072 if (!blk) {
1073 // no replaceable block available: give up, fwd to
1074 // next level.
1075 incMissCount(pkt);
1076 return false;
1077 }
1078
1079 blk->status |= BlkReadable;
1080 }
1081 }
1082
1083 // at this point either this is a writeback or a write-through
1084 // write clean operation and the block is already in this
1085 // cache, we need to update the data and the block flags
1086 assert(blk);
1087 // TODO: the coherent cache can assert(!blk->isDirty());
1088 if (!pkt->writeThrough()) {
1089 blk->status |= BlkDirty;
1090 }
1091 // nothing else to do; writeback doesn't expect response
1092 assert(!pkt->needsResponse());
1093 pkt->writeDataToBlock(blk->data, blkSize);
1094 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1095
1096 incHitCount(pkt);
1097 // populate the time when the block will be ready to access.
1098 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1099 pkt->payloadDelay);
1100 // if this a write-through packet it will be sent to cache
1101 // below
1102 return !pkt->writeThrough();
1103 } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1104 blk->isReadable())) {
1105 // OK to satisfy access
1106 incHitCount(pkt);
1107 satisfyRequest(pkt, blk);
1108 maintainClusivity(pkt->fromCache(), blk);
1109
1110 return true;
1111 }
1112
1113 // Can't satisfy access normally... either no block (blk == nullptr)
1114 // or have block but need writable
1115
1116 incMissCount(pkt);
1117
1118 if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1119 // complete miss on store conditional... just give up now
1120 pkt->req->setExtraData(0);
1121 return true;
1122 }
1123
1124 return false;
1125 }
1126
1127 void
1128 BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1129 {
1130 if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1131 clusivity == Enums::mostly_excl) {
1132 // if we have responded to a cache, and our block is still
1133 // valid, but not dirty, and this cache is mostly exclusive
1134 // with respect to the cache above, drop the block
1135 invalidateBlock(blk);
1136 }
1137 }
1138
1139 CacheBlk*
1140 BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1141 bool allocate)
1142 {
1143 assert(pkt->isResponse());
1144 Addr addr = pkt->getAddr();
1145 bool is_secure = pkt->isSecure();
1146 #if TRACING_ON
1147 CacheBlk::State old_state = blk ? blk->status : 0;
1148 #endif
1149
1150 // When handling a fill, we should have no writes to this line.
1151 assert(addr == pkt->getBlockAddr(blkSize));
1152 assert(!writeBuffer.findMatch(addr, is_secure));
1153
1154 if (!blk) {
1155 // better have read new data...
1156 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
1157
1158 // need to do a replacement if allocating, otherwise we stick
1159 // with the temporary storage
1160 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1161
1162 if (!blk) {
1163 // No replaceable block or a mostly exclusive
1164 // cache... just use temporary storage to complete the
1165 // current request and then get rid of it
1166 blk = tempBlock;
1167 tempBlock->insert(addr, is_secure);
1168 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1169 is_secure ? "s" : "ns");
1170 }
1171 } else {
1172 // existing block... probably an upgrade
1173 // don't clear block status... if block is already dirty we
1174 // don't want to lose that
1175 }
1176
1177 // Block is guaranteed to be valid at this point
1178 assert(blk->isValid());
1179 assert(blk->isSecure() == is_secure);
1180 assert(regenerateBlkAddr(blk) == addr);
1181
1182 blk->status |= BlkReadable;
1183
1184 // sanity check for whole-line writes, which should always be
1185 // marked as writable as part of the fill, and then later marked
1186 // dirty as part of satisfyRequest
1187 if (pkt->cmd == MemCmd::InvalidateResp) {
1188 assert(!pkt->hasSharers());
1189 }
1190
1191 // here we deal with setting the appropriate state of the line,
1192 // and we start by looking at the hasSharers flag, and ignore the
1193 // cacheResponding flag (normally signalling dirty data) if the
1194 // packet has sharers, thus the line is never allocated as Owned
1195 // (dirty but not writable), and always ends up being either
1196 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1197 // for more details
1198 if (!pkt->hasSharers()) {
1199 // we could get a writable line from memory (rather than a
1200 // cache) even in a read-only cache, note that we set this bit
1201 // even for a read-only cache, possibly revisit this decision
1202 blk->status |= BlkWritable;
1203
1204 // check if we got this via cache-to-cache transfer (i.e., from a
1205 // cache that had the block in Modified or Owned state)
1206 if (pkt->cacheResponding()) {
1207 // we got the block in Modified state, and invalidated the
1208 // owners copy
1209 blk->status |= BlkDirty;
1210
1211 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1212 "in read-only cache %s\n", name());
1213 }
1214 }
1215
1216 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1217 addr, is_secure ? "s" : "ns", old_state, blk->print());
1218
1219 // if we got new data, copy it in (checking for a read response
1220 // and a response that has data is the same in the end)
1221 if (pkt->isRead()) {
1222 // sanity checks
1223 assert(pkt->hasData());
1224 assert(pkt->getSize() == blkSize);
1225
1226 pkt->writeDataToBlock(blk->data, blkSize);
1227 }
1228 // We pay for fillLatency here.
1229 blk->setWhenReady(clockEdge(fillLatency) + pkt->payloadDelay);
1230
1231 return blk;
1232 }
1233
1234 CacheBlk*
1235 BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1236 {
1237 // Get address
1238 const Addr addr = pkt->getAddr();
1239
1240 // Get secure bit
1241 const bool is_secure = pkt->isSecure();
1242
1243 // Find replacement victim
1244 std::vector<CacheBlk*> evict_blks;
1245 CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1246
1247 // It is valid to return nullptr if there is no victim
1248 if (!victim)
1249 return nullptr;
1250
1251 // Print victim block's information
1252 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
1253
1254 // Check for transient state allocations. If any of the entries listed
1255 // for eviction has a transient state, the allocation fails
1256 for (const auto& blk : evict_blks) {
1257 if (blk->isValid()) {
1258 Addr repl_addr = regenerateBlkAddr(blk);
1259 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1260 if (repl_mshr) {
1261 // must be an outstanding upgrade or clean request
1262 // on a block we're about to replace...
1263 assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1264 repl_mshr->isCleaning());
1265
1266 // too hard to replace block with transient state
1267 // allocation failed, block not inserted
1268 return nullptr;
1269 }
1270 }
1271 }
1272
1273 // The victim will be replaced by a new entry, so increase the replacement
1274 // counter if a valid block is being replaced
1275 if (victim->isValid()) {
1276 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1277 "(%s): %s\n", regenerateBlkAddr(victim),
1278 victim->isSecure() ? "s" : "ns",
1279 addr, is_secure ? "s" : "ns",
1280 victim->isDirty() ? "writeback" : "clean");
1281
1282 replacements++;
1283 }
1284
1285 // Evict valid blocks associated to this victim block
1286 for (const auto& blk : evict_blks) {
1287 if (blk->isValid()) {
1288 if (blk->wasPrefetched()) {
1289 unusedPrefetches++;
1290 }
1291
1292 evictBlock(blk, writebacks);
1293 }
1294 }
1295
1296 // Insert new block at victimized entry
1297 tags->insertBlock(addr, is_secure, pkt->req->masterId(),
1298 pkt->req->taskId(), victim);
1299
1300 return victim;
1301 }
1302
1303 void
1304 BaseCache::invalidateBlock(CacheBlk *blk)
1305 {
1306 // If handling a block present in the Tags, let it do its invalidation
1307 // process, which will update stats and invalidate the block itself
1308 if (blk != tempBlock) {
1309 tags->invalidate(blk);
1310 } else {
1311 tempBlock->invalidate();
1312 }
1313 }
1314
1315 void
1316 BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks)
1317 {
1318 PacketPtr pkt = evictBlock(blk);
1319 if (pkt) {
1320 writebacks.push_back(pkt);
1321 }
1322 }
1323
1324 PacketPtr
1325 BaseCache::writebackBlk(CacheBlk *blk)
1326 {
1327 chatty_assert(!isReadOnly || writebackClean,
1328 "Writeback from read-only cache");
1329 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1330
1331 writebacks[Request::wbMasterId]++;
1332
1333 RequestPtr req = std::make_shared<Request>(
1334 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1335
1336 if (blk->isSecure())
1337 req->setFlags(Request::SECURE);
1338
1339 req->taskId(blk->task_id);
1340
1341 PacketPtr pkt =
1342 new Packet(req, blk->isDirty() ?
1343 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1344
1345 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1346 pkt->print(), blk->isWritable(), blk->isDirty());
1347
1348 if (blk->isWritable()) {
1349 // not asserting shared means we pass the block in modified
1350 // state, mark our own block non-writeable
1351 blk->status &= ~BlkWritable;
1352 } else {
1353 // we are in the Owned state, tell the receiver
1354 pkt->setHasSharers();
1355 }
1356
1357 // make sure the block is not marked dirty
1358 blk->status &= ~BlkDirty;
1359
1360 pkt->allocate();
1361 pkt->setDataFromBlock(blk->data, blkSize);
1362
1363 return pkt;
1364 }
1365
1366 PacketPtr
1367 BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1368 {
1369 RequestPtr req = std::make_shared<Request>(
1370 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1371
1372 if (blk->isSecure()) {
1373 req->setFlags(Request::SECURE);
1374 }
1375 req->taskId(blk->task_id);
1376
1377 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1378
1379 if (dest) {
1380 req->setFlags(dest);
1381 pkt->setWriteThrough();
1382 }
1383
1384 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1385 blk->isWritable(), blk->isDirty());
1386
1387 if (blk->isWritable()) {
1388 // not asserting shared means we pass the block in modified
1389 // state, mark our own block non-writeable
1390 blk->status &= ~BlkWritable;
1391 } else {
1392 // we are in the Owned state, tell the receiver
1393 pkt->setHasSharers();
1394 }
1395
1396 // make sure the block is not marked dirty
1397 blk->status &= ~BlkDirty;
1398
1399 pkt->allocate();
1400 pkt->setDataFromBlock(blk->data, blkSize);
1401
1402 return pkt;
1403 }
1404
1405
1406 void
1407 BaseCache::memWriteback()
1408 {
1409 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1410 }
1411
1412 void
1413 BaseCache::memInvalidate()
1414 {
1415 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1416 }
1417
1418 bool
1419 BaseCache::isDirty() const
1420 {
1421 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1422 }
1423
1424 bool
1425 BaseCache::coalesce() const
1426 {
1427 return writeAllocator && writeAllocator->coalesce();
1428 }
1429
1430 void
1431 BaseCache::writebackVisitor(CacheBlk &blk)
1432 {
1433 if (blk.isDirty()) {
1434 assert(blk.isValid());
1435
1436 RequestPtr request = std::make_shared<Request>(
1437 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1438
1439 request->taskId(blk.task_id);
1440 if (blk.isSecure()) {
1441 request->setFlags(Request::SECURE);
1442 }
1443
1444 Packet packet(request, MemCmd::WriteReq);
1445 packet.dataStatic(blk.data);
1446
1447 memSidePort.sendFunctional(&packet);
1448
1449 blk.status &= ~BlkDirty;
1450 }
1451 }
1452
1453 void
1454 BaseCache::invalidateVisitor(CacheBlk &blk)
1455 {
1456 if (blk.isDirty())
1457 warn_once("Invalidating dirty cache lines. " \
1458 "Expect things to break.\n");
1459
1460 if (blk.isValid()) {
1461 assert(!blk.isDirty());
1462 invalidateBlock(&blk);
1463 }
1464 }
1465
1466 Tick
1467 BaseCache::nextQueueReadyTime() const
1468 {
1469 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1470 writeBuffer.nextReadyTime());
1471
1472 // Don't signal prefetch ready time if no MSHRs available
1473 // Will signal once enoguh MSHRs are deallocated
1474 if (prefetcher && mshrQueue.canPrefetch()) {
1475 nextReady = std::min(nextReady,
1476 prefetcher->nextPrefetchReadyTime());
1477 }
1478
1479 return nextReady;
1480 }
1481
1482
1483 bool
1484 BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1485 {
1486 assert(mshr);
1487
1488 // use request from 1st target
1489 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1490
1491 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1492
1493 // if the cache is in write coalescing mode or (additionally) in
1494 // no allocation mode, and we have a write packet with an MSHR
1495 // that is not a whole-line write (due to incompatible flags etc),
1496 // then reset the write mode
1497 if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
1498 if (!mshr->isWholeLineWrite()) {
1499 // if we are currently write coalescing, hold on the
1500 // MSHR as many cycles extra as we need to completely
1501 // write a cache line
1502 if (writeAllocator->delay(mshr->blkAddr)) {
1503 Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
1504 DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
1505 "for write coalescing\n", tgt_pkt->print(), delay);
1506 mshrQueue.delay(mshr, delay);
1507 return false;
1508 } else {
1509 writeAllocator->reset();
1510 }
1511 } else {
1512 writeAllocator->resetDelay(mshr->blkAddr);
1513 }
1514 }
1515
1516 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1517
1518 // either a prefetch that is not present upstream, or a normal
1519 // MSHR request, proceed to get the packet to send downstream
1520 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
1521 mshr->isWholeLineWrite());
1522
1523 mshr->isForward = (pkt == nullptr);
1524
1525 if (mshr->isForward) {
1526 // not a cache block request, but a response is expected
1527 // make copy of current packet to forward, keep current
1528 // copy for response handling
1529 pkt = new Packet(tgt_pkt, false, true);
1530 assert(!pkt->isWrite());
1531 }
1532
1533 // play it safe and append (rather than set) the sender state,
1534 // as forwarded packets may already have existing state
1535 pkt->pushSenderState(mshr);
1536
1537 if (pkt->isClean() && blk && blk->isDirty()) {
1538 // A cache clean opearation is looking for a dirty block. Mark
1539 // the packet so that the destination xbar can determine that
1540 // there will be a follow-up write packet as well.
1541 pkt->setSatisfied();
1542 }
1543
1544 if (!memSidePort.sendTimingReq(pkt)) {
1545 // we are awaiting a retry, but we
1546 // delete the packet and will be creating a new packet
1547 // when we get the opportunity
1548 delete pkt;
1549
1550 // note that we have now masked any requestBus and
1551 // schedSendEvent (we will wait for a retry before
1552 // doing anything), and this is so even if we do not
1553 // care about this packet and might override it before
1554 // it gets retried
1555 return true;
1556 } else {
1557 // As part of the call to sendTimingReq the packet is
1558 // forwarded to all neighbouring caches (and any caches
1559 // above them) as a snoop. Thus at this point we know if
1560 // any of the neighbouring caches are responding, and if
1561 // so, we know it is dirty, and we can determine if it is
1562 // being passed as Modified, making our MSHR the ordering
1563 // point
1564 bool pending_modified_resp = !pkt->hasSharers() &&
1565 pkt->cacheResponding();
1566 markInService(mshr, pending_modified_resp);
1567
1568 if (pkt->isClean() && blk && blk->isDirty()) {
1569 // A cache clean opearation is looking for a dirty
1570 // block. If a dirty block is encountered a WriteClean
1571 // will update any copies to the path to the memory
1572 // until the point of reference.
1573 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1574 __func__, pkt->print(), blk->print());
1575 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1576 pkt->id);
1577 PacketList writebacks;
1578 writebacks.push_back(wb_pkt);
1579 doWritebacks(writebacks, 0);
1580 }
1581
1582 return false;
1583 }
1584 }
1585
1586 bool
1587 BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1588 {
1589 assert(wq_entry);
1590
1591 // always a single target for write queue entries
1592 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1593
1594 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1595
1596 // forward as is, both for evictions and uncacheable writes
1597 if (!memSidePort.sendTimingReq(tgt_pkt)) {
1598 // note that we have now masked any requestBus and
1599 // schedSendEvent (we will wait for a retry before
1600 // doing anything), and this is so even if we do not
1601 // care about this packet and might override it before
1602 // it gets retried
1603 return true;
1604 } else {
1605 markInService(wq_entry);
1606 return false;
1607 }
1608 }
1609
1610 void
1611 BaseCache::serialize(CheckpointOut &cp) const
1612 {
1613 bool dirty(isDirty());
1614
1615 if (dirty) {
1616 warn("*** The cache still contains dirty data. ***\n");
1617 warn(" Make sure to drain the system using the correct flags.\n");
1618 warn(" This checkpoint will not restore correctly " \
1619 "and dirty data in the cache will be lost!\n");
1620 }
1621
1622 // Since we don't checkpoint the data in the cache, any dirty data
1623 // will be lost when restoring from a checkpoint of a system that
1624 // wasn't drained properly. Flag the checkpoint as invalid if the
1625 // cache contains dirty data.
1626 bool bad_checkpoint(dirty);
1627 SERIALIZE_SCALAR(bad_checkpoint);
1628 }
1629
1630 void
1631 BaseCache::unserialize(CheckpointIn &cp)
1632 {
1633 bool bad_checkpoint;
1634 UNSERIALIZE_SCALAR(bad_checkpoint);
1635 if (bad_checkpoint) {
1636 fatal("Restoring from checkpoints with dirty caches is not "
1637 "supported in the classic memory system. Please remove any "
1638 "caches or drain them properly before taking checkpoints.\n");
1639 }
1640 }
1641
1642 void
1643 BaseCache::regStats()
1644 {
1645 MemObject::regStats();
1646
1647 using namespace Stats;
1648
1649 // Hit statistics
1650 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1651 MemCmd cmd(access_idx);
1652 const string &cstr = cmd.toString();
1653
1654 hits[access_idx]
1655 .init(system->maxMasters())
1656 .name(name() + "." + cstr + "_hits")
1657 .desc("number of " + cstr + " hits")
1658 .flags(total | nozero | nonan)
1659 ;
1660 for (int i = 0; i < system->maxMasters(); i++) {
1661 hits[access_idx].subname(i, system->getMasterName(i));
1662 }
1663 }
1664
1665 // These macros make it easier to sum the right subset of commands and
1666 // to change the subset of commands that are considered "demand" vs
1667 // "non-demand"
1668 #define SUM_DEMAND(s) \
1669 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1670 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1671
1672 // should writebacks be included here? prior code was inconsistent...
1673 #define SUM_NON_DEMAND(s) \
1674 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq])
1675
1676 demandHits
1677 .name(name() + ".demand_hits")
1678 .desc("number of demand (read+write) hits")
1679 .flags(total | nozero | nonan)
1680 ;
1681 demandHits = SUM_DEMAND(hits);
1682 for (int i = 0; i < system->maxMasters(); i++) {
1683 demandHits.subname(i, system->getMasterName(i));
1684 }
1685
1686 overallHits
1687 .name(name() + ".overall_hits")
1688 .desc("number of overall hits")
1689 .flags(total | nozero | nonan)
1690 ;
1691 overallHits = demandHits + SUM_NON_DEMAND(hits);
1692 for (int i = 0; i < system->maxMasters(); i++) {
1693 overallHits.subname(i, system->getMasterName(i));
1694 }
1695
1696 // Miss statistics
1697 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1698 MemCmd cmd(access_idx);
1699 const string &cstr = cmd.toString();
1700
1701 misses[access_idx]
1702 .init(system->maxMasters())
1703 .name(name() + "." + cstr + "_misses")
1704 .desc("number of " + cstr + " misses")
1705 .flags(total | nozero | nonan)
1706 ;
1707 for (int i = 0; i < system->maxMasters(); i++) {
1708 misses[access_idx].subname(i, system->getMasterName(i));
1709 }
1710 }
1711
1712 demandMisses
1713 .name(name() + ".demand_misses")
1714 .desc("number of demand (read+write) misses")
1715 .flags(total | nozero | nonan)
1716 ;
1717 demandMisses = SUM_DEMAND(misses);
1718 for (int i = 0; i < system->maxMasters(); i++) {
1719 demandMisses.subname(i, system->getMasterName(i));
1720 }
1721
1722 overallMisses
1723 .name(name() + ".overall_misses")
1724 .desc("number of overall misses")
1725 .flags(total | nozero | nonan)
1726 ;
1727 overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1728 for (int i = 0; i < system->maxMasters(); i++) {
1729 overallMisses.subname(i, system->getMasterName(i));
1730 }
1731
1732 // Miss latency statistics
1733 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1734 MemCmd cmd(access_idx);
1735 const string &cstr = cmd.toString();
1736
1737 missLatency[access_idx]
1738 .init(system->maxMasters())
1739 .name(name() + "." + cstr + "_miss_latency")
1740 .desc("number of " + cstr + " miss cycles")
1741 .flags(total | nozero | nonan)
1742 ;
1743 for (int i = 0; i < system->maxMasters(); i++) {
1744 missLatency[access_idx].subname(i, system->getMasterName(i));
1745 }
1746 }
1747
1748 demandMissLatency
1749 .name(name() + ".demand_miss_latency")
1750 .desc("number of demand (read+write) miss cycles")
1751 .flags(total | nozero | nonan)
1752 ;
1753 demandMissLatency = SUM_DEMAND(missLatency);
1754 for (int i = 0; i < system->maxMasters(); i++) {
1755 demandMissLatency.subname(i, system->getMasterName(i));
1756 }
1757
1758 overallMissLatency
1759 .name(name() + ".overall_miss_latency")
1760 .desc("number of overall miss cycles")
1761 .flags(total | nozero | nonan)
1762 ;
1763 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1764 for (int i = 0; i < system->maxMasters(); i++) {
1765 overallMissLatency.subname(i, system->getMasterName(i));
1766 }
1767
1768 // access formulas
1769 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1770 MemCmd cmd(access_idx);
1771 const string &cstr = cmd.toString();
1772
1773 accesses[access_idx]
1774 .name(name() + "." + cstr + "_accesses")
1775 .desc("number of " + cstr + " accesses(hits+misses)")
1776 .flags(total | nozero | nonan)
1777 ;
1778 accesses[access_idx] = hits[access_idx] + misses[access_idx];
1779
1780 for (int i = 0; i < system->maxMasters(); i++) {
1781 accesses[access_idx].subname(i, system->getMasterName(i));
1782 }
1783 }
1784
1785 demandAccesses
1786 .name(name() + ".demand_accesses")
1787 .desc("number of demand (read+write) accesses")
1788 .flags(total | nozero | nonan)
1789 ;
1790 demandAccesses = demandHits + demandMisses;
1791 for (int i = 0; i < system->maxMasters(); i++) {
1792 demandAccesses.subname(i, system->getMasterName(i));
1793 }
1794
1795 overallAccesses
1796 .name(name() + ".overall_accesses")
1797 .desc("number of overall (read+write) accesses")
1798 .flags(total | nozero | nonan)
1799 ;
1800 overallAccesses = overallHits + overallMisses;
1801 for (int i = 0; i < system->maxMasters(); i++) {
1802 overallAccesses.subname(i, system->getMasterName(i));
1803 }
1804
1805 // miss rate formulas
1806 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1807 MemCmd cmd(access_idx);
1808 const string &cstr = cmd.toString();
1809
1810 missRate[access_idx]
1811 .name(name() + "." + cstr + "_miss_rate")
1812 .desc("miss rate for " + cstr + " accesses")
1813 .flags(total | nozero | nonan)
1814 ;
1815 missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1816
1817 for (int i = 0; i < system->maxMasters(); i++) {
1818 missRate[access_idx].subname(i, system->getMasterName(i));
1819 }
1820 }
1821
1822 demandMissRate
1823 .name(name() + ".demand_miss_rate")
1824 .desc("miss rate for demand accesses")
1825 .flags(total | nozero | nonan)
1826 ;
1827 demandMissRate = demandMisses / demandAccesses;
1828 for (int i = 0; i < system->maxMasters(); i++) {
1829 demandMissRate.subname(i, system->getMasterName(i));
1830 }
1831
1832 overallMissRate
1833 .name(name() + ".overall_miss_rate")
1834 .desc("miss rate for overall accesses")
1835 .flags(total | nozero | nonan)
1836 ;
1837 overallMissRate = overallMisses / overallAccesses;
1838 for (int i = 0; i < system->maxMasters(); i++) {
1839 overallMissRate.subname(i, system->getMasterName(i));
1840 }
1841
1842 // miss latency formulas
1843 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1844 MemCmd cmd(access_idx);
1845 const string &cstr = cmd.toString();
1846
1847 avgMissLatency[access_idx]
1848 .name(name() + "." + cstr + "_avg_miss_latency")
1849 .desc("average " + cstr + " miss latency")
1850 .flags(total | nozero | nonan)
1851 ;
1852 avgMissLatency[access_idx] =
1853 missLatency[access_idx] / misses[access_idx];
1854
1855 for (int i = 0; i < system->maxMasters(); i++) {
1856 avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1857 }
1858 }
1859
1860 demandAvgMissLatency
1861 .name(name() + ".demand_avg_miss_latency")
1862 .desc("average overall miss latency")
1863 .flags(total | nozero | nonan)
1864 ;
1865 demandAvgMissLatency = demandMissLatency / demandMisses;
1866 for (int i = 0; i < system->maxMasters(); i++) {
1867 demandAvgMissLatency.subname(i, system->getMasterName(i));
1868 }
1869
1870 overallAvgMissLatency
1871 .name(name() + ".overall_avg_miss_latency")
1872 .desc("average overall miss latency")
1873 .flags(total | nozero | nonan)
1874 ;
1875 overallAvgMissLatency = overallMissLatency / overallMisses;
1876 for (int i = 0; i < system->maxMasters(); i++) {
1877 overallAvgMissLatency.subname(i, system->getMasterName(i));
1878 }
1879
1880 blocked_cycles.init(NUM_BLOCKED_CAUSES);
1881 blocked_cycles
1882 .name(name() + ".blocked_cycles")
1883 .desc("number of cycles access was blocked")
1884 .subname(Blocked_NoMSHRs, "no_mshrs")
1885 .subname(Blocked_NoTargets, "no_targets")
1886 ;
1887
1888
1889 blocked_causes.init(NUM_BLOCKED_CAUSES);
1890 blocked_causes
1891 .name(name() + ".blocked")
1892 .desc("number of cycles access was blocked")
1893 .subname(Blocked_NoMSHRs, "no_mshrs")
1894 .subname(Blocked_NoTargets, "no_targets")
1895 ;
1896
1897 avg_blocked
1898 .name(name() + ".avg_blocked_cycles")
1899 .desc("average number of cycles each access was blocked")
1900 .subname(Blocked_NoMSHRs, "no_mshrs")
1901 .subname(Blocked_NoTargets, "no_targets")
1902 ;
1903
1904 avg_blocked = blocked_cycles / blocked_causes;
1905
1906 unusedPrefetches
1907 .name(name() + ".unused_prefetches")
1908 .desc("number of HardPF blocks evicted w/o reference")
1909 .flags(nozero)
1910 ;
1911
1912 writebacks
1913 .init(system->maxMasters())
1914 .name(name() + ".writebacks")
1915 .desc("number of writebacks")
1916 .flags(total | nozero | nonan)
1917 ;
1918 for (int i = 0; i < system->maxMasters(); i++) {
1919 writebacks.subname(i, system->getMasterName(i));
1920 }
1921
1922 // MSHR statistics
1923 // MSHR hit statistics
1924 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1925 MemCmd cmd(access_idx);
1926 const string &cstr = cmd.toString();
1927
1928 mshr_hits[access_idx]
1929 .init(system->maxMasters())
1930 .name(name() + "." + cstr + "_mshr_hits")
1931 .desc("number of " + cstr + " MSHR hits")
1932 .flags(total | nozero | nonan)
1933 ;
1934 for (int i = 0; i < system->maxMasters(); i++) {
1935 mshr_hits[access_idx].subname(i, system->getMasterName(i));
1936 }
1937 }
1938
1939 demandMshrHits
1940 .name(name() + ".demand_mshr_hits")
1941 .desc("number of demand (read+write) MSHR hits")
1942 .flags(total | nozero | nonan)
1943 ;
1944 demandMshrHits = SUM_DEMAND(mshr_hits);
1945 for (int i = 0; i < system->maxMasters(); i++) {
1946 demandMshrHits.subname(i, system->getMasterName(i));
1947 }
1948
1949 overallMshrHits
1950 .name(name() + ".overall_mshr_hits")
1951 .desc("number of overall MSHR hits")
1952 .flags(total | nozero | nonan)
1953 ;
1954 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
1955 for (int i = 0; i < system->maxMasters(); i++) {
1956 overallMshrHits.subname(i, system->getMasterName(i));
1957 }
1958
1959 // MSHR miss statistics
1960 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1961 MemCmd cmd(access_idx);
1962 const string &cstr = cmd.toString();
1963
1964 mshr_misses[access_idx]
1965 .init(system->maxMasters())
1966 .name(name() + "." + cstr + "_mshr_misses")
1967 .desc("number of " + cstr + " MSHR misses")
1968 .flags(total | nozero | nonan)
1969 ;
1970 for (int i = 0; i < system->maxMasters(); i++) {
1971 mshr_misses[access_idx].subname(i, system->getMasterName(i));
1972 }
1973 }
1974
1975 demandMshrMisses
1976 .name(name() + ".demand_mshr_misses")
1977 .desc("number of demand (read+write) MSHR misses")
1978 .flags(total | nozero | nonan)
1979 ;
1980 demandMshrMisses = SUM_DEMAND(mshr_misses);
1981 for (int i = 0; i < system->maxMasters(); i++) {
1982 demandMshrMisses.subname(i, system->getMasterName(i));
1983 }
1984
1985 overallMshrMisses
1986 .name(name() + ".overall_mshr_misses")
1987 .desc("number of overall MSHR misses")
1988 .flags(total | nozero | nonan)
1989 ;
1990 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
1991 for (int i = 0; i < system->maxMasters(); i++) {
1992 overallMshrMisses.subname(i, system->getMasterName(i));
1993 }
1994
1995 // MSHR miss latency statistics
1996 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1997 MemCmd cmd(access_idx);
1998 const string &cstr = cmd.toString();
1999
2000 mshr_miss_latency[access_idx]
2001 .init(system->maxMasters())
2002 .name(name() + "." + cstr + "_mshr_miss_latency")
2003 .desc("number of " + cstr + " MSHR miss cycles")
2004 .flags(total | nozero | nonan)
2005 ;
2006 for (int i = 0; i < system->maxMasters(); i++) {
2007 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
2008 }
2009 }
2010
2011 demandMshrMissLatency
2012 .name(name() + ".demand_mshr_miss_latency")
2013 .desc("number of demand (read+write) MSHR miss cycles")
2014 .flags(total | nozero | nonan)
2015 ;
2016 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
2017 for (int i = 0; i < system->maxMasters(); i++) {
2018 demandMshrMissLatency.subname(i, system->getMasterName(i));
2019 }
2020
2021 overallMshrMissLatency
2022 .name(name() + ".overall_mshr_miss_latency")
2023 .desc("number of overall MSHR miss cycles")
2024 .flags(total | nozero | nonan)
2025 ;
2026 overallMshrMissLatency =
2027 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
2028 for (int i = 0; i < system->maxMasters(); i++) {
2029 overallMshrMissLatency.subname(i, system->getMasterName(i));
2030 }
2031
2032 // MSHR uncacheable statistics
2033 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2034 MemCmd cmd(access_idx);
2035 const string &cstr = cmd.toString();
2036
2037 mshr_uncacheable[access_idx]
2038 .init(system->maxMasters())
2039 .name(name() + "." + cstr + "_mshr_uncacheable")
2040 .desc("number of " + cstr + " MSHR uncacheable")
2041 .flags(total | nozero | nonan)
2042 ;
2043 for (int i = 0; i < system->maxMasters(); i++) {
2044 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
2045 }
2046 }
2047
2048 overallMshrUncacheable
2049 .name(name() + ".overall_mshr_uncacheable_misses")
2050 .desc("number of overall MSHR uncacheable misses")
2051 .flags(total | nozero | nonan)
2052 ;
2053 overallMshrUncacheable =
2054 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
2055 for (int i = 0; i < system->maxMasters(); i++) {
2056 overallMshrUncacheable.subname(i, system->getMasterName(i));
2057 }
2058
2059 // MSHR miss latency statistics
2060 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2061 MemCmd cmd(access_idx);
2062 const string &cstr = cmd.toString();
2063
2064 mshr_uncacheable_lat[access_idx]
2065 .init(system->maxMasters())
2066 .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2067 .desc("number of " + cstr + " MSHR uncacheable cycles")
2068 .flags(total | nozero | nonan)
2069 ;
2070 for (int i = 0; i < system->maxMasters(); i++) {
2071 mshr_uncacheable_lat[access_idx].subname(
2072 i, system->getMasterName(i));
2073 }
2074 }
2075
2076 overallMshrUncacheableLatency
2077 .name(name() + ".overall_mshr_uncacheable_latency")
2078 .desc("number of overall MSHR uncacheable cycles")
2079 .flags(total | nozero | nonan)
2080 ;
2081 overallMshrUncacheableLatency =
2082 SUM_DEMAND(mshr_uncacheable_lat) +
2083 SUM_NON_DEMAND(mshr_uncacheable_lat);
2084 for (int i = 0; i < system->maxMasters(); i++) {
2085 overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2086 }
2087
2088 #if 0
2089 // MSHR access formulas
2090 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2091 MemCmd cmd(access_idx);
2092 const string &cstr = cmd.toString();
2093
2094 mshrAccesses[access_idx]
2095 .name(name() + "." + cstr + "_mshr_accesses")
2096 .desc("number of " + cstr + " mshr accesses(hits+misses)")
2097 .flags(total | nozero | nonan)
2098 ;
2099 mshrAccesses[access_idx] =
2100 mshr_hits[access_idx] + mshr_misses[access_idx]
2101 + mshr_uncacheable[access_idx];
2102 }
2103
2104 demandMshrAccesses
2105 .name(name() + ".demand_mshr_accesses")
2106 .desc("number of demand (read+write) mshr accesses")
2107 .flags(total | nozero | nonan)
2108 ;
2109 demandMshrAccesses = demandMshrHits + demandMshrMisses;
2110
2111 overallMshrAccesses
2112 .name(name() + ".overall_mshr_accesses")
2113 .desc("number of overall (read+write) mshr accesses")
2114 .flags(total | nozero | nonan)
2115 ;
2116 overallMshrAccesses = overallMshrHits + overallMshrMisses
2117 + overallMshrUncacheable;
2118 #endif
2119
2120 // MSHR miss rate formulas
2121 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2122 MemCmd cmd(access_idx);
2123 const string &cstr = cmd.toString();
2124
2125 mshrMissRate[access_idx]
2126 .name(name() + "." + cstr + "_mshr_miss_rate")
2127 .desc("mshr miss rate for " + cstr + " accesses")
2128 .flags(total | nozero | nonan)
2129 ;
2130 mshrMissRate[access_idx] =
2131 mshr_misses[access_idx] / accesses[access_idx];
2132
2133 for (int i = 0; i < system->maxMasters(); i++) {
2134 mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2135 }
2136 }
2137
2138 demandMshrMissRate
2139 .name(name() + ".demand_mshr_miss_rate")
2140 .desc("mshr miss rate for demand accesses")
2141 .flags(total | nozero | nonan)
2142 ;
2143 demandMshrMissRate = demandMshrMisses / demandAccesses;
2144 for (int i = 0; i < system->maxMasters(); i++) {
2145 demandMshrMissRate.subname(i, system->getMasterName(i));
2146 }
2147
2148 overallMshrMissRate
2149 .name(name() + ".overall_mshr_miss_rate")
2150 .desc("mshr miss rate for overall accesses")
2151 .flags(total | nozero | nonan)
2152 ;
2153 overallMshrMissRate = overallMshrMisses / overallAccesses;
2154 for (int i = 0; i < system->maxMasters(); i++) {
2155 overallMshrMissRate.subname(i, system->getMasterName(i));
2156 }
2157
2158 // mshrMiss latency formulas
2159 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2160 MemCmd cmd(access_idx);
2161 const string &cstr = cmd.toString();
2162
2163 avgMshrMissLatency[access_idx]
2164 .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2165 .desc("average " + cstr + " mshr miss latency")
2166 .flags(total | nozero | nonan)
2167 ;
2168 avgMshrMissLatency[access_idx] =
2169 mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2170
2171 for (int i = 0; i < system->maxMasters(); i++) {
2172 avgMshrMissLatency[access_idx].subname(
2173 i, system->getMasterName(i));
2174 }
2175 }
2176
2177 demandAvgMshrMissLatency
2178 .name(name() + ".demand_avg_mshr_miss_latency")
2179 .desc("average overall mshr miss latency")
2180 .flags(total | nozero | nonan)
2181 ;
2182 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2183 for (int i = 0; i < system->maxMasters(); i++) {
2184 demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2185 }
2186
2187 overallAvgMshrMissLatency
2188 .name(name() + ".overall_avg_mshr_miss_latency")
2189 .desc("average overall mshr miss latency")
2190 .flags(total | nozero | nonan)
2191 ;
2192 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2193 for (int i = 0; i < system->maxMasters(); i++) {
2194 overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2195 }
2196
2197 // mshrUncacheable latency formulas
2198 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2199 MemCmd cmd(access_idx);
2200 const string &cstr = cmd.toString();
2201
2202 avgMshrUncacheableLatency[access_idx]
2203 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2204 .desc("average " + cstr + " mshr uncacheable latency")
2205 .flags(total | nozero | nonan)
2206 ;
2207 avgMshrUncacheableLatency[access_idx] =
2208 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2209
2210 for (int i = 0; i < system->maxMasters(); i++) {
2211 avgMshrUncacheableLatency[access_idx].subname(
2212 i, system->getMasterName(i));
2213 }
2214 }
2215
2216 overallAvgMshrUncacheableLatency
2217 .name(name() + ".overall_avg_mshr_uncacheable_latency")
2218 .desc("average overall mshr uncacheable latency")
2219 .flags(total | nozero | nonan)
2220 ;
2221 overallAvgMshrUncacheableLatency =
2222 overallMshrUncacheableLatency / overallMshrUncacheable;
2223 for (int i = 0; i < system->maxMasters(); i++) {
2224 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2225 }
2226
2227 replacements
2228 .name(name() + ".replacements")
2229 .desc("number of replacements")
2230 ;
2231 }
2232
2233 void
2234 BaseCache::regProbePoints()
2235 {
2236 ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit");
2237 ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss");
2238 ppFill = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Fill");
2239 }
2240
2241 ///////////////
2242 //
2243 // CpuSidePort
2244 //
2245 ///////////////
2246 bool
2247 BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2248 {
2249 // Snoops shouldn't happen when bypassing caches
2250 assert(!cache->system->bypassCaches());
2251
2252 assert(pkt->isResponse());
2253
2254 // Express snoop responses from master to slave, e.g., from L1 to L2
2255 cache->recvTimingSnoopResp(pkt);
2256 return true;
2257 }
2258
2259
2260 bool
2261 BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2262 {
2263 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2264 // always let express snoop packets through even if blocked
2265 return true;
2266 } else if (blocked || mustSendRetry) {
2267 // either already committed to send a retry, or blocked
2268 mustSendRetry = true;
2269 return false;
2270 }
2271 mustSendRetry = false;
2272 return true;
2273 }
2274
2275 bool
2276 BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2277 {
2278 assert(pkt->isRequest());
2279
2280 if (cache->system->bypassCaches()) {
2281 // Just forward the packet if caches are disabled.
2282 // @todo This should really enqueue the packet rather
2283 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2284 assert(success);
2285 return true;
2286 } else if (tryTiming(pkt)) {
2287 cache->recvTimingReq(pkt);
2288 return true;
2289 }
2290 return false;
2291 }
2292
2293 Tick
2294 BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2295 {
2296 if (cache->system->bypassCaches()) {
2297 // Forward the request if the system is in cache bypass mode.
2298 return cache->memSidePort.sendAtomic(pkt);
2299 } else {
2300 return cache->recvAtomic(pkt);
2301 }
2302 }
2303
2304 void
2305 BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2306 {
2307 if (cache->system->bypassCaches()) {
2308 // The cache should be flushed if we are in cache bypass mode,
2309 // so we don't need to check if we need to update anything.
2310 cache->memSidePort.sendFunctional(pkt);
2311 return;
2312 }
2313
2314 // functional request
2315 cache->functionalAccess(pkt, true);
2316 }
2317
2318 AddrRangeList
2319 BaseCache::CpuSidePort::getAddrRanges() const
2320 {
2321 return cache->getAddrRanges();
2322 }
2323
2324
2325 BaseCache::
2326 CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2327 const std::string &_label)
2328 : CacheSlavePort(_name, _cache, _label), cache(_cache)
2329 {
2330 }
2331
2332 ///////////////
2333 //
2334 // MemSidePort
2335 //
2336 ///////////////
2337 bool
2338 BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2339 {
2340 cache->recvTimingResp(pkt);
2341 return true;
2342 }
2343
2344 // Express snooping requests to memside port
2345 void
2346 BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2347 {
2348 // Snoops shouldn't happen when bypassing caches
2349 assert(!cache->system->bypassCaches());
2350
2351 // handle snooping requests
2352 cache->recvTimingSnoopReq(pkt);
2353 }
2354
2355 Tick
2356 BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2357 {
2358 // Snoops shouldn't happen when bypassing caches
2359 assert(!cache->system->bypassCaches());
2360
2361 return cache->recvAtomicSnoop(pkt);
2362 }
2363
2364 void
2365 BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2366 {
2367 // Snoops shouldn't happen when bypassing caches
2368 assert(!cache->system->bypassCaches());
2369
2370 // functional snoop (note that in contrast to atomic we don't have
2371 // a specific functionalSnoop method, as they have the same
2372 // behaviour regardless)
2373 cache->functionalAccess(pkt, false);
2374 }
2375
2376 void
2377 BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2378 {
2379 // sanity check
2380 assert(!waitingOnRetry);
2381
2382 // there should never be any deferred request packets in the
2383 // queue, instead we resly on the cache to provide the packets
2384 // from the MSHR queue or write queue
2385 assert(deferredPacketReadyTime() == MaxTick);
2386
2387 // check for request packets (requests & writebacks)
2388 QueueEntry* entry = cache.getNextQueueEntry();
2389
2390 if (!entry) {
2391 // can happen if e.g. we attempt a writeback and fail, but
2392 // before the retry, the writeback is eliminated because
2393 // we snoop another cache's ReadEx.
2394 } else {
2395 // let our snoop responses go first if there are responses to
2396 // the same addresses
2397 if (checkConflictingSnoop(entry->blkAddr)) {
2398 return;
2399 }
2400 waitingOnRetry = entry->sendPacket(cache);
2401 }
2402
2403 // if we succeeded and are not waiting for a retry, schedule the
2404 // next send considering when the next queue is ready, note that
2405 // snoop responses have their own packet queue and thus schedule
2406 // their own events
2407 if (!waitingOnRetry) {
2408 schedSendEvent(cache.nextQueueReadyTime());
2409 }
2410 }
2411
2412 BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2413 BaseCache *_cache,
2414 const std::string &_label)
2415 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2416 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2417 _snoopRespQueue(*_cache, *this, true, _label), cache(_cache)
2418 {
2419 }
2420
2421 void
2422 WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
2423 Addr blk_addr)
2424 {
2425 // check if we are continuing where the last write ended
2426 if (nextAddr == write_addr) {
2427 delayCtr[blk_addr] = delayThreshold;
2428 // stop if we have already saturated
2429 if (mode != WriteMode::NO_ALLOCATE) {
2430 byteCount += write_size;
2431 // switch to streaming mode if we have passed the lower
2432 // threshold
2433 if (mode == WriteMode::ALLOCATE &&
2434 byteCount > coalesceLimit) {
2435 mode = WriteMode::COALESCE;
2436 DPRINTF(Cache, "Switched to write coalescing\n");
2437 } else if (mode == WriteMode::COALESCE &&
2438 byteCount > noAllocateLimit) {
2439 // and continue and switch to non-allocating mode if we
2440 // pass the upper threshold
2441 mode = WriteMode::NO_ALLOCATE;
2442 DPRINTF(Cache, "Switched to write-no-allocate\n");
2443 }
2444 }
2445 } else {
2446 // we did not see a write matching the previous one, start
2447 // over again
2448 byteCount = write_size;
2449 mode = WriteMode::ALLOCATE;
2450 resetDelay(blk_addr);
2451 }
2452 nextAddr = write_addr + write_size;
2453 }
2454
2455 WriteAllocator*
2456 WriteAllocatorParams::create()
2457 {
2458 return new WriteAllocator(this);
2459 }