mem-cache: Move unused prefetches counter update
[gem5.git] / src / mem / cache / base.cc
1 /*
2 * Copyright (c) 2012-2013, 2018-2019 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 * Nikos Nikoleris
42 */
43
44 /**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49 #include "mem/cache/base.hh"
50
51 #include "base/compiler.hh"
52 #include "base/logging.hh"
53 #include "debug/Cache.hh"
54 #include "debug/CacheComp.hh"
55 #include "debug/CachePort.hh"
56 #include "debug/CacheRepl.hh"
57 #include "debug/CacheVerbose.hh"
58 #include "mem/cache/compressors/base.hh"
59 #include "mem/cache/mshr.hh"
60 #include "mem/cache/prefetch/base.hh"
61 #include "mem/cache/queue_entry.hh"
62 #include "mem/cache/tags/super_blk.hh"
63 #include "params/BaseCache.hh"
64 #include "params/WriteAllocator.hh"
65 #include "sim/core.hh"
66
67 using namespace std;
68
69 BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
70 BaseCache *_cache,
71 const std::string &_label)
72 : QueuedSlavePort(_name, _cache, queue),
73 queue(*_cache, *this, true, _label),
74 blocked(false), mustSendRetry(false),
75 sendRetryEvent([this]{ processSendRetry(); }, _name)
76 {
77 }
78
79 BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
80 : ClockedObject(p),
81 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
82 memSidePort(p->name + ".mem_side", this, "MemSidePort"),
83 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
84 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
85 tags(p->tags),
86 compressor(p->compressor),
87 prefetcher(p->prefetcher),
88 writeAllocator(p->write_allocator),
89 writebackClean(p->writeback_clean),
90 tempBlockWriteback(nullptr),
91 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
92 name(), false,
93 EventBase::Delayed_Writeback_Pri),
94 blkSize(blk_size),
95 lookupLatency(p->tag_latency),
96 dataLatency(p->data_latency),
97 forwardLatency(p->tag_latency),
98 fillLatency(p->data_latency),
99 responseLatency(p->response_latency),
100 sequentialAccess(p->sequential_access),
101 numTarget(p->tgts_per_mshr),
102 forwardSnoops(true),
103 clusivity(p->clusivity),
104 isReadOnly(p->is_read_only),
105 blocked(0),
106 order(0),
107 noTargetMSHR(nullptr),
108 missCount(p->max_miss_count),
109 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
110 system(p->system),
111 stats(*this)
112 {
113 // the MSHR queue has no reserve entries as we check the MSHR
114 // queue on every single allocation, whereas the write queue has
115 // as many reserve entries as we have MSHRs, since every MSHR may
116 // eventually require a writeback, and we do not check the write
117 // buffer before committing to an MSHR
118
119 // forward snoops is overridden in init() once we can query
120 // whether the connected master is actually snooping or not
121
122 tempBlock = new TempCacheBlk(blkSize);
123
124 tags->tagsInit();
125 if (prefetcher)
126 prefetcher->setCache(this);
127 }
128
129 BaseCache::~BaseCache()
130 {
131 delete tempBlock;
132 }
133
134 void
135 BaseCache::CacheSlavePort::setBlocked()
136 {
137 assert(!blocked);
138 DPRINTF(CachePort, "Port is blocking new requests\n");
139 blocked = true;
140 // if we already scheduled a retry in this cycle, but it has not yet
141 // happened, cancel it
142 if (sendRetryEvent.scheduled()) {
143 owner.deschedule(sendRetryEvent);
144 DPRINTF(CachePort, "Port descheduled retry\n");
145 mustSendRetry = true;
146 }
147 }
148
149 void
150 BaseCache::CacheSlavePort::clearBlocked()
151 {
152 assert(blocked);
153 DPRINTF(CachePort, "Port is accepting new requests\n");
154 blocked = false;
155 if (mustSendRetry) {
156 // @TODO: need to find a better time (next cycle?)
157 owner.schedule(sendRetryEvent, curTick() + 1);
158 }
159 }
160
161 void
162 BaseCache::CacheSlavePort::processSendRetry()
163 {
164 DPRINTF(CachePort, "Port is sending retry\n");
165
166 // reset the flag and call retry
167 mustSendRetry = false;
168 sendRetryReq();
169 }
170
171 Addr
172 BaseCache::regenerateBlkAddr(CacheBlk* blk)
173 {
174 if (blk != tempBlock) {
175 return tags->regenerateBlkAddr(blk);
176 } else {
177 return tempBlock->getAddr();
178 }
179 }
180
181 void
182 BaseCache::init()
183 {
184 if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
185 fatal("Cache ports on %s are not connected\n", name());
186 cpuSidePort.sendRangeChange();
187 forwardSnoops = cpuSidePort.isSnooping();
188 }
189
190 Port &
191 BaseCache::getPort(const std::string &if_name, PortID idx)
192 {
193 if (if_name == "mem_side") {
194 return memSidePort;
195 } else if (if_name == "cpu_side") {
196 return cpuSidePort;
197 } else {
198 return ClockedObject::getPort(if_name, idx);
199 }
200 }
201
202 bool
203 BaseCache::inRange(Addr addr) const
204 {
205 for (const auto& r : addrRanges) {
206 if (r.contains(addr)) {
207 return true;
208 }
209 }
210 return false;
211 }
212
213 void
214 BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
215 {
216 if (pkt->needsResponse()) {
217 // These delays should have been consumed by now
218 assert(pkt->headerDelay == 0);
219 assert(pkt->payloadDelay == 0);
220
221 pkt->makeTimingResponse();
222
223 // In this case we are considering request_time that takes
224 // into account the delay of the xbar, if any, and just
225 // lat, neglecting responseLatency, modelling hit latency
226 // just as the value of lat overriden by access(), which calls
227 // the calculateAccessLatency() function.
228 cpuSidePort.schedTimingResp(pkt, request_time);
229 } else {
230 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
231 pkt->print());
232
233 // queue the packet for deletion, as the sending cache is
234 // still relying on it; if the block is found in access(),
235 // CleanEvict and Writeback messages will be deleted
236 // here as well
237 pendingDelete.reset(pkt);
238 }
239 }
240
241 void
242 BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
243 Tick forward_time, Tick request_time)
244 {
245 if (writeAllocator &&
246 pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
247 writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
248 pkt->getBlockAddr(blkSize));
249 }
250
251 if (mshr) {
252 /// MSHR hit
253 /// @note writebacks will be checked in getNextMSHR()
254 /// for any conflicting requests to the same block
255
256 //@todo remove hw_pf here
257
258 // Coalesce unless it was a software prefetch (see above).
259 if (pkt) {
260 assert(!pkt->isWriteback());
261 // CleanEvicts corresponding to blocks which have
262 // outstanding requests in MSHRs are simply sunk here
263 if (pkt->cmd == MemCmd::CleanEvict) {
264 pendingDelete.reset(pkt);
265 } else if (pkt->cmd == MemCmd::WriteClean) {
266 // A WriteClean should never coalesce with any
267 // outstanding cache maintenance requests.
268
269 // We use forward_time here because there is an
270 // uncached memory write, forwarded to WriteBuffer.
271 allocateWriteBuffer(pkt, forward_time);
272 } else {
273 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
274 pkt->print());
275
276 assert(pkt->req->masterId() < system->maxMasters());
277 stats.cmdStats(pkt).mshr_hits[pkt->req->masterId()]++;
278
279 // We use forward_time here because it is the same
280 // considering new targets. We have multiple
281 // requests for the same address here. It
282 // specifies the latency to allocate an internal
283 // buffer and to schedule an event to the queued
284 // port and also takes into account the additional
285 // delay of the xbar.
286 mshr->allocateTarget(pkt, forward_time, order++,
287 allocOnFill(pkt->cmd));
288 if (mshr->getNumTargets() == numTarget) {
289 noTargetMSHR = mshr;
290 setBlocked(Blocked_NoTargets);
291 // need to be careful with this... if this mshr isn't
292 // ready yet (i.e. time > curTick()), we don't want to
293 // move it ahead of mshrs that are ready
294 // mshrQueue.moveToFront(mshr);
295 }
296 }
297 }
298 } else {
299 // no MSHR
300 assert(pkt->req->masterId() < system->maxMasters());
301 stats.cmdStats(pkt).mshr_misses[pkt->req->masterId()]++;
302
303 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
304 // We use forward_time here because there is an
305 // writeback or writeclean, forwarded to WriteBuffer.
306 allocateWriteBuffer(pkt, forward_time);
307 } else {
308 if (blk && blk->isValid()) {
309 // If we have a write miss to a valid block, we
310 // need to mark the block non-readable. Otherwise
311 // if we allow reads while there's an outstanding
312 // write miss, the read could return stale data
313 // out of the cache block... a more aggressive
314 // system could detect the overlap (if any) and
315 // forward data out of the MSHRs, but we don't do
316 // that yet. Note that we do need to leave the
317 // block valid so that it stays in the cache, in
318 // case we get an upgrade response (and hence no
319 // new data) when the write miss completes.
320 // As long as CPUs do proper store/load forwarding
321 // internally, and have a sufficiently weak memory
322 // model, this is probably unnecessary, but at some
323 // point it must have seemed like we needed it...
324 assert((pkt->needsWritable() && !blk->isWritable()) ||
325 pkt->req->isCacheMaintenance());
326 blk->status &= ~BlkReadable;
327 }
328 // Here we are using forward_time, modelling the latency of
329 // a miss (outbound) just as forwardLatency, neglecting the
330 // lookupLatency component.
331 allocateMissBuffer(pkt, forward_time);
332 }
333 }
334 }
335
336 void
337 BaseCache::recvTimingReq(PacketPtr pkt)
338 {
339 // anything that is merely forwarded pays for the forward latency and
340 // the delay provided by the crossbar
341 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
342
343 Cycles lat;
344 CacheBlk *blk = nullptr;
345 bool satisfied = false;
346 {
347 PacketList writebacks;
348 // Note that lat is passed by reference here. The function
349 // access() will set the lat value.
350 satisfied = access(pkt, blk, lat, writebacks);
351
352 // After the evicted blocks are selected, they must be forwarded
353 // to the write buffer to ensure they logically precede anything
354 // happening below
355 doWritebacks(writebacks, clockEdge(lat + forwardLatency));
356 }
357
358 // Here we charge the headerDelay that takes into account the latencies
359 // of the bus, if the packet comes from it.
360 // The latency charged is just the value set by the access() function.
361 // In case of a hit we are neglecting response latency.
362 // In case of a miss we are neglecting forward latency.
363 Tick request_time = clockEdge(lat);
364 // Here we reset the timing of the packet.
365 pkt->headerDelay = pkt->payloadDelay = 0;
366
367 if (satisfied) {
368 // notify before anything else as later handleTimingReqHit might turn
369 // the packet in a response
370 ppHit->notify(pkt);
371
372 if (prefetcher && blk && blk->wasPrefetched()) {
373 blk->status &= ~BlkHWPrefetched;
374 }
375
376 handleTimingReqHit(pkt, blk, request_time);
377 } else {
378 handleTimingReqMiss(pkt, blk, forward_time, request_time);
379
380 ppMiss->notify(pkt);
381 }
382
383 if (prefetcher) {
384 // track time of availability of next prefetch, if any
385 Tick next_pf_time = prefetcher->nextPrefetchReadyTime();
386 if (next_pf_time != MaxTick) {
387 schedMemSideSendEvent(next_pf_time);
388 }
389 }
390 }
391
392 void
393 BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
394 {
395 Tick completion_time = clockEdge(responseLatency) +
396 pkt->headerDelay + pkt->payloadDelay;
397
398 // Reset the bus additional time as it is now accounted for
399 pkt->headerDelay = pkt->payloadDelay = 0;
400
401 cpuSidePort.schedTimingResp(pkt, completion_time);
402 }
403
404 void
405 BaseCache::recvTimingResp(PacketPtr pkt)
406 {
407 assert(pkt->isResponse());
408
409 // all header delay should be paid for by the crossbar, unless
410 // this is a prefetch response from above
411 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
412 "%s saw a non-zero packet delay\n", name());
413
414 const bool is_error = pkt->isError();
415
416 if (is_error) {
417 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
418 pkt->print());
419 }
420
421 DPRINTF(Cache, "%s: Handling response %s\n", __func__,
422 pkt->print());
423
424 // if this is a write, we should be looking at an uncacheable
425 // write
426 if (pkt->isWrite()) {
427 assert(pkt->req->isUncacheable());
428 handleUncacheableWriteResp(pkt);
429 return;
430 }
431
432 // we have dealt with any (uncacheable) writes above, from here on
433 // we know we are dealing with an MSHR due to a miss or a prefetch
434 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
435 assert(mshr);
436
437 if (mshr == noTargetMSHR) {
438 // we always clear at least one target
439 clearBlocked(Blocked_NoTargets);
440 noTargetMSHR = nullptr;
441 }
442
443 // Initial target is used just for stats
444 const QueueEntry::Target *initial_tgt = mshr->getTarget();
445 const Tick miss_latency = curTick() - initial_tgt->recvTime;
446 if (pkt->req->isUncacheable()) {
447 assert(pkt->req->masterId() < system->maxMasters());
448 stats.cmdStats(initial_tgt->pkt)
449 .mshr_uncacheable_lat[pkt->req->masterId()] += miss_latency;
450 } else {
451 assert(pkt->req->masterId() < system->maxMasters());
452 stats.cmdStats(initial_tgt->pkt)
453 .mshr_miss_latency[pkt->req->masterId()] += miss_latency;
454 }
455
456 PacketList writebacks;
457
458 bool is_fill = !mshr->isForward &&
459 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
460 mshr->wasWholeLineWrite);
461
462 // make sure that if the mshr was due to a whole line write then
463 // the response is an invalidation
464 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
465
466 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
467
468 if (is_fill && !is_error) {
469 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
470 pkt->getAddr());
471
472 const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
473 writeAllocator->allocate() : mshr->allocOnFill();
474 blk = handleFill(pkt, blk, writebacks, allocate);
475 assert(blk != nullptr);
476 ppFill->notify(pkt);
477 }
478
479 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
480 // The block was marked not readable while there was a pending
481 // cache maintenance operation, restore its flag.
482 blk->status |= BlkReadable;
483
484 // This was a cache clean operation (without invalidate)
485 // and we have a copy of the block already. Since there
486 // is no invalidation, we can promote targets that don't
487 // require a writable copy
488 mshr->promoteReadable();
489 }
490
491 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
492 // If at this point the referenced block is writable and the
493 // response is not a cache invalidate, we promote targets that
494 // were deferred as we couldn't guarrantee a writable copy
495 mshr->promoteWritable();
496 }
497
498 serviceMSHRTargets(mshr, pkt, blk);
499
500 if (mshr->promoteDeferredTargets()) {
501 // avoid later read getting stale data while write miss is
502 // outstanding.. see comment in timingAccess()
503 if (blk) {
504 blk->status &= ~BlkReadable;
505 }
506 mshrQueue.markPending(mshr);
507 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
508 } else {
509 // while we deallocate an mshr from the queue we still have to
510 // check the isFull condition before and after as we might
511 // have been using the reserved entries already
512 const bool was_full = mshrQueue.isFull();
513 mshrQueue.deallocate(mshr);
514 if (was_full && !mshrQueue.isFull()) {
515 clearBlocked(Blocked_NoMSHRs);
516 }
517
518 // Request the bus for a prefetch if this deallocation freed enough
519 // MSHRs for a prefetch to take place
520 if (prefetcher && mshrQueue.canPrefetch()) {
521 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
522 clockEdge());
523 if (next_pf_time != MaxTick)
524 schedMemSideSendEvent(next_pf_time);
525 }
526 }
527
528 // if we used temp block, check to see if its valid and then clear it out
529 if (blk == tempBlock && tempBlock->isValid()) {
530 evictBlock(blk, writebacks);
531 }
532
533 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
534 // copy writebacks to write buffer
535 doWritebacks(writebacks, forward_time);
536
537 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
538 delete pkt;
539 }
540
541
542 Tick
543 BaseCache::recvAtomic(PacketPtr pkt)
544 {
545 // should assert here that there are no outstanding MSHRs or
546 // writebacks... that would mean that someone used an atomic
547 // access in timing mode
548
549 // We use lookupLatency here because it is used to specify the latency
550 // to access.
551 Cycles lat = lookupLatency;
552
553 CacheBlk *blk = nullptr;
554 PacketList writebacks;
555 bool satisfied = access(pkt, blk, lat, writebacks);
556
557 if (pkt->isClean() && blk && blk->isDirty()) {
558 // A cache clean opearation is looking for a dirty
559 // block. If a dirty block is encountered a WriteClean
560 // will update any copies to the path to the memory
561 // until the point of reference.
562 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
563 __func__, pkt->print(), blk->print());
564 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
565 writebacks.push_back(wb_pkt);
566 pkt->setSatisfied();
567 }
568
569 // handle writebacks resulting from the access here to ensure they
570 // logically precede anything happening below
571 doWritebacksAtomic(writebacks);
572 assert(writebacks.empty());
573
574 if (!satisfied) {
575 lat += handleAtomicReqMiss(pkt, blk, writebacks);
576 }
577
578 // Note that we don't invoke the prefetcher at all in atomic mode.
579 // It's not clear how to do it properly, particularly for
580 // prefetchers that aggressively generate prefetch candidates and
581 // rely on bandwidth contention to throttle them; these will tend
582 // to pollute the cache in atomic mode since there is no bandwidth
583 // contention. If we ever do want to enable prefetching in atomic
584 // mode, though, this is the place to do it... see timingAccess()
585 // for an example (though we'd want to issue the prefetch(es)
586 // immediately rather than calling requestMemSideBus() as we do
587 // there).
588
589 // do any writebacks resulting from the response handling
590 doWritebacksAtomic(writebacks);
591
592 // if we used temp block, check to see if its valid and if so
593 // clear it out, but only do so after the call to recvAtomic is
594 // finished so that any downstream observers (such as a snoop
595 // filter), first see the fill, and only then see the eviction
596 if (blk == tempBlock && tempBlock->isValid()) {
597 // the atomic CPU calls recvAtomic for fetch and load/store
598 // sequentuially, and we may already have a tempBlock
599 // writeback from the fetch that we have not yet sent
600 if (tempBlockWriteback) {
601 // if that is the case, write the prevoius one back, and
602 // do not schedule any new event
603 writebackTempBlockAtomic();
604 } else {
605 // the writeback/clean eviction happens after the call to
606 // recvAtomic has finished (but before any successive
607 // calls), so that the response handling from the fill is
608 // allowed to happen first
609 schedule(writebackTempBlockAtomicEvent, curTick());
610 }
611
612 tempBlockWriteback = evictBlock(blk);
613 }
614
615 if (pkt->needsResponse()) {
616 pkt->makeAtomicResponse();
617 }
618
619 return lat * clockPeriod();
620 }
621
622 void
623 BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
624 {
625 Addr blk_addr = pkt->getBlockAddr(blkSize);
626 bool is_secure = pkt->isSecure();
627 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
628 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
629
630 pkt->pushLabel(name());
631
632 CacheBlkPrintWrapper cbpw(blk);
633
634 // Note that just because an L2/L3 has valid data doesn't mean an
635 // L1 doesn't have a more up-to-date modified copy that still
636 // needs to be found. As a result we always update the request if
637 // we have it, but only declare it satisfied if we are the owner.
638
639 // see if we have data at all (owned or otherwise)
640 bool have_data = blk && blk->isValid()
641 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
642 blk->data);
643
644 // data we have is dirty if marked as such or if we have an
645 // in-service MSHR that is pending a modified line
646 bool have_dirty =
647 have_data && (blk->isDirty() ||
648 (mshr && mshr->inService && mshr->isPendingModified()));
649
650 bool done = have_dirty ||
651 cpuSidePort.trySatisfyFunctional(pkt) ||
652 mshrQueue.trySatisfyFunctional(pkt) ||
653 writeBuffer.trySatisfyFunctional(pkt) ||
654 memSidePort.trySatisfyFunctional(pkt);
655
656 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
657 (blk && blk->isValid()) ? "valid " : "",
658 have_data ? "data " : "", done ? "done " : "");
659
660 // We're leaving the cache, so pop cache->name() label
661 pkt->popLabel();
662
663 if (done) {
664 pkt->makeResponse();
665 } else {
666 // if it came as a request from the CPU side then make sure it
667 // continues towards the memory side
668 if (from_cpu_side) {
669 memSidePort.sendFunctional(pkt);
670 } else if (cpuSidePort.isSnooping()) {
671 // if it came from the memory side, it must be a snoop request
672 // and we should only forward it if we are forwarding snoops
673 cpuSidePort.sendFunctionalSnoop(pkt);
674 }
675 }
676 }
677
678
679 void
680 BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
681 {
682 assert(pkt->isRequest());
683
684 uint64_t overwrite_val;
685 bool overwrite_mem;
686 uint64_t condition_val64;
687 uint32_t condition_val32;
688
689 int offset = pkt->getOffset(blkSize);
690 uint8_t *blk_data = blk->data + offset;
691
692 assert(sizeof(uint64_t) >= pkt->getSize());
693
694 overwrite_mem = true;
695 // keep a copy of our possible write value, and copy what is at the
696 // memory address into the packet
697 pkt->writeData((uint8_t *)&overwrite_val);
698 pkt->setData(blk_data);
699
700 if (pkt->req->isCondSwap()) {
701 if (pkt->getSize() == sizeof(uint64_t)) {
702 condition_val64 = pkt->req->getExtraData();
703 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
704 sizeof(uint64_t));
705 } else if (pkt->getSize() == sizeof(uint32_t)) {
706 condition_val32 = (uint32_t)pkt->req->getExtraData();
707 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
708 sizeof(uint32_t));
709 } else
710 panic("Invalid size for conditional read/write\n");
711 }
712
713 if (overwrite_mem) {
714 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
715 blk->status |= BlkDirty;
716 }
717 }
718
719 QueueEntry*
720 BaseCache::getNextQueueEntry()
721 {
722 // Check both MSHR queue and write buffer for potential requests,
723 // note that null does not mean there is no request, it could
724 // simply be that it is not ready
725 MSHR *miss_mshr = mshrQueue.getNext();
726 WriteQueueEntry *wq_entry = writeBuffer.getNext();
727
728 // If we got a write buffer request ready, first priority is a
729 // full write buffer, otherwise we favour the miss requests
730 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
731 // need to search MSHR queue for conflicting earlier miss.
732 MSHR *conflict_mshr = mshrQueue.findPending(wq_entry);
733
734 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
735 // Service misses in order until conflict is cleared.
736 return conflict_mshr;
737
738 // @todo Note that we ignore the ready time of the conflict here
739 }
740
741 // No conflicts; issue write
742 return wq_entry;
743 } else if (miss_mshr) {
744 // need to check for conflicting earlier writeback
745 WriteQueueEntry *conflict_mshr = writeBuffer.findPending(miss_mshr);
746 if (conflict_mshr) {
747 // not sure why we don't check order here... it was in the
748 // original code but commented out.
749
750 // The only way this happens is if we are
751 // doing a write and we didn't have permissions
752 // then subsequently saw a writeback (owned got evicted)
753 // We need to make sure to perform the writeback first
754 // To preserve the dirty data, then we can issue the write
755
756 // should we return wq_entry here instead? I.e. do we
757 // have to flush writes in order? I don't think so... not
758 // for Alpha anyway. Maybe for x86?
759 return conflict_mshr;
760
761 // @todo Note that we ignore the ready time of the conflict here
762 }
763
764 // No conflicts; issue read
765 return miss_mshr;
766 }
767
768 // fall through... no pending requests. Try a prefetch.
769 assert(!miss_mshr && !wq_entry);
770 if (prefetcher && mshrQueue.canPrefetch()) {
771 // If we have a miss queue slot, we can try a prefetch
772 PacketPtr pkt = prefetcher->getPacket();
773 if (pkt) {
774 Addr pf_addr = pkt->getBlockAddr(blkSize);
775 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
776 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
777 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
778 // Update statistic on number of prefetches issued
779 // (hwpf_mshr_misses)
780 assert(pkt->req->masterId() < system->maxMasters());
781 stats.cmdStats(pkt).mshr_misses[pkt->req->masterId()]++;
782
783 // allocate an MSHR and return it, note
784 // that we send the packet straight away, so do not
785 // schedule the send
786 return allocateMissBuffer(pkt, curTick(), false);
787 } else {
788 // free the request and packet
789 delete pkt;
790 }
791 }
792 }
793
794 return nullptr;
795 }
796
797 bool
798 BaseCache::updateCompressionData(CacheBlk *blk, const uint64_t* data,
799 PacketList &writebacks)
800 {
801 // tempBlock does not exist in the tags, so don't do anything for it.
802 if (blk == tempBlock) {
803 return true;
804 }
805
806 // Get superblock of the given block
807 CompressionBlk* compression_blk = static_cast<CompressionBlk*>(blk);
808 const SuperBlk* superblock = static_cast<const SuperBlk*>(
809 compression_blk->getSectorBlock());
810
811 // The compressor is called to compress the updated data, so that its
812 // metadata can be updated.
813 std::size_t compression_size = 0;
814 Cycles compression_lat = Cycles(0);
815 Cycles decompression_lat = Cycles(0);
816 compressor->compress(data, compression_lat, decompression_lat,
817 compression_size);
818
819 // If block's compression factor increased, it may not be co-allocatable
820 // anymore. If so, some blocks might need to be evicted to make room for
821 // the bigger block
822
823 // Get previous compressed size
824 const std::size_t M5_VAR_USED prev_size = compression_blk->getSizeBits();
825
826 // Check if new data is co-allocatable
827 const bool is_co_allocatable = superblock->isCompressed(compression_blk) &&
828 superblock->canCoAllocate(compression_size);
829
830 // If block was compressed, possibly co-allocated with other blocks, and
831 // cannot be co-allocated anymore, one or more blocks must be evicted to
832 // make room for the expanded block. As of now we decide to evict the co-
833 // allocated blocks to make room for the expansion, but other approaches
834 // that take the replacement data of the superblock into account may
835 // generate better results
836 std::vector<CacheBlk*> evict_blks;
837 const bool was_compressed = compression_blk->isCompressed();
838 if (was_compressed && !is_co_allocatable) {
839 // Get all co-allocated blocks
840 for (const auto& sub_blk : superblock->blks) {
841 if (sub_blk->isValid() && (compression_blk != sub_blk)) {
842 // Check for transient state allocations. If any of the
843 // entries listed for eviction has a transient state, the
844 // allocation fails
845 const Addr repl_addr = regenerateBlkAddr(sub_blk);
846 const MSHR *repl_mshr =
847 mshrQueue.findMatch(repl_addr, sub_blk->isSecure());
848 if (repl_mshr) {
849 DPRINTF(CacheRepl, "Aborting data expansion of %s due " \
850 "to replacement of block in transient state: %s\n",
851 compression_blk->print(), sub_blk->print());
852 // Too hard to replace block with transient state, so it
853 // cannot be evicted. Mark the update as failed and expect
854 // the caller to evict this block. Since this is called
855 // only when writebacks arrive, and packets do not contain
856 // compressed data, there is no need to decompress
857 compression_blk->setSizeBits(blkSize * 8);
858 compression_blk->setDecompressionLatency(Cycles(0));
859 compression_blk->setUncompressed();
860 return false;
861 }
862
863 evict_blks.push_back(sub_blk);
864 }
865 }
866
867 // Update the number of data expansions
868 stats.dataExpansions++;
869
870 DPRINTF(CacheComp, "Data expansion: expanding [%s] from %d to %d bits"
871 "\n", blk->print(), prev_size, compression_size);
872 }
873
874 // We always store compressed blocks when possible
875 if (is_co_allocatable) {
876 compression_blk->setCompressed();
877 } else {
878 compression_blk->setUncompressed();
879 }
880 compression_blk->setSizeBits(compression_size);
881 compression_blk->setDecompressionLatency(decompression_lat);
882
883 // Evict valid blocks
884 for (const auto& evict_blk : evict_blks) {
885 if (evict_blk->isValid()) {
886 evictBlock(evict_blk, writebacks);
887 }
888 }
889
890 return true;
891 }
892
893 void
894 BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
895 {
896 assert(pkt->isRequest());
897
898 assert(blk && blk->isValid());
899 // Occasionally this is not true... if we are a lower-level cache
900 // satisfying a string of Read and ReadEx requests from
901 // upper-level caches, a Read will mark the block as shared but we
902 // can satisfy a following ReadEx anyway since we can rely on the
903 // Read requester(s) to have buffered the ReadEx snoop and to
904 // invalidate their blocks after receiving them.
905 // assert(!pkt->needsWritable() || blk->isWritable());
906 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
907
908 // Check RMW operations first since both isRead() and
909 // isWrite() will be true for them
910 if (pkt->cmd == MemCmd::SwapReq) {
911 if (pkt->isAtomicOp()) {
912 // extract data from cache and save it into the data field in
913 // the packet as a return value from this atomic op
914 int offset = tags->extractBlkOffset(pkt->getAddr());
915 uint8_t *blk_data = blk->data + offset;
916 pkt->setData(blk_data);
917
918 // execute AMO operation
919 (*(pkt->getAtomicOp()))(blk_data);
920
921 // set block status to dirty
922 blk->status |= BlkDirty;
923 } else {
924 cmpAndSwap(blk, pkt);
925 }
926 } else if (pkt->isWrite()) {
927 // we have the block in a writable state and can go ahead,
928 // note that the line may be also be considered writable in
929 // downstream caches along the path to memory, but always
930 // Exclusive, and never Modified
931 assert(blk->isWritable());
932 // Write or WriteLine at the first cache with block in writable state
933 if (blk->checkWrite(pkt)) {
934 pkt->writeDataToBlock(blk->data, blkSize);
935 }
936 // Always mark the line as dirty (and thus transition to the
937 // Modified state) even if we are a failed StoreCond so we
938 // supply data to any snoops that have appended themselves to
939 // this cache before knowing the store will fail.
940 blk->status |= BlkDirty;
941 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
942 } else if (pkt->isRead()) {
943 if (pkt->isLLSC()) {
944 blk->trackLoadLocked(pkt);
945 }
946
947 // all read responses have a data payload
948 assert(pkt->hasRespData());
949 pkt->setDataFromBlock(blk->data, blkSize);
950 } else if (pkt->isUpgrade()) {
951 // sanity check
952 assert(!pkt->hasSharers());
953
954 if (blk->isDirty()) {
955 // we were in the Owned state, and a cache above us that
956 // has the line in Shared state needs to be made aware
957 // that the data it already has is in fact dirty
958 pkt->setCacheResponding();
959 blk->status &= ~BlkDirty;
960 }
961 } else if (pkt->isClean()) {
962 blk->status &= ~BlkDirty;
963 } else {
964 assert(pkt->isInvalidate());
965 invalidateBlock(blk);
966 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
967 pkt->print());
968 }
969 }
970
971 /////////////////////////////////////////////////////
972 //
973 // Access path: requests coming in from the CPU side
974 //
975 /////////////////////////////////////////////////////
976 Cycles
977 BaseCache::calculateTagOnlyLatency(const uint32_t delay,
978 const Cycles lookup_lat) const
979 {
980 // A tag-only access has to wait for the packet to arrive in order to
981 // perform the tag lookup.
982 return ticksToCycles(delay) + lookup_lat;
983 }
984
985 Cycles
986 BaseCache::calculateAccessLatency(const CacheBlk* blk, const uint32_t delay,
987 const Cycles lookup_lat) const
988 {
989 Cycles lat(0);
990
991 if (blk != nullptr) {
992 // As soon as the access arrives, for sequential accesses first access
993 // tags, then the data entry. In the case of parallel accesses the
994 // latency is dictated by the slowest of tag and data latencies.
995 if (sequentialAccess) {
996 lat = ticksToCycles(delay) + lookup_lat + dataLatency;
997 } else {
998 lat = ticksToCycles(delay) + std::max(lookup_lat, dataLatency);
999 }
1000
1001 // Check if the block to be accessed is available. If not, apply the
1002 // access latency on top of when the block is ready to be accessed.
1003 const Tick tick = curTick() + delay;
1004 const Tick when_ready = blk->getWhenReady();
1005 if (when_ready > tick &&
1006 ticksToCycles(when_ready - tick) > lat) {
1007 lat += ticksToCycles(when_ready - tick);
1008 }
1009 } else {
1010 // In case of a miss, we neglect the data access in a parallel
1011 // configuration (i.e., the data access will be stopped as soon as
1012 // we find out it is a miss), and use the tag-only latency.
1013 lat = calculateTagOnlyLatency(delay, lookup_lat);
1014 }
1015
1016 return lat;
1017 }
1018
1019 bool
1020 BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
1021 PacketList &writebacks)
1022 {
1023 // sanity check
1024 assert(pkt->isRequest());
1025
1026 chatty_assert(!(isReadOnly && pkt->isWrite()),
1027 "Should never see a write in a read-only cache %s\n",
1028 name());
1029
1030 // Access block in the tags
1031 Cycles tag_latency(0);
1032 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency);
1033
1034 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
1035 blk ? "hit " + blk->print() : "miss");
1036
1037 if (pkt->req->isCacheMaintenance()) {
1038 // A cache maintenance operation is always forwarded to the
1039 // memory below even if the block is found in dirty state.
1040
1041 // We defer any changes to the state of the block until we
1042 // create and mark as in service the mshr for the downstream
1043 // packet.
1044
1045 // Calculate access latency on top of when the packet arrives. This
1046 // takes into account the bus delay.
1047 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1048
1049 return false;
1050 }
1051
1052 if (pkt->isEviction()) {
1053 // We check for presence of block in above caches before issuing
1054 // Writeback or CleanEvict to write buffer. Therefore the only
1055 // possible cases can be of a CleanEvict packet coming from above
1056 // encountering a Writeback generated in this cache peer cache and
1057 // waiting in the write buffer. Cases of upper level peer caches
1058 // generating CleanEvict and Writeback or simply CleanEvict and
1059 // CleanEvict almost simultaneously will be caught by snoops sent out
1060 // by crossbar.
1061 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
1062 pkt->isSecure());
1063 if (wb_entry) {
1064 assert(wb_entry->getNumTargets() == 1);
1065 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
1066 assert(wbPkt->isWriteback());
1067
1068 if (pkt->isCleanEviction()) {
1069 // The CleanEvict and WritebackClean snoops into other
1070 // peer caches of the same level while traversing the
1071 // crossbar. If a copy of the block is found, the
1072 // packet is deleted in the crossbar. Hence, none of
1073 // the other upper level caches connected to this
1074 // cache have the block, so we can clear the
1075 // BLOCK_CACHED flag in the Writeback if set and
1076 // discard the CleanEvict by returning true.
1077 wbPkt->clearBlockCached();
1078
1079 // A clean evict does not need to access the data array
1080 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1081
1082 return true;
1083 } else {
1084 assert(pkt->cmd == MemCmd::WritebackDirty);
1085 // Dirty writeback from above trumps our clean
1086 // writeback... discard here
1087 // Note: markInService will remove entry from writeback buffer.
1088 markInService(wb_entry);
1089 delete wbPkt;
1090 }
1091 }
1092 }
1093
1094 // The critical latency part of a write depends only on the tag access
1095 if (pkt->isWrite()) {
1096 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1097 }
1098
1099 // Writeback handling is special case. We can write the block into
1100 // the cache without having a writeable copy (or any copy at all).
1101 if (pkt->isWriteback()) {
1102 assert(blkSize == pkt->getSize());
1103
1104 // we could get a clean writeback while we are having
1105 // outstanding accesses to a block, do the simple thing for
1106 // now and drop the clean writeback so that we do not upset
1107 // any ordering/decisions about ownership already taken
1108 if (pkt->cmd == MemCmd::WritebackClean &&
1109 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
1110 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
1111 "dropping\n", pkt->getAddr());
1112
1113 // A writeback searches for the block, then writes the data.
1114 // As the writeback is being dropped, the data is not touched,
1115 // and we just had to wait for the time to find a match in the
1116 // MSHR. As of now assume a mshr queue search takes as long as
1117 // a tag lookup for simplicity.
1118 return true;
1119 }
1120
1121 if (!blk) {
1122 // need to do a replacement
1123 blk = allocateBlock(pkt, writebacks);
1124 if (!blk) {
1125 // no replaceable block available: give up, fwd to next level.
1126 incMissCount(pkt);
1127 return false;
1128 }
1129
1130 blk->status |= BlkReadable;
1131 } else if (compressor) {
1132 // This is an overwrite to an existing block, therefore we need
1133 // to check for data expansion (i.e., block was compressed with
1134 // a smaller size, and now it doesn't fit the entry anymore).
1135 // If that is the case we might need to evict blocks.
1136 if (!updateCompressionData(blk, pkt->getConstPtr<uint64_t>(),
1137 writebacks)) {
1138 invalidateBlock(blk);
1139 return false;
1140 }
1141 }
1142
1143 // only mark the block dirty if we got a writeback command,
1144 // and leave it as is for a clean writeback
1145 if (pkt->cmd == MemCmd::WritebackDirty) {
1146 // TODO: the coherent cache can assert(!blk->isDirty());
1147 blk->status |= BlkDirty;
1148 }
1149 // if the packet does not have sharers, it is passing
1150 // writable, and we got the writeback in Modified or Exclusive
1151 // state, if not we are in the Owned or Shared state
1152 if (!pkt->hasSharers()) {
1153 blk->status |= BlkWritable;
1154 }
1155 // nothing else to do; writeback doesn't expect response
1156 assert(!pkt->needsResponse());
1157 pkt->writeDataToBlock(blk->data, blkSize);
1158 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1159 incHitCount(pkt);
1160
1161 // When the packet metadata arrives, the tag lookup will be done while
1162 // the payload is arriving. Then the block will be ready to access as
1163 // soon as the fill is done
1164 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1165 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
1166
1167 return true;
1168 } else if (pkt->cmd == MemCmd::CleanEvict) {
1169 // A CleanEvict does not need to access the data array
1170 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1171
1172 if (blk) {
1173 // Found the block in the tags, need to stop CleanEvict from
1174 // propagating further down the hierarchy. Returning true will
1175 // treat the CleanEvict like a satisfied write request and delete
1176 // it.
1177 return true;
1178 }
1179 // We didn't find the block here, propagate the CleanEvict further
1180 // down the memory hierarchy. Returning false will treat the CleanEvict
1181 // like a Writeback which could not find a replaceable block so has to
1182 // go to next level.
1183 return false;
1184 } else if (pkt->cmd == MemCmd::WriteClean) {
1185 // WriteClean handling is a special case. We can allocate a
1186 // block directly if it doesn't exist and we can update the
1187 // block immediately. The WriteClean transfers the ownership
1188 // of the block as well.
1189 assert(blkSize == pkt->getSize());
1190
1191 if (!blk) {
1192 if (pkt->writeThrough()) {
1193 // if this is a write through packet, we don't try to
1194 // allocate if the block is not present
1195 return false;
1196 } else {
1197 // a writeback that misses needs to allocate a new block
1198 blk = allocateBlock(pkt, writebacks);
1199 if (!blk) {
1200 // no replaceable block available: give up, fwd to
1201 // next level.
1202 incMissCount(pkt);
1203 return false;
1204 }
1205
1206 blk->status |= BlkReadable;
1207 }
1208 } else if (compressor) {
1209 // This is an overwrite to an existing block, therefore we need
1210 // to check for data expansion (i.e., block was compressed with
1211 // a smaller size, and now it doesn't fit the entry anymore).
1212 // If that is the case we might need to evict blocks.
1213 if (!updateCompressionData(blk, pkt->getConstPtr<uint64_t>(),
1214 writebacks)) {
1215 invalidateBlock(blk);
1216 return false;
1217 }
1218 }
1219
1220 // at this point either this is a writeback or a write-through
1221 // write clean operation and the block is already in this
1222 // cache, we need to update the data and the block flags
1223 assert(blk);
1224 // TODO: the coherent cache can assert(!blk->isDirty());
1225 if (!pkt->writeThrough()) {
1226 blk->status |= BlkDirty;
1227 }
1228 // nothing else to do; writeback doesn't expect response
1229 assert(!pkt->needsResponse());
1230 pkt->writeDataToBlock(blk->data, blkSize);
1231 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1232
1233 incHitCount(pkt);
1234
1235 // When the packet metadata arrives, the tag lookup will be done while
1236 // the payload is arriving. Then the block will be ready to access as
1237 // soon as the fill is done
1238 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1239 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
1240
1241 // If this a write-through packet it will be sent to cache below
1242 return !pkt->writeThrough();
1243 } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1244 blk->isReadable())) {
1245 // OK to satisfy access
1246 incHitCount(pkt);
1247
1248 // Calculate access latency based on the need to access the data array
1249 if (pkt->isRead()) {
1250 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1251
1252 // When a block is compressed, it must first be decompressed
1253 // before being read. This adds to the access latency.
1254 if (compressor) {
1255 lat += compressor->getDecompressionLatency(blk);
1256 }
1257 } else {
1258 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1259 }
1260
1261 satisfyRequest(pkt, blk);
1262 maintainClusivity(pkt->fromCache(), blk);
1263
1264 return true;
1265 }
1266
1267 // Can't satisfy access normally... either no block (blk == nullptr)
1268 // or have block but need writable
1269
1270 incMissCount(pkt);
1271
1272 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1273
1274 if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1275 // complete miss on store conditional... just give up now
1276 pkt->req->setExtraData(0);
1277 return true;
1278 }
1279
1280 return false;
1281 }
1282
1283 void
1284 BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1285 {
1286 if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1287 clusivity == Enums::mostly_excl) {
1288 // if we have responded to a cache, and our block is still
1289 // valid, but not dirty, and this cache is mostly exclusive
1290 // with respect to the cache above, drop the block
1291 invalidateBlock(blk);
1292 }
1293 }
1294
1295 CacheBlk*
1296 BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1297 bool allocate)
1298 {
1299 assert(pkt->isResponse());
1300 Addr addr = pkt->getAddr();
1301 bool is_secure = pkt->isSecure();
1302 #if TRACING_ON
1303 CacheBlk::State old_state = blk ? blk->status : 0;
1304 #endif
1305
1306 // When handling a fill, we should have no writes to this line.
1307 assert(addr == pkt->getBlockAddr(blkSize));
1308 assert(!writeBuffer.findMatch(addr, is_secure));
1309
1310 if (!blk) {
1311 // better have read new data...
1312 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
1313
1314 // need to do a replacement if allocating, otherwise we stick
1315 // with the temporary storage
1316 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1317
1318 if (!blk) {
1319 // No replaceable block or a mostly exclusive
1320 // cache... just use temporary storage to complete the
1321 // current request and then get rid of it
1322 blk = tempBlock;
1323 tempBlock->insert(addr, is_secure);
1324 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1325 is_secure ? "s" : "ns");
1326 }
1327 } else {
1328 // existing block... probably an upgrade
1329 // don't clear block status... if block is already dirty we
1330 // don't want to lose that
1331 }
1332
1333 // Block is guaranteed to be valid at this point
1334 assert(blk->isValid());
1335 assert(blk->isSecure() == is_secure);
1336 assert(regenerateBlkAddr(blk) == addr);
1337
1338 blk->status |= BlkReadable;
1339
1340 // sanity check for whole-line writes, which should always be
1341 // marked as writable as part of the fill, and then later marked
1342 // dirty as part of satisfyRequest
1343 if (pkt->cmd == MemCmd::InvalidateResp) {
1344 assert(!pkt->hasSharers());
1345 }
1346
1347 // here we deal with setting the appropriate state of the line,
1348 // and we start by looking at the hasSharers flag, and ignore the
1349 // cacheResponding flag (normally signalling dirty data) if the
1350 // packet has sharers, thus the line is never allocated as Owned
1351 // (dirty but not writable), and always ends up being either
1352 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1353 // for more details
1354 if (!pkt->hasSharers()) {
1355 // we could get a writable line from memory (rather than a
1356 // cache) even in a read-only cache, note that we set this bit
1357 // even for a read-only cache, possibly revisit this decision
1358 blk->status |= BlkWritable;
1359
1360 // check if we got this via cache-to-cache transfer (i.e., from a
1361 // cache that had the block in Modified or Owned state)
1362 if (pkt->cacheResponding()) {
1363 // we got the block in Modified state, and invalidated the
1364 // owners copy
1365 blk->status |= BlkDirty;
1366
1367 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1368 "in read-only cache %s\n", name());
1369
1370 }
1371 }
1372
1373 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1374 addr, is_secure ? "s" : "ns", old_state, blk->print());
1375
1376 // if we got new data, copy it in (checking for a read response
1377 // and a response that has data is the same in the end)
1378 if (pkt->isRead()) {
1379 // sanity checks
1380 assert(pkt->hasData());
1381 assert(pkt->getSize() == blkSize);
1382
1383 pkt->writeDataToBlock(blk->data, blkSize);
1384 }
1385 // The block will be ready when the payload arrives and the fill is done
1386 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1387 pkt->payloadDelay);
1388
1389 return blk;
1390 }
1391
1392 CacheBlk*
1393 BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1394 {
1395 // Get address
1396 const Addr addr = pkt->getAddr();
1397
1398 // Get secure bit
1399 const bool is_secure = pkt->isSecure();
1400
1401 // Block size and compression related access latency. Only relevant if
1402 // using a compressor, otherwise there is no extra delay, and the block
1403 // is fully sized
1404 std::size_t blk_size_bits = blkSize*8;
1405 Cycles compression_lat = Cycles(0);
1406 Cycles decompression_lat = Cycles(0);
1407
1408 // If a compressor is being used, it is called to compress data before
1409 // insertion. Although in Gem5 the data is stored uncompressed, even if a
1410 // compressor is used, the compression/decompression methods are called to
1411 // calculate the amount of extra cycles needed to read or write compressed
1412 // blocks.
1413 if (compressor && pkt->hasData()) {
1414 compressor->compress(pkt->getConstPtr<uint64_t>(), compression_lat,
1415 decompression_lat, blk_size_bits);
1416 }
1417
1418 // Find replacement victim
1419 std::vector<CacheBlk*> evict_blks;
1420 CacheBlk *victim = tags->findVictim(addr, is_secure, blk_size_bits,
1421 evict_blks);
1422
1423 // It is valid to return nullptr if there is no victim
1424 if (!victim)
1425 return nullptr;
1426
1427 // Print victim block's information
1428 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
1429
1430 // Check for transient state allocations. If any of the entries listed
1431 // for eviction has a transient state, the allocation fails
1432 bool replacement = false;
1433 for (const auto& blk : evict_blks) {
1434 if (blk->isValid()) {
1435 replacement = true;
1436
1437 Addr repl_addr = regenerateBlkAddr(blk);
1438 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1439 if (repl_mshr) {
1440 // must be an outstanding upgrade or clean request
1441 // on a block we're about to replace...
1442 assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1443 repl_mshr->isCleaning());
1444
1445 // too hard to replace block with transient state
1446 // allocation failed, block not inserted
1447 return nullptr;
1448 }
1449 }
1450 }
1451
1452 // The victim will be replaced by a new entry, so increase the replacement
1453 // counter if a valid block is being replaced
1454 if (replacement) {
1455 // Evict valid blocks associated to this victim block
1456 for (const auto& blk : evict_blks) {
1457 if (blk->isValid()) {
1458 DPRINTF(CacheRepl, "Evicting %s (%#llx) to make room for " \
1459 "%#llx (%s)\n", blk->print(), regenerateBlkAddr(blk),
1460 addr, is_secure);
1461 evictBlock(blk, writebacks);
1462 }
1463 }
1464
1465 stats.replacements++;
1466 }
1467
1468 // If using a compressor, set compression data. This must be done before
1469 // block insertion, as compressed tags use this information.
1470 if (compressor) {
1471 compressor->setSizeBits(victim, blk_size_bits);
1472 compressor->setDecompressionLatency(victim, decompression_lat);
1473 }
1474
1475 // Insert new block at victimized entry
1476 tags->insertBlock(pkt, victim);
1477
1478 return victim;
1479 }
1480
1481 void
1482 BaseCache::invalidateBlock(CacheBlk *blk)
1483 {
1484 // If block is still marked as prefetched, then it hasn't been used
1485 if (blk->wasPrefetched()) {
1486 stats.unusedPrefetches++;
1487 }
1488
1489 // If handling a block present in the Tags, let it do its invalidation
1490 // process, which will update stats and invalidate the block itself
1491 if (blk != tempBlock) {
1492 tags->invalidate(blk);
1493 } else {
1494 tempBlock->invalidate();
1495 }
1496 }
1497
1498 void
1499 BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks)
1500 {
1501 PacketPtr pkt = evictBlock(blk);
1502 if (pkt) {
1503 writebacks.push_back(pkt);
1504 }
1505 }
1506
1507 PacketPtr
1508 BaseCache::writebackBlk(CacheBlk *blk)
1509 {
1510 chatty_assert(!isReadOnly || writebackClean,
1511 "Writeback from read-only cache");
1512 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1513
1514 stats.writebacks[Request::wbMasterId]++;
1515
1516 RequestPtr req = std::make_shared<Request>(
1517 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1518
1519 if (blk->isSecure())
1520 req->setFlags(Request::SECURE);
1521
1522 req->taskId(blk->task_id);
1523
1524 PacketPtr pkt =
1525 new Packet(req, blk->isDirty() ?
1526 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1527
1528 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1529 pkt->print(), blk->isWritable(), blk->isDirty());
1530
1531 if (blk->isWritable()) {
1532 // not asserting shared means we pass the block in modified
1533 // state, mark our own block non-writeable
1534 blk->status &= ~BlkWritable;
1535 } else {
1536 // we are in the Owned state, tell the receiver
1537 pkt->setHasSharers();
1538 }
1539
1540 // make sure the block is not marked dirty
1541 blk->status &= ~BlkDirty;
1542
1543 pkt->allocate();
1544 pkt->setDataFromBlock(blk->data, blkSize);
1545
1546 // When a block is compressed, it must first be decompressed before being
1547 // sent for writeback.
1548 if (compressor) {
1549 pkt->payloadDelay = compressor->getDecompressionLatency(blk);
1550 }
1551
1552 return pkt;
1553 }
1554
1555 PacketPtr
1556 BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1557 {
1558 RequestPtr req = std::make_shared<Request>(
1559 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1560
1561 if (blk->isSecure()) {
1562 req->setFlags(Request::SECURE);
1563 }
1564 req->taskId(blk->task_id);
1565
1566 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1567
1568 if (dest) {
1569 req->setFlags(dest);
1570 pkt->setWriteThrough();
1571 }
1572
1573 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1574 blk->isWritable(), blk->isDirty());
1575
1576 if (blk->isWritable()) {
1577 // not asserting shared means we pass the block in modified
1578 // state, mark our own block non-writeable
1579 blk->status &= ~BlkWritable;
1580 } else {
1581 // we are in the Owned state, tell the receiver
1582 pkt->setHasSharers();
1583 }
1584
1585 // make sure the block is not marked dirty
1586 blk->status &= ~BlkDirty;
1587
1588 pkt->allocate();
1589 pkt->setDataFromBlock(blk->data, blkSize);
1590
1591 // When a block is compressed, it must first be decompressed before being
1592 // sent for writeback.
1593 if (compressor) {
1594 pkt->payloadDelay = compressor->getDecompressionLatency(blk);
1595 }
1596
1597 return pkt;
1598 }
1599
1600
1601 void
1602 BaseCache::memWriteback()
1603 {
1604 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1605 }
1606
1607 void
1608 BaseCache::memInvalidate()
1609 {
1610 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1611 }
1612
1613 bool
1614 BaseCache::isDirty() const
1615 {
1616 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1617 }
1618
1619 bool
1620 BaseCache::coalesce() const
1621 {
1622 return writeAllocator && writeAllocator->coalesce();
1623 }
1624
1625 void
1626 BaseCache::writebackVisitor(CacheBlk &blk)
1627 {
1628 if (blk.isDirty()) {
1629 assert(blk.isValid());
1630
1631 RequestPtr request = std::make_shared<Request>(
1632 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1633
1634 request->taskId(blk.task_id);
1635 if (blk.isSecure()) {
1636 request->setFlags(Request::SECURE);
1637 }
1638
1639 Packet packet(request, MemCmd::WriteReq);
1640 packet.dataStatic(blk.data);
1641
1642 memSidePort.sendFunctional(&packet);
1643
1644 blk.status &= ~BlkDirty;
1645 }
1646 }
1647
1648 void
1649 BaseCache::invalidateVisitor(CacheBlk &blk)
1650 {
1651 if (blk.isDirty())
1652 warn_once("Invalidating dirty cache lines. " \
1653 "Expect things to break.\n");
1654
1655 if (blk.isValid()) {
1656 assert(!blk.isDirty());
1657 invalidateBlock(&blk);
1658 }
1659 }
1660
1661 Tick
1662 BaseCache::nextQueueReadyTime() const
1663 {
1664 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1665 writeBuffer.nextReadyTime());
1666
1667 // Don't signal prefetch ready time if no MSHRs available
1668 // Will signal once enoguh MSHRs are deallocated
1669 if (prefetcher && mshrQueue.canPrefetch()) {
1670 nextReady = std::min(nextReady,
1671 prefetcher->nextPrefetchReadyTime());
1672 }
1673
1674 return nextReady;
1675 }
1676
1677
1678 bool
1679 BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1680 {
1681 assert(mshr);
1682
1683 // use request from 1st target
1684 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1685
1686 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1687
1688 // if the cache is in write coalescing mode or (additionally) in
1689 // no allocation mode, and we have a write packet with an MSHR
1690 // that is not a whole-line write (due to incompatible flags etc),
1691 // then reset the write mode
1692 if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
1693 if (!mshr->isWholeLineWrite()) {
1694 // if we are currently write coalescing, hold on the
1695 // MSHR as many cycles extra as we need to completely
1696 // write a cache line
1697 if (writeAllocator->delay(mshr->blkAddr)) {
1698 Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
1699 DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
1700 "for write coalescing\n", tgt_pkt->print(), delay);
1701 mshrQueue.delay(mshr, delay);
1702 return false;
1703 } else {
1704 writeAllocator->reset();
1705 }
1706 } else {
1707 writeAllocator->resetDelay(mshr->blkAddr);
1708 }
1709 }
1710
1711 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1712
1713 // either a prefetch that is not present upstream, or a normal
1714 // MSHR request, proceed to get the packet to send downstream
1715 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
1716 mshr->isWholeLineWrite());
1717
1718 mshr->isForward = (pkt == nullptr);
1719
1720 if (mshr->isForward) {
1721 // not a cache block request, but a response is expected
1722 // make copy of current packet to forward, keep current
1723 // copy for response handling
1724 pkt = new Packet(tgt_pkt, false, true);
1725 assert(!pkt->isWrite());
1726 }
1727
1728 // play it safe and append (rather than set) the sender state,
1729 // as forwarded packets may already have existing state
1730 pkt->pushSenderState(mshr);
1731
1732 if (pkt->isClean() && blk && blk->isDirty()) {
1733 // A cache clean opearation is looking for a dirty block. Mark
1734 // the packet so that the destination xbar can determine that
1735 // there will be a follow-up write packet as well.
1736 pkt->setSatisfied();
1737 }
1738
1739 if (!memSidePort.sendTimingReq(pkt)) {
1740 // we are awaiting a retry, but we
1741 // delete the packet and will be creating a new packet
1742 // when we get the opportunity
1743 delete pkt;
1744
1745 // note that we have now masked any requestBus and
1746 // schedSendEvent (we will wait for a retry before
1747 // doing anything), and this is so even if we do not
1748 // care about this packet and might override it before
1749 // it gets retried
1750 return true;
1751 } else {
1752 // As part of the call to sendTimingReq the packet is
1753 // forwarded to all neighbouring caches (and any caches
1754 // above them) as a snoop. Thus at this point we know if
1755 // any of the neighbouring caches are responding, and if
1756 // so, we know it is dirty, and we can determine if it is
1757 // being passed as Modified, making our MSHR the ordering
1758 // point
1759 bool pending_modified_resp = !pkt->hasSharers() &&
1760 pkt->cacheResponding();
1761 markInService(mshr, pending_modified_resp);
1762
1763 if (pkt->isClean() && blk && blk->isDirty()) {
1764 // A cache clean opearation is looking for a dirty
1765 // block. If a dirty block is encountered a WriteClean
1766 // will update any copies to the path to the memory
1767 // until the point of reference.
1768 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1769 __func__, pkt->print(), blk->print());
1770 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1771 pkt->id);
1772 PacketList writebacks;
1773 writebacks.push_back(wb_pkt);
1774 doWritebacks(writebacks, 0);
1775 }
1776
1777 return false;
1778 }
1779 }
1780
1781 bool
1782 BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1783 {
1784 assert(wq_entry);
1785
1786 // always a single target for write queue entries
1787 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1788
1789 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1790
1791 // forward as is, both for evictions and uncacheable writes
1792 if (!memSidePort.sendTimingReq(tgt_pkt)) {
1793 // note that we have now masked any requestBus and
1794 // schedSendEvent (we will wait for a retry before
1795 // doing anything), and this is so even if we do not
1796 // care about this packet and might override it before
1797 // it gets retried
1798 return true;
1799 } else {
1800 markInService(wq_entry);
1801 return false;
1802 }
1803 }
1804
1805 void
1806 BaseCache::serialize(CheckpointOut &cp) const
1807 {
1808 bool dirty(isDirty());
1809
1810 if (dirty) {
1811 warn("*** The cache still contains dirty data. ***\n");
1812 warn(" Make sure to drain the system using the correct flags.\n");
1813 warn(" This checkpoint will not restore correctly " \
1814 "and dirty data in the cache will be lost!\n");
1815 }
1816
1817 // Since we don't checkpoint the data in the cache, any dirty data
1818 // will be lost when restoring from a checkpoint of a system that
1819 // wasn't drained properly. Flag the checkpoint as invalid if the
1820 // cache contains dirty data.
1821 bool bad_checkpoint(dirty);
1822 SERIALIZE_SCALAR(bad_checkpoint);
1823 }
1824
1825 void
1826 BaseCache::unserialize(CheckpointIn &cp)
1827 {
1828 bool bad_checkpoint;
1829 UNSERIALIZE_SCALAR(bad_checkpoint);
1830 if (bad_checkpoint) {
1831 fatal("Restoring from checkpoints with dirty caches is not "
1832 "supported in the classic memory system. Please remove any "
1833 "caches or drain them properly before taking checkpoints.\n");
1834 }
1835 }
1836
1837
1838 BaseCache::CacheCmdStats::CacheCmdStats(BaseCache &c,
1839 const std::string &name)
1840 : Stats::Group(&c), cache(c),
1841
1842 hits(
1843 this, (name + "_hits").c_str(),
1844 ("number of " + name + " hits").c_str()),
1845 misses(
1846 this, (name + "_misses").c_str(),
1847 ("number of " + name + " misses").c_str()),
1848 missLatency(
1849 this, (name + "_miss_latency").c_str(),
1850 ("number of " + name + " miss cycles").c_str()),
1851 accesses(
1852 this, (name + "_accesses").c_str(),
1853 ("number of " + name + " accesses(hits+misses)").c_str()),
1854 missRate(
1855 this, (name + "_miss_rate").c_str(),
1856 ("miss rate for " + name + " accesses").c_str()),
1857 avgMissLatency(
1858 this, (name + "_avg_miss_latency").c_str(),
1859 ("average " + name + " miss latency").c_str()),
1860 mshr_hits(
1861 this, (name + "_mshr_hits").c_str(),
1862 ("number of " + name + " MSHR hits").c_str()),
1863 mshr_misses(
1864 this, (name + "_mshr_misses").c_str(),
1865 ("number of " + name + " MSHR misses").c_str()),
1866 mshr_uncacheable(
1867 this, (name + "_mshr_uncacheable").c_str(),
1868 ("number of " + name + " MSHR uncacheable").c_str()),
1869 mshr_miss_latency(
1870 this, (name + "_mshr_miss_latency").c_str(),
1871 ("number of " + name + " MSHR miss cycles").c_str()),
1872 mshr_uncacheable_lat(
1873 this, (name + "_mshr_uncacheable_latency").c_str(),
1874 ("number of " + name + " MSHR uncacheable cycles").c_str()),
1875 mshrMissRate(
1876 this, (name + "_mshr_miss_rate").c_str(),
1877 ("mshr miss rate for " + name + " accesses").c_str()),
1878 avgMshrMissLatency(
1879 this, (name + "_avg_mshr_miss_latency").c_str(),
1880 ("average " + name + " mshr miss latency").c_str()),
1881 avgMshrUncacheableLatency(
1882 this, (name + "_avg_mshr_uncacheable_latency").c_str(),
1883 ("average " + name + " mshr uncacheable latency").c_str())
1884 {
1885 }
1886
1887 void
1888 BaseCache::CacheCmdStats::regStatsFromParent()
1889 {
1890 using namespace Stats;
1891
1892 Stats::Group::regStats();
1893 System *system = cache.system;
1894 const auto max_masters = system->maxMasters();
1895
1896 hits
1897 .init(max_masters)
1898 .flags(total | nozero | nonan)
1899 ;
1900 for (int i = 0; i < max_masters; i++) {
1901 hits.subname(i, system->getMasterName(i));
1902 }
1903
1904 // Miss statistics
1905 misses
1906 .init(max_masters)
1907 .flags(total | nozero | nonan)
1908 ;
1909 for (int i = 0; i < max_masters; i++) {
1910 misses.subname(i, system->getMasterName(i));
1911 }
1912
1913 // Miss latency statistics
1914 missLatency
1915 .init(max_masters)
1916 .flags(total | nozero | nonan)
1917 ;
1918 for (int i = 0; i < max_masters; i++) {
1919 missLatency.subname(i, system->getMasterName(i));
1920 }
1921
1922 // access formulas
1923 accesses.flags(total | nozero | nonan);
1924 accesses = hits + misses;
1925 for (int i = 0; i < max_masters; i++) {
1926 accesses.subname(i, system->getMasterName(i));
1927 }
1928
1929 // miss rate formulas
1930 missRate.flags(total | nozero | nonan);
1931 missRate = misses / accesses;
1932 for (int i = 0; i < max_masters; i++) {
1933 missRate.subname(i, system->getMasterName(i));
1934 }
1935
1936 // miss latency formulas
1937 avgMissLatency.flags(total | nozero | nonan);
1938 avgMissLatency = missLatency / misses;
1939 for (int i = 0; i < max_masters; i++) {
1940 avgMissLatency.subname(i, system->getMasterName(i));
1941 }
1942
1943 // MSHR statistics
1944 // MSHR hit statistics
1945 mshr_hits
1946 .init(max_masters)
1947 .flags(total | nozero | nonan)
1948 ;
1949 for (int i = 0; i < max_masters; i++) {
1950 mshr_hits.subname(i, system->getMasterName(i));
1951 }
1952
1953 // MSHR miss statistics
1954 mshr_misses
1955 .init(max_masters)
1956 .flags(total | nozero | nonan)
1957 ;
1958 for (int i = 0; i < max_masters; i++) {
1959 mshr_misses.subname(i, system->getMasterName(i));
1960 }
1961
1962 // MSHR miss latency statistics
1963 mshr_miss_latency
1964 .init(max_masters)
1965 .flags(total | nozero | nonan)
1966 ;
1967 for (int i = 0; i < max_masters; i++) {
1968 mshr_miss_latency.subname(i, system->getMasterName(i));
1969 }
1970
1971 // MSHR uncacheable statistics
1972 mshr_uncacheable
1973 .init(max_masters)
1974 .flags(total | nozero | nonan)
1975 ;
1976 for (int i = 0; i < max_masters; i++) {
1977 mshr_uncacheable.subname(i, system->getMasterName(i));
1978 }
1979
1980 // MSHR miss latency statistics
1981 mshr_uncacheable_lat
1982 .init(max_masters)
1983 .flags(total | nozero | nonan)
1984 ;
1985 for (int i = 0; i < max_masters; i++) {
1986 mshr_uncacheable_lat.subname(i, system->getMasterName(i));
1987 }
1988
1989 // MSHR miss rate formulas
1990 mshrMissRate.flags(total | nozero | nonan);
1991 mshrMissRate = mshr_misses / accesses;
1992
1993 for (int i = 0; i < max_masters; i++) {
1994 mshrMissRate.subname(i, system->getMasterName(i));
1995 }
1996
1997 // mshrMiss latency formulas
1998 avgMshrMissLatency.flags(total | nozero | nonan);
1999 avgMshrMissLatency = mshr_miss_latency / mshr_misses;
2000 for (int i = 0; i < max_masters; i++) {
2001 avgMshrMissLatency.subname(i, system->getMasterName(i));
2002 }
2003
2004 // mshrUncacheable latency formulas
2005 avgMshrUncacheableLatency.flags(total | nozero | nonan);
2006 avgMshrUncacheableLatency = mshr_uncacheable_lat / mshr_uncacheable;
2007 for (int i = 0; i < max_masters; i++) {
2008 avgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2009 }
2010 }
2011
2012 BaseCache::CacheStats::CacheStats(BaseCache &c)
2013 : Stats::Group(&c), cache(c),
2014
2015 demandHits(this, "demand_hits", "number of demand (read+write) hits"),
2016
2017 overallHits(this, "overall_hits", "number of overall hits"),
2018 demandMisses(this, "demand_misses",
2019 "number of demand (read+write) misses"),
2020 overallMisses(this, "overall_misses", "number of overall misses"),
2021 demandMissLatency(this, "demand_miss_latency",
2022 "number of demand (read+write) miss cycles"),
2023 overallMissLatency(this, "overall_miss_latency",
2024 "number of overall miss cycles"),
2025 demandAccesses(this, "demand_accesses",
2026 "number of demand (read+write) accesses"),
2027 overallAccesses(this, "overall_accesses",
2028 "number of overall (read+write) accesses"),
2029 demandMissRate(this, "demand_miss_rate",
2030 "miss rate for demand accesses"),
2031 overallMissRate(this, "overall_miss_rate",
2032 "miss rate for overall accesses"),
2033 demandAvgMissLatency(this, "demand_avg_miss_latency",
2034 "average overall miss latency"),
2035 overallAvgMissLatency(this, "overall_avg_miss_latency",
2036 "average overall miss latency"),
2037 blocked_cycles(this, "blocked_cycles",
2038 "number of cycles access was blocked"),
2039 blocked_causes(this, "blocked", "number of cycles access was blocked"),
2040 avg_blocked(this, "avg_blocked_cycles",
2041 "average number of cycles each access was blocked"),
2042 unusedPrefetches(this, "unused_prefetches",
2043 "number of HardPF blocks evicted w/o reference"),
2044 writebacks(this, "writebacks", "number of writebacks"),
2045 demandMshrHits(this, "demand_mshr_hits",
2046 "number of demand (read+write) MSHR hits"),
2047 overallMshrHits(this, "overall_mshr_hits",
2048 "number of overall MSHR hits"),
2049 demandMshrMisses(this, "demand_mshr_misses",
2050 "number of demand (read+write) MSHR misses"),
2051 overallMshrMisses(this, "overall_mshr_misses",
2052 "number of overall MSHR misses"),
2053 overallMshrUncacheable(this, "overall_mshr_uncacheable_misses",
2054 "number of overall MSHR uncacheable misses"),
2055 demandMshrMissLatency(this, "demand_mshr_miss_latency",
2056 "number of demand (read+write) MSHR miss cycles"),
2057 overallMshrMissLatency(this, "overall_mshr_miss_latency",
2058 "number of overall MSHR miss cycles"),
2059 overallMshrUncacheableLatency(this, "overall_mshr_uncacheable_latency",
2060 "number of overall MSHR uncacheable cycles"),
2061 demandMshrMissRate(this, "demand_mshr_miss_rate",
2062 "mshr miss rate for demand accesses"),
2063 overallMshrMissRate(this, "overall_mshr_miss_rate",
2064 "mshr miss rate for overall accesses"),
2065 demandAvgMshrMissLatency(this, "demand_avg_mshr_miss_latency",
2066 "average overall mshr miss latency"),
2067 overallAvgMshrMissLatency(this, "overall_avg_mshr_miss_latency",
2068 "average overall mshr miss latency"),
2069 overallAvgMshrUncacheableLatency(
2070 this, "overall_avg_mshr_uncacheable_latency",
2071 "average overall mshr uncacheable latency"),
2072 replacements(this, "replacements", "number of replacements"),
2073
2074 dataExpansions(this, "data_expansions", "number of data expansions"),
2075 cmd(MemCmd::NUM_MEM_CMDS)
2076 {
2077 for (int idx = 0; idx < MemCmd::NUM_MEM_CMDS; ++idx)
2078 cmd[idx].reset(new CacheCmdStats(c, MemCmd(idx).toString()));
2079 }
2080
2081 void
2082 BaseCache::CacheStats::regStats()
2083 {
2084 using namespace Stats;
2085
2086 Stats::Group::regStats();
2087
2088 System *system = cache.system;
2089 const auto max_masters = system->maxMasters();
2090
2091 for (auto &cs : cmd)
2092 cs->regStatsFromParent();
2093
2094 // These macros make it easier to sum the right subset of commands and
2095 // to change the subset of commands that are considered "demand" vs
2096 // "non-demand"
2097 #define SUM_DEMAND(s) \
2098 (cmd[MemCmd::ReadReq]->s + cmd[MemCmd::WriteReq]->s + \
2099 cmd[MemCmd::WriteLineReq]->s + cmd[MemCmd::ReadExReq]->s + \
2100 cmd[MemCmd::ReadCleanReq]->s + cmd[MemCmd::ReadSharedReq]->s)
2101
2102 // should writebacks be included here? prior code was inconsistent...
2103 #define SUM_NON_DEMAND(s) \
2104 (cmd[MemCmd::SoftPFReq]->s + cmd[MemCmd::HardPFReq]->s + \
2105 cmd[MemCmd::SoftPFExReq]->s)
2106
2107 demandHits.flags(total | nozero | nonan);
2108 demandHits = SUM_DEMAND(hits);
2109 for (int i = 0; i < max_masters; i++) {
2110 demandHits.subname(i, system->getMasterName(i));
2111 }
2112
2113 overallHits.flags(total | nozero | nonan);
2114 overallHits = demandHits + SUM_NON_DEMAND(hits);
2115 for (int i = 0; i < max_masters; i++) {
2116 overallHits.subname(i, system->getMasterName(i));
2117 }
2118
2119 demandMisses.flags(total | nozero | nonan);
2120 demandMisses = SUM_DEMAND(misses);
2121 for (int i = 0; i < max_masters; i++) {
2122 demandMisses.subname(i, system->getMasterName(i));
2123 }
2124
2125 overallMisses.flags(total | nozero | nonan);
2126 overallMisses = demandMisses + SUM_NON_DEMAND(misses);
2127 for (int i = 0; i < max_masters; i++) {
2128 overallMisses.subname(i, system->getMasterName(i));
2129 }
2130
2131 demandMissLatency.flags(total | nozero | nonan);
2132 demandMissLatency = SUM_DEMAND(missLatency);
2133 for (int i = 0; i < max_masters; i++) {
2134 demandMissLatency.subname(i, system->getMasterName(i));
2135 }
2136
2137 overallMissLatency.flags(total | nozero | nonan);
2138 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
2139 for (int i = 0; i < max_masters; i++) {
2140 overallMissLatency.subname(i, system->getMasterName(i));
2141 }
2142
2143 demandAccesses.flags(total | nozero | nonan);
2144 demandAccesses = demandHits + demandMisses;
2145 for (int i = 0; i < max_masters; i++) {
2146 demandAccesses.subname(i, system->getMasterName(i));
2147 }
2148
2149 overallAccesses.flags(total | nozero | nonan);
2150 overallAccesses = overallHits + overallMisses;
2151 for (int i = 0; i < max_masters; i++) {
2152 overallAccesses.subname(i, system->getMasterName(i));
2153 }
2154
2155 demandMissRate.flags(total | nozero | nonan);
2156 demandMissRate = demandMisses / demandAccesses;
2157 for (int i = 0; i < max_masters; i++) {
2158 demandMissRate.subname(i, system->getMasterName(i));
2159 }
2160
2161 overallMissRate.flags(total | nozero | nonan);
2162 overallMissRate = overallMisses / overallAccesses;
2163 for (int i = 0; i < max_masters; i++) {
2164 overallMissRate.subname(i, system->getMasterName(i));
2165 }
2166
2167 demandAvgMissLatency.flags(total | nozero | nonan);
2168 demandAvgMissLatency = demandMissLatency / demandMisses;
2169 for (int i = 0; i < max_masters; i++) {
2170 demandAvgMissLatency.subname(i, system->getMasterName(i));
2171 }
2172
2173 overallAvgMissLatency.flags(total | nozero | nonan);
2174 overallAvgMissLatency = overallMissLatency / overallMisses;
2175 for (int i = 0; i < max_masters; i++) {
2176 overallAvgMissLatency.subname(i, system->getMasterName(i));
2177 }
2178
2179 blocked_cycles.init(NUM_BLOCKED_CAUSES);
2180 blocked_cycles
2181 .subname(Blocked_NoMSHRs, "no_mshrs")
2182 .subname(Blocked_NoTargets, "no_targets")
2183 ;
2184
2185
2186 blocked_causes.init(NUM_BLOCKED_CAUSES);
2187 blocked_causes
2188 .subname(Blocked_NoMSHRs, "no_mshrs")
2189 .subname(Blocked_NoTargets, "no_targets")
2190 ;
2191
2192 avg_blocked
2193 .subname(Blocked_NoMSHRs, "no_mshrs")
2194 .subname(Blocked_NoTargets, "no_targets")
2195 ;
2196 avg_blocked = blocked_cycles / blocked_causes;
2197
2198 unusedPrefetches.flags(nozero);
2199
2200 writebacks
2201 .init(max_masters)
2202 .flags(total | nozero | nonan)
2203 ;
2204 for (int i = 0; i < max_masters; i++) {
2205 writebacks.subname(i, system->getMasterName(i));
2206 }
2207
2208 demandMshrHits.flags(total | nozero | nonan);
2209 demandMshrHits = SUM_DEMAND(mshr_hits);
2210 for (int i = 0; i < max_masters; i++) {
2211 demandMshrHits.subname(i, system->getMasterName(i));
2212 }
2213
2214 overallMshrHits.flags(total | nozero | nonan);
2215 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
2216 for (int i = 0; i < max_masters; i++) {
2217 overallMshrHits.subname(i, system->getMasterName(i));
2218 }
2219
2220 demandMshrMisses.flags(total | nozero | nonan);
2221 demandMshrMisses = SUM_DEMAND(mshr_misses);
2222 for (int i = 0; i < max_masters; i++) {
2223 demandMshrMisses.subname(i, system->getMasterName(i));
2224 }
2225
2226 overallMshrMisses.flags(total | nozero | nonan);
2227 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
2228 for (int i = 0; i < max_masters; i++) {
2229 overallMshrMisses.subname(i, system->getMasterName(i));
2230 }
2231
2232 demandMshrMissLatency.flags(total | nozero | nonan);
2233 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
2234 for (int i = 0; i < max_masters; i++) {
2235 demandMshrMissLatency.subname(i, system->getMasterName(i));
2236 }
2237
2238 overallMshrMissLatency.flags(total | nozero | nonan);
2239 overallMshrMissLatency =
2240 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
2241 for (int i = 0; i < max_masters; i++) {
2242 overallMshrMissLatency.subname(i, system->getMasterName(i));
2243 }
2244
2245 overallMshrUncacheable.flags(total | nozero | nonan);
2246 overallMshrUncacheable =
2247 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
2248 for (int i = 0; i < max_masters; i++) {
2249 overallMshrUncacheable.subname(i, system->getMasterName(i));
2250 }
2251
2252
2253 overallMshrUncacheableLatency.flags(total | nozero | nonan);
2254 overallMshrUncacheableLatency =
2255 SUM_DEMAND(mshr_uncacheable_lat) +
2256 SUM_NON_DEMAND(mshr_uncacheable_lat);
2257 for (int i = 0; i < max_masters; i++) {
2258 overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2259 }
2260
2261 demandMshrMissRate.flags(total | nozero | nonan);
2262 demandMshrMissRate = demandMshrMisses / demandAccesses;
2263 for (int i = 0; i < max_masters; i++) {
2264 demandMshrMissRate.subname(i, system->getMasterName(i));
2265 }
2266
2267 overallMshrMissRate.flags(total | nozero | nonan);
2268 overallMshrMissRate = overallMshrMisses / overallAccesses;
2269 for (int i = 0; i < max_masters; i++) {
2270 overallMshrMissRate.subname(i, system->getMasterName(i));
2271 }
2272
2273 demandAvgMshrMissLatency.flags(total | nozero | nonan);
2274 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2275 for (int i = 0; i < max_masters; i++) {
2276 demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2277 }
2278
2279 overallAvgMshrMissLatency.flags(total | nozero | nonan);
2280 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2281 for (int i = 0; i < max_masters; i++) {
2282 overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2283 }
2284
2285 overallAvgMshrUncacheableLatency.flags(total | nozero | nonan);
2286 overallAvgMshrUncacheableLatency =
2287 overallMshrUncacheableLatency / overallMshrUncacheable;
2288 for (int i = 0; i < max_masters; i++) {
2289 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2290 }
2291
2292 dataExpansions.flags(nozero | nonan);
2293 }
2294
2295 void
2296 BaseCache::regProbePoints()
2297 {
2298 ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit");
2299 ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss");
2300 ppFill = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Fill");
2301 }
2302
2303 ///////////////
2304 //
2305 // CpuSidePort
2306 //
2307 ///////////////
2308 bool
2309 BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2310 {
2311 // Snoops shouldn't happen when bypassing caches
2312 assert(!cache->system->bypassCaches());
2313
2314 assert(pkt->isResponse());
2315
2316 // Express snoop responses from master to slave, e.g., from L1 to L2
2317 cache->recvTimingSnoopResp(pkt);
2318 return true;
2319 }
2320
2321
2322 bool
2323 BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2324 {
2325 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2326 // always let express snoop packets through even if blocked
2327 return true;
2328 } else if (blocked || mustSendRetry) {
2329 // either already committed to send a retry, or blocked
2330 mustSendRetry = true;
2331 return false;
2332 }
2333 mustSendRetry = false;
2334 return true;
2335 }
2336
2337 bool
2338 BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2339 {
2340 assert(pkt->isRequest());
2341
2342 if (cache->system->bypassCaches()) {
2343 // Just forward the packet if caches are disabled.
2344 // @todo This should really enqueue the packet rather
2345 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2346 assert(success);
2347 return true;
2348 } else if (tryTiming(pkt)) {
2349 cache->recvTimingReq(pkt);
2350 return true;
2351 }
2352 return false;
2353 }
2354
2355 Tick
2356 BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2357 {
2358 if (cache->system->bypassCaches()) {
2359 // Forward the request if the system is in cache bypass mode.
2360 return cache->memSidePort.sendAtomic(pkt);
2361 } else {
2362 return cache->recvAtomic(pkt);
2363 }
2364 }
2365
2366 void
2367 BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2368 {
2369 if (cache->system->bypassCaches()) {
2370 // The cache should be flushed if we are in cache bypass mode,
2371 // so we don't need to check if we need to update anything.
2372 cache->memSidePort.sendFunctional(pkt);
2373 return;
2374 }
2375
2376 // functional request
2377 cache->functionalAccess(pkt, true);
2378 }
2379
2380 AddrRangeList
2381 BaseCache::CpuSidePort::getAddrRanges() const
2382 {
2383 return cache->getAddrRanges();
2384 }
2385
2386
2387 BaseCache::
2388 CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2389 const std::string &_label)
2390 : CacheSlavePort(_name, _cache, _label), cache(_cache)
2391 {
2392 }
2393
2394 ///////////////
2395 //
2396 // MemSidePort
2397 //
2398 ///////////////
2399 bool
2400 BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2401 {
2402 cache->recvTimingResp(pkt);
2403 return true;
2404 }
2405
2406 // Express snooping requests to memside port
2407 void
2408 BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2409 {
2410 // Snoops shouldn't happen when bypassing caches
2411 assert(!cache->system->bypassCaches());
2412
2413 // handle snooping requests
2414 cache->recvTimingSnoopReq(pkt);
2415 }
2416
2417 Tick
2418 BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2419 {
2420 // Snoops shouldn't happen when bypassing caches
2421 assert(!cache->system->bypassCaches());
2422
2423 return cache->recvAtomicSnoop(pkt);
2424 }
2425
2426 void
2427 BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2428 {
2429 // Snoops shouldn't happen when bypassing caches
2430 assert(!cache->system->bypassCaches());
2431
2432 // functional snoop (note that in contrast to atomic we don't have
2433 // a specific functionalSnoop method, as they have the same
2434 // behaviour regardless)
2435 cache->functionalAccess(pkt, false);
2436 }
2437
2438 void
2439 BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2440 {
2441 // sanity check
2442 assert(!waitingOnRetry);
2443
2444 // there should never be any deferred request packets in the
2445 // queue, instead we resly on the cache to provide the packets
2446 // from the MSHR queue or write queue
2447 assert(deferredPacketReadyTime() == MaxTick);
2448
2449 // check for request packets (requests & writebacks)
2450 QueueEntry* entry = cache.getNextQueueEntry();
2451
2452 if (!entry) {
2453 // can happen if e.g. we attempt a writeback and fail, but
2454 // before the retry, the writeback is eliminated because
2455 // we snoop another cache's ReadEx.
2456 } else {
2457 // let our snoop responses go first if there are responses to
2458 // the same addresses
2459 if (checkConflictingSnoop(entry->getTarget()->pkt)) {
2460 return;
2461 }
2462 waitingOnRetry = entry->sendPacket(cache);
2463 }
2464
2465 // if we succeeded and are not waiting for a retry, schedule the
2466 // next send considering when the next queue is ready, note that
2467 // snoop responses have their own packet queue and thus schedule
2468 // their own events
2469 if (!waitingOnRetry) {
2470 schedSendEvent(cache.nextQueueReadyTime());
2471 }
2472 }
2473
2474 BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2475 BaseCache *_cache,
2476 const std::string &_label)
2477 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2478 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2479 _snoopRespQueue(*_cache, *this, true, _label), cache(_cache)
2480 {
2481 }
2482
2483 void
2484 WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
2485 Addr blk_addr)
2486 {
2487 // check if we are continuing where the last write ended
2488 if (nextAddr == write_addr) {
2489 delayCtr[blk_addr] = delayThreshold;
2490 // stop if we have already saturated
2491 if (mode != WriteMode::NO_ALLOCATE) {
2492 byteCount += write_size;
2493 // switch to streaming mode if we have passed the lower
2494 // threshold
2495 if (mode == WriteMode::ALLOCATE &&
2496 byteCount > coalesceLimit) {
2497 mode = WriteMode::COALESCE;
2498 DPRINTF(Cache, "Switched to write coalescing\n");
2499 } else if (mode == WriteMode::COALESCE &&
2500 byteCount > noAllocateLimit) {
2501 // and continue and switch to non-allocating mode if we
2502 // pass the upper threshold
2503 mode = WriteMode::NO_ALLOCATE;
2504 DPRINTF(Cache, "Switched to write-no-allocate\n");
2505 }
2506 }
2507 } else {
2508 // we did not see a write matching the previous one, start
2509 // over again
2510 byteCount = write_size;
2511 mode = WriteMode::ALLOCATE;
2512 resetDelay(blk_addr);
2513 }
2514 nextAddr = write_addr + write_size;
2515 }
2516
2517 WriteAllocator*
2518 WriteAllocatorParams::create()
2519 {
2520 return new WriteAllocator(this);
2521 }