Merge zizzer.eecs.umich.edu:/bk/newmem
[gem5.git] / src / mem / cache / base_cache.cc
1 /*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Erik Hallnor
29 */
30
31 /**
32 * @file
33 * Definition of BaseCache functions.
34 */
35
36 #include "mem/cache/base_cache.hh"
37 #include "cpu/smt.hh"
38 #include "cpu/base.hh"
39
40 using namespace std;
41
42 BaseCache::CachePort::CachePort(const std::string &_name, BaseCache *_cache,
43 bool _isCpuSide)
44 : Port(_name), cache(_cache), isCpuSide(_isCpuSide)
45 {
46 blocked = false;
47 //Start ports at null if more than one is created we should panic
48 //cpuSidePort = NULL;
49 //memSidePort = NULL;
50 }
51
52 void
53 BaseCache::CachePort::recvStatusChange(Port::Status status)
54 {
55 cache->recvStatusChange(status, isCpuSide);
56 }
57
58 void
59 BaseCache::CachePort::getDeviceAddressRanges(AddrRangeList &resp,
60 AddrRangeList &snoop)
61 {
62 cache->getAddressRanges(resp, snoop, isCpuSide);
63 }
64
65 int
66 BaseCache::CachePort::deviceBlockSize()
67 {
68 return cache->getBlockSize();
69 }
70
71 bool
72 BaseCache::CachePort::recvTiming(Packet *pkt)
73 {
74 if (pkt->isRequest() && blocked)
75 {
76 DPRINTF(Cache,"Scheduling a retry while blocked\n");
77 mustSendRetry = true;
78 return false;
79 }
80 return cache->doTimingAccess(pkt, this, isCpuSide);
81 }
82
83 Tick
84 BaseCache::CachePort::recvAtomic(Packet *pkt)
85 {
86 return cache->doAtomicAccess(pkt, isCpuSide);
87 }
88
89 void
90 BaseCache::CachePort::recvFunctional(Packet *pkt)
91 {
92 cache->doFunctionalAccess(pkt, isCpuSide);
93 }
94
95 void
96 BaseCache::CachePort::recvRetry()
97 {
98 Packet *pkt;
99 if (!drainList.empty()) {
100 //We have some responses to drain first
101 bool result = true;
102 while (result && !drainList.empty()) {
103 result = sendTiming(drainList.front());
104 if (result)
105 drainList.pop_front();
106 }
107 }
108 else if (!isCpuSide)
109 {
110 pkt = cache->getPacket();
111 MSHR* mshr = (MSHR*)pkt->senderState;
112 bool success = sendTiming(pkt);
113 DPRINTF(Cache, "Address %x was %s in sending the timing request\n",
114 pkt->getAddr(), success ? "succesful" : "unsuccesful");
115 cache->sendResult(pkt, mshr, success);
116 if (success && cache->doMasterRequest())
117 {
118 //Still more to issue, rerequest in 1 cycle
119 pkt = NULL;
120 BaseCache::CacheEvent * reqCpu = new BaseCache::CacheEvent(this);
121 reqCpu->schedule(curTick + 1);
122 }
123 }
124 else
125 {
126 //pkt = cache->getCoherencePacket();
127 //We save the packet, no reordering on CSHRS
128 pkt = cshrRetry;
129 bool success = sendTiming(pkt);
130 if (success && cache->doSlaveRequest())
131 {
132 //Still more to issue, rerequest in 1 cycle
133 pkt = NULL;
134 BaseCache::CacheEvent * reqCpu = new BaseCache::CacheEvent(this);
135 reqCpu->schedule(curTick + 1);
136 }
137
138 }
139 return;
140 }
141 void
142 BaseCache::CachePort::setBlocked()
143 {
144 assert(!blocked);
145 DPRINTF(Cache, "Cache Blocking\n");
146 blocked = true;
147 //Clear the retry flag
148 mustSendRetry = false;
149 }
150
151 void
152 BaseCache::CachePort::clearBlocked()
153 {
154 assert(blocked);
155 DPRINTF(Cache, "Cache Unblocking\n");
156 blocked = false;
157 if (mustSendRetry)
158 {
159 DPRINTF(Cache, "Cache Sending Retry\n");
160 mustSendRetry = false;
161 sendRetry();
162 }
163 }
164
165 BaseCache::CacheEvent::CacheEvent(CachePort *_cachePort)
166 : Event(&mainEventQueue, CPU_Tick_Pri), cachePort(_cachePort)
167 {
168 this->setFlags(AutoDelete);
169 pkt = NULL;
170 }
171
172 BaseCache::CacheEvent::CacheEvent(CachePort *_cachePort, Packet *_pkt)
173 : Event(&mainEventQueue, CPU_Tick_Pri), cachePort(_cachePort), pkt(_pkt)
174 {
175 this->setFlags(AutoDelete);
176 }
177
178 void
179 BaseCache::CacheEvent::process()
180 {
181 if (!pkt)
182 {
183 if (!cachePort->isCpuSide)
184 {
185 //MSHR
186 pkt = cachePort->cache->getPacket();
187 MSHR* mshr = (MSHR*) pkt->senderState;
188 bool success = cachePort->sendTiming(pkt);
189 DPRINTF(Cache, "Address %x was %s in sending the timing request\n",
190 pkt->getAddr(), success ? "succesful" : "unsuccesful");
191 cachePort->cache->sendResult(pkt, mshr, success);
192 if (success && cachePort->cache->doMasterRequest())
193 {
194 //Still more to issue, rerequest in 1 cycle
195 pkt = NULL;
196 this->schedule(curTick+1);
197 }
198 }
199 else
200 {
201 //CSHR
202 pkt = cachePort->cache->getCoherencePacket();
203 bool success = cachePort->sendTiming(pkt);
204 if (!success) {
205 //Need to send on a retry
206 cachePort->cshrRetry = pkt;
207 }
208 else if (cachePort->cache->doSlaveRequest())
209 {
210 //Still more to issue, rerequest in 1 cycle
211 pkt = NULL;
212 this->schedule(curTick+1);
213 }
214 }
215 return;
216 }
217 //Response
218 //Know the packet to send
219 pkt->result = Packet::Success;
220 pkt->makeTimingResponse();
221 if (!cachePort->drainList.empty()) {
222 //Already blocked waiting for bus, just append
223 cachePort->drainList.push_back(pkt);
224 }
225 else if (!cachePort->sendTiming(pkt)) {
226 //It failed, save it to list of drain events
227 cachePort->drainList.push_back(pkt);
228 }
229 }
230
231 const char *
232 BaseCache::CacheEvent::description()
233 {
234 return "timing event\n";
235 }
236
237 Port*
238 BaseCache::getPort(const std::string &if_name, int idx)
239 {
240 if (if_name == "")
241 {
242 if(cpuSidePort == NULL)
243 cpuSidePort = new CachePort(name() + "-cpu_side_port", this, true);
244 return cpuSidePort;
245 }
246 else if (if_name == "functional")
247 {
248 if(cpuSidePort == NULL)
249 cpuSidePort = new CachePort(name() + "-cpu_side_port", this, true);
250 return cpuSidePort;
251 }
252 else if (if_name == "cpu_side")
253 {
254 if(cpuSidePort == NULL)
255 cpuSidePort = new CachePort(name() + "-cpu_side_port", this, true);
256 return cpuSidePort;
257 }
258 else if (if_name == "mem_side")
259 {
260 if (memSidePort != NULL)
261 panic("Already have a mem side for this cache\n");
262 memSidePort = new CachePort(name() + "-mem_side_port", this, false);
263 return memSidePort;
264 }
265 else panic("Port name %s unrecognized\n", if_name);
266 }
267
268 void
269 BaseCache::init()
270 {
271 if (!cpuSidePort || !memSidePort)
272 panic("Cache not hooked up on both sides\n");
273 cpuSidePort->sendStatusChange(Port::RangeChange);
274 }
275
276 void
277 BaseCache::regStats()
278 {
279 Request temp_req((Addr) NULL, 4, 0);
280 Packet::Command temp_cmd = Packet::ReadReq;
281 Packet temp_pkt(&temp_req, temp_cmd, 0); //@todo FIx command strings so this isn't neccessary
282 temp_pkt.allocate(); //Temp allocate, all need data
283
284 using namespace Stats;
285
286 // Hit statistics
287 for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) {
288 Packet::Command cmd = (Packet::Command)access_idx;
289 const string &cstr = temp_pkt.cmdIdxToString(cmd);
290
291 hits[access_idx]
292 .init(maxThreadsPerCPU)
293 .name(name() + "." + cstr + "_hits")
294 .desc("number of " + cstr + " hits")
295 .flags(total | nozero | nonan)
296 ;
297 }
298
299 demandHits
300 .name(name() + ".demand_hits")
301 .desc("number of demand (read+write) hits")
302 .flags(total)
303 ;
304 demandHits = hits[Packet::ReadReq] + hits[Packet::WriteReq];
305
306 overallHits
307 .name(name() + ".overall_hits")
308 .desc("number of overall hits")
309 .flags(total)
310 ;
311 overallHits = demandHits + hits[Packet::SoftPFReq] + hits[Packet::HardPFReq]
312 + hits[Packet::Writeback];
313
314 // Miss statistics
315 for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) {
316 Packet::Command cmd = (Packet::Command)access_idx;
317 const string &cstr = temp_pkt.cmdIdxToString(cmd);
318
319 misses[access_idx]
320 .init(maxThreadsPerCPU)
321 .name(name() + "." + cstr + "_misses")
322 .desc("number of " + cstr + " misses")
323 .flags(total | nozero | nonan)
324 ;
325 }
326
327 demandMisses
328 .name(name() + ".demand_misses")
329 .desc("number of demand (read+write) misses")
330 .flags(total)
331 ;
332 demandMisses = misses[Packet::ReadReq] + misses[Packet::WriteReq];
333
334 overallMisses
335 .name(name() + ".overall_misses")
336 .desc("number of overall misses")
337 .flags(total)
338 ;
339 overallMisses = demandMisses + misses[Packet::SoftPFReq] +
340 misses[Packet::HardPFReq] + misses[Packet::Writeback];
341
342 // Miss latency statistics
343 for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) {
344 Packet::Command cmd = (Packet::Command)access_idx;
345 const string &cstr = temp_pkt.cmdIdxToString(cmd);
346
347 missLatency[access_idx]
348 .init(maxThreadsPerCPU)
349 .name(name() + "." + cstr + "_miss_latency")
350 .desc("number of " + cstr + " miss cycles")
351 .flags(total | nozero | nonan)
352 ;
353 }
354
355 demandMissLatency
356 .name(name() + ".demand_miss_latency")
357 .desc("number of demand (read+write) miss cycles")
358 .flags(total)
359 ;
360 demandMissLatency = missLatency[Packet::ReadReq] + missLatency[Packet::WriteReq];
361
362 overallMissLatency
363 .name(name() + ".overall_miss_latency")
364 .desc("number of overall miss cycles")
365 .flags(total)
366 ;
367 overallMissLatency = demandMissLatency + missLatency[Packet::SoftPFReq] +
368 missLatency[Packet::HardPFReq];
369
370 // access formulas
371 for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) {
372 Packet::Command cmd = (Packet::Command)access_idx;
373 const string &cstr = temp_pkt.cmdIdxToString(cmd);
374
375 accesses[access_idx]
376 .name(name() + "." + cstr + "_accesses")
377 .desc("number of " + cstr + " accesses(hits+misses)")
378 .flags(total | nozero | nonan)
379 ;
380
381 accesses[access_idx] = hits[access_idx] + misses[access_idx];
382 }
383
384 demandAccesses
385 .name(name() + ".demand_accesses")
386 .desc("number of demand (read+write) accesses")
387 .flags(total)
388 ;
389 demandAccesses = demandHits + demandMisses;
390
391 overallAccesses
392 .name(name() + ".overall_accesses")
393 .desc("number of overall (read+write) accesses")
394 .flags(total)
395 ;
396 overallAccesses = overallHits + overallMisses;
397
398 // miss rate formulas
399 for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) {
400 Packet::Command cmd = (Packet::Command)access_idx;
401 const string &cstr = temp_pkt.cmdIdxToString(cmd);
402
403 missRate[access_idx]
404 .name(name() + "." + cstr + "_miss_rate")
405 .desc("miss rate for " + cstr + " accesses")
406 .flags(total | nozero | nonan)
407 ;
408
409 missRate[access_idx] = misses[access_idx] / accesses[access_idx];
410 }
411
412 demandMissRate
413 .name(name() + ".demand_miss_rate")
414 .desc("miss rate for demand accesses")
415 .flags(total)
416 ;
417 demandMissRate = demandMisses / demandAccesses;
418
419 overallMissRate
420 .name(name() + ".overall_miss_rate")
421 .desc("miss rate for overall accesses")
422 .flags(total)
423 ;
424 overallMissRate = overallMisses / overallAccesses;
425
426 // miss latency formulas
427 for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) {
428 Packet::Command cmd = (Packet::Command)access_idx;
429 const string &cstr = temp_pkt.cmdIdxToString(cmd);
430
431 avgMissLatency[access_idx]
432 .name(name() + "." + cstr + "_avg_miss_latency")
433 .desc("average " + cstr + " miss latency")
434 .flags(total | nozero | nonan)
435 ;
436
437 avgMissLatency[access_idx] =
438 missLatency[access_idx] / misses[access_idx];
439 }
440
441 demandAvgMissLatency
442 .name(name() + ".demand_avg_miss_latency")
443 .desc("average overall miss latency")
444 .flags(total)
445 ;
446 demandAvgMissLatency = demandMissLatency / demandMisses;
447
448 overallAvgMissLatency
449 .name(name() + ".overall_avg_miss_latency")
450 .desc("average overall miss latency")
451 .flags(total)
452 ;
453 overallAvgMissLatency = overallMissLatency / overallMisses;
454
455 blocked_cycles.init(NUM_BLOCKED_CAUSES);
456 blocked_cycles
457 .name(name() + ".blocked_cycles")
458 .desc("number of cycles access was blocked")
459 .subname(Blocked_NoMSHRs, "no_mshrs")
460 .subname(Blocked_NoTargets, "no_targets")
461 ;
462
463
464 blocked_causes.init(NUM_BLOCKED_CAUSES);
465 blocked_causes
466 .name(name() + ".blocked")
467 .desc("number of cycles access was blocked")
468 .subname(Blocked_NoMSHRs, "no_mshrs")
469 .subname(Blocked_NoTargets, "no_targets")
470 ;
471
472 avg_blocked
473 .name(name() + ".avg_blocked_cycles")
474 .desc("average number of cycles each access was blocked")
475 .subname(Blocked_NoMSHRs, "no_mshrs")
476 .subname(Blocked_NoTargets, "no_targets")
477 ;
478
479 avg_blocked = blocked_cycles / blocked_causes;
480
481 fastWrites
482 .name(name() + ".fast_writes")
483 .desc("number of fast writes performed")
484 ;
485
486 cacheCopies
487 .name(name() + ".cache_copies")
488 .desc("number of cache copies performed")
489 ;
490
491 }