Fix some more mem leaks, still some left
[gem5.git] / src / mem / cache / base_cache.cc
1 /*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Erik Hallnor
29 */
30
31 /**
32 * @file
33 * Definition of BaseCache functions.
34 */
35
36 #include "mem/cache/base_cache.hh"
37 #include "cpu/smt.hh"
38 #include "cpu/base.hh"
39
40 using namespace std;
41
42 BaseCache::CachePort::CachePort(const std::string &_name, BaseCache *_cache,
43 bool _isCpuSide)
44 : Port(_name), cache(_cache), isCpuSide(_isCpuSide)
45 {
46 blocked = false;
47 cshrRetry = NULL;
48 waitingOnRetry = false;
49 //Start ports at null if more than one is created we should panic
50 //cpuSidePort = NULL;
51 //memSidePort = NULL;
52 }
53
54 void
55 BaseCache::CachePort::recvStatusChange(Port::Status status)
56 {
57 cache->recvStatusChange(status, isCpuSide);
58 }
59
60 void
61 BaseCache::CachePort::getDeviceAddressRanges(AddrRangeList &resp,
62 AddrRangeList &snoop)
63 {
64 cache->getAddressRanges(resp, snoop, isCpuSide);
65 }
66
67 int
68 BaseCache::CachePort::deviceBlockSize()
69 {
70 return cache->getBlockSize();
71 }
72
73 bool
74 BaseCache::CachePort::recvTiming(Packet *pkt)
75 {
76 if (isCpuSide
77 && !pkt->req->isUncacheable()
78 && pkt->isInvalidate()
79 && !pkt->isRead() && !pkt->isWrite()) {
80 //Upgrade or Invalidate
81 //Look into what happens if two slave caches on bus
82 DPRINTF(Cache, "%s %x ? blk_addr: %x\n", pkt->cmdString(),
83 pkt->getAddr() & (((ULL(1))<<48)-1),
84 pkt->getAddr() & ~((Addr)cache->blkSize - 1));
85
86 assert(!(pkt->flags & SATISFIED));
87 pkt->flags |= SATISFIED;
88 //Invalidates/Upgrades need no response if they get the bus
89 return true;
90 }
91
92 if (pkt->isRequest() && blocked)
93 {
94 DPRINTF(Cache,"Scheduling a retry while blocked\n");
95 mustSendRetry = true;
96 return false;
97 }
98 return cache->doTimingAccess(pkt, this, isCpuSide);
99 }
100
101 Tick
102 BaseCache::CachePort::recvAtomic(Packet *pkt)
103 {
104 return cache->doAtomicAccess(pkt, isCpuSide);
105 }
106
107 void
108 BaseCache::CachePort::recvFunctional(Packet *pkt)
109 {
110 cache->doFunctionalAccess(pkt, isCpuSide);
111 }
112
113 void
114 BaseCache::CachePort::recvRetry()
115 {
116 Packet *pkt;
117 assert(waitingOnRetry);
118 if (!drainList.empty()) {
119 //We have some responses to drain first
120 if (sendTiming(drainList.front())) {
121 drainList.pop_front();
122 if (!drainList.empty() ||
123 !isCpuSide && cache->doMasterRequest() ||
124 isCpuSide && cache->doSlaveRequest()) {
125 BaseCache::CacheEvent * reqCpu = new BaseCache::CacheEvent(this);
126 reqCpu->schedule(curTick + 1);
127 }
128 waitingOnRetry = false;
129 }
130 }
131 else if (!isCpuSide)
132 {
133 assert(cache->doMasterRequest());
134 pkt = cache->getPacket();
135 MSHR* mshr = (MSHR*)pkt->senderState;
136 bool success = sendTiming(pkt);
137 DPRINTF(Cache, "Address %x was %s in sending the timing request\n",
138 pkt->getAddr(), success ? "succesful" : "unsuccesful");
139 cache->sendResult(pkt, mshr, success);
140 waitingOnRetry = !success;
141 if (success && cache->doMasterRequest())
142 {
143 //Still more to issue, rerequest in 1 cycle
144 pkt = NULL;
145 BaseCache::CacheEvent * reqCpu = new BaseCache::CacheEvent(this);
146 reqCpu->schedule(curTick + 1);
147 }
148 }
149 else
150 {
151 assert(cshrRetry);
152 //pkt = cache->getCoherencePacket();
153 //We save the packet, no reordering on CSHRS
154 pkt = cshrRetry;
155 bool success = sendTiming(pkt);
156 waitingOnRetry = !success;
157 if (success && cache->doSlaveRequest())
158 {
159 //Still more to issue, rerequest in 1 cycle
160 pkt = NULL;
161 BaseCache::CacheEvent * reqCpu = new BaseCache::CacheEvent(this);
162 reqCpu->schedule(curTick + 1);
163 cshrRetry = NULL;
164 }
165 }
166 return;
167 }
168 void
169 BaseCache::CachePort::setBlocked()
170 {
171 assert(!blocked);
172 DPRINTF(Cache, "Cache Blocking\n");
173 blocked = true;
174 //Clear the retry flag
175 mustSendRetry = false;
176 }
177
178 void
179 BaseCache::CachePort::clearBlocked()
180 {
181 assert(blocked);
182 DPRINTF(Cache, "Cache Unblocking\n");
183 blocked = false;
184 if (mustSendRetry)
185 {
186 DPRINTF(Cache, "Cache Sending Retry\n");
187 mustSendRetry = false;
188 sendRetry();
189 }
190 }
191
192 BaseCache::CacheEvent::CacheEvent(CachePort *_cachePort)
193 : Event(&mainEventQueue, CPU_Tick_Pri), cachePort(_cachePort)
194 {
195 this->setFlags(AutoDelete);
196 pkt = NULL;
197 }
198
199 BaseCache::CacheEvent::CacheEvent(CachePort *_cachePort, Packet *_pkt)
200 : Event(&mainEventQueue, CPU_Tick_Pri), cachePort(_cachePort), pkt(_pkt)
201 {
202 this->setFlags(AutoDelete);
203 }
204
205 void
206 BaseCache::CacheEvent::process()
207 {
208 if (!pkt)
209 {
210 if (cachePort->waitingOnRetry) return;
211 //We have some responses to drain first
212 if (!cachePort->drainList.empty()) {
213 if (cachePort->sendTiming(cachePort->drainList.front())) {
214 cachePort->drainList.pop_front();
215 if (!cachePort->drainList.empty() ||
216 !cachePort->isCpuSide && cachePort->cache->doMasterRequest() ||
217 cachePort->isCpuSide && cachePort->cache->doSlaveRequest())
218 this->schedule(curTick + 1);
219 }
220 else cachePort->waitingOnRetry = true;
221 }
222 else if (!cachePort->isCpuSide)
223 {
224 //MSHR
225 pkt = cachePort->cache->getPacket();
226 MSHR* mshr = (MSHR*) pkt->senderState;
227 bool success = cachePort->sendTiming(pkt);
228 DPRINTF(Cache, "Address %x was %s in sending the timing request\n",
229 pkt->getAddr(), success ? "succesful" : "unsuccesful");
230 cachePort->cache->sendResult(pkt, mshr, success);
231 cachePort->waitingOnRetry = !success;
232 if (success && cachePort->cache->doMasterRequest())
233 {
234 //Still more to issue, rerequest in 1 cycle
235 pkt = NULL;
236 this->schedule(curTick+1);
237 }
238 }
239 else
240 {
241 //CSHR
242 pkt = cachePort->cache->getCoherencePacket();
243 bool success = cachePort->sendTiming(pkt);
244 if (!success) {
245 //Need to send on a retry
246 cachePort->cshrRetry = pkt;
247 cachePort->waitingOnRetry = true;
248 }
249 else if (cachePort->cache->doSlaveRequest())
250 {
251 //Still more to issue, rerequest in 1 cycle
252 pkt = NULL;
253 this->schedule(curTick+1);
254 }
255 }
256 return;
257 }
258 //Response
259 //Know the packet to send
260 if (pkt->flags & NACKED_LINE)
261 pkt->result = Packet::Nacked;
262 else
263 pkt->result = Packet::Success;
264 pkt->makeTimingResponse();
265 if (!cachePort->drainList.empty()) {
266 //Already have a list, just append
267 cachePort->drainList.push_back(pkt);
268 }
269 else if (!cachePort->sendTiming(pkt)) {
270 //It failed, save it to list of drain events
271 cachePort->drainList.push_back(pkt);
272 cachePort->waitingOnRetry = true;
273 }
274 }
275
276 const char *
277 BaseCache::CacheEvent::description()
278 {
279 return "timing event\n";
280 }
281
282 Port*
283 BaseCache::getPort(const std::string &if_name, int idx)
284 {
285 if (if_name == "")
286 {
287 if(cpuSidePort == NULL)
288 cpuSidePort = new CachePort(name() + "-cpu_side_port", this, true);
289 return cpuSidePort;
290 }
291 else if (if_name == "functional")
292 {
293 if(cpuSidePort == NULL)
294 cpuSidePort = new CachePort(name() + "-cpu_side_port", this, true);
295 return cpuSidePort;
296 }
297 else if (if_name == "cpu_side")
298 {
299 if(cpuSidePort == NULL)
300 cpuSidePort = new CachePort(name() + "-cpu_side_port", this, true);
301 return cpuSidePort;
302 }
303 else if (if_name == "mem_side")
304 {
305 if (memSidePort != NULL)
306 panic("Already have a mem side for this cache\n");
307 memSidePort = new CachePort(name() + "-mem_side_port", this, false);
308 return memSidePort;
309 }
310 else panic("Port name %s unrecognized\n", if_name);
311 }
312
313 void
314 BaseCache::init()
315 {
316 if (!cpuSidePort || !memSidePort)
317 panic("Cache not hooked up on both sides\n");
318 cpuSidePort->sendStatusChange(Port::RangeChange);
319 }
320
321 void
322 BaseCache::regStats()
323 {
324 Request temp_req((Addr) NULL, 4, 0);
325 Packet::Command temp_cmd = Packet::ReadReq;
326 Packet temp_pkt(&temp_req, temp_cmd, 0); //@todo FIx command strings so this isn't neccessary
327 temp_pkt.allocate(); //Temp allocate, all need data
328
329 using namespace Stats;
330
331 // Hit statistics
332 for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) {
333 Packet::Command cmd = (Packet::Command)access_idx;
334 const string &cstr = temp_pkt.cmdIdxToString(cmd);
335
336 hits[access_idx]
337 .init(maxThreadsPerCPU)
338 .name(name() + "." + cstr + "_hits")
339 .desc("number of " + cstr + " hits")
340 .flags(total | nozero | nonan)
341 ;
342 }
343
344 demandHits
345 .name(name() + ".demand_hits")
346 .desc("number of demand (read+write) hits")
347 .flags(total)
348 ;
349 demandHits = hits[Packet::ReadReq] + hits[Packet::WriteReq];
350
351 overallHits
352 .name(name() + ".overall_hits")
353 .desc("number of overall hits")
354 .flags(total)
355 ;
356 overallHits = demandHits + hits[Packet::SoftPFReq] + hits[Packet::HardPFReq]
357 + hits[Packet::Writeback];
358
359 // Miss statistics
360 for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) {
361 Packet::Command cmd = (Packet::Command)access_idx;
362 const string &cstr = temp_pkt.cmdIdxToString(cmd);
363
364 misses[access_idx]
365 .init(maxThreadsPerCPU)
366 .name(name() + "." + cstr + "_misses")
367 .desc("number of " + cstr + " misses")
368 .flags(total | nozero | nonan)
369 ;
370 }
371
372 demandMisses
373 .name(name() + ".demand_misses")
374 .desc("number of demand (read+write) misses")
375 .flags(total)
376 ;
377 demandMisses = misses[Packet::ReadReq] + misses[Packet::WriteReq];
378
379 overallMisses
380 .name(name() + ".overall_misses")
381 .desc("number of overall misses")
382 .flags(total)
383 ;
384 overallMisses = demandMisses + misses[Packet::SoftPFReq] +
385 misses[Packet::HardPFReq] + misses[Packet::Writeback];
386
387 // Miss latency statistics
388 for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) {
389 Packet::Command cmd = (Packet::Command)access_idx;
390 const string &cstr = temp_pkt.cmdIdxToString(cmd);
391
392 missLatency[access_idx]
393 .init(maxThreadsPerCPU)
394 .name(name() + "." + cstr + "_miss_latency")
395 .desc("number of " + cstr + " miss cycles")
396 .flags(total | nozero | nonan)
397 ;
398 }
399
400 demandMissLatency
401 .name(name() + ".demand_miss_latency")
402 .desc("number of demand (read+write) miss cycles")
403 .flags(total)
404 ;
405 demandMissLatency = missLatency[Packet::ReadReq] + missLatency[Packet::WriteReq];
406
407 overallMissLatency
408 .name(name() + ".overall_miss_latency")
409 .desc("number of overall miss cycles")
410 .flags(total)
411 ;
412 overallMissLatency = demandMissLatency + missLatency[Packet::SoftPFReq] +
413 missLatency[Packet::HardPFReq];
414
415 // access formulas
416 for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) {
417 Packet::Command cmd = (Packet::Command)access_idx;
418 const string &cstr = temp_pkt.cmdIdxToString(cmd);
419
420 accesses[access_idx]
421 .name(name() + "." + cstr + "_accesses")
422 .desc("number of " + cstr + " accesses(hits+misses)")
423 .flags(total | nozero | nonan)
424 ;
425
426 accesses[access_idx] = hits[access_idx] + misses[access_idx];
427 }
428
429 demandAccesses
430 .name(name() + ".demand_accesses")
431 .desc("number of demand (read+write) accesses")
432 .flags(total)
433 ;
434 demandAccesses = demandHits + demandMisses;
435
436 overallAccesses
437 .name(name() + ".overall_accesses")
438 .desc("number of overall (read+write) accesses")
439 .flags(total)
440 ;
441 overallAccesses = overallHits + overallMisses;
442
443 // miss rate formulas
444 for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) {
445 Packet::Command cmd = (Packet::Command)access_idx;
446 const string &cstr = temp_pkt.cmdIdxToString(cmd);
447
448 missRate[access_idx]
449 .name(name() + "." + cstr + "_miss_rate")
450 .desc("miss rate for " + cstr + " accesses")
451 .flags(total | nozero | nonan)
452 ;
453
454 missRate[access_idx] = misses[access_idx] / accesses[access_idx];
455 }
456
457 demandMissRate
458 .name(name() + ".demand_miss_rate")
459 .desc("miss rate for demand accesses")
460 .flags(total)
461 ;
462 demandMissRate = demandMisses / demandAccesses;
463
464 overallMissRate
465 .name(name() + ".overall_miss_rate")
466 .desc("miss rate for overall accesses")
467 .flags(total)
468 ;
469 overallMissRate = overallMisses / overallAccesses;
470
471 // miss latency formulas
472 for (int access_idx = 0; access_idx < NUM_MEM_CMDS; ++access_idx) {
473 Packet::Command cmd = (Packet::Command)access_idx;
474 const string &cstr = temp_pkt.cmdIdxToString(cmd);
475
476 avgMissLatency[access_idx]
477 .name(name() + "." + cstr + "_avg_miss_latency")
478 .desc("average " + cstr + " miss latency")
479 .flags(total | nozero | nonan)
480 ;
481
482 avgMissLatency[access_idx] =
483 missLatency[access_idx] / misses[access_idx];
484 }
485
486 demandAvgMissLatency
487 .name(name() + ".demand_avg_miss_latency")
488 .desc("average overall miss latency")
489 .flags(total)
490 ;
491 demandAvgMissLatency = demandMissLatency / demandMisses;
492
493 overallAvgMissLatency
494 .name(name() + ".overall_avg_miss_latency")
495 .desc("average overall miss latency")
496 .flags(total)
497 ;
498 overallAvgMissLatency = overallMissLatency / overallMisses;
499
500 blocked_cycles.init(NUM_BLOCKED_CAUSES);
501 blocked_cycles
502 .name(name() + ".blocked_cycles")
503 .desc("number of cycles access was blocked")
504 .subname(Blocked_NoMSHRs, "no_mshrs")
505 .subname(Blocked_NoTargets, "no_targets")
506 ;
507
508
509 blocked_causes.init(NUM_BLOCKED_CAUSES);
510 blocked_causes
511 .name(name() + ".blocked")
512 .desc("number of cycles access was blocked")
513 .subname(Blocked_NoMSHRs, "no_mshrs")
514 .subname(Blocked_NoTargets, "no_targets")
515 ;
516
517 avg_blocked
518 .name(name() + ".avg_blocked_cycles")
519 .desc("average number of cycles each access was blocked")
520 .subname(Blocked_NoMSHRs, "no_mshrs")
521 .subname(Blocked_NoTargets, "no_targets")
522 ;
523
524 avg_blocked = blocked_cycles / blocked_causes;
525
526 fastWrites
527 .name(name() + ".fast_writes")
528 .desc("number of fast writes performed")
529 ;
530
531 cacheCopies
532 .name(name() + ".cache_copies")
533 .desc("number of cache copies performed")
534 ;
535
536 }