mem: add CacheVerbose debug flag, filter noisy DPRINTFs
[gem5.git] / src / mem / cache / cache.cc
1 /*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 * Dave Greene
43 * Nathan Binkert
44 * Steve Reinhardt
45 * Ron Dreslinski
46 * Andreas Sandberg
47 */
48
49 /**
50 * @file
51 * Cache definitions.
52 */
53
54 #include "mem/cache/cache.hh"
55
56 #include "base/misc.hh"
57 #include "base/types.hh"
58 #include "debug/Cache.hh"
59 #include "debug/CachePort.hh"
60 #include "debug/CacheTags.hh"
61 #include "debug/CacheVerbose.hh"
62 #include "mem/cache/blk.hh"
63 #include "mem/cache/mshr.hh"
64 #include "mem/cache/prefetch/base.hh"
65 #include "sim/sim_exit.hh"
66
67 Cache::Cache(const CacheParams *p)
68 : BaseCache(p, p->system->cacheLineSize()),
69 tags(p->tags),
70 prefetcher(p->prefetcher),
71 doFastWrites(true),
72 prefetchOnAccess(p->prefetch_on_access),
73 clusivity(p->clusivity),
74 writebackClean(p->writeback_clean),
75 tempBlockWriteback(nullptr),
76 writebackTempBlockAtomicEvent(this, false,
77 EventBase::Delayed_Writeback_Pri)
78 {
79 tempBlock = new CacheBlk();
80 tempBlock->data = new uint8_t[blkSize];
81
82 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
83 "CpuSidePort");
84 memSidePort = new MemSidePort(p->name + ".mem_side", this,
85 "MemSidePort");
86
87 tags->setCache(this);
88 if (prefetcher)
89 prefetcher->setCache(this);
90 }
91
92 Cache::~Cache()
93 {
94 delete [] tempBlock->data;
95 delete tempBlock;
96
97 delete cpuSidePort;
98 delete memSidePort;
99 }
100
101 void
102 Cache::regStats()
103 {
104 BaseCache::regStats();
105 }
106
107 void
108 Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
109 {
110 assert(pkt->isRequest());
111
112 uint64_t overwrite_val;
113 bool overwrite_mem;
114 uint64_t condition_val64;
115 uint32_t condition_val32;
116
117 int offset = tags->extractBlkOffset(pkt->getAddr());
118 uint8_t *blk_data = blk->data + offset;
119
120 assert(sizeof(uint64_t) >= pkt->getSize());
121
122 overwrite_mem = true;
123 // keep a copy of our possible write value, and copy what is at the
124 // memory address into the packet
125 pkt->writeData((uint8_t *)&overwrite_val);
126 pkt->setData(blk_data);
127
128 if (pkt->req->isCondSwap()) {
129 if (pkt->getSize() == sizeof(uint64_t)) {
130 condition_val64 = pkt->req->getExtraData();
131 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
132 sizeof(uint64_t));
133 } else if (pkt->getSize() == sizeof(uint32_t)) {
134 condition_val32 = (uint32_t)pkt->req->getExtraData();
135 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
136 sizeof(uint32_t));
137 } else
138 panic("Invalid size for conditional read/write\n");
139 }
140
141 if (overwrite_mem) {
142 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
143 blk->status |= BlkDirty;
144 }
145 }
146
147
148 void
149 Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
150 bool deferred_response, bool pending_downgrade)
151 {
152 assert(pkt->isRequest());
153
154 assert(blk && blk->isValid());
155 // Occasionally this is not true... if we are a lower-level cache
156 // satisfying a string of Read and ReadEx requests from
157 // upper-level caches, a Read will mark the block as shared but we
158 // can satisfy a following ReadEx anyway since we can rely on the
159 // Read requester(s) to have buffered the ReadEx snoop and to
160 // invalidate their blocks after receiving them.
161 // assert(!pkt->needsWritable() || blk->isWritable());
162 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
163
164 // Check RMW operations first since both isRead() and
165 // isWrite() will be true for them
166 if (pkt->cmd == MemCmd::SwapReq) {
167 cmpAndSwap(blk, pkt);
168 } else if (pkt->isWrite()) {
169 // we have the block in a writable state and can go ahead,
170 // note that the line may be also be considered writable in
171 // downstream caches along the path to memory, but always
172 // Exclusive, and never Modified
173 assert(blk->isWritable());
174 // Write or WriteLine at the first cache with block in writable state
175 if (blk->checkWrite(pkt)) {
176 pkt->writeDataToBlock(blk->data, blkSize);
177 }
178 // Always mark the line as dirty (and thus transition to the
179 // Modified state) even if we are a failed StoreCond so we
180 // supply data to any snoops that have appended themselves to
181 // this cache before knowing the store will fail.
182 blk->status |= BlkDirty;
183 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (write)\n",
184 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
185 } else if (pkt->isRead()) {
186 if (pkt->isLLSC()) {
187 blk->trackLoadLocked(pkt);
188 }
189
190 // all read responses have a data payload
191 assert(pkt->hasRespData());
192 pkt->setDataFromBlock(blk->data, blkSize);
193
194 // determine if this read is from a (coherent) cache, or not
195 // by looking at the command type; we could potentially add a
196 // packet attribute such as 'FromCache' to make this check a
197 // bit cleaner
198 if (pkt->cmd == MemCmd::ReadExReq ||
199 pkt->cmd == MemCmd::ReadSharedReq ||
200 pkt->cmd == MemCmd::ReadCleanReq ||
201 pkt->cmd == MemCmd::SCUpgradeFailReq) {
202 assert(pkt->getSize() == blkSize);
203 // special handling for coherent block requests from
204 // upper-level caches
205 if (pkt->needsWritable()) {
206 // sanity check
207 assert(pkt->cmd == MemCmd::ReadExReq ||
208 pkt->cmd == MemCmd::SCUpgradeFailReq);
209
210 // if we have a dirty copy, make sure the recipient
211 // keeps it marked dirty (in the modified state)
212 if (blk->isDirty()) {
213 pkt->setCacheResponding();
214 }
215 // on ReadExReq we give up our copy unconditionally,
216 // even if this cache is mostly inclusive, we may want
217 // to revisit this
218 invalidateBlock(blk);
219 } else if (blk->isWritable() && !pending_downgrade &&
220 !pkt->hasSharers() &&
221 pkt->cmd != MemCmd::ReadCleanReq) {
222 // we can give the requester a writable copy on a read
223 // request if:
224 // - we have a writable copy at this level (& below)
225 // - we don't have a pending snoop from below
226 // signaling another read request
227 // - no other cache above has a copy (otherwise it
228 // would have set hasSharers flag when
229 // snooping the packet)
230 // - the read has explicitly asked for a clean
231 // copy of the line
232 if (blk->isDirty()) {
233 // special considerations if we're owner:
234 if (!deferred_response) {
235 // respond with the line in Modified state
236 // (cacheResponding set, hasSharers not set)
237 pkt->setCacheResponding();
238
239 if (clusivity == Enums::mostly_excl) {
240 // if this cache is mostly exclusive with
241 // respect to the cache above, drop the
242 // block, no need to first unset the dirty
243 // bit
244 invalidateBlock(blk);
245 } else {
246 // if this cache is mostly inclusive, we
247 // keep the block in the Exclusive state,
248 // and pass it upwards as Modified
249 // (writable and dirty), hence we have
250 // multiple caches, all on the same path
251 // towards memory, all considering the
252 // same block writable, but only one
253 // considering it Modified
254
255 // we get away with multiple caches (on
256 // the same path to memory) considering
257 // the block writeable as we always enter
258 // the cache hierarchy through a cache,
259 // and first snoop upwards in all other
260 // branches
261 blk->status &= ~BlkDirty;
262 }
263 } else {
264 // if we're responding after our own miss,
265 // there's a window where the recipient didn't
266 // know it was getting ownership and may not
267 // have responded to snoops correctly, so we
268 // have to respond with a shared line
269 pkt->setHasSharers();
270 }
271 }
272 } else {
273 // otherwise only respond with a shared copy
274 pkt->setHasSharers();
275 }
276 }
277 } else {
278 // Upgrade or Invalidate
279 assert(pkt->isUpgrade() || pkt->isInvalidate());
280
281 // for invalidations we could be looking at the temp block
282 // (for upgrades we always allocate)
283 invalidateBlock(blk);
284 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (invalidation)\n",
285 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
286 }
287 }
288
289
290 /////////////////////////////////////////////////////
291 //
292 // MSHR helper functions
293 //
294 /////////////////////////////////////////////////////
295
296
297 void
298 Cache::markInService(MSHR *mshr, bool pending_modified_resp)
299 {
300 markInServiceInternal(mshr, pending_modified_resp);
301 }
302
303 /////////////////////////////////////////////////////
304 //
305 // Access path: requests coming in from the CPU side
306 //
307 /////////////////////////////////////////////////////
308
309 bool
310 Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
311 PacketList &writebacks)
312 {
313 // sanity check
314 assert(pkt->isRequest());
315
316 chatty_assert(!(isReadOnly && pkt->isWrite()),
317 "Should never see a write in a read-only cache %s\n",
318 name());
319
320 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
321 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
322
323 if (pkt->req->isUncacheable()) {
324 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
325 pkt->req->isInstFetch() ? " (ifetch)" : "",
326 pkt->getAddr());
327
328 // flush and invalidate any existing block
329 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
330 if (old_blk && old_blk->isValid()) {
331 if (old_blk->isDirty() || writebackClean)
332 writebacks.push_back(writebackBlk(old_blk));
333 else
334 writebacks.push_back(cleanEvictBlk(old_blk));
335 tags->invalidate(old_blk);
336 old_blk->invalidate();
337 }
338
339 blk = NULL;
340 // lookupLatency is the latency in case the request is uncacheable.
341 lat = lookupLatency;
342 return false;
343 }
344
345 ContextID id = pkt->req->hasContextId() ?
346 pkt->req->contextId() : InvalidContextID;
347 // Here lat is the value passed as parameter to accessBlock() function
348 // that can modify its value.
349 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
350
351 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
352 pkt->req->isInstFetch() ? " (ifetch)" : "",
353 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
354 blk ? "hit " + blk->print() : "miss");
355
356
357 if (pkt->isEviction()) {
358 // We check for presence of block in above caches before issuing
359 // Writeback or CleanEvict to write buffer. Therefore the only
360 // possible cases can be of a CleanEvict packet coming from above
361 // encountering a Writeback generated in this cache peer cache and
362 // waiting in the write buffer. Cases of upper level peer caches
363 // generating CleanEvict and Writeback or simply CleanEvict and
364 // CleanEvict almost simultaneously will be caught by snoops sent out
365 // by crossbar.
366 std::vector<MSHR *> outgoing;
367 if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(),
368 outgoing)) {
369 assert(outgoing.size() == 1);
370 MSHR *wb_entry = outgoing[0];
371 assert(wb_entry->getNumTargets() == 1);
372 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
373 assert(wbPkt->isWriteback());
374
375 if (pkt->isCleanEviction()) {
376 // The CleanEvict and WritebackClean snoops into other
377 // peer caches of the same level while traversing the
378 // crossbar. If a copy of the block is found, the
379 // packet is deleted in the crossbar. Hence, none of
380 // the other upper level caches connected to this
381 // cache have the block, so we can clear the
382 // BLOCK_CACHED flag in the Writeback if set and
383 // discard the CleanEvict by returning true.
384 wbPkt->clearBlockCached();
385 return true;
386 } else {
387 assert(pkt->cmd == MemCmd::WritebackDirty);
388 // Dirty writeback from above trumps our clean
389 // writeback... discard here
390 // Note: markInService will remove entry from writeback buffer.
391 markInService(wb_entry, false);
392 delete wbPkt;
393 }
394 }
395 }
396
397 // Writeback handling is special case. We can write the block into
398 // the cache without having a writeable copy (or any copy at all).
399 if (pkt->isWriteback()) {
400 assert(blkSize == pkt->getSize());
401
402 // we could get a clean writeback while we are having
403 // outstanding accesses to a block, do the simple thing for
404 // now and drop the clean writeback so that we do not upset
405 // any ordering/decisions about ownership already taken
406 if (pkt->cmd == MemCmd::WritebackClean &&
407 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
408 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
409 "dropping\n", pkt->getAddr());
410 return true;
411 }
412
413 if (blk == NULL) {
414 // need to do a replacement
415 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
416 if (blk == NULL) {
417 // no replaceable block available: give up, fwd to next level.
418 incMissCount(pkt);
419 return false;
420 }
421 tags->insertBlock(pkt, blk);
422
423 blk->status = (BlkValid | BlkReadable);
424 if (pkt->isSecure()) {
425 blk->status |= BlkSecure;
426 }
427 }
428 // only mark the block dirty if we got a writeback command,
429 // and leave it as is for a clean writeback
430 if (pkt->cmd == MemCmd::WritebackDirty) {
431 blk->status |= BlkDirty;
432 }
433 // if the packet does not have sharers, it is passing
434 // writable, and we got the writeback in Modified or Exclusive
435 // state, if not we are in the Owned or Shared state
436 if (!pkt->hasSharers()) {
437 blk->status |= BlkWritable;
438 }
439 // nothing else to do; writeback doesn't expect response
440 assert(!pkt->needsResponse());
441 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
442 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
443 incHitCount(pkt);
444 return true;
445 } else if (pkt->cmd == MemCmd::CleanEvict) {
446 if (blk != NULL) {
447 // Found the block in the tags, need to stop CleanEvict from
448 // propagating further down the hierarchy. Returning true will
449 // treat the CleanEvict like a satisfied write request and delete
450 // it.
451 return true;
452 }
453 // We didn't find the block here, propagate the CleanEvict further
454 // down the memory hierarchy. Returning false will treat the CleanEvict
455 // like a Writeback which could not find a replaceable block so has to
456 // go to next level.
457 return false;
458 } else if ((blk != NULL) &&
459 (pkt->needsWritable() ? blk->isWritable() : blk->isReadable())) {
460 // OK to satisfy access
461 incHitCount(pkt);
462 satisfyCpuSideRequest(pkt, blk);
463 return true;
464 }
465
466 // Can't satisfy access normally... either no block (blk == NULL)
467 // or have block but need writable
468
469 incMissCount(pkt);
470
471 if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
472 // complete miss on store conditional... just give up now
473 pkt->req->setExtraData(0);
474 return true;
475 }
476
477 return false;
478 }
479
480 void
481 Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
482 {
483 while (!writebacks.empty()) {
484 PacketPtr wbPkt = writebacks.front();
485 // We use forwardLatency here because we are copying writebacks to
486 // write buffer. Call isCachedAbove for both Writebacks and
487 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
488 // in Writebacks and discard CleanEvicts.
489 if (isCachedAbove(wbPkt)) {
490 if (wbPkt->cmd == MemCmd::CleanEvict) {
491 // Delete CleanEvict because cached copies exist above. The
492 // packet destructor will delete the request object because
493 // this is a non-snoop request packet which does not require a
494 // response.
495 delete wbPkt;
496 } else if (wbPkt->cmd == MemCmd::WritebackClean) {
497 // clean writeback, do not send since the block is
498 // still cached above
499 assert(writebackClean);
500 delete wbPkt;
501 } else {
502 assert(wbPkt->cmd == MemCmd::WritebackDirty);
503 // Set BLOCK_CACHED flag in Writeback and send below, so that
504 // the Writeback does not reset the bit corresponding to this
505 // address in the snoop filter below.
506 wbPkt->setBlockCached();
507 allocateWriteBuffer(wbPkt, forward_time);
508 }
509 } else {
510 // If the block is not cached above, send packet below. Both
511 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
512 // reset the bit corresponding to this address in the snoop filter
513 // below.
514 allocateWriteBuffer(wbPkt, forward_time);
515 }
516 writebacks.pop_front();
517 }
518 }
519
520 void
521 Cache::doWritebacksAtomic(PacketList& writebacks)
522 {
523 while (!writebacks.empty()) {
524 PacketPtr wbPkt = writebacks.front();
525 // Call isCachedAbove for both Writebacks and CleanEvicts. If
526 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
527 // and discard CleanEvicts.
528 if (isCachedAbove(wbPkt, false)) {
529 if (wbPkt->cmd == MemCmd::WritebackDirty) {
530 // Set BLOCK_CACHED flag in Writeback and send below,
531 // so that the Writeback does not reset the bit
532 // corresponding to this address in the snoop filter
533 // below. We can discard CleanEvicts because cached
534 // copies exist above. Atomic mode isCachedAbove
535 // modifies packet to set BLOCK_CACHED flag
536 memSidePort->sendAtomic(wbPkt);
537 }
538 } else {
539 // If the block is not cached above, send packet below. Both
540 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
541 // reset the bit corresponding to this address in the snoop filter
542 // below.
543 memSidePort->sendAtomic(wbPkt);
544 }
545 writebacks.pop_front();
546 // In case of CleanEvicts, the packet destructor will delete the
547 // request object because this is a non-snoop request packet which
548 // does not require a response.
549 delete wbPkt;
550 }
551 }
552
553
554 void
555 Cache::recvTimingSnoopResp(PacketPtr pkt)
556 {
557 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
558 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
559
560 assert(pkt->isResponse());
561 assert(!system->bypassCaches());
562
563 // determine if the response is from a snoop request we created
564 // (in which case it should be in the outstandingSnoop), or if we
565 // merely forwarded someone else's snoop request
566 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
567 outstandingSnoop.end();
568
569 if (!forwardAsSnoop) {
570 // the packet came from this cache, so sink it here and do not
571 // forward it
572 assert(pkt->cmd == MemCmd::HardPFResp);
573
574 outstandingSnoop.erase(pkt->req);
575
576 DPRINTF(Cache, "Got prefetch response from above for addr "
577 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
578 recvTimingResp(pkt);
579 return;
580 }
581
582 // forwardLatency is set here because there is a response from an
583 // upper level cache.
584 // To pay the delay that occurs if the packet comes from the bus,
585 // we charge also headerDelay.
586 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
587 // Reset the timing of the packet.
588 pkt->headerDelay = pkt->payloadDelay = 0;
589 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
590 }
591
592 void
593 Cache::promoteWholeLineWrites(PacketPtr pkt)
594 {
595 // Cache line clearing instructions
596 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
597 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
598 pkt->cmd = MemCmd::WriteLineReq;
599 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
600 }
601 }
602
603 bool
604 Cache::recvTimingReq(PacketPtr pkt)
605 {
606 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
607
608 assert(pkt->isRequest());
609
610 // Just forward the packet if caches are disabled.
611 if (system->bypassCaches()) {
612 // @todo This should really enqueue the packet rather
613 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
614 assert(success);
615 return true;
616 }
617
618 promoteWholeLineWrites(pkt);
619
620 if (pkt->cacheResponding()) {
621 // a cache above us (but not where the packet came from) is
622 // responding to the request, in other words it has the line
623 // in Modified or Owned state
624 DPRINTF(Cache, "Cache above responding to %#llx (%s): "
625 "not responding\n",
626 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
627
628 // if the packet needs the block to be writable, and the cache
629 // that has promised to respond (setting the cache responding
630 // flag) is not providing writable (it is in Owned rather than
631 // the Modified state), we know that there may be other Shared
632 // copies in the system; go out and invalidate them all
633 if (pkt->needsWritable() && !pkt->responderHadWritable()) {
634 // an upstream cache that had the line in Owned state
635 // (dirty, but not writable), is responding and thus
636 // transferring the dirty line from one branch of the
637 // cache hierarchy to another
638
639 // send out an express snoop and invalidate all other
640 // copies (snooping a packet that needs writable is the
641 // same as an invalidation), thus turning the Owned line
642 // into a Modified line, note that we don't invalidate the
643 // block in the current cache or any other cache on the
644 // path to memory
645
646 // create a downstream express snoop with cleared packet
647 // flags, there is no need to allocate any data as the
648 // packet is merely used to co-ordinate state transitions
649 Packet *snoop_pkt = new Packet(pkt, true, false);
650
651 // also reset the bus time that the original packet has
652 // not yet paid for
653 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
654
655 // make this an instantaneous express snoop, and let the
656 // other caches in the system know that the another cache
657 // is responding, because we have found the authorative
658 // copy (Modified or Owned) that will supply the right
659 // data
660 snoop_pkt->setExpressSnoop();
661 snoop_pkt->setCacheResponding();
662
663 // this express snoop travels towards the memory, and at
664 // every crossbar it is snooped upwards thus reaching
665 // every cache in the system
666 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
667 // express snoops always succeed
668 assert(success);
669
670 // main memory will delete the snoop packet
671 }
672
673 // queue for deletion, as opposed to immediate deletion, as
674 // the sending cache is still relying on the packet
675 pendingDelete.reset(pkt);
676
677 // no need to take any action in this particular cache as an
678 // upstream cache has already committed to responding, and
679 // either the packet does not need writable (and we can let
680 // the cache that set the cache responding flag pass on the
681 // line without any need for intervention), or if the packet
682 // needs writable it is provided, or we have already sent out
683 // any express snoops in the section above
684 return true;
685 }
686
687 // anything that is merely forwarded pays for the forward latency and
688 // the delay provided by the crossbar
689 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
690
691 // We use lookupLatency here because it is used to specify the latency
692 // to access.
693 Cycles lat = lookupLatency;
694 CacheBlk *blk = NULL;
695 bool satisfied = false;
696 {
697 PacketList writebacks;
698 // Note that lat is passed by reference here. The function
699 // access() calls accessBlock() which can modify lat value.
700 satisfied = access(pkt, blk, lat, writebacks);
701
702 // copy writebacks to write buffer here to ensure they logically
703 // proceed anything happening below
704 doWritebacks(writebacks, forward_time);
705 }
706
707 // Here we charge the headerDelay that takes into account the latencies
708 // of the bus, if the packet comes from it.
709 // The latency charged it is just lat that is the value of lookupLatency
710 // modified by access() function, or if not just lookupLatency.
711 // In case of a hit we are neglecting response latency.
712 // In case of a miss we are neglecting forward latency.
713 Tick request_time = clockEdge(lat) + pkt->headerDelay;
714 // Here we reset the timing of the packet.
715 pkt->headerDelay = pkt->payloadDelay = 0;
716
717 // track time of availability of next prefetch, if any
718 Tick next_pf_time = MaxTick;
719
720 bool needsResponse = pkt->needsResponse();
721
722 if (satisfied) {
723 // should never be satisfying an uncacheable access as we
724 // flush and invalidate any existing block as part of the
725 // lookup
726 assert(!pkt->req->isUncacheable());
727
728 // hit (for all other request types)
729
730 if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
731 if (blk)
732 blk->status &= ~BlkHWPrefetched;
733
734 // Don't notify on SWPrefetch
735 if (!pkt->cmd.isSWPrefetch())
736 next_pf_time = prefetcher->notify(pkt);
737 }
738
739 if (needsResponse) {
740 pkt->makeTimingResponse();
741 // @todo: Make someone pay for this
742 pkt->headerDelay = pkt->payloadDelay = 0;
743
744 // In this case we are considering request_time that takes
745 // into account the delay of the xbar, if any, and just
746 // lat, neglecting responseLatency, modelling hit latency
747 // just as lookupLatency or or the value of lat overriden
748 // by access(), that calls accessBlock() function.
749 cpuSidePort->schedTimingResp(pkt, request_time, true);
750 } else {
751 DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n",
752 __func__, pkt->cmdString(), pkt->getAddr(),
753 pkt->getSize());
754
755 // queue the packet for deletion, as the sending cache is
756 // still relying on it; if the block is found in access(),
757 // CleanEvict and Writeback messages will be deleted
758 // here as well
759 pendingDelete.reset(pkt);
760 }
761 } else {
762 // miss
763
764 Addr blk_addr = blockAlign(pkt->getAddr());
765
766 // ignore any existing MSHR if we are dealing with an
767 // uncacheable request
768 MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
769 mshrQueue.findMatch(blk_addr, pkt->isSecure());
770
771 // Software prefetch handling:
772 // To keep the core from waiting on data it won't look at
773 // anyway, send back a response with dummy data. Miss handling
774 // will continue asynchronously. Unfortunately, the core will
775 // insist upon freeing original Packet/Request, so we have to
776 // create a new pair with a different lifecycle. Note that this
777 // processing happens before any MSHR munging on the behalf of
778 // this request because this new Request will be the one stored
779 // into the MSHRs, not the original.
780 if (pkt->cmd.isSWPrefetch()) {
781 assert(needsResponse);
782 assert(pkt->req->hasPaddr());
783 assert(!pkt->req->isUncacheable());
784
785 // There's no reason to add a prefetch as an additional target
786 // to an existing MSHR. If an outstanding request is already
787 // in progress, there is nothing for the prefetch to do.
788 // If this is the case, we don't even create a request at all.
789 PacketPtr pf = nullptr;
790
791 if (!mshr) {
792 // copy the request and create a new SoftPFReq packet
793 RequestPtr req = new Request(pkt->req->getPaddr(),
794 pkt->req->getSize(),
795 pkt->req->getFlags(),
796 pkt->req->masterId());
797 pf = new Packet(req, pkt->cmd);
798 pf->allocate();
799 assert(pf->getAddr() == pkt->getAddr());
800 assert(pf->getSize() == pkt->getSize());
801 }
802
803 pkt->makeTimingResponse();
804
805 // request_time is used here, taking into account lat and the delay
806 // charged if the packet comes from the xbar.
807 cpuSidePort->schedTimingResp(pkt, request_time, true);
808
809 // If an outstanding request is in progress (we found an
810 // MSHR) this is set to null
811 pkt = pf;
812 }
813
814 if (mshr) {
815 /// MSHR hit
816 /// @note writebacks will be checked in getNextMSHR()
817 /// for any conflicting requests to the same block
818
819 //@todo remove hw_pf here
820
821 // Coalesce unless it was a software prefetch (see above).
822 if (pkt) {
823 assert(!pkt->isWriteback());
824 // CleanEvicts corresponding to blocks which have
825 // outstanding requests in MSHRs are simply sunk here
826 if (pkt->cmd == MemCmd::CleanEvict) {
827 pendingDelete.reset(pkt);
828 } else {
829 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
830 __func__, pkt->cmdString(), pkt->getAddr(),
831 pkt->getSize());
832
833 assert(pkt->req->masterId() < system->maxMasters());
834 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
835 // We use forward_time here because it is the same
836 // considering new targets. We have multiple
837 // requests for the same address here. It
838 // specifies the latency to allocate an internal
839 // buffer and to schedule an event to the queued
840 // port and also takes into account the additional
841 // delay of the xbar.
842 mshr->allocateTarget(pkt, forward_time, order++,
843 allocOnFill(pkt->cmd));
844 if (mshr->getNumTargets() == numTarget) {
845 noTargetMSHR = mshr;
846 setBlocked(Blocked_NoTargets);
847 // need to be careful with this... if this mshr isn't
848 // ready yet (i.e. time > curTick()), we don't want to
849 // move it ahead of mshrs that are ready
850 // mshrQueue.moveToFront(mshr);
851 }
852 }
853 // We should call the prefetcher reguardless if the request is
854 // satisfied or not, reguardless if the request is in the MSHR or
855 // not. The request could be a ReadReq hit, but still not
856 // satisfied (potentially because of a prior write to the same
857 // cache line. So, even when not satisfied, tehre is an MSHR
858 // already allocated for this, we need to let the prefetcher know
859 // about the request
860 if (prefetcher) {
861 // Don't notify on SWPrefetch
862 if (!pkt->cmd.isSWPrefetch())
863 next_pf_time = prefetcher->notify(pkt);
864 }
865 }
866 } else {
867 // no MSHR
868 assert(pkt->req->masterId() < system->maxMasters());
869 if (pkt->req->isUncacheable()) {
870 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
871 } else {
872 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
873 }
874
875 if (pkt->isEviction() ||
876 (pkt->req->isUncacheable() && pkt->isWrite())) {
877 // We use forward_time here because there is an
878 // uncached memory write, forwarded to WriteBuffer.
879 allocateWriteBuffer(pkt, forward_time);
880 } else {
881 if (blk && blk->isValid()) {
882 // should have flushed and have no valid block
883 assert(!pkt->req->isUncacheable());
884
885 // If we have a write miss to a valid block, we
886 // need to mark the block non-readable. Otherwise
887 // if we allow reads while there's an outstanding
888 // write miss, the read could return stale data
889 // out of the cache block... a more aggressive
890 // system could detect the overlap (if any) and
891 // forward data out of the MSHRs, but we don't do
892 // that yet. Note that we do need to leave the
893 // block valid so that it stays in the cache, in
894 // case we get an upgrade response (and hence no
895 // new data) when the write miss completes.
896 // As long as CPUs do proper store/load forwarding
897 // internally, and have a sufficiently weak memory
898 // model, this is probably unnecessary, but at some
899 // point it must have seemed like we needed it...
900 assert(pkt->needsWritable());
901 assert(!blk->isWritable());
902 blk->status &= ~BlkReadable;
903 }
904 // Here we are using forward_time, modelling the latency of
905 // a miss (outbound) just as forwardLatency, neglecting the
906 // lookupLatency component.
907 allocateMissBuffer(pkt, forward_time);
908 }
909
910 if (prefetcher) {
911 // Don't notify on SWPrefetch
912 if (!pkt->cmd.isSWPrefetch())
913 next_pf_time = prefetcher->notify(pkt);
914 }
915 }
916 }
917
918 if (next_pf_time != MaxTick)
919 schedMemSideSendEvent(next_pf_time);
920
921 return true;
922 }
923
924
925 // See comment in cache.hh.
926 PacketPtr
927 Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
928 bool needsWritable) const
929 {
930 bool blkValid = blk && blk->isValid();
931
932 if (cpu_pkt->req->isUncacheable()) {
933 // note that at the point we see the uncacheable request we
934 // flush any block, but there could be an outstanding MSHR,
935 // and the cache could have filled again before we actually
936 // send out the forwarded uncacheable request (blk could thus
937 // be non-null)
938 return NULL;
939 }
940
941 if (!blkValid &&
942 (cpu_pkt->isUpgrade() ||
943 cpu_pkt->isEviction())) {
944 // Writebacks that weren't allocated in access() and upgrades
945 // from upper-level caches that missed completely just go
946 // through.
947 return NULL;
948 }
949
950 assert(cpu_pkt->needsResponse());
951
952 MemCmd cmd;
953 // @TODO make useUpgrades a parameter.
954 // Note that ownership protocols require upgrade, otherwise a
955 // write miss on a shared owned block will generate a ReadExcl,
956 // which will clobber the owned copy.
957 const bool useUpgrades = true;
958 if (blkValid && useUpgrades) {
959 // only reason to be here is that blk is read only and we need
960 // it to be writable
961 assert(needsWritable);
962 assert(!blk->isWritable());
963 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
964 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
965 cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
966 // Even though this SC will fail, we still need to send out the
967 // request and get the data to supply it to other snoopers in the case
968 // where the determination the StoreCond fails is delayed due to
969 // all caches not being on the same local bus.
970 cmd = MemCmd::SCUpgradeFailReq;
971 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
972 // forward as invalidate to all other caches, this gives us
973 // the line in Exclusive state, and invalidates all other
974 // copies
975 cmd = MemCmd::InvalidateReq;
976 } else {
977 // block is invalid
978 cmd = needsWritable ? MemCmd::ReadExReq :
979 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
980 }
981 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
982
983 // if there are upstream caches that have already marked the
984 // packet as having sharers (not passing writable), pass that info
985 // downstream
986 if (cpu_pkt->hasSharers()) {
987 // note that cpu_pkt may have spent a considerable time in the
988 // MSHR queue and that the information could possibly be out
989 // of date, however, there is no harm in conservatively
990 // assuming the block has sharers
991 pkt->setHasSharers();
992 DPRINTF(Cache, "%s passing hasSharers from %s to %s addr %#llx "
993 "size %d\n",
994 __func__, cpu_pkt->cmdString(), pkt->cmdString(),
995 pkt->getAddr(), pkt->getSize());
996 }
997
998 // the packet should be block aligned
999 assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
1000
1001 pkt->allocate();
1002 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n",
1003 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
1004 pkt->getSize());
1005 return pkt;
1006 }
1007
1008
1009 Tick
1010 Cache::recvAtomic(PacketPtr pkt)
1011 {
1012 // We are in atomic mode so we pay just for lookupLatency here.
1013 Cycles lat = lookupLatency;
1014 // @TODO: make this a parameter
1015 bool last_level_cache = false;
1016
1017 // Forward the request if the system is in cache bypass mode.
1018 if (system->bypassCaches())
1019 return ticksToCycles(memSidePort->sendAtomic(pkt));
1020
1021 promoteWholeLineWrites(pkt);
1022
1023 if (pkt->cacheResponding()) {
1024 // have to invalidate ourselves and any lower caches even if
1025 // upper cache will be responding
1026 if (pkt->isInvalidate()) {
1027 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1028 if (blk && blk->isValid()) {
1029 tags->invalidate(blk);
1030 blk->invalidate();
1031 DPRINTF(Cache, "Other cache responding to %s on %#llx (%s):"
1032 " invalidating\n",
1033 pkt->cmdString(), pkt->getAddr(),
1034 pkt->isSecure() ? "s" : "ns");
1035 }
1036 if (!last_level_cache) {
1037 DPRINTF(Cache, "Other cache responding to %s on %#llx (%s):"
1038 " forwarding\n",
1039 pkt->cmdString(), pkt->getAddr(),
1040 pkt->isSecure() ? "s" : "ns");
1041 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1042 }
1043 } else {
1044 DPRINTF(Cache, "Other cache responding to %s on %#llx: "
1045 "not responding\n",
1046 pkt->cmdString(), pkt->getAddr());
1047 }
1048
1049 return lat * clockPeriod();
1050 }
1051
1052 // should assert here that there are no outstanding MSHRs or
1053 // writebacks... that would mean that someone used an atomic
1054 // access in timing mode
1055
1056 CacheBlk *blk = NULL;
1057 PacketList writebacks;
1058 bool satisfied = access(pkt, blk, lat, writebacks);
1059
1060 // handle writebacks resulting from the access here to ensure they
1061 // logically proceed anything happening below
1062 doWritebacksAtomic(writebacks);
1063
1064 if (!satisfied) {
1065 // MISS
1066
1067 PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsWritable());
1068
1069 bool is_forward = (bus_pkt == NULL);
1070
1071 if (is_forward) {
1072 // just forwarding the same request to the next level
1073 // no local cache operation involved
1074 bus_pkt = pkt;
1075 }
1076
1077 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1078 bus_pkt->cmdString(), bus_pkt->getAddr(),
1079 bus_pkt->isSecure() ? "s" : "ns");
1080
1081 #if TRACING_ON
1082 CacheBlk::State old_state = blk ? blk->status : 0;
1083 #endif
1084
1085 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1086
1087 // We are now dealing with the response handling
1088 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
1089 bus_pkt->cmdString(), bus_pkt->getAddr(),
1090 bus_pkt->isSecure() ? "s" : "ns",
1091 old_state);
1092
1093 // If packet was a forward, the response (if any) is already
1094 // in place in the bus_pkt == pkt structure, so we don't need
1095 // to do anything. Otherwise, use the separate bus_pkt to
1096 // generate response to pkt and then delete it.
1097 if (!is_forward) {
1098 if (pkt->needsResponse()) {
1099 assert(bus_pkt->isResponse());
1100 if (bus_pkt->isError()) {
1101 pkt->makeAtomicResponse();
1102 pkt->copyError(bus_pkt);
1103 } else if (pkt->cmd == MemCmd::InvalidateReq) {
1104 if (blk) {
1105 // invalidate response to a cache that received
1106 // an invalidate request
1107 satisfyCpuSideRequest(pkt, blk);
1108 }
1109 } else if (pkt->cmd == MemCmd::WriteLineReq) {
1110 // note the use of pkt, not bus_pkt here.
1111
1112 // write-line request to the cache that promoted
1113 // the write to a whole line
1114 blk = handleFill(pkt, blk, writebacks,
1115 allocOnFill(pkt->cmd));
1116 satisfyCpuSideRequest(pkt, blk);
1117 } else if (bus_pkt->isRead() ||
1118 bus_pkt->cmd == MemCmd::UpgradeResp) {
1119 // we're updating cache state to allow us to
1120 // satisfy the upstream request from the cache
1121 blk = handleFill(bus_pkt, blk, writebacks,
1122 allocOnFill(pkt->cmd));
1123 satisfyCpuSideRequest(pkt, blk);
1124 } else {
1125 // we're satisfying the upstream request without
1126 // modifying cache state, e.g., a write-through
1127 pkt->makeAtomicResponse();
1128 }
1129 }
1130 delete bus_pkt;
1131 }
1132 }
1133
1134 // Note that we don't invoke the prefetcher at all in atomic mode.
1135 // It's not clear how to do it properly, particularly for
1136 // prefetchers that aggressively generate prefetch candidates and
1137 // rely on bandwidth contention to throttle them; these will tend
1138 // to pollute the cache in atomic mode since there is no bandwidth
1139 // contention. If we ever do want to enable prefetching in atomic
1140 // mode, though, this is the place to do it... see timingAccess()
1141 // for an example (though we'd want to issue the prefetch(es)
1142 // immediately rather than calling requestMemSideBus() as we do
1143 // there).
1144
1145 // do any writebacks resulting from the response handling
1146 doWritebacksAtomic(writebacks);
1147
1148 // if we used temp block, check to see if its valid and if so
1149 // clear it out, but only do so after the call to recvAtomic is
1150 // finished so that any downstream observers (such as a snoop
1151 // filter), first see the fill, and only then see the eviction
1152 if (blk == tempBlock && tempBlock->isValid()) {
1153 // the atomic CPU calls recvAtomic for fetch and load/store
1154 // sequentuially, and we may already have a tempBlock
1155 // writeback from the fetch that we have not yet sent
1156 if (tempBlockWriteback) {
1157 // if that is the case, write the prevoius one back, and
1158 // do not schedule any new event
1159 writebackTempBlockAtomic();
1160 } else {
1161 // the writeback/clean eviction happens after the call to
1162 // recvAtomic has finished (but before any successive
1163 // calls), so that the response handling from the fill is
1164 // allowed to happen first
1165 schedule(writebackTempBlockAtomicEvent, curTick());
1166 }
1167
1168 tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1169 writebackBlk(blk) : cleanEvictBlk(blk);
1170 blk->invalidate();
1171 }
1172
1173 if (pkt->needsResponse()) {
1174 pkt->makeAtomicResponse();
1175 }
1176
1177 return lat * clockPeriod();
1178 }
1179
1180
1181 void
1182 Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1183 {
1184 if (system->bypassCaches()) {
1185 // Packets from the memory side are snoop request and
1186 // shouldn't happen in bypass mode.
1187 assert(fromCpuSide);
1188
1189 // The cache should be flushed if we are in cache bypass mode,
1190 // so we don't need to check if we need to update anything.
1191 memSidePort->sendFunctional(pkt);
1192 return;
1193 }
1194
1195 Addr blk_addr = blockAlign(pkt->getAddr());
1196 bool is_secure = pkt->isSecure();
1197 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1198 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1199
1200 pkt->pushLabel(name());
1201
1202 CacheBlkPrintWrapper cbpw(blk);
1203
1204 // Note that just because an L2/L3 has valid data doesn't mean an
1205 // L1 doesn't have a more up-to-date modified copy that still
1206 // needs to be found. As a result we always update the request if
1207 // we have it, but only declare it satisfied if we are the owner.
1208
1209 // see if we have data at all (owned or otherwise)
1210 bool have_data = blk && blk->isValid()
1211 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1212 blk->data);
1213
1214 // data we have is dirty if marked as such or if we have an
1215 // in-service MSHR that is pending a modified line
1216 bool have_dirty =
1217 have_data && (blk->isDirty() ||
1218 (mshr && mshr->inService && mshr->isPendingModified()));
1219
1220 bool done = have_dirty
1221 || cpuSidePort->checkFunctional(pkt)
1222 || mshrQueue.checkFunctional(pkt, blk_addr)
1223 || writeBuffer.checkFunctional(pkt, blk_addr)
1224 || memSidePort->checkFunctional(pkt);
1225
1226 DPRINTF(CacheVerbose, "functional %s %#llx (%s) %s%s%s\n",
1227 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1228 (blk && blk->isValid()) ? "valid " : "",
1229 have_data ? "data " : "", done ? "done " : "");
1230
1231 // We're leaving the cache, so pop cache->name() label
1232 pkt->popLabel();
1233
1234 if (done) {
1235 pkt->makeResponse();
1236 } else {
1237 // if it came as a request from the CPU side then make sure it
1238 // continues towards the memory side
1239 if (fromCpuSide) {
1240 memSidePort->sendFunctional(pkt);
1241 } else if (forwardSnoops && cpuSidePort->isSnooping()) {
1242 // if it came from the memory side, it must be a snoop request
1243 // and we should only forward it if we are forwarding snoops
1244 cpuSidePort->sendFunctionalSnoop(pkt);
1245 }
1246 }
1247 }
1248
1249
1250 /////////////////////////////////////////////////////
1251 //
1252 // Response handling: responses from the memory side
1253 //
1254 /////////////////////////////////////////////////////
1255
1256
1257 void
1258 Cache::recvTimingResp(PacketPtr pkt)
1259 {
1260 assert(pkt->isResponse());
1261
1262 // all header delay should be paid for by the crossbar, unless
1263 // this is a prefetch response from above
1264 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1265 "%s saw a non-zero packet delay\n", name());
1266
1267 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
1268 bool is_error = pkt->isError();
1269
1270 assert(mshr);
1271
1272 if (is_error) {
1273 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1274 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1275 pkt->cmdString());
1276 }
1277
1278 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1279 pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1280 pkt->isSecure() ? "s" : "ns");
1281
1282 MSHRQueue *mq = mshr->queue;
1283 bool wasFull = mq->isFull();
1284
1285 if (mshr == noTargetMSHR) {
1286 // we always clear at least one target
1287 clearBlocked(Blocked_NoTargets);
1288 noTargetMSHR = NULL;
1289 }
1290
1291 // Initial target is used just for stats
1292 MSHR::Target *initial_tgt = mshr->getTarget();
1293 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1294 Tick miss_latency = curTick() - initial_tgt->recvTime;
1295 PacketList writebacks;
1296 // We need forward_time here because we have a call of
1297 // allocateWriteBuffer() that need this parameter to specify the
1298 // time to request the bus. In this case we use forward latency
1299 // because there is a writeback. We pay also here for headerDelay
1300 // that is charged of bus latencies if the packet comes from the
1301 // bus.
1302 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1303
1304 if (pkt->req->isUncacheable()) {
1305 assert(pkt->req->masterId() < system->maxMasters());
1306 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1307 miss_latency;
1308 } else {
1309 assert(pkt->req->masterId() < system->maxMasters());
1310 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1311 miss_latency;
1312 }
1313
1314 // upgrade deferred targets if the response has no sharers, and is
1315 // thus passing writable
1316 if (!pkt->hasSharers()) {
1317 mshr->promoteWritable();
1318 }
1319
1320 bool is_fill = !mshr->isForward &&
1321 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1322
1323 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1324
1325 if (is_fill && !is_error) {
1326 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1327 pkt->getAddr());
1328
1329 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill);
1330 assert(blk != NULL);
1331 }
1332
1333 // allow invalidation responses originating from write-line
1334 // requests to be discarded
1335 bool is_invalidate = pkt->isInvalidate();
1336
1337 // First offset for critical word first calculations
1338 int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1339
1340 while (mshr->hasTargets()) {
1341 MSHR::Target *target = mshr->getTarget();
1342 Packet *tgt_pkt = target->pkt;
1343
1344 switch (target->source) {
1345 case MSHR::Target::FromCPU:
1346 Tick completion_time;
1347 // Here we charge on completion_time the delay of the xbar if the
1348 // packet comes from it, charged on headerDelay.
1349 completion_time = pkt->headerDelay;
1350
1351 // Software prefetch handling for cache closest to core
1352 if (tgt_pkt->cmd.isSWPrefetch()) {
1353 // a software prefetch would have already been ack'd immediately
1354 // with dummy data so the core would be able to retire it.
1355 // this request completes right here, so we deallocate it.
1356 delete tgt_pkt->req;
1357 delete tgt_pkt;
1358 break; // skip response
1359 }
1360
1361 // unlike the other packet flows, where data is found in other
1362 // caches or memory and brought back, write-line requests always
1363 // have the data right away, so the above check for "is fill?"
1364 // cannot actually be determined until examining the stored MSHR
1365 // state. We "catch up" with that logic here, which is duplicated
1366 // from above.
1367 if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1368 assert(!is_error);
1369 // we got the block in a writable state, so promote
1370 // any deferred targets if possible
1371 mshr->promoteWritable();
1372 // NB: we use the original packet here and not the response!
1373 blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill);
1374 assert(blk != NULL);
1375
1376 // treat as a fill, and discard the invalidation
1377 // response
1378 is_fill = true;
1379 is_invalidate = false;
1380 }
1381
1382 if (is_fill) {
1383 satisfyCpuSideRequest(tgt_pkt, blk,
1384 true, mshr->hasPostDowngrade());
1385
1386 // How many bytes past the first request is this one
1387 int transfer_offset =
1388 tgt_pkt->getOffset(blkSize) - initial_offset;
1389 if (transfer_offset < 0) {
1390 transfer_offset += blkSize;
1391 }
1392
1393 // If not critical word (offset) return payloadDelay.
1394 // responseLatency is the latency of the return path
1395 // from lower level caches/memory to an upper level cache or
1396 // the core.
1397 completion_time += clockEdge(responseLatency) +
1398 (transfer_offset ? pkt->payloadDelay : 0);
1399
1400 assert(!tgt_pkt->req->isUncacheable());
1401
1402 assert(tgt_pkt->req->masterId() < system->maxMasters());
1403 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1404 completion_time - target->recvTime;
1405 } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1406 // failed StoreCond upgrade
1407 assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1408 tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1409 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1410 // responseLatency is the latency of the return path
1411 // from lower level caches/memory to an upper level cache or
1412 // the core.
1413 completion_time += clockEdge(responseLatency) +
1414 pkt->payloadDelay;
1415 tgt_pkt->req->setExtraData(0);
1416 } else {
1417 // not a cache fill, just forwarding response
1418 // responseLatency is the latency of the return path
1419 // from lower level cahces/memory to the core.
1420 completion_time += clockEdge(responseLatency) +
1421 pkt->payloadDelay;
1422 if (pkt->isRead() && !is_error) {
1423 // sanity check
1424 assert(pkt->getAddr() == tgt_pkt->getAddr());
1425 assert(pkt->getSize() >= tgt_pkt->getSize());
1426
1427 tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1428 }
1429 }
1430 tgt_pkt->makeTimingResponse();
1431 // if this packet is an error copy that to the new packet
1432 if (is_error)
1433 tgt_pkt->copyError(pkt);
1434 if (tgt_pkt->cmd == MemCmd::ReadResp &&
1435 (is_invalidate || mshr->hasPostInvalidate())) {
1436 // If intermediate cache got ReadRespWithInvalidate,
1437 // propagate that. Response should not have
1438 // isInvalidate() set otherwise.
1439 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1440 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1441 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1442 }
1443 // Reset the bus additional time as it is now accounted for
1444 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1445 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1446 break;
1447
1448 case MSHR::Target::FromPrefetcher:
1449 assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1450 if (blk)
1451 blk->status |= BlkHWPrefetched;
1452 delete tgt_pkt->req;
1453 delete tgt_pkt;
1454 break;
1455
1456 case MSHR::Target::FromSnoop:
1457 // I don't believe that a snoop can be in an error state
1458 assert(!is_error);
1459 // response to snoop request
1460 DPRINTF(Cache, "processing deferred snoop...\n");
1461 assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1462 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1463 break;
1464
1465 default:
1466 panic("Illegal target->source enum %d\n", target->source);
1467 }
1468
1469 mshr->popTarget();
1470 }
1471
1472 if (blk && blk->isValid()) {
1473 // an invalidate response stemming from a write line request
1474 // should not invalidate the block, so check if the
1475 // invalidation should be discarded
1476 if (is_invalidate || mshr->hasPostInvalidate()) {
1477 invalidateBlock(blk);
1478 } else if (mshr->hasPostDowngrade()) {
1479 blk->status &= ~BlkWritable;
1480 }
1481 }
1482
1483 if (mshr->promoteDeferredTargets()) {
1484 // avoid later read getting stale data while write miss is
1485 // outstanding.. see comment in timingAccess()
1486 if (blk) {
1487 blk->status &= ~BlkReadable;
1488 }
1489 mq = mshr->queue;
1490 mq->markPending(mshr);
1491 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1492 } else {
1493 mq->deallocate(mshr);
1494 if (wasFull && !mq->isFull()) {
1495 clearBlocked((BlockedCause)mq->index);
1496 }
1497
1498 // Request the bus for a prefetch if this deallocation freed enough
1499 // MSHRs for a prefetch to take place
1500 if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) {
1501 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1502 clockEdge());
1503 if (next_pf_time != MaxTick)
1504 schedMemSideSendEvent(next_pf_time);
1505 }
1506 }
1507 // reset the xbar additional timinig as it is now accounted for
1508 pkt->headerDelay = pkt->payloadDelay = 0;
1509
1510 // copy writebacks to write buffer
1511 doWritebacks(writebacks, forward_time);
1512
1513 // if we used temp block, check to see if its valid and then clear it out
1514 if (blk == tempBlock && tempBlock->isValid()) {
1515 // We use forwardLatency here because we are copying
1516 // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1517 // allocate an internal buffer and to schedule an event to the
1518 // queued port.
1519 if (blk->isDirty() || writebackClean) {
1520 PacketPtr wbPkt = writebackBlk(blk);
1521 allocateWriteBuffer(wbPkt, forward_time);
1522 // Set BLOCK_CACHED flag if cached above.
1523 if (isCachedAbove(wbPkt))
1524 wbPkt->setBlockCached();
1525 } else {
1526 PacketPtr wcPkt = cleanEvictBlk(blk);
1527 // Check to see if block is cached above. If not allocate
1528 // write buffer
1529 if (isCachedAbove(wcPkt))
1530 delete wcPkt;
1531 else
1532 allocateWriteBuffer(wcPkt, forward_time);
1533 }
1534 blk->invalidate();
1535 }
1536
1537 DPRINTF(CacheVerbose, "Leaving %s with %s for addr %#llx\n", __func__,
1538 pkt->cmdString(), pkt->getAddr());
1539 delete pkt;
1540 }
1541
1542 PacketPtr
1543 Cache::writebackBlk(CacheBlk *blk)
1544 {
1545 chatty_assert(!isReadOnly || writebackClean,
1546 "Writeback from read-only cache");
1547 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1548
1549 writebacks[Request::wbMasterId]++;
1550
1551 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1552 blkSize, 0, Request::wbMasterId);
1553 if (blk->isSecure())
1554 req->setFlags(Request::SECURE);
1555
1556 req->taskId(blk->task_id);
1557 blk->task_id= ContextSwitchTaskId::Unknown;
1558 blk->tickInserted = curTick();
1559
1560 PacketPtr pkt =
1561 new Packet(req, blk->isDirty() ?
1562 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1563
1564 DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n",
1565 pkt->getAddr(), blk->isWritable(), blk->isDirty());
1566
1567 if (blk->isWritable()) {
1568 // not asserting shared means we pass the block in modified
1569 // state, mark our own block non-writeable
1570 blk->status &= ~BlkWritable;
1571 } else {
1572 // we are in the Owned state, tell the receiver
1573 pkt->setHasSharers();
1574 }
1575
1576 // make sure the block is not marked dirty
1577 blk->status &= ~BlkDirty;
1578
1579 pkt->allocate();
1580 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1581
1582 return pkt;
1583 }
1584
1585 PacketPtr
1586 Cache::cleanEvictBlk(CacheBlk *blk)
1587 {
1588 assert(!writebackClean);
1589 assert(blk && blk->isValid() && !blk->isDirty());
1590 // Creating a zero sized write, a message to the snoop filter
1591 Request *req =
1592 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1593 Request::wbMasterId);
1594 if (blk->isSecure())
1595 req->setFlags(Request::SECURE);
1596
1597 req->taskId(blk->task_id);
1598 blk->task_id = ContextSwitchTaskId::Unknown;
1599 blk->tickInserted = curTick();
1600
1601 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1602 pkt->allocate();
1603 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1604 pkt->req->isInstFetch() ? " (ifetch)" : "",
1605 pkt->getAddr());
1606
1607 return pkt;
1608 }
1609
1610 void
1611 Cache::memWriteback()
1612 {
1613 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1614 tags->forEachBlk(visitor);
1615 }
1616
1617 void
1618 Cache::memInvalidate()
1619 {
1620 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1621 tags->forEachBlk(visitor);
1622 }
1623
1624 bool
1625 Cache::isDirty() const
1626 {
1627 CacheBlkIsDirtyVisitor visitor;
1628 tags->forEachBlk(visitor);
1629
1630 return visitor.isDirty();
1631 }
1632
1633 bool
1634 Cache::writebackVisitor(CacheBlk &blk)
1635 {
1636 if (blk.isDirty()) {
1637 assert(blk.isValid());
1638
1639 Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1640 blkSize, 0, Request::funcMasterId);
1641 request.taskId(blk.task_id);
1642
1643 Packet packet(&request, MemCmd::WriteReq);
1644 packet.dataStatic(blk.data);
1645
1646 memSidePort->sendFunctional(&packet);
1647
1648 blk.status &= ~BlkDirty;
1649 }
1650
1651 return true;
1652 }
1653
1654 bool
1655 Cache::invalidateVisitor(CacheBlk &blk)
1656 {
1657
1658 if (blk.isDirty())
1659 warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1660
1661 if (blk.isValid()) {
1662 assert(!blk.isDirty());
1663 tags->invalidate(&blk);
1664 blk.invalidate();
1665 }
1666
1667 return true;
1668 }
1669
1670 CacheBlk*
1671 Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1672 {
1673 CacheBlk *blk = tags->findVictim(addr);
1674
1675 // It is valid to return NULL if there is no victim
1676 if (!blk)
1677 return nullptr;
1678
1679 if (blk->isValid()) {
1680 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1681 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1682 if (repl_mshr) {
1683 // must be an outstanding upgrade request
1684 // on a block we're about to replace...
1685 assert(!blk->isWritable() || blk->isDirty());
1686 assert(repl_mshr->needsWritable());
1687 // too hard to replace block with transient state
1688 // allocation failed, block not inserted
1689 return NULL;
1690 } else {
1691 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
1692 repl_addr, blk->isSecure() ? "s" : "ns",
1693 addr, is_secure ? "s" : "ns",
1694 blk->isDirty() ? "writeback" : "clean");
1695
1696 // Will send up Writeback/CleanEvict snoops via isCachedAbove
1697 // when pushing this writeback list into the write buffer.
1698 if (blk->isDirty() || writebackClean) {
1699 // Save writeback packet for handling by caller
1700 writebacks.push_back(writebackBlk(blk));
1701 } else {
1702 writebacks.push_back(cleanEvictBlk(blk));
1703 }
1704 }
1705 }
1706
1707 return blk;
1708 }
1709
1710 void
1711 Cache::invalidateBlock(CacheBlk *blk)
1712 {
1713 if (blk != tempBlock)
1714 tags->invalidate(blk);
1715 blk->invalidate();
1716 }
1717
1718 // Note that the reason we return a list of writebacks rather than
1719 // inserting them directly in the write buffer is that this function
1720 // is called by both atomic and timing-mode accesses, and in atomic
1721 // mode we don't mess with the write buffer (we just perform the
1722 // writebacks atomically once the original request is complete).
1723 CacheBlk*
1724 Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1725 bool allocate)
1726 {
1727 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1728 Addr addr = pkt->getAddr();
1729 bool is_secure = pkt->isSecure();
1730 #if TRACING_ON
1731 CacheBlk::State old_state = blk ? blk->status : 0;
1732 #endif
1733
1734 // When handling a fill, discard any CleanEvicts for the
1735 // same address in write buffer.
1736 Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr());
1737 std::vector<MSHR *> M5_VAR_USED wbs;
1738 assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs));
1739
1740 if (blk == NULL) {
1741 // better have read new data...
1742 assert(pkt->hasData());
1743
1744 // only read responses and write-line requests have data;
1745 // note that we don't write the data here for write-line - that
1746 // happens in the subsequent satisfyCpuSideRequest.
1747 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1748
1749 // need to do a replacement if allocating, otherwise we stick
1750 // with the temporary storage
1751 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : NULL;
1752
1753 if (blk == NULL) {
1754 // No replaceable block or a mostly exclusive
1755 // cache... just use temporary storage to complete the
1756 // current request and then get rid of it
1757 assert(!tempBlock->isValid());
1758 blk = tempBlock;
1759 tempBlock->set = tags->extractSet(addr);
1760 tempBlock->tag = tags->extractTag(addr);
1761 // @todo: set security state as well...
1762 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1763 is_secure ? "s" : "ns");
1764 } else {
1765 tags->insertBlock(pkt, blk);
1766 }
1767
1768 // we should never be overwriting a valid block
1769 assert(!blk->isValid());
1770 } else {
1771 // existing block... probably an upgrade
1772 assert(blk->tag == tags->extractTag(addr));
1773 // either we're getting new data or the block should already be valid
1774 assert(pkt->hasData() || blk->isValid());
1775 // don't clear block status... if block is already dirty we
1776 // don't want to lose that
1777 }
1778
1779 if (is_secure)
1780 blk->status |= BlkSecure;
1781 blk->status |= BlkValid | BlkReadable;
1782
1783 // sanity check for whole-line writes, which should always be
1784 // marked as writable as part of the fill, and then later marked
1785 // dirty as part of satisfyCpuSideRequest
1786 if (pkt->cmd == MemCmd::WriteLineReq) {
1787 assert(!pkt->hasSharers());
1788 // at the moment other caches do not respond to the
1789 // invalidation requests corresponding to a whole-line write
1790 assert(!pkt->cacheResponding());
1791 }
1792
1793 // here we deal with setting the appropriate state of the line,
1794 // and we start by looking at the hasSharers flag, and ignore the
1795 // cacheResponding flag (normally signalling dirty data) if the
1796 // packet has sharers, thus the line is never allocated as Owned
1797 // (dirty but not writable), and always ends up being either
1798 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1799 // for more details
1800 if (!pkt->hasSharers()) {
1801 // we could get a writable line from memory (rather than a
1802 // cache) even in a read-only cache, note that we set this bit
1803 // even for a read-only cache, possibly revisit this decision
1804 blk->status |= BlkWritable;
1805
1806 // check if we got this via cache-to-cache transfer (i.e., from a
1807 // cache that had the block in Modified or Owned state)
1808 if (pkt->cacheResponding()) {
1809 // we got the block in Modified state, and invalidated the
1810 // owners copy
1811 blk->status |= BlkDirty;
1812
1813 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1814 "in read-only cache %s\n", name());
1815 }
1816 }
1817
1818 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1819 addr, is_secure ? "s" : "ns", old_state, blk->print());
1820
1821 // if we got new data, copy it in (checking for a read response
1822 // and a response that has data is the same in the end)
1823 if (pkt->isRead()) {
1824 // sanity checks
1825 assert(pkt->hasData());
1826 assert(pkt->getSize() == blkSize);
1827
1828 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1829 }
1830 // We pay for fillLatency here.
1831 blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1832 pkt->payloadDelay;
1833
1834 return blk;
1835 }
1836
1837
1838 /////////////////////////////////////////////////////
1839 //
1840 // Snoop path: requests coming in from the memory side
1841 //
1842 /////////////////////////////////////////////////////
1843
1844 void
1845 Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1846 bool already_copied, bool pending_inval)
1847 {
1848 // sanity check
1849 assert(req_pkt->isRequest());
1850 assert(req_pkt->needsResponse());
1851
1852 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1853 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1854 // timing-mode snoop responses require a new packet, unless we
1855 // already made a copy...
1856 PacketPtr pkt = req_pkt;
1857 if (!already_copied)
1858 // do not clear flags, and allocate space for data if the
1859 // packet needs it (the only packets that carry data are read
1860 // responses)
1861 pkt = new Packet(req_pkt, false, req_pkt->isRead());
1862
1863 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1864 pkt->hasSharers());
1865 pkt->makeTimingResponse();
1866 if (pkt->isRead()) {
1867 pkt->setDataFromBlock(blk_data, blkSize);
1868 }
1869 if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1870 // Assume we defer a response to a read from a far-away cache
1871 // A, then later defer a ReadExcl from a cache B on the same
1872 // bus as us. We'll assert cacheResponding in both cases, but
1873 // in the latter case cacheResponding will keep the
1874 // invalidation from reaching cache A. This special response
1875 // tells cache A that it gets the block to satisfy its read,
1876 // but must immediately invalidate it.
1877 pkt->cmd = MemCmd::ReadRespWithInvalidate;
1878 }
1879 // Here we consider forward_time, paying for just forward latency and
1880 // also charging the delay provided by the xbar.
1881 // forward_time is used as send_time in next allocateWriteBuffer().
1882 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1883 // Here we reset the timing of the packet.
1884 pkt->headerDelay = pkt->payloadDelay = 0;
1885 DPRINTF(CacheVerbose,
1886 "%s created response: %s addr %#llx size %d tick: %lu\n",
1887 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1888 forward_time);
1889 memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1890 }
1891
1892 uint32_t
1893 Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1894 bool is_deferred, bool pending_inval)
1895 {
1896 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
1897 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1898 // deferred snoops can only happen in timing mode
1899 assert(!(is_deferred && !is_timing));
1900 // pending_inval only makes sense on deferred snoops
1901 assert(!(pending_inval && !is_deferred));
1902 assert(pkt->isRequest());
1903
1904 // the packet may get modified if we or a forwarded snooper
1905 // responds in atomic mode, so remember a few things about the
1906 // original packet up front
1907 bool invalidate = pkt->isInvalidate();
1908 bool M5_VAR_USED needs_writable = pkt->needsWritable();
1909
1910 // at the moment we could get an uncacheable write which does not
1911 // have the invalidate flag, and we need a suitable way of dealing
1912 // with this case
1913 panic_if(invalidate && pkt->req->isUncacheable(),
1914 "%s got an invalidating uncacheable snoop request %s to %#llx",
1915 name(), pkt->cmdString(), pkt->getAddr());
1916
1917 uint32_t snoop_delay = 0;
1918
1919 if (forwardSnoops) {
1920 // first propagate snoop upward to see if anyone above us wants to
1921 // handle it. save & restore packet src since it will get
1922 // rewritten to be relative to cpu-side bus (if any)
1923 bool alreadyResponded = pkt->cacheResponding();
1924 if (is_timing) {
1925 // copy the packet so that we can clear any flags before
1926 // forwarding it upwards, we also allocate data (passing
1927 // the pointer along in case of static data), in case
1928 // there is a snoop hit in upper levels
1929 Packet snoopPkt(pkt, true, true);
1930 snoopPkt.setExpressSnoop();
1931 // the snoop packet does not need to wait any additional
1932 // time
1933 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1934 cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1935
1936 // add the header delay (including crossbar and snoop
1937 // delays) of the upward snoop to the snoop delay for this
1938 // cache
1939 snoop_delay += snoopPkt.headerDelay;
1940
1941 if (snoopPkt.cacheResponding()) {
1942 // cache-to-cache response from some upper cache
1943 assert(!alreadyResponded);
1944 pkt->setCacheResponding();
1945 }
1946 // upstream cache has the block, or has an outstanding
1947 // MSHR, pass the flag on
1948 if (snoopPkt.hasSharers()) {
1949 pkt->setHasSharers();
1950 }
1951 // If this request is a prefetch or clean evict and an upper level
1952 // signals block present, make sure to propagate the block
1953 // presence to the requester.
1954 if (snoopPkt.isBlockCached()) {
1955 pkt->setBlockCached();
1956 }
1957 } else {
1958 cpuSidePort->sendAtomicSnoop(pkt);
1959 if (!alreadyResponded && pkt->cacheResponding()) {
1960 // cache-to-cache response from some upper cache:
1961 // forward response to original requester
1962 assert(pkt->isResponse());
1963 }
1964 }
1965 }
1966
1967 if (!blk || !blk->isValid()) {
1968 DPRINTF(CacheVerbose, "%s snoop miss for %s addr %#llx size %d\n",
1969 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1970 return snoop_delay;
1971 } else {
1972 DPRINTF(Cache, "%s snoop hit for %s addr %#llx size %d, "
1973 "old state is %s\n", __func__, pkt->cmdString(),
1974 pkt->getAddr(), pkt->getSize(), blk->print());
1975 }
1976
1977 chatty_assert(!(isReadOnly && blk->isDirty()),
1978 "Should never have a dirty block in a read-only cache %s\n",
1979 name());
1980
1981 // We may end up modifying both the block state and the packet (if
1982 // we respond in atomic mode), so just figure out what to do now
1983 // and then do it later. If we find dirty data while snooping for
1984 // an invalidate, we don't need to send a response. The
1985 // invalidation itself is taken care of below.
1986 bool respond = blk->isDirty() && pkt->needsResponse() &&
1987 pkt->cmd != MemCmd::InvalidateReq;
1988 bool have_writable = blk->isWritable();
1989
1990 // Invalidate any prefetch's from below that would strip write permissions
1991 // MemCmd::HardPFReq is only observed by upstream caches. After missing
1992 // above and in it's own cache, a new MemCmd::ReadReq is created that
1993 // downstream caches observe.
1994 if (pkt->mustCheckAbove()) {
1995 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
1996 " lower cache\n", pkt->getAddr(), pkt->cmdString());
1997 pkt->setBlockCached();
1998 return snoop_delay;
1999 }
2000
2001 if (pkt->isRead() && !invalidate) {
2002 // reading without requiring the line in a writable state
2003 assert(!needs_writable);
2004 pkt->setHasSharers();
2005
2006 // if the requesting packet is uncacheable, retain the line in
2007 // the current state, otherwhise unset the writable flag,
2008 // which means we go from Modified to Owned (and will respond
2009 // below), remain in Owned (and will respond below), from
2010 // Exclusive to Shared, or remain in Shared
2011 if (!pkt->req->isUncacheable())
2012 blk->status &= ~BlkWritable;
2013 }
2014
2015 if (respond) {
2016 // prevent anyone else from responding, cache as well as
2017 // memory, and also prevent any memory from even seeing the
2018 // request
2019 pkt->setCacheResponding();
2020 if (have_writable) {
2021 // inform the cache hierarchy that this cache had the line
2022 // in the Modified state so that we avoid unnecessary
2023 // invalidations (see Packet::setResponderHadWritable)
2024 pkt->setResponderHadWritable();
2025
2026 // in the case of an uncacheable request there is no point
2027 // in setting the responderHadWritable flag, but since the
2028 // recipient does not care there is no harm in doing so
2029 } else {
2030 // if the packet has needsWritable set we invalidate our
2031 // copy below and all other copies will be invalidates
2032 // through express snoops, and if needsWritable is not set
2033 // we already called setHasSharers above
2034 }
2035
2036 // if we are returning a writable and dirty (Modified) line,
2037 // we should be invalidating the line
2038 panic_if(!invalidate && !pkt->hasSharers(),
2039 "%s is passing a Modified line through %s to %#llx, "
2040 "but keeping the block",
2041 name(), pkt->cmdString(), pkt->getAddr());
2042
2043 if (is_timing) {
2044 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2045 } else {
2046 pkt->makeAtomicResponse();
2047 // packets such as upgrades do not actually have any data
2048 // payload
2049 if (pkt->hasData())
2050 pkt->setDataFromBlock(blk->data, blkSize);
2051 }
2052 }
2053
2054 if (!respond && is_timing && is_deferred) {
2055 // if it's a deferred timing snoop to which we are not
2056 // responding, then we've made a copy of both the request and
2057 // the packet, delete them here
2058 assert(pkt->needsResponse());
2059 delete pkt->req;
2060 delete pkt;
2061 }
2062
2063 // Do this last in case it deallocates block data or something
2064 // like that
2065 if (invalidate) {
2066 invalidateBlock(blk);
2067 }
2068
2069 DPRINTF(Cache, "new state is %s\n", blk->print());
2070
2071 return snoop_delay;
2072 }
2073
2074
2075 void
2076 Cache::recvTimingSnoopReq(PacketPtr pkt)
2077 {
2078 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
2079 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
2080
2081 // Snoops shouldn't happen when bypassing caches
2082 assert(!system->bypassCaches());
2083
2084 // no need to snoop requests that are not in range
2085 if (!inRange(pkt->getAddr())) {
2086 return;
2087 }
2088
2089 bool is_secure = pkt->isSecure();
2090 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2091
2092 Addr blk_addr = blockAlign(pkt->getAddr());
2093 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2094
2095 // Update the latency cost of the snoop so that the crossbar can
2096 // account for it. Do not overwrite what other neighbouring caches
2097 // have already done, rather take the maximum. The update is
2098 // tentative, for cases where we return before an upward snoop
2099 // happens below.
2100 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2101 lookupLatency * clockPeriod());
2102
2103 // Inform request(Prefetch, CleanEvict or Writeback) from below of
2104 // MSHR hit, set setBlockCached.
2105 if (mshr && pkt->mustCheckAbove()) {
2106 DPRINTF(Cache, "Setting block cached for %s from"
2107 "lower cache on mshr hit %#x\n",
2108 pkt->cmdString(), pkt->getAddr());
2109 pkt->setBlockCached();
2110 return;
2111 }
2112
2113 // Let the MSHR itself track the snoop and decide whether we want
2114 // to go ahead and do the regular cache snoop
2115 if (mshr && mshr->handleSnoop(pkt, order++)) {
2116 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2117 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2118 mshr->print());
2119
2120 if (mshr->getNumTargets() > numTarget)
2121 warn("allocating bonus target for snoop"); //handle later
2122 return;
2123 }
2124
2125 //We also need to check the writeback buffers and handle those
2126 std::vector<MSHR *> writebacks;
2127 if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) {
2128 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2129 pkt->getAddr(), is_secure ? "s" : "ns");
2130
2131 // Look through writebacks for any cachable writes.
2132 // We should only ever find a single match
2133 assert(writebacks.size() == 1);
2134 MSHR *wb_entry = writebacks[0];
2135 // Expect to see only Writebacks and/or CleanEvicts here, both of
2136 // which should not be generated for uncacheable data.
2137 assert(!wb_entry->isUncacheable());
2138 // There should only be a single request responsible for generating
2139 // Writebacks/CleanEvicts.
2140 assert(wb_entry->getNumTargets() == 1);
2141 PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2142 assert(wb_pkt->isEviction());
2143
2144 if (pkt->isEviction()) {
2145 // if the block is found in the write queue, set the BLOCK_CACHED
2146 // flag for Writeback/CleanEvict snoop. On return the snoop will
2147 // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2148 // any CleanEvicts from travelling down the memory hierarchy.
2149 pkt->setBlockCached();
2150 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2151 " %#x\n", pkt->cmdString(), pkt->getAddr());
2152 return;
2153 }
2154
2155 if (wb_pkt->cmd == MemCmd::WritebackDirty) {
2156 // we have dirty data, and so will proceed to respond
2157 pkt->setCacheResponding();
2158 if (!pkt->needsWritable()) {
2159 // the packet should end up in the Shared state (non
2160 // writable) on the completion of the fill
2161 pkt->setHasSharers();
2162 // similarly, the writeback is no longer passing
2163 // writeable (the receiving cache should consider the
2164 // block Owned rather than Modified)
2165 wb_pkt->setHasSharers();
2166 } else {
2167 // we need to invalidate our copy. we do that
2168 // below.
2169 assert(pkt->isInvalidate());
2170 }
2171 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2172 false, false);
2173 } else {
2174 // on hitting a clean writeback we play it safe and do not
2175 // provide a response, the block may be dirty somewhere
2176 // else
2177 assert(wb_pkt->isCleanEviction());
2178 // The cache technically holds the block until the
2179 // corresponding message reaches the crossbar
2180 // below. Therefore when a snoop encounters a CleanEvict
2181 // or WritebackClean message we must call
2182 // setHasSharers (just like when it encounters a
2183 // Writeback) to avoid the snoop filter prematurely
2184 // clearing the holder bit in the crossbar below
2185 if (!pkt->needsWritable()) {
2186 pkt->setHasSharers();
2187 // the writeback is no longer passing writeable (the
2188 // receiving cache should consider the block Owned
2189 // rather than Modified)
2190 wb_pkt->setHasSharers();
2191 } else {
2192 assert(pkt->isInvalidate());
2193 }
2194 }
2195
2196 if (pkt->isInvalidate()) {
2197 // Invalidation trumps our writeback... discard here
2198 // Note: markInService will remove entry from writeback buffer.
2199 markInService(wb_entry, false);
2200 delete wb_pkt;
2201 }
2202 }
2203
2204 // If this was a shared writeback, there may still be
2205 // other shared copies above that require invalidation.
2206 // We could be more selective and return here if the
2207 // request is non-exclusive or if the writeback is
2208 // exclusive.
2209 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2210
2211 // Override what we did when we first saw the snoop, as we now
2212 // also have the cost of the upwards snoops to account for
2213 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2214 lookupLatency * clockPeriod());
2215 }
2216
2217 bool
2218 Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2219 {
2220 // Express snoop responses from master to slave, e.g., from L1 to L2
2221 cache->recvTimingSnoopResp(pkt);
2222 return true;
2223 }
2224
2225 Tick
2226 Cache::recvAtomicSnoop(PacketPtr pkt)
2227 {
2228 // Snoops shouldn't happen when bypassing caches
2229 assert(!system->bypassCaches());
2230
2231 // no need to snoop requests that are not in range.
2232 if (!inRange(pkt->getAddr())) {
2233 return 0;
2234 }
2235
2236 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2237 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2238 return snoop_delay + lookupLatency * clockPeriod();
2239 }
2240
2241
2242 MSHR *
2243 Cache::getNextMSHR()
2244 {
2245 // Check both MSHR queue and write buffer for potential requests,
2246 // note that null does not mean there is no request, it could
2247 // simply be that it is not ready
2248 MSHR *miss_mshr = mshrQueue.getNextMSHR();
2249 MSHR *write_mshr = writeBuffer.getNextMSHR();
2250
2251 // If we got a write buffer request ready, first priority is a
2252 // full write buffer, otherwhise we favour the miss requests
2253 if (write_mshr &&
2254 ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) ||
2255 !miss_mshr)) {
2256 // need to search MSHR queue for conflicting earlier miss.
2257 MSHR *conflict_mshr =
2258 mshrQueue.findPending(write_mshr->blkAddr,
2259 write_mshr->isSecure);
2260
2261 if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
2262 // Service misses in order until conflict is cleared.
2263 return conflict_mshr;
2264
2265 // @todo Note that we ignore the ready time of the conflict here
2266 }
2267
2268 // No conflicts; issue write
2269 return write_mshr;
2270 } else if (miss_mshr) {
2271 // need to check for conflicting earlier writeback
2272 MSHR *conflict_mshr =
2273 writeBuffer.findPending(miss_mshr->blkAddr,
2274 miss_mshr->isSecure);
2275 if (conflict_mshr) {
2276 // not sure why we don't check order here... it was in the
2277 // original code but commented out.
2278
2279 // The only way this happens is if we are
2280 // doing a write and we didn't have permissions
2281 // then subsequently saw a writeback (owned got evicted)
2282 // We need to make sure to perform the writeback first
2283 // To preserve the dirty data, then we can issue the write
2284
2285 // should we return write_mshr here instead? I.e. do we
2286 // have to flush writes in order? I don't think so... not
2287 // for Alpha anyway. Maybe for x86?
2288 return conflict_mshr;
2289
2290 // @todo Note that we ignore the ready time of the conflict here
2291 }
2292
2293 // No conflicts; issue read
2294 return miss_mshr;
2295 }
2296
2297 // fall through... no pending requests. Try a prefetch.
2298 assert(!miss_mshr && !write_mshr);
2299 if (prefetcher && mshrQueue.canPrefetch()) {
2300 // If we have a miss queue slot, we can try a prefetch
2301 PacketPtr pkt = prefetcher->getPacket();
2302 if (pkt) {
2303 Addr pf_addr = blockAlign(pkt->getAddr());
2304 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2305 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2306 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2307 // Update statistic on number of prefetches issued
2308 // (hwpf_mshr_misses)
2309 assert(pkt->req->masterId() < system->maxMasters());
2310 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2311
2312 // allocate an MSHR and return it, note
2313 // that we send the packet straight away, so do not
2314 // schedule the send
2315 return allocateMissBuffer(pkt, curTick(), false);
2316 } else {
2317 // free the request and packet
2318 delete pkt->req;
2319 delete pkt;
2320 }
2321 }
2322 }
2323
2324 return NULL;
2325 }
2326
2327 bool
2328 Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2329 {
2330 if (!forwardSnoops)
2331 return false;
2332 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2333 // Writeback snoops into upper level caches to check for copies of the
2334 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2335 // packet, the cache can inform the crossbar below of presence or absence
2336 // of the block.
2337 if (is_timing) {
2338 Packet snoop_pkt(pkt, true, false);
2339 snoop_pkt.setExpressSnoop();
2340 // Assert that packet is either Writeback or CleanEvict and not a
2341 // prefetch request because prefetch requests need an MSHR and may
2342 // generate a snoop response.
2343 assert(pkt->isEviction());
2344 snoop_pkt.senderState = NULL;
2345 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2346 // Writeback/CleanEvict snoops do not generate a snoop response.
2347 assert(!(snoop_pkt.cacheResponding()));
2348 return snoop_pkt.isBlockCached();
2349 } else {
2350 cpuSidePort->sendAtomicSnoop(pkt);
2351 return pkt->isBlockCached();
2352 }
2353 }
2354
2355 PacketPtr
2356 Cache::getTimingPacket()
2357 {
2358 MSHR *mshr = getNextMSHR();
2359
2360 if (mshr == NULL) {
2361 return NULL;
2362 }
2363
2364 // use request from 1st target
2365 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2366 PacketPtr pkt = NULL;
2367
2368 DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__,
2369 tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize());
2370
2371 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2372
2373 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2374 // We need to check the caches above us to verify that
2375 // they don't have a copy of this block in the dirty state
2376 // at the moment. Without this check we could get a stale
2377 // copy from memory that might get used in place of the
2378 // dirty one.
2379 Packet snoop_pkt(tgt_pkt, true, false);
2380 snoop_pkt.setExpressSnoop();
2381 // We are sending this packet upwards, but if it hits we will
2382 // get a snoop response that we end up treating just like a
2383 // normal response, hence it needs the MSHR as its sender
2384 // state
2385 snoop_pkt.senderState = mshr;
2386 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2387
2388 // Check to see if the prefetch was squashed by an upper cache (to
2389 // prevent us from grabbing the line) or if a Check to see if a
2390 // writeback arrived between the time the prefetch was placed in
2391 // the MSHRs and when it was selected to be sent or if the
2392 // prefetch was squashed by an upper cache.
2393
2394 // It is important to check cacheResponding before
2395 // prefetchSquashed. If another cache has committed to
2396 // responding, it will be sending a dirty response which will
2397 // arrive at the MSHR allocated for this request. Checking the
2398 // prefetchSquash first may result in the MSHR being
2399 // prematurely deallocated.
2400 if (snoop_pkt.cacheResponding()) {
2401 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2402 assert(r.second);
2403
2404 // if we are getting a snoop response with no sharers it
2405 // will be allocated as Modified
2406 bool pending_modified_resp = !snoop_pkt.hasSharers();
2407 markInService(mshr, pending_modified_resp);
2408
2409 DPRINTF(Cache, "Upward snoop of prefetch for addr"
2410 " %#x (%s) hit\n",
2411 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2412 return NULL;
2413 }
2414
2415 if (snoop_pkt.isBlockCached() || blk != NULL) {
2416 DPRINTF(Cache, "Block present, prefetch squashed by cache. "
2417 "Deallocating mshr target %#x.\n",
2418 mshr->blkAddr);
2419 // Deallocate the mshr target
2420 if (mshr->queue->forceDeallocateTarget(mshr)) {
2421 // Clear block if this deallocation resulted freed an
2422 // mshr when all had previously been utilized
2423 clearBlocked((BlockedCause)(mshr->queue->index));
2424 }
2425 return NULL;
2426 }
2427 }
2428
2429 if (mshr->isForwardNoResponse()) {
2430 // no response expected, just forward packet as it is
2431 assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL);
2432 pkt = tgt_pkt;
2433 } else {
2434 pkt = getBusPacket(tgt_pkt, blk, mshr->needsWritable());
2435
2436 mshr->isForward = (pkt == NULL);
2437
2438 if (mshr->isForward) {
2439 // not a cache block request, but a response is expected
2440 // make copy of current packet to forward, keep current
2441 // copy for response handling
2442 pkt = new Packet(tgt_pkt, false, true);
2443 if (pkt->isWrite()) {
2444 pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
2445 }
2446 }
2447 }
2448
2449 assert(pkt != NULL);
2450 // play it safe and append (rather than set) the sender state, as
2451 // forwarded packets may already have existing state
2452 pkt->pushSenderState(mshr);
2453 return pkt;
2454 }
2455
2456
2457 Tick
2458 Cache::nextMSHRReadyTime() const
2459 {
2460 Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(),
2461 writeBuffer.nextMSHRReadyTime());
2462
2463 // Don't signal prefetch ready time if no MSHRs available
2464 // Will signal once enoguh MSHRs are deallocated
2465 if (prefetcher && mshrQueue.canPrefetch()) {
2466 nextReady = std::min(nextReady,
2467 prefetcher->nextPrefetchReadyTime());
2468 }
2469
2470 return nextReady;
2471 }
2472
2473 void
2474 Cache::serialize(CheckpointOut &cp) const
2475 {
2476 bool dirty(isDirty());
2477
2478 if (dirty) {
2479 warn("*** The cache still contains dirty data. ***\n");
2480 warn(" Make sure to drain the system using the correct flags.\n");
2481 warn(" This checkpoint will not restore correctly and dirty data in "
2482 "the cache will be lost!\n");
2483 }
2484
2485 // Since we don't checkpoint the data in the cache, any dirty data
2486 // will be lost when restoring from a checkpoint of a system that
2487 // wasn't drained properly. Flag the checkpoint as invalid if the
2488 // cache contains dirty data.
2489 bool bad_checkpoint(dirty);
2490 SERIALIZE_SCALAR(bad_checkpoint);
2491 }
2492
2493 void
2494 Cache::unserialize(CheckpointIn &cp)
2495 {
2496 bool bad_checkpoint;
2497 UNSERIALIZE_SCALAR(bad_checkpoint);
2498 if (bad_checkpoint) {
2499 fatal("Restoring from checkpoints with dirty caches is not supported "
2500 "in the classic memory system. Please remove any caches or "
2501 " drain them properly before taking checkpoints.\n");
2502 }
2503 }
2504
2505 ///////////////
2506 //
2507 // CpuSidePort
2508 //
2509 ///////////////
2510
2511 AddrRangeList
2512 Cache::CpuSidePort::getAddrRanges() const
2513 {
2514 return cache->getAddrRanges();
2515 }
2516
2517 bool
2518 Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2519 {
2520 assert(!cache->system->bypassCaches());
2521
2522 bool success = false;
2523
2524 // always let packets through if an upstream cache has committed
2525 // to responding, even if blocked (we should technically look at
2526 // the isExpressSnoop flag, but it is set by the cache itself, and
2527 // consequently we have to rely on the cacheResponding flag)
2528 if (pkt->cacheResponding()) {
2529 // do not change the current retry state
2530 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2531 assert(bypass_success);
2532 return true;
2533 } else if (blocked || mustSendRetry) {
2534 // either already committed to send a retry, or blocked
2535 success = false;
2536 } else {
2537 // pass it on to the cache, and let the cache decide if we
2538 // have to retry or not
2539 success = cache->recvTimingReq(pkt);
2540 }
2541
2542 // remember if we have to retry
2543 mustSendRetry = !success;
2544 return success;
2545 }
2546
2547 Tick
2548 Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2549 {
2550 return cache->recvAtomic(pkt);
2551 }
2552
2553 void
2554 Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2555 {
2556 // functional request
2557 cache->functionalAccess(pkt, true);
2558 }
2559
2560 Cache::
2561 CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2562 const std::string &_label)
2563 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2564 {
2565 }
2566
2567 Cache*
2568 CacheParams::create()
2569 {
2570 assert(tags);
2571
2572 return new Cache(this);
2573 }
2574 ///////////////
2575 //
2576 // MemSidePort
2577 //
2578 ///////////////
2579
2580 bool
2581 Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2582 {
2583 cache->recvTimingResp(pkt);
2584 return true;
2585 }
2586
2587 // Express snooping requests to memside port
2588 void
2589 Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2590 {
2591 // handle snooping requests
2592 cache->recvTimingSnoopReq(pkt);
2593 }
2594
2595 Tick
2596 Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2597 {
2598 return cache->recvAtomicSnoop(pkt);
2599 }
2600
2601 void
2602 Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2603 {
2604 // functional snoop (note that in contrast to atomic we don't have
2605 // a specific functionalSnoop method, as they have the same
2606 // behaviour regardless)
2607 cache->functionalAccess(pkt, false);
2608 }
2609
2610 void
2611 Cache::CacheReqPacketQueue::sendDeferredPacket()
2612 {
2613 // sanity check
2614 assert(!waitingOnRetry);
2615
2616 // there should never be any deferred request packets in the
2617 // queue, instead we resly on the cache to provide the packets
2618 // from the MSHR queue or write queue
2619 assert(deferredPacketReadyTime() == MaxTick);
2620
2621 // check for request packets (requests & writebacks)
2622 PacketPtr pkt = cache.getTimingPacket();
2623 if (pkt == NULL) {
2624 // can happen if e.g. we attempt a writeback and fail, but
2625 // before the retry, the writeback is eliminated because
2626 // we snoop another cache's ReadEx.
2627 } else {
2628 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
2629 // in most cases getTimingPacket allocates a new packet, and
2630 // we must delete it unless it is successfully sent
2631 bool delete_pkt = !mshr->isForwardNoResponse();
2632
2633 // let our snoop responses go first if there are responses to
2634 // the same addresses we are about to writeback, note that
2635 // this creates a dependency between requests and snoop
2636 // responses, but that should not be a problem since there is
2637 // a chain already and the key is that the snoop responses can
2638 // sink unconditionally
2639 if (snoopRespQueue.hasAddr(pkt->getAddr())) {
2640 DPRINTF(CachePort, "Waiting for snoop response to be sent\n");
2641 Tick when = snoopRespQueue.deferredPacketReadyTime();
2642 schedSendEvent(when);
2643
2644 if (delete_pkt)
2645 delete pkt;
2646
2647 return;
2648 }
2649
2650
2651 waitingOnRetry = !masterPort.sendTimingReq(pkt);
2652
2653 if (waitingOnRetry) {
2654 DPRINTF(CachePort, "now waiting on a retry\n");
2655 if (delete_pkt) {
2656 // we are awaiting a retry, but we
2657 // delete the packet and will be creating a new packet
2658 // when we get the opportunity
2659 delete pkt;
2660 }
2661 // note that we have now masked any requestBus and
2662 // schedSendEvent (we will wait for a retry before
2663 // doing anything), and this is so even if we do not
2664 // care about this packet and might override it before
2665 // it gets retried
2666 } else {
2667 // As part of the call to sendTimingReq the packet is
2668 // forwarded to all neighbouring caches (and any caches
2669 // above them) as a snoop. Thus at this point we know if
2670 // any of the neighbouring caches are responding, and if
2671 // so, we know it is dirty, and we can determine if it is
2672 // being passed as Modified, making our MSHR the ordering
2673 // point
2674 bool pending_modified_resp = !pkt->hasSharers() &&
2675 pkt->cacheResponding();
2676
2677 cache.markInService(mshr, pending_modified_resp);
2678 }
2679 }
2680
2681 // if we succeeded and are not waiting for a retry, schedule the
2682 // next send considering when the next MSHR is ready, note that
2683 // snoop responses have their own packet queue and thus schedule
2684 // their own events
2685 if (!waitingOnRetry) {
2686 schedSendEvent(cache.nextMSHRReadyTime());
2687 }
2688 }
2689
2690 Cache::
2691 MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2692 const std::string &_label)
2693 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2694 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2695 _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2696 {
2697 }