mem: Clarify cache MSHR handling on fill
[gem5.git] / src / mem / cache / cache.cc
1 /*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 * Dave Greene
43 * Nathan Binkert
44 * Steve Reinhardt
45 * Ron Dreslinski
46 * Andreas Sandberg
47 */
48
49 /**
50 * @file
51 * Cache definitions.
52 */
53
54 #include "mem/cache/cache.hh"
55
56 #include "base/misc.hh"
57 #include "base/types.hh"
58 #include "debug/Cache.hh"
59 #include "debug/CachePort.hh"
60 #include "debug/CacheTags.hh"
61 #include "mem/cache/blk.hh"
62 #include "mem/cache/mshr.hh"
63 #include "mem/cache/prefetch/base.hh"
64 #include "sim/sim_exit.hh"
65
66 Cache::Cache(const CacheParams *p)
67 : BaseCache(p, p->system->cacheLineSize()),
68 tags(p->tags),
69 prefetcher(p->prefetcher),
70 doFastWrites(true),
71 prefetchOnAccess(p->prefetch_on_access)
72 {
73 tempBlock = new CacheBlk();
74 tempBlock->data = new uint8_t[blkSize];
75
76 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
77 "CpuSidePort");
78 memSidePort = new MemSidePort(p->name + ".mem_side", this,
79 "MemSidePort");
80
81 tags->setCache(this);
82 if (prefetcher)
83 prefetcher->setCache(this);
84 }
85
86 Cache::~Cache()
87 {
88 delete [] tempBlock->data;
89 delete tempBlock;
90
91 delete cpuSidePort;
92 delete memSidePort;
93 }
94
95 void
96 Cache::regStats()
97 {
98 BaseCache::regStats();
99 }
100
101 void
102 Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
103 {
104 assert(pkt->isRequest());
105
106 uint64_t overwrite_val;
107 bool overwrite_mem;
108 uint64_t condition_val64;
109 uint32_t condition_val32;
110
111 int offset = tags->extractBlkOffset(pkt->getAddr());
112 uint8_t *blk_data = blk->data + offset;
113
114 assert(sizeof(uint64_t) >= pkt->getSize());
115
116 overwrite_mem = true;
117 // keep a copy of our possible write value, and copy what is at the
118 // memory address into the packet
119 pkt->writeData((uint8_t *)&overwrite_val);
120 pkt->setData(blk_data);
121
122 if (pkt->req->isCondSwap()) {
123 if (pkt->getSize() == sizeof(uint64_t)) {
124 condition_val64 = pkt->req->getExtraData();
125 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
126 sizeof(uint64_t));
127 } else if (pkt->getSize() == sizeof(uint32_t)) {
128 condition_val32 = (uint32_t)pkt->req->getExtraData();
129 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
130 sizeof(uint32_t));
131 } else
132 panic("Invalid size for conditional read/write\n");
133 }
134
135 if (overwrite_mem) {
136 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
137 blk->status |= BlkDirty;
138 }
139 }
140
141
142 void
143 Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
144 bool deferred_response, bool pending_downgrade)
145 {
146 assert(pkt->isRequest());
147
148 assert(blk && blk->isValid());
149 // Occasionally this is not true... if we are a lower-level cache
150 // satisfying a string of Read and ReadEx requests from
151 // upper-level caches, a Read will mark the block as shared but we
152 // can satisfy a following ReadEx anyway since we can rely on the
153 // Read requester(s) to have buffered the ReadEx snoop and to
154 // invalidate their blocks after receiving them.
155 // assert(!pkt->needsExclusive() || blk->isWritable());
156 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
157
158 // Check RMW operations first since both isRead() and
159 // isWrite() will be true for them
160 if (pkt->cmd == MemCmd::SwapReq) {
161 cmpAndSwap(blk, pkt);
162 } else if (pkt->isWrite()) {
163 assert(blk->isWritable());
164 // Write or WriteLine at the first cache with block in Exclusive
165 if (blk->checkWrite(pkt)) {
166 pkt->writeDataToBlock(blk->data, blkSize);
167 }
168 // Always mark the line as dirty even if we are a failed
169 // StoreCond so we supply data to any snoops that have
170 // appended themselves to this cache before knowing the store
171 // will fail.
172 blk->status |= BlkDirty;
173 DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__,
174 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
175 } else if (pkt->isRead()) {
176 if (pkt->isLLSC()) {
177 blk->trackLoadLocked(pkt);
178 }
179 pkt->setDataFromBlock(blk->data, blkSize);
180 // determine if this read is from a (coherent) cache, or not
181 // by looking at the command type; we could potentially add a
182 // packet attribute such as 'FromCache' to make this check a
183 // bit cleaner
184 if (pkt->cmd == MemCmd::ReadExReq ||
185 pkt->cmd == MemCmd::ReadSharedReq ||
186 pkt->cmd == MemCmd::ReadCleanReq ||
187 pkt->cmd == MemCmd::SCUpgradeFailReq) {
188 assert(pkt->getSize() == blkSize);
189 // special handling for coherent block requests from
190 // upper-level caches
191 if (pkt->needsExclusive()) {
192 // sanity check
193 assert(pkt->cmd == MemCmd::ReadExReq ||
194 pkt->cmd == MemCmd::SCUpgradeFailReq);
195
196 // if we have a dirty copy, make sure the recipient
197 // keeps it marked dirty
198 if (blk->isDirty()) {
199 pkt->assertMemInhibit();
200 }
201 // on ReadExReq we give up our copy unconditionally
202 if (blk != tempBlock)
203 tags->invalidate(blk);
204 blk->invalidate();
205 } else if (blk->isWritable() && !pending_downgrade &&
206 !pkt->sharedAsserted() &&
207 pkt->cmd != MemCmd::ReadCleanReq) {
208 // we can give the requester an exclusive copy (by not
209 // asserting shared line) on a read request if:
210 // - we have an exclusive copy at this level (& below)
211 // - we don't have a pending snoop from below
212 // signaling another read request
213 // - no other cache above has a copy (otherwise it
214 // would have asseretd shared line on request)
215 // - we are not satisfying an instruction fetch (this
216 // prevents dirty data in the i-cache)
217
218 if (blk->isDirty()) {
219 // special considerations if we're owner:
220 if (!deferred_response) {
221 // if we are responding immediately and can
222 // signal that we're transferring ownership
223 // along with exclusivity, do so
224 pkt->assertMemInhibit();
225 blk->status &= ~BlkDirty;
226 } else {
227 // if we're responding after our own miss,
228 // there's a window where the recipient didn't
229 // know it was getting ownership and may not
230 // have responded to snoops correctly, so we
231 // can't pass off ownership *or* exclusivity
232 pkt->assertShared();
233 }
234 }
235 } else {
236 // otherwise only respond with a shared copy
237 pkt->assertShared();
238 }
239 }
240 } else {
241 // Upgrade or Invalidate, since we have it Exclusively (E or
242 // M), we ack then invalidate.
243 assert(pkt->isUpgrade() || pkt->isInvalidate());
244 assert(blk != tempBlock);
245 tags->invalidate(blk);
246 blk->invalidate();
247 DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n",
248 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
249 }
250 }
251
252
253 /////////////////////////////////////////////////////
254 //
255 // MSHR helper functions
256 //
257 /////////////////////////////////////////////////////
258
259
260 void
261 Cache::markInService(MSHR *mshr, bool pending_dirty_resp)
262 {
263 markInServiceInternal(mshr, pending_dirty_resp);
264 }
265
266 /////////////////////////////////////////////////////
267 //
268 // Access path: requests coming in from the CPU side
269 //
270 /////////////////////////////////////////////////////
271
272 bool
273 Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
274 PacketList &writebacks)
275 {
276 // sanity check
277 assert(pkt->isRequest());
278
279 chatty_assert(!(isReadOnly && pkt->isWrite()),
280 "Should never see a write in a read-only cache %s\n",
281 name());
282
283 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
284 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
285
286 if (pkt->req->isUncacheable()) {
287 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
288 pkt->req->isInstFetch() ? " (ifetch)" : "",
289 pkt->getAddr());
290
291 // flush and invalidate any existing block
292 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
293 if (old_blk && old_blk->isValid()) {
294 if (old_blk->isDirty())
295 writebacks.push_back(writebackBlk(old_blk));
296 else
297 writebacks.push_back(cleanEvictBlk(old_blk));
298 tags->invalidate(old_blk);
299 old_blk->invalidate();
300 }
301
302 blk = NULL;
303 // lookupLatency is the latency in case the request is uncacheable.
304 lat = lookupLatency;
305 return false;
306 }
307
308 ContextID id = pkt->req->hasContextId() ?
309 pkt->req->contextId() : InvalidContextID;
310 // Here lat is the value passed as parameter to accessBlock() function
311 // that can modify its value.
312 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
313
314 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
315 pkt->req->isInstFetch() ? " (ifetch)" : "",
316 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
317 blk ? "hit " + blk->print() : "miss");
318
319
320 if (pkt->evictingBlock()) {
321 // We check for presence of block in above caches before issuing
322 // Writeback or CleanEvict to write buffer. Therefore the only
323 // possible cases can be of a CleanEvict packet coming from above
324 // encountering a Writeback generated in this cache peer cache and
325 // waiting in the write buffer. Cases of upper level peer caches
326 // generating CleanEvict and Writeback or simply CleanEvict and
327 // CleanEvict almost simultaneously will be caught by snoops sent out
328 // by crossbar.
329 std::vector<MSHR *> outgoing;
330 if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(),
331 outgoing)) {
332 assert(outgoing.size() == 1);
333 PacketPtr wbPkt = outgoing[0]->getTarget()->pkt;
334 assert(pkt->cmd == MemCmd::CleanEvict &&
335 wbPkt->cmd == MemCmd::Writeback);
336 // As the CleanEvict is coming from above, it would have snooped
337 // into other peer caches of the same level while traversing the
338 // crossbar. If a copy of the block had been found, the CleanEvict
339 // would have been deleted in the crossbar. Now that the
340 // CleanEvict is here we can be sure none of the other upper level
341 // caches connected to this cache have the block, so we can clear
342 // the BLOCK_CACHED flag in the Writeback if set and discard the
343 // CleanEvict by returning true.
344 wbPkt->clearBlockCached();
345 return true;
346 }
347 }
348
349 // Writeback handling is special case. We can write the block into
350 // the cache without having a writeable copy (or any copy at all).
351 if (pkt->cmd == MemCmd::Writeback) {
352 assert(blkSize == pkt->getSize());
353 if (blk == NULL) {
354 // need to do a replacement
355 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
356 if (blk == NULL) {
357 // no replaceable block available: give up, fwd to next level.
358 incMissCount(pkt);
359 return false;
360 }
361 tags->insertBlock(pkt, blk);
362
363 blk->status = (BlkValid | BlkReadable);
364 if (pkt->isSecure()) {
365 blk->status |= BlkSecure;
366 }
367 }
368 blk->status |= BlkDirty;
369 // if shared is not asserted we got the writeback in modified
370 // state, if it is asserted we are in the owned state
371 if (!pkt->sharedAsserted()) {
372 blk->status |= BlkWritable;
373 }
374 // nothing else to do; writeback doesn't expect response
375 assert(!pkt->needsResponse());
376 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
377 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
378 incHitCount(pkt);
379 return true;
380 } else if (pkt->cmd == MemCmd::CleanEvict) {
381 if (blk != NULL) {
382 // Found the block in the tags, need to stop CleanEvict from
383 // propagating further down the hierarchy. Returning true will
384 // treat the CleanEvict like a satisfied write request and delete
385 // it.
386 return true;
387 }
388 // We didn't find the block here, propagate the CleanEvict further
389 // down the memory hierarchy. Returning false will treat the CleanEvict
390 // like a Writeback which could not find a replaceable block so has to
391 // go to next level.
392 return false;
393 } else if ((blk != NULL) &&
394 (pkt->needsExclusive() ? blk->isWritable()
395 : blk->isReadable())) {
396 // OK to satisfy access
397 incHitCount(pkt);
398 satisfyCpuSideRequest(pkt, blk);
399 return true;
400 }
401
402 // Can't satisfy access normally... either no block (blk == NULL)
403 // or have block but need exclusive & only have shared.
404
405 incMissCount(pkt);
406
407 if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
408 // complete miss on store conditional... just give up now
409 pkt->req->setExtraData(0);
410 return true;
411 }
412
413 return false;
414 }
415
416
417 class ForwardResponseRecord : public Packet::SenderState
418 {
419 public:
420
421 ForwardResponseRecord() {}
422 };
423
424 void
425 Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
426 {
427 while (!writebacks.empty()) {
428 PacketPtr wbPkt = writebacks.front();
429 // We use forwardLatency here because we are copying writebacks to
430 // write buffer. Call isCachedAbove for both Writebacks and
431 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
432 // in Writebacks and discard CleanEvicts.
433 if (isCachedAbove(wbPkt)) {
434 if (wbPkt->cmd == MemCmd::CleanEvict) {
435 // Delete CleanEvict because cached copies exist above. The
436 // packet destructor will delete the request object because
437 // this is a non-snoop request packet which does not require a
438 // response.
439 delete wbPkt;
440 } else {
441 // Set BLOCK_CACHED flag in Writeback and send below, so that
442 // the Writeback does not reset the bit corresponding to this
443 // address in the snoop filter below.
444 wbPkt->setBlockCached();
445 allocateWriteBuffer(wbPkt, forward_time);
446 }
447 } else {
448 // If the block is not cached above, send packet below. Both
449 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
450 // reset the bit corresponding to this address in the snoop filter
451 // below.
452 allocateWriteBuffer(wbPkt, forward_time);
453 }
454 writebacks.pop_front();
455 }
456 }
457
458 void
459 Cache::doWritebacksAtomic(PacketList& writebacks)
460 {
461 while (!writebacks.empty()) {
462 PacketPtr wbPkt = writebacks.front();
463 // Call isCachedAbove for both Writebacks and CleanEvicts. If
464 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
465 // and discard CleanEvicts.
466 if (isCachedAbove(wbPkt, false)) {
467 if (wbPkt->cmd == MemCmd::Writeback) {
468 // Set BLOCK_CACHED flag in Writeback and send below,
469 // so that the Writeback does not reset the bit
470 // corresponding to this address in the snoop filter
471 // below. We can discard CleanEvicts because cached
472 // copies exist above. Atomic mode isCachedAbove
473 // modifies packet to set BLOCK_CACHED flag
474 memSidePort->sendAtomic(wbPkt);
475 }
476 } else {
477 // If the block is not cached above, send packet below. Both
478 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
479 // reset the bit corresponding to this address in the snoop filter
480 // below.
481 memSidePort->sendAtomic(wbPkt);
482 }
483 writebacks.pop_front();
484 // In case of CleanEvicts, the packet destructor will delete the
485 // request object because this is a non-snoop request packet which
486 // does not require a response.
487 delete wbPkt;
488 }
489 }
490
491
492 void
493 Cache::recvTimingSnoopResp(PacketPtr pkt)
494 {
495 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
496 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
497
498 assert(pkt->isResponse());
499
500 // must be cache-to-cache response from upper to lower level
501 ForwardResponseRecord *rec =
502 dynamic_cast<ForwardResponseRecord *>(pkt->senderState);
503 assert(!system->bypassCaches());
504
505 if (rec == NULL) {
506 // @todo What guarantee do we have that this HardPFResp is
507 // actually for this cache, and not a cache closer to the
508 // memory?
509 assert(pkt->cmd == MemCmd::HardPFResp);
510 // Check if it's a prefetch response and handle it. We shouldn't
511 // get any other kinds of responses without FRRs.
512 DPRINTF(Cache, "Got prefetch response from above for addr %#llx (%s)\n",
513 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
514 recvTimingResp(pkt);
515 return;
516 }
517
518 pkt->popSenderState();
519 delete rec;
520 // forwardLatency is set here because there is a response from an
521 // upper level cache.
522 // To pay the delay that occurs if the packet comes from the bus,
523 // we charge also headerDelay.
524 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
525 // Reset the timing of the packet.
526 pkt->headerDelay = pkt->payloadDelay = 0;
527 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
528 }
529
530 void
531 Cache::promoteWholeLineWrites(PacketPtr pkt)
532 {
533 // Cache line clearing instructions
534 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
535 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
536 pkt->cmd = MemCmd::WriteLineReq;
537 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
538 }
539 }
540
541 bool
542 Cache::recvTimingReq(PacketPtr pkt)
543 {
544 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
545 //@todo Add back in MemDebug Calls
546 // MemDebug::cacheAccess(pkt);
547
548
549 /// @todo temporary hack to deal with memory corruption issue until
550 /// 4-phase transactions are complete
551 for (int x = 0; x < pendingDelete.size(); x++)
552 delete pendingDelete[x];
553 pendingDelete.clear();
554
555 assert(pkt->isRequest());
556
557 // Just forward the packet if caches are disabled.
558 if (system->bypassCaches()) {
559 // @todo This should really enqueue the packet rather
560 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
561 assert(success);
562 return true;
563 }
564
565 promoteWholeLineWrites(pkt);
566
567 if (pkt->memInhibitAsserted()) {
568 // a cache above us (but not where the packet came from) is
569 // responding to the request
570 DPRINTF(Cache, "mem inhibited on addr %#llx (%s): not responding\n",
571 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
572
573 // if the packet needs exclusive, and the cache that has
574 // promised to respond (setting the inhibit flag) is not
575 // providing exclusive (it is in O vs M state), we know that
576 // there may be other shared copies in the system; go out and
577 // invalidate them all
578 if (pkt->needsExclusive() && !pkt->isSupplyExclusive()) {
579 // create a downstream express snoop with cleared packet
580 // flags, there is no need to allocate any data as the
581 // packet is merely used to co-ordinate state transitions
582 Packet *snoop_pkt = new Packet(pkt, true, false);
583
584 // also reset the bus time that the original packet has
585 // not yet paid for
586 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
587
588 // make this an instantaneous express snoop, and let the
589 // other caches in the system know that the packet is
590 // inhibited, because we have found the authorative copy
591 // (O) that will supply the right data
592 snoop_pkt->setExpressSnoop();
593 snoop_pkt->assertMemInhibit();
594
595 // this express snoop travels towards the memory, and at
596 // every crossbar it is snooped upwards thus reaching
597 // every cache in the system
598 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
599 // express snoops always succeed
600 assert(success);
601
602 // main memory will delete the packet
603 }
604
605 /// @todo nominally we should just delete the packet here,
606 /// however, until 4-phase stuff we can't because sending
607 /// cache is still relying on it.
608 pendingDelete.push_back(pkt);
609
610 // no need to take any action in this particular cache as the
611 // caches along the path to memory are allowed to keep lines
612 // in a shared state, and a cache above us already committed
613 // to responding
614 return true;
615 }
616
617 // anything that is merely forwarded pays for the forward latency and
618 // the delay provided by the crossbar
619 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
620
621 // We use lookupLatency here because it is used to specify the latency
622 // to access.
623 Cycles lat = lookupLatency;
624 CacheBlk *blk = NULL;
625 bool satisfied = false;
626 {
627 PacketList writebacks;
628 // Note that lat is passed by reference here. The function
629 // access() calls accessBlock() which can modify lat value.
630 satisfied = access(pkt, blk, lat, writebacks);
631
632 // copy writebacks to write buffer here to ensure they logically
633 // proceed anything happening below
634 doWritebacks(writebacks, forward_time);
635 }
636
637 // Here we charge the headerDelay that takes into account the latencies
638 // of the bus, if the packet comes from it.
639 // The latency charged it is just lat that is the value of lookupLatency
640 // modified by access() function, or if not just lookupLatency.
641 // In case of a hit we are neglecting response latency.
642 // In case of a miss we are neglecting forward latency.
643 Tick request_time = clockEdge(lat) + pkt->headerDelay;
644 // Here we reset the timing of the packet.
645 pkt->headerDelay = pkt->payloadDelay = 0;
646
647 // track time of availability of next prefetch, if any
648 Tick next_pf_time = MaxTick;
649
650 bool needsResponse = pkt->needsResponse();
651
652 if (satisfied) {
653 // should never be satisfying an uncacheable access as we
654 // flush and invalidate any existing block as part of the
655 // lookup
656 assert(!pkt->req->isUncacheable());
657
658 // hit (for all other request types)
659
660 if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
661 if (blk)
662 blk->status &= ~BlkHWPrefetched;
663
664 // Don't notify on SWPrefetch
665 if (!pkt->cmd.isSWPrefetch())
666 next_pf_time = prefetcher->notify(pkt);
667 }
668
669 if (needsResponse) {
670 pkt->makeTimingResponse();
671 // @todo: Make someone pay for this
672 pkt->headerDelay = pkt->payloadDelay = 0;
673
674 // In this case we are considering request_time that takes
675 // into account the delay of the xbar, if any, and just
676 // lat, neglecting responseLatency, modelling hit latency
677 // just as lookupLatency or or the value of lat overriden
678 // by access(), that calls accessBlock() function.
679 cpuSidePort->schedTimingResp(pkt, request_time);
680 } else {
681 /// @todo nominally we should just delete the packet here,
682 /// however, until 4-phase stuff we can't because sending cache is
683 /// still relying on it. If the block is found in access(),
684 /// CleanEvict and Writeback messages will be deleted here as
685 /// well.
686 pendingDelete.push_back(pkt);
687 }
688 } else {
689 // miss
690
691 Addr blk_addr = blockAlign(pkt->getAddr());
692
693 // ignore any existing MSHR if we are dealing with an
694 // uncacheable request
695 MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
696 mshrQueue.findMatch(blk_addr, pkt->isSecure());
697
698 // Software prefetch handling:
699 // To keep the core from waiting on data it won't look at
700 // anyway, send back a response with dummy data. Miss handling
701 // will continue asynchronously. Unfortunately, the core will
702 // insist upon freeing original Packet/Request, so we have to
703 // create a new pair with a different lifecycle. Note that this
704 // processing happens before any MSHR munging on the behalf of
705 // this request because this new Request will be the one stored
706 // into the MSHRs, not the original.
707 if (pkt->cmd.isSWPrefetch()) {
708 assert(needsResponse);
709 assert(pkt->req->hasPaddr());
710 assert(!pkt->req->isUncacheable());
711
712 // There's no reason to add a prefetch as an additional target
713 // to an existing MSHR. If an outstanding request is already
714 // in progress, there is nothing for the prefetch to do.
715 // If this is the case, we don't even create a request at all.
716 PacketPtr pf = nullptr;
717
718 if (!mshr) {
719 // copy the request and create a new SoftPFReq packet
720 RequestPtr req = new Request(pkt->req->getPaddr(),
721 pkt->req->getSize(),
722 pkt->req->getFlags(),
723 pkt->req->masterId());
724 pf = new Packet(req, pkt->cmd);
725 pf->allocate();
726 assert(pf->getAddr() == pkt->getAddr());
727 assert(pf->getSize() == pkt->getSize());
728 }
729
730 pkt->makeTimingResponse();
731 // for debugging, set all the bits in the response data
732 // (also keeps valgrind from complaining when debugging settings
733 // print out instruction results)
734 std::memset(pkt->getPtr<uint8_t>(), 0xFF, pkt->getSize());
735 // request_time is used here, taking into account lat and the delay
736 // charged if the packet comes from the xbar.
737 cpuSidePort->schedTimingResp(pkt, request_time);
738
739 // If an outstanding request is in progress (we found an
740 // MSHR) this is set to null
741 pkt = pf;
742 }
743
744 if (mshr) {
745 /// MSHR hit
746 /// @note writebacks will be checked in getNextMSHR()
747 /// for any conflicting requests to the same block
748
749 //@todo remove hw_pf here
750
751 // Coalesce unless it was a software prefetch (see above).
752 if (pkt) {
753 assert(pkt->cmd != MemCmd::Writeback);
754 // CleanEvicts corresponding to blocks which have outstanding
755 // requests in MSHRs can be deleted here.
756 if (pkt->cmd == MemCmd::CleanEvict) {
757 pendingDelete.push_back(pkt);
758 } else {
759 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
760 __func__, pkt->cmdString(), pkt->getAddr(),
761 pkt->getSize());
762
763 assert(pkt->req->masterId() < system->maxMasters());
764 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
765 if (mshr->threadNum != 0/*pkt->req->threadId()*/) {
766 mshr->threadNum = -1;
767 }
768 // We use forward_time here because it is the same
769 // considering new targets. We have multiple
770 // requests for the same address here. It
771 // specifies the latency to allocate an internal
772 // buffer and to schedule an event to the queued
773 // port and also takes into account the additional
774 // delay of the xbar.
775 mshr->allocateTarget(pkt, forward_time, order++);
776 if (mshr->getNumTargets() == numTarget) {
777 noTargetMSHR = mshr;
778 setBlocked(Blocked_NoTargets);
779 // need to be careful with this... if this mshr isn't
780 // ready yet (i.e. time > curTick()), we don't want to
781 // move it ahead of mshrs that are ready
782 // mshrQueue.moveToFront(mshr);
783 }
784 }
785 // We should call the prefetcher reguardless if the request is
786 // satisfied or not, reguardless if the request is in the MSHR or
787 // not. The request could be a ReadReq hit, but still not
788 // satisfied (potentially because of a prior write to the same
789 // cache line. So, even when not satisfied, tehre is an MSHR
790 // already allocated for this, we need to let the prefetcher know
791 // about the request
792 if (prefetcher) {
793 // Don't notify on SWPrefetch
794 if (!pkt->cmd.isSWPrefetch())
795 next_pf_time = prefetcher->notify(pkt);
796 }
797 }
798 } else {
799 // no MSHR
800 assert(pkt->req->masterId() < system->maxMasters());
801 if (pkt->req->isUncacheable()) {
802 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
803 } else {
804 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
805 }
806
807 if (pkt->evictingBlock() ||
808 (pkt->req->isUncacheable() && pkt->isWrite())) {
809 // We use forward_time here because there is an
810 // uncached memory write, forwarded to WriteBuffer.
811 allocateWriteBuffer(pkt, forward_time);
812 } else {
813 if (blk && blk->isValid()) {
814 // should have flushed and have no valid block
815 assert(!pkt->req->isUncacheable());
816
817 // If we have a write miss to a valid block, we
818 // need to mark the block non-readable. Otherwise
819 // if we allow reads while there's an outstanding
820 // write miss, the read could return stale data
821 // out of the cache block... a more aggressive
822 // system could detect the overlap (if any) and
823 // forward data out of the MSHRs, but we don't do
824 // that yet. Note that we do need to leave the
825 // block valid so that it stays in the cache, in
826 // case we get an upgrade response (and hence no
827 // new data) when the write miss completes.
828 // As long as CPUs do proper store/load forwarding
829 // internally, and have a sufficiently weak memory
830 // model, this is probably unnecessary, but at some
831 // point it must have seemed like we needed it...
832 assert(pkt->needsExclusive());
833 assert(!blk->isWritable());
834 blk->status &= ~BlkReadable;
835 }
836 // Here we are using forward_time, modelling the latency of
837 // a miss (outbound) just as forwardLatency, neglecting the
838 // lookupLatency component.
839 allocateMissBuffer(pkt, forward_time);
840 }
841
842 if (prefetcher) {
843 // Don't notify on SWPrefetch
844 if (!pkt->cmd.isSWPrefetch())
845 next_pf_time = prefetcher->notify(pkt);
846 }
847 }
848 }
849
850 if (next_pf_time != MaxTick)
851 schedMemSideSendEvent(next_pf_time);
852
853 return true;
854 }
855
856
857 // See comment in cache.hh.
858 PacketPtr
859 Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
860 bool needsExclusive) const
861 {
862 bool blkValid = blk && blk->isValid();
863
864 if (cpu_pkt->req->isUncacheable()) {
865 // note that at the point we see the uncacheable request we
866 // flush any block, but there could be an outstanding MSHR,
867 // and the cache could have filled again before we actually
868 // send out the forwarded uncacheable request (blk could thus
869 // be non-null)
870 return NULL;
871 }
872
873 if (!blkValid &&
874 (cpu_pkt->isUpgrade() ||
875 cpu_pkt->evictingBlock())) {
876 // Writebacks that weren't allocated in access() and upgrades
877 // from upper-level caches that missed completely just go
878 // through.
879 return NULL;
880 }
881
882 assert(cpu_pkt->needsResponse());
883
884 MemCmd cmd;
885 // @TODO make useUpgrades a parameter.
886 // Note that ownership protocols require upgrade, otherwise a
887 // write miss on a shared owned block will generate a ReadExcl,
888 // which will clobber the owned copy.
889 const bool useUpgrades = true;
890 if (blkValid && useUpgrades) {
891 // only reason to be here is that blk is shared
892 // (read-only) and we need exclusive
893 assert(needsExclusive);
894 assert(!blk->isWritable());
895 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
896 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
897 cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
898 // Even though this SC will fail, we still need to send out the
899 // request and get the data to supply it to other snoopers in the case
900 // where the determination the StoreCond fails is delayed due to
901 // all caches not being on the same local bus.
902 cmd = MemCmd::SCUpgradeFailReq;
903 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
904 // forward as invalidate to all other caches, this gives us
905 // the line in exclusive state, and invalidates all other
906 // copies
907 cmd = MemCmd::InvalidateReq;
908 } else {
909 // block is invalid
910 cmd = needsExclusive ? MemCmd::ReadExReq :
911 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
912 }
913 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
914
915 // if there are sharers in the upper levels, pass that info downstream
916 if (cpu_pkt->sharedAsserted()) {
917 // note that cpu_pkt may have spent a considerable time in the
918 // MSHR queue and that the information could possibly be out
919 // of date, however, there is no harm in conservatively
920 // assuming the block is shared
921 pkt->assertShared();
922 DPRINTF(Cache, "%s passing shared from %s to %s addr %#llx size %d\n",
923 __func__, cpu_pkt->cmdString(), pkt->cmdString(),
924 pkt->getAddr(), pkt->getSize());
925 }
926
927 // the packet should be block aligned
928 assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
929
930 pkt->allocate();
931 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n",
932 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
933 pkt->getSize());
934 return pkt;
935 }
936
937
938 Tick
939 Cache::recvAtomic(PacketPtr pkt)
940 {
941 // We are in atomic mode so we pay just for lookupLatency here.
942 Cycles lat = lookupLatency;
943 // @TODO: make this a parameter
944 bool last_level_cache = false;
945
946 // Forward the request if the system is in cache bypass mode.
947 if (system->bypassCaches())
948 return ticksToCycles(memSidePort->sendAtomic(pkt));
949
950 promoteWholeLineWrites(pkt);
951
952 if (pkt->memInhibitAsserted()) {
953 // have to invalidate ourselves and any lower caches even if
954 // upper cache will be responding
955 if (pkt->isInvalidate()) {
956 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
957 if (blk && blk->isValid()) {
958 tags->invalidate(blk);
959 blk->invalidate();
960 DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx (%s):"
961 " invalidating\n",
962 pkt->cmdString(), pkt->getAddr(),
963 pkt->isSecure() ? "s" : "ns");
964 }
965 if (!last_level_cache) {
966 DPRINTF(Cache, "forwarding mem-inhibited %s on %#llx (%s)\n",
967 pkt->cmdString(), pkt->getAddr(),
968 pkt->isSecure() ? "s" : "ns");
969 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
970 }
971 } else {
972 DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx: not responding\n",
973 pkt->cmdString(), pkt->getAddr());
974 }
975
976 return lat * clockPeriod();
977 }
978
979 // should assert here that there are no outstanding MSHRs or
980 // writebacks... that would mean that someone used an atomic
981 // access in timing mode
982
983 CacheBlk *blk = NULL;
984 PacketList writebacks;
985 bool satisfied = access(pkt, blk, lat, writebacks);
986
987 // handle writebacks resulting from the access here to ensure they
988 // logically proceed anything happening below
989 doWritebacksAtomic(writebacks);
990
991 if (!satisfied) {
992 // MISS
993
994 PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsExclusive());
995
996 bool is_forward = (bus_pkt == NULL);
997
998 if (is_forward) {
999 // just forwarding the same request to the next level
1000 // no local cache operation involved
1001 bus_pkt = pkt;
1002 }
1003
1004 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1005 bus_pkt->cmdString(), bus_pkt->getAddr(),
1006 bus_pkt->isSecure() ? "s" : "ns");
1007
1008 #if TRACING_ON
1009 CacheBlk::State old_state = blk ? blk->status : 0;
1010 #endif
1011
1012 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1013
1014 // We are now dealing with the response handling
1015 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
1016 bus_pkt->cmdString(), bus_pkt->getAddr(),
1017 bus_pkt->isSecure() ? "s" : "ns",
1018 old_state);
1019
1020 // If packet was a forward, the response (if any) is already
1021 // in place in the bus_pkt == pkt structure, so we don't need
1022 // to do anything. Otherwise, use the separate bus_pkt to
1023 // generate response to pkt and then delete it.
1024 if (!is_forward) {
1025 if (pkt->needsResponse()) {
1026 assert(bus_pkt->isResponse());
1027 if (bus_pkt->isError()) {
1028 pkt->makeAtomicResponse();
1029 pkt->copyError(bus_pkt);
1030 } else if (pkt->cmd == MemCmd::InvalidateReq) {
1031 if (blk) {
1032 // invalidate response to a cache that received
1033 // an invalidate request
1034 satisfyCpuSideRequest(pkt, blk);
1035 }
1036 } else if (pkt->cmd == MemCmd::WriteLineReq) {
1037 // note the use of pkt, not bus_pkt here.
1038
1039 // write-line request to the cache that promoted
1040 // the write to a whole line
1041 blk = handleFill(pkt, blk, writebacks);
1042 satisfyCpuSideRequest(pkt, blk);
1043 } else if (bus_pkt->isRead() ||
1044 bus_pkt->cmd == MemCmd::UpgradeResp) {
1045 // we're updating cache state to allow us to
1046 // satisfy the upstream request from the cache
1047 blk = handleFill(bus_pkt, blk, writebacks);
1048 satisfyCpuSideRequest(pkt, blk);
1049 } else {
1050 // we're satisfying the upstream request without
1051 // modifying cache state, e.g., a write-through
1052 pkt->makeAtomicResponse();
1053 }
1054 }
1055 delete bus_pkt;
1056 }
1057 }
1058
1059 // Note that we don't invoke the prefetcher at all in atomic mode.
1060 // It's not clear how to do it properly, particularly for
1061 // prefetchers that aggressively generate prefetch candidates and
1062 // rely on bandwidth contention to throttle them; these will tend
1063 // to pollute the cache in atomic mode since there is no bandwidth
1064 // contention. If we ever do want to enable prefetching in atomic
1065 // mode, though, this is the place to do it... see timingAccess()
1066 // for an example (though we'd want to issue the prefetch(es)
1067 // immediately rather than calling requestMemSideBus() as we do
1068 // there).
1069
1070 // Handle writebacks (from the response handling) if needed
1071 doWritebacksAtomic(writebacks);
1072
1073 if (pkt->needsResponse()) {
1074 pkt->makeAtomicResponse();
1075 }
1076
1077 return lat * clockPeriod();
1078 }
1079
1080
1081 void
1082 Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1083 {
1084 if (system->bypassCaches()) {
1085 // Packets from the memory side are snoop request and
1086 // shouldn't happen in bypass mode.
1087 assert(fromCpuSide);
1088
1089 // The cache should be flushed if we are in cache bypass mode,
1090 // so we don't need to check if we need to update anything.
1091 memSidePort->sendFunctional(pkt);
1092 return;
1093 }
1094
1095 Addr blk_addr = blockAlign(pkt->getAddr());
1096 bool is_secure = pkt->isSecure();
1097 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1098 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1099
1100 pkt->pushLabel(name());
1101
1102 CacheBlkPrintWrapper cbpw(blk);
1103
1104 // Note that just because an L2/L3 has valid data doesn't mean an
1105 // L1 doesn't have a more up-to-date modified copy that still
1106 // needs to be found. As a result we always update the request if
1107 // we have it, but only declare it satisfied if we are the owner.
1108
1109 // see if we have data at all (owned or otherwise)
1110 bool have_data = blk && blk->isValid()
1111 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1112 blk->data);
1113
1114 // data we have is dirty if marked as such or if valid & ownership
1115 // pending due to outstanding UpgradeReq
1116 bool have_dirty =
1117 have_data && (blk->isDirty() ||
1118 (mshr && mshr->inService && mshr->isPendingDirty()));
1119
1120 bool done = have_dirty
1121 || cpuSidePort->checkFunctional(pkt)
1122 || mshrQueue.checkFunctional(pkt, blk_addr)
1123 || writeBuffer.checkFunctional(pkt, blk_addr)
1124 || memSidePort->checkFunctional(pkt);
1125
1126 DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n",
1127 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1128 (blk && blk->isValid()) ? "valid " : "",
1129 have_data ? "data " : "", done ? "done " : "");
1130
1131 // We're leaving the cache, so pop cache->name() label
1132 pkt->popLabel();
1133
1134 if (done) {
1135 pkt->makeResponse();
1136 } else {
1137 // if it came as a request from the CPU side then make sure it
1138 // continues towards the memory side
1139 if (fromCpuSide) {
1140 memSidePort->sendFunctional(pkt);
1141 } else if (forwardSnoops && cpuSidePort->isSnooping()) {
1142 // if it came from the memory side, it must be a snoop request
1143 // and we should only forward it if we are forwarding snoops
1144 cpuSidePort->sendFunctionalSnoop(pkt);
1145 }
1146 }
1147 }
1148
1149
1150 /////////////////////////////////////////////////////
1151 //
1152 // Response handling: responses from the memory side
1153 //
1154 /////////////////////////////////////////////////////
1155
1156
1157 void
1158 Cache::recvTimingResp(PacketPtr pkt)
1159 {
1160 assert(pkt->isResponse());
1161
1162 // all header delay should be paid for by the crossbar, unless
1163 // this is a prefetch response from above
1164 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1165 "%s saw a non-zero packet delay\n", name());
1166
1167 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
1168 bool is_error = pkt->isError();
1169
1170 assert(mshr);
1171
1172 if (is_error) {
1173 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1174 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1175 pkt->cmdString());
1176 }
1177
1178 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1179 pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1180 pkt->isSecure() ? "s" : "ns");
1181
1182 MSHRQueue *mq = mshr->queue;
1183 bool wasFull = mq->isFull();
1184
1185 if (mshr == noTargetMSHR) {
1186 // we always clear at least one target
1187 clearBlocked(Blocked_NoTargets);
1188 noTargetMSHR = NULL;
1189 }
1190
1191 // Initial target is used just for stats
1192 MSHR::Target *initial_tgt = mshr->getTarget();
1193 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1194 Tick miss_latency = curTick() - initial_tgt->recvTime;
1195 PacketList writebacks;
1196 // We need forward_time here because we have a call of
1197 // allocateWriteBuffer() that need this parameter to specify the
1198 // time to request the bus. In this case we use forward latency
1199 // because there is a writeback. We pay also here for headerDelay
1200 // that is charged of bus latencies if the packet comes from the
1201 // bus.
1202 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1203
1204 if (pkt->req->isUncacheable()) {
1205 assert(pkt->req->masterId() < system->maxMasters());
1206 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1207 miss_latency;
1208 } else {
1209 assert(pkt->req->masterId() < system->maxMasters());
1210 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1211 miss_latency;
1212 }
1213
1214 // upgrade deferred targets if we got exclusive
1215 if (!pkt->sharedAsserted()) {
1216 mshr->promoteExclusive();
1217 }
1218
1219 bool is_fill = !mshr->isForward &&
1220 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1221
1222 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1223
1224 if (is_fill && !is_error) {
1225 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1226 pkt->getAddr());
1227
1228 blk = handleFill(pkt, blk, writebacks);
1229 assert(blk != NULL);
1230 }
1231
1232 // allow invalidation responses originating from write-line
1233 // requests to be discarded
1234 bool is_invalidate = pkt->isInvalidate();
1235
1236 // First offset for critical word first calculations
1237 int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1238
1239 while (mshr->hasTargets()) {
1240 MSHR::Target *target = mshr->getTarget();
1241 Packet *tgt_pkt = target->pkt;
1242
1243 switch (target->source) {
1244 case MSHR::Target::FromCPU:
1245 Tick completion_time;
1246 // Here we charge on completion_time the delay of the xbar if the
1247 // packet comes from it, charged on headerDelay.
1248 completion_time = pkt->headerDelay;
1249
1250 // Software prefetch handling for cache closest to core
1251 if (tgt_pkt->cmd.isSWPrefetch()) {
1252 // a software prefetch would have already been ack'd immediately
1253 // with dummy data so the core would be able to retire it.
1254 // this request completes right here, so we deallocate it.
1255 delete tgt_pkt->req;
1256 delete tgt_pkt;
1257 break; // skip response
1258 }
1259
1260 // unlike the other packet flows, where data is found in other
1261 // caches or memory and brought back, write-line requests always
1262 // have the data right away, so the above check for "is fill?"
1263 // cannot actually be determined until examining the stored MSHR
1264 // state. We "catch up" with that logic here, which is duplicated
1265 // from above.
1266 if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1267 assert(!is_error);
1268 // we got the block in exclusive state, so promote any
1269 // deferred targets if possible
1270 mshr->promoteExclusive();
1271 // NB: we use the original packet here and not the response!
1272 blk = handleFill(tgt_pkt, blk, writebacks);
1273 assert(blk != NULL);
1274
1275 // treat as a fill, and discard the invalidation
1276 // response
1277 is_fill = true;
1278 is_invalidate = false;
1279 }
1280
1281 if (is_fill) {
1282 satisfyCpuSideRequest(tgt_pkt, blk,
1283 true, mshr->hasPostDowngrade());
1284
1285 // How many bytes past the first request is this one
1286 int transfer_offset =
1287 tgt_pkt->getOffset(blkSize) - initial_offset;
1288 if (transfer_offset < 0) {
1289 transfer_offset += blkSize;
1290 }
1291
1292 // If not critical word (offset) return payloadDelay.
1293 // responseLatency is the latency of the return path
1294 // from lower level caches/memory to an upper level cache or
1295 // the core.
1296 completion_time += clockEdge(responseLatency) +
1297 (transfer_offset ? pkt->payloadDelay : 0);
1298
1299 assert(!tgt_pkt->req->isUncacheable());
1300
1301 assert(tgt_pkt->req->masterId() < system->maxMasters());
1302 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1303 completion_time - target->recvTime;
1304 } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1305 // failed StoreCond upgrade
1306 assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1307 tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1308 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1309 // responseLatency is the latency of the return path
1310 // from lower level caches/memory to an upper level cache or
1311 // the core.
1312 completion_time += clockEdge(responseLatency) +
1313 pkt->payloadDelay;
1314 tgt_pkt->req->setExtraData(0);
1315 } else {
1316 // not a cache fill, just forwarding response
1317 // responseLatency is the latency of the return path
1318 // from lower level cahces/memory to the core.
1319 completion_time += clockEdge(responseLatency) +
1320 pkt->payloadDelay;
1321 if (pkt->isRead() && !is_error) {
1322 // sanity check
1323 assert(pkt->getAddr() == tgt_pkt->getAddr());
1324 assert(pkt->getSize() >= tgt_pkt->getSize());
1325
1326 tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1327 }
1328 }
1329 tgt_pkt->makeTimingResponse();
1330 // if this packet is an error copy that to the new packet
1331 if (is_error)
1332 tgt_pkt->copyError(pkt);
1333 if (tgt_pkt->cmd == MemCmd::ReadResp &&
1334 (is_invalidate || mshr->hasPostInvalidate())) {
1335 // If intermediate cache got ReadRespWithInvalidate,
1336 // propagate that. Response should not have
1337 // isInvalidate() set otherwise.
1338 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1339 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1340 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1341 }
1342 // Reset the bus additional time as it is now accounted for
1343 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1344 cpuSidePort->schedTimingResp(tgt_pkt, completion_time);
1345 break;
1346
1347 case MSHR::Target::FromPrefetcher:
1348 assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1349 if (blk)
1350 blk->status |= BlkHWPrefetched;
1351 delete tgt_pkt->req;
1352 delete tgt_pkt;
1353 break;
1354
1355 case MSHR::Target::FromSnoop:
1356 // I don't believe that a snoop can be in an error state
1357 assert(!is_error);
1358 // response to snoop request
1359 DPRINTF(Cache, "processing deferred snoop...\n");
1360 assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1361 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1362 break;
1363
1364 default:
1365 panic("Illegal target->source enum %d\n", target->source);
1366 }
1367
1368 mshr->popTarget();
1369 }
1370
1371 if (blk && blk->isValid()) {
1372 // an invalidate response stemming from a write line request
1373 // should not invalidate the block, so check if the
1374 // invalidation should be discarded
1375 if (is_invalidate || mshr->hasPostInvalidate()) {
1376 assert(blk != tempBlock);
1377 tags->invalidate(blk);
1378 blk->invalidate();
1379 } else if (mshr->hasPostDowngrade()) {
1380 blk->status &= ~BlkWritable;
1381 }
1382 }
1383
1384 if (mshr->promoteDeferredTargets()) {
1385 // avoid later read getting stale data while write miss is
1386 // outstanding.. see comment in timingAccess()
1387 if (blk) {
1388 blk->status &= ~BlkReadable;
1389 }
1390 mq = mshr->queue;
1391 mq->markPending(mshr);
1392 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1393 } else {
1394 mq->deallocate(mshr);
1395 if (wasFull && !mq->isFull()) {
1396 clearBlocked((BlockedCause)mq->index);
1397 }
1398
1399 // Request the bus for a prefetch if this deallocation freed enough
1400 // MSHRs for a prefetch to take place
1401 if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) {
1402 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1403 clockEdge());
1404 if (next_pf_time != MaxTick)
1405 schedMemSideSendEvent(next_pf_time);
1406 }
1407 }
1408 // reset the xbar additional timinig as it is now accounted for
1409 pkt->headerDelay = pkt->payloadDelay = 0;
1410
1411 // copy writebacks to write buffer
1412 doWritebacks(writebacks, forward_time);
1413
1414 // if we used temp block, check to see if its valid and then clear it out
1415 if (blk == tempBlock && tempBlock->isValid()) {
1416 // We use forwardLatency here because we are copying
1417 // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1418 // allocate an internal buffer and to schedule an event to the
1419 // queued port.
1420 if (blk->isDirty()) {
1421 PacketPtr wbPkt = writebackBlk(blk);
1422 allocateWriteBuffer(wbPkt, forward_time);
1423 // Set BLOCK_CACHED flag if cached above.
1424 if (isCachedAbove(wbPkt))
1425 wbPkt->setBlockCached();
1426 } else {
1427 PacketPtr wcPkt = cleanEvictBlk(blk);
1428 // Check to see if block is cached above. If not allocate
1429 // write buffer
1430 if (isCachedAbove(wcPkt))
1431 delete wcPkt;
1432 else
1433 allocateWriteBuffer(wcPkt, forward_time);
1434 }
1435 blk->invalidate();
1436 }
1437
1438 DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__,
1439 pkt->cmdString(), pkt->getAddr());
1440 delete pkt;
1441 }
1442
1443 PacketPtr
1444 Cache::writebackBlk(CacheBlk *blk)
1445 {
1446 chatty_assert(!isReadOnly, "Writeback from read-only cache");
1447 assert(blk && blk->isValid() && blk->isDirty());
1448
1449 writebacks[Request::wbMasterId]++;
1450
1451 Request *writebackReq =
1452 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1453 Request::wbMasterId);
1454 if (blk->isSecure())
1455 writebackReq->setFlags(Request::SECURE);
1456
1457 writebackReq->taskId(blk->task_id);
1458 blk->task_id= ContextSwitchTaskId::Unknown;
1459 blk->tickInserted = curTick();
1460
1461 PacketPtr writeback = new Packet(writebackReq, MemCmd::Writeback);
1462 if (blk->isWritable()) {
1463 // not asserting shared means we pass the block in modified
1464 // state, mark our own block non-writeable
1465 blk->status &= ~BlkWritable;
1466 } else {
1467 // we are in the owned state, tell the receiver
1468 writeback->assertShared();
1469 }
1470
1471 writeback->allocate();
1472 std::memcpy(writeback->getPtr<uint8_t>(), blk->data, blkSize);
1473
1474 blk->status &= ~BlkDirty;
1475 return writeback;
1476 }
1477
1478 PacketPtr
1479 Cache::cleanEvictBlk(CacheBlk *blk)
1480 {
1481 assert(blk && blk->isValid() && !blk->isDirty());
1482 // Creating a zero sized write, a message to the snoop filter
1483 Request *req =
1484 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1485 Request::wbMasterId);
1486 if (blk->isSecure())
1487 req->setFlags(Request::SECURE);
1488
1489 req->taskId(blk->task_id);
1490 blk->task_id = ContextSwitchTaskId::Unknown;
1491 blk->tickInserted = curTick();
1492
1493 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1494 pkt->allocate();
1495 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1496 pkt->req->isInstFetch() ? " (ifetch)" : "",
1497 pkt->getAddr());
1498
1499 return pkt;
1500 }
1501
1502 void
1503 Cache::memWriteback()
1504 {
1505 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1506 tags->forEachBlk(visitor);
1507 }
1508
1509 void
1510 Cache::memInvalidate()
1511 {
1512 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1513 tags->forEachBlk(visitor);
1514 }
1515
1516 bool
1517 Cache::isDirty() const
1518 {
1519 CacheBlkIsDirtyVisitor visitor;
1520 tags->forEachBlk(visitor);
1521
1522 return visitor.isDirty();
1523 }
1524
1525 bool
1526 Cache::writebackVisitor(CacheBlk &blk)
1527 {
1528 if (blk.isDirty()) {
1529 assert(blk.isValid());
1530
1531 Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1532 blkSize, 0, Request::funcMasterId);
1533 request.taskId(blk.task_id);
1534
1535 Packet packet(&request, MemCmd::WriteReq);
1536 packet.dataStatic(blk.data);
1537
1538 memSidePort->sendFunctional(&packet);
1539
1540 blk.status &= ~BlkDirty;
1541 }
1542
1543 return true;
1544 }
1545
1546 bool
1547 Cache::invalidateVisitor(CacheBlk &blk)
1548 {
1549
1550 if (blk.isDirty())
1551 warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1552
1553 if (blk.isValid()) {
1554 assert(!blk.isDirty());
1555 tags->invalidate(&blk);
1556 blk.invalidate();
1557 }
1558
1559 return true;
1560 }
1561
1562 CacheBlk*
1563 Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1564 {
1565 CacheBlk *blk = tags->findVictim(addr);
1566
1567 // It is valid to return NULL if there is no victim
1568 if (!blk)
1569 return nullptr;
1570
1571 if (blk->isValid()) {
1572 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1573 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1574 if (repl_mshr) {
1575 // must be an outstanding upgrade request
1576 // on a block we're about to replace...
1577 assert(!blk->isWritable() || blk->isDirty());
1578 assert(repl_mshr->needsExclusive());
1579 // too hard to replace block with transient state
1580 // allocation failed, block not inserted
1581 return NULL;
1582 } else {
1583 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
1584 repl_addr, blk->isSecure() ? "s" : "ns",
1585 addr, is_secure ? "s" : "ns",
1586 blk->isDirty() ? "writeback" : "clean");
1587
1588 // Will send up Writeback/CleanEvict snoops via isCachedAbove
1589 // when pushing this writeback list into the write buffer.
1590 if (blk->isDirty()) {
1591 // Save writeback packet for handling by caller
1592 writebacks.push_back(writebackBlk(blk));
1593 } else {
1594 writebacks.push_back(cleanEvictBlk(blk));
1595 }
1596 }
1597 }
1598
1599 return blk;
1600 }
1601
1602
1603 // Note that the reason we return a list of writebacks rather than
1604 // inserting them directly in the write buffer is that this function
1605 // is called by both atomic and timing-mode accesses, and in atomic
1606 // mode we don't mess with the write buffer (we just perform the
1607 // writebacks atomically once the original request is complete).
1608 CacheBlk*
1609 Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks)
1610 {
1611 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1612 Addr addr = pkt->getAddr();
1613 bool is_secure = pkt->isSecure();
1614 #if TRACING_ON
1615 CacheBlk::State old_state = blk ? blk->status : 0;
1616 #endif
1617
1618 // When handling a fill, discard any CleanEvicts for the
1619 // same address in write buffer.
1620 Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr());
1621 std::vector<MSHR *> M5_VAR_USED wbs;
1622 assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs));
1623
1624 if (blk == NULL) {
1625 // better have read new data...
1626 assert(pkt->hasData());
1627
1628 // only read responses and write-line requests have data;
1629 // note that we don't write the data here for write-line - that
1630 // happens in the subsequent satisfyCpuSideRequest.
1631 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1632
1633 // need to do a replacement
1634 blk = allocateBlock(addr, is_secure, writebacks);
1635 if (blk == NULL) {
1636 // No replaceable block... just use temporary storage to
1637 // complete the current request and then get rid of it
1638 assert(!tempBlock->isValid());
1639 blk = tempBlock;
1640 tempBlock->set = tags->extractSet(addr);
1641 tempBlock->tag = tags->extractTag(addr);
1642 // @todo: set security state as well...
1643 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1644 is_secure ? "s" : "ns");
1645 } else {
1646 tags->insertBlock(pkt, blk);
1647 }
1648
1649 // we should never be overwriting a valid block
1650 assert(!blk->isValid());
1651 } else {
1652 // existing block... probably an upgrade
1653 assert(blk->tag == tags->extractTag(addr));
1654 // either we're getting new data or the block should already be valid
1655 assert(pkt->hasData() || blk->isValid());
1656 // don't clear block status... if block is already dirty we
1657 // don't want to lose that
1658 }
1659
1660 if (is_secure)
1661 blk->status |= BlkSecure;
1662 blk->status |= BlkValid | BlkReadable;
1663
1664 // sanity check for whole-line writes, which should always be
1665 // marked as writable as part of the fill, and then later marked
1666 // dirty as part of satisfyCpuSideRequest
1667 if (pkt->cmd == MemCmd::WriteLineReq) {
1668 assert(!pkt->sharedAsserted());
1669 // at the moment other caches do not respond to the
1670 // invalidation requests corresponding to a whole-line write
1671 assert(!pkt->memInhibitAsserted());
1672 }
1673
1674 if (!pkt->sharedAsserted()) {
1675 // we could get non-shared responses from memory (rather than
1676 // a cache) even in a read-only cache, note that we set this
1677 // bit even for a read-only cache as we use it to represent
1678 // the exclusive state
1679 blk->status |= BlkWritable;
1680
1681 // If we got this via cache-to-cache transfer (i.e., from a
1682 // cache that was an owner) and took away that owner's copy,
1683 // then we need to write it back. Normally this happens
1684 // anyway as a side effect of getting a copy to write it, but
1685 // there are cases (such as failed store conditionals or
1686 // compare-and-swaps) where we'll demand an exclusive copy but
1687 // end up not writing it.
1688 if (pkt->memInhibitAsserted()) {
1689 blk->status |= BlkDirty;
1690
1691 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1692 "in read-only cache %s\n", name());
1693 }
1694 }
1695
1696 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1697 addr, is_secure ? "s" : "ns", old_state, blk->print());
1698
1699 // if we got new data, copy it in (checking for a read response
1700 // and a response that has data is the same in the end)
1701 if (pkt->isRead()) {
1702 // sanity checks
1703 assert(pkt->hasData());
1704 assert(pkt->getSize() == blkSize);
1705
1706 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1707 }
1708 // We pay for fillLatency here.
1709 blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1710 pkt->payloadDelay;
1711
1712 return blk;
1713 }
1714
1715
1716 /////////////////////////////////////////////////////
1717 //
1718 // Snoop path: requests coming in from the memory side
1719 //
1720 /////////////////////////////////////////////////////
1721
1722 void
1723 Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1724 bool already_copied, bool pending_inval)
1725 {
1726 // sanity check
1727 assert(req_pkt->isRequest());
1728 assert(req_pkt->needsResponse());
1729
1730 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1731 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1732 // timing-mode snoop responses require a new packet, unless we
1733 // already made a copy...
1734 PacketPtr pkt = req_pkt;
1735 if (!already_copied)
1736 // do not clear flags, and allocate space for data if the
1737 // packet needs it (the only packets that carry data are read
1738 // responses)
1739 pkt = new Packet(req_pkt, false, req_pkt->isRead());
1740
1741 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1742 pkt->sharedAsserted());
1743 pkt->makeTimingResponse();
1744 if (pkt->isRead()) {
1745 pkt->setDataFromBlock(blk_data, blkSize);
1746 }
1747 if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1748 // Assume we defer a response to a read from a far-away cache
1749 // A, then later defer a ReadExcl from a cache B on the same
1750 // bus as us. We'll assert MemInhibit in both cases, but in
1751 // the latter case MemInhibit will keep the invalidation from
1752 // reaching cache A. This special response tells cache A that
1753 // it gets the block to satisfy its read, but must immediately
1754 // invalidate it.
1755 pkt->cmd = MemCmd::ReadRespWithInvalidate;
1756 }
1757 // Here we consider forward_time, paying for just forward latency and
1758 // also charging the delay provided by the xbar.
1759 // forward_time is used as send_time in next allocateWriteBuffer().
1760 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1761 // Here we reset the timing of the packet.
1762 pkt->headerDelay = pkt->payloadDelay = 0;
1763 DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n",
1764 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1765 forward_time);
1766 memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1767 }
1768
1769 uint32_t
1770 Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1771 bool is_deferred, bool pending_inval)
1772 {
1773 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1774 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1775 // deferred snoops can only happen in timing mode
1776 assert(!(is_deferred && !is_timing));
1777 // pending_inval only makes sense on deferred snoops
1778 assert(!(pending_inval && !is_deferred));
1779 assert(pkt->isRequest());
1780
1781 // the packet may get modified if we or a forwarded snooper
1782 // responds in atomic mode, so remember a few things about the
1783 // original packet up front
1784 bool invalidate = pkt->isInvalidate();
1785 bool M5_VAR_USED needs_exclusive = pkt->needsExclusive();
1786
1787 uint32_t snoop_delay = 0;
1788
1789 if (forwardSnoops) {
1790 // first propagate snoop upward to see if anyone above us wants to
1791 // handle it. save & restore packet src since it will get
1792 // rewritten to be relative to cpu-side bus (if any)
1793 bool alreadyResponded = pkt->memInhibitAsserted();
1794 if (is_timing) {
1795 // copy the packet so that we can clear any flags before
1796 // forwarding it upwards, we also allocate data (passing
1797 // the pointer along in case of static data), in case
1798 // there is a snoop hit in upper levels
1799 Packet snoopPkt(pkt, true, true);
1800 snoopPkt.setExpressSnoop();
1801 snoopPkt.pushSenderState(new ForwardResponseRecord());
1802 // the snoop packet does not need to wait any additional
1803 // time
1804 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1805 cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1806
1807 // add the header delay (including crossbar and snoop
1808 // delays) of the upward snoop to the snoop delay for this
1809 // cache
1810 snoop_delay += snoopPkt.headerDelay;
1811
1812 if (snoopPkt.memInhibitAsserted()) {
1813 // cache-to-cache response from some upper cache
1814 assert(!alreadyResponded);
1815 pkt->assertMemInhibit();
1816 } else {
1817 // no cache (or anyone else for that matter) will
1818 // respond, so delete the ForwardResponseRecord here
1819 delete snoopPkt.popSenderState();
1820 }
1821 if (snoopPkt.sharedAsserted()) {
1822 pkt->assertShared();
1823 }
1824 // If this request is a prefetch or clean evict and an upper level
1825 // signals block present, make sure to propagate the block
1826 // presence to the requester.
1827 if (snoopPkt.isBlockCached()) {
1828 pkt->setBlockCached();
1829 }
1830 } else {
1831 cpuSidePort->sendAtomicSnoop(pkt);
1832 if (!alreadyResponded && pkt->memInhibitAsserted()) {
1833 // cache-to-cache response from some upper cache:
1834 // forward response to original requester
1835 assert(pkt->isResponse());
1836 }
1837 }
1838 }
1839
1840 if (!blk || !blk->isValid()) {
1841 DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n",
1842 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1843 return snoop_delay;
1844 } else {
1845 DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, "
1846 "old state is %s\n", __func__, pkt->cmdString(),
1847 pkt->getAddr(), pkt->getSize(), blk->print());
1848 }
1849
1850 chatty_assert(!(isReadOnly && blk->isDirty()),
1851 "Should never have a dirty block in a read-only cache %s\n",
1852 name());
1853
1854 // We may end up modifying both the block state and the packet (if
1855 // we respond in atomic mode), so just figure out what to do now
1856 // and then do it later. If we find dirty data while snooping for
1857 // an invalidate, we don't need to send a response. The
1858 // invalidation itself is taken care of below.
1859 bool respond = blk->isDirty() && pkt->needsResponse() &&
1860 pkt->cmd != MemCmd::InvalidateReq;
1861 bool have_exclusive = blk->isWritable();
1862
1863 // Invalidate any prefetch's from below that would strip write permissions
1864 // MemCmd::HardPFReq is only observed by upstream caches. After missing
1865 // above and in it's own cache, a new MemCmd::ReadReq is created that
1866 // downstream caches observe.
1867 if (pkt->mustCheckAbove()) {
1868 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
1869 " lower cache\n", pkt->getAddr(), pkt->cmdString());
1870 pkt->setBlockCached();
1871 return snoop_delay;
1872 }
1873
1874 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
1875 // reading non-exclusive shared data, note that we retain
1876 // the block in owned state if it is dirty, with the response
1877 // taken care of below, and otherwhise simply downgrade to
1878 // shared
1879 assert(!needs_exclusive);
1880 pkt->assertShared();
1881 blk->status &= ~BlkWritable;
1882 }
1883
1884 if (respond) {
1885 // prevent anyone else from responding, cache as well as
1886 // memory, and also prevent any memory from even seeing the
1887 // request (with current inhibited semantics), note that this
1888 // applies both to reads and writes and that for writes it
1889 // works thanks to the fact that we still have dirty data and
1890 // will write it back at a later point
1891 pkt->assertMemInhibit();
1892 if (have_exclusive) {
1893 // in the case of an uncacheable request there is no point
1894 // in setting the exclusive flag, but since the recipient
1895 // does not care there is no harm in doing so, in any case
1896 // it is just a hint
1897 pkt->setSupplyExclusive();
1898 }
1899 if (is_timing) {
1900 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
1901 } else {
1902 pkt->makeAtomicResponse();
1903 pkt->setDataFromBlock(blk->data, blkSize);
1904 }
1905 }
1906
1907 if (!respond && is_timing && is_deferred) {
1908 // if it's a deferred timing snoop then we've made a copy of
1909 // both the request and the packet, and so if we're not using
1910 // those copies to respond and delete them here
1911 DPRINTF(Cache, "Deleting pkt %p and request %p for cmd %s addr: %p\n",
1912 pkt, pkt->req, pkt->cmdString(), pkt->getAddr());
1913
1914 // the packets needs a response (just not from us), so we also
1915 // need to delete the request and not rely on the packet
1916 // destructor
1917 assert(pkt->needsResponse());
1918 delete pkt->req;
1919 delete pkt;
1920 }
1921
1922 // Do this last in case it deallocates block data or something
1923 // like that
1924 if (invalidate) {
1925 if (blk != tempBlock)
1926 tags->invalidate(blk);
1927 blk->invalidate();
1928 }
1929
1930 DPRINTF(Cache, "new state is %s\n", blk->print());
1931
1932 return snoop_delay;
1933 }
1934
1935
1936 void
1937 Cache::recvTimingSnoopReq(PacketPtr pkt)
1938 {
1939 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1940 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1941
1942 // Snoops shouldn't happen when bypassing caches
1943 assert(!system->bypassCaches());
1944
1945 // no need to snoop requests that are not in range
1946 if (!inRange(pkt->getAddr())) {
1947 return;
1948 }
1949
1950 bool is_secure = pkt->isSecure();
1951 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1952
1953 Addr blk_addr = blockAlign(pkt->getAddr());
1954 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1955
1956 // Update the latency cost of the snoop so that the crossbar can
1957 // account for it. Do not overwrite what other neighbouring caches
1958 // have already done, rather take the maximum. The update is
1959 // tentative, for cases where we return before an upward snoop
1960 // happens below.
1961 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
1962 lookupLatency * clockPeriod());
1963
1964 // Inform request(Prefetch, CleanEvict or Writeback) from below of
1965 // MSHR hit, set setBlockCached.
1966 if (mshr && pkt->mustCheckAbove()) {
1967 DPRINTF(Cache, "Setting block cached for %s from"
1968 "lower cache on mshr hit %#x\n",
1969 pkt->cmdString(), pkt->getAddr());
1970 pkt->setBlockCached();
1971 return;
1972 }
1973
1974 // Let the MSHR itself track the snoop and decide whether we want
1975 // to go ahead and do the regular cache snoop
1976 if (mshr && mshr->handleSnoop(pkt, order++)) {
1977 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
1978 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
1979 mshr->print());
1980
1981 if (mshr->getNumTargets() > numTarget)
1982 warn("allocating bonus target for snoop"); //handle later
1983 return;
1984 }
1985
1986 //We also need to check the writeback buffers and handle those
1987 std::vector<MSHR *> writebacks;
1988 if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) {
1989 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
1990 pkt->getAddr(), is_secure ? "s" : "ns");
1991
1992 // Look through writebacks for any cachable writes.
1993 // We should only ever find a single match
1994 assert(writebacks.size() == 1);
1995 MSHR *wb_entry = writebacks[0];
1996 // Expect to see only Writebacks and/or CleanEvicts here, both of
1997 // which should not be generated for uncacheable data.
1998 assert(!wb_entry->isUncacheable());
1999 // There should only be a single request responsible for generating
2000 // Writebacks/CleanEvicts.
2001 assert(wb_entry->getNumTargets() == 1);
2002 PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2003 assert(wb_pkt->evictingBlock());
2004
2005 if (pkt->evictingBlock()) {
2006 // if the block is found in the write queue, set the BLOCK_CACHED
2007 // flag for Writeback/CleanEvict snoop. On return the snoop will
2008 // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2009 // any CleanEvicts from travelling down the memory hierarchy.
2010 pkt->setBlockCached();
2011 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2012 " %#x\n", pkt->cmdString(), pkt->getAddr());
2013 return;
2014 }
2015
2016 if (wb_pkt->cmd == MemCmd::Writeback) {
2017 assert(!pkt->memInhibitAsserted());
2018 pkt->assertMemInhibit();
2019 if (!pkt->needsExclusive()) {
2020 pkt->assertShared();
2021 // the writeback is no longer passing exclusivity (the
2022 // receiving cache should consider the block owned
2023 // rather than modified)
2024 wb_pkt->assertShared();
2025 } else {
2026 // if we're not asserting the shared line, we need to
2027 // invalidate our copy. we'll do that below as long as
2028 // the packet's invalidate flag is set...
2029 assert(pkt->isInvalidate());
2030 }
2031 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2032 false, false);
2033 } else {
2034 assert(wb_pkt->cmd == MemCmd::CleanEvict);
2035 // The cache technically holds the block until the
2036 // corresponding CleanEvict message reaches the crossbar
2037 // below. Therefore when a snoop encounters a CleanEvict
2038 // message we must set assertShared (just like when it
2039 // encounters a Writeback) to avoid the snoop filter
2040 // prematurely clearing the holder bit in the crossbar
2041 // below
2042 if (!pkt->needsExclusive())
2043 pkt->assertShared();
2044 else
2045 assert(pkt->isInvalidate());
2046 }
2047
2048 if (pkt->isInvalidate()) {
2049 // Invalidation trumps our writeback... discard here
2050 // Note: markInService will remove entry from writeback buffer.
2051 markInService(wb_entry, false);
2052 delete wb_pkt;
2053 }
2054 }
2055
2056 // If this was a shared writeback, there may still be
2057 // other shared copies above that require invalidation.
2058 // We could be more selective and return here if the
2059 // request is non-exclusive or if the writeback is
2060 // exclusive.
2061 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2062
2063 // Override what we did when we first saw the snoop, as we now
2064 // also have the cost of the upwards snoops to account for
2065 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2066 lookupLatency * clockPeriod());
2067 }
2068
2069 bool
2070 Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2071 {
2072 // Express snoop responses from master to slave, e.g., from L1 to L2
2073 cache->recvTimingSnoopResp(pkt);
2074 return true;
2075 }
2076
2077 Tick
2078 Cache::recvAtomicSnoop(PacketPtr pkt)
2079 {
2080 // Snoops shouldn't happen when bypassing caches
2081 assert(!system->bypassCaches());
2082
2083 // no need to snoop requests that are not in range.
2084 if (!inRange(pkt->getAddr())) {
2085 return 0;
2086 }
2087
2088 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2089 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2090 return snoop_delay + lookupLatency * clockPeriod();
2091 }
2092
2093
2094 MSHR *
2095 Cache::getNextMSHR()
2096 {
2097 // Check both MSHR queue and write buffer for potential requests,
2098 // note that null does not mean there is no request, it could
2099 // simply be that it is not ready
2100 MSHR *miss_mshr = mshrQueue.getNextMSHR();
2101 MSHR *write_mshr = writeBuffer.getNextMSHR();
2102
2103 // If we got a write buffer request ready, first priority is a
2104 // full write buffer, otherwhise we favour the miss requests
2105 if (write_mshr &&
2106 ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) ||
2107 !miss_mshr)) {
2108 // need to search MSHR queue for conflicting earlier miss.
2109 MSHR *conflict_mshr =
2110 mshrQueue.findPending(write_mshr->blkAddr,
2111 write_mshr->isSecure);
2112
2113 if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
2114 // Service misses in order until conflict is cleared.
2115 return conflict_mshr;
2116
2117 // @todo Note that we ignore the ready time of the conflict here
2118 }
2119
2120 // No conflicts; issue write
2121 return write_mshr;
2122 } else if (miss_mshr) {
2123 // need to check for conflicting earlier writeback
2124 MSHR *conflict_mshr =
2125 writeBuffer.findPending(miss_mshr->blkAddr,
2126 miss_mshr->isSecure);
2127 if (conflict_mshr) {
2128 // not sure why we don't check order here... it was in the
2129 // original code but commented out.
2130
2131 // The only way this happens is if we are
2132 // doing a write and we didn't have permissions
2133 // then subsequently saw a writeback (owned got evicted)
2134 // We need to make sure to perform the writeback first
2135 // To preserve the dirty data, then we can issue the write
2136
2137 // should we return write_mshr here instead? I.e. do we
2138 // have to flush writes in order? I don't think so... not
2139 // for Alpha anyway. Maybe for x86?
2140 return conflict_mshr;
2141
2142 // @todo Note that we ignore the ready time of the conflict here
2143 }
2144
2145 // No conflicts; issue read
2146 return miss_mshr;
2147 }
2148
2149 // fall through... no pending requests. Try a prefetch.
2150 assert(!miss_mshr && !write_mshr);
2151 if (prefetcher && mshrQueue.canPrefetch()) {
2152 // If we have a miss queue slot, we can try a prefetch
2153 PacketPtr pkt = prefetcher->getPacket();
2154 if (pkt) {
2155 Addr pf_addr = blockAlign(pkt->getAddr());
2156 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2157 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2158 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2159 // Update statistic on number of prefetches issued
2160 // (hwpf_mshr_misses)
2161 assert(pkt->req->masterId() < system->maxMasters());
2162 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2163
2164 // allocate an MSHR and return it, note
2165 // that we send the packet straight away, so do not
2166 // schedule the send
2167 return allocateMissBuffer(pkt, curTick(), false);
2168 } else {
2169 // free the request and packet
2170 delete pkt->req;
2171 delete pkt;
2172 }
2173 }
2174 }
2175
2176 return NULL;
2177 }
2178
2179 bool
2180 Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2181 {
2182 if (!forwardSnoops)
2183 return false;
2184 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2185 // Writeback snoops into upper level caches to check for copies of the
2186 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2187 // packet, the cache can inform the crossbar below of presence or absence
2188 // of the block.
2189 if (is_timing) {
2190 Packet snoop_pkt(pkt, true, false);
2191 snoop_pkt.setExpressSnoop();
2192 // Assert that packet is either Writeback or CleanEvict and not a
2193 // prefetch request because prefetch requests need an MSHR and may
2194 // generate a snoop response.
2195 assert(pkt->evictingBlock());
2196 snoop_pkt.senderState = NULL;
2197 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2198 // Writeback/CleanEvict snoops do not generate a snoop response.
2199 assert(!(snoop_pkt.memInhibitAsserted()));
2200 return snoop_pkt.isBlockCached();
2201 } else {
2202 cpuSidePort->sendAtomicSnoop(pkt);
2203 return pkt->isBlockCached();
2204 }
2205 }
2206
2207 PacketPtr
2208 Cache::getTimingPacket()
2209 {
2210 MSHR *mshr = getNextMSHR();
2211
2212 if (mshr == NULL) {
2213 return NULL;
2214 }
2215
2216 // use request from 1st target
2217 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2218 PacketPtr pkt = NULL;
2219
2220 DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__,
2221 tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize());
2222
2223 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2224
2225 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2226 // We need to check the caches above us to verify that
2227 // they don't have a copy of this block in the dirty state
2228 // at the moment. Without this check we could get a stale
2229 // copy from memory that might get used in place of the
2230 // dirty one.
2231 Packet snoop_pkt(tgt_pkt, true, false);
2232 snoop_pkt.setExpressSnoop();
2233 snoop_pkt.senderState = mshr;
2234 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2235
2236 // Check to see if the prefetch was squashed by an upper cache (to
2237 // prevent us from grabbing the line) or if a Check to see if a
2238 // writeback arrived between the time the prefetch was placed in
2239 // the MSHRs and when it was selected to be sent or if the
2240 // prefetch was squashed by an upper cache.
2241
2242 // It is important to check memInhibitAsserted before
2243 // prefetchSquashed. If another cache has asserted MEM_INGIBIT, it
2244 // will be sending a response which will arrive at the MSHR
2245 // allocated ofr this request. Checking the prefetchSquash first
2246 // may result in the MSHR being prematurely deallocated.
2247
2248 if (snoop_pkt.memInhibitAsserted()) {
2249 // If we are getting a non-shared response it is dirty
2250 bool pending_dirty_resp = !snoop_pkt.sharedAsserted();
2251 markInService(mshr, pending_dirty_resp);
2252 DPRINTF(Cache, "Upward snoop of prefetch for addr"
2253 " %#x (%s) hit\n",
2254 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2255 return NULL;
2256 }
2257
2258 if (snoop_pkt.isBlockCached() || blk != NULL) {
2259 DPRINTF(Cache, "Block present, prefetch squashed by cache. "
2260 "Deallocating mshr target %#x.\n",
2261 mshr->blkAddr);
2262
2263 // Deallocate the mshr target
2264 if (tgt_pkt->cmd != MemCmd::Writeback) {
2265 if (mshr->queue->forceDeallocateTarget(mshr)) {
2266 // Clear block if this deallocation resulted freed an
2267 // mshr when all had previously been utilized
2268 clearBlocked((BlockedCause)(mshr->queue->index));
2269 }
2270 return NULL;
2271 } else {
2272 // If this is a Writeback, and the snoops indicate that the blk
2273 // is cached above, set the BLOCK_CACHED flag in the Writeback
2274 // packet, so that it does not reset the bits corresponding to
2275 // this block in the snoop filter below.
2276 tgt_pkt->setBlockCached();
2277 }
2278 }
2279 }
2280
2281 if (mshr->isForwardNoResponse()) {
2282 // no response expected, just forward packet as it is
2283 assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL);
2284 pkt = tgt_pkt;
2285 } else {
2286 pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive());
2287
2288 mshr->isForward = (pkt == NULL);
2289
2290 if (mshr->isForward) {
2291 // not a cache block request, but a response is expected
2292 // make copy of current packet to forward, keep current
2293 // copy for response handling
2294 pkt = new Packet(tgt_pkt, false, true);
2295 if (pkt->isWrite()) {
2296 pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
2297 }
2298 }
2299 }
2300
2301 assert(pkt != NULL);
2302 pkt->senderState = mshr;
2303 return pkt;
2304 }
2305
2306
2307 Tick
2308 Cache::nextMSHRReadyTime() const
2309 {
2310 Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(),
2311 writeBuffer.nextMSHRReadyTime());
2312
2313 // Don't signal prefetch ready time if no MSHRs available
2314 // Will signal once enoguh MSHRs are deallocated
2315 if (prefetcher && mshrQueue.canPrefetch()) {
2316 nextReady = std::min(nextReady,
2317 prefetcher->nextPrefetchReadyTime());
2318 }
2319
2320 return nextReady;
2321 }
2322
2323 void
2324 Cache::serialize(CheckpointOut &cp) const
2325 {
2326 bool dirty(isDirty());
2327
2328 if (dirty) {
2329 warn("*** The cache still contains dirty data. ***\n");
2330 warn(" Make sure to drain the system using the correct flags.\n");
2331 warn(" This checkpoint will not restore correctly and dirty data in "
2332 "the cache will be lost!\n");
2333 }
2334
2335 // Since we don't checkpoint the data in the cache, any dirty data
2336 // will be lost when restoring from a checkpoint of a system that
2337 // wasn't drained properly. Flag the checkpoint as invalid if the
2338 // cache contains dirty data.
2339 bool bad_checkpoint(dirty);
2340 SERIALIZE_SCALAR(bad_checkpoint);
2341 }
2342
2343 void
2344 Cache::unserialize(CheckpointIn &cp)
2345 {
2346 bool bad_checkpoint;
2347 UNSERIALIZE_SCALAR(bad_checkpoint);
2348 if (bad_checkpoint) {
2349 fatal("Restoring from checkpoints with dirty caches is not supported "
2350 "in the classic memory system. Please remove any caches or "
2351 " drain them properly before taking checkpoints.\n");
2352 }
2353 }
2354
2355 ///////////////
2356 //
2357 // CpuSidePort
2358 //
2359 ///////////////
2360
2361 AddrRangeList
2362 Cache::CpuSidePort::getAddrRanges() const
2363 {
2364 return cache->getAddrRanges();
2365 }
2366
2367 bool
2368 Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2369 {
2370 assert(!cache->system->bypassCaches());
2371
2372 bool success = false;
2373
2374 // always let inhibited requests through, even if blocked,
2375 // ultimately we should check if this is an express snoop, but at
2376 // the moment that flag is only set in the cache itself
2377 if (pkt->memInhibitAsserted()) {
2378 // do not change the current retry state
2379 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2380 assert(bypass_success);
2381 return true;
2382 } else if (blocked || mustSendRetry) {
2383 // either already committed to send a retry, or blocked
2384 success = false;
2385 } else {
2386 // pass it on to the cache, and let the cache decide if we
2387 // have to retry or not
2388 success = cache->recvTimingReq(pkt);
2389 }
2390
2391 // remember if we have to retry
2392 mustSendRetry = !success;
2393 return success;
2394 }
2395
2396 Tick
2397 Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2398 {
2399 return cache->recvAtomic(pkt);
2400 }
2401
2402 void
2403 Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2404 {
2405 // functional request
2406 cache->functionalAccess(pkt, true);
2407 }
2408
2409 Cache::
2410 CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2411 const std::string &_label)
2412 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2413 {
2414 }
2415
2416 Cache*
2417 CacheParams::create()
2418 {
2419 assert(tags);
2420
2421 return new Cache(this);
2422 }
2423 ///////////////
2424 //
2425 // MemSidePort
2426 //
2427 ///////////////
2428
2429 bool
2430 Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2431 {
2432 cache->recvTimingResp(pkt);
2433 return true;
2434 }
2435
2436 // Express snooping requests to memside port
2437 void
2438 Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2439 {
2440 // handle snooping requests
2441 cache->recvTimingSnoopReq(pkt);
2442 }
2443
2444 Tick
2445 Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2446 {
2447 return cache->recvAtomicSnoop(pkt);
2448 }
2449
2450 void
2451 Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2452 {
2453 // functional snoop (note that in contrast to atomic we don't have
2454 // a specific functionalSnoop method, as they have the same
2455 // behaviour regardless)
2456 cache->functionalAccess(pkt, false);
2457 }
2458
2459 void
2460 Cache::CacheReqPacketQueue::sendDeferredPacket()
2461 {
2462 // sanity check
2463 assert(!waitingOnRetry);
2464
2465 // there should never be any deferred request packets in the
2466 // queue, instead we resly on the cache to provide the packets
2467 // from the MSHR queue or write queue
2468 assert(deferredPacketReadyTime() == MaxTick);
2469
2470 // check for request packets (requests & writebacks)
2471 PacketPtr pkt = cache.getTimingPacket();
2472 if (pkt == NULL) {
2473 // can happen if e.g. we attempt a writeback and fail, but
2474 // before the retry, the writeback is eliminated because
2475 // we snoop another cache's ReadEx.
2476 } else {
2477 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
2478 // in most cases getTimingPacket allocates a new packet, and
2479 // we must delete it unless it is successfully sent
2480 bool delete_pkt = !mshr->isForwardNoResponse();
2481
2482 // let our snoop responses go first if there are responses to
2483 // the same addresses we are about to writeback, note that
2484 // this creates a dependency between requests and snoop
2485 // responses, but that should not be a problem since there is
2486 // a chain already and the key is that the snoop responses can
2487 // sink unconditionally
2488 if (snoopRespQueue.hasAddr(pkt->getAddr())) {
2489 DPRINTF(CachePort, "Waiting for snoop response to be sent\n");
2490 Tick when = snoopRespQueue.deferredPacketReadyTime();
2491 schedSendEvent(when);
2492
2493 if (delete_pkt)
2494 delete pkt;
2495
2496 return;
2497 }
2498
2499
2500 waitingOnRetry = !masterPort.sendTimingReq(pkt);
2501
2502 if (waitingOnRetry) {
2503 DPRINTF(CachePort, "now waiting on a retry\n");
2504 if (delete_pkt) {
2505 // we are awaiting a retry, but we
2506 // delete the packet and will be creating a new packet
2507 // when we get the opportunity
2508 delete pkt;
2509 }
2510 // note that we have now masked any requestBus and
2511 // schedSendEvent (we will wait for a retry before
2512 // doing anything), and this is so even if we do not
2513 // care about this packet and might override it before
2514 // it gets retried
2515 } else {
2516 // As part of the call to sendTimingReq the packet is
2517 // forwarded to all neighbouring caches (and any
2518 // caches above them) as a snoop. The packet is also
2519 // sent to any potential cache below as the
2520 // interconnect is not allowed to buffer the
2521 // packet. Thus at this point we know if any of the
2522 // neighbouring, or the downstream cache is
2523 // responding, and if so, if it is with a dirty line
2524 // or not.
2525 bool pending_dirty_resp = !pkt->sharedAsserted() &&
2526 pkt->memInhibitAsserted();
2527
2528 cache.markInService(mshr, pending_dirty_resp);
2529 }
2530 }
2531
2532 // if we succeeded and are not waiting for a retry, schedule the
2533 // next send considering when the next MSHR is ready, note that
2534 // snoop responses have their own packet queue and thus schedule
2535 // their own events
2536 if (!waitingOnRetry) {
2537 schedSendEvent(cache.nextMSHRReadyTime());
2538 }
2539 }
2540
2541 Cache::
2542 MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2543 const std::string &_label)
2544 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2545 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2546 _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2547 {
2548 }